FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Lee, SH Teramoto, Y Wang, SQ Pharr, GM Rials, TG AF Lee, Seung-Hwan Teramoto, Yoshikuni Wang, Siqun Pharr, George M. Rials, Timothy G. TI Nanoindentation of biodegradable cellulose diacetate-graft-poly(L-lactide) copolymers: Effect of molecular composition and thermal aging on mechanical properties SO JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS LA English DT Article DE cellulose; continuous stiffness measurement; graft-copolymerization; graft copolymers; hardness; mechanical properties; nanoindentation; nanotechnology; poly(lactide) ID VISCOELASTIC PROPERTIES; ACETATE BUTYRATE; BACTERIAL POLY(3-HYDROXYBUTYRATE); ISOTACTIC POLYPROPYLENE; BLENDS; MICROHARDNESS; MISCIBILITY; CRYSTALLIZATION; DIACETATE; BEHAVIOR AB Nanoindentation of cellulose diacetate-graft-poly(lactide)s (CDA-g-PLLAs) synthesized by ring opening graft copolymerization of L-lactide in bulk onto the residual hydroxyl positions on CDA were conducted to investigate the effect of the molecular composition and thermal aging on mechanical properties and creep behavior. Continuous stiffness measurement (CSM) technique was used to obtained hardness and elastic modulus. These material properties were expressed as a mean value from 100 to 300 nm depths and an unloading value at final indentation depth. The hardness and elastic modulus in all CDA-g-PLLAs were higher than those in pure CDA, indicating that the introduction of PLLA increases the hardness and elastic modulus. With an increase of crystallinity by thermal aging, the hardness and elastic modulus were increased in both CDA-g-PLLA and PLLA. The creep test performed by CSM showed that the creep strain of CDA was decreased by the grafting of PLLA. Thermal aging decreased the creep strain of CDA-g-PLLA and PLLA. With an increase of holding time, hardness was decreased, whereas elastic modulus was kept almost constant. (c) 2007 Wiley Periodicals, Inc. C1 Univ Tennessee, Forest Prod Ctr, Knoxville, TN 37996 USA. Natl Inst Adv Ind Sci & Technol, Biomass Technol Res Ctr, Hiroshima, Japan. Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN USA. RP Lee, SH (reprint author), Univ Tennessee, Forest Prod Ctr, Knoxville, TN 37996 USA. EM lshyhk@hotmail.com RI TERAMOTO, Yoshikuni/A-1773-2013 OI TERAMOTO, Yoshikuni/0000-0003-3850-3570 NR 30 TC 8 Z9 9 U1 3 U2 14 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-6266 J9 J POLYM SCI POL PHYS JI J. Polym. Sci. Pt. B-Polym. Phys. PD MAY 1 PY 2007 VL 45 IS 9 BP 1114 EP 1121 DI 10.1002/polb.21074 PG 8 WC Polymer Science SC Polymer Science GA 158XT UT WOS:000245829600013 ER PT J AU Lu, W Liu, J Sun, YK Amine, K AF Lu, W. Liu, J. Sun, Y. K. Amine, K. TI Electrochemical performance of Li4/3Ti5/3O4/Li1+x(Ni1/3Co1/3Mn1/3)(1-x)O-2 cell for high power applications SO JOURNAL OF POWER SOURCES LA English DT Article DE lithium-ion battery; capacity retention; cycle-life; Li4/3Ti5/3O4; Li1+x(Ni1/3Co1/3Mn1/3)(1-x)O-2; high power ID LITHIUM-ION BATTERIES; NONAQUEOUS SOLVENTS; LI(NI1/3CO1/3MN1/3)O-2 AB A Li4/3Ti5/3O4/Li1+x(Ni1/3CO1/3Mn1/3)1-O-x(2) Cell is shown to exhibit excellent cycling performance at both room and elevated temperature. This behaviour is attributed to the high stability of the Li4/3Ti5/3O4 anode at the bulk structure level as well as at the interface, because there is no solid electrolyte interface effect. Moreover, it is found that the impedances of both materials are dominated by electrochemical kinetics (Butler-Volmer kinetics), which makes this a good system for high-power applications. The high voltage polarization of the Li4/3Ti5/3O4 and Li1+x(Ni1/3CO1/3Mn1/3)(1-x)O-2 electrodes at the end of the charge and discharge gives a good indication of cell overcharge and overdischarge. (c) 2007 Published by Elsevier B.V. C1 Argonne Natl Lab, Div Chem Engn, Argonne, IL 60439 USA. Hanyang Univ, Div Chem Engn, Seoul, South Korea. RP Amine, K (reprint author), Argonne Natl Lab, Div Chem Engn, 9700 S Cass Ave, Argonne, IL 60439 USA. EM amine@cmt.anl.gov RI Sun, Yang-Kook/B-9157-2013; Amine, Khalil/K-9344-2013 OI Sun, Yang-Kook/0000-0002-0117-0170; NR 18 TC 23 Z9 25 U1 1 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD MAY 1 PY 2007 VL 167 IS 1 BP 212 EP 216 DI 10.1016/j.jpowsour.2006.12.077 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 164TC UT WOS:000246256300031 ER PT J AU Paul, M Valenta, A Ahmad, I Berkovits, D Bordeanu, C Ghelberg, S Hashimoto, Y Hershkowitz, A Jiang, S Nakanishi, T Sakamoto, K AF Paul, M. Valenta, A. Ahmad, I. Berkovits, D. Bordeanu, C. Ghelberg, S. Hashimoto, Y. Hershkowitz, A. Jiang, S. Nakanishi, T. Sakamoto, K. TI An upper limit to interstellar Pu-244 abundance as deduced from radiochemical search in deep-sea sediment: An account SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article; Proceedings Paper CT 3rd Asia-Pacific Symposium Radichemistry CY OCT 17-21, 2005 CL Beijing, JAPAN ID COSMIC DUST; SUPERNOVA; ELEMENTS; GRAINS; FE-60; EARTH AB We report here a search for the "live" Pu-244 in 1 kg deep-sea dry sediment collected in 1992 in the North Pacific. After a 546 day alpha-counting of a Pu fraction chemically separated from the alkaline-fused sediment sample at Kanazawa University, AMS analysis was performed at Hebrew University and Weizmann Institute. Only one count of Pu-244 with no background ions was detected, indicating no excess over the expected stratospheric man-made fallout. A limit of 0.2 atoms of Pu-244 cm(-2)center dot y(-1) for extra terrestrial deposition was set under reasonable assumptions and it was then concluded from this result and the available data on interstellar medium (ISM) that the abundance of Pu-244 in the ISM is less than 2 center dot 10(-11) g Pu-244 (g center dot ISM)(-1). Implications of the present result are discussed. C1 Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. Soreq NRC, IL-81800 Yavne, Israel. Weizmann Inst Sci, Particle Phys Dept, IL-76100 Rehovot, Israel. Kanazawa Univ, Fac Sci, Dept Chem, Kanazawa, Ishikawa 9201192, Japan. RP Paul, M (reprint author), Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. EM kohsakamoto@par.odn.ne.jp RI Bordeanu, Cristina/J-3438-2012 OI Bordeanu, Cristina/0000-0003-4641-0630 NR 22 TC 6 Z9 6 U1 1 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2007 VL 272 IS 2 BP 243 EP 245 DI 10.1007/s10967-007-0508-3 PG 3 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 152KE UT WOS:000245360100009 ER PT J AU Ruan, CM Wang, W Gu, BH AF Ruan, Chuanmin Wang, Wei Gu, Baohua TI Single-molecule detection of thionine on aggregated gold nanoparticles by surface enhanced Raman scattering SO JOURNAL OF RAMAN SPECTROSCOPY LA English DT Article DE single-molecule SERS; thionine; gold nanciparticles; Raman spectroscopy ID SPECTROSCOPY; NANOCRYSTALS; ELECTRODE; COLLOIDS; SERS AB We report observations of single-molecule detection of thionine and its dynamic interactions on aggregated gold nanoparticle clusters using surface enhanced Raman scattering (SERS). Spectral intensities were found to be independent of the size of Au nanoparticles studied (from 17 to 80 nm) at thionine concentration below 10(-12) M or at single-molecule concentration levels. Raman line separations and, in particular, spectral fluctuations and blinking were also observed, suggesting temporal changes in single molecular motion and/or arrangements of thionine on Au nanoparticle surfaces. In contrast, by using dispersed Au nanoparticles, only ensemble SERS spectra could be observed at relatively high concentrations (> 10(-8) M thionine), and spectral intensities varied with the size of Au nanoparticles. Copyright (C) 2007 John Wiley & Sons, Ltd. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. RP Gu, BH (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM gub1@ornl.gov RI Wang, Wei/B-5924-2012; Gu, Baohua/B-9511-2012 OI Gu, Baohua/0000-0002-7299-2956 NR 29 TC 32 Z9 34 U1 1 U2 15 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0377-0486 J9 J RAMAN SPECTROSC JI J. Raman Spectrosc. PD MAY PY 2007 VL 38 IS 5 BP 568 EP 573 DI 10.1002/jrs.1691 PG 6 WC Spectroscopy SC Spectroscopy GA 163OG UT WOS:000246168800012 ER PT J AU Anderson, DM Roop, JM AF Anderson, David M. Roop, Joseph M. TI The technology-energy-environment-health (TEEH) chain in China: A case study in cokemaking SO JOURNAL OF REGIONAL SCIENCE LA English DT Book Review C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Anderson, DM (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. NR 2 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-4146 J9 J REGIONAL SCI JI J. Reg. Sci. PD MAY PY 2007 VL 47 IS 2 BP 397 EP 398 DI 10.1111/j.1467-9787.2007.00513_13.x PG 2 WC Economics; Environmental Studies; Planning & Development SC Business & Economics; Environmental Sciences & Ecology; Public Administration GA 158SB UT WOS:000245813700021 ER PT J AU Cotrell, DL Kearsley, AJ AF Cotrell, D. L. Kearsley, A. J. TI Flow control through the use of topography SO JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY LA English DT Article DE complex boundary; constant properties; finite element method; flow control; fluid dynamics; optimization; steady; Taylor-Couette flow ID TAYLOR VORTEX FLOW; SPIRAL POISEUILLE FLOW; WAVE-NUMBER SELECTION; COUETTE FLOW; SIMULATION AB In this work, optimal shaft shapes for flow in the annular space between a rotating shaft with axially-periodic radius and a fixed coaxial outer circular cylinder, are investigated. Axisymmetric steady flows in this geometry are determined by solving the full Navier-Stokes equations in the actual domain. A measure of the flow field, a weighted convex combination of the volume averaged square of the L-2-norm of the velocity and vorticity vectors, is employed. It has been demonstrated that boundary shape can be used to influence the characteristics of the flow field, such as its velocity component distribution, kinetic energy, or even vorticity. This ability to influence flow fields through boundary shape may be employed to improve microfluidic mixing or, possibly, to minimize shear in biological applications. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Natl Inst Stand & Technol, Math & Computat Sci Div, Gaithersburg, MD 20809 USA. RP Cotrell, DL (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM cotrell2@llnl.gov; ajk@nist.gov NR 29 TC 0 Z9 0 U1 1 U2 2 PU US GOVERNMENT PRINTING OFFICE PI WASHINGTON PA SUPERINTENDENT DOCUMENTS,, WASHINGTON, DC 20402-9325 USA SN 1044-677X J9 J RES NATL INST STAN JI J. Res. Natl. Inst. Stand. Technol. PD MAY-JUN PY 2007 VL 112 IS 3 BP 153 EP 161 DI 10.6028/jres.112.012 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 200WH UT WOS:000248793000003 PM 27110462 ER PT J AU Adolf, DB Chambers, RS Flemming, J Budzien, J McCoy, J AF Adolf, Douglas B. Chambers, Robert S. Flemming, Jesse Budzien, Joanne McCoy, John TI Potential energy clock model: Justification and challenging predictions SO JOURNAL OF RHEOLOGY LA English DT Article ID GLASS-FORMING LIQUIDS; FREE-VOLUME; POLYMER GLASSES; THERMODYNAMICALLY CONSISTENT; TEMPERATURE DEPENDENCE; INELASTIC DEFORMATION; VISCOELASTIC BEHAVIOR; STRESS-RELAXATION; COUPLING THEORY; EPOXY GLASSES AB A recent, nonlinear viscoelastic theory for predicting the thermomechanical response of glassy polymers has been shown to predict behaviors from enthalpy relaxation to temperature-dependent mechanical yield in various modes of deformation quite well. The foundation of this theory rests on a "material clock" that depends on the potential energy of the system. The molecular basis for the clock and the Rational Mechanics framework for the constitutive equation are briefly reviewed. The theory is then used to predict and explain much more complicated behavior of glassy polymers: the change in compressive yield stress during physical aging at different temperatures, the peculiar enthalpic response of glassy polymers previously compressed to different strains, "volumetric implosion" on samples subjected to tensile strains, and the dependence of the shift factor on aging time and applied stress. (c) 2007 The Society of Rheology. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. New Mexico Inst Min & Technol, Socorro, NM 87801 USA. RP Adolf, DB (reprint author), Sandia Natl Labs, Albuquerque, NM 87185 USA. EM dbadolf@sandia.gov RI McCoy, John/B-3846-2010; Budzien, Joanne/E-8315-2011 OI McCoy, John/0000-0001-5404-1404; NR 30 TC 22 Z9 22 U1 0 U2 14 PU JOURNAL RHEOLOGY AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0148-6055 J9 J RHEOL JI J. Rheol. PD MAY-JUN PY 2007 VL 51 IS 3 BP 517 EP 540 DI 10.1122/1.2716442 PG 24 WC Mechanics SC Mechanics GA 168DH UT WOS:000246502300011 ER PT J AU Liu, J Lim, HK Glimm, J Li, XL AF Liu, Jinjie Lim, Hyun-Kyung Glimm, James Li, Xiaolin TI A conservative front tracking method in N-dimensions SO JOURNAL OF SCIENTIFIC COMPUTING LA English DT Article DE front tracking; conservation; discontinuity ID INTERFACES; ALGORITHMS; FLOW AB We propose a fully conservative Front Tracking algorithm for systems of nonlinear conservation laws. The algorithm can be applied uniformly in one, two, three and N dimensions. Implementation details for this algorithm and tests of fully conservative simulations are reported. C1 SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11793 USA. RP Li, XL (reprint author), SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. EM linli@ams.sunysb.edu RI LIU, JINJIE/B-8514-2008 OI LIU, JINJIE/0000-0003-3368-5424 NR 26 TC 8 Z9 8 U1 0 U2 1 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0885-7474 EI 1573-7691 J9 J SCI COMPUT JI J. Sci. Comput. PD MAY PY 2007 VL 31 IS 1-2 BP 213 EP 236 DI 10.1007/s10915-006-9117-5 PG 24 WC Mathematics, Applied SC Mathematics GA 159SS UT WOS:000245887400011 ER PT J AU Stachowiak, TB Mair, DA Holden, TG Lee, LJ Svec, F Frechet, JMJ AF Stachowiak, Timothy B. Mair, Dieudonne A. Holden, Tyler G. Lee, L. James Svec, Frantisek Frechet, Jean M. J. TI Hydrophilic surface modification of cyclic olefin copolymer microfluidic chips using sequential photografting SO JOURNAL OF SEPARATION SCIENCE LA English DT Article DE cyclic olefin copolymer; microfluidic device; photografting poly(ethylene glycol) methacrylate; surface modification ID GRAFT-POLYMERIZATION; CAPILLARY-ELECTROPHORESIS; MASS-SPECTROMETRY; PROTEIN-BINDING; DEVICES; CHANNELS; POLY(DIMETHYLSILOXANE); MICROCHANNELS; DIAGNOSTICS; FABRICATION AB The plastic material known as cyclic olefin copolymer (COC) is a useful substrate material for fabricating microfluidic devices due to its low cost, ease of fabrication, excellent optical properties, and resistance to many solvents. However, the hydrophobicity of native COC limits its use in bioanalytical applications. To increase surface hydrophilicity and reduce protein adsorption, COC surfaces were photografted with poly(ethylene glycol) methacrylate (PEGMA) using a two-step sequential approach: covalently-bound surface initiators were formed in the first step and graft polymerization of PEGMA was then carried out from these sites in the second step. Contact angle measurements were used to monitor and quantify the changes in surface hydrophilicity as a function of grafting conditions. As water droplet contact angles decreased from 88 degrees for native COC to 45 degrees for PEGMA-grafted surfaces, protein adsorption was also reduced by 78% for the PEGMA-modified COC microchannels as determined by a fluorescence assay. This photografting technique should enable the use of COC microdevices in a variety of bioanalytical applications that require minimal nonspecific adsorption of biomolecules. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Ohio State Univ, Dept Chem & Biomol Engn, Columbus, OH USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA USA. RP Frechet, JMJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM frechet@berkeley.edu OI Frechet, Jean /0000-0001-6419-0163 FU NIBIB NIH HHS [EB006133] NR 30 TC 49 Z9 49 U1 3 U2 27 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1615-9306 J9 J SEP SCI JI J. Sep. Sci. PD MAY PY 2007 VL 30 IS 7 BP 1088 EP 1093 DI 10.1002/jssc.200600515 PG 6 WC Chemistry, Analytical SC Chemistry GA 170BF UT WOS:000246635400019 PM 17566345 ER PT J AU Forsberg, CW Peterson, PF Zhao, HH AF Forsberg, Charles W. Peterson, Per F. Zhao, Haihua TI High-temperature liquid-fluoride-salt closed-Brayton-cycle solar power towers SO JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article DE solar power tower; liquid fluoride salt; Brayton cycle; graphite heat storage AB Liquid-fluo ride-salt heat transfer fluids are proposed to raise the heat-to-electricity efficiencies of solar power towers to about 50%. The liquid salt would deliver heat from the solar furnace at temperatures between 700 degrees C and 850 degrees C to a closed multireheat Brayton power cycle using nitrogen or helium as the working fluid. During the daytime, hot salt may also be used to heat graphite, which would then be used as a heat storage medium to make night-time operations possible. Graphite is a low-cost high-heat-capacity solid that is chemically compatible with liquid fluoride salts at high temperatures. About half the cost of a solar power tower is associated with the mirrors that focus light on the receiver, and less than one-third is associated with the power cycle and heat storage. Consequently, increasing the efficiency by 20-30% has the potential for major reductions in the cost of electricity. Peak temperatures and efficiencies of current designs of power towers are restricted by (1) the use of liquid nitrate salts that decompose at high temperatures and (2) steam cycles in which corrosion limits peak temperature. The liquid-fluoride-salt technology and closed Brayton power cycles are being developed for high-temperature nuclear reactors. These developments may provide the technology and industrial basis for an advanced solar power tower. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Forsberg, CW (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM forsbergcw@ornl.gov; peterson@nuc.berkeley.edu; haihua.zhao@inl.gov RI Zhao, Haihua/A-8852-2009 NR 16 TC 64 Z9 66 U1 2 U2 25 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0199-6231 J9 J SOL ENERG-T ASME JI J. Sol. Energy Eng. Trans.-ASME PD MAY PY 2007 VL 129 IS 2 BP 141 EP 146 DI 10.1115/1.2710245 PG 6 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 161ZP UT WOS:000246056100001 ER PT J AU Diver, RB Moss, TA AF Diver, Richard B. Moss, Timothy A. TI Practical field alignment of parabolic trough solar concentrators SO JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article DE parabolic trough; solar concentrator; alignment; photographic; overlay; reflection AB In this paper a new technique for parabolic trough mirror alignment based on the use of an innovative theoretical overlay photographic (TOP) approach is described. The technique is a variation on methods used to align mirrors on parabolic dish systems. It involves overlaying theoretical images of the heat collection element (HCE) in the mirtors onto carefully surveyed photographic images and adjustment of mirror alignment until they match. From basic geometric principles, for any given viewer location the theoretical shape and location of the reflected HCE image in the aligned mirrors can be predicted. The TOP approach promises to be practical and straightforward, and inherently aligns the mirrors to the HCE. Alignment of an LS-2 mirror module on the rotating platform at the National Solar Thermal Test Facility (NSTTF) with the TOP technique along with how it might be implemented in a large solar field is described. Comparison of the TOP alignment to the distant observer approach on the NSTTF LS-2 is presented and the governing equations used to draw the theoretical overlays are developed. Alignment uncertainty associated with this technique is predicted to be less than the mirror slope error. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Diver, RB (reprint author), Sandia Natl Labs, POB 5800,MS1127, Albuquerque, NM 87185 USA. EM rbdiver@sandia.gov; tamoss@sandia.gov NR 22 TC 15 Z9 16 U1 2 U2 7 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0199-6231 EI 1528-8986 J9 J SOL ENERG-T ASME JI J. Sol. Energy Eng. Trans.-ASME PD MAY PY 2007 VL 129 IS 2 BP 153 EP 159 DI 10.1115/1.2710496 PG 7 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 161ZP UT WOS:000246056100003 ER PT J AU Chen, HJ Chen, YT Hsieh, HT Siegel, N AF Chen, Huajun Chen, Yitung Hsieh, Hsuan-Tsung Siegel, Nathan TI Computational fluid dynamics modeling of gas-particle flow within a solid-particle solar receiver SO JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article; Proceedings Paper CT International Solar Energy Conference CY JUL 08-13, 2006 CL Denver, CO ID CHEMICAL REACTOR; ZINC AB A detailed three-dimensional computational fluid dynamics (CFD) analysis on gas-particle flow and heat transfer inside a solid-particle solar receiver which utilizes free-falling particles for direct absorption of concentrated solar radiation, is presented. The two-way coupled Euler-Lagrange method is implemented and includes the exchange of heat and momentum between the gas phase and solid particles. A two-band discrete ordinate method is included to investigate radiation heat transfer within the particle cloud and between the cloud and the internal surfaces of the receiver The direct illumination energy source that results,from incident solar radiation was predicted by a solar load model using a solar ray-tracing algorithm. Two kinds of solid-particle receivers, each having a different exit condition for the solid particles, are modeled to evaluate the thermal performance of the receiver. Parametric studies, where the particle size and mass flow rate are varied, are made to determine the optimal operating conditions. The results also include detailed information for the gas velocity, temperature, particle solid volume fraction, particle outlet temperature, and cavity, efficiency. C1 Univ Nevada, Dept Mech Engn, Las Vegas, NV 89154 USA. Sandia Natl Labs, Solar Technol Dept, Albuquerque, NM 87185 USA. RP Chen, HJ (reprint author), Univ Nevada, Dept Mech Engn, Las Vegas, NV 89154 USA. NR 23 TC 32 Z9 32 U1 2 U2 12 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0199-6231 J9 J SOL ENERG-T ASME JI J. Sol. Energy Eng. Trans.-ASME PD MAY PY 2007 VL 129 IS 2 BP 160 EP 170 DI 10.1115/1.2716418 PG 11 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 161ZP UT WOS:000246056100004 ER PT J AU Kolb, GJ Diver, RB Siegel, N AF Kolb, Gregory J. Diver, Richard B. Siegel, Nathan TI Central-station solar hydrogen power plant SO JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article; Proceedings Paper CT International Solar Energy Conference CY AUG 06-12, 2005 CL Orlando, FL SP Sharp, Kycera Solar Inc, Univ Florida, Dept Environm, ACCESS, Innovat Design, ASME, Solar Energy Div AB Solar power towers can be used to make hydrogen on a large scale. Electrolyzers could be used to convert solar electricity produced by the power tower to hydrogen, but this process is relatively, inefficient. Rather efficiency can be much improved if solar heat is directly converted to hydrogen via a thermochemical process. In the research summarized here, the marriage of a high-temperature (similar to 1000 degrees C) power tower with a sulfuric acid/ hybrid thermochemical cycle was studied. The concept combines a solar power tower, a solid-particle receiver a particle thermal energy storage system, and a hybrid-sulfuric-acid cycle. The cycle is "hybrid" because it produces hvdrogen with a combination of thermal input and an electrolyzer This solar thermochemical plant is predicted to produce hydrogen at a much lower cost than a solar-electrolyzer plant of similar size. To date, only small lab-scale tests have been conducted to demonstrate the feasibility of a few of the subsystems and a key immediate issue is demonstration of flow stability within the solid-particle receiver The paper describes the systems analysis that led to the favorable economic conclusions and discusses the,future development path. C1 Sandia Natl Labs, Solar Syst Dept, Albuquerque, NM 87123 USA. Sandia Natl Labs, Solar Technol Dept, Albuquerque, NM 87123 USA. RP Kolb, GJ (reprint author), Sandia Natl Labs, Solar Syst Dept, Albuquerque, NM 87123 USA. EM gjkolb@sandia.gov; rbdiver@sandia.gov; spsiege@sandia.gov NR 18 TC 37 Z9 37 U1 0 U2 6 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0199-6231 J9 J SOL ENERG-T ASME JI J. Sol. Energy Eng. Trans.-ASME PD MAY PY 2007 VL 129 IS 2 BP 179 EP 183 DI 10.1115/1.2710246 PG 5 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 161ZP UT WOS:000246056100006 ER PT J AU Hendron, R Eastment, M Hancock, E Barker, G Reeves, P AF Hendron, Robert Eastment, Mark Hancock, Ed Barker, Greg Reeves, Paul TI Evaluation of a high-performance solar home in Loveland, Colorado SO JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article; Proceedings Paper CT International Solar Energy Conference CY AUG 06-12, 2005 CL Orlando, FL SP Sharp, Kycera Solar Inc, Univ Florida, Dept Environm, ACCESS, Innovat Design, ASME, Solar Energy Div AB Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, CO, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions. The HRV provided fresh air at a rate of about 35 L/s (75 cfm), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (> 83 %), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark (Hendron, R., 2005 NREL Report No. 37529, NREL, Golden, CO). The largest contributors to energy savings beyond McStains standard practice are the solar water heater, HRV improved air distribution, high-efficiency boiler and compact fluorescent lighting package. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. Mt Energy Partnership, Boulder, CO 80304 USA. Partnership Resource Conservat, Boulder, CO 80302 USA. RP Hendron, R (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM bob_hendron@nrel.gov NR 8 TC 1 Z9 1 U1 0 U2 3 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0199-6231 J9 J SOL ENERG-T ASME JI J. Sol. Energy Eng. Trans.-ASME PD MAY PY 2007 VL 129 IS 2 BP 226 EP 234 DI 10.1115/1.2710248 PG 9 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 161ZP UT WOS:000246056100013 ER PT J AU Suescun, L Chmaissem, O Mais, J Dabrowski, B Jorgensen, JD AF Suescun, Leopoldo Chmaissem, Omar Mais, James Dabrowski, Bogdan Jorgensen, James D. TI Crystal structures, charge and oxygen-vacancy ordering in oxygen deficient perovskites SrMnOx (x < 2.7) SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE manganites; structure determination; oxygen vacancy-ordering; synchrotron X-ray powder diffraction; neutron time-of-flight powder diffraction ID X-RAY; SR2MN2O5; DIFFRACTION; OXIDES; CAMNO3; SYSTEM AB Bulk SrMnOx samples with oxygen contents 2.5 <= x < 2.7 have been studied using a combination of neutron time-of-flight and high-energy high-resolution synchrotron X-ray diffraction measurements along with thermogravimetric analysis. We report the identification and characterization of two new oxygen-vacancy ordered phases, Sr5Mn5O13 (SrMnO2.6-tetragonal P4/m a = 8.6127(3) angstrom, c = 3.8102(2) angstrom) and Sr7Mn7O19 (SrMnO2.714-monoclinic P2/m a = 8.6076(4) angstrom, b = 12.1284(4) angstrom, c = 3.8076(2) angstrom, gamma = 98.203(2)degrees). The nuclear and magnetic structures of Sr2MnO2.5 are also reported (SrMnO2.5 nuclear: orthorhombic Pbam, magnetic: Orthorhombic Ay type P(c)bam with c(M) = 2c). In the three phases, oxygen-vacancies are ordered in lines running along one of the (100) directions of the parent cubic perovskite system. Oxygen-vacancy ordering allows the charge and orbital ordering of the Mn3+ and Mn4+ cations in the new phases. (c) 2007 Elsevier Inc. All rights reserved. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. Univ La Republ, Cryssmat Lab, Catedra Fis, DETEMA, Montevideo, Uruguay. RP Suescun, L (reprint author), Argonne Natl Lab, Div Mat Sci, Bldg 223,9700 S Cass Ave, Argonne, IL 60439 USA. EM leopoldo@anl.gov RI Suescun, Leopoldo/A-9697-2008 OI Suescun, Leopoldo/0000-0002-7606-8074 NR 24 TC 19 Z9 19 U1 0 U2 38 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD MAY PY 2007 VL 180 IS 5 BP 1698 EP 1707 DI 10.1016/j.jssc.2007.03.020 PG 10 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 173SM UT WOS:000246892800023 ER PT J AU Hastings, MB AF Hastings, M. B. TI Quasi-adiabatic continuation in gapped spin and fermion systems: Goldstone's theorem and flux periodicity SO JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT LA English DT Article DE rigorous results in statistical mechanics; spin liquids (theory) ID RESONATING-VALENCE-BOND; QUANTUM ANTIFERROMAGNETS; ENERGY-GAP; STATES AB We apply the technique of quasi-adiabatic continuation to study systems with continuous symmetries. We first derive a general form of Goldstone's theorem applicable to gapped nonrelativistic systems with continuous symmetries. We then show that, for a fermionic system with a spin gap, it is possible to insert pi flux into a cylinder with only exponentially small change in the energy of the system, a scenario which covers several physically interesting cases such as an s-wave superconductor or a resonating valence bond state. C1 Los Alamos Natl Lab, Ctr Nonlinear Studies, POB 1663, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Hastings, MB (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, POB 1663, Los Alamos, NM 87545 USA. EM hastings@lanl.gov NR 29 TC 2 Z9 2 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1742-5468 J9 J STAT MECH-THEORY E JI J. Stat. Mech.-Theory Exp. PD MAY PY 2007 AR P05010 DI 10.1088/1742-5468/2007/05/P05010 PG 15 WC Mechanics; Physics, Mathematical SC Mechanics; Physics GA 176HX UT WOS:000247076700014 ER PT J AU Tsutakawa, SE Hura, GL Frankel, KA Cooper, PK Tainer, JA AF Tsutakawa, Susan E. Hura, Greg L. Frankel, Ken A. Cooper, Priscilla K. Tainer, John A. TI Structural analysis of flexible proteins in solution by small angle X-ray scattering combined with crystallography SO JOURNAL OF STRUCTURAL BIOLOGY LA English DT Article; Proceedings Paper CT 3rd International Conference on Structural Analysis of Supramolecular Assemblies by Hybrid Methods CY MAR 15-19, 2006 CL Lake Tahoe, CA SP Agouron Inst, NIGMS, NIAID, NIEHS, Sidec Technologies DE small angle X-ray scattering; diffraction; protein conformation; structural analysis; crystallography; DNA repair ID OXIDATIVE DNA-DAMAGE; KINASE-II; BIOLOGICAL MACROMOLECULES; CONFORMATIONAL-CHANGES; CRYSTAL-STRUCTURE; DOMAIN-STRUCTURE; GLYCOSYLASE; REPAIR; MECHANISM; SUBSTRATE AB In the last few years, SAXS of biological materials has been rapidly evolving and promises to move structural analysis to a new level. Recent innovations in SAXS data analysis allow ab initio shape predictions of proteins in solution. Furthermore, experimental scattering data can be compared to calculated scattering curves from the growing data base of solved structures and also identify aggregation and unfolded proteins. Combining SAXS results with atomic resolution structures enables detailed characterizations in solution of mass, radius, conformations, assembly, and shape changes associated with protein folding and functions. SAXS can efficiently reveal the spatial organization of protein domains, including domains missing from or disordered in known crystal structures, and establish cofactor or substrate-induced conformational changes. For flexible domains or unstructured regions that are not amenable for study by many other structural techniques, SAXS provides a unique technology. Here, we present SAXS shape predictions for PCNA that accurately predict a trimeric ring assembly and for a full-length DNA repair glycosylase with a large unstructured region. These new results in combination with illustrative published data show how SAXS combined with high resolution crystal structures efficiently establishes architectures, assemblies, conformations, and unstructured regions for proteins and protein complexes in solution. (c) 2006 Elsevier Inc. All rights reserved. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Engn, Berkeley, CA 94720 USA. Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. RP Tainer, JA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. EM jat@scripps.edu FU NCI NIH HHS [CA92584]; NIGMS NIH HHS [R01 GM46312] NR 45 TC 40 Z9 43 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1047-8477 J9 J STRUCT BIOL JI J. Struct. Biol. PD MAY PY 2007 VL 158 IS 2 BP 214 EP 223 DI 10.1016/j.jsb.2006.09.008 PG 10 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 173HK UT WOS:000246863900010 PM 17182256 ER PT J AU Choi, GS Kim, JH Ersoz, D Yoo, AB Das, CR AF Choi, Gyu Sang Kim, Jin-Ha Ersoz, Deniz Yoo, Andy B. Das, Chita R. TI A comprehensive performance and energy consumption analysis of scheduling alternatives in clusters SO JOURNAL OF SUPERCOMPUTING LA English DT Article DE coscheduling; Linux cluster; Myrinet; batch scheduling; gang scheduling; energy consumption ID WORKSTATIONS; SYSTEMS; NETWORK AB In this paper, we conduct an in-depth evaluation of a broad spectrum of scheduling alternatives for clusters. These include the widely used batch scheduling, local scheduling, gang scheduling, most prior communication-driven coscheduling algorithms-Dynamic Coscheduling (DCS), Spin Block (SB), Periodic Boost (PB), and Co-ordinated Coscheduling (CC)-and a newly proposed HYBRID coscheduling algorithm on a 16-node, Myrinet-connected Linux cluster. Performance and energy measurements using several NAS, LLNL and ANL benchmarks on the Linux cluster provide several conclusions. First, although batch scheduling is currently used in most clusters, the blocking-based coscheduling techniques such as SB, CC and HYBRID and the gang scheduling can provide much better performance even in a dedicated cluster platform. Second, in contrast to some of the prior studies, we observe that blocking-based schemes like SB and HYBRID can provide better performance than spin-based techniques like PB on a Linux platform. Third, the proposed HYBRID scheduling provides the best performance-energy behavior and can be implemented on any cluster with little effort. All these results suggest that blocking-based coscheduling techniques are viable candidates to be used in clusters for significant performance-energy benefits. C1 Samsung Elect, Samsung Adv Inst Technol, Yongin 446712, Gyeonggi Do, South Korea. World Trade Ctr, Samsung Networks 8F, Seoul 135798, South Korea. Penn State Univ, Dept Comp Sci & Engn, University Pk, PA 16802 USA. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Choi, GS (reprint author), Samsung Elect, Samsung Adv Inst Technol, Mt 14-1,Nong Seo Dong, Yongin 446712, Gyeonggi Do, South Korea. EM gsc121choi@samsung.com; peanut.kim@samsung.com; yoo2@llnl.gov; das@cse.psu.edu NR 49 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0920-8542 EI 1573-0484 J9 J SUPERCOMPUT JI J. Supercomput. PD MAY PY 2007 VL 40 IS 2 BP 159 EP 184 DI 10.1007/s11227-006-0018-z PG 26 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 155EE UT WOS:000245559800003 ER PT J AU Gupta, S Sullivan, M Toomey, J Kiselar, J Chance, MR AF Gupta, Sayan Sullivan, Michael Toomey, John Kiselar, Janna Chance, Mark R. TI The beamline X28C of the Center for Synchrotron Biosciences: a national resource for biomolecular structure and dynamics experiments using synchrotron footprinting SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE beamline; synchrotron footprinting; protein; nucleic acids; X-ray dose; hydroxyl radical; mass spectrometry ID AMINO-ACID-RESIDUES; TETRAHYMENA-THERMOPHILA RIBOZYME; PROTEIN-PROTEIN INTERACTIONS; X-RAY RADIOLYSIS; P4-P6 RNA DOMAIN; MASS-SPECTROMETRY; FOLDING PATHWAY; PEPTIDES; PROBES; DNA AB Structural mapping of proteins and nucleic acids with high resolution in solution is of critical importance for understanding their biological function. A wide range of footprinting technologies have been developed over the last ten years to address this need. Beamline X28C, a white-beam X-ray source at the National Synchrotron Light Source of Brookhaven National Laboratory, functions as a platform for synchrotron footprinting research and further technology development in this growing field. An expanding set of user groups utilize this national resource funded by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health. The facility is operated by the Center for Synchrotron Biosciences and the Center for Proteomics of Case Western Reserve University. The facility includes instrumentation suitable for conducting both steady-state and millisecond time-resolved footprinting experiments based on the production of hydroxyl radicals by X-rays. Footprinting studies of nucleic acids are routinely conducted with X-ray exposures of tens of milliseconds, which include studies of nucleic acid folding and their interactions with proteins. This technology can also be used to study protein structure and dynamics in solution as well as protein-protein interactions in large macromolecular complexes. This article provides an overview of the X28C beamline technology and defines protocols for its adoption at other synchrotron facilities. Lastly, several examples of published results provide illustrations of the kinds of experiments likely to be successful using these approaches. C1 Case Western Reserve Univ, Ctr Proteom & Mass Spectrometry, Cleveland, OH 44106 USA. Brookhaven Natl Lab, Natl Synchrotron Light Source, Ctr Synchrotron Biosci, Upton, NY 11973 USA. RP Chance, MR (reprint author), Case Western Reserve Univ, Ctr Proteom & Mass Spectrometry, Cleveland, OH 44106 USA. EM mark.chance@case.edu FU NIBIB NIH HHS [P41 EB001979, P41-EB-01979] NR 35 TC 41 Z9 41 U1 1 U2 6 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAY PY 2007 VL 14 BP 233 EP 243 DI 10.1107/S0909049507013118 PN 3 PG 11 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 156MP UT WOS:000245653700001 PM 17435298 ER PT J AU Henke, B Schweizer, S Johnson, JA Keane, DT AF Henke, Bastian Schweizer, Stefan Johnson, Jacqueline A. Keane, Denis T. TI Zr and Ba edge phenomena in the scintillation intensity of fluorozirconate-based glass-ceramic X-ray detectors SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE X-ray detector; fluorozirconate glass ceramics; energy-dependent scintillation intensity ID PHOTOSTIMULATED LUMINESCENCE AB The energy-dependent scintillation intensity of Eu-doped fluorozirconate glass-ceramic X-ray detectors has been investigated in the energy range from 10 to 40 keV. The experiments were performed at the Advanced Photon Source, Argonne National Laboratory, USA. The glass ceramics are based on Eu-doped fluorozirconate glasses, which were additionally doped with chlorine to initiate the nucleation of BaCl2 nanocrystals therein. The X-ray excited scintillation is mainly due to the 5d-4f transition of Eu2+ embedded in the BaCl2 nanocrystals; Eu2+ in the glass does not luminesce. Upon appropriate annealing the nanocrystals grow and undergo a phase transition from a hexagonal to an orthorhombic phase of BaCl2. The scintillation intensity is investigated as a function of the X-ray energy, particle size and structure of the embedded nanocrystals. The scintillation intensity versus X-ray energy dependence shows that the intensity is inversely proportional to the photoelectric absorption of the material, i.e. the more photoelectric absorption the less scintillation. At 18 and 37.4 keV a significant decrease in the scintillation intensity can be observed; this energy corresponds to the K-edge of Zr and Ba, respectively. The glass matrix as well as the structure and size of the embedded nanocrystals have an influence on the scintillation properties of the glass ceramics. C1 Univ Paderborn, Fac Sci, Dept Phys, D-33098 Paderborn, Germany. Argonne Natl Lab, Argonne, IL 60439 USA. Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Schweizer, S (reprint author), Univ Paderborn, Fac Sci, Dept Phys, Warburger Str 100, D-33098 Paderborn, Germany. EM stefan.schweizer@upb.de RI Schweizer, Stefan/H-3518-2011; Johnson, Jacqueline/P-4844-2014 OI Johnson, Jacqueline/0000-0003-0830-9275 NR 11 TC 3 Z9 3 U1 0 U2 6 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAY PY 2007 VL 14 BP 252 EP 256 DI 10.1107/S0909049507007959 PN 3 PG 5 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 156MP UT WOS:000245653700003 PM 17435300 ER PT J AU Tandon, R Newton, CS Monroe, SL Glass, SJ Roth, CJ AF Tandon, Rajan Newton, Clay S. Monroe, Saundra L. Glass, S. Jill Roth, Christine J. TI Sub-critical crack growth behavior of a low-temperature co-fired ceramic SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID LIFETIME PREDICTION; LTCC; FABRICATION; FRACTURE; GLASS AB The strength of sintered low-temperature co-fired ceramic (LTCC) disks was measured under dry (< 2% relative humidity [RH]) and wet (98% RH) conditions, using ring-on-ring, biaxial-flexure testing in the stressing rate range of 0.002-2 MPa/s. The empirical sub-critical crack growth parameters, n and A, were calculated. The values of the parameters in the wet environment were higher than in the dry environment. It is argued that the high RH n value is more representative of material behavior. Results of fractographic examination are reported and expected lifetime and safe design stresses for LTCC are calculated. C1 Sandia Natl Labs, Mat Reliabil Dept, Mat Sci & Engn Ctr, Albuquerque, NM 87185 USA. RP Tandon, R (reprint author), Sandia Natl Labs, Mat Reliabil Dept, Mat Sci & Engn Ctr, POB 5800, Albuquerque, NM 87185 USA. EM rtandon@sandia.gov NR 24 TC 12 Z9 12 U1 0 U2 3 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD MAY PY 2007 VL 90 IS 5 BP 1527 EP 1533 DI 10.1111/j.1551-2916.2007.01626.x PG 7 WC Materials Science, Ceramics SC Materials Science GA 167DQ UT WOS:000246431600029 ER PT J AU Houk, RS Grayson, MA Gross, ML AF Houk, R. S. Grayson, M. A. Gross, Michael L. TI Harry J. Svec June 24, 1918 November 28, 2006 - Obituary SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Biographical-Item C1 Iowa State Univ, Dept Chem, Ames Lab, US DOE, Ames, IA 50011 USA. Washington Univ, Dept Chem, St Louis, MO USA. RP Houk, RS (reprint author), Iowa State Univ, Dept Chem, Ames Lab, US DOE, Ames, IA 50011 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1044-0305 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD MAY PY 2007 VL 18 IS 5 BP 970 EP 971 DI 10.1016/j.jasms.2007.02.002 PG 2 WC Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Chemistry; Spectroscopy GA 164MG UT WOS:000246237300018 ER PT J AU Schrage, DL Ostroumov, PN Barcikowski, A Bracken, M Clifft, B DePaola, F Rusthoven, B Sharma, S Sharamentov, SI Toter, WF Waldschmidt, G Rathke, JW Schultheiss, T Vinogradov, NE Kolomiets, AA AF Schrage, D. L. Ostroumov, P. N. Barcikowski, A. Bracken, M. Clifft, B. DePaola, F. Rusthoven, B. Sharma, S. Sharamentov, S. I. Toter, W. F. Waldschmidt, G. Rathke, J. W. Schultheiss, T. Vinogradov, N. E. Kolomiets, A. A. TI A 57-MHz CW RFQ for the AEBL project SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article; Proceedings Paper CT 10th International Workshop on Accelerator and Beam Utilization CY SEP 21-22, 2006 CL Gyeongju, SOUTH KOREA DE RFQ AB The Advanced Exotic Beam Laboratory (AEBL) at the Argonne National Laboratory (ANL) will provide a research facility for studies of nuclear phenomena by using beams of short-lived isotopes for research in the nature of nucleonic matter, the origin of the elements, tests of the Standard Model along with applications in medicine, industry, and other applied physics research. The proposed design of the AEBL driver linac evolved from the Rare Isotope Accelerator (RIA) project. It is a CW 850 MV linac capable of accelerating uranium ions up to 200 MeV/u and protons to 570 MeV with 400 kW beam power. The first section of the linac is a 57 MHz pseudo split coaxial CW Radio Requency Quadrupole (RFQ) linac. This is followed by 221 superconducting cavities of various types. A section of the RFQ linac was fabricated and tested under R&D funding for the RIA Project. This is the first section of the six-section, 392 cm RFQ linac. This paper describes the design, fabrication, and testing of this RFQ. C1 TECHSOURCE, Santa Fe, NM USA. Argonne Natl Lab, Argonne, IL 60439 USA. Adv Energy Syst, Medford, NY 11763 USA. No Illinois Univ, De Kalb, IL 60115 USA. Inst Theoret & Expt Phys, Moscow, Russia. RP Schrage, DL (reprint author), TECHSOURCE, Santa Fe, NM USA. EM schragenm@hotmail.com NR 12 TC 3 Z9 3 U1 0 U2 1 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD MAY PY 2007 VL 50 IS 5 SI SI BP 1363 EP 1367 PN 1 PG 5 WC Physics, Multidisciplinary SC Physics GA 168NN UT WOS:000246531400001 ER PT J AU Chu, WT AF Chu, William T. TI Accelerators and medicine SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article; Proceedings Paper CT 10th International Workshop on Accelerator and Beam Utilization CY SEP 21-22, 2006 CL Gyeongju, SOUTH KOREA DE accelerator; cyclotron; synchrotron; cancer treatment; nuclear medicine ID RADIATION-THERAPY; PROTON-BEAMS; HEAVY-IONS; IRRADIATION; PARTICLES AB In 1930 Ernest Orlando Lawrence at the University of California, Berkeley invented the cyclotron, which accelerated protons to 80 keV using less than I kV on a semi-circular '' dee.'' The 60-Inch (150-cm) Cyclotron (1939) that accelerated deuterons to 19 MeV, enabled the first therapeutic applications anywhere of artificially produced radioisotopes on human patients, thereby a new medical modality called nuclear medicine was born. Around the world, there are about 100 isotope-producing cyclotrons (accelerating protons, and much less frequently deuterons, to energies in the range of 15-20 MeV). After WWII, Lawrence completed the 184-Inch (4.7-m) Synchrocyclotron that produced 340-MeV protons. The synchro cyclotrons in Berkeley and Uppsala, together with the Harvard cyclotron, would perform pioneering work in treatment of human cancer using accelerated hadrons. At the 184-Inch, in 1954 Cornelius Tobias and John Lawrence performed the first therapeutic exposure of human patients to hadron (deuteron and helium ion) beams. Clinical trials to treat human cancer using helium ions took place at the 184-Inch and the Bevalac, where trials using heavier ions including carbon, neon, silicon and argon ions were carried out to exploit their biological advantages over proton beams. Aside from the Berkeley trials, other clinical trials have been conducted at more than a dozen physics accelerators around the world. There are now proton and carbon-ion accelerator facilities dedicated for medical use around the world. C1 EO Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Chu, WT (reprint author), EO Lawrence Berkeley Natl Lab, Berkeley, CA USA. EM wtchu@LBL.gov NR 24 TC 18 Z9 18 U1 0 U2 2 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD MAY PY 2007 VL 50 IS 5 SI SI BP 1385 EP 1389 PN 1 PG 5 WC Physics, Multidisciplinary SC Physics GA 168NN UT WOS:000246531400005 ER PT J AU Park, JH Ko, IS Park, SJ Park, YJ Kim, SH Huang, JY Parc, YW Hong, JH Xiang, D Wang, XJ AF Park, J. H. Ko, I. S. Park, S. J. Park, Y. J. Kim, S. H. Huang, J. Y. Parc, Y. W. Hong, J. H. Xiang, D. Wang, X. J. TI RF measurement and high-power test of a 1.6-cell photocathode RF gun at Pohang Accelerator Laboratory SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article; Proceedings Paper CT 10th International Workshop on Accelerator and Beam Utilization CY SEP 21-22, 2006 CL Gyeongju, SOUTH KOREA DE photocathode RF gun; 1.6-cell cavity; Slater's perturbation theorem; microwave measurement; dark current ID CAVITY AB A Brookhaven National Laboratory (BNL) GUN-IV type photocathode rf gun has been fabricated to use in femto-second electron diffraction (FED), the femto-second far infra-red radiation (fs-FIR) facility, and the X-ray free electron laser (X-FEL) at the Pohang Accelerator Laboratory (PAL). The gun consists of a 1.6-cell cavity with a copper cathode, a solenoid magnet, beam diagnostic component and auxiliary systems. The dimensions of the cavity that provided the desired resonant frequency were determined by using the SUPERFISH code. The change in the resonant frequency due to the laser port and the wave-guide port on the cavity wall was estimated with Slater's perturbation theorem. The size of the ports was finalized by using a series of cutting and measuring processes. A method to measure the resonant frequency of the cavity during the operation was developed. Finally, the microwave and the basic beam parameters were measured carefully to confirm the successful fabrication of the photocathode RF gun system. C1 Pohang Univ Sci & Technol, Pohang Accelerator Lab, Pohang 790784, South Korea. Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea. Tsing Hua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Park, JH (reprint author), Pohang Univ Sci & Technol, Pohang Accelerator Lab, Pohang 790784, South Korea. EM wpjho@postech.ac.kr NR 14 TC 1 Z9 1 U1 1 U2 2 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD MAY PY 2007 VL 50 IS 5 SI SI BP 1443 EP 1449 PN 1 PG 7 WC Physics, Multidisciplinary SC Physics GA 168NN UT WOS:000246531400016 ER PT J AU Li, SF Linder, C Foulk, JW AF Li, Shaofan Linder, Christian Foulk, James W., III TI On configurational compatibility and multiscale energy momentum tensors SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE conservation integrals; dislocations; fracture; multiscale analysis; strain compatibility ID DISLOCATION EMISSION ARRANGEMENTS; VERSETZUNGEN UND EIGENSPANNUNGEN; MOLECULAR-DYNAMICS SIMULATIONS; CRACK-TIP; ATOMISTIC SIMULATIONS; CONSERVATION-LAWS; CONTINUUM THEORY; LINEAR ELASTICITY; SINGLE-CRYSTALS; GRADIENT THEORY AB In this work the continuum theory of defects has been revised through the development of kinematic defect potentials. These defect potentials and their corresponding variational principles provide a basis for constructing a new class of conservation laws associated with the compatibility conditions of continua. These conservation laws represent configurational compatibility conditions which are independent of the constitutive behavior of the continuum. They lead to the development of a new concept termed configurational compatibility, dual to the concept of configurational force. The contour integral of the corresponding conserved quantity is path-independent, if the domain encompassed by the integral is defect-free. It is shown that the Peach-Koehler force can be recovered as one of these invariant integrals. Based on the proposed defect potentials and their corresponding defect energies, two-field multiscale mixed variational principles can be employed to construct multiscale energy momentum tensors. An application is outlined in the form of a mode III elastoplastic crack problem for which the new configurational quantities are calculated. (C) 2006 Elsevier Ltd. All rights reserved. C1 Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. Sandia Natl Labs, Livermore, CA 94550 USA. RP Li, SF (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. EM shaofan@berkeley.edu RI Li, Shaofan/G-8082-2011; Linder, Christian/H-4904-2013 OI Li, Shaofan/0000-0002-6950-1474; Linder, Christian/0000-0002-5731-5631 NR 74 TC 8 Z9 8 U1 1 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD MAY PY 2007 VL 55 IS 5 BP 980 EP 1000 DI 10.1016/j.jmps.2006.11.002 PG 21 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 174LB UT WOS:000246942500005 ER PT J AU Chen, DC Jones, SM Silva, DA Olivier, SS AF Chen, Diana C. Jones, Steven M. Silva, Dennis A. Olivier, Scot S. TI High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION LA English DT Article ID HUMAN EYE; VISION SCIENCE; IMAGE QUALITY; ABERRATIONS; COMPENSATION; IMPROVEMENT; POPULATION AB Adaptive optics scanning laser ophthalmoscopes have been used to produce noninvasive views of the human retina. However, the range of aberration compensation has been limited by the choice of deformable mirror technology. We demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human eye while maintaining the quality of the retinal imagery. We verified experimentally that the use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the micro-electro-mechanical-system mirror alone and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. We also demonstrated that the large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Chen, DC (reprint author), Lawrence Livermore Natl Lab, 6000 E Ave, Livermore, CA 94550 USA. EM chen47@llnl.gov FU NEI NIH HHS [EY014365] NR 23 TC 50 Z9 52 U1 0 U2 7 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1084-7529 J9 J OPT SOC AM A JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis. PD MAY PY 2007 VL 24 IS 5 BP 1305 EP 1312 DI 10.1364/JOSAA.24.001305 PG 8 WC Optics SC Optics GA 160II UT WOS:000245933700008 PM 17429476 ER PT J AU Zawadzki, RJ Choi, SS Jones, SM Oliver, SS Werner, JS AF Zawadzki, Robert J. Choi, Stacey S. Jones, Steven M. Oliver, Scot S. Werner, John S. TI Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION LA English DT Article ID ULTRAHIGH-RESOLUTION; HIGH-SPEED; CHROMATIC ABERRATION; EYE AB Adaptive optics-optical coherence tomography (AO-OCT) permits improved imaging of microscopic retinal structures by combining the high lateral resolution of AO with the high axial resolution of OCT, resulting in the narrowest three-dimensional (3D) point-spread function (PSF) of all in vivo retinal imaging techniques. Owing to the high volumetric resolution of AO-OCT systems, it is now possible, for the first time, to acquire images of 3D cellular structures in the living retina. Thus, with AO-OCT, those retinal structures that are not visible with AO or OCT alone (e.g., bundles of retinal nerve fiber layers, 3D mosaic of photoreceptors, 3D structure of microvasculature, and detailed structure of retinal disruptions) can be visualized. Our current AO-OCT instrumentation uses spectrometer-based Fourier-domain OCT technology and two-deformable-mirror-based AO wavefront correction. We describe image processing methods that help to remove motion artifacts observed in volumetric data, followed by innovative data visualization techniques [including two-dimensional (2D) and 3D representations]. Finally, examples of microscopic retinal structures that are acquired with the University of California Davis AO-OCT system are presented. (c) 2007 Optical Society of America. C1 Univ Calif Davis, Dept Ophthalmol & Visual Sci, Sacramento, CA 95817 USA. Univ Calif Davis, Vis Sci & Adv Retinal Imaging Lab, Sacramento, CA 95817 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Werner, JS (reprint author), Univ Calif Davis, Dept Ophthalmol & Visual Sci, 4860 Y St,Suite 2400, Sacramento, CA 95817 USA. EM jswerner@ucdavis.edu RI Zawadzki, Robert/E-7534-2011 OI Zawadzki, Robert/0000-0002-9574-156X FU NEI NIH HHS [EY 014743, R01 EY014743, R01 EY014743-04] NR 29 TC 89 Z9 90 U1 0 U2 7 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1084-7529 J9 J OPT SOC AM A JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis. PD MAY PY 2007 VL 24 IS 5 BP 1373 EP 1383 DI 10.1364/JOSAA.24.001373 PG 11 WC Optics SC Optics GA 160II UT WOS:000245933700015 PM 17429483 ER PT J AU Sarrao, JL Thompson, JD AF Sarrao, John L. Thompson, Joe D. TI Superconductivity in cerium- and plutonium-based '115' materials SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN LA English DT Article DE CeMln(5); PuMGa5; heavy fermion compounds; superconductivity ID HEAVY-FERMION MATERIALS; SINGLE-CRYSTAL GROWTH; UNCONVENTIONAL SUPERCONDUCTIVITY; ANTIFERROMAGNETIC ORDER; MAGNETIC-PROPERTIES; HIGH-PRESSURE; D-ELECTRON; CERHIN5; RH; IR AB Over the past five or so years, a family of cerium- and plutonium-based superconductors that crystallize in the HoCoGa5 structure has attracted considerable attention. These materials display heavy fermion behavior consistent with proximity to magnetic order and low-temperature superconducting properties suggestive of d-wave pairing. The availability of high-quality single crystals and the ability to tune physical properties through a variety of chemical substitutions and other means have enabled advances in our understanding of these fascinating materials. In particular, the evolution of electronic structure and characteristic spin fluctuations reveals rich phase diagrams and places in context fundamental questions for the broader field of strongly correlated superconductors. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sarrao, JL (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NR 95 TC 82 Z9 82 U1 0 U2 26 PU PHYSICAL SOC JAPAN PI TOKYO PA YUSHIMA URBAN BUILDING 5F, 2-31-22 YUSHIMA, BUNKYO-KU, TOKYO, 113-0034, JAPAN SN 0031-9015 J9 J PHYS SOC JPN JI J. Phys. Soc. Jpn. PD MAY PY 2007 VL 76 IS 5 AR 051013 DI 10.1143/JPSJ.76.051013 PG 9 WC Physics, Multidisciplinary SC Physics GA 170JY UT WOS:000246660900014 ER PT J AU Ehiasarian, AP Anders, A Petrov, I AF Ehiasarian, A. P. Anders, A. Petrov, I. TI Combined filtered cathodic arc etching pretreatment-magnetron sputter deposition of highly adherent CrN films SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID CRN/NBN SUPERLATTICE COATINGS; ION ENERGY-DISTRIBUTION; NITRIDE COATINGS; POWER DENSITIES; PLASMAS; CHARGE; DEFECTS; SYSTEM; GROWTH; FIELD AB CrN films were prepared on steel substrates by a hybrid method utilizing filtered cathodic arc for Cr ion pretreatment and magnetron sputtering for coating deposition. During pretreatment the substrates were biased to - 1200 V and exposed to filtered chromium plasma. The substrate-coating interface formed during the pretreatment contained a Cr-enriched modified layer with composition that was strongly influenced by the temperature of the substrate as observed by scanning transmission electron microscopy-energy dispersive spectroscopy. The modified layer had a nanocrystalline morphology and thickness of 15 nm. The path of formation of the layer is linked to the combined action of implantation, diffusion, and resputtering. The resulting adhesion of 3 mu m thick CrN films was very high with scratch test critical load values of 83 N. The morphology of the films was smooth without large scale defects and the microstructure was columnar. The coatings behaved well in dry sliding tests with very low wear coefficients of 2.3 X 10(-16) m(3) N-1 m(-1), which can be linked to the high adhesion and defect-free microstructure. The smooth coatings also had a high resistance to corrosion as demonstrated by potentiodynamic tests with particularly high pitting potentials of +800 mV. (C) 2007 American Vacuum Society. C1 Sheffield Hallam Univ, Mat & Engn Res Inst, Sheffield S1 1WB, S Yorkshire, England. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. RP Ehiasarian, AP (reprint author), Sheffield Hallam Univ, Mat & Engn Res Inst, Howard St, Sheffield S1 1WB, S Yorkshire, England. EM a.ehiasarian@shu.ac.uk RI Petrov, Ivan/D-4910-2011; Anders, Andre/B-8580-2009 OI Petrov, Ivan/0000-0002-2955-4897; Anders, Andre/0000-0002-5313-6505 NR 26 TC 12 Z9 13 U1 0 U2 1 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD MAY-JUN PY 2007 VL 25 IS 3 BP 543 EP 550 DI 10.1116/1.2730512 PG 8 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 171OU UT WOS:000246746100022 ER PT J AU Dinh, LN Burnham, AK Schildbach, MA Smith, RA Maxwell, RS Balazs, B McLean, W AF Dinh, L. N. Burnham, A. K. Schildbach, M. A. Smith, R. A. Maxwell, R. S. Balazs, B. McLean, W., II TI Measurement and prediction of H2O outgassing kinetics from silica-filled polydimethylsiloxane TR55 and S5370 SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID TEMPERATURE-PROGRAMMED DESORPTION; WATER AB The isoconversional technique was employed for the measurement and prediction of H2O outgassing kinetics from silica-filled polydimethylsiloxane TR55 and S5370 in a vacuum or dry environment. Isoconversional analysis indicates that the energy barrier for H2O release from TR55 and S5370 is an increasing function of the fractional H2O release. This can be interpreted as the release of H2O from physisorbed water and then chemisorbed water with decreasing OH density from the surfaces of the embedded silica particles. Model-independent predictions of H2O outgassing based on the measured kinetics follow the trend of actual isothermal outgassing at elevated temperatures and suggest gradual outgassing in dry/vacuum storage over many decades at low temperatures for both TR55 and S5370. (C) 2007 American Vacuum Society. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. BWXT Y12, Oak Ridge, TN 37831 USA. RP Dinh, LN (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM dinhl@llnl.gov NR 7 TC 6 Z9 6 U1 0 U2 7 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD MAY-JUN PY 2007 VL 25 IS 3 BP 597 EP 600 DI 10.1116/1.2731363 PG 4 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 171OU UT WOS:000246746100030 ER PT J AU Ptak, AJ Friedman, DJ Kurtz, S AF Ptak, A. J. Friedman, D. J. Kurtz, Sarah TI Effects of temperature, nitrogen ions, and antimony on wide depletion width GaInNAs SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article; Proceedings Paper CT 24th North American Conference on Molecular Beam Epitaxy (NAMBE 2006) CY OCT 08-11, 2006 CL Duke Univ, Durham, NC HO Duke Univ ID MOLECULAR-BEAM EPITAXY; ASSISTED MBE GROWTH; QUANTUM-WELLS; LANGMUIR PROBE; SOLAR-CELLS; MU-M; INGAASN; LASERS; DAMAGE; GAASN AB GaInNAs is a promising candidate material to increase the conversion efficiency of triple junction solar cells, but the dilute nitrides suffer from low-to-nonexistent minority-carrier diffusion lengths. The use of molecular beam epitaxy grown p-i-n structures with wide depletion widths can achieve high photocurrents in dilute nitrides, but this requires background doping below 2 x 10(14) cm(-3) in the i layer. Here, the authors report on a number of factors that increase the net background acceptor concentration, hindering the effects to realize wide depletion widths, including high substrate temperatures, ions from the rf plasma source used to provide active nitrogen, and the addition of Sb. In addition, low substrate temperatures lead to an increase in n-type conductivity. Solar cell results that show the deleterious effects of Sb on GaInNAs devices are presented, including decreased open-circuit voltage and fill factor. (c) 2007 American Vacuum Society. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Ptak, AJ (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM aaron_ptak@nrel.gov NR 37 TC 17 Z9 18 U1 2 U2 6 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD MAY-JUN PY 2007 VL 25 IS 3 BP 955 EP 959 DI 10.1116/1.2715993 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 183CW UT WOS:000247551300052 ER PT J AU Collins, BA Zhong, YC Chu, YS He, L Tsui, F AF Collins, Brian A. Zhong, Yuncheng Chu, Yong S. He, Liang Tsui, Frank TI Anomalous x-ray diffraction study of disorders in epitaxial films of the Heusler alloy, Co2MnGe SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article; Proceedings Paper CT 24th North American Conference on Molecular Beam Epitaxy (NAMBE 2006) CY OCT 08-11, 2006 CL Duke Univ, Durham, NC HO Duke Univ ID HALF-METALLIC FILMS; ATOMIC DISORDER; CO(2)MNZ Z; GE; SI AB The authors report a study of structural and chemical disorders in a ternary combinatorial epitaxial film of Co(x)Mn(y)Gel(1-x-y) in the composition range that includes the Heusler alloy Co2MnGe, using microbeam anomalous x-ray diffraction techniques. The structural and chemical ordering of the alloy has been found to be extremely stable over a large composition range, while elemental site swapping and sublattice vacancies have been identified. A model of anomalous diffraction around the Co and Ge edges is presented and shown to make possible the identification and quantification of these disorders in an epitaxial film. (c) 2007 American Vacuum Society. C1 Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Collins, BA (reprint author), Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. EM ftsui@physics.unc.edu RI He, Liang/E-5935-2012; Collins, Brian/M-5182-2013 OI Collins, Brian/0000-0003-2047-8418 NR 18 TC 8 Z9 8 U1 0 U2 6 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD MAY-JUN PY 2007 VL 25 IS 3 BP 999 EP 1003 DI 10.1116/1.2720857 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 183CW UT WOS:000247551300062 ER PT J AU Hurst, JB Lewis, SD Oye, MM Holmes, AL Ptak, AJ Reedy, RC AF Hurst, J. B. Lewis, Shannon D. Oye, Michael M. Holmes, Archie L., Jr. Ptak, A. J. Reedy, R. C. TI Unintentional calcium incorporation in Ga(Al, In, N)As SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article; Proceedings Paper CT 24th North American Conference on Molecular Beam Epitaxy (NAMBE 2006) CY OCT 08-11, 2006 CL Duke Univ, Durham, NC HO Duke Univ ID MOLECULAR-BEAM EPITAXY; QUANTUM-WELLS; SOLAR-CELLS; GAINNAS; INGAASN; GAAS; LUMINESCENCE; GROWTH AB Unintentional calcium incorporation into GaInNAs causes an acceptor-type impurity, which limits the ability of similar to 1 eV GaInNAs-based solar cells to collect photogenerated current. Here, the authors focus on better understanding the conditions by which Ca is incorporated into GaInNAs. Various material combinations were grown including GaAs, InGaAs, GaInNAs, and Al(Ga)As. The materials were primarily grown by solid-source molecular-beam epitaxy (MBE) at similar to 400 and 580-620 degrees C, with comparisons made to metal-organic chemical vapor deposition.(MOCVD)-grown materials where appropriate. Calcium incorporation was measured through secondary ion mass spectrometry. There was no measurable Ca incorporation into MBE-grown GaAs at 580 degrees C, but Ca incorporates into GaAs at low MBE growth temperatures (similar to 400 degrees C) that are comparable to those typically used for GaInNAs. This suggests that the N species is not solely responsible for the observed Ca incorporation into MBE-grown GaInNAs; but rather, defects, associated with the low temperature growth may also be a factor. The effects of defect-related Ca incorporation were further studied at interfaces between Al(Ga)As and GaAs, and substrates pretreated with an O-2 plasma and NH4OH etch. Ca incorporation was observed at the interface between Al0.3Ga0.7As /GaAs, AlAs/GaAs, and at the epilayer/substrate interface for the pretreated' samples. No.Ca was observed in InGaAs samples grown by either MBE or MOCVD, suggesting the Ca incorporation into GaInNAs has something to do with the addition of nitrogen. Therefore, the authors propose that the likely causes of Ca incorporation into GaInNAs are a Ca-N affinity, defects generated by low temperature growth, defects generated by the incorporation of N into GaAs, or some combination thereof. (c) 2007 American Vacuum Society. C1 Univ Texas, Microelect Res Ctr, Dept Elect & Comp Engn, Austin, TX 78712 USA. Natl Renewable Energy Lab, Golden, CO USA. RP Hurst, JB (reprint author), Univ Texas, Microelect Res Ctr, Dept Elect & Comp Engn, Austin, TX 78712 USA. EM mikeoye@alumni.utexas.net; archieholmes@virginia.edu NR 21 TC 4 Z9 4 U1 0 U2 5 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD MAY-JUN PY 2007 VL 25 IS 3 BP 1058 EP 1062 DI 10.1116/1.2717196 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 183CW UT WOS:000247551300074 ER PT J AU Davidson, AG Bell, RJ Lees, GE Kashtan, CE Davidson, GS Murphy, KE AF Davidson, Ashley G. Bell, Rebecca J. Lees, George E. Kashtan, Clifford E. Davidson, George S. Murphy, Keith E. TI Genetic cause of autosomal recessive hereditary nephropathy in the English Cocker Spaniel SO JOURNAL OF VETERINARY INTERNAL MEDICINE LA English DT Article; Proceedings Paper CT 24th Annual Forum of the American-College-of-Veterinary-Internal-Medicine CY MAY 31-JUN 03, 2006 CL Louisville, KY SP Amer Coll Vet Internal Med DE Alport syndrome; canine; genetic disease; type IV collagen ID COLLAGEN TYPE-IV; CAPILLARY BASEMENT-MEMBRANES; DOMINANT ALPORT-SYNDROME; FAMILIAL NEPHROPATHY; COL4A3 GENE; MUTATIONS; NEPHRITIS; GLOMERULOPATHY; DOGS; IDENTIFICATION AB Background: Autosomal recessive hereditary nephropathy (ARHN) in the English Cocker Spaniel is caused by a type IV collagen defect, but the underlying mutation is unknown. Animals: One hundred thirty-four English Cocker Spaniels (12 with ARHN, 8 obligate carriers, and 114 others), 3 mixed breed dogs with X-linked hereditary nephropathy (XLHN), and 7 other dogs without hereditary nephropathy were included. Methods: Diagnosis of ARHN was based on transmission electron microscopy and immunostaining of kidney. Quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR) was used to compare COL4A3, COL4A4, and COL4A5 mRNA concentrations in the renal cortex from ARHN-affected English Cocker Spaniels, XLHN-affected dogs, and dogs without hereditary nephropathy. The entire coding region of COL4A4 was sequenced in 2 ARHN-affected dogs, 2 obligate carriers, 2 English Cocker Spaniels of unknown status, and 2 healthy mixed breed dogs. The exon containing the mutation was sequenced for all 134 English Cocker Spaniels. Results: Quantitative real time RT-PCR implicated COL4A4 as the gene harboring the mutation, and sequencing identified a single nucleotide substitution at base 115 as the cause of ARHN in English Cocker Spaniels. This mutation, which causes a premature stop codon in exon 3 of COL4A4, was segregated with clinical status in all affected dogs and obligate carriers. The mutation also was identified in 39 of 114 other English Cocker Spaniels with previously unknown status. Conclusions and Clinical Importance: The cause of this disease has been identified, and use of a test for the mutation will permit eradication of ARHN in the English Cocker Spaniel. C1 Texas A&M Univ, Coll Vet Med & Biomed Sci, Dept Pathobiol, College Stn, TX 77843 USA. Texas A&M Univ, Coll Vet Med & Biomed Sci, Dept Small Anim Clin Sci, College Stn, TX 77843 USA. Univ Minnesota, Sch Med, Dept Pediat, Minneapolis, MN 55455 USA. Sandia Natl Labs, Comp & Math Ctr, Albuquerque, NM 87185 USA. RP Murphy, KE (reprint author), Texas A&M Univ, Coll Vet Med & Biomed Sci, Dept Pathobiol, College Stn, TX 77843 USA. EM kmurphy@cvm.tamu.edu NR 33 TC 16 Z9 16 U1 0 U2 6 PU AMER COLL VETERINARY INTERNAL MEDICINE PI LAKEWOOD PA 1997 WADSWORTH BOULEVARD, STE A, LAKEWOOD, CO 80214-5293 USA SN 0891-6640 J9 J VET INTERN MED JI J. Vet. Intern. Med. PD MAY-JUN PY 2007 VL 21 IS 3 BP 394 EP 401 DI 10.1892/0891-6640(2007)21[394:GCOARH]2.0.CO;2 PG 8 WC Veterinary Sciences SC Veterinary Sciences GA 167EY UT WOS:000246435200007 PM 17552442 ER PT J AU Rousseau, CM Learn, GH Bhattacharya, T Nickle, DC Heckerman, D Chetty, S Brander, C Goulder, PJR Walker, BD Kiepiela, P Korber, BT Mullins, JI AF Rousseau, Christine M. Learn, Gerald H. Bhattacharya, Tamnoy Nickle, David C. Heckerman, David Chetty, Senica Brander, Christian Goulder, Philip J. R. Walker, Bruce D. Kiepiela, Photini Korber, Bette T. Mullins, James I. TI Extensive intrasubtype recombination in South African human immunodeficiency virus type I subtype C infections SO JOURNAL OF VIROLOGY LA English DT Article ID FULL-LENGTH CLONES; HIV TYPE-1; PHYLOGENETIC ANALYSIS; MAXIMUM-LIKELIHOOD; GENOME ANALYSIS; DUAL INFECTION; DRUG-USERS; SEQUENCES; SUPERINFECTION; EVOLUTION AB Recombinant human immunodeficiency virus type 1 (HIV-1) strains containing sequences from different viral genetic subtypes (intersubtype) and different lineages from within the same subtype (intrasubtype) have been observed. A consequence of recombination can be the distortion of the phylogenetic signal. Several intersubtype recombinants have been identified; however, less is known about the frequency of intrasubtype recombination. For this study, near-full-length HIV-1 subtype C genomes from 270 individuals were evaluated for the presence of intrasubtype recombination. A sliding window schema (window, 2 kb; step, 385 bp) was used to partition the aligned sequences. The Shimodaira-Hasegawa test detected significant topological incongruence in 99.6% of the comparisons of the maximum-likelihood trees generated from each sequence partition, a result that could be explained by recombination. Using RECOMBINE, we detected significant levels of recombination using five random subsets of the sequences. With a set of 23 topologically consistent sequences used as references, bootscanning followed by the interactive informative site test defined recombination breakpoints. Using two multiple-comparison correction methods, 47% of the sequences showed significant evidence of recombination in both analyses. Estimated evolutionary rates were revised from 0.5%/year (95% confidence interval [CI], 0.39 to 0.53%) with all sequences to 0.46%/Year (95% CI, 0.38 to 0.48%) with the putative recombinants removed. The timing of the subtype C epidemic origin was revised from 1961 (95% CI, 1947 to 1962) with all sequences to 1958 (95% CI, 1949 to 1960) with the putative recombinants removed. Thus, intrasubtype recombinants are common within the subtype C epidemic and these impact analyses of HIV-1 evolution. C1 Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Microsoft Res, Machine Learning & Appl Stat Grp, Redmond, WA 98052 USA. Univ KwaZulu Natal, Doris Duke Med Res Inst, HIV Pathogenesis Program, ZA-4015 Durban, South Africa. Harvard Univ, Sch Med, Massachusetts Gen Hosp, Partners AIDS Res Ctr, Boston, MA 02115 USA. Univ Oxford, Nuffield Dept Med, Oxford OX1 3SY, England. Howard Hughes Med Inst, Chevy Chase, MD 20815 USA. RP Rousseau, CM (reprint author), Univ Washington, Dept Microbiol, 1959 NE Pacific St,Box 358070, Seattle, WA 98195 USA. EM cmr@u.washington.edu RI Bhattacharya, Tanmoy/J-8956-2013 OI Bhattacharya, Tanmoy/0000-0002-1060-652X FU NIAID NIH HHS [R37 AI047734, N01 AI 11514, P01 AI 27757, P30 AI027757, R37 AI 047734] NR 62 TC 44 Z9 47 U1 1 U2 1 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD MAY PY 2007 VL 81 IS 9 BP 4492 EP 4500 DI 10.1128/JVI.02050-06 PG 9 WC Virology SC Virology GA 168DE UT WOS:000246501900013 PM 17314156 ER PT J AU Gnanakaran, S Lang, D Daniels, M Bhattacharya, T Derdeyn, CA Korber, B AF Gnanakaran, S. Lang, Dorothy Daniels, Marcus Bhattacharya, Tanrng Derdeyn, Cynthia A. Korber, Bette TI Clade-specific differences between human immunodeficiency virus type 1 clades B and C: Diversity and correlations in C3-V4 regions of gp120 SO JOURNAL OF VIROLOGY LA English DT Article ID IMMUNODEFICIENCY-VIRUS TYPE-1; ESCAPE VARIANTS; NEUTRALIZING ANTIBODY; HIV POLYMORPHISMS; LOOP SEQUENCES; V3 LOOP; TRANSMISSION; ASSOCIATIONS; EVOLUTION; SELECTION AB Current knowledge of human immunodeficiency virus type 1 envelope (Env) glycoprotein structure and function is based on studies of clade B viruses. We present evidence of sequence and structural differences in viral glycoprotein gp120 between clades B and C. In clade C, the C3 region alpha 2-helix exhibits high sequence entropy at the polar face but maintains its amphipathicity, whereas in clade B it accommodates hydrophobic residues. The V4 hypervariable domain in clade C is shorter than that in clade B. Generally, shorter V4 loops are incompatible with a glycine occurring in the alpha 2-helix in clade C, an intriguing association that could be exploited to inform Env immunogen design. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Santa Fe Inst, Santa Fe, NM 87501 USA. Emory Univ, Dept Pathol & Lab Med, Atlanta, GA 30329 USA. Emory Univ, Yerkes Natl Primate Res Ctr, Atlanta, GA 30329 USA. Emory Univ, Emory Vaccine Ctr, Atlanta, GA 30329 USA. RP Korber, B (reprint author), Los Alamos Natl Lab, Div Theoret, T10 MS K710, Los Alamos, NM 87545 USA. EM btk@lanl.gov RI Bhattacharya, Tanmoy/J-8956-2013; OI Bhattacharya, Tanmoy/0000-0002-1060-652X; Gnanakaran, S/0000-0002-9368-3044; Korber, Bette/0000-0002-2026-5757 FU NIAID NIH HHS [R01 AI 58706, AI 067854, P01 AI 061734-01, P01 AI061734, R01 AI058706, U01 AI067854, U19 AI067854] NR 20 TC 46 Z9 48 U1 0 U2 2 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD MAY PY 2007 VL 81 IS 9 BP 4886 EP 4891 DI 10.1128/JVI.01954-06 PG 6 WC Virology SC Virology GA 168DE UT WOS:000246501900053 PM 17166900 ER PT J AU Nowlen, SP AF Nowlen, S. P. TI The RES/EPRI concensus - fire probabilistic risk assessment method SO KERNTECHNIK LA English DT Article AB The US. Nuclear Regulatory Commission (USNRC) Office of Nuclear Regulatory Research (RES) and the Electric Power Research Institute (EPRI), in cooperation with nuclear utilities in the US., embarked on a joint effort to document and demonstrate state of the art fire probabilistic risk assessment (PRA) methods. The principal objective of this project, known as the Fire Risk Requantification Study, was to develop a technical basis and guidance to clarify issues affecting application of fire risk methods. The project culminated in the publication of a joint RES/EPRI consensus FPRA method. The methodology document was finalized in September 2005 and is now being used to support a range of risk informed/performance based (RI/PB) applications in nuclear power plant fire protection. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Nowlen, SP (reprint author), Sandia Natl Labs, POB 5800,Mail Stopo 0748, Albuquerque, NM 87185 USA. EM spnowle@sandia.gov NR 6 TC 0 Z9 0 U1 0 U2 1 PU CARL HANSER VERLAG PI MUNICH PA KOLBERGERSTRASSE 22, POSTFACH 86 04 20, D-81679 MUNICH, GERMANY SN 0932-3902 J9 KERNTECHNIK JI Kerntechnik PD MAY PY 2007 VL 72 IS 3 BP 127 EP 131 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 173XZ UT WOS:000246907100006 ER PT J AU Hayes, AB Cline, D Moody, KJ Wu, CY Becker, JA Carpenter, MP Carroll, JJ Gohlke, D Greene, JP Hecht, AA Janssens, RVF Karamian, SA Lauritsen, T Lister, CJ Macri, RA Propri, R Seweryniak, D Wang, X Wheeler, R Zhu, S AF Hayes, A. B. Cline, D. Moody, K. J. Wu, C. Y. Becker, J. A. Carpenter, M. P. Carroll, J. J. Gohlke, D. Greene, J. P. Hecht, A. A. Janssens, R. V. F. Karamian, S. A. Lauritsen, T. Lister, C. J. Macri, R. A. Propri, R. Seweryniak, D. Wang, X. Wheeler, R. Zhu, S. TI Coulomb excitation of the Am-242m isomer SO LASER PHYSICS LA English DT Article ID BARRIER PENETRATION; NUCLEAR MOMENTS; PARTICLE STATES; GAMMA-EMISSION; REGION AB The Am-242m isomer, a well-known candidate for photodepopulation research, has been studied in this first ever Coulomb excitation of a nearly pure (approximate to 98%) isomer target. Thirty new states, including anew rotational band built on a K-pi = 6(-) state, have been identified. Strong K-mixing results in nearly equal populations of the K pi = 5(-) and 6(-) states. Newly identified states have been assigned to the K-pi = 3(-) rotational band, the lowest states of which are known to decay into the ground-state band. Implications regarding K-mixing and Coulomb excitation paths to the ground state are discussed. C1 Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. Lawrence Livermore Natl Lab, Livermore, CA USA. Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. Youngstown State Univ, Dept Phys & Astron, Youngstown, OH 44555 USA. Joint Inst Nucl Res, Dubna, Russia. RP Hayes, AB (reprint author), Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. EM hayes@pas.rochester.edu RI Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 NR 29 TC 5 Z9 5 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1054-660X EI 1555-6611 J9 LASER PHYS JI Laser Phys. PD MAY PY 2007 VL 17 IS 5 BP 745 EP 750 DI 10.1134/S1054660X07050222 PG 6 WC Optics; Physics, Applied SC Optics; Physics GA 230HX UT WOS:000250868700023 ER PT J AU Olsen, BD Li, XF Wang, J Segalman, RA AF Olsen, Bradley D. Li, Xuefa Wang, Jin Segalman, Rachel A. TI Thin film structure of symmetric rod-coil block copolymers SO MACROMOLECULES LA English DT Article ID CONJUGATED POLYMER BLENDS; X-RAY-SCATTERING; DIBLOCK COPOLYMERS; GRAZING-INCIDENCE; SUPRAMOLECULAR MATERIALS; TRIBLOCK COPOLYMER; MORPHOLOGY; ORIENTATION; SURFACE; NANOSTRUCTURES AB Poly(alkoxyphenylenevinylene-b-isoprene) (PPV-b-PI) rod-coil block copolymers demonstrate novel structures due to the rodlike PPV block. Thin films of the polymers self-assemble into lamellar microphases upon thermal annealing with the lamellae oriented primarily parallel to the substrate. The parallel lamellae show symmetric wetting of PI at both the substrate and vacuum interfaces. Grains of lamellae with parallel orientation are characterized by irregular polygon shapes and are bounded by defect regions where the lamellae are oriented out of the plane of the film. Grazing-incidence small-angle X-ray scattering (GISAXS) shows that these out-of-plane lamellae are strongly oriented perpendicular to the film. The perpendicular lamellae are much straighter than those typically observed in coil-coil block copolymers due to the high bending energy of the liquid crystalline rod nanodomains. Islands or holes form in the films, and domain spacings estimated from the island/hole heights are equal to the bulk domain spacing. The perpendicular "defect" lamellae mediate the change in thickness required to transition between islands or holes and the surrounding region. Increasing film thickness results in an increasing fraction of the surface covered by perpendicular lamellae, presumably due to limited penetration of the substrate orienting field into the film. At great enough thickness total reorientation of the lamellar structure from parallel to perpendicular orientation at the vacuum interface is observed. C1 Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA. RP Segalman, RA (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM segalman@berkeley.edu OI Segalman, Rachel/0000-0002-4292-5103; Olsen, Bradley/0000-0002-7272-7140 NR 51 TC 52 Z9 52 U1 1 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD MAY 1 PY 2007 VL 40 IS 9 BP 3287 EP 3295 DI 10.1021/ma062402i PG 9 WC Polymer Science SC Polymer Science GA 159XD UT WOS:000245900200044 ER PT J AU Tao, YF Olsen, BD Ganesan, V Segalman, RA AF Tao, Yuefei Olsen, Bradley D. Ganesan, Venkat Segalman, Rachel A. TI Domain size control in self-assembling rod-coil block copolymer and homopolymer blends SO MACROMOLECULES LA English DT Article ID CONJUGATED POLYMER BLENDS; DIBLOCK COPOLYMERS; PHASE-BEHAVIOR; COMPLEX FLUIDS; THIN-FILMS; MORPHOLOGY; MOLECULES; MIXTURES; ORGANIZATION; PERFORMANCE AB The addition of homopolymers to a self-assembling rod-coil block copolymer is demonstrated to be a flexible route toward domain size control. Molecular weight matched rod-like homopolymers interdigitate with the rod-blocks within their respective lamellae. As a result of the interdigitation, the coil blocks must rearrange to occupy more interfacial area resulting in an unprecedented decrease in domain spacing with increasing rod homopolymers. Conversely coil homopolymers were locally solubilized within the coil microdomain resulting in an increase of domain spacing with increasing coil homopolymers. The mechanisms of homopolymers solubilization are in qualitative agreement with predictions made by self-consistent mean-field theory (SCFT) calculations. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Texas, Dept Chem Engn, Austin, TX 78712 USA. RP Segalman, RA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM segalman@berkeley.edu RI Ganesan, Venkat/B-9912-2011; OI Segalman, Rachel/0000-0002-4292-5103; Olsen, Bradley/0000-0002-7272-7140 NR 37 TC 25 Z9 26 U1 3 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD MAY 1 PY 2007 VL 40 IS 9 BP 3320 EP 3327 DI 10.1021/ma062876h PG 8 WC Polymer Science SC Polymer Science GA 159XD UT WOS:000245900200048 ER PT J AU Gee, RH Maiti, A Bastea, S Fried, LE AF Gee, Richard H. Maiti, Amitesh Bastea, Sorin Fried, Laurence E. TI Molecular dynamics investigation of adhesion between TATB surfaces and amorphous fluoropolymers SO MACROMOLECULES LA English DT Article ID SMALL-PENETRANT DIFFUSION; MECHANICAL-PROPERTIES; LIQUID/LIQUID INTERFACES; TRANSITION-TEMPERATURES; CONFORMATIONAL DYNAMICS; COMPUTER-SIMULATION; BINDING-ENERGY; FORCE-FIELD; PBX; CRYSTALS AB Atomistic simulations are used to study the adhesion properties of amorphous perfluoro- and fluoropolymers onto two different crystal surfaces of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). Properties of the bulk amorphous polymer melts are also investigated. The fluoropolymers studied in this article include Kel-F 800, Teflon AF, Hyflon AD, and Cytop. Simulations of the bulk polymer melts were performed over a wide range of temperatures including the volumetric glass transition temperature, so as to validate the interaction parameters used. The computed glass transition temperatures and densities compare well with experiment. The solubility parameters for the various polymers also compare well with calculations based on group additive methods. The local molecular structure at the TATB interface as well as the degree of adhesion varies from one polymer to another. All polymers except Hyflon show a propensity to readily wet the two TATB surfaces studied. C1 Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA 94551 USA. RP Gee, RH (reprint author), Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, POB 808,L-268, Livermore, CA 94551 USA. EM gee10@llnl.gov RI Fried, Laurence/L-8714-2014 OI Fried, Laurence/0000-0002-9437-7700 NR 57 TC 19 Z9 22 U1 3 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD MAY 1 PY 2007 VL 40 IS 9 BP 3422 EP 3428 DI 10.1021/ma0702501 PG 7 WC Polymer Science SC Polymer Science GA 159XD UT WOS:000245900200061 ER PT J AU Ji, HN Sakellariou, G Mays, JW AF Ji, Haining Sakellariou, Georgios Mays, Jimmy W. TI Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry characterization of primary amine end-functionalized polystyrene and poly(methyl methacrylate) synthesized by living anionic polymerization techniques SO MACROMOLECULES LA English DT Article ID BLOCK-COPOLYMERS; POLYMERS; POLY(STYRYL)LITHIUM; POLYPEPTIDES; CARBOXYL AB The reaction of living anionic polymers with 2,2,5,5-tetramethyl-1-(3-bromopropyl)-1-aza-2,5-disilacyclopentane (1) was investigated using coupled thin layer chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Structures of byproducts as well as the major product were determined. The anionic initiator having a protected primary amine functional group, 2,2,5,5-tetramethyl-1-(3-lithiopropyl)-1-aza-2,5-disilacyclopentane (2), was synthesized using all-glass high-vacuum techniques, which allows the long-term stability of this initiator to be maintained. The use of 2 in the preparation of well-defined aliphatic primary amine alpha-end-functionalized polystyrene and poly(methyl methacrylate) was investigated. Primary amino alpha-end-functionalized poly(methyl methacrylate) can be obtained near-quantitatively by reacting 2 with 1,1-diphenylethylene in tetrahydrofuran at room temperature prior to polymerizing methyl methacrylate at -78 degrees C. When 2 is used to initiate styrene at room temperature in benzene, an additive such as N,N,N',N'-tetramethylethylenediamine is necessary to activate the polymerization. However, although the resulting polymers have narrow molecular weight distributions and well-controlled molecular weights, our mass spectra data suggest that the yield of primary amine alpha-end-functionalized polystyrene from these syntheses is very low. The majority of the products are methyl alpha-end-functionalized polystyrene. C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Mays, JW (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RI Sakellariou, Georgios/B-1752-2014 NR 29 TC 12 Z9 12 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD MAY 1 PY 2007 VL 40 IS 9 BP 3461 EP 3467 DI 10.1021/ma062909t PG 7 WC Polymer Science SC Polymer Science GA 159XD UT WOS:000245900200066 ER PT J AU Granwehr, J Harel, E Hilty, C Garcia, S Chavez, L Pines, A Sen, PN Song, YQ AF Granwehr, Josef Harel, Elad Hilty, Christian Garcia, Sandra Chavez, Lana Pines, Alex Sen, Pabitra N. Song, Yi-Qiao TI Dispersion measurements using time-of-flight remote detection MRI SO MAGNETIC RESONANCE IMAGING LA English DT Article; Proceedings Paper CT 8th International Bologna Conferene on Magnetic Resonance in Porous Media CY SEP 10, 2006 CL Univ Bologna, Phys Dept, Bologna, ITALY HO Univ Bologna, Phys Dept DE magnetic resonance; imaging; remote detection; dispersion; flow; time of flight ID DETECTION NMR; XENON; FLOW AB Remote detection nuclear magnetic resonance and magnetic resonance imaging can be used to study fluid flow and dispersion in a porous medium from a purely Eulerian point of view (i.e., in a laboratory frame of reference). Information about fluid displacement is obtained on a macroscopic scale in a long-time regime, while local velocity distributions are averaged out. It is shown how these experiments can be described using the common flow propagator formalism and how experimental data can be analyzed to obtain effective porosity, flow velocity inside the porous medium, fluid dispersion and flow tracing of fluid. (C) 2007 Elsevier Inc. All rights reserved. C1 Univ Nottingham, Sch Phys & Astron, Sir Peter Mansfield Magnet Resonance Ctr, Nottingham NG7 2RD, England. Schlumberger Doll Res Ctr, Cambridge, MA 02139 USA. Lawrence Berkeley Lab, Mat Sci Div, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Granwehr, J (reprint author), Univ Nottingham, Sch Phys & Astron, Sir Peter Mansfield Magnet Resonance Ctr, Nottingham NG7 2RD, England. EM josef.granwehr@nottingham.ac.uk RI Hilty, Christian/C-1892-2015 OI Hilty, Christian/0000-0003-2539-2568 NR 10 TC 6 Z9 6 U1 0 U2 4 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0730-725X J9 MAGN RESON IMAGING JI Magn. Reson. Imaging PD MAY PY 2007 VL 25 IS 4 BP 449 EP 452 DI 10.1016/j.mri.2006.11.011 PG 4 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 167BH UT WOS:000246425100004 PM 17466761 ER PT J AU Nilsson, J Bourcier, WL Lee, JRI Letant, SE AF Nilsson, Joakim Bourcier, William L. Lee, Jonathan R. I. Letant, Sonia E. TI Fouling study of silicon oxide pores exposed to tap water SO MATERIALS LETTERS LA English DT Article DE sensors; ion beam technology; surfaces ID BEAM INSULATOR DEPOSITION; ION; NANOPORES; DNA AB We report on the fouling of Focused Ion Beam (FIB)-fabricated silicon oxide nanopores after exposure to tap water for two weeks. Pore clogging was monitored by Scanning Electron Microscopy (SEM) on both bare silicon oxide and chemically functionalized nanopores. While fouling occurred on hydrophilic silicon oxide pore walls, the hydrophobic nature of alkane chains prevented clogging on the chemically functionalized pore walls. These results have implications for nanopore sensing platform design. (c) 2006 Elsevier B.V. All rights reserved. C1 Lawrence Livermore Natl Lab, Chem & Mat Sci Div, Livermore, CA 94550 USA. RP Letant, SE (reprint author), Lawrence Livermore Natl Lab, Chem & Mat Sci Div, 7000 E Ave, Livermore, CA 94550 USA. EM letant1@llnl.gov NR 12 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-577X J9 MATER LETT JI Mater. Lett. PD MAY PY 2007 VL 61 IS 11-12 BP 2247 EP 2250 DI 10.1016/j.matlet.2006.08.062 PG 4 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 163KK UT WOS:000246158300030 ER PT J AU Shin, Y Exarhos, GJ AF Shin, Yongsoon Exarhos, Gregory J. TI Template synthesis of porous titania using cellulose nanocrystals SO MATERIALS LETTERS LA English DT Article DE titania; template; cellulose nanocrystal; nanomaterials ID NATIVE CELLULOSE; THIN-FILMS; NANOCOMPOSITES; MICROFIBRILS; SUSPENSIONS; BEHAVIOR AB Porous titania with anatase structure has been prepared by a template process with cellulose nanocrystal (CNXL). Air-stable titanium(IV) bis (ammonium lactate)dihydroxide (Tyzor-LA) solution forms Tyzor-LA-CNXL composite upon adding CNXL colloids through interaction between Tyzor-LA and hydroxyl groups of CNXL. The Tyzor-LA-CNXL composite shows rod-like structures of 150-200 nm in length and 510 nm in diameter. After calcination at 500 degrees C in air the composite showed anatase with porous structures and 170-200 m(2)/g specific surface area. X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), FT-IR, scanning electron microscope (SEM), and transmission electron microscope (TEM) were employed to characterize the morphologies and porous structures of the as-prepared and calcined composite materials. (c) 2006 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99354 USA. RP Shin, Y (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN K2-44, Richland, WA 99354 USA. EM yongsoon.shin@pnl.gov NR 23 TC 47 Z9 48 U1 6 U2 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-577X J9 MATER LETT JI Mater. Lett. PD MAY PY 2007 VL 61 IS 11-12 BP 2594 EP 2597 DI 10.1016/j.matlet.2006.10.005 PG 4 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 163KK UT WOS:000246158300117 ER PT J AU Shin, Y Wang, CM Samuels, WD Exarhos, GJ AF Shin, Yongsoon Wang, Chongmin Samuels, William D. Exarhos, Greg J. TI Synthesis of SiC nanorods from bleached wood pulp SO MATERIALS LETTERS LA English DT Article DE silicon carbide; cellulose; pulp; lignin; nanorods ID HIERARCHICALLY ORDERED CERAMICS; CELLULAR STRUCTURES; MINERALIZATION; COMPOSITES; NANOWIRES; NANOTUBES; SILICON AB Unbleached and bleached soft wood pulps have been used as templates and carbon precursors to produce SiC nanorods. Hydrolyzed tetraethylorthosilicate (TEOS), silicic acid was infiltrated into the pulps followed by a carbothermal reduction to form SiC nanorods at 1400 degrees C in Ar. Residual carbon formed along with SiC was removed by gasification at 700 degrees C in air. The SiC materials prepared from unbleached pulp were non-uniform SiC with a thick SiO2 coating, while the SiC nanorods prepared from the bleached pulp were uniform and straight with dimensions of 250 nm in diameter and 5.0 mm long. The formation of uniform camelback structure of SiC in the reaction between silica and bleached pulp is attributed to more silica deposited in the amorphous region of cellulose. (C) 2006 Elsevier B.V All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99354 USA. RP Shin, Y (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MS K2-44, Richland, WA 99354 USA. EM yongsoon.shin@pnl.gov NR 17 TC 26 Z9 28 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-577X J9 MATER LETT JI Mater. Lett. PD MAY PY 2007 VL 61 IS 13 BP 2814 EP 2817 DI 10.1016/j.matlet.2006.10.035 PG 4 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 166VD UT WOS:000246407800051 ER PT J AU Wang, GH Clemens, NT Barlow, RS Varghese, PL AF Wang, G-H Clemens, N. T. Barlow, R. S. Varghese, P. L. TI A system model for assessing scalar dissipation measurement accuracy in turbulent flows SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article DE scalar dissipation; turbulent flow; measurement accuracy; resolution; noise ID FINITE-DIFFERENCE SCHEMES; LARGE-EDDY SIMULATION; METHANE/AIR JET FLAMES; SPATIAL-RESOLUTION; PASSIVE SCALAR; LENGTH SCALES; THERMAL DISSIPATION; REACTING FLOWS; CIRCULAR JETS; SHEAR FLOWS AB A system model is developed to investigate independent and coupled effects of resolution, noise and data processing algorithms on the accuracy of the scalar gradient and dissipation measurements in turbulent flows. Finite resolution effects are simulated by spectral filtering, noise is modelled as an additive source in the model spectrum and differencing stencils are analysed as digital filters. In the current study, the effective resolution is proposed to be a proper criterion for quantifying the resolution requirement for scalar gradient and dissipation measurement. Both effective resolution and noise-induced apparent dissipation are mainly determined by the system transfer function. The finite resolution results, based upon a model scalar energy spectrum, are shown to agree with non-reacting experimental data. The coupled resolution-noise results show three regions in the mean scalar dissipation rate measurement: noise-dominated region, noise-resolution correlated region and resolution-dominated region. Different noise levels lead to different resolution error curves for the measured mean scalar dissipation rate. Experimental procedures and guidelines to improve the scalar gradient and dissipation experiments are proposed, based on these model study results. The proposed system approach can also be applied to other derived quantities involving complex transfer functions. C1 Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. Univ Texas, Dept Aerosp Engn & Engn Mech, Austin, TX 78712 USA. RP Wang, GH (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM barlow@sandia.gov OI Wang, Guanghua/0000-0002-6313-663X NR 75 TC 26 Z9 26 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD MAY PY 2007 VL 18 IS 5 BP 1287 EP 1303 DI 10.1088/0957-0233/18/5/015 PG 17 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 168VW UT WOS:000246553100017 ER PT J AU Ionita, A Weitsman, YJ AF Ionita, A. Weitsman, Y. J. TI A model for fluid ingress in closed cell polymeric foams SO MECHANICS OF MATERIALS LA English DT Article AB Foam cored composite sandwich panels are used in the marine structures. These structures are exposed to sea water environment, which may degrade their structural properties and diminish their performance. This article concerns the ingress of sea water into polymeric foams, which was observed to result in substantial weight gain ratios and noticeable damage to cellular foam walls. The water ingress phenomenon modeled herein is based on the assumption that it is governed by the cell wall breakage, rather than caused by diffusion. The foam structure is represented by means of Voronoi cell geometries. Numerical simulations using the proposed model are presented. (c) 2006 Elsevier Ltd. All rights reserved. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Univ Tennessee, Knoxville, TN 37996 USA. RP Ionita, A (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM ionita@lanl.gov NR 12 TC 6 Z9 6 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-6636 J9 MECH MATER JI Mech. Mater. PD MAY PY 2007 VL 39 IS 5 BP 434 EP 444 DI 10.1016/j.mechmat.2006.07.003 PG 11 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA 136FQ UT WOS:000244208400002 ER PT J AU Chan, AP Kloc, M Larabell, CA LeGros, M Etkin, LD AF Chan, Agnes P. Kloc, Malgorzata Larabell, Carolyn A. LeGros, Mark Etkin, Laurence D. TI The maternally localized RNA fatvg is required for cortical rotation and germ cell formation SO MECHANISMS OF DEVELOPMENT LA English DT Article DE Xenopus; oocytes; vegetally localized RNA; axis specification; primordial germ cell formation; antisense oligonucleotide depletion; host transfer ID DIFFERENTIATION-RELATED PROTEIN; BOX TRANSCRIPTION FACTOR; WNT SIGNALING PATHWAY; EARLY XENOPUS EMBRYOS; MESSENGER-RNA; BETA-CATENIN; MESODERM FORMATION; VEGETAL CORTEX; UV IRRADIATION; ENDOPLASMIC-RETICULUM AB Fatvg is a localized maternal transcript that translocates to the vegetal cortex of Xenopus laevis oocytes through both the METRO and Late RNA localization pathways. It is a member of a gene family that functions in vesicular trafficking. Depletion of the maternal store of fatvg mRNA results in a dual phenotype in which embryos are ventralized and also lack primordial germ cells. This complex fatvg loss of function phenotype is the result of stabilization of the dorsalizing factor beta-catenin at the vegetal pole and the inability of the germ cell determinants to move to their proper locations. This is coincident with the inhibition of cortical rotation and the abnormal aggregation of the germ plasm. Fatvg protein is located at the periphery of vesicles in the oocyte and embryo, supporting its proposed role in vesicular trafficking in the embryo. These results point to a common fundamental mechanism that is regulated by fatvg through which germ cell determinants and dorsalizing factors segregate during early development. (c) 2007 Elsevier Ireland Ltd. All rights reserved. C1 Univ Calif San Francisco, Dept Anat, San Francisco, CA 94143 USA. Lawrence Berkeley Natl Lab, Life Sci Div, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Kloc, M (reprint author), Univ Texas, MD Anderson Canc Ctr, Dept Mol Genet, 1515 Holcombe Blvd, Houston, TX 77030 USA. EM mkloc@mdanderson.org FU NCI NIH HHS [P30 CA016672, CA 16672]; NIGMS NIH HHS [R01 GM063948] NR 63 TC 20 Z9 20 U1 3 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0925-4773 J9 MECH DEVELOP JI Mech. Dev. PD MAY PY 2007 VL 124 IS 5 BP 350 EP 363 DI 10.1016/j.mod.2007.02.001 PG 14 WC Developmental Biology SC Developmental Biology GA 164EX UT WOS:000246217400003 PM 17376659 ER PT J AU Williams, PT AF Williams, Paul T. TI Maintaining vigorous activity attenuates 7-yr weight gain in 8340 runners SO MEDICINE AND SCIENCE IN SPORTS AND EXERCISE LA English DT Article DE exercise; running; aging; body mass index; regional adiposity; waist circumference ID TIME PHYSICAL-ACTIVITY; BODY-WEIGHT; RESEARCH ISSUES; OVERWEIGHT MEN; AEROBIC POWER; AGED MEN; WOMEN; EXERCISE; ADIPOSITY; OBESITY AB Introduction/Purpose: Body weight generally increases with aging in Western societies. Although training studies show that exercise produces acute weight loss, it is unclear whether the long-term maintenance of vigorous exercise attenuates the trajectory of age-related weight gain. Specifically, prior studies have not tested whether the maintenance of physical activity, in the absence of any change in activity, prevents weight gain. Methods: Prospective study of 6119 male and 2221 female runners whose running distances changed < 5 km.wk(-1) between baseline and follow-up surveys 7 yr later. Results: On average, men who maintained modest (0-23 km.wk(-1)), intermediate (24-47 km.wk(-1)), or prolonged running distances (>= 48 km.wk(-1)) all gained weight through age 64; however, those who maintained >= 48 km.wk(-1) had one half the average annual weight gain of those who maintained < 24 km.wk(-1). For example, between the ages of 35 and 44 in men and 30 and 39 yr in women, those who maintained < 24 km.wk(-1) gained, on average, 2.1 and 2.9 kg more per decade than those averaging > 48 km.wk(-1). Age-related weight gain, and its attenuation by maintained exercise, were both greater in younger than in older men. Men's gains in waist circumference with age, and its attenuation by maintaining running, were the same in older and younger men. Regardless of age, women increased their body weight, waist circumference, and hip circumference over time, and these measurements were attenuated in proportion to their maintained running distance. In both sexes, running disproportionately prevented more extreme increases in weight. Conclusion: As they aged, men and women gained less weight in proportion to their levels of sustained vigorous activity. This long-term beneficial effect is in addition to the acute weight loss that occurs with increased activity. C1 Lawrence Berkeley Lab, Donner Lab, Sci Div, Berkeley, CA 94720 USA. RP Williams, PT (reprint author), Lawrence Berkeley Lab, Donner Lab, Sci Div, Berkeley, CA 94720 USA. EM ptwilliams@lbl.gov FU NHLBI NIH HHS [R01 HL072110, HL-45652, HL-72110]; NIA NIH HHS [R03 AG032004, R03 AG032004-01A1]; NIDDK NIH HHS [R01 DK066738, DK066738] NR 30 TC 62 Z9 62 U1 0 U2 3 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0195-9131 J9 MED SCI SPORT EXER JI Med. Sci. Sports Exerc. PD MAY PY 2007 VL 39 IS 5 BP 801 EP 809 DI 10.1249/mss.0b013e31803349b1 PG 9 WC Sport Sciences SC Sport Sciences GA 164XW UT WOS:000246269200007 PM 17468577 ER PT J AU Van Nostrand, JD Khijniak, TV Gentry, TJ Novak, MT Sowder, AG Zhou, JZ Bertsch, PM Morris, PJ AF Van Nostrand, Joy D. Khijniak, Tatiana V. Gentry, Terry J. Novak, Michelle T. Sowder, Andrew G. Zhou, Jizhong Z. Bertsch, Paul M. Morris, Pamela J. TI Isolation and characterization of four gram-positive nickel-tolerant microorganisms from contaminated sediments SO MICROBIAL ECOLOGY LA English DT Article ID GRADIENT GEL-ELECTROPHORESIS; HEAVY-METAL TOXICITY; ALCALIGENES-EUTROPHUS; BACTERIAL COMMUNITIES; RESISTANT BACTERIA; ANTIBIOTIC-RESISTANCE; CADMIUM RESISTANCE; XYLOSOXIDANS 31A; GENES; PH AB Microbial communities from riparian sediments contaminated with high levels of Ni and U were examined for metal-tolerant microorganisms. Isolation of four aerobic Ni-tolerant, Gram-positive heterotrophic bacteria indicated selection pressure from Ni. These isolates were identified as Arthrobacter oxydans NR-1, Streptomyces galbus NR-2, Streptomyces aureofaciens NR-3, and Kitasatospora cystarginea NR-4 based on partial 16S rDNA sequences. A functional gene microarray containing gene probes for functions associated with biogeochemical cycling, metal homeostasis, and organic contaminant degradation showed little overlap among the four isolates. Fifteen of the genes were detected in all four isolates with only two of these related to metal resistance, specifically to tellurium. Each of the four isolates also displayed resistance to at least one of six antibiotics tested, with resistance to kanamycin, gentamycin, and ciprofloxacin observed in at least two of the isolates. Further characterization of S. aureofaciens NR-3 and K. cystarginea NR-4 demonstrated that both isolates expressed Ni tolerance constitutively. In addition, both were able to grow in higher concentrations of Ni at pH 6 as compared with pH 7 (42.6 and 8.5 mM Ni at pH 6 and 7, respectively). Tolerance to Cd, Co, and Zn was also examined in these two isolates; a similar pH-dependent metal tolerance was observed when grown with Co and Zn. Neither isolate was tolerant to Cd. These findings suggest that Ni is exerting a selection pressure at this site for metal-resistant actinomycetes. C1 Med Univ S Carolina, Marine Biomed & Environm Sci Ctr, Charleston, SC 29412 USA. Med Univ S Carolina, Dept Microbiol & Immunol, Charleston, SC 29425 USA. Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. Univ Oklahoma, Inst Environm Genom, Dept Bot & Microbiol, Norman, OK 73019 USA. US Nat Ocean & Atmospher Adm, Ctr Coastal Environm Hlth & Biomol Res, Charleston, SC 29412 USA. US Nat Ocean & Atmospher Adm, Hollings Marine Lab, Charleston, SC 29412 USA. RP Morris, PJ (reprint author), Med Univ S Carolina, Marine Biomed & Environm Sci Ctr, Charleston, SC 29412 USA. EM morrisp@musc.edu RI Khijniak, Tatiana/D-7346-2014; Van Nostrand, Joy/F-1740-2016 OI Van Nostrand, Joy/0000-0001-9548-6450 NR 55 TC 20 Z9 22 U1 0 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0095-3628 EI 1432-184X J9 MICROB ECOL JI Microb. Ecol. PD MAY PY 2007 VL 53 IS 4 BP 670 EP 682 DI 10.1007/s00248-006-9160-7 PG 13 WC Ecology; Marine & Freshwater Biology; Microbiology SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Microbiology GA 169AQ UT WOS:000246565500016 PM 17404787 ER PT J AU Capeluto, MG Wachulak, P Marconi, MC Patel, D Menoni, CS Rocca, JJ Iemmi, C Anderson, EH Chao, W Attwood, DT AF Capeluto, M. G. Wachulak, P. Marconi, M. C. Patel, D. Menoni, C. S. Rocca, J. J. Iemmi, C. Anderson, E. H. Chao, W. Attwood, D. T. TI Table top nanopatterning with extreme ultraviolet laser illumination SO MICROELECTRONIC ENGINEERING LA English DT Article; Proceedings Paper CT 32nd International Conference on Micro- and Nano-Engineering CY SEP 17-20, 2006 CL Barcelona, SPAIN SP La Caixa DE EUV lasers; table top photolithography; nanopatterning; interferometric lithography ID INTERFEROMETRIC LITHOGRAPHY; INTERFERENCE LITHOGRAPHY; PATTERNS; EXPOSURE; GRATINGS; LINES AB Patterning with extreme ultraviolet light generated by a compact, bright laser source operating at a wavelength of 46.9 nn is demonstrated using two complementary approaches: multiple beam interferometric lithography and de-magnifying projection. Features with sizes ranging from 370 mn to 60 mn were printed in a few seconds in poly-methyl methacrylate resist. These proof-of-principle experiments demonstrate practical table-top nanopatterning tools based on extreme ultraviolet lasers for nanotechnology applications. (c) 2007 Elsevier B.V. All rights reserved. C1 Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA. Colorado State Univ, NSF Engn Res Ctr Extreme Ultraviolet Sci & Techno, Ft Collins, CO 80523 USA. Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, RA-1428 Buenos Aires, DF, Argentina. Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Marconi, MC (reprint author), Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA. EM marconi@engr.colostate.edu RI Menoni, Carmen/A-3775-2008; Menoni, Carmen/B-4989-2011; OI Capeluto, Maria/0000-0002-9569-6076; Wachulak, Przemyslaw/0000-0001-9853-7946 NR 13 TC 7 Z9 7 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-9317 J9 MICROELECTRON ENG JI Microelectron. Eng. PD MAY-AUG PY 2007 VL 84 IS 5-8 BP 721 EP 724 DI 10.1016/j.mee.2007.01.018 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Optics; Physics, Applied SC Engineering; Science & Technology - Other Topics; Optics; Physics GA 177WF UT WOS:000247182500008 ER PT J AU Schmid, GM Thompson, E Stacey, N Resnick, DJ Olynick, DL Anderson, EH AF Schmid, Gerard M. Thompson, Ecron Stacey, Nick Resnick, Douglas J. Olynick, Deirdre L. Anderson, Erik H. TI Template fabrication for the 32 nm node and beyond SO MICROELECTRONIC ENGINEERING LA English DT Article; Proceedings Paper CT 32nd International Conference on Micro- and Nano-Engineering CY SEP 17-20, 2006 CL Barcelona, SPAIN SP La Caixa DE S-FIL; template; imprint lithography; 32 nm ID FLASH IMPRINT LITHOGRAPHY; STEP; EXPOSURE; MASKS AB Imprint lithography has been included on the ITRS Lithography Roadmap at the 32 and 22 nm nodes. Step and flash imprint lithography (S-FIL (TM)) is a unique method that has been designed from the beginning to enable precise overlay for creating multilevel devices. A photocurable low viscosity monomer is dispensed dropwise to meet the pattern density requirements of the device, thus enabling imprint patterning with a uniform residual layer across a field and across entire wafers. Further, S-FIL provides sub-100 nm feature resolution without the significant expense of multi-element, high quality projection optics or advanced illumination sources. However, since the technology is IX, it is critical to address the infrastructure associated with the fabrication of templates. This paper addresses steps required to achieve resolution at or below 32 nm. Gaussian-beam writers are now installed in mask shops and are being used to fabricate S-FIL templates. Although the throughput of these systems is low, they can nevertheless be applied towards applications such as unit process development and device prototyping. Resolution improvements were achieved by optimizing the ZEP520A resolution and exposure latitude. Key to the fabrication process was the introduction of thinner resist films and data biasing of the critical features. By employing a resist thickness of 70 nm and by negatively biasing features as much as 18 run, 28 nm half-pitch imprints were obtained. Further processing improvements show promise for achieving 20 nm half-pitch features on a template. (c) 2007 Published by Elsevier B.V. C1 Mol Imprints Inc, Austin, TX 78758 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Resnick, DJ (reprint author), Mol Imprints Inc, 1807C W Braker Lane, Austin, TX 78758 USA. EM dresnick@militho.com NR 14 TC 10 Z9 11 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-9317 J9 MICROELECTRON ENG JI Microelectron. Eng. PD MAY-AUG PY 2007 VL 84 IS 5-8 BP 853 EP 859 DI 10.1016/j.mee.2007.01.038 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Optics; Physics, Applied SC Engineering; Science & Technology - Other Topics; Optics; Physics GA 177WF UT WOS:000247182500039 ER PT J AU Witte, DJ Crnogorac, F Pickard, DS Mehta, A Liu, Z Rajendran, B Pianetta, P Pease, RFW AF Witte, D. J. Crnogorac, F. Pickard, D. S. Mehta, A. Liu, Z. Rajendran, B. Pianetta, P. Pease, R. F. W. TI Lamellar crystallization of silicon for 3-dimensional integration SO MICROELECTRONIC ENGINEERING LA English DT Article; Proceedings Paper CT 32nd International Conference on Micro- and Nano-Engineering CY SEP 17-20, 2006 CL Barcelona, SPAIN SP La Caixa DE laser crystallization; rapid thermal processing; 3-dimensional integration; silicon AB In order to realize monolithic 3-dimensional integration of semiconductor devices, we must be able to obtain device-quality single-crystalline regions of semiconductor on an amorphous substrate. This must be done without exceeding the thermal budget of underlying device layers. We present simulation results that show a 532 nm laser pulse of 15 mu s duration can melt and crystallize an amorphous silicon region on top of an insulating layer, without heating underlayers above 450 degrees C. This timescale may allow the partial melting of silicon, in which solid lamellae of submicron width and exhibiting preferential (100) orientation can form. We show that a single lamella, once formed, can solidify on the 10 mu s timescale to form a single crystal 2 mu m wide. With control over the location of these lamellae, they may be of use in forming single-seeded crystalline regions in which devices can be fabricated. (c) 2007 Elsevier B.V. All rights reserved. C1 Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Witte, DJ (reprint author), Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. EM dwitte@stanford.edu RI Liu, Zhi/B-3642-2009; Rajendran, Bipin/C-6369-2009 OI Liu, Zhi/0000-0002-8973-6561; Rajendran, Bipin/0000-0002-2960-6909 NR 6 TC 10 Z9 10 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-9317 J9 MICROELECTRON ENG JI Microelectron. Eng. PD MAY-AUG PY 2007 VL 84 IS 5-8 BP 1186 EP 1189 DI 10.1016/j.mee.2007.01.249 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Optics; Physics, Applied SC Engineering; Science & Technology - Other Topics; Optics; Physics GA 177WF UT WOS:000247182500116 ER PT J AU De Yoreo, JJ AF De Yoreo, James J. TI Nanoscale informal science education (NISE) network promotes nanoscience literacy SO MRS BULLETIN LA English DT Editorial Material C1 Lawrence Livermore Natl Lab, Mat Res Soc NISE Subcomm, Livermore, CA 94550 USA. RP De Yoreo, JJ (reprint author), Lawrence Livermore Natl Lab, Mat Res Soc NISE Subcomm, Livermore, CA 94550 USA. NR 0 TC 0 Z9 0 U1 1 U2 3 PU MATERIALS RESEARCH SOCIETY PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0883-7694 J9 MRS BULL JI MRS Bull. PD MAY PY 2007 VL 32 IS 5 BP 444 EP 445 DI 10.1557/mrs2007.69 PG 2 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 171XZ UT WOS:000246770000019 ER PT J AU Khanal, DR Yim, JWL Walukiewicz, W Wu, J AF Khanal, D. R. Yim, Joanne W. L. Walukiewicz, W. Wu, J. TI Effects of quantum confinement on the doping limit of semiconductor nanowires SO NANO LETTERS LA English DT Article ID ELECTRICAL-PROPERTIES; INFRARED-ABSORPTION; TEMPERATURE; GERMANIUM; EDGE; IMPURITIES; TRANSPORT; MOBILITY; SILICON; FILMS AB We have calculated the effects of quantum confinement on maximum achievable free carrier concentrations in semiconductor nanowires. Our calculations are based on the amphoteric defect model, which describes the thermodynamic doping limit in semiconductors in terms of the compensation of external dopants by native defects. We find that the generation of amphoteric native defects strongly limits maximum achievable carrier concentrations for nanowires with small widths where quantum confinement is appreciable. The magnitude of this effect in a given material is found to be determined by two material properties: the effective mass of the free carriers, and the position of the conduction (n-type) or valence band (p-type) edge on the absolute energy scale. These results offer a simple, predictive guideline for designing nanostructure devices and contacts where high doping levels are needed. C1 Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Sci Mat, Berkeley, CA 94720 USA. RP Wu, J (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM wuj@berkeley.edu RI Wu, Junqiao/G-7840-2011 OI Wu, Junqiao/0000-0002-1498-0148 NR 28 TC 45 Z9 46 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAY PY 2007 VL 7 IS 5 BP 1186 EP 1190 DI 10.1021/nl062886w PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 165NU UT WOS:000246313000014 PM 17388639 ER PT J AU Talapin, DV Shevchenko, EV Murray, CB Titov, AV Kral, P AF Talapin, Dmitri V. Shevchenko, Elena V. Murray, Christopher B. Titov, Alexey V. Kral, Petr TI Dipole-dipole interactions in nanoparticle superlattices SO NANO LETTERS LA English DT Article ID VAN-DER-WAALS; MONODISPERSE NANOCRYSTALS; ORGANIZATION; SPHERES; CRYSTALLIZATION; TRANSISTORS; NANOWIRES; ENTROPY; MOMENT AB Nanoparticles often self-assemble into hexagonal-close-packed (hcp) structures although it is predicted to be less stable than face-centered-cubic (fcc) packing in hard-sphere models. In addition to close-packed fcc and hcp superlattices, we observe formation of nonclose-packed simple-hexagonal (sh) superlattices of nearly spherical PbS, PbSe, and gamma-Fe2O3 nanocrystals. This surprisingly rich phase diagram of monodisperse semiconducting nanoparticles is explained by considering the interactions between nonlocal dipoles of individual nanoparticles. By calculating the total electrostatic and dispersive energies, we explain stability of the hcp and sh nanoparticle superlattices, introduce the superlattice phase diagram, and predict antiferroelectric ordering in dipolar nanoparticle superlattices. C1 Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. IBM Corp, Div Res, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA. Univ Illinois, Dept Chem, Chicago, IL 60607 USA. RP Talapin, DV (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM dvtalapin@lbl.gov; pkral@uic.edu NR 41 TC 198 Z9 198 U1 11 U2 122 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAY PY 2007 VL 7 IS 5 BP 1213 EP 1219 DI 10.1021/nl070058c PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 165NU UT WOS:000246313000019 PM 17397231 ER PT J AU Allen, PB AF Allen, Philip B. TI Nanocrystalline nanowires: III. Electrons SO NANO LETTERS LA English DT Article AB Nanocrystalline nanowires (NCNW) are fragments of bulk crystals that are infinite in only one direction and typically have some rotational symmetry around this direction. Electron eigenstates belonging to the symmetry labels (k,m) (wavevector and rotational quantum number) are discussed. The rotational quantum number simplifies discussion of optical properties. For m not equal 0, the +/- m degeneracy allows orbital magnetism. The simplest sensible model which is more complex than a one-dimensional chain is solved. Methods are suggested for incorporating rotational symmetry into preexisting codes with three-dimensional translations. C1 SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Allen, PB (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. EM philip.allen@sunysb.edu NR 11 TC 7 Z9 7 U1 1 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAY PY 2007 VL 7 IS 5 BP 1220 EP 1223 DI 10.1021/nl070066t PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 165NU UT WOS:000246313000020 PM 17408301 ER PT J AU Zhang, Y Wang, LW Mascarenhas, A AF Zhang, Yong Wang, Lin-Wang Mascarenhas, Angelo TI "Quantum coaxial cables" for solar energy harvesting SO NANO LETTERS LA English DT Article ID CORE-SHELL; V SEMICONDUCTORS; BAND; CELLS; DOTS; GAP; HETEROSTRUCTURES; SPECTROSCOPY; DYNAMICS; ZNTE AB Type II core-shell nanowires based on III-V and II-VI semiconductors are designed to provide the highly desirable but not readily available featureefficient charge separationand concurrently address the different material challenges specific for a few key renewable energy applications: including hydrogen generation via photoelectrochemical water splitting, dye-sensitized solar cells, and conventional solar cells. They also open up new avenues for studying novel physics and material sciences in reduced dimensionality of very unusual quasi-one-dimensional systems. A first-principles density function theory within the local density approximation (LDA) is used for the electronic structure calculation and a valence-force-field method for the strutural relaxation, and emprical corrections to the LDA errors are applied. C1 Natl Renewable Energy Lab, Ctr Mat Sci, Golden, CO 80401 USA. Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Zhang, Y (reprint author), Natl Renewable Energy Lab, Ctr Mat Sci, 1617 Cole Blvd, Golden, CO 80401 USA. EM yong_zhang@nrel.gov NR 34 TC 128 Z9 129 U1 6 U2 54 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD MAY PY 2007 VL 7 IS 5 BP 1264 EP 1269 DI 10.1021/nl070174f PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 165NU UT WOS:000246313000027 PM 17408302 ER PT J AU Tuteja, A Mackay, ME Narayanan, S Asokan, S Wong, MS AF Tuteja, Anish Mackay, Michael E. Narayanan, Suresh Asokan, Subashini Wong, Michael S. TI Breakdown of the continuum Stokes-Einstein relation for nanoparticle diffusion SO NANO LETTERS LA English DT Article ID HARD-SPHERE FLUID; MOLECULAR-DYNAMICS; QUANTUM DOTS; CORRELATION SPECTROSCOPY; VISCOELASTIC PROPERTIES; POLYMER NANOCOMPOSITES; POLYSTYRENE MELTS; DRAG COEFFICIENT; LINEAR-POLYMERS; PHASE-DIAGRAMS AB Cadmium selenide nanoparticles are found to diffuse approximately 200 times faster in a polymeric liquid than predicted by the Stokes-Einstein relation. This remarkable behavior is hypothesized to be due to the nanoparticles being smaller than the entanglement mesh to create a frictional drag that does not follow continuum expectations, in line with a theoretical calculation presented before. This is one of the first demonstrations of X-ray photo correlation spectroscopy applied to polymeric liquids, which we use to explain the simultaneous 60% viscosity reduction of the mixture through a proposed constraint release mechanism. C1 Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. Rice Univ, Dept Chem, Houston, TX 77251 USA. RP Mackay, ME (reprint author), Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. EM mackay@msu.edu RI Wong, Michael/F-9286-2010 OI Wong, Michael/0000-0002-3652-3378 NR 74 TC 123 Z9 125 U1 11 U2 93 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD MAY PY 2007 VL 7 IS 5 BP 1276 EP 1281 DI 10.1021/nl070192x PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 165NU UT WOS:000246313000029 PM 17397233 ER PT J AU McGrath, PT Lee, H Zhang, L Iniesta, AA Hottes, AK Tan, MH Hillson, NJ Hu, P Shapiro, L McAdams, HH AF McGrath, Patrick T. Lee, Honglak Zhang, Li Iniesta, Antonio A. Hottes, Alison K. Tan, Meng How Hillson, Nathan J. Hu, Ping Shapiro, Lucy McAdams, Harley H. TI High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons SO NATURE BIOTECHNOLOGY LA English DT Article ID BACTERIAL-CELL-CYCLE; CAULOBACTER-CRESCENTUS; DNA-REPLICATION; MASTER REGULATOR; NETWORK; SEQUENCE; PROGRESSION; EXPRESSION; PROTEASE; GENE AB Using 62 probe-level datasets obtained with a custom-designed Caulobacter crescentus microarray chip, we identify transcriptional start sites of 769 genes, 53 of which are transcribed from multiple start sites. Transcriptional start sites are identified by analyzing probe signal cross-correlation matrices created from probe pairs tiled every 5 bp upstream of the genes. Signals from probes binding the same message are correlated. The contribution of each promoter for genes transcribed from multiple promoters is identified. Knowing the transcription start site enables targeted searching for regulatory-protein binding motifs in the promoter regions of genes with similar expression patterns. We identified 27 motifs, 17 of which share no similarity to the characterized motifs of other C. crescentus transcriptional regulators. Using these motifs, we predict coregulated genes. We verified novel promoter motifs that regulate stress-response genes, including those responding to uranium challenge, a stress-response sigma factor and a stress-response noncoding RNA. C1 Stanford Univ, Dept Dev Biol, Becmkan Ctr B300, Stanford, CA 94305 USA. Stanford Univ, Dept Phys, Stanford, CA 94305 USA. Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA. Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. Princeton Univ, Lewis Sigler Inst Integrat Genom, Carl C Icahn Lab L206, Princeton, NJ 08544 USA. Lawrence Berkeley Natl Lab, Ctr Environm Biotechnol, Berkeley, CA 94720 USA. RP McAdams, HH (reprint author), Stanford Univ, Dept Dev Biol, Becmkan Ctr B300, 279 Campus Dr, Stanford, CA 94305 USA. EM hmcadams@stanford.edu RI Hillson, Nathan/F-9957-2012; Hu, Ping/G-2384-2015; Iniesta, Antonio/G-7798-2015; Tan, Meng How/M-8605-2015; OI Hillson, Nathan/0000-0002-9169-3978; Iniesta, Antonio/0000-0002-7629-1057 FU NHGRI NIH HHS [T32 HG00044]; NIGMS NIH HHS [GM32506, 5R24GM73011-2] NR 30 TC 105 Z9 108 U1 0 U2 8 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK STREET, 9TH FLOOR, NEW YORK, NY 10013-1917 USA SN 1087-0156 J9 NAT BIOTECHNOL JI Nat. Biotechnol. PD MAY PY 2007 VL 25 IS 5 BP 584 EP 592 DI 10.1038/nbt1294 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 166HK UT WOS:000246369400027 PM 17401361 ER PT J AU Chang, MCY Eachus, RA Trieu, W Ro, DK Keasling, JD AF Chang, Michelle C. Y. Eachus, Rachel A. Trieu, William Ro, Dae-Kyun Keasling, Jay D. TI Engineering Escherichia coli for production of functionalized terpenoids using plant P450s SO NATURE CHEMICAL BIOLOGY LA English DT Article ID INDOLE ALKALOID BIOSYNTHESIS; CANDIDA-TROPICALIS; ARTEMISINIC ACID; MINT MENTHA; EXPRESSION; CYTOCHROME-P450; ENZYME; IDENTIFICATION; CONVERSION; SYNTHASE AB Terpenoids are a highly diverse class of natural products that have historically provided a rich source for discovery of pharmacologically active small molecules(1), such as paclitaxel ( Taxol) and artemisinin. Unfortunately, these secondary metabolites are typically produced in low abundance in their host organism, and their isolation consequently suffers from low yields and high consumption of natural resources. Furthermore, chemical synthesis of terpenoids can also be difficult to scale for industrial production. For these reasons, an attractive alternative strategy is to engineer metabolic pathways for production of pharmaceuticals or their precursors in a microbial host such as Escherichia coli. A key step is developing methods to carry out cytochrome P450 ( P450)based oxidation chemistry in vivo. Toward this goal, we have assembled two heterologous pathways for the biosynthesis of plant- derived terpenoid natural products, and we present the first examples of in vivo production of functionalized terpenoids in E. coli at high titer using native plant P450s. C1 Univ Calif Berkeley, Calif Inst Quantitat Biomed Res, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem Engn, Dept Bioengn, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Keasling, JD (reprint author), Univ Calif Berkeley, Calif Inst Quantitat Biomed Res, Berkeley, CA 94720 USA. EM keasling@berkeley.edu RI Keasling, Jay/J-9162-2012; Ro, Dae-Kyun/G-9289-2012 OI Keasling, Jay/0000-0003-4170-6088; Ro, Dae-Kyun/0000-0003-1288-5347 NR 29 TC 168 Z9 187 U1 9 U2 88 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK STREET, 9TH FLOOR, NEW YORK, NY 10013-1917 USA SN 1552-4450 J9 NAT CHEM BIOL JI Nat. Chem. Biol. PD MAY PY 2007 VL 3 IS 5 BP 274 EP 277 DI 10.1038/nchembio875 PG 4 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 159FP UT WOS:000245851100011 PM 17438551 ER PT J AU Sutter, PW Sutter, EA AF Sutter, Peter W. Sutter, Eli A. TI Dispensing and surface-induced crystallization of zeptolitre liquid metal-alloy drops SO NATURE MATERIALS LA English DT Article ID NANOSTRUCTURES; GALLIUM AB The controlled delivery of fluids is a key process in nature and in many areas of science and technology, where pipettes or related devices are used for dispensing well-defined fluid volumes. Existing pipettes are capable of delivering fluids with attolitre (10(-18) l) accuracy at best(1). Studies on phase transformations of nanoscale objects would benefit from the controlled dispensing and manipulation of much smaller droplets. In contrast to nanoparticle melting whose fundamental pathway was studied extensively(2), experiments on crystallization, testing classical nucleation theory(3), are hindered by the influence of support interfaces. Experiments on free-standing fluid drops are extremely challenging(4). Here, we demonstrate the operation of a pipette, which, observed by transmission electron microscopy, delivers a metal-alloy melt with zeptolitre (10(-21) l) resolution. We use this exquisite control to produce nearly free-standing Au72Ge28 drops suspended by an atomic-scale meniscus at the pipette tip, and to image their phase transformations with near-atomic resolution. Our observations of the liquid-solid transition challenge classical nucleation theory3 by providing experimental evidence for an intrinsic crystallization pathway of nanometre-sized fluid drops that avoids nucleation in the interior, but instead proceeds via liquid-state surface faceting as a precursor to surface-induced crystallization. C1 Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sutter, PW (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM esutter@bnl.gov NR 25 TC 66 Z9 66 U1 5 U2 36 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD MAY PY 2007 VL 6 IS 5 BP 363 EP 366 DI 10.1038/nmat1894 PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 163FF UT WOS:000246143500018 PM 17435761 ER PT J AU Torney, F Trewyn, BG Lin, VSY Wang, K AF Torney, Francois Trewyn, Brian G. Lin, Victor S. -Y. Wang, Kan TI Mesoporous silica nanoparticles deliver DNA and chemicals into plants SO NATURE NANOTECHNOLOGY LA English DT Article ID RESPONSIVE CONTROLLED-RELEASE; GENE DELIVERY; GOLD NANOPARTICLES; SYSTEM; CELLS; SURFACE; TRANSFORMATION; TRANSFECTION; FABRICATION; EXPRESSION AB Surface-functionalized silica nanoparticles can deliver DNA(1-8) and drugs(9-15) into animal cells and tissues. However, their use in plants is limited by the cell wall present in plant cells. Here we show a honeycomb mesoporous silica nanoparticle (MSN) system with 3-nm pores that can transport DNA and chemicals into isolated plant cells and intact leaves. We loaded the MSN with the gene and its chemical inducer and capped the ends with gold nanoparticles to keep the molecules from leaching out. Uncapping the gold nanoparticles released the chemicals and triggered gene expression in the plants under controlled-release conditions. Further developments such as pore enlargement and multifunctionalization of these MSNs may offer new possibilities in target-specific delivery of proteins, nucleotides and chemicals in plant biotechnology. C1 Iowa State Univ, Ctr Plant Transformat, Inst Plant Sci, Ames, IA 50011 USA. Iowa State Univ, Dept Agron, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, US DOE, Ames Lab, Ames, IA 50011 USA. RP Lin, VSY (reprint author), Iowa State Univ, Ctr Plant Transformat, Inst Plant Sci, Ames, IA 50011 USA. EM vsylin@iastate.edu; kanwang@iastate.edu NR 29 TC 505 Z9 527 U1 28 U2 271 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD MAY PY 2007 VL 2 IS 5 BP 295 EP 300 DI 10.1038/nnano.2007.108 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 170TW UT WOS:000246688900013 PM 18654287 ER PT J AU Jia, S Bud'ko, SL Samolyuk, GD Canfield, PC AF Jia, S. Bud'ko, S. L. Samolyuk, G. D. Canfield, P. C. TI Nearly ferromagnetic Fermi-liquid behaviour in YFe2Zn20 and high-temperature ferromagnetismof GdFe2Zn20 SO NATURE PHYSICS LA English DT Article ID SUSCEPTIBILITY; NI; PD AB One of the historic goals of alchemy was to turn base elements into precious ones. Although the practice of alchemy has been superseded by chemistry and solid-state physics, the desire to dramatically change or tune the properties of a compound, preferably through small changes in stoichiometry or composition, remains. This desire becomes even more compelling for compounds that can be tuned to extremes in behaviour. Here, we report that the RT2Zn20 (R = rare earth and T = transition metal) family of compounds manifests exactly this type of versatility, even though they are more than 85% Zn. By tuning T, we find that YFe2Zn20 is closer to ferromagnetism than elemental Pd, the classic example of a nearly ferromagnetic Fermi liquid. By submerging Gd in this highly polarizable Fermi liquid, we tune the system to a remarkably high-temperature ferromagnetic (T-C = 86 K) state for a compound with less than 5% Gd. Although this is not quite turning lead into gold, it is essentially tuning Zn to become a variety of model compounds. C1 US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Canfield, PC (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM canfield@ameslab.gov RI Canfield, Paul/H-2698-2014 NR 18 TC 60 Z9 60 U1 0 U2 17 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD MAY PY 2007 VL 3 IS 5 BP 334 EP 338 DI 10.1038/nphys568 PG 5 WC Physics, Multidisciplinary SC Physics GA 171LU UT WOS:000246738300018 ER PT J AU Dolan, DH Knudson, MD Hall, CA Deeney, C AF Dolan, D. H. Knudson, M. D. Hall, C. A. Deeney, C. TI A metastable limit for compressed liquid water SO NATURE PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; SHOCK-WAVE COMPRESSION; ICE NUCLEATION; HIGH-PRESSURES; PHASE; CRYSTAL; CRYSTALLIZATION; SAPPHIRE; GROWTH AB The transformation of liquid water to solid ice is typically a slow process. To cool a sample below the melting point requires some time, as does nucleation from the metastable liquid(1), so freezing usually occurs over many seconds(2). Freezing conditions can be created much more quickly using isentropic compression techniques, which provide insight into the limiting timescales of the phase transition. Here, we show that water rapidly freezes without a nucleator under sufficient compression, establishing a practical limit for the metastable liquid phase. Above 7 GPa, compressed water completely transforms to a high-pressure phase within a few nanoseconds. The consistent observation of freezing with different samples and container materials suggests that the transition nucleates homogeneously. The observation of complete freezing on these timescales further implies that the liquid reaches a hypercooled state(3). C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Dolan, DH (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dhdolan@sandia.gov NR 31 TC 32 Z9 33 U1 2 U2 24 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD MAY PY 2007 VL 3 IS 5 BP 339 EP 342 DI 10.1038/nphys562 PG 4 WC Physics, Multidisciplinary SC Physics GA 171LU UT WOS:000246738300019 ER PT J AU Ravula, SK Wang, MS McClain, MA Asress, SA Frazier, B Glass, JD AF Ravula, Surendra K. Wang, Min S. McClain, Maxine A. Asress, Seneshaw A. Frazier, Bruno Glass, Jonathan D. TI Spatiotemporal localization of injury potentials in DRG neurons during vincristine-induced axonal degeneration (vol 415, pg 34, 2007) SO NEUROSCIENCE LETTERS LA English DT Correction C1 Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. Emory Univ, Sch Med, Ctr Neurodegenerat Dis, Atlanta, GA 30322 USA. RP Ravula, SK (reprint author), Sandia Natl Labs, Appl Photon Microsyst, Albuquerque, NM 87123 USA. EM skravul@sandia.gov NR 1 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0304-3940 J9 NEUROSCI LETT JI Neurosci. Lett. PD MAY 1 PY 2007 VL 417 IS 2 BP 217 EP 217 DI 10.1016/j.neulet.2007.03.052 PG 1 WC Neurosciences SC Neurosciences & Neurology GA 169IS UT WOS:000246586500022 ER PT J AU Berejkian, BA Brown, RS Tatara, CP Cooke, SJ AF Berejkian, Barry A. Brown, Richard S. Tatara, Christopher P. Cooke, Steven J. TI Effects of telemetry transmitter placement on egg retention in naturally spawning, captively reared steelhead SO NORTH AMERICAN JOURNAL OF FISHERIES MANAGEMENT LA English DT Editorial Material ID ADULT SOCKEYE-SALMON; PINK ONCORHYNCHUS-GORBUSCHA; ELECTROMYOGRAM TELEMETRY; CHINOOK SALMON; FRASER-RIVER; DIFFICULT PASSAGE; BRITISH-COLUMBIA; EMG TELEMETRY; NERKA SALMON; FISH AB Maturing female anadromous salmonids receiving intraperitoneally implanted telemetry transmitters (tags) may experience difficulty depositing eggs during natural spawning, We allocated maturing adult female steelhead Oncorhynchus mykiss to three treatment groups: (1) fish whose tags were surgically implanted in the body cavity (internal), (2) fish whose tags were implanted between the skin and muscle tissue (subdermal), and (3) nontagged fish. The steelhead were then allowed to spawn in an experimental channel, Internally tagged females retained significantly more eggs than did the subdermally tagged and nontagged control groups; subdermally tagged and nontagged control fish did not differ significantly. Females in the internally tagged, subdermally tagged, and nontagged groups retained an average of 49, 11, and 2% of their eggs, respectively. The onset of sexual activity did not differ significantly among treatments. Postspawning mortality was 70% for internally and subdermally tagged females and 0% for nontagged females. Each research or monitoring program should weigh the costs associated with transmitter use (where they are known) against the value of information obtained and should carefully evaluate assumptions about transmitter effects. For these reasons, the use of electromyograrn electrodes and other telemetry transmitters for monitoring imperiled fish populations should be employed with caution. We suggest that subdermal implantation techniques be considered in future studies during the reproductive period to reduce egg retention caused by internally implanted transmitters. C1 Natl Ocean & Atmospher Adm Fisheries, NW Fisheries Sci Ctr, Resource Enhancement & Utilizat Technol Div, Manchester Res Stn, Manchester, WA 98353 USA. Battelle Pacific NW Div, Ecol Grp, Richland, WA 99352 USA. Carleton Univ, Dept Biol, Ottawa, ON K1S 5B6, Canada. RP Berejkian, BA (reprint author), Natl Ocean & Atmospher Adm Fisheries, NW Fisheries Sci Ctr, Resource Enhancement & Utilizat Technol Div, Manchester Res Stn, POB 130, Manchester, WA 98353 USA. EM barry.berejikian@noaa.gov RI Cooke, Steven/F-4193-2010 OI Cooke, Steven/0000-0002-5407-0659 NR 28 TC 6 Z9 6 U1 0 U2 1 PU AMER FISHERIES SOC PI BETHESDA PA 5410 GROSVENOR LANE SUITE 110, BETHESDA, MD 20814-2199 USA SN 0275-5947 J9 N AM J FISH MANAGE JI North Am. J. Fish Manage. PD MAY PY 2007 VL 27 IS 2 BP 659 EP 664 DI 10.1577/M06-142.1 PG 6 WC Fisheries SC Fisheries GA 174VF UT WOS:000246970200026 ER PT J AU Burrows, TW AF Burrows, T. W. TI Nuclear data sheets for A=47 SO NUCLEAR DATA SHEETS LA English DT Review ID HIGH-SPIN STATES; LOW-LYING LEVELS; HYPERFINE-STRUCTURE MEASUREMENTS; DISTANCE LIFETIME MEASUREMENTS; COULOMB DISPLACEMENT ENERGIES; PROTON-RICH NUCLEI; N=28 SHELL CLOSURE; D3/2 HOLE STATE; BETA-DECAY; LEVEL STRUCTURE AB The 1995 Nuclear Data Sheets Update for A = 47 (1995 Bu 05) has been revised using experimental decay and reaction data received by February 20, 2007. C1 Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP Burrows, TW (reprint author), Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. EM burrows@bnl.gov NR 215 TC 10 Z9 10 U1 2 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD MAY PY 2007 VL 108 IS 5 BP 923 EP + DI 10.1016/j.nds.2007.04.002 PG 132 WC Physics, Nuclear SC Physics GA 170WN UT WOS:000246697000001 ER PT J AU Wu, SC AF Wu, S.-C. TI Nuclear data sheets for A=216 SO NUCLEAR DATA SHEETS LA English DT Article ID HEAVY-ION REACTIONS; EVEN EVEN NUCLEI; ALPHA-DECAY; LEVEL STRUCTURE; REFLECTION ASYMMETRY; GAMMA-COINCIDENCES; THORIUM ISOTOPES; ISOMERIC STATE; EXCITED-STATES; GROUND-STATE AB Evaluated spectroscopic data for all nuclei with mass number A = 216 are presented together with the relevant level schemes from radioactive decay and nuclear reaction studies. The experimental data are evaluated, inconsistencies and discrepancies are noted, and adopted values for level and gamma-ray energies, 7 intensities, as well as for other nuclear properties are given. The present evaluation supersedes the earlier one on A = 216 by A. Artna-Cohen (1997 Ar 04), published in Nuclear Data Sheets 80, 157 (1997). C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. Natl Tsing Hua Univ, Dept Phys, Hsinchu 30043, Taiwan. RP Wu, SC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. NR 82 TC 9 Z9 9 U1 1 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD MAY PY 2007 VL 108 IS 5 BP 1057 EP + DI 10.1016/j.nds.2007.04.001 PG 34 WC Physics, Nuclear SC Physics GA 170WN UT WOS:000246697000002 ER PT J AU Lomperski, S Farmer, MT AF Lomperski, S. Farmer, M. T. TI Experimental evaluation of the water ingression mechanism for corium cooling SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID HOT ROCK; PENETRATION AB Experiments were performed to assess the significance of water ingression cooling in the quenching of molten corium. Water ingression is a mechanism by which water penetrates into cracks and pores of solidified corium to enhance cooling that would otherwise be severely limited by the low thermal conductivity of the material. Quench tests were conducted with 2100 degrees C melts weighing similar to 75 kg composed of UO2, ZrO2 and chemical constituents of concrete. The amount of concrete in the melts was varied between 4% and 23%. The melts were quenched with an overlying water layer; three tests were conducted at a system pressure of 1 bar and four tests at 4 bar. The measured cooling rates were found to decrease with increasing concrete content and, contrary to expectations, are essentially independent of system pressure. For the lower concrete content melts, cooling rates exceeded the conduction-limited rate with the difference being attributed to the water ingression mechanism. Measurements of the permeability of the corium "ingots" produced by the quench tests were used to obtain a second, independent set of dryout heat flux data, which exhibits the same trend as the quench test data. The data was used to validate an existing dryout heat flux model based on corium permeability associated with thermally induced cracking. The model uses the thermal and mechanical properties of the corium and coolant, and it reproduces the very particular data trend found for the dryout heat flux as a function of concrete content. The model predicts that water ingression cooling would be most effective for concrete-free corium mixtures such as in-vessel type melts. For such a melt the model predicts a dryout heat flux of similar to 400 kW/m(2) at a pressure of 1 bar. The results of this study provide an experimental basis for a water ingression model that can be incorporated into computer codes used to assess accident management strategies. (c) 2007 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Lomperski, S (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM lomperski@anl.gov; farmer@anl.gov NR 14 TC 18 Z9 18 U1 1 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD MAY PY 2007 VL 237 IS 9 BP 905 EP 917 DI 10.1016/j.nucengdes.2006.12.009 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 162WJ UT WOS:000246119900002 ER PT J AU Sha, WT Chao, BT AF Sha, W. T. Chao, B. T. TI Novel porous media formulation for multiphase flow conservation equations SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID SYSTEMS; MOTION AB Multiphase flows consist of interacting phases that are dispersed randomly in space and in time. An additional complication arises from the fact that the flow region of interest often contains irregularly shaped structures. While, in principle, the intraphase conservation equations for mass, momentum, and energy, and their initial and boundary conditions can be written, the cost of detailed fluid flow and heat transfer analysis with explicit treatment of these internal structures with complex geometry and irregular shape often is prohibitive, if not impossible. In most engineering applications, all that is required is to capture the essential features of the system and to express the flow and temperature field in terms of local volume-averaged quantities while sacrificing some of the details. The present study is an attempt to achieve this goal by applying time averaging after local volume averaging. Local volume averaging of conservation equations of mass, momentum, and energy for a multiphase system yields equations in terms of local volume-averaged products of density, velocity, energy, stresses, and field forces, together with interface transfer integrals. These averaging relations are subject to the following length scale restrictions: d << l << L, where d is a characteristic length of the pores or dispersed phases, f a characteristic length of the averaging volume, and L is a characteristic length of the physical system. Solutions of local volume-averaged conservation equations call for expressing these local volume-averaged products in terms of products of averages. In nonturbulent flows, this can be achieved by expressing the "point" variable as the sum of its intrinsic volume average and a spatial deviation. In turbulent flows, the same can be achieved via subsequent time averaging over a duration T such that tau(HF) << T << tau(LF), where tau(HF) is a characteristic time of high-frequency fluctuation and tau(LF) is a characteristic time of low-frequency fluctuation. In this case, and instantaneous "point" variable psi(k) of phase k is decomposed into a low-frequency component psi(kLF) and a high-frequency component psi'(k), similar k to Reynolds analysis of turbulent flow. The low-frequency component consists of the sum of the local intrinsic volume average (3i)(psi(k))(LF) and its local spatial deviation (psi) over bar (kLF). Time averaging then reduces the volume-averaged products to products of averages plus terms representing eddy and dispersive diffusivities of mass, Reynolds and dispersive stresses, and eddy and dispersive conductivities of heat, etc. These terms arise from both high-frequency fluctuations and local spatial deviations. This procedure of time averaging after local volume averaging leads to a set of differential-integral equations of conservation for multiphase flow. This set of multiphase flow conservation equations is particularly suitable for numerical analysis with staggered grid computational systems. Attention is focused on multiphase flow in a region containing fixed and dispersed heat-generating and absorbing solid structures. The novel porous media formulation employs the concept of volume porosity, directional surface porosities, distributed resistance and distributed heat source and sink which is derived through local volume averaging of conservation of mass, momentum and energy equations. The directional surface porosities are defined as a fraction of free flow surface area to control surface area in three principal directions which are readily calculable quantities. The conventional porous media formulation employs the concept of volume porosity, distributed resistance and distributed heat source and sink. Most of engineering problems involve many complex shapes and sizes of structures which are impossible to quantify their distributed resistance accurately. The concept of directional surface porosities reduced the reliance of empirical estimate of distributed resistance and improved the resolution and modeling accuracy. The novel porous media formulation represents a significant advance for solving real engineering problems. (c) 2007 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Multiphase Flow Res Inst, Argonne, IL 60439 USA. Univ Illinois, Dept Mech Engn, Urbana, IL 61801 USA. RP Sha, WT (reprint author), Argonne Natl Lab, Multiphase Flow Res Inst, Argonne, IL 60439 USA. EM jsha893@aol.com NR 27 TC 12 Z9 12 U1 1 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD MAY PY 2007 VL 237 IS 9 BP 918 EP 942 DI 10.1016/j.nucengdes.2007.01.001 PG 25 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 162WJ UT WOS:000246119900003 ER PT J AU No, HC Lim, HS Kim, J Oh, C Siefken, L Davis, C AF No, Hee Cheon Lim, Hong S. Kim, Jong Oh, Chang Siefken, Larry Davis, Cliff TI Multi-component diffusion analysis and assessment of GAMMA code and improved RELAP5 code SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article AB A loss-of-coolant accident (LOCA) has been considered a critical event for very high temperature gas-cooled reactor (VHTR). Following helium depressurization, it is anticipated that unless countermeasures are taken, air will enter the core through the break by molecular diffusion and ultimately by natural convection leading to oxidation of the in-core graphite structure. Thus, without any mitigating features, a LOCA will lead to an air ingress event, which will lead to exothermic chemical reactions of graphite with oxygen, potentially resulting in significant increases of the core temperature. New and safer nuclear reactors (Generation IV) are now in the early planning stages in many countries throughout the world. One of the reactor concepts being seriously considered is the VHTR. To achieve public acceptance, these reactor concepts must show an increased level of inherent safety over current reactor designs (i.e., a system must be designed to eliminate any concerns of large radiological releases outside the site boundary). A computer code developed from this study, gas multi-component mixture analysis (GAMMA) code, was assessed using a two-bulb experiment and in addition the molecular diffusion behavior in the prismatic-core gas-cooled reactor was investigated following the guillotine break of the main pipe between the reactor vessel and the power conversion unit. The RELAP5 code was improved for the VHTR air ingress analysis and was assessed using inverse U-tube and NACOK natural circulation data. (C) 2006 Elsevier B.V. All rights reserved. C1 Korea Adv Inst Sci & Technol, Dept Quantum & Nucl Engn, Taejon 305701, South Korea. Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP No, HC (reprint author), Korea Adv Inst Sci & Technol, Dept Quantum & Nucl Engn, Yuseong Gu 373-1, Taejon 305701, South Korea. EM hcno@nsys.kaist.ac.kr RI NO, Hee Cheon/C-1866-2011 NR 24 TC 26 Z9 26 U1 0 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD MAY PY 2007 VL 237 IS 10 BP 997 EP 1008 DI 10.1016/j.nucengdes.2006.10.020 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 169HN UT WOS:000246583400001 ER PT J AU Niu, FL Zhao, HH Peterson, PF Woodcock, J Henry, RE AF Niu, Fenglei Zhao, Haihua Peterson, Per F. Woodcock, Joel Henry, Robert E. TI Investigation of mixed convection in a large rectangular enclosure SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article AB This experimental research investigates mixed convection and heat transfer augmentation by gaseous forced jets in a large enclosure, at conditions simulating those of passive containment cooling systems for Gen III+ passively safe reactors. The experiment is designed to measure the key parameters governing heat transfer augmentation by forced jets, and to investigate the effects of geometric factors, including the jet diameter, jet injection orientation, interior structures, and enclosure aspect ratio. The tests cover a variety of injection modes leading to flow configurations of interest for mixing and stratification phenomena in containments under accident conditions. Correlations for heat transfer augmentation by forced jets are developed and compared with experimental data. The characteristic recirculation speed inside the enclosure is introduced and analyzed. Steady stratified temperature distributions are compared with model simulations of the BMIX++ code. (C) 2007 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp MS K764, Los Alamos, NM 87545 USA. Westinghouse Elect Co, Monroeville, PA 15146 USA. Fauske & Assoc Inc, Burr Ridge, IL 60527 USA. RP Peterson, PF (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. EM peterson@nuc.berkeley.edu RI Zhao, Haihua/A-8852-2009 NR 10 TC 10 Z9 10 U1 0 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD MAY PY 2007 VL 237 IS 10 BP 1025 EP 1032 DI 10.1016/j.nucengdes.2006.12.011 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 169HN UT WOS:000246583400004 ER PT J AU Chu, MS Brennan, DP Chan, VS Choi, M Jayakumar, RJ Lao, LL Nazikian, R Politzer, PA St John, HE Turnbull, AD Van Zeeland, MA White, R AF Chu, M. S. Brennan, D. P. Chan, V. S. Choi, M. Jayakumar, R. J. Lao, L. L. Nazikian, R. Politzer, P. A. St. John, H. E. Turnbull, A. D. Van Zeeland, M. A. White, R. TI Maintaining the quasi-steady state central current density profile in hybrid discharges SO NUCLEAR FUSION LA English DT Article ID ALFVEN-WAVE; DIII-D; TOKAMAK; SCENARIO; ITER AB Experimental observations in a number of tokamaks operated in the hybrid regime revealed that the presence of a rotating neoclassical island substantially reduces the occurrence of sawtooth. This possibility of a rotating mangetic island driving counter currents near the plasma centre in present-day tokamaks is studied. Three mechanisms are investigated with two of them driving sufficient current. They rely on establishing an oscillating parallel electric field by the rotating neoclassical island. First is the excitation of an electrostatic side band through diamagnetic and curvature drifts; second is the excitation of the kinetic Alfven wave at the plasma centre through the polarization drifts. The third mechanism is the 'prompt' modification of the energetic particle distribution function by the neoclassical island and was found to be relatively weak. The effect of the energetic particles on the counter-current drive due to modification of the energetic particle distribution function on the long (energetic particle slowing-down) time scale has been simulated using a particle simulation code. A firm conclusion has not yet been drawn. Transport simulations indicate that present experimental observations could be the effect of either a negative current drive in the background plasma or the anomalous transport of the energetic particles. C1 Gen Atom Co, San Diego, CA 92186 USA. Univ Tulsa, Dept Phys & Engn Phys, Tulsa, OK 74104 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Chu, MS (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. RI White, Roscoe/D-1773-2013 OI White, Roscoe/0000-0002-4239-2685 NR 18 TC 7 Z9 7 U1 0 U2 3 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD MAY PY 2007 VL 47 IS 5 BP 434 EP 442 DI 10.1088/0029-5515/47/5/007 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 174YK UT WOS:000246978600007 ER PT J AU Baylor, LR Parks, PB Jernigan, TC Caughman, JB Combs, SK Foust, CR Houlberg, WA Maruyama, S Rasmussen, DA AF Baylor, L. R. Parks, P. B. Jernigan, T. C. Caughman, J. B. Combs, S. K. Foust, C. R. Houlberg, W. A. Maruyama, S. Rasmussen, D. A. TI Pellet fuelling and control of burning plasmas in ITER SO NUCLEAR FUSION LA English DT Article ID DIII-D TOKAMAK; INJECTION; ABLATION; TRANSPORT; PARAMETERS AB Pellet injection from the inner wall is planned for use in ITER as the primary core fuelling system since gas fuelling is expected to be highly inefficient in burning plasmas. Tests of the inner wall guide tube have shown that 5 mm pellets with up to 300 m s(-1) speeds can survive intact and provide the necessary core fuelling rate. Modelling and extrapolation of the inner wall pellet injection experiments from present day's smaller tokamaks leads to the prediction that this method will provide efficient core fuelling beyond the pedestal region. Using pellets for triggering of frequent small edge localized modes is an attractive additional benefit that the pellet injection system can provide. A description of the ITER pellet injection system's capabilities for fuelling and ELM triggering is presented and performance expectations and fusion power control aspects are discussed. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Gen Atom Co, San Diego, CA 92121 USA. ITER Int Team, Cadarache, France. RP Baylor, LR (reprint author), Oak Ridge Natl Lab, Box 2008, Oak Ridge, TN 37831 USA. EM baylorlr@ornl.gov RI Caughman, John/R-4889-2016; OI Caughman, John/0000-0002-0609-1164; Baylor, Larry/0000-0002-0325-7771 NR 29 TC 45 Z9 45 U1 4 U2 7 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD MAY PY 2007 VL 47 IS 5 BP 443 EP 448 DI 10.1088/0029-5515/47/5/008 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 174YK UT WOS:000246978600008 ER PT J AU Stutzman, ML Adderley, P Brittian, J Clark, J Grames, J Hansknecht, J Myneni, GR Poelker, M AF Stutzman, M. L. Adderley, P. Brittian, J. Clark, J. Grames, J. Hansknecht, J. Myneni, G. R. Poelker, M. TI Characterization of the CEBAF 100 kV DC GaAs photoelectron gun vacuum system SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE polarized electron source; photoinjector; electron gun; non-evaporable getter (NEG); pump speed; outgassing ID RECOMMENDED PRACTICES; PHOTOCATHODES; COATINGS; TITANIUM AB A vacuum system with pressure in the low ultra-high vacuum (UHV) range is essential for long photocathode lifetimes in DC high voltage GaAs photoguns. A discrepancy between predicted and measured base pressure in the CEBAF photoguns motivated this study of outgassing rates of three 304 stainless steel chambers with different pretreatments and pump speed measurements of non-evaporable getter (NEG) pumps. Outgassing rates were measured using two independent techniques. Lower outgassing rates were achieved by electropolishing and vacuum firing the chamber. The second part of the paper describes NEG pump speed measurements as a function of pressure through the lower part of the UHV range. Measured NEG pump speed is high at pressures above 5 x 10(-11) Torr, but may decrease at lower pressures depending on the interpretation of the data. The final section investigates the pump speed of a locally produced NEG coating applied to the vacuum chamber walls. These studies represent the first detailed vacuum measurements of CEBAF photogun vacuum chambers. (C) 2007 Elsevier B.V. All rights reserved. C1 Thomas Jefferson Natl Accelerator Facil, Polarized Source, Newport News, VA 23606 USA. RP Stutzman, ML (reprint author), Thomas Jefferson Natl Accelerator Facil, Polarized Source, 12000 Jefferson Ave,MS 5A, Newport News, VA 23606 USA. EM marcy@jlab.org NR 32 TC 10 Z9 10 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAY 1 PY 2007 VL 574 IS 2 BP 213 EP 220 DI 10.1016/j.nima.2007.01.170 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 171IQ UT WOS:000246729800002 ER PT J AU Yang, HJ Roe, BP Zhu, J AF Yang, Hai-Jun Roe, Byron P. Zhu, Ji TI Studies of stability and robustness for artificial neural networks and boosted decision trees SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Boosted Decision Trees; Artificial Neural Networks; stability; robustness; particle identification; neutrino oscillations; MiniBooNE ID PARTICLE IDENTIFICATION AB In this paper, we compare the performance, stability and robustness of Artificial Neural Networks (ANN) and Boosted Decision Trees (BDT) using MiniBooNE Monte Carlo samples. These methods attempt to classify events given a Dumber of identification variables. The BDT algorithm has been discussed by us in previous publications. Testing is done in this paper by smearing and shifting the input variables of testing samples. Based on these studies, BDT has better particle identification performance than ANN. The degradation of the classifications obtained by shifting or smearing variables of testing results is smaller for BDT than for ANN. (C) 2007 Elsevier B.V. All rights reserved. C1 Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Yang, HJ (reprint author), Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. EM yhj@umich.edu RI Yang, Haijun/O-1055-2015 NR 27 TC 11 Z9 12 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAY 1 PY 2007 VL 574 IS 2 BP 342 EP 349 DI 10.1016/j.nima.2007.02.081 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 171IQ UT WOS:000246729800019 ER PT J AU Insepov, Z Norem, J Swenson, DR Hassanein, A Terasawa, M AF Insepov, Z. Norem, J. Swenson, D. R. Hassanein, A. Terasawa, M. TI Surface erosion and modification by ions studied by computer simulation SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 16th International Workshop on Inelastic Ion-Surface-Collisions CY SEP 17-22, 2006 CL Hernstein, AUSTRIA DE molecular dynamics; gas cluster ion beam; highly-charged ion; electronic excitation; Coulomb explosion; sputtering; shock wave; crater formation ID HIGHLY-CHARGED IONS; ELECTRONIC EXCITATION; MOLECULAR-DYNAMICS; INSULATOR SURFACES; RF BREAKDOWN; HEAVY-IONS; IMPACT; BOMBARDMENT; MODEL AB Surface erosion problems common in the development of TeV accelerators and of the extreme ultra-violet lithography (EUVL) devices have been reviewed. The gas cluster ion beam (GCIB) surface smoothing technique can mitigate them. It has recently been realized that GCIB can also be used to determine the basic mechanisms of the Q-slope that is yet another serious problem for the high-gradient linacs. Mechanisms of surface erosion by GCIB and highly-charged ions (HCI) bombardments were studied by using computer simulation. Sputtering, crater formation and surface modification models were developed. Various mechanisms of the ion energy transfer into the solid target, such as shock wave generation, hollow atom formation, Coulomb explosion, charge screening and neutralization were analyzed. (c) 2006 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Argonne, IL 60439 USA. Epion Corp, Billerica, MA 01821 USA. Univ Hyogo, Kamigori, Hyogo 6781205, Japan. RP Insepov, Z (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM insepov@anl.gov RI Insepov, Zinetula/L-2095-2013 OI Insepov, Zinetula/0000-0002-8079-6293 NR 31 TC 6 Z9 6 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD MAY PY 2007 VL 258 IS 1 BP 172 EP 177 DI 10.1016/j.nimb.2006.12.117 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 167NA UT WOS:000246457200038 ER PT J AU Meyer, FW Zhang, H Vergara, LI Krause, HF AF Meyer, F. W. Zhang, H. Vergara, L. I. Krause, H. F. TI Chemical sputtering of room temperature ATJ graphite and HOPG by slow atomic and molecular D ions SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 16th International Workshop on Inelastic Ion-Surface-Collisions CY SEP 17-22, 2006 CL Hernstein, AUSTRIA DE carbon-based materials; chemical sputtering; ion-surface interactions ID BOMBARDMENT; EROSION; IMPACT AB We present experimental results for methane production from ATJ graphite and highly oriented pyrolytic graphite (HOPG) produced by atomic and molecular D ions in the energy range 5-150 eV/D. For the ATJ graphite target, a systematic trend of the methane yields for the different molecular species compared at the same impact energy/D is observed. While all three species lead to methane yields that coincide within the experimental uncertainty at the high energy end of the investigated range, at lower energies the yields diverge progressively; the incident triatomic molecular ion leads to the largest yields per atom, and the atomic ion to the smallest. The difference at the lowest investigated energy (10 eV/D) is about a factor of two. The measured yields were found to be in good agreement with recent in house molecular dynamics simulations. Results are presented for two different HOPG basal plane orientations relative to the surface plane, one parallel, the other perpendicular. Differences in the methane yields for the two orientations are observed at the higher investigated energies that suggest reduced diffusion from the sample bulk when the basal planes are oriented parallel to the surface plane. A similar reduction is not observed in case of acetylene production, suggesting that the acetylene is produced mainly at the target surface. (C) 2006 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Meyer, FW (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM meyerfw@ornl.gov NR 11 TC 9 Z9 9 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD MAY PY 2007 VL 258 IS 1 BP 264 EP 269 DI 10.1016/j.nimb.2006.12.129 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 167NA UT WOS:000246457200056 ER PT J AU Reinhold, CO Krstic, PS Stuart, SJ AF Reinhold, C. O. Krstic, P. S. Stuart, S. J. TI Time scales of chemical sputtering of carbon SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 16th International Workshop on Inelastic Ion-Surface-Collisions CY SEP 17-22, 2006 CL Hernstein, AUSTRIA DE chemical sputtering; molecular dynamics; particle-surface interactions ID ATJ GRAPHITE; HYDROCARBONS; EROSION AB Chemical sputtering of carbon by D and D-2 impact is studied at impact energies ranging from 7.5 to 30 eV/D using molecular dynamics simulations that mimic experiment, as closely as possible. This entails a careful analysis of the time scales involved in the deuterization of carbon by particle bombardment. The substrate structure is heavily modified by cumulative impacts, and the sputtering yields change with bombardment time, eventually reaching a quasi-steady-state. Such state is reached at approximately the same fluence of D and D, impact. The yields of the hydrocarbons in this quasi-steady-state regime are in good agreement with experiment, and are significantly larger and of different structure than those from the unmodified surfaces. (C) 2006 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Clemson Univ, Dept Chem, Clemson, SC 29634 USA. RP Reinhold, CO (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM reinhold@ornl.gov RI Stuart, Steven/H-1111-2012; OI Reinhold, Carlos/0000-0003-0100-4962 NR 13 TC 6 Z9 6 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD MAY PY 2007 VL 258 IS 1 BP 274 EP 277 DI 10.1016/j.nimb.2006.12.126 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 167NA UT WOS:000246457200058 ER PT J AU Nishiizumi, K Imamura, M Caffee, MW Southon, JR Finkel, RC McAninch, J AF Nishiizumi, Kunihiko Imamura, Mineo Caffee, Marc W. Southon, John R. Finkel, Robert C. McAninch, Jeffrey TI Absolute calibration of Be-10 AMS standards SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE beryllium-10; cosmogenic nuclide; accelerator mass spectrometry; standards; SRM ID HALF-LIFE AB The increased detection sensitivity offered by AMS has dramatically expanded the utility of Be-10. As these applications become more sophisticated attention has focused on the accuracy of the Be-10 standards used to calibrate the AMS measurements. In recent years it has become apparent that there is a discrepancy between two of the most widely used Be-10 AMS standards, the ICN Be-10 standard and the NIST Be-10 standard. The ICN (ICN Chemical & Radioisotope Division) Be-10 AMS standard was calibrated by radioactive decay counting. Dilutions, ranging from 5 x 10(-13) to 3 x 10(-11) Be-10/Be, have been prepared and are extensively used in many AMS laboratories. The NIST Be-10 standard, prepared at the National Institute of Standards and Technology (NIST), is calibrated by mass spectrometric isotope ratio measurements. To provide an independent calibration of the Be-10 standards we implanted a known number of Be-10 atoms in both Si detectors and Be foil targets. The Be-10 concentrations in these targets were measured by AMS. The results were compared with both the ICN and NIST AMS standards. Our Be-10 measurements indicate that the Be-10/Be-9 isotopic ratio of the ICN AMS standard, which is based on a Be-10 half-life of 1.5 x 10(6) yr, is 1.106 +/- 0.012 times lower than the nominal value. Since the decay rate of the ICN standard is well determined, the decrease in Be-10/Be-9 ratio requires that the Be-10 half-life be reduced to (1.36 +/- 0.07) x 10(6) yr. The quoted uncertainty includes a 5% uncertainty in the activity measurement carried out by ICN. In a similar fashion, we determined that the value of the NIST Be-10 standard (SRM4325) is (2.79 +/- 0.03) x 10(-11) Be-10/Be-9, within error of the certified value of (2.68 +/- 0.14) x 10(-11). The Lawrence Livermore National Laboratory (LLNL) internal standards were also included in this study. We conclude that the Be-9(n,gamma) neutron cross section is 7.8 +/- 0.23 mb, without taking into account the uncertainty in the neutron irradiation. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. Natl Museum Japanese Hist, Sakura, Chiba, Japan. Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. RP Nishiizumi, K (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM kuni@ssl.berkeley.edu RI Caffee, Marc/K-7025-2015 OI Caffee, Marc/0000-0002-6846-8967 NR 22 TC 563 Z9 574 U1 5 U2 55 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD MAY PY 2007 VL 258 IS 2 BP 403 EP 413 DI 10.1016/j.nimb.2007.01.297 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 172NC UT WOS:000246810000017 ER PT J AU McLerran, L AF McLerran, Larry TI The color glass condensate to the strongly interacting quark gluon plasma: Theoretical developments SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 9th International Conference on Nucleus-Nucleus Collisions CY AUG 28-SEP 01, 2006 CL Rio de Janeiro, BRAZIL SP Univ Sao Paulo, Fluminense Fed Univ ID HEAVY-ION COLLISIONS; SATURATION MOMENTUM; NUCLEAR COLLISIONS; ENERGY-DEPENDENCE; SMALL-X; QCD; SINGULARITY; SCATTERING; EVOLUTION; EQUATION C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Brookhaven Natl Lab, Riken Brookhaven Ctr, Upton, NY 11973 USA. RP McLerran, L (reprint author), Brookhaven Natl Lab, Dept Phys, POB 5000, Upton, NY 11973 USA. NR 48 TC 10 Z9 10 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD MAY 1 PY 2007 VL 787 BP 1C EP 8C DI 10.1016/j.nuclphysa.2006.12.008 PG 8 WC Physics, Nuclear SC Physics GA 173DW UT WOS:000246854700002 ER PT J AU Enokizono, A AF Enokizono, A. CA PHENIX Collaboration TI Global properties of relativistic heavy-ion collisions proved by PHENIX SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 9th International Conference on Nucleus-Nucleus Collisions CY AUG 28-SEP 01, 2006 CL Rio de Janeiro, BRAZIL SP Univ Sao Paulo, Fluminense Fed Univ ID INTERFEROMETRY; PLASMA AB We report recent experimental results of elliptic flows (v(2)), event-by-event fluctuations and Bose-Einstein correlations (HBT) of identified hadrons measured by PHENIX detector at low transverse momentum (p(T) J/psi + phi, B-s -> K+K- and B-s -> Ds(*)+Ds(*)-. Combining all the available measurements, we have obtained Delta Gamma(s) = 0.097(-0.042)(+0.041) ps(-1) and tau = 1/Gamma s = 1.461 +/- 0.030 ps. Delta Gamma(s) is now 2.3 sigma away from zero. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Yip, K (reprint author), Brookhaven Natl Lab, Bldg 911B, Upton, NY 11973 USA. RI Yip, Kin/D-6860-2013 OI Yip, Kin/0000-0002-8576-4311 NR 9 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 EI 1873-3832 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD MAY PY 2007 VL 167 BP 141 EP 145 DI 10.1016/j.nuclphysbps.2006.12.097 PG 5 WC Physics, Particles & Fields SC Physics GA 173RB UT WOS:000246889100034 ER PT J AU Lemonnier, H Martin, R Rempe, J AF Lemonnier, Herve Martin, Robert Rempe, Joy TI Introduction to the Special Issue on the 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-11) SO NUCLEAR TECHNOLOGY LA English DT Editorial Material C1 Idaho Natl Lab, Idaho Falls, ID 83401 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER NUCLEAR SOCIETY PI LA GRANGE PK PA 555 N KENSINGTON AVENUE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAY PY 2007 VL 158 IS 2 BP 117 EP 117 PG 1 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 164QD UT WOS:000246247900001 ER PT J AU O'Brien, JE Stoots, CM Herring, JS Hartvigsen, JJ AF O'Brien, James E. Stoots, Carl M. Herring, J. Stephen Hartvigsen, Joseph J. TI Performance of planar high-temperature electrolysis stacks for hydrogen production from nuclear energy SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-11) CY 2005 CL Avignon, FRANCE DE high-temperature electrolysis; hydrogen production; nuclear energy AB An experimental program is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production in a temperature range from 800 to 900 degrees C. This temperature range is consistent with the planned coolant outlet temperature range of advanced nuclear reactors. Results were obtained from two multiple-cell planar electrolysis stacks with an active area of 64 cm(2) per cell. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (similar to 140 Am thick), nickel-cermet steam/hydrogen electrodes, and manganite oxygen-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed in a range of steam inlet mole fractions (0.1 to 0.6), gas flow rates (1000 to 4000 standard cubic centimeters per minute), and current densities (0 to 0.38 A/CM2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Initial stack-average area-specific resistance values <1.5 Omega center dot cm(2) were observed. Hydrogen production rates in excess of 200 normal liters per hour (NL/h) were demonstrated. Internal stack temperature measurements revealed a net cooling effect for operating voltages between the open-cell potential and the thermal neutral voltage. These temperature measurements agreed very favorably with computational fluid dynamics predictions. A continuous long-duration test was run for 1000 h with a mean hydrogen production rate of 177 NL/h. Some performance degradation was noted during the long test. Stack performance is shown to be dependent on inlet steam flow rate. C1 Idaho Natl Lab, Idaho Falls, ID 83415 USA. Ceramatec Inc, Salt Lake City, UT 84119 USA. RP O'Brien, JE (reprint author), Idaho Natl Lab, 2525 N Fremont Ave, Idaho Falls, ID 83415 USA. EM james.obrien@inl.gov NR 12 TC 52 Z9 52 U1 2 U2 15 PU AMER NUCLEAR SOCIETY PI LA GRANGE PK PA 555 N KENSINGTON AVENUE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAY PY 2007 VL 158 IS 2 BP 118 EP 131 PG 14 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 164QD UT WOS:000246247900002 ER PT J AU Hawkes, GL O'Brien, JE Stoots, CM Herring, JS Shahnam, M AF Hawkes, Grant L. O'Brien, James E. Stoots, Carl M. Herring, J. Stephen Shahnam, Mehrdad TI Computational fluid dynamics model of a planar solid-oxide electrolysis cell for hydrogen production from nuclear energy SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-11) CY 2005 CL Avignon, FRANCE DE electrolysis; SOFC; CFD AB A three-dimensional computational fluid dynamics (CFD) model has been created to model high-temperature steam electrolysis in a planar solid-oxide electrolysis cell (SOEC). The model represents a single cell as it would exist in an electrolysis stack. Details of the model geometry are specific to a stack tested at the Idaho National Laboratory (INL). Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, anode-side gas composition, cathode-side gas composition, current density, and hydrogen production in a range of stack operating conditions. Mean model results are shown to compare favorably with experimental results obtained from an actual ten-cell stack tested at INL. C1 Idaho Natl Lab, Idaho Falls, ID 83415 USA. FLUENT Inc, Morgantown, WV 26505 USA. RP Hawkes, GL (reprint author), Idaho Natl Lab, 2525 N Fremont Ave, Idaho Falls, ID 83415 USA. EM haw@inel.gov OI Hawkes, Grant/0000-0003-3496-8100 NR 11 TC 15 Z9 15 U1 1 U2 6 PU AMER NUCLEAR SOCIETY PI LA GRANGE PK PA 555 N KENSINGTON AVENUE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAY PY 2007 VL 158 IS 2 BP 132 EP 144 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 164QD UT WOS:000246247900003 ER PT J AU Carter, DJ Cary, RB AF Carter, Darren J. Cary, R. Bruce TI Lateral flow microarrays: a novel platform for rapid nucleic acid detection based on miniaturized lateral flow chromatography SO NUCLEIC ACIDS RESEARCH LA English DT Article ID SEQUENCE-BASED AMPLIFICATION; BACILLUS-ANTHRACIS; MICROFLUIDIC DEVICE; DENGUE VIRUS; DNA; HYBRIDIZATION; BIOSENSOR; TECHNOLOGY; OLIGONUCLEOTIDES; ASSAY AB Widely used nucleic acid assays are poorly suited for field deployment where access to laboratory instrumentation is limited or unavailable. The need for field deployable nucleic acid detection demands inexpensive, facile systems without sacrificing information capacity or sensitivity. Here we describe a novel microarray platform capable of rapid, sensitive nucleic acid detection without specialized instrumentation. The approach is based on a miniaturized lateral flow device that makes use of hybridization-mediated target capture. The miniaturization of lateral flow nucleic acid detection provides multiple advantages over traditional lateral flow devices. Ten-microliter sample volumes reduce reagent consumption and yield analyte detection times, excluding sample preparation and amplification, of <120s while providing sub-femtomole sensitivity. Moreover, the use of microarray technology increases the potential information capacity of lateral flow. Coupled with a hybridization-based detection scheme, the lateral flow microarray (LFM) enables sequence-specific detection, opening the door to highly multiplexed implementations for broad-range assays well suited for point-of-care and other field applications. The LFM system is demonstrated using an isothermal amplification strategy for detection of Bacillus anthracis, the etiologic agent of anthrax. RNA from as few as two B. anthracis cells was detected without thermocycling hardware or fluorescence detection systems. C1 Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Cary, RB (reprint author), Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. EM rbcary@lanl.gov NR 48 TC 36 Z9 36 U1 0 U2 40 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD MAY PY 2007 VL 35 IS 10 AR e74 DI 10.1093/nar/gkm269 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 186ZO UT WOS:000247817300034 PM 17478499 ER PT J AU Phillips, MC Myers, TL Wojcik, MD Cannon, BD AF Phillips, Mark C. Myers, Tanya L. Wojcik, Michael D. Cannon, Bret D. TI External cavity quantum cascade laser for quartz tuning fork photoacoustic spectroscopy of broad absorption features SO OPTICS LETTERS LA English DT Article AB We demonstrate mid-infrared spectroscopy of large molecules with broad absorption features using a tunable external cavity quantum cascade laser. Absorption spectra for two different Freons are measured over the range 1130-1185 cm(-1) with 0.2 cm(-1) resolution via laser photoacoustic spectroscopy with quartz tuning forks as acoustic transducers. The measured spectra are in excellent agreement with published reference absorption spectra. (c) 2007 Optical Society of America. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Phillips, MC (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM mark.phillips@pnl.gov NR 14 TC 37 Z9 37 U1 0 U2 6 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD MAY 1 PY 2007 VL 32 IS 9 BP 1177 EP 1179 DI 10.1364/OL.32.001177 PG 3 WC Optics SC Optics GA 159JE UT WOS:000245860900056 PM 17410274 ER PT J AU Luengo Hendriks, CL van Kempen, GMP van Vliet, LJ AF Luengo Hendriks, C. L. van Kempen, G. M. P. van Vliet, L. J. TI Improving the accuracy of isotropic granulometries SO PATTERN RECOGNITION LETTERS LA English DT Article DE sieve; scale-space; mathematical morphology; image analysis; size distribution ID SCALE-SPACE; MATHEMATICAL MORPHOLOGY; EQUATIONS; EVOLUTION; EROSION AB Morphological sieves are capable of classifying objects in images according to their size. They yield a granulometry, which describes the imaged structure. The discrete sieve has some disadvantages that its continuous-domain counterpart does not have: sampled disks (used as isotropic structuring elements) are rather anisotropic, especially at small scales, and their area, as a function of the size in the continuous domain, shows jumps at apparently arbitrary locations. These problems cause a severe bias and low precision of the derived size distribution. Therefore we propose a new digitization scheme for implementing continuous sieves. First we increase the sampling density of the structuring element and the image. This does not add new detail to the image, but yields a sampled structuring element that is a much better approximation to its continuous counterpart, and thereby substantially reduces the discretization error. The second innovation is to shift the structuring element with respect to the sampling grid; this makes the size increments smoother, and further reduces the discretization errors. These ideas are validated on synthetic images. We also show that the proposed improvements allow for a finer scale sampling. (c) 2006 Elsevier B.V. All rights reserved. C1 Delft Univ Technol, Quantitat Imaging Grp, NL-2628 CJ Delft, Netherlands. Unilever Res Labs, NL-3133 AT Vlaardingen, Netherlands. RP Luengo Hendriks, CL (reprint author), Lawrence Berkeley Natl Lab, Div Life Sci, 1 Cyclotron Rd,Mailstop 84R171, Berkeley, CA 94720 USA. EM clluengo@lbl.gov RI Luengo Hendriks, Cris L./B-1097-2008; van Vliet, Lucas/E-1678-2012 OI Luengo Hendriks, Cris L./0000-0002-8279-1760; van Vliet, Lucas/0000-0001-7018-726X NR 24 TC 15 Z9 15 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8655 J9 PATTERN RECOGN LETT JI Pattern Recognit. Lett. PD MAY 1 PY 2007 VL 28 IS 7 BP 865 EP 872 DI 10.1016/j.patrec.2006.12.001 PG 8 WC Computer Science, Artificial Intelligence SC Computer Science GA 148FT UT WOS:000245060700012 ER PT J AU Barat, K AF Barat, Ken TI Eye safety in the laser lab - To interlock or not to interlock? SO PHOTONICS SPECTRA LA English DT Article C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Lawrence Livermore Natl Lab, Natl Ignit Facil Directorate, Livermore, CA 94550 USA. RP Barat, K (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM kbarat@lbl.gov NR 0 TC 0 Z9 0 U1 0 U2 2 PU LAURIN PUBL CO INC PI PITTSFIELD PA BERKSHIRE COMMON PO BOX 1146, PITTSFIELD, MA 01202 USA SN 0731-1230 J9 PHOTONIC SPECTRA JI Photon. Spect. PD MAY PY 2007 VL 41 IS 5 BP 77 EP 77 PG 1 WC Optics SC Optics GA 166ZT UT WOS:000246420900021 ER PT J AU Toroczkai, Z Guclu, H AF Toroczkai, Zoltan Guclu, Hasan TI Proximity networks and epidemics SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT Conference on Social Network Analysis and Complexity CY JUL 31-AUG 02, 2006 CL Budapest, HUNGARY DE epidemics; social networks; spatial dynamics; agent-based modeling; scale-free network ID TRANSMISSION AB Disease spread in most biological populations requires the proximity of agents. In populations where the individuals have spatial mobility, the contact graph is generated by the "collision dynamics" of the agents, and thus the evolution of epidemics couples directly to the spatial dynamics of the population. We first briefly review the properties and the methodology of an agent-based simulation (EPISIMS) to model disease spread in realistic urban dynamic contact networks. Using the data generated by this simulation, we introduce the notion of dynamic proximity networks which takes into account the relevant time-scales for disease spread: contact duration, infectivity period, and rate of contact creation. This approach promises to be a good candidate for a unified treatment of epidemic types that are driven by agent collision dynamics. In particular, using a simple model, we show that it can account for the observed qualitative differences between the degree distributions of contact graphs of diseases with short infectivity period (such as air-transmitted diseases) or long infectivity periods (such as HIV). (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Div Theoret, Los Alamos, NM 87545 USA. RP Toroczkai, Z (reprint author), Univ Notre Dame, Dept Phys, 225 Nieuwland Sci Hall, Notre Dame, IN 46556 USA. EM z.t@nd.edu RI Toroczkai, Zoltan/A-3421-2008 OI Toroczkai, Zoltan/0000-0002-6602-2849 NR 21 TC 31 Z9 32 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-4371 J9 PHYSICA A JI Physica A PD MAY 1 PY 2007 VL 378 IS 1 BP 68 EP 75 DI 10.1016/j.physa.2006.11.088 PG 8 WC Physics, Multidisciplinary SC Physics GA 147EO UT WOS:000244986400009 ER PT J AU Zhuravlev, KK AF Zhuravlev, K. K. TI PbSe vs. CdSe: Thermodynamic properties and pressure dependence of the band gap SO PHYSICA B-CONDENSED MATTER LA English DT Article DE PbSe; CdSe; DFT calculations; band gap; pressure ID GENERALIZED GRADIENT APPROXIMATION; IV-VI-SEMICONDUCTORS; LEAD CHALCOGENIDES; ELECTRONIC-STRUCTURE; STRUCTURAL-PROPERTIES; OPTICAL-PROPERTIES; ENERGY-BANDS; PBTE; EQUATION; STATE AB Thermodynamic properties and band structure have been calculated for both PbSe and CdSe, using full-potential linear muffin-tin orbital (FP-LMTO) method and various energy functionals. Both local density approximation (LDA) and generalized gradient approximation (GGA) were used. It was found that LIDA underestimates both band gap and lattice constant for PbSe, whereas GGA overestimates them. Opposite trends in band gap dependence upon pressure for PbSe and CdSe have been confirmed. Band gap pressure coefficients have been determined for both PbSe and CdSe. For PbSe, this coefficient is in relatively good agreement with other calculations and recent experiments. (c) 2007 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Zhuravlev, KK (reprint author), Los Alamos Natl Lab, Div Chem, MS J567, Los Alamos, NM 87545 USA. EM kirillz@lanl.gov NR 36 TC 11 Z9 12 U1 6 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD MAY 1 PY 2007 VL 394 IS 1 BP 1 EP 7 DI 10.1016/j.physb.2007.01.030 PG 7 WC Physics, Condensed Matter SC Physics GA 172EJ UT WOS:000246786600001 ER PT J AU Wallner, JZ Ktmt, KS Obanionwu, H Oborny, MC Bergstrom, PL Zellers, ET AF Wallner, J. Z. Ktmt, K. S. Obanionwu, H. Oborny, M. C. Bergstrom, P. L. Zellers, E. T. TI An integrated vapor source with a porous silicon wick SO PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT 5th International Conference on Porous Semiconductors - Science and Technology CY MAR 12-17, 2006 CL Sitges, SPAIN AB A micro vapor source has been developed for calibrating micro gas chromatograph (mu GC) systems. By utilizing a porous silicon wick in a micro diffusion system, vapor generation with excellent stability has been achieved. The source has shown uniform and repeatable vapor generation for n-decane with less than a 0.1% variation in 9 hours, and less than a 0.5% variation in rate over 7 days. The evolution rate follows the diffusion model as expected, although the room temperature rate is higher than theoretically predicted. Equipped with a refillable reservoir, this vapor source is suitable for extended mu GC field deployment. (c) 2007 WILEYNCH Verlag GmbH & Co. KGaA, Weinheim. C1 Michigan Technol Univ, Dept Elect & Comp Engn, Houghton, MI 49931 USA. Univ Michigan, Engn Res Ctr Wireless Integrated MicroSyst, Ann Arbor, MI 48109 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Wallner, JZ (reprint author), Michigan Technol Univ, Dept Elect & Comp Engn, 1400 Townsend Dr, Houghton, MI 49931 USA. EM jizheng@mtu.edu NR 8 TC 2 Z9 2 U1 0 U2 1 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0031-8965 J9 PHYS STATUS SOLIDI A JI Phys. Status Solidi A-Appl. Mat. PD MAY PY 2007 VL 204 IS 5 BP 1449 EP 1453 DI 10.1002/pssa.200674383 PG 5 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 170DN UT WOS:000246642300042 ER PT J AU Carini, GA Bolotnikov, AE Camarda, GC Wright, GW James, RB AF Carini, G. A. Bolotnikov, A. E. Camarda, G. C. Wright, G. W. James, R. B. TI Non-uniformity effects in CdZnTe coplanar-grid detectors SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article; Proceedings Paper CT Symposium on Wide Band Gap II-VI Semiconductors - Growth, Characterization and Applications held at the 2006 E-MRS Fall Meeting CY SEP 04-08, 2006 CL Warsaw, POLAND ID ENERGY RESOLUTION; PIXEL DETECTORS; CHARGE; PERFORMANCE; RAY; TRANSPORT; BIAS AB We discuss the findings from our studies of the performance of commercial coplanar-grid CdZnTe detectors. The devices were investigated using a highly collimated X-ray beam available at Brookhaven's National Synchrotron Light Source, and by applying pulse-shape analysis to measure correlations between the signals read out from the devices. Although the operational principle of coplanar-grid (CPG) detectors is well known, we found some important new details that help to better clarify the performance limitations of this type of device. The correlation plots we present can also be used as diagnostic tools to characterize the behavior of the CPG devices and to help to improve the designs of electrodes. This work illustrates the typical limitations related to the geometry of the contacts in CPG devices and how material non-uniformities can amplify these problems. (C) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Carini, GA (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM carini@bnl.gov NR 29 TC 0 Z9 0 U1 2 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD MAY PY 2007 VL 244 IS 5 BP 1589 EP 1601 DI 10.1002/pssb.200675103 PG 13 WC Physics, Condensed Matter SC Physics GA 169BH UT WOS:000246567200029 ER PT J AU Barabash, RI Ice, GE Roder, C Budai, J Liu, W Figge, S Einfeldt, S Hommel, D Davis, RF AF Barabash, R. I. Ice, G. E. Roder, C. Budai, J. Liu, W. Figge, S. Einfeldt, S. Hommel, D. Davis, R. F. TI Characterization of growth defects in thin GaN layers with X-ray microbeam SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article; Proceedings Paper CT Symposium on Wide Band Gap II-VI Semiconductors - Growth, Characterization and Applications held at the 2006 E-MRS Fall Meeting CY SEP 04-08, 2006 CL Warsaw, POLAND ID EPITAXIAL LATERAL OVERGROWTH; CRYSTALLOGRAPHIC WING TILT; DISLOCATION-DENSITY; CANTILEVER EPITAXY; MICROSCOPY; CRYSTALS; SI(111); FILMS AB The spatially resolved distribution of strain, misfit and threading dislocations, and crystallographic orientation in uncoalesced GaN layers grown on Si(111) by maskless cantilever epitaxy or by pendeo epitaxy on SiC was studied by white beam Laue X-ray microdiffraction, scanning electron and orientation imaging microscopy. Tilt boundaries formed at the column/wing interface depending on the growth conditions. A depth dependent deviatoric strain gradient is found in the GaN. The density of misfit dislocations as well as their arrangement within different dislocation arrays was quantified. Two different kinds of tilt (parallel and perpendicular to the stripe direction) manifested themselves by mutually orthogonal displacements of the (0006) GaN Laue spot relative to the Si(444) Laue spot. The origin of the tilts is discussed with respect to the miscut of the Si(111) surface and misfit dislocations formed at the interface. Regular oscillations of the conventional wing tilt were observed. Irregular crystallographic tilts fluctuations were found in the direction parallel to stripes. The amplitude of fluctuations is an order of magnitude smaller for layers with a lower defects density. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Univ Bremen, Inst Solid State Phys, D-28334 Bremen, Germany. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. RP Barabash, RI (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM barabashr@ornl.gov RI Davis, Robert/A-9376-2011; OI Davis, Robert/0000-0002-4437-0885; Budai, John/0000-0002-7444-1306 NR 25 TC 7 Z9 7 U1 0 U2 10 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0370-1972 EI 1521-3951 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD MAY PY 2007 VL 244 IS 5 BP 1735 EP 1742 DI 10.1002/pssb.200675113 PG 8 WC Physics, Condensed Matter SC Physics GA 169BH UT WOS:000246567200053 ER PT J AU Bushaw, BA Nortershauser, W Drake, GWF Kluge, HJ AF Bushaw, B. A. Noertershaeuser, W. Drake, G. W. F. Kluge, H.-J. TI Ionization energy of Li-6,Li-7 determined by triple-resonance laser spectroscopy SO PHYSICAL REVIEW A LA English DT Article ID STARK SPECTROSCOPY; QUANTUM DEFECTS; RYDBERG STATES; LITHIUM; NS; TRANSITIONS; SPECTRA; VALUES; ATOMS; LIMIT AB Rydberg level energies for Li-7 were measured using triple-resonance laser excitation, followed by drifted field ionization. In addition to the principal n P-2 series, weak Stark mixing from residual electric fields allowed observation of n(2)S and hydrogenic Stark manifold series at higher n. Limit analyses for the series yield the spectroscopic ionization energy E-I(Li-7)= 43 487.159 40 (18) cm(-1). The Li-6,Li-7 isotope shift ( IS) was measured in selected n(2)P Rydberg levels and extrapolation to the series limit yields IS (E-I)(7,6)=18 067.54 (21) MHz. Results are compared with recent theoretical calculations: EI values from experiment and theory agree to within 0.0011 cm(-1), with the remaining discrepancy comparable to uncertainty in QED corrections of order alpha(4)Ry. The difference between experiment and calculated mass-based IS (E-I) yields a change in nuclear charge radii between the two isotopes delta < r2 >(7,6)=- 0.60 (10)fm(2). C1 Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. Johannes Gutenberg Univ Mainz, D-55128 Mainz, Germany. Gesell Schwerionenforsch mbH, D-64291 Darmstadt, Germany. Univ Windsor, Windsor, ON N9B 3P4, Canada. Heidelberg Univ, D-69120 Heidelberg, Germany. RP Bushaw, BA (reprint author), Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. EM bruce.bushaw@pnl.gov RI Nortershauser, Wilfried/A-6671-2013 OI Nortershauser, Wilfried/0000-0001-7432-3687 NR 45 TC 32 Z9 34 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD MAY PY 2007 VL 75 IS 5 AR 052503 DI 10.1103/PhysRevA.75.052503 PG 8 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 173RO UT WOS:000246890400080 ER PT J AU Cincio, L Dziarmaga, J Rams, MM Zurek, WH AF Cincio, Lukasz Dziarmaga, Jacek Rams, Marek M. Zurek, Wojciech H. TI Entropy of entanglement and correlations induced by a quench: Dynamics of a quantum phase transition in the quantum Ising model SO PHYSICAL REVIEW A LA English DT Article ID FISHER-HARTWIG CONJECTURE; XY SPIN CHAIN; COSMOLOGICAL EXPERIMENTS; TOEPLITZ DETERMINANTS; SYMMETRY-BREAKING; DEFECT FORMATION; STRING FORMATION; VORTEX FORMATION; LIQUID-CRYSTALS; COSMIC STRINGS AB Quantum Ising model in one dimension is an exactly solvable example of a quantum phase transition. We investigate its behavior during a quench caused by a gradual turning off of the transverse bias field. The system is then driven at a fixed rate characterized by the quench time tau(Q) across the critical point from a paramagnetic to ferromagnetic phase. In agreement with Kibble-Zurek mechanism (which recognizes that evolution is approximately adiabatic far away, but becomes approximately impulse sufficiently near the critical point), quantum state of the system after the transition exhibits a characteristic correlation length xi proportional to the square root of the quench time tau(Q): xi= root tau(Q). The inverse of this correlation length is known to determine average density of defects (e.g., kinks) after the transition. In this paper, we show that this same xi controls the entropy of entanglement, e.g., entropy of a block of L spins that are entangled with the rest of the system after the transition from the paramagnetic ground state induced by the quench. For large L, this entropy saturates at 1/6 log(2) xi, as might have been expected from the Kibble-Zurek mechanism. Close to the critical point, the entropy saturates when the block size L approximate to xi, but-in the subsequent evolution in the ferromagnetic phase-a somewhat larger length scale l=root tau(Q) ln tau(Q) develops as a result of a dephasing process that can be regarded as a quantum analog of phase ordering, and the entropy saturates when L approximate to l. We also study the spin-spin correlation using both analytic methods and real time simulations with the Vidal algorithm. We find that at an instant when quench is crossing the critical point, ferromagnetic correlations decay exponentially with the dynamical correlation length xi, but (as for entropy of entanglement) in the following evolution length scale l gradually develops. The correlation function becomes oscillatory at distances less than this scale. However, both the wavelength and the correlation length of these oscillations are still determined by xi. We also derive probability distribution for the number of kinks in a finite spin chain after the transition. C1 Jagiellonian Univ, Inst Phys, PL-30059 Krakow, Poland. Jagiellonian Univ, Ctr Complex Syst Res, PL-30059 Krakow, Poland. Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Cincio, L (reprint author), Jagiellonian Univ, Inst Phys, Reymonta 4, PL-30059 Krakow, Poland. RI Rams, Marek/E-1598-2016 OI Rams, Marek/0000-0002-1235-7758 NR 64 TC 80 Z9 80 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD MAY PY 2007 VL 75 IS 5 AR 052321 DI 10.1103/PhysRevA.75.052321 PG 12 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 173RO UT WOS:000246890400059 ER PT J AU Seredyuk, B Bruhns, H Savin, DW Seely, D Aliabadi, H Galutschek, E Havener, CC AF Seredyuk, B. Bruhns, H. Savin, D. W. Seely, D. Aliabadi, H. Galutschek, E. Havener, C. C. TI Low-energy electron capture by Ne(2+) ions from H(D) SO PHYSICAL REVIEW A LA English DT Article ID CHARGE-TRANSFER; ATOMIC-HYDROGEN; CROSS-SECTIONS AB Using the Oak Ridge National Laboratory (ORNL) ion-atom merged-beams apparatus, the absolute, total single-electron-capture cross section has been measured for collisions of Ne(2+) with deuterium (D) at center-of-mass (c.m.) collision energies of 59-949 eV/u. With the high-velocity ion beams now available at the ORNL Multicharged Ion Research Facility, we have extended our previous merged-beams measurement to lower c.m. collision energies. The data are compared to all four previously published measurements for Ne(2+)+H(D) which differ considerably from one another at energies less than or similar to 600 eV/u. We are unaware of any published theoretical cross-section data for Ne(2+)+H(D) at the energies studied. Early quantal rate coefficient calculations for Ne(2+)+H at eV/u energies suggest a cross section many orders of magnitude below previous measurements of the cross section at 40 eV/u which is the lowest collision energy for which experimental results have been published. Here we compare our measurements to recent theoretical electron-capture results for He(2+)+H. Both the experimental and theoretical results show a decreasing cross section with decreasing energy. C1 Columbia Univ, Astrophys Lab, New York, NY 10027 USA. Albion Coll, Dept Phys, Albion, MI 49224 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Seredyuk, B (reprint author), Columbia Univ, Astrophys Lab, New York, NY 10027 USA. EM seredyuk@astro.columbia.edu RI Savin, Daniel/B-9576-2012 OI Savin, Daniel/0000-0002-1111-6610 NR 27 TC 0 Z9 0 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD MAY PY 2007 VL 75 IS 5 AR 054701 DI 10.1103/PhysRevA.75.054701 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 173RO UT WOS:000246890400174 ER PT J AU Spagnolo, S Dalvit, DAR Milonni, PW AF Spagnolo, S. Dalvit, D. A. R. Milonni, P. W. TI van der Waals interactions in a magnetodielectric medium SO PHYSICAL REVIEW A LA English DT Article ID NEGATIVE REFRACTIVE-INDEX; DIELECTRIC MEDIA; ELECTROMAGNETIC-FIELD; DISPERSION FORCES; QUANTIZATION; POTENTIALS; LIQUIDS; SOLIDS; ATOMS AB The van der Waals interaction between two ground-state atoms is calculated for two electrically or magnetically polarizable particles embedded in a dispersive magnetodielectric medium. Unlike previous calculations which infer the atom-atom interaction from the dilute-medium limit of the macroscopic, many-body van der Waals interaction, the interaction is calculated directly for the system of two atoms in a magnetodielectric medium. Two approaches are presented, the first based on the quantized electromagnetic field in a dispersive medium without absorption and the second on Green functions that allow for absorption. We show that the correct van der Waals interactions are obtained regardless of whether absorption in the host medium is explicitly taken into account. C1 Univ Palermo, CNISM, I-90123 Palermo, Italy. Univ Palermo, Dipartimento Sci Fis & Astron, I-90123 Palermo, Italy. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Spagnolo, S (reprint author), Univ Palermo, CNISM, Via Archirafi 36, I-90123 Palermo, Italy. NR 41 TC 21 Z9 22 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD MAY PY 2007 VL 75 IS 5 AR 052117 DI 10.1103/PhysRevA.75.052117 PG 8 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 173RO UT WOS:000246890400038 ER PT J AU Susanto, H Kevrekidis, PG Carretero-Gonzalez, R Malomed, BA Frantzeskakis, DJ Bishop, AR AF Susanto, H. Kevrekidis, P. G. Carretero-Gonzalez, R. Malomed, B. A. Frantzeskakis, D. J. Bishop, A. R. TI Cerenkov-like radiation in a binary superfluid flow past an obstacle SO PHYSICAL REVIEW A LA English DT Article ID BOSE-EINSTEIN CONDENSATE; COLLECTIVE EXCITATIONS; GAS; MIXTURES; ATOMS AB We consider the dynamics of two coupled miscible Bose-Einstein condensates, when an obstacle is dragged through them. The existence of two different speeds of sound provides the possibility for three dynamical regimes: when both components are subcritical, we do not observe nucleation of coherent structures; when both components are supercritical they both form dark solitons in one dimension (1D) and vortices or rotating vortex dipoles in two dimensions; in the intermediate regime, we observe the nucleation of a structure in the form of a dark-antidark soliton in 1D; the 2D analog of such a structure, a vortex-lump, is also observed. C1 Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. San Diego State Univ, Nonlinear Dynam Syst Grp, Dept Math & Stat, San Diego, CA 92182 USA. San Diego State Univ, Comp Sci Res Ctr, San Diego, CA 92182 USA. Tel Aviv Univ, Fac Engn, Dept Interdisciplinary Studies, IL-69978 Tel Aviv, Israel. Univ Athens, Dept Phys, Athens 15784, Greece. Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Susanto, H (reprint author), Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. RI Susanto, Hadi/A-6497-2010; OI Susanto, Hadi/0000-0003-0425-107X NR 39 TC 20 Z9 20 U1 1 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD MAY PY 2007 VL 75 IS 5 AR 055601 DI 10.1103/PhysRevA.75.055601 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 173RO UT WOS:000246890400177 ER PT J AU Vane, CR Bahati, EM Bannister, ME Thomas, RD AF Vane, C. R. Bahati, E. M. Bannister, M. E. Thomas, R. D. TI Electron-impact dissociation of CH2+ ions: Measurement of CH+ and C+ fragment ions SO PHYSICAL REVIEW A LA English DT Article ID ABSOLUTE CROSS-SECTIONS; MOLECULAR-IONS; RECOMBINATION; IONIZATION; COLLISION; PLASMA; EXCITATION; STATES; BEAM AB Absolute cross sections for electron-impact dissociation of CH2+ producing CH+ and C+ fragment ions were measured in the 3-100 eV range using a crossed electron-ion beams technique with total uncertainties of about 11% near the cross section peak. The cross sections are nearly identical for energies above 15 eV, but they are dramatically different at lower energies. The CH+ channel exhibits a strong peak rising from an observed threshold of about 6 eV; the C+ channel is relatively flat down to the lowest measured energy. Ionization cross sections for the CH2+ ion are also presented. C1 Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Stockholm Univ, Albanova, Dept Phys, SE-10691 Stockholm, Sweden. RP Vane, CR (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM vanecr@ornl.gov OI Bannister, Mark E./0000-0002-9572-8154 NR 31 TC 9 Z9 9 U1 1 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD MAY PY 2007 VL 75 IS 5 AR 052715 DI 10.1103/PhysRevA.75.052715 PG 8 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 173RO UT WOS:000246890400102 ER PT J AU Wallbank, B Bannister, ME Krause, HF Chung, YS Smith, ACH Djuric, N Dunn, GH AF Wallbank, B. Bannister, M. E. Krause, H. F. Chung, Y.-S. Smith, A. C. H. Djuric, N. Dunn, G. H. TI Merged-beam measurements of absolute cross sections for electron-impact excitation of S(4+) (3s(2) (1)S -> 3s3p (1)P) and S(5+) (3s (2)S -> 3p (2)P) SO PHYSICAL REVIEW A LA English DT Article ID SODIUM ISOELECTRONIC SEQUENCE; ENERGY-LOSS TECHNIQUE; COLLISION RATES; IONIZATION; IONS; TRANSITIONS; INTENSITIES; SV AB Absolute cross sections for electron-impact excitation of the dipole-allowed transitions S(4+) (3s(2) (1)S -> 3s3p (1)P) and S(5+) (3s (2)S -> 3p (2)P) were measured near threshold using the merged electron-ion beams energy-loss technique. Although the magnitudes of the measured cross sections are in reasonable agreement with available theoretical data, the experimental data indicate that the contributions of dielectronic resonances in the near-threshold region are underestimated by these calculations. C1 St Francis Xavier Univ, Dept Phys, Antigonish, NS B2G 2W5, Canada. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Chungnam Natl Univ, Dept Phys, Taejon 305764, South Korea. UCL, Dept Phys & Astron, London WC1E 6BT, England. Natl Inst Stand & Technol, Boulder, CO 80309 USA. Univ Colorado, JILA, Boulder, CO 80309 USA. RP Wallbank, B (reprint author), Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM bannisterme@ornl.gov NR 27 TC 4 Z9 4 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD MAY PY 2007 VL 75 IS 5 AR 052703 DI 10.1103/PhysRevA.75.052703 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 173RO UT WOS:000246890400090 ER PT J AU Alawadhi, H Tsoi, S Lu, X Ramdas, AK Grimsditch, M Cardona, M Lauck, R AF Alawadhi, H. Tsoi, S. Lu, X. Ramdas, A. K. Grimsditch, M. Cardona, M. Lauck, R. TI Effect of temperature on isotopic mass dependence of excitonic band gaps in semiconductors: ZnO SO PHYSICAL REVIEW B LA English DT Article ID INDIRECT ENERGY-GAP; ZINC-OXIDE; PHOTOLUMINESCENCE; SUPERCONDUCTIVITY; GERMANIUM; PRESSURE; CRYSTALS; DIAMOND; SPECTRA; SILICON AB The temperature dependence of the A, B, and C excitons of ZnO, observed in modulated reflectivity spectra of (ZnO)-Zn-68-O-18 and (ZnO)-Zn-nat-O-nat in the range 10-400 K, reveal the superposition of band-gap renormalization originating in electron-phonon interaction and volume changes associated with thermal expansion and (or) isotopic composition in combination with anharmonicity. At low temperatures, the A, B, and C excitons in natural ZnO reach limiting values depressed from their values for the infinitely massive isotopes (the latter are free from electron-phonon interaction and anharmonicity). The C excitons of (ZnO)-Zn-68-O-18 and (ZnO)-Zn-nat-O-nat converge with increasing temperature, demonstrating the independence of the band gap from isotopic mass at high temperatures. C1 Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. Univ Sharjah, Dept Basic Sci, Sharjah, U Arab Emirates. Argonne Natl Lab, Argonne, IL 60439 USA. Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. RP Alawadhi, H (reprint author), Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. NR 38 TC 13 Z9 13 U1 0 U2 9 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 20 AR 205207 DI 10.1103/PhysRevB.75.205207 PG 7 WC Physics, Condensed Matter SC Physics GA 173RT UT WOS:000246890900055 ER PT J AU Antonov, VN Harmon, BN Yaresko, AN Shpak, AP AF Antonov, V. N. Harmon, B. N. Yaresko, A. N. Shpak, A. P. TI X-ray magnetic circular dichroism in GdN: First-principles calculations SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE; K-EDGE; MAGNETOOPTICAL PROPERTIES; BAND THEORY; ABSORPTION; SYSTEMS; ENERGY; IRON; MULTILAYERS; DIMENSIONS AB GdN is a system with a strongly correlated electronic structure and a low concentration of free charge carriers. The x-ray magnetic circular dichroism (XMCD) spectra of GdN at the Gd L-2,L-3, M-4,M-5 and N K edges are investigated theoretically from first principles, using the fully relativistic Dirac linear muffin-tin orbital band structure method. The electronic structure is obtained with the local spin-density approximation (LSDA), as well as the LSDA+U method. The origin of the XMCD spectra in the compound is examined. The core-hole effect in the final states has been investigated using a supercell approximation. The final-state interaction improves the agreement between the theory and the experiment at the Gd M-4,M-5 and N K edges, however, it has a minor influence on the shape of the Gd L-2,L-3 XMCD spectra. We found also a strong influence of the surface on the x-ray absorption spectrum at the N K edge. C1 Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany. Inst Met Phys, UA-03142 Kiev, Ukraine. RP Antonov, VN (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. NR 56 TC 27 Z9 27 U1 0 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 18 AR 184422 DI 10.1103/PhysRevB.75.184422 PG 10 WC Physics, Condensed Matter SC Physics GA 173RQ UT WOS:000246890600060 ER PT J AU Arenal, R Bruno, P Miller, DJ Bleuel, M Lal, J Gruen, DM AF Arenal, R. Bruno, P. Miller, D. J. Bleuel, M. Lal, J. Gruen, D. M. TI Diamond nanowires and the insulator-metal transition in ultrananocrystalline diamond films SO PHYSICAL REVIEW B LA English DT Article ID ENERGY-LOSS SPECTROSCOPY; NANOCRYSTALLINE DIAMOND; DOPED ULTRANANOCRYSTALLINE; GRAIN-BOUNDARIES; THIN-FILMS; CARBON; PARTICLES; GROWTH; POLYACETYLENE; CONDUCTIVITY AB Further progress in the development of the remarkable electrochemical, electron field emission, high-temperature diode, and optical properties of n- type ultrananocrystalline diamond films requires a better understanding of electron transport in this material. Of particular interest is the origin of the transition to the metallic regime observed when about 10% by volume of nitrogen has been added to the synthesis gas. Here, we present data showing that the transition to the metallic state is due to the formation of partially oriented diamond nanowires surrounded by an sp(2)-bonded carbon sheath. These have been characterized by scanning electron microscopy, transmission electron microscopy techniques (high- resolution mode, selected area electron diffraction, and electron- energy- loss spectroscopy), Raman spectroscopy, and small- angle neutron scattering. The nanowires are 80 - 100 nm in length and consist of similar to 5 nm wide and 6 - 10 nm long segments of diamond crystallites exhibiting atomically sharp interfaces. Each nanowire is enveloped in a sheath of sp(2)- bonded carbon that provides the conductive path for electrons. Raman spectroscopy on the films coupled with a consideration of plasma chemical and physical processes reveals that the sheath is likely composed of a nanocarbon material resembling in some respects a polymer- like mixture of polyacetylene and polynitrile. The complex interactions governing the simultaneous growth of the diamond core and the sp(2) sheath responsible for electrical conductivity are discussed as are attempts at a better theoretical understanding of the transport mechanism. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA. RP Arenal, R (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI bruno, paola/G-5786-2011; Arenal, Raul/D-2065-2009 OI Arenal, Raul/0000-0002-2071-9093 NR 52 TC 89 Z9 89 U1 1 U2 24 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 19 AR 195431 DI 10.1103/PhysRevB.75.195431 PG 11 WC Physics, Condensed Matter SC Physics GA 173RS UT WOS:000246890800156 ER PT J AU Bastea, M Bastea, S Reaugh, JE Reisman, DB AF Bastea, Marina Bastea, Sorin Reaugh, John E. Reisman, David B. TI Freezing kinetics in overcompressed water SO PHYSICAL REVIEW B LA English DT Article ID ICE-VII; NEUTRON-SCATTERING; GROWTH-PROCESS; PHASE-CHANGE; NUCLEATION; PRESSURE; GPA; INTERFEROMETER; SURFACE AB We report high-pressure dynamic compression experiments of liquid water along a quasiadiabatic path leading to the ice-VII region of the phase diagram. We observe dynamic features resembling van der Waals loops and find that liquid water is compacted to a metastable state close to the ice density before the onset of crystallization. By analyzing the characteristic kinetic time scale involved we estimate the nucleation barrier and conclude that liquid water has been compressed to a high-pressure state close to its thermodynamic stability limit. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Bastea, M (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. EM bastea1@llnl.gov NR 31 TC 12 Z9 12 U1 2 U2 10 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 17 AR 172104 DI 10.1103/PhysRevB.75.172104 PG 4 WC Physics, Condensed Matter SC Physics GA 173RP UT WOS:000246890500004 ER PT J AU Beale, TAW Wilkins, SB Hatton, PD Abbamonte, P Stanescu, S Paixao, JA AF Beale, T. A. W. Wilkins, S. B. Hatton, P. D. Abbamonte, P. Stanescu, S. Paixao, J. A. TI Resonant soft X-ray magnetic scattering from the 4f and 3d electrons in DyFe4Al8: Magnetic interactions in a cycloidal antiferromagnet SO PHYSICAL REVIEW B LA English DT Article ID POLARIZATION DEPENDENCE; EXCHANGE SCATTERING; CIRCULAR-DICHROISM; SPIN-GLASS; DIFFRACTION; HOFE4AL8; RFE4AL8; INTERMETALLICS; HOLMIUM; PR AB Soft x-ray resonant scattering has been used to examine the charge and magnetic interactions in the cycloidal antiferromagnetic compound DyFe4Al8. By tuning to the Dy M-4 and M-5 absorption edges and the Fe L-2 and L-3 absorption edges, we can directly observe the behavior of the Dy 4f and Fe 3d electron shells. Magnetic satellites surrounding the (110) Bragg peak were observed below 65 K. The diffraction peaks display complex spectra at the Dy M-5 edge, indicative of a split 4f electron band. This is in contrast to the simple resonance observed at the Fe L-3 absorption edge, which probes the Fe 3d electron shell. Temperature-dependent measurements detail the ordering of the magnetic moments on both the iron and the dysprosium antiferromagnetic cycloids. The ratio between the superlattice peak intensities of the Dy M-4 and M-5 absorption edges remained constant throughout the temperature range, in contrast to a previous study conducted at the Dy L-2,L-3 edges. Our results demonstrate the ability of soft x-ray diffraction to separate the individual magnetic components in complicated multielement magnetic structures. C1 Univ Durham, Dept Phys, Durham DH1 3LE, England. Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. Univ Illinois, Dept Phys, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. European Synchrotron Radiat Facil, F-38043 Grenoble, France. Univ Coimbra, Dept Fis, P-3000 Coimbra, Portugal. RP Beale, TAW (reprint author), Univ Durham, Dept Phys, Rochester Bldg,South Rd, Durham DH1 3LE, England. EM p.d.hatton@dur.ac.uk RI Paixao, Jose/F-5077-2012; Hatton, Peter/J-8445-2014; OI Paixao, Jose/0000-0003-4634-7395; Stanescu, Stefan/0000-0002-4543-1774 NR 27 TC 5 Z9 5 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 17 AR 174432 DI 10.1103/PhysRevB.75.174432 PG 7 WC Physics, Condensed Matter SC Physics GA 173RP UT WOS:000246890500098 ER PT J AU Beletskii, NN Berman, GP Bishop, AR Borysenko, SA Yakovenko, VM AF Beletskii, N. N. Berman, G. P. Bishop, A. R. Borysenko, S. A. Yakovenko, V. M. TI Magnetoresistance and spin polarization of electron current in magnetic tunnel junctions SO PHYSICAL REVIEW B LA English DT Article ID FERROMAGNETIC JUNCTIONS; ROOM-TEMPERATURE; SPINTRONICS; INVERSION; MODEL; FILM AB Theoretical analysis of the magnetoresistance of the ferromagnetic-metal-insulator-ferromagnetic-metal (FM/I/FM) tunnel junction within a two-band model of free electrons in ferromagnetic electrodes is presented. It is shown that the value and sign of the magnetoresistance of the FM/I/FM tunnel junction depend essentially on the height, width, and effective electron mass of the potential barrier and on the value of the bias voltage. We show that the insulator parameters can be chosen in such a way that the value of the magnetoresistance can be both decreased and increased as the bias voltage increases. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Natl Acad Sci Ukraine, Usikov Inst Radiophys & Elect, UA-61085 Kharkov, Ukraine. Los Alamos Natl Lab, Theory Simulat & Computat Directorate, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA. RP Beletskii, NN (reprint author), Los Alamos Natl Lab, Div Theoret, Mississippi B213, Los Alamos, NM 87545 USA. OI Yakovenko, Victor M./0000-0003-3754-1794 NR 32 TC 9 Z9 10 U1 0 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 17 AR 174418 DI 10.1103/PhysRevB.75.174418 PG 8 WC Physics, Condensed Matter SC Physics GA 173RP UT WOS:000246890500084 ER PT J AU Chatterjee, U Morr, DK Norman, MR Randeria, M Kanigel, A Shi, M Rossi, E Kaminski, A Fretwell, HM Rosenkranz, S Kadowaki, K Campuzano, JC AF Chatterjee, U. Morr, D. K. Norman, M. R. Randeria, M. Kanigel, A. Shi, M. Rossi, E. Kaminski, A. Fretwell, H. M. Rosenkranz, S. Kadowaki, K. Campuzano, J. C. TI Dynamic spin-response function of the high-temperature Bi2Sr2CaCu2O8+delta superconductor from angle-resolved photoemission spectra SO PHYSICAL REVIEW B LA English DT Article ID NEUTRON-SCATTERING; MAGNETIC EXCITATIONS; T-C; ENERGY; SPECTROSCOPY AB We introduce a formalism for calculating dynamic response functions using experimental single-particle Green's functions. As an illustration of this procedure, we estimate the dynamic spin-response of the cuprate superconductor Bi2Sr2CaCu2O8+delta. We find good agreement with superconducting state neutron data, in particular, the (pi,pi) resonance with its unusual "hourglass" shaped dispersion. We anticipate that our formalism will also be useful in interpreting results from other spectroscopies, such as optical and Raman responses. C1 Univ Illinois, Dept Phys, Chicago, IL 60607 USA. Argonne Natl Lab, Mat Sci Div, Argonne, IL 60439 USA. Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. Iowa State Univ, Ames Lab, Iowa City, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Iowa City, IA 50011 USA. Univ Tsukuba, Inst Sci Mat, Ibaraki 3053573, Japan. RP Chatterjee, U (reprint author), Univ Illinois, Dept Phys, Chicago, IL 60607 USA. RI Rossi, Enrico/K-2837-2012; Norman, Michael/C-3644-2013; Rosenkranz, Stephan/E-4672-2011 OI Rossi, Enrico/0000-0002-2647-3610; Rosenkranz, Stephan/0000-0002-5659-0383 NR 32 TC 10 Z9 10 U1 1 U2 7 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 17 AR 172504 DI 10.1103/PhysRevB.75.172504 PG 4 WC Physics, Condensed Matter SC Physics GA 173RP UT WOS:000246890500021 ER PT J AU Chen, SY Gong, XG Wei, SH AF Chen, Shiyou Gong, X. G. Wei, Su-Huai TI Band-structure anomalies of the chalcopyrite semiconductors CuGaX2 versus AgGaX2 (X=S and Se) and their alloys SO PHYSICAL REVIEW B LA English DT Article ID SPECIAL QUASIRANDOM STRUCTURES; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; VAPOR-PHASE EPITAXY; TANDEM SOLAR-CELLS; P-D HYBRIDIZATION; II-VI; ELECTRONIC-STRUCTURE; OPTICAL-PROPERTIES; ELASTIC-MODULI AB We have performed systematic first-principles calculations for the structural and electronic properties of chalcopyrite semiconductors AgGaS2, AgGaSe2, CuGaS2, CuGaSe2, and their alloys. We show that, in contrast to conventional semiconductors, the band structures of these compounds exhibit several anomalous behaviors: (i) The band gaps of AgGaX2 are larger than the corresponding CuGaX2 (X=S and Se) compounds, despite the lattice constants of AgGaX2 being much larger than for CuGaX2. (ii) The valence band offsets between common-anion pairs CuGaX2/AgGaX2 are large and negative (i.e., CuGaX2 has higher valence band maximum than AgGaX2), opposite to their II-VI analogs. (iii) The valence band offsets between (MGaS2)-Ga-I/(MGaSe2)-Ga-I (M-I=Cu, Ag) are significantly smaller than their II-VI analogs. (iv) The band gap bowing parameters for the common-anion alloys are larger than the common-cation alloys, following the same trend as the valence band offsets. Moreover, we find that the wave function localization of the conduction band minimum states at the group III site plays an important role on the band gap reduction of the chalcopyrites relative to their binary analogs. The origin of the band structure anomalies observed in this system is explained in terms of the atomic sizes and chemical potentials and the increased structural and chemical freedom of these ternary compounds. C1 Fudan Univ, Surface Sci Lab Natl Key, Shanghai 200433, Peoples R China. Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Chen, SY (reprint author), Fudan Univ, Surface Sci Lab Natl Key, Shanghai 200433, Peoples R China. RI gong, xingao /B-1337-2010; gong, xingao/D-6532-2011 NR 50 TC 66 Z9 67 U1 6 U2 47 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 20 AR 205209 DI 10.1103/PhysRevB.75.205209 PG 9 WC Physics, Condensed Matter SC Physics GA 173RT UT WOS:000246890900057 ER PT J AU Deskins, NA Dupuis, M AF Deskins, N. Aaron Dupuis, Michel TI Electron transport via polaron hopping in bulk TiO2: A density functional theory characterization SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; ANATASE TIO2; PHOTOCATALYTIC ACTIVITY; MOLECULAR-DYNAMICS; TITANIUM-DIOXIDE; SINGLE-CRYSTALS; RUTILE; CHEMISTRY; TRANSITION AB This work focuses on the intrinsic electron transport in stoichiometric TiO2. Electron hopping is described by a polaron model, whereby a negative polaron is localized at a Ti3+ site and hops to an adjacent Ti4+ site. Polaron hopping is described via Marcus theory formulated for polaronic systems and quasiequivalent to the Emin-Holstein-Austin-Mott theory. We obtain the relevant parameters in the theory (namely, the activation energy Delta G(*), the reorganization energy lambda, and the electronic coupling matrix elements V-AB) for selected crystallographic directions in rutile and anatase, using periodic density functional theory (DFT)+U and Hartree-Fock cluster calculations. The DFT+U method was required to correct the well-known electron self-interaction error in DFT for the calculation of polaronic wave functions. Our results give nonadiabatic activation energies of similar magnitude in rutile and anatase, all near similar to 0.3 eV. The electronic coupling matrix element V-AB was determined to be largest for polaron hopping parallel to the c direction in rutile and indicative of adiabatic transfer (thermal hopping mechanism) with a value of 0.20 eV, while the other directions investigated in both rutile and anatase gave V-AB values of about one order of magnitude smaller and indicative of diabatic transfer (tunneling mechanism) in anatase. C1 Pacific NW Natl Lab, Chem Sci Div, Richland, WA 99354 USA. RP Deskins, NA (reprint author), Pacific NW Natl Lab, Chem Sci Div, Battelle Blvd K1-83, Richland, WA 99354 USA. RI Deskins, Nathaniel/H-3954-2012 NR 61 TC 172 Z9 172 U1 7 U2 120 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 19 AR 195212 DI 10.1103/PhysRevB.75.195212 PG 10 WC Physics, Condensed Matter SC Physics GA 173RS UT WOS:000246890800072 ER PT J AU Farkas, D Bringa, E Caro, A AF Farkas, Diana Bringa, Eduardo Caro, Alfredo TI Annealing twins in nanocrystalline fcc metals: A molecular dynamics simulation SO PHYSICAL REVIEW B LA English DT Article ID GRAIN-GROWTH; PLASTIC-DEFORMATION; BOUNDARY; COPPER; MECHANISMS; ENERGY; DIFFUSION; MIGRATION AB We report fully three-dimensional atomistic molecular dynamics studies of grain growth kinetics in nanocrystalline Cu of 5 nm average grain size. We observe the formation of annealing twins as part of the grain growth process. The grain size and energy evolution was monitored as a function of time for various temperatures, yielding an activation energy for the process. The atomistic mechanism of annealing twin formation from the moving boundaries is described. C1 Virginia Tech, Dept Mat Sci & Engn, Blacksburg, VA 24060 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Farkas, D (reprint author), Virginia Tech, Dept Mat Sci & Engn, Blacksburg, VA 24060 USA. RI Bringa, Eduardo/F-8918-2011 NR 35 TC 23 Z9 23 U1 0 U2 26 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 18 AR 184111 DI 10.1103/PhysRevB.75.184111 PG 5 WC Physics, Condensed Matter SC Physics GA 173RQ UT WOS:000246890600019 ER PT J AU Fefelov, OV Bergli, J Galperin, YM AF Fefelov, O. V. Bergli, J. Galperin, Y. M. TI Calculation of the heat capacity of a thin membrane at very low temperature SO PHYSICAL REVIEW B LA English DT Article AB We calculate the dependence of heat capacity of a freestanding thin membrane on its thickness and temperature. A remarkable fact is that for a given temperature, there exists a minimum in the dependence of the heat capacity on the thickness. The ratio of the heat capacity to its minimal value for a given temperature is a universal function of the ratio of the thickness to its value corresponding to the minimum. The minimal value of the heat capacitance for a given temperature is proportional to the temperature squared. Our analysis can be used, in particular, for optimizing support membranes for microbolometers. C1 Univ Oslo, Dept Phys, Oslo, Norway. Univ Oslo, Dept Phys, N-0316 Oslo, Norway. Univ Oslo, Ctr Adv Mat & Nanotechnol, N-0316 Oslo, Norway. Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. Argonne Natl Lab, Argonne, IL 60439 USA. RP Fefelov, OV (reprint author), Univ Oslo, Dept Phys, POB 1048, Oslo, Norway. RI Galperin, Yuri/A-1851-2008; Bergli, Joakim/A-1707-2008 OI Galperin, Yuri/0000-0001-7281-9902; NR 8 TC 5 Z9 5 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 17 AR 172101 DI 10.1103/PhysRevB.75.172101 PG 4 WC Physics, Condensed Matter SC Physics GA 173RP UT WOS:000246890500001 ER PT J AU Fister, TT Seidler, GT Rehr, JJ Kas, JJ Elam, WT Cross, JO Nagle, KP AF Fister, T. T. Seidler, G. T. Rehr, J. J. Kas, J. J. Elam, W. T. Cross, J. O. Nagle, K. P. TI Deconvolving instrumental and intrinsic broadening in core-shell x-ray spectroscopies SO PHYSICAL REVIEW B LA English DT Article ID ELECTRON-ENERGY-LOSS; MAXIMUM-ENTROPY DECONVOLUTION; RAMAN-SCATTERING; RESOLUTION ENHANCEMENT; LOSS SPECTRA; LEVEL WIDTH; K-EDGE; ABSORPTION SPECTROSCOPY; IMAGE-RESTORATION; BONDING CHANGES AB Intrinsic and experimental mechanisms frequently lead to broadening of spectral features in core-shell spectroscopies. For example, intrinsic broadening occurs in x-ray absorption spectroscopy (XAS) measurements of heavy elements where the core-hole lifetime is very short. On the other hand, nonresonant x-ray Raman scattering (XRS) and other energy loss measurements are more limited by instrumental resolution. Here, we demonstrate that the Richardson-Lucy (RL) iterative algorithm provides a robust method for deconvolving instrumental and intrinsic resolutions from typical XAS and XRS data. For the K-edge XAS of Ag, we find nearly complete removal of similar to 9.3 eV full width at half maximum broadening from the combined effects of the short core-hole lifetime and instrumental resolution. We are also able to remove nearly all instrumental broadening in an XRS measurement of diamond, with the resulting improved spectrum comparing favorably with prior soft x-ray XAS measurements. We present a practical methodology for implementing the RL algorithm in these problems, emphasizing the importance of testing for stability of the deconvolution process against noise amplification, perturbations in the initial spectra, and uncertainties in the core-hole lifetime. C1 Univ Washington, Dept Phys, Seattle, WA 98105 USA. Univ Washington, Appl Phys Lab, Seattle, WA 98105 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Seidler, GT (reprint author), Univ Washington, Dept Phys, Seattle, WA 98105 USA. EM seidler@phys.washington.edu RI Seidler, Gerald/I-6974-2012 NR 77 TC 18 Z9 18 U1 3 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 17 AR 174106 DI 10.1103/PhysRevB.75.174106 PG 10 WC Physics, Condensed Matter SC Physics GA 173RP UT WOS:000246890500034 ER PT J AU Fransson, J Balatsky, AV AF Fransson, J. Balatsky, A. V. TI Surface imaging of inelastic Friedel oscillations SO PHYSICAL REVIEW B LA English DT Article ID MOLECULAR VIBRATION SPECTRA; SPECTROSCOPY; MICROSCOPY; IMPURITY; STATES; ATOM AB Impurities that are present on the surface of a metal often have internal degrees of freedom. Inelastic scattering due to impurities can be revealed by observing local features seen in the tunneling current with a scanning tunneling microscope (STM). We consider localized vibrational modes coupled to the electronic structure of a surface. We argue that vibrational modes of impurities produce Fermi momentum k(F) oscillations in second derivative of current with respect to voltage partial derivative I-2(r,V)/partial derivative V-2. These oscillations are similar to the well-known Friedel oscillations of screening charge on the surface. We propose to measure inelastic scattering generated by the presence of the vibrational modes with STM by imaging the partial derivative I-2/partial derivative V-2 oscillations on the metal surface. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Fransson, J (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. EM jonasf@lanl.gov; avb@lanl.gov RI Fransson, Jonas/A-9238-2009 NR 25 TC 17 Z9 17 U1 1 U2 10 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 19 AR 195337 DI 10.1103/PhysRevB.75.195337 PG 5 WC Physics, Condensed Matter SC Physics GA 173RS UT WOS:000246890800117 ER PT J AU Genov, DA Seal, K Zhang, X Shalaev, VM Sarychev, AK Ying, ZC Cao, H AF Genov, Dentcho A. Seal, Katyayani Zhang, Xiang Shalaev, Vladimir M. Sarychev, Andrey K. Ying, Z. Charles Cao, Hui TI Collective electronic states in inhomogeneous media at critical and subcritical metal concentrations SO PHYSICAL REVIEW B LA English DT Article ID ENHANCED RAMAN-SCATTERING; LOCALIZATION; REFRACTION; DIFFUSION; ABSENCE AB The excitation of collective electronic states, surface plasmons (SPs), is studied for semicontinuous metal films at various metal concentrations. A previously unexpected strong optical response, manifested through an increase in the exponents of the local field moments, is predicted at noncritical metal concentrations. This phenomenon results from an increase in SP localization away from the percolation threshold, which is opposite to the general understanding that a decrease in the number of scatters leads to weaker mode localization. Experimental results from near-field optical microscopy are found to be in good agreement with the theory, validating the role of SP localization in the optical response. Possible applications in improving the sensitivity of spectroscopic measurements such as surface-enhanced Raman scattering and harmonic generation are considered. C1 Univ Calif Berkeley, NSF Nanoscale Sci & Engn, Berkeley, CA 94720 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. Ethertron Inc, San Diego, CA 92121 USA. Natl Sci Fdn, Div Mat Res, Arlington, VA 22230 USA. Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RP Genov, DA (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn, Berkeley, CA 94720 USA. EM dgenov@berkeley.edu RI Zhang, Xiang/F-6905-2011; Cao, Hui/F-4815-2012 NR 17 TC 1 Z9 1 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 20 AR 201403 DI 10.1103/PhysRevB.75.201403 PG 4 WC Physics, Condensed Matter SC Physics GA 173RT UT WOS:000246890900011 ER PT J AU Gozar, A Logvenov, G Butko, VY Bozovic, I AF Gozar, A. Logvenov, G. Butko, V. Y. Bozovic, I. TI Surface structure analysis of atomically smooth BaBiO3 Films SO PHYSICAL REVIEW B LA English DT Article ID ENERGY ION-SCATTERING; SUPERCONDUCTIVITY; CRYSTALLOGRAPHY; SPECTROSCOPY; BA1-XKXBIO3; SYSTEM AB Using low-energy time-of-flight scattering and recoil spectroscopy (TOFSARS) and mass spectroscopy of recoiled ions (MSRI) we analyze the surface structure of an atomically smooth BaBiO3 film grown by molecular beam epitaxy. We demonstrate high sensitivity of the TOFSARS and MSRI spectra to slight changes in the orientation of the ion scattering plane with respect to the crystallographic axes. The observed angle dependence allows us to clearly identify the termination layer as BiO2. Our data also indicate that angle-resolved MSRI data can be used for high-resolution studies of the surface structure of complex oxide thin films. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Gozar, A (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM agozar@bnl.gov NR 19 TC 10 Z9 10 U1 4 U2 46 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 20 AR 201402 DI 10.1103/PhysRevB.75.201402 PG 4 WC Physics, Condensed Matter SC Physics GA 173RT UT WOS:000246890900010 ER PT J AU Jaffe, JE Bachorz, RA Gutowski, M AF Jaffe, John E. Bachorz, Rafal A. Gutowski, Maciej TI Band offset and magnetic property engineering for epitaxial interfaces: A monolayer of M2O3 (M=Al,Ga,Sc,Ti,Ni) at the alpha-Fe2O3/alpha-Cr2O3 (0001) interface SO PHYSICAL REVIEW B LA English DT Article ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; METALS; HETEROSTRUCTURES; HETEROJUNCTIONS; SEMICONDUCTORS; TRANSITION; LAYERS AB We have used density-functional theory with the gradient corrected exchange-correlation functional PW91 to study the effect of an interfactant layer, where Fe and Cr are replaced by a different metal, on electronic and magnetic properties of an epitaxial interface between alpha-Fe2O3 and alpha-Cr2O3 in the hexagonal (0001) basal plane. We studied a monolayer of M2O3 (M=Al,Ga,Sc,Ti,Ni) sandwiched with five layers of chromia and five layers of hematite through epitaxial interfaces of two types, termed "oxygen divided" or "split metal." We found that both the electronic and magnetic properties of the superlattice are modified by the interfactant monolayer. For the split-metal interface, which is favored through the growth pattern of chromia and hematite, the valence-band offset can be changed from 0.62 eV (no interfactant) up to 0.90 eV with the Sc2O3 interfactant, and down to -0.51 eV (i.e., the alpha-Fe2O3/alpha-Cr2O3 heterojunction changes from type II to type I) with the Ti2O3 interfactant, due to a massive interfacial charge transfer. The band gap of the system as a whole remains open for the interfactant monolayers based on Al, Ga, and Sc, but it closes for Ti. For Ni, the split-metal interface has a negative band offset and a small band gap. Thus, nanoscale engineering through layer-by-layer growth will strongly affect the macroscopic properties of this system. C1 Pacific NW Natl Lab, Fundamental Sci Directorate, Div Chem Sci, Richland, WA 99352 USA. Univ Karlsruhe, Inst Phys Chem, Lehrstuhl Theoret Chem, D-76128 Karlsruhe, Germany. Heriot Watt Univ, Chem Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland. RP Jaffe, JE (reprint author), Pacific NW Natl Lab, Fundamental Sci Directorate, Div Chem Sci, Richland, WA 99352 USA. NR 18 TC 3 Z9 3 U1 2 U2 19 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 20 AR 205323 DI 10.1103/PhysRevB.75.205323 PG 4 WC Physics, Condensed Matter SC Physics GA 173RT UT WOS:000246890900080 ER PT J AU Kancharla, SS Okamoto, S AF Kancharla, S. S. Okamoto, S. TI Band insulator to Mott insulator transition in a bilayer Hubbard model SO PHYSICAL REVIEW B LA English DT Article AB The ground-state phase diagram of the half-filled repulsive Hubbard model in a bilayer is investigated using cluster dynamical mean-field theory. For weak to intermediate values of Coulomb repulsion U, the system undergoes a transition from a Mott-insulating phase to a metallic phase and then onto a band-insulating phase as the interlayer hopping is increased. In the strong-coupling case, the model exhibits a direct crossover from a Mott-insulating phase to a band-insulating phase. These results are robust with respect to the presence or absence of magnetic order. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Kancharla, SS (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Okamoto, Satoshi/G-5390-2011 OI Okamoto, Satoshi/0000-0002-0493-7568 NR 15 TC 26 Z9 26 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 19 AR 193103 DI 10.1103/PhysRevB.75.193103 PG 4 WC Physics, Condensed Matter SC Physics GA 173RS UT WOS:000246890800003 ER PT J AU Kim, E Pang, T Utsumi, W Solozhenko, VL Zhao, YS AF Kim, Eunja Pang, Tao Utsumi, Wataru Solozhenko, Vladimir L. Zhao, Yusheng TI Cubic phases of BC2N: A first-principles study SO PHYSICAL REVIEW B LA English DT Article ID AB-INITIO CALCULATION; BORON-NITRIDE; HIGH-PRESSURES; DIAMOND; DIAGRAM; CARBON; PSEUDOPOTENTIALS; TEMPERATURES; STABILITY; FORMS AB First-principles calculations are performed and analyzed to identify different cubic phases of BC2N synthesized experimentally. With a proper choice of the supercell, cutoff energy, and sampling k points, the cubic phases are found to be stable theoretically. The bulk modulus from elastic stiffness constants for each of the phases is in excellent agreement with available experimental data. All the phases are defect-free and do not possess any B-B or N-N bond. Two high-density phases with nearly degenerate energies are interpreted to represent two experimental systems of different x-ray patterns. The high-density phases are characterized by the existence of C-C bonds, whereas the low-density phase is characterized by the absence of C-C bonds. From the calculated equation of state and the available experimental data, we show that the unique feature of each of the cubic BC2N phases is a direct result of the corresponding local electronic structure and chemical bonding in the system. C1 Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. Japan Atom Energy Res Inst, Synchrotron Radiat Res Ctr, Kashiwa, Chiba 2770842, Japan. Univ Paris 13, CNRS, LPMTM, F-93430 Villetaneuse, France. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kim, E (reprint author), Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. EM kimej@physics.unlv.edu RI Solozhenko, Vladimir/E-1975-2011; Lujan Center, LANL/G-4896-2012 NR 39 TC 31 Z9 33 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 18 AR 184115 DI 10.1103/PhysRevB.75.184115 PG 4 WC Physics, Condensed Matter SC Physics GA 173RQ UT WOS:000246890600023 ER PT J AU Klein, C Ramchal, R Schmid, AK Farle, M AF Klein, C. Ramchal, R. Schmid, A. K. Farle, M. TI Controlling the kinetic order of spin-reorientation transitions in Ni/Cu(100) films by tuning the substrate step structure SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC SURFACE ANISOTROPY; ULTRATHIN NI/CU(001) FILMS; FERROMAGNETIC THIN-FILMS; NI FILMS; THICKNESS; TEMPERATURE; MICROSCOPY; ROUGHNESS; CU(001) AB To study whether spin-reorientation transitions in 8-10 ML thick Ni/Cu(100) films take place by continuous or discontinuous rotation of the magnetization, we used spin-polarized low-energy electron microscopy to image the magnetization vector of magnetic domains during Ni growth. After substrate preparations that either promote or suppress bunching of atomic steps, we find strong evidence for either first- or second-order transition kinetics. The results are explained in terms of a magnetic phase diagram, taking the effect of topography on magnetic anisotropy contributions into account. C1 Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. Univ Duisburg Essen, Fachbereich Phys, D-47048 Duisburg, Germany. RP Klein, C (reprint author), Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. EM akschmid@lbl.gov OI Farle, Michael/0000-0002-1864-3261 NR 33 TC 16 Z9 16 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 19 AR 193405 DI 10.1103/PhysRevB.75.193405 PG 4 WC Physics, Condensed Matter SC Physics GA 173RS UT WOS:000246890800024 ER PT J AU Kozub, VI Zyuzin, AA Entin-Wohlman, O Aharony, A Galperin, YM Vinokur, V AF Kozub, V. I. Zyuzin, A. A. Entin-Wohlman, O. Aharony, A. Galperin, Y. M. Vinokur, V. TI Point-contact spectroscopy of hopping transport: Effects of a magnetic field SO PHYSICAL REVIEW B LA English DT Article ID NEGATIVE MAGNETORESISTANCE; IMPURITY CONDUCTION AB The conductance of a point contact between two hopping insulators is expected to be dominated by the individual localized states in its vicinity. Here, we study the additional effects due to an external magnetic field. Combined with the measured conductance, the measured magnetoresistance provides detailed information on these states (e.g., their localization length, the energy difference, and the hopping distance between them). We also calculate the statistics of this magnetoresistance, which can be collected by changing the gate voltage in a single device. Since the conductance is dominated by the quantum interference of particular mesoscopic structures near the point contact, it is predicted to exhibit Aharonov-Bohm oscillations, which yield information on the geometry of these structures. These oscillations also depend on local spin accumulation and correlations, which can be modified by the external field. Finally, we also estimate the mesoscopic Hall voltage due to these structures. C1 Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia. Argonne Natl Lab, Argonne, IL 60439 USA. Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel. Ben Gurion Univ Negev, Ilse Katz Ctr Meso & Nano Scale Sci & Technol, IL-84105 Beer Sheva, Israel. Univ Oslo, Dept Phys, N-0316 Oslo, Norway. Univ Oslo, Ctr Adv Mat & Nanotechnol, N-0316 Oslo, Norway. RP Kozub, VI (reprint author), Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia. RI Galperin, Yuri/A-1851-2008; Zyuzin, Alexander/B-1450-2012; ENTIN, ORA/F-1114-2012; Kozub, Veniamin/E-4017-2014 OI Galperin, Yuri/0000-0001-7281-9902; Zyuzin, Alexander/0000-0003-2323-2886; NR 10 TC 1 Z9 1 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 20 AR 205311 DI 10.1103/PhysRevB.75.205311 PG 7 WC Physics, Condensed Matter SC Physics GA 173RT UT WOS:000246890900068 ER PT J AU Kuntova, Z Hupalo, M Chvoj, Z Tringides, MC AF Kuntova, Z. Hupalo, M. Chvoj, Z. Tringides, M. C. TI Bilayer-ring second-layer nucleation morphology in Pb/Si(111)-7x7 SO PHYSICAL REVIEW B LA English DT Article ID GROWTH; FILMS; TRANSITION AB The formation of the uniform height Pb islands on Si(111) is unusually fast and it is important to understand the driving forces responsible for it. The growth to bigger heights proceeds by bilayer rings nucleating first at the island perimeter, which spread out toward the island center. The rings have sharp growth fronts and it is challenging to explain this unusual morphology with the same set of barriers for island heights of the same stability, since nucleation is restricted to 2 layers. With Monte Carlo simulations, this nucleation morphology is reproduced and the corresponding potential-energy surface (PES) identified. The key barriers of the PES are very fast terrace diffusion (with barrier less than 50 meV), highly anisotropic diffusion (i.e., the azimuthal diffusion within a one-lattice-constant ring is 1000 times faster than radial diffusion toward the island center), and interlayer diffusion barriers for stable versus unstable islands differing by 0.11 eV (for diffusion from the island top back to the wetting layer). C1 Iowa State Univ, Dept Phys, Ames Lab, US DOE, Ames, IA 50011 USA. Acad Sci Czech Republ, Inst Phys, Prague 18221 8, Czech Republic. RP Tringides, MC (reprint author), Iowa State Univ, Dept Phys, Ames Lab, US DOE, Ames, IA 50011 USA. EM tringides@ameslab.gov RI Chromcova, Zdenka/H-3101-2014 NR 18 TC 8 Z9 8 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 20 AR 205436 DI 10.1103/PhysRevB.75.205436 PG 7 WC Physics, Condensed Matter SC Physics GA 173RT UT WOS:000246890900137 ER PT J AU Lashley, JC Schulze, RK Mihaila, B Hults, WL Cooley, JC Smith, JL Riseborough, PS Opeil, CP Fisher, RA Svitelskiy, O Suslov, A Finlayson, TR AF Lashley, J. C. Schulze, R. K. Mihaila, B. Hults, W. L. Cooley, J. C. Smith, J. L. Riseborough, P. S. Opeil, C. P. Fisher, R. A. Svitelskiy, O. Suslov, A. Finlayson, T. R. TI Electronic instabilities in shape-memory alloys: Thermodynamic and electronic structure studies of the martensitic transition SO PHYSICAL REVIEW B LA English DT Article ID GROUP-IV METALS; NEUTRON-SCATTERING; PHASE-TRANSFORMATION; PHONON-DISPERSION; BCC PHASE; PREMARTENSITIC STATE; FERMI-SURFACE; TEMPERATURE; ZIRCONIUM; BEHAVIOR AB Using a variety of thermodynamic measurements made in magnetic fields, we show evidence that the diffusionless transition (DT) in many shape-memory alloys is related to significant changes in the electronic structure. We investigate three alloys that show the shape-memory effect (In-24 at. % Tl, AuZn, and U-26 at. % Nb). We observe that the DT is significantly altered in these alloys by the application of a magnetic field. Specifically, the DT in InTl-24 at. % shows a decrease in the DT temperature with increasing magnetic field. Further investigations of AuZn were performed using an ultrasonic pulse-echo technique in magnetic fields up to 45 T. Quantum oscillations in the speed of the longitudinal sound waves propagating in the [110] direction indicated a strong acoustic de Haas-van Alphen-type effect and give information about part of the Fermi surface. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. RP Lashley, JC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Riseborough, Peter/D-4689-2011; Mihaila, Bogdan/D-8795-2013; Cooley, Jason/E-4163-2013; Suslov, Alexey/M-7511-2014; OI Mihaila, Bogdan/0000-0002-1489-8814; Suslov, Alexey/0000-0002-2224-153X; Schulze, Roland/0000-0002-6601-817X NR 55 TC 9 Z9 10 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 20 AR 205119 DI 10.1103/PhysRevB.75.205119 PG 6 WC Physics, Condensed Matter SC Physics GA 173RT UT WOS:000246890900032 ER PT J AU Lee, B Rudd, RE AF Lee, Byeongchan Rudd, Robert E. TI First-principles calculation of mechanical properties of Si(001) nanowires and comparison to nanomechanical theory SO PHYSICAL REVIEW B LA English DT Article ID ATOMIC-FORCE MICROSCOPY; AUGMENTED-WAVE METHOD; SURFACE-STRESS; INTERATOMIC POTENTIALS; ELASTIC PROPERTIES; MONOHYDRIDE PHASE; SILICON; SI; TRANSITION; BULK AB We report the results of first-principles density functional theory calculations of the Young's modulus and other mechanical properties of hydrogen-passivated Si < 001 > nanowires. The nanowires are taken to have predominantly {100} surfaces, with small {110} facets according to the Wulff shape. The Young's modulus, the equilibrium length, and the constrained residual stress of a series of prismatic beams of differing sizes are found to have size dependences that scale like the surface area to volume ratio for all but the smallest beam. The results are compared with a continuum model and the results of classical atomistic calculations based on an empirical potential. We attribute the size dependence to specific physical structures and interactions. In particular, the hydrogen interactions on the surface and the charge density variations within the beam are quantified and used both to parametrize the continuum model and to account for the discrepancies between the two models and the first-principles results. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Lee, B (reprint author), Lawrence Livermore Natl Lab, L415, Livermore, CA 94551 USA. EM robert.rudd@llnl.gov OI Rudd, Robert/0000-0002-6632-2681 NR 73 TC 65 Z9 67 U1 2 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 19 AR 195328 DI 10.1103/PhysRevB.75.195328 PG 13 WC Physics, Condensed Matter SC Physics GA 173RS UT WOS:000246890800108 ER PT J AU Lee, B Rudd, RE Klepeis, JE Soderlind, P Landa, A AF Lee, Byeongchan Rudd, Robert E. Klepeis, John E. Soderlind, Per Landa, Alexander TI Theoretical confirmation of a high-pressure rhombohedral phase in vanadium metal SO PHYSICAL REVIEW B LA English DT Article ID AUGMENTED-WAVE METHOD; ELASTIC-CONSTANTS; NB AB Recent diamond-anvil-cell (DAC) experiments revealed a new phase in vanadium metal at high pressure. Here we present results from first-principles electronic-structure calculations confirming the existence of this phase. The structure corresponds to a rhombohedral distortion of the bcc ambient-pressure phase. The calculated transition pressure (0.84 Mbar) and density compare reasonably with the measured data. Interestingly, a reentrant bcc phase is discovered at ultrahigh pressures above 2.8 Mbar, close to the limit of DAC experimental capabilities. We show, extending prior work, that the phase transitions in vanadium are driven by subtle electronic-structure effects. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Lee, B (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM airbc@llnl.gov OI Rudd, Robert/0000-0002-6632-2681 NR 16 TC 28 Z9 30 U1 2 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 18 AR 180101 DI 10.1103/PhysRevB.75.180101 PG 4 WC Physics, Condensed Matter SC Physics GA 173RQ UT WOS:000246890600001 ER PT J AU Lee, WS Johnston, S Devereaux, TP Shen, ZX AF Lee, W. S. Johnston, S. Devereaux, T. P. Shen, Z.-X. TI Aspects of electron-phonon self-energy revealed from angle-resolved photoemission spectroscopy SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; T-C; RAMAN-SCATTERING; SINGLE-CRYSTALS; LINE-SHAPE; BI2SR2CACU2O8+DELTA; DISPERSION; STATE; YBA2CU3O7-DELTA; DEPENDENCE AB Lattice contribution to the electronic self-energy in complex correlated oxides is a fascinating subject that has lately stimulated lively discussions. Expectations of electron-phonon self-energy effects for simpler materials, such as Pd and Al, have resulted in several misconceptions in strongly correlated oxides. Here, we analyze a number of arguments claiming that phonons cannot be the origin of certain self-energy effects seen in high-T-c cuprate superconductors via angle-resolved photoemission experiments, including the temperature dependence, doping dependence of the renormalization effects, the interband scattering in the bilayer systems, and impurity substitution. We show that in light of experimental evidences and detailed simulations, these arguments are not well founded. C1 Stanford Univ, Dept Appl Phys, Dept Phys, Stanford, CA 94305 USA. Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. Univ Waterloo, Dept Phys, Waterloo, ON N2L 3G1, Canada. RP Lee, WS (reprint author), Stanford Univ, Dept Appl Phys, Dept Phys, Stanford, CA 94305 USA. RI Johnston, Steven/J-7777-2016 NR 49 TC 15 Z9 15 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 19 AR 195116 DI 10.1103/PhysRevB.75.195116 PG 7 WC Physics, Condensed Matter SC Physics GA 173RS UT WOS:000246890800045 ER PT J AU Li, AP Zeng, C van Benthem, K Chisholm, MF Shen, J Rao, SVSN Dixit, SK Feldman, LC Petukhov, AG Foygel, M Weitering, HH AF Li, A. P. Zeng, C. van Benthem, K. Chisholm, M. F. Shen, J. Rao, S. V. S. Nageswara Dixit, S. K. Feldman, L. C. Petukhov, A. G. Foygel, M. Weitering, H. H. TI Dopant segregation and giant magnetoresistance in manganese-doped germanium SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC SEMICONDUCTORS; CURIE-TEMPERATURE; FERROMAGNETISM AB Dopant segregation in a MnxGe1-x dilute magnetic semiconductor leads to a remarkable self-assembly of Mn-rich nanocolumns, embedded in a fully compensated Ge matrix. Samples grown at 80 degrees C display a giant positive magnetoresistance that correlates directly with the distribution of magnetic impurities. Annealing at 200 degrees C increases Mn substitution in the host matrix above the threshold for the insulator-metal transition, while maintaining the columnar morphology, and results in global ferromagnetism with conventional negative magnetoresistance. The qualitative features of magnetism and transport in this nanophase material are thus extremely sensitive to the precise location and distribution of the magnetic dopants. C1 Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Vanderbilt Univ, Interdisciplinary Program Mat Sci, Nashville, TN 37235 USA. Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. S Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA. RP Li, AP (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RI Li, An-Ping/B-3191-2012; OI Li, An-Ping/0000-0003-4400-7493; Sunkaranam, V S Nageswara Rao/0000-0002-7826-5901 NR 24 TC 67 Z9 67 U1 2 U2 20 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 20 AR 201201 DI 10.1103/PhysRevB.75.201201 PG 4 WC Physics, Condensed Matter SC Physics GA 173RT UT WOS:000246890900002 ER PT J AU Li, PC Balakirev, FF Greene, RL AF Li, Pengcheng Balakirev, F. F. Greene, R. L. TI Upper critical field of electron-doped Pr(2-x)Ce(x)CuO(4-delta) in parallel magnetic fields SO PHYSICAL REVIEW B LA English DT Article ID SINGLE-CRYSTALS; THIN-FILMS; SUPERCONDUCTORS; YBA2CU3O7-DELTA; TEMPERATURE; DEPENDENCE; LIMIT; SPIN AB We report a systematic study of the resistive superconducting transition in the electron-doped cuprates Pr(2-x)Ce(x)CuO(4-delta) down to 1.5 K for magnetic field up to 58 T applied parallel to the conducting ab planes. We find that the zero-temperature parallel critical field [H(c2 parallel to ab)(0)] exceeds 58 T for the underdoped and optimally doped films. For the overdoped films, 58 T is sufficient to suppress the superconductivity. We also find that the Zeeman energy mu(B)H(c2 parallel to ab)(0) reaches the superconducting gap (Delta(0)), i.e., mu(B)H(c2 parallel to ab)(0)similar or equal to Delta(0), for all the dopings, strongly suggesting that the parallel critical field is determined by the Pauli paramagnetic limit in electron-doped cuprates. C1 Univ Maryland, Ctr Superconduct Res, College Pk, MD 20742 USA. Univ Maryland, Dept Phys, College Pk, MD 20742 USA. NHMFL, Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Li, PC (reprint author), Univ Maryland, Ctr Superconduct Res, College Pk, MD 20742 USA. NR 28 TC 8 Z9 8 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 17 AR 172508 DI 10.1103/PhysRevB.75.172508 PG 4 WC Physics, Condensed Matter SC Physics GA 173RP UT WOS:000246890500025 ER PT J AU Lin, JF Struzhkin, VV Gavriliuk, AG Lyubutin, I AF Lin, Jung-Fu Struzhkin, Viktor V. Gavriliuk, Alexander G. Lyubutin, Igor TI Comment on "Spin crossover in (Mg,Fe)O: A Mossbauer effect study with an alternative interpretation of x-ray emission spectroscopy data" SO PHYSICAL REVIEW B LA English DT Editorial Material ID LOWER MANTLE; ELECTRONIC-STRUCTURE; EARTHS MANTLE; MAGNESIOWUSTITE; TRANSITION; IRON; COMPLEXES; OXIDES; FE)O; (MG AB Electronic spin-pairing transition of iron in ferropericlase-(Mg,Fe)O has been recently studied with x-ray emission and Mossbauer spectroscopies under high pressures. While these studies reported a high-spin to low-spin transition of iron to occur at pressures above approximately 50 GPa, the width of the observed transition varies significantly. In particular, Kantor [Phys. Rev. B 73, 100101(R) (2006)] reported that the transition in (Mg-0.8,Fe-0.2)O occurs over a pressure range of approximately 50 GPa in high-pressure Mossbauer measurements. To account for the discrepancy in the transition pressure, Kantor reanalyzed the x-ray emission spectra by Lin [Nature (London) 436, 377 (2005)] using a simple spectral decomposition method and claimed that x-ray emission measurements are also consistent with a spin crossover of iron at high pressures. Here, we show that the proposed fitting method is inadequate to describe the x-ray emission spectrum of the low-spin FeS2 and would result in an erroneous satellite peak (K beta(')) intensity, leading to an artificial high-spin component and, consequently, to invalid conclusions regarding the width of the pressure-induced transition in ferropericlase. Furthermore, we show that an energy decrease of similar to 1.6 eV in the K beta(1,3) main peak was observed across the spin transition in ferropericlase, which can be used as an additional line of evidence for the electronic spin-pairing transition of iron in (Mg,Fe)O. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. Russian Acad Sci, Inst Crystallog, Moscow 117333, Russia. Inst High Pressure Phys, Troitsk 142190, Moscow, Russia. RP Lin, JF (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. RI Struzhkin, Viktor/J-9847-2013; Gavriliuk, Alexander/G-1317-2011; Lin, Jung-Fu/B-4917-2011 OI Struzhkin, Viktor/0000-0002-3468-0548; Gavriliuk, Alexander/0000-0003-0604-586X; NR 18 TC 11 Z9 11 U1 0 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 17 AR 177102 DI 10.1103/PhysRevB.75.177102 PG 4 WC Physics, Condensed Matter SC Physics GA 173RP UT WOS:000246890500140 ER PT J AU Liu, ACY Arenal, R Miller, DJ Chen, XD Johnson, JA Eryilmaz, OL Erdemir, A Woodford, JB AF Liu, A. C. Y. Arenal, R. Miller, D. J. Chen, Xidong Johnson, J. A. Eryilmaz, O. L. Erdemir, A. Woodford, John B. TI Structural order in near-frictionless hydrogenated diamondlike carbon films probed at three length scales via transmission electron microscopy SO PHYSICAL REVIEW B LA English DT Article ID ENERGY-LOSS SPECTROSCOPY; MEDIUM-RANGE ORDER; IMPLANTED AMORPHOUS-SILICON; CHEMICAL-VAPOR-DEPOSITION; CROSS-SECTIONAL STRUCTURE; X-RAY REFLECTIVITY; FLUCTUATION MICROSCOPY; MAGIC-ANGLE; QUANTITATIVE-ANALYSIS; THEORETICAL EVIDENCE AB A series of hydrogenated diamondlike carbon films grown using plasma-enhanced chemical-vapor deposition is systematically studied as a function of source gas composition using transmission electron microscopy. The structure of the films is examined at three distinct length scales. Both plan-view and cross-sectional studies are undertaken to reveal any large-scale inhomogeneities or anisotropy in the films. The degree of medium-range order in the films is measured by performing fluctuation electron microscopy on the plan-view and cross-sectional specimens. Electron-energy-loss spectroscopy is employed to measure the mass density and sp(2):sp(3) carbon bonding ratios of the samples. Thus, inhomogeneity as a function of depth in the film is revealed by the measurements of the short- and medium-range orders in the two different sample geometries. Soft, low-density diamondlike carbon films with low coefficients of friction are found to be more homogeneous as a function of depth in the film and possess reduced medium-range order in the surface layer. We find that these properties are promoted by employing a high hydrogen content methane and hydrogen admixture as the growth ambient. In contrast, harder, denser films with higher coefficients of friction possess a distinct surface layer with a relatively elevated level of carbon sp(3) bonding and a higher degree of medium-range order. The structure of the films is examined in the light of the energetics of the growth process. It appears that a high flux of penetrating hydrogen ions modifies the surface layer containing the remnant damage from the carbon ions, homogenizing it and contributing to a lowering of the coefficient of friction. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Cedarville Univ, Cedarville, OH 45314 USA. Argonne Natl Lab, Ctr Electron Microscopy, Argonne, IL 60439 USA. Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. Argonne Natl Lab, Nucl Operat Div, Argonne, IL 60439 USA. RP Liu, ACY (reprint author), Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. EM aliu@anl.gov RI Johnson, Jacqueline/P-4844-2014; Arenal, Raul/D-2065-2009 OI Johnson, Jacqueline/0000-0003-0830-9275; Arenal, Raul/0000-0002-2071-9093 NR 54 TC 32 Z9 32 U1 2 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 20 AR 205402 DI 10.1103/PhysRevB.75.205402 PG 13 WC Physics, Condensed Matter SC Physics GA 173RT UT WOS:000246890900103 ER PT J AU Luo, ZT Papadimitrakopoulos, F Doorn, SK AF Luo, Zhengtang Papadimitrakopoulos, Fotios Doorn, Stephen K. TI Intermediate-frequency Raman modes for the lower optical transitions of semiconducting single-walled carbon nanotubes SO PHYSICAL REVIEW B LA English DT Article ID ELECTRIC-ARC TECHNIQUE; EXCITONS; SPECTROSCOPY AB A new class of intermediate-frequency modes (IFMs) associated with the E-22(S) and E-11(S) optical transitions of bundled HiPco single-walled carbon nanotubes (SWNTs) have been investigated via tunable laser (700-985 nm) resonance Raman spectroscopy. "Steplike" dispersive behavior was observed for these IFMs, along with associated clusters of radial breathing mode (RBM) overtones at higher frequencies. While the excitation profiles of both RBM and RBM overtones follow a classical behavior predicted by resonance Raman theory, significant differences are observed for the IFM excitation profiles. The observed IFM maxima were found to obey a resonance behavior based on a combination of the E-22(S) andE(11)(S) transition energies, scaled by the inverse diameter of the respective nanotube. Only IFMs for the mod(n-m,3)=2 nanotubes are visible, with intensities found to obey the family-based chiral angle dependence similar to previously reported electron-phonon interaction patterns observed for the RBM. C1 Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. Univ Connecticut, Nanomat Optoelect Lab, Dept Chem, Polymer Program,Inst Mat Sci, Storrs, CT 06269 USA. RP Doorn, SK (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM skdoorn@lanl.gov RI luo, Zhengtang/C-4270-2008 OI luo, Zhengtang/0000-0002-5134-9240 NR 36 TC 15 Z9 15 U1 0 U2 8 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 20 AR 205438 DI 10.1103/PhysRevB.75.205438 PG 7 WC Physics, Condensed Matter SC Physics GA 173RT UT WOS:000246890900139 ER PT J AU Meevasana, W Zhou, XJ Sahrakorpi, S Lee, WS Yang, WL Tanaka, K Mannella, N Yoshida, T Lu, DH Chen, YL He, RH Lin, H Komiya, S Ando, Y Zhou, F Ti, WX Xiong, JW Zhao, ZX Sasagawa, T Kakeshita, T Fujita, K Uchida, S Eisaki, H Fujimori, A Hussain, Z Markiewicz, RS Bansil, A Nagaosa, N Zaanen, J Devereaux, TP Shen, ZX AF Meevasana, W. Zhou, X. J. Sahrakorpi, S. Lee, W. S. Yang, W. L. Tanaka, K. Mannella, N. Yoshida, T. Lu, D. H. Chen, Y. L. He, R. H. Lin, Hsin Komiya, S. Ando, Y. Zhou, F. Ti, W. X. Xiong, J. W. Zhao, Z. X. Sasagawa, T. Kakeshita, T. Fujita, K. Uchida, S. Eisaki, H. Fujimori, A. Hussain, Z. Markiewicz, R. S. Bansil, A. Nagaosa, N. Zaanen, J. Devereaux, T. P. Shen, Z.-X. TI Hierarchy of multiple many-body interaction scales in high-temperature superconductors SO PHYSICAL REVIEW B LA English DT Article ID ANGLE-RESOLVED PHOTOEMISSION; QUASI-PARTICLE DISPERSION; ELECTRONIC-STRUCTURE; T-C; BAND; BI2SR2CACU2O8+DELTA; SURFACE; ENERGY; PLANE AB To date, angle-resolved photoemission spectroscopy has been successful in identifying energy scales of the many-body interactions in correlated materials, focused on binding energies of up to a few hundred meV below the Fermi energy. Here, at higher-energy scale, we present improved experimental data from four families of high-T-c superconductors over a wide doping range that reveal a hierarchy of many-body interaction scales focused on: the low-energy anomaly ("kink") of 0.03-0.09 eV, a high-energy anomaly of 0.3-0.5 eV, and an anomalous enhancement of the width of the local-density-approximation-based CuO2 band extending to energies of approximate to 2 eV. Besides their universal behavior over the families, we find that all of these three dispersion anomalies also show clear doping dependence over the doping range presented. C1 Stanford Univ, Dept Phys, Stanford, CA 94305 USA. Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. Northeastern Univ, Dept Phys, Boston, MA 02115 USA. Univ Tokyo, Dept Complex Sci Engn, Chiba 277856, Japan. Cent Res Inst Elect Power Ind, Tokyo 2018511, Japan. Chinese Acad Sci, Natl Lab Supercond, Inst Phys, Beijing 100080, Peoples R China. Univ Tokyo, Dept Appl Phys, Bunkyo Ku, CREST, Tokyo 1138656, Japan. Univ Tokyo, Dept Adv Mat Sci, Bunkyo Ku, Tokyo 1138656, Japan. Univ Tokyo, Dept Supercond, Bunkyo Ku, Tokyo 1138656, Japan. AIST, Nanoelect Res Inst, Tsukuba, Ibaraki 3050032, Japan. Leiden Univ, Inst Lorentz Theoret Phys, NL-2300 RA Leiden, Netherlands. Univ Waterloo, Dept Phys, Waterloo, ON N2L 3G1, Canada. RP Meevasana, W (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. EM non@stanford.edu; zxshen@stanford.edu RI He, Ruihua/A-6975-2010; Chen, Yulin/C-1918-2012; Nagaosa, Naoto/G-7057-2012; Ando, Yoichi/B-8163-2013; Sasagawa, Takao/E-6666-2014; Yang, Wanli/D-7183-2011; Lin, Hsin/F-9568-2012 OI Ando, Yoichi/0000-0002-3553-3355; Sasagawa, Takao/0000-0003-0149-6696; Yang, Wanli/0000-0003-0666-8063; Lin, Hsin/0000-0002-4688-2315 NR 39 TC 88 Z9 88 U1 1 U2 14 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 17 AR 174506 DI 10.1103/PhysRevB.75.174506 PG 7 WC Physics, Condensed Matter SC Physics GA 173RP UT WOS:000246890500119 ER PT J AU Meng, QP Zhu, YM AF Meng, Qingping Zhu, Yimei TI Structural modification of twin boundaries in YBa2Cu3O6+eta oxides: Effects of oxygen concentration and temperature SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TC SUPERCONDUCTORS; GINZBURG-LANDAU THEORY; SHAPE-MEMORY ALLOYS; K PHASE TRANSITION; FE-PD ALLOYS; TWEED MICROSTRUCTURES; ROOM-TEMPERATURE; MARTENSITIC TRANSFORMATIONS; YBA2CU3O7-DELTA SYSTEM; DIFFUSE-SCATTERING AB The modification of the twin boundaries in YBa2Cu3O6+eta due to the oxygen ordering below the temperature of the tetragonal-orthorhombic phase transformation has been studied using mean field theory and spatial gradient terms for the oxygen concentration variation. The distribution of the oxygen atoms across the twin boundaries was calculated at various temperatures and oxygen concentration. Based on these calculations, we deduced the interfacial energy, the equilibrium thickness, and the associated oxygen ordering of the twin boundaries. Their effects on twinning and tweed morphology are also discussed. C1 Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030, Peoples R China. RP Zhu, YM (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. EM zhu@bnl.gov NR 62 TC 3 Z9 3 U1 0 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 17 AR 174501 DI 10.1103/PhysRevB.75.174501 PG 7 WC Physics, Condensed Matter SC Physics GA 173RP UT WOS:000246890500114 ER PT J AU Morozovska, AN Eliseev, EA Bravina, SL Kalinin, SV AF Morozovska, Anna N. Eliseev, Eugene A. Bravina, Svetlana L. Kalinin, Sergei V. TI Resolution-function theory in piezoresponse force microscopy: Wall imaging, spectroscopy, and lateral resolution SO PHYSICAL REVIEW B LA English DT Article ID THIN-FILMS; FERROELECTRIC DOMAINS; POLARIZATION; SURFACE AB Piezoresponse force microscopy (PFM) has emerged as a primary tool for imaging, domain engineering, and switching spectroscopy on ferroelectric materials. Quantitative interpretation of PFM data, including measurements of the intrinsic width of the domain walls, determination of geometric parameters of the domain below the tip in local hysteresis loop measurements, as well as interpretation of local switching and coercive biases in terms of material properties and switching mechanisms, requires reliable knowledge on electrostatic and strain field structures produced by the tip. Using linear imaging theory, we develop a theoretical approach for the interpretation of these measurements and the determination of tip parameters from a suitable calibration standard. The resolution and object transfer functions in PFM are derived, and the effect of material parameters on resolution is determined. Closed-form solutions for domain-wall profiles in vertical and lateral PFM and signals from cylindrical and nested cylindrical domains in transversally isotropic piezoelectric are derived for point-charge and sphere-plane geometries of the tip. C1 Natl Acad Sci Ukraine, V Lashkaryov Inst Semicond Phys, UA-03028 Kiev, Ukraine. Natl Acad Sci Ukraine, Inst Mat Sci Problems, UA-03142 Kiev, Ukraine. Natl Acad Sci Ukraine, Inst Phys, UA-03028 Kiev, Ukraine. Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Kalinin, SV (reprint author), Natl Acad Sci Ukraine, V Lashkaryov Inst Semicond Phys, 41 Prospekt Nauki, UA-03028 Kiev, Ukraine. EM sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012 OI Kalinin, Sergei/0000-0001-5354-6152 NR 57 TC 60 Z9 60 U1 3 U2 35 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 17 AR 174109 DI 10.1103/PhysRevB.75.174109 PG 18 WC Physics, Condensed Matter SC Physics GA 173RP UT WOS:000246890500037 ER PT J AU Murray, ED Fahy, S Prendergast, D Ogitsu, T Fritz, DM Reis, DA AF Murray, E. D. Fahy, S. Prendergast, D. Ogitsu, T. Fritz, D. M. Reis, D. A. TI Phonon dispersion relations and softening in photoexcited bismuth from first principles SO PHYSICAL REVIEW B LA English DT Article ID FUNCTIONAL PERTURBATION-THEORY; COHERENT PHONONS; DISPLACIVE EXCITATION; LATTICE INSTABILITY; SOLIDS; 1ST-PRINCIPLES; VIBRATIONS; TELLURIUM; SILICON; SB AB The phonon dispersion relations for equilibrium and photoexcited bismuth are calculated from first-principles density-functional perturbation theory, with constrained occupation of excited electronic states. The dependence of phonon frequency on photoexcited electron-hole plasma density is found for modes throughout the Brillouin zone. The resulting phonon dispersion curves are in good agreement with available neutron-scattering data for the equilibrium occupation of electronic bands. We find the effect of phonon softening by the electron-hole plasma to be substantially larger in the optical modes than in the acoustic modes throughout the Brillouin zone. C1 Natl Univ Ireland Univ Coll Cork, Tyndall Natl Inst, Cork, Ireland. Natl Univ Ireland Univ Coll Cork, Dept Phys, Cork, Ireland. Univ Michigan, FOCUS Ctr, Ann Arbor, MI 48109 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Murray, ED (reprint author), Natl Univ Ireland Univ Coll Cork, Tyndall Natl Inst, Cork, Ireland. RI Prendergast, David/E-4437-2010; Murray, Eamonn/J-8476-2014 OI Murray, Eamonn/0000-0003-1526-663X NR 34 TC 38 Z9 39 U1 3 U2 24 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 18 AR 184301 DI 10.1103/PhysRevB.75.184301 PG 6 WC Physics, Condensed Matter SC Physics GA 173RQ UT WOS:000246890600031 ER PT J AU Norman, MR AF Norman, M. R. TI Linear response theory and the universal nature of the magnetic excitation spectrum of the cuprates SO PHYSICAL REVIEW B LA English DT Article ID NEUTRON-SCATTERING; HUBBARD-MODEL; OXIDE SUPERCONDUCTORS; ELECTRONIC-STRUCTURE; ANTIFERROMAGNETISM; PSEUDOGAP AB Linear response theory, commonly known as the random-phase approximation (RPA), predicts a rich magnetic excitation spectrum for d-wave superconductors. Many of the features predicted by such calculations appear to be reflected in inelastic neutron-scattering data of the cuprates. In this paper, I will present results from RPA calculations whose input is based on angle-resolved photoemission data, and discuss possible relevance to inelastic neutron-scattering data of La2-xSrxCuO4 (LSCO), YBa2Cu3O6+x (YBCO), and Bi2Sr2CaCu2O8+x (Bi2212) in their superconducting and nonsuperconducting phases. In particular, the question of the universality of the magnetic excitation spectrum will be addressed. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Norman, MR (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Norman, Michael/C-3644-2013 NR 40 TC 36 Z9 36 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 18 AR 184514 DI 10.1103/PhysRevB.75.184514 PG 9 WC Physics, Condensed Matter SC Physics GA 173RQ UT WOS:000246890600096 ER PT J AU Normile, PS Wilkins, SB Detlefs, B Mannix, D Blackburn, E Bouchenoire, L Bernhoeft, N Lander, GH AF Normile, P. S. Wilkins, S. B. Detlefs, B. Mannix, D. Blackburn, E. Bouchenoire, L. Bernhoeft, N. Lander, G. H. TI Spectral line shapes of U M-2- and As K-edge resonant X-ray scattering in the two antiferromagnetic phases of UAs SO PHYSICAL REVIEW B LA English DT Article ID EXCHANGE SCATTERING; POLARIZATION DEPENDENCE; MAGNETIC SCATTERING; HOLMIUM AB We present resonant x-ray scattering measurements on uranium arsenide at the U M-2 and As K absorption edges. The studies at both edges relate to aspects of the hybridization (involving the 5f states) in UAs. At the U M-2 edge, the spectral line shapes are found to differ between the two antiferromagnetic phases of UAs. In the "type-I" phase, the line shapes may be fitted using a single resonant component, whereas in the "type-IA" phase, a second resonant component, 3.5 eV above the first component, is required to fit the line shapes in the rotated polarization (sigma ->pi) scattering channel. The possibility that the single (first) component in the type-I (type-IA) phase corresponds to E2 scattering due to the ordered 5f magnetic-dipole moments and that in the type-IA phase the second component represents an E1 process involving polarized 6d (U) states is considered. Similar line shapes are observed for the two antiferromagnetic phases at the As K edge, a result which is in discordance with a recent theoretical prediction. The experimentally observed As K-edge line shape has an asymmetrical form in both phases, which possibly relates to As 4p-band effects unaccounted for in the theory. C1 Univ Castilla La Mancha, Dept Fis Aplicada, E-13071 Ciudad Real, Spain. Commiss European Communities, Joint Res Ctr, Inst Transuranium Elements, D-76125 Karlsruhe, Germany. European Synchrotron Radiat Facil, XMaS UK CRG, F-38043 Grenoble, France. Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. CEA, DRFMC, F-38054 Grenoble, France. RP Normile, PS (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RI Detlefs, Blanka/C-9249-2009; Blackburn, Elizabeth/C-2312-2014; Normile, Peter/I-2320-2015; OI Normile, Peter/0000-0002-8851-9899; Mannix, Danny/0000-0002-7346-6894 NR 32 TC 2 Z9 2 U1 0 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 18 AR 184437 DI 10.1103/PhysRevB.75.184437 PG 10 WC Physics, Condensed Matter SC Physics GA 173RQ UT WOS:000246890600075 ER PT J AU Osorio-Guillen, J Lany, S Barabash, SV Zunger, A AF Osorio-Guillen, J. Lany, S. Barabash, S. V. Zunger, A. TI Nonstoichiometry as a source of magnetism in otherwise nonmagnetic oxides: Magnetically interacting cation vacancies and their percolation SO PHYSICAL REVIEW B LA English DT Article ID SOLID-SOLUTIONS; MICROHARDNESS; CRYSTALS AB We discuss the physical conditions required for the creation of collective ferromagnetism in nonmagnetic oxides by intrinsic point defects such as vacancies. We use HfO2 as a case study because of recent pertinent calculations and observations. It was previously noted theoretically that charge-neutral Hf vacancies in HfO2 have partially occupied electronic levels within the band gap, and thus the vacancies carry a nonvanishing local magnetic moment. Such density functional supercell calculations have further shown that two such vacancies interact ferromagnetically if they are separated by up to third-neighbor distance. This suggested to the authors that Hf vacancies could explain the observed collective ferromagnetism in thin HfO2 films. Here we use our previously developed more complete methodology [Phys. Rev. Lett. 96, 107203 (2006)] to inquire if such vacancies can lead to collective ferromagnetism. Applying this methodology to HfO2, we find the following: (i) Hf vacancies appear in a few possible charge states but not all of these have a local magnetic moment. (ii) We calculate the energy required to form such vacancies in HfO2 as a function of the chemical potential and Fermi energy, and from this we compute, as a function of growth temperature and oxygen pressure, the equilibrium concentration of those vacancies that have a nonvanishing local magnetic moment. We find that under the most favorable equilibrium growth conditions the concentration of Hf vacancies with magnetic moment at room temperature does not exceed 6.4x10(15) cm(-3) (fractional composition of x(eq)=2.2x10(-7)%). (iii) Independently, we calculate the minimum Hf vacancy concentration needed to achieve wall-to-wall percolation in the HfO2 lattice, given the range of the magnetic V-Hf-V-Hf interaction (five neighbors) obtained from our supercell calculations. It turns out that the minimum percolation concentration x(perc)=13.5% needed for collective ferromagnetism is eight orders of magnitude higher than the equilibrium vacancy concentration x(eq) in HfO2 under the most favorable growth conditions. We conclude that equilibrium growth cannot lead to ferromagnetism and that ferromagnetism can be established only if one beats the equilibrium Hf vacancy concentration during growth by as much as eight orders of magnitude. This paper presents also an Appendix that gives the Monte Carlo-calculated percolation thresholds of various lattices as a function of the percolation radius of the interaction. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Osorio-Guillen, J (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Osorio-Guillen, Jorge/B-7587-2008; Zunger, Alex/A-6733-2013; OI Osorio-Guillen, Jorge/0000-0002-7384-8999; Lany, Stephan/0000-0002-8127-8885 NR 46 TC 63 Z9 63 U1 0 U2 13 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 18 AR 184421 DI 10.1103/PhysRevB.75.184421 PG 9 WC Physics, Condensed Matter SC Physics GA 173RQ UT WOS:000246890600059 ER PT J AU Reed, EJ Soljacic, M Gee, R Joannopoulos, JD AF Reed, Evan J. Soljacic, Marin Gee, Richard Joannopoulos, J. D. TI Molecular dynamics simulations of coherent optical photon emission from shock waves in crystals SO PHYSICAL REVIEW B LA English DT Article ID INDUCED ELECTRICAL-POLARIZATION; TERAHERTZ TECHNOLOGY; GENERATION; RANGE AB We have previously predicted that coherent electromagnetic radiation in the 1-100 THz frequency range can be generated in crystalline polarizable materials when subject to a shock wave or solitonlike propagating excitation [E. J. Reed , Phys. Rev. Lett. 96, 013904 (2006)]. In this work, we present analysis and molecular dynamics simulations of shock waves in crystalline NaCl which expand upon this prediction. We demonstrate that the coherent polarization currents responsible for the effect are generated by a nonresonant, nonlinear effect that occurs at the shock front. We consider the effect of thermal noise and various shock pressures on the coherent polarization currents and find that the amplitude generally increases with increasing shock pressure and decreasing material temperature. Finally, we present calculations of the amplitude and distribution of emitted radiation showing that the radiation can be directed or undirected under various realistic conditions of the shape of the shock front. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. MIT, Ctr Mat Sci & Engn, Cambridge, MA 02139 USA. MIT, Elect Res Lab, Cambridge, MA 02139 USA. RP Reed, EJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM reed23@llnl.gov NR 27 TC 8 Z9 8 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 17 AR 174302 DI 10.1103/PhysRevB.75.174302 PG 13 WC Physics, Condensed Matter SC Physics GA 173RP UT WOS:000246890500061 ER PT J AU Roy, SB Chattopadhyay, MK Banerjee, A Chaddah, P Moore, JD Perkins, GK Cohen, LF Gschneidner, KA Pecharsky, VK AF Roy, S. B. Chattopadhyay, M. K. Banerjee, A. Chaddah, P. Moore, J. D. Perkins, G. K. Cohen, L. F. Gschneidner, K. A., Jr. Pecharsky, V. K. TI Devitrification of the low temperature magnetic-glass state in Gd5Ge4 SO PHYSICAL REVIEW B LA English DT Article AB The first-order antiferromagnetic to ferromagnetic phase transition in Gd5Ge4 becomes arrested at low temperatures in a certain range of applied magnetic fields. This effect gives rise to a low temperature magnetic-glass state in Gd5Ge4. Here we report results of dc magnetization measurements investigating the static and dynamic magnetic properties of this low temperature magnetic-glass state. The process of devitrification (or de-arrest) of this magnetic glass is studied by varying both magnetic field and temperature. This devitrification process has quite distinct and separate signatures compared to the process of the magnetic-glass formation. Furthermore, the results of our experimental study support the recently introduced phenomenological idea of correlation between the supercooling of the antiferromagnetic phase and the kinetic arrest of the antiferromagnetic to ferromagnetic phase transition. C1 Raja Ramanna Ctr Adv Technol, Magnet & Superconducting Mat Sect, Indore 452013, India. UGC, DAE, Consortium Sci Res, Indore 452017, India. Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England. US DOE, Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. Iowa State Univ Sci & Technol, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Roy, SB (reprint author), Raja Ramanna Ctr Adv Technol, Magnet & Superconducting Mat Sect, Indore 452013, India. NR 28 TC 35 Z9 37 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 18 AR 184410 DI 10.1103/PhysRevB.75.184410 PG 7 WC Physics, Condensed Matter SC Physics GA 173RQ UT WOS:000246890600048 ER PT J AU Ruzmetov, D Senanayake, SD Ramanathan, S AF Ruzmetov, Dmitry Senanayake, Sanjaya D. Ramanathan, Shriram TI X-ray absorption spectroscopy of vanadium dioxide thin films across the phase-transition boundary SO PHYSICAL REVIEW B LA English DT Article AB X-ray absorption spectroscopy (XAS) and x-ray photoemission spectroscopy of the V L edge and O K edge were performed on VO2 thin films rf sputtered at various conditions. The spectra give evidence of the changes in the electronic structure depending on the film quality. XAS of the O K edge shows a decrease of the spacing between 3d(pi) and 3d(sigma) bands by 0.8 eV with concurrent broadening of both bands for the sample sputtered at lower substrate temperature and consequently having more polycrystalline and disordered character. 3d(sigma) band position appears to be more sensitive to the sample quality, indicating that the cation-ligand interaction is mostly affected likely due to the distortion of the local O coordination surrounding a V ion. The observed variation of the spectra in films of different morphologies may reflect the changes of the density of states responsible for the considerable variation of the metal-insulator transition (MIT) properties reported for VO2 thin films synthesized at different conditions. The study of the temperature dependence of the XAS spectra including repeated measurements across the MIT revealed both reversible and irreversible V L-edge and O K-edge changes. The thermal cycling of the VO2 films through the MIT shows irreversible shifts of the conduction bands toward lower photon energies apparently caused by the sample deterioration due to the lattice transformations at the MIT. The signature of a phase transition in a VO2 film at MIT temperature (T-MIT) is clearly seen in the XAS O K-edge spectra which show reversible switches of the 3d(pi) and 3d(sigma) bandwidths by approximately 20% depending on the sample being above or below T-MIT. C1 Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Ruzmetov, D (reprint author), Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. EM shriram@seas.harvard.edu RI Senanayake, Sanjaya/D-4769-2009 OI Senanayake, Sanjaya/0000-0003-3991-4232 NR 0 TC 51 Z9 54 U1 1 U2 46 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 19 AR 195102 DI 10.1103/PhysRevB.75.195102 PG 7 WC Physics, Condensed Matter SC Physics GA 173RS UT WOS:000246890800031 ER PT J AU Savici, AT Zaliznyak, IA Gu, GD Erwin, R AF Savici, A. T. Zaliznyak, I. A. Gu, G. D. Erwin, R. TI Stripeless incommensurate magnetism in strongly correlated oxide La1.5Sr0.5CoO4 SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; TRANSITION-METAL OXIDES; RESOLUTION FUNCTION; NEUTRON-SCATTERING; PHYSICS; CHARGE; ORDER; SPINS; HOLES; FLUCTUATIONS AB We studied the nanoscale structure of the short-range incommensurate magnetic order in La1.5Sr0.5CoO4 by elastic neutron scattering. We find that magnetic diffuse scattering is isotropic in the a-b plane, in contrast with the naive expectation based on the popular stripe model. Indeed, charge segregation into lines favoring certain lattice direction(s) would facilitate linear stacking faults in an otherwise robust antiferromagnetism of undoped material, leading to anisotropic disorder with a characteristic symmetry pattern present in the neutron scattering data. C1 Brookhaven Natl Lab, DCMPMS, Upton, NY 11973 USA. Natl Inst Stand & Technol, NCNR, Gaithersburg, MD 20899 USA. RP Savici, AT (reprint author), Brookhaven Natl Lab, DCMPMS, Upton, NY 11973 USA. RI Gu, Genda/D-5410-2013; Savici, Andrei/F-2790-2013; Zaliznyak, Igor/E-8532-2014 OI Gu, Genda/0000-0002-9886-3255; Savici, Andrei/0000-0001-5127-8967; Zaliznyak, Igor/0000-0002-9886-3255 NR 44 TC 17 Z9 17 U1 1 U2 6 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 18 AR 184443 DI 10.1103/PhysRevB.75.184443 PG 7 WC Physics, Condensed Matter SC Physics GA 173RQ UT WOS:000246890600081 ER PT J AU Siu, MS Weinstein, M AF Siu, M. Stewart Weinstein, Marvin TI Exploring contractor renormalization: Perspectives and tests on the two-dimensional Heisenberg antiferromagnet SO PHYSICAL REVIEW B LA English DT Article ID LATTICE; MODEL AB Contractor renormalization (CORE) is a numerical renormalization method for Hamiltonian systems that has found applications in particle and condensed matter physics. There have been few studies, however, on further understanding of what exactly it does and its convergence properties. The current work has two main objectives. First, we wish to investigate the convergence of the cluster expansion for a two-dimensional Heisenberg antiferromagnet. This is important because the linked cluster expansion used to evaluate this formula nonperturbatively is not controlled by a small parameter. Here we present a study of three different blocking schemes which reveals some surprises and, in particular, leads us to suggest a scheme for defining successive terms in the cluster expansion. Our second goal is to present some new perspectives on CORE in light of recent developments to make it accessible to more researchers, including those in quantum information science. We make some comparison to entanglement-based approaches and discuss how it may be possible to improve or generalize the method. C1 Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Siu, MS (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. EM msiu@stanford.edu; niv@slac.stanford.edu NR 45 TC 12 Z9 12 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 18 AR 184403 DI 10.1103/PhysRevB.75.184403 PG 12 WC Physics, Condensed Matter SC Physics GA 173RQ UT WOS:000246890600041 ER PT J AU Suewattana, M Singh, DJ Fornari, M AF Suewattana, M. Singh, D. J. Fornari, M. TI Density functional calculations and analysis of the crystal structure of Pb2P2O7 SO PHYSICAL REVIEW B LA English DT Article ID LEAD PYROPHOSPHATE; PHOSPHATE; PBZRO3; STATE; GLASS AB Density functional calculations of the atomic coordinates in crsytalline lead pyrophosphate (Pb2P2O7) are reported. These calculations yield atomic positions differing from a prior x-ray refinement by up to 0.2 A. The main difference is a change in the orientation of the (P2O7)(4-) units to bring certain O ions closer to Pb. An analysis of the resulting structure in terms of pair distribution functions is presented. These show that the most significant changes are in the local Pb coordination. The electronic structure is not significantly affected by the change in crystal structure. C1 Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. RP Suewattana, M (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI Fornari, Marco/C-8848-2012; Singh, David/I-2416-2012 OI Fornari, Marco/0000-0001-6527-8511; NR 22 TC 4 Z9 4 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 17 AR 172105 DI 10.1103/PhysRevB.75.172105 PG 4 WC Physics, Condensed Matter SC Physics GA 173RP UT WOS:000246890500005 ER PT J AU Tang, MB Bai, HY Wang, WH Bogdanov, D Winzer, K Samwer, K Egami, T AF Tang, M. B. Bai, H. Y. Wang, W. H. Bogdanov, D. Winzer, K. Samwer, K. Egami, T. TI Heavy-fermion behavior in cerium-based metallic glasses SO PHYSICAL REVIEW B LA English DT Article ID LIQUID BEHAVIOR; STRUCTURAL RELAXATION; AMORPHOUS SOLIDS; DISORDER; UCU5-XPDX; SYSTEMS; ALLOYS AB We report the observation of the heavy-fermion behavior in the cerium-based bulk metallic glasses with an inherent strong structural disorder. The heavy-fermion behavior in the glasses with 4f electrons shows unique features not found in crystalline materials. The distribution of the f levels due to structural disorder produces internal variation from the Kondo regime to the valence fluctuation regime, with the heavy-fermion behavior at the crossover. The glasses might provide a model system to investigate some longstanding issues with electron strong correlation in complex solids. C1 Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China. Univ Gottingen, Phys Inst 1, D-37077 Gottingen, Germany. Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN USA. Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Bai, HY (reprint author), Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China. EM hybai@aphy.iphy.ac.cn NR 31 TC 28 Z9 33 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 17 AR 172201 DI 10.1103/PhysRevB.75.172201 PG 4 WC Physics, Condensed Matter SC Physics GA 173RP UT WOS:000246890500010 ER PT J AU Tejeda, A Wimmer, E Soukiassian, P Dunham, D Rotenberg, E Denlinger, JD Michel, EG AF Tejeda, A. Wimmer, E. Soukiassian, P. Dunham, D. Rotenberg, E. Denlinger, J. D. Michel, E. G. TI Atomic structure determination of the 3C-SiC(001) c(4x2) surface reconstruction: Experiment and theory SO PHYSICAL REVIEW B LA English DT Article ID ENERGY ELECTRON-DIFFRACTION; AUGMENTED-WAVE METHOD; PHOTOELECTRON DIFFRACTION; BETA-SIC(100) SURFACE; X-RAY; SILICON-CARBIDE; X-2) SURFACE; TEMPERATURE; MICROSCOPY; DIMERS AB The structure of the Si-terminated 3C-SiC(001)-c(4x2) surface reconstruction is determined using synchrotron-radiation-based x-ray photoelectron diffraction from the Si 2p and C 1s core levels. Only the alternating up-and-down dimer (AUDD) model reproduces satisfactorily the experimental results. The refinement of the AUDD model leads to a height difference of (0.4 +/- 0.1) A between the up and down Si-Si dimers. Also, the top and bottom dimers have alternating bond lengths at (2.5 +/- 0.2) A and (2.2 +/- 0.2) A, respectively. These results are in excellent agreement with ab initio density-functional calculations, which also further support the high sensitivity of this reconstruction on lateral strain and on the presence of defects. Finally, beyond well-established synchrotron-radiation-based core-level photoemission spectroscopy, an assignment is made on the structural origin of each Si 2p surface and subsurface shifted component, based on their different photoelectron diffraction patterns. C1 Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain. Univ Autonoma Madrid, Inst Nicolas Cabrera, E-28049 Madrid, Spain. CEA, Lab SIMA, DSM, DRECAM SPCSI, F-91191 Gif Sur Yvette, France. Univ Paris 11, Dept Phys, F-91405 Orsay, France. Mat Design Inc, F-72000 Le Mans, France. Mat Design Inc, Angel Fire, NM 87710 USA. No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. Univ Wisconsin, Dept Phys, Eau Claire, WI 54702 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Tejeda, A (reprint author), Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain. RI Rotenberg, Eli/B-3700-2009; Michel, Enrique/A-1545-2008; Tejeda, Antonio/C-4711-2014 OI Rotenberg, Eli/0000-0002-3979-8844; Michel, Enrique/0000-0003-4207-7658; Tejeda, Antonio/0000-0003-0125-4603 NR 61 TC 12 Z9 12 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 19 AR 195315 DI 10.1103/PhysRevB.75.195315 PG 13 WC Physics, Condensed Matter SC Physics GA 173RS UT WOS:000246890800095 ER PT J AU Tsvelik, AM AF Tsvelik, A. M. TI Evidence for the PSL(2 vertical bar 2) Wess-Zumino-Novikov-Witten model as a model for the plateau transition in the quantum Hall effect: Evaluation of numerical simulations SO PHYSICAL REVIEW B LA English DT Article ID POINT-CONTACT CONDUCTANCES; SIGMA-MODEL; FIELD-THEORY; CHAINS AB In this paper, I revise arguments in favor of the PSL(2 parallel to 2) Wess-Zumino-Novikov-Witten (WZNW) model as a theory of the plateau transition in integer quantum Hall effect. I show that all available numerical data (including the correlation length exponent nu) are consistent with the predictions of such WZNW model with the level k=8. C1 Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Tsvelik, AM (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. NR 19 TC 15 Z9 15 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 18 AR 184201 DI 10.1103/PhysRevB.75.184201 PG 5 WC Physics, Condensed Matter SC Physics GA 173RQ UT WOS:000246890600026 ER PT J AU Tuomisto, F Pelli, A Yu, KM Walukiewicz, W Schaff, WJ AF Tuomisto, F. Pelli, A. Yu, K. M. Walukiewicz, W. Schaff, W. J. TI Compensating point defects in (4)He(+)-irradiated InN SO PHYSICAL REVIEW B LA English DT Article ID MOLECULAR-BEAM EPITAXY; FUNDAMENTAL-BAND GAP; ALLOYS; SEMICONDUCTORS; ENERGY AB We use positron annihilation spectroscopy to study 2 MeV (4)He(+)-irradiated InN grown by molecular-beam epitaxy and GaN grown by metal-organic chemical-vapor deposition. In GaN, the Ga vacancies act as important compensating centers in the irradiated material, introduced at a rate of 3600 cm(-1). The In vacancies are introduced at a significantly lower rate of 100 cm(-1), making them negligible in the compensation of the irradiation-induced additional n-type conductivity in InN. On the other hand, negative non-open volume defects are introduced at a rate higher than 2000 cm(-1). These defects are tentatively attributed to interstitial nitrogen and may ultimately limit the free-electron concentration at high irradiation fluences. C1 Helsinki Univ Technol, Phys Lab, FIN-02015 Helsinki, Finland. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. Cornell Univ, Dept Elect & Comp Engn, Ithaca, NY 14853 USA. RP Tuomisto, F (reprint author), Helsinki Univ Technol, Phys Lab, POB 1100, FIN-02015 Helsinki, Finland. EM filip.tuomisto@tkk.fi RI Tuomisto, Filip/B-8189-2008; Yu, Kin Man/J-1399-2012 OI Tuomisto, Filip/0000-0002-6913-5654; Yu, Kin Man/0000-0003-1350-9642 NR 19 TC 36 Z9 36 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 19 AR 193201 DI 10.1103/PhysRevB.75.193201 PG 4 WC Physics, Condensed Matter SC Physics GA 173RS UT WOS:000246890800005 ER PT J AU Wang, LW Cartoixa, X AF Wang, Lin-Wang Cartoixa, Xavier TI Motif-based polarization model: Calculations of the dielectric function and polarization in large nanostructures SO PHYSICAL REVIEW B LA English DT Article ID CLAUSIUS-MOSSOTTI; CONSTANT; SILICON AB We present a microscopic polarization model based on localized polarization motifs. We show that this Clausius-Mossotti-like polarization model [J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975)] works well for polarizations and dielectric functions of bulk solids and nanostructures when compared with direct ab initio calculations. This method enables us to self-consistently calculate the electronic structures of thousand-atom nanosystems when net charges and/or long-range electric fields are present. C1 Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Wang, LW (reprint author), Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. EM lwwang@lbl.gov NR 17 TC 3 Z9 3 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 20 AR 205334 DI 10.1103/PhysRevB.75.205334 PG 5 WC Physics, Condensed Matter SC Physics GA 173RT UT WOS:000246890900091 ER PT J AU Wang, YD Brown, DW Choo, H Liaw, PK Cong, DY Benson, ML Zuo, L AF Wang, Y. D. Brown, D. W. Choo, H. Liaw, P. K. Cong, D. Y. Benson, M. L. Zuo, L. TI Experimental evidence of stress-field-induced selection of variants in Ni-Mn-Ga ferromagnetic shape-memory alloys SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC-FIELD; SINGLE-CRYSTALS; PHASE TRANSFORMATION; MARTENSITE; NI2MNGA; STABILIZATION; TEMPERATURE; STRAIN AB The in situ time-of-flight neutron-diffraction measurements captured well the martensitic transformation behavior of the Ni-Mn-Ga ferromagnetic shape-memory alloys under uniaxial stress fields. We found that a small uniaxial stress applied during phase transformation dramatically disturbed the distribution of variants in the product phase. The observed changes in the distributions of variants may be explained by considering the role of the minimum distortion energy of the Bain transformation in the effective partition among the variants belonging to the same orientation of parent phase. It was also found that transformation kinetics under various stress fields follows the scale law. The present investigations provide the fundamental approach for scaling the evolution of microstructures in martensitic transitions, which is of general interest to the condensed matter community. C1 Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Northeastern Univ, Minist Educ, Key Lab Anisotropy & Texture Mat, Shenyang 110004, Peoples R China. Los Alamos Natl Lab, Los Alamos Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Wang, YD (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM ydwang@mail.neu.edu.cn RI wang, yandong/G-9404-2013; Choo, Hahn/A-5494-2009; Cong, Daoyong/D-8357-2011 OI Choo, Hahn/0000-0002-8006-8907; NR 24 TC 14 Z9 15 U1 0 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 17 AR 174404 DI 10.1103/PhysRevB.75.174404 PG 5 WC Physics, Condensed Matter SC Physics GA 173RP UT WOS:000246890500070 ER PT J AU Yang, L Spataru, CD Louie, SG Chou, MY AF Yang, Li Spataru, Catalin D. Louie, Steven G. Chou, M. Y. TI Enhanced electron-hole interaction and optical absorption in a silicon nanowire SO PHYSICAL REVIEW B LA English DT Article ID SEMICONDUCTOR NANOWIRES; CARBON NANOTUBES; BUILDING-BLOCKS; EXCITATIONS; RESONANCES; EXCITONS; SPECTRA; DEVICES; GAPS AB We present a first-principles study of the correlated electron-hole states in a silicon nanowire of a diameter of 1.2 nm and their influence on the optical absorption spectrum. The quasiparticle states are calculated employing a many-body Green's function approach within the GW approximation to the electron self-energy, and the effects of the electron-hole interaction to optical excitations are evaluated by solving the Bethe-Salpeter equation. The enhanced Coulomb interaction in this confined geometry results in an unusually large binding energy (1-1.5 eV) for the excitons, which dominate the optical absorption spectrum. C1 Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA. RP Yang, L (reprint author), Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. RI Chou, Mei-Yin/D-3898-2012 NR 28 TC 48 Z9 49 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 20 AR 201304 DI 10.1103/PhysRevB.75.201304 PG 4 WC Physics, Condensed Matter SC Physics GA 173RT UT WOS:000246890900007 ER PT J AU Yates, JR Wang, XJ Vanderbilt, D Souza, I AF Yates, Jonathan R. Wang, Xinjie Vanderbilt, David Souza, Ivo TI Spectral and Fermi surface properties from Wannier interpolation SO PHYSICAL REVIEW B LA English DT Article ID P PERTURBATION-THEORY; HALL-COEFFICIENT; METALS; QUANTITIES AB We present an efficient first-principles approach for calculating Fermi surface averages and spectral properties of solids, and use it to compute the low-field Hall coefficient of several cubic metals and the magnetic circular dichroism of iron. The first step is to perform a conventional first-principles calculation and store the low-lying Bloch functions evaluated on a uniform grid of k points in the Brillouin zone. We then map those states onto a set of maximally localized Wannier functions, and evaluate the matrix elements of the Hamiltonian and the other needed operators between the Wannier orbitals, thus setting up an "exact tight-binding model." In this compact representation the k-space quantities are evaluated inexpensively using a generalized Slater-Koster interpolation. Owing to the strong localization of the Wannier orbitals in real space, the smoothness and accuracy of the k-space interpolation increases rapidly with the number of grid points originally used to construct the Wannier functions. This allows k-space integrals to be performed with ab initio accuracy at low cost. In the Wannier representation, band gradients, effective masses, and other k derivatives needed for transport and optical coefficients can be evaluated analytically, producing numerically stable results even at band crossings and near weak avoided crossings. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Yates, JR (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Yates, Jonathan/E-7339-2010; OI Vanderbilt, David/0000-0002-2465-9091 NR 35 TC 99 Z9 99 U1 3 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 19 AR 195121 DI 10.1103/PhysRevB.75.195121 PG 11 WC Physics, Condensed Matter SC Physics GA 173RS UT WOS:000246890800050 ER PT J AU Zhang, WX Dobrovitski, VV Santos, LF Viola, L Harmon, BN AF Zhang, Wenxian Dobrovitski, V. V. Santos, Lea F. Viola, Lorenza Harmon, B. N. TI Dynamical control of electron spin coherence in a quantum dot: A theoretical study SO PHYSICAL REVIEW B LA English DT Article ID SYSTEMS; NUCLEI AB We investigate the performance of dynamical decoupling methods at suppressing electron spin decoherence from a low-temperature nuclear spin reservoir in a quantum dot. The controlled dynamics is studied through exact numerical simulation, with emphasis on realistic pulse delays and the long-time limit. Our results show that optimal performance for this system is attained by a periodic protocol exploiting concatenated design, with control rates substantially slower than expected from the upper spectral cutoff of the bath. For a known initial electron spin state, coherence can saturate at long times, signaling the creation of a stable "spin-locked" decoherence-free subspace. Analytical insight into saturation is obtained for a simple echo protocol, in good agreement with numerical results. C1 Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. RP Zhang, WX (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Zhang, Wenxian/A-4274-2010; Santos, Lea/D-5332-2012 OI Santos, Lea/0000-0001-9400-2709 NR 46 TC 41 Z9 41 U1 1 U2 8 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 20 AR 201302 DI 10.1103/PhysRevB.75.201302 PG 4 WC Physics, Condensed Matter SC Physics GA 173RT UT WOS:000246890900005 ER PT J AU Zhao, YS Zhang, JZ Brown, DW Korzekwa, DR Hixson, RS Wang, LP AF Zhao, Yusheng Zhang, Jianzhong Brown, Donald W. Korzekwa, Deniece R. Hixson, Robert S. Wang, Liping TI Equations of state and phase transformation of depleted uranium DU-238 by high pressure-temperature diffraction studies SO PHYSICAL REVIEW B LA English DT Article ID THERMAL EQUATION; OF-STATE; ALPHA-URANIUM AB We have conducted in situ high-pressure diffraction experiments on depleted uranium (DU-238) at pressures up to 8.5 GPa and temperatures up to 1123 K. From the pressure (P)-volume (V)-temperature (T) measurements, thermoelastic parameters were derived for alpha-uranium based on a modified high-T Birch-Murnaghan equation of state and a thermal-pressure approach. With the pressure derivative of the bulk modulus K-0(') fixed at 4.0, we obtained ambient bulk modulus K-0=117(2) GPa, temperature derivative of bulk modulus at constant pressure (partial derivative K/partial derivative T)(P)=-3.4(4)x10(-2) GPa/K and at constant volume (partial derivative K/partial derivative T)(v)=-1.1(6)x10(-2) GPa/K, volumetric thermal expansivity alpha(T)=a+bT, with a=1.2(+/- 0.4)x10(-5) K-1 and b=8.0(+/- 0.7)x10(-8) K-2, and the pressure derivative of thermal expansion (partial derivative alpha/partial derivative P)(T)=-2.5(5)x10(-6) GPa(-1) K-1. Within the experimental errors, the ambient bulk modulus and volumetric thermal expansion derived from this work are in good agreement with previous experimental results, whereas all other thermoelastic parameters represent the first determinations for the alpha phase of uranium. We also studied the alpha-gamma phase transformation and obtained a phase boundary described by T (in K)=1032+7.4P (in GPa). Although the gamma-phase uranium cannot be pressure quenched to ambient conditions, it was observed to be stable upon cooling from 1123 to 300 K at pressures of 7-8 GPa. These observations indicate that pressure, in addition to the commonly utilized alloying techniques, provides an alternative route for stabilizing the gamma-uranium at room temperature. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. SUNY Stony Brook, COMPRES, Stony Brook, NY 11794 USA. RP Zhao, YS (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RI Lujan Center, LANL/G-4896-2012; OI Zhang, Jianzhong/0000-0001-5508-1782 NR 22 TC 6 Z9 6 U1 0 U2 6 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2007 VL 75 IS 17 AR 174104 DI 10.1103/PhysRevB.75.174104 PG 7 WC Physics, Condensed Matter SC Physics GA 173RP UT WOS:000246890500032 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Anderson, BD Arkhipkin, D Averichev, GS Bai, Y Balewski, J Barannikova, O Barnby, LS Baudot, J Baumgart, S Bekele, S Belaga, VV Bellingeri-Laurikainen, A Bellwied, R Benedosso, F Betts, RR Bhardwaj, S Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Bland, LC Blyth, SL Bombara, M Bonner, BE Botje, M Bouchet, J Brandin, AV Bravar, A Burton, TP Bystersky, M Cadman, RV Cai, XZ Caines, H Sanchez, MCDL Callner, J Castillo, J Catu, O Cebra, D Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Cheng, J Cherney, M Chikanian, A Christie, W Chung, SU Coffin, JP Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Das, S Dash, S Daugherity, M de Moura, MM Dedovich, TG DePhillips, M Derevschikov, AA Didenko, L Dietel, T Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Du, F Dunin, VB Dunlop, JC Mazumdar, MRD Eckardt, V Edwards, WR Efimov, LG Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Fachini, P Fatemi, R Fedorisin, J Filimonov, K Filip, P Finch, E Fine, V Fisyak, Y Fu, J Gagliardi, CA Gaillard, L Ganti, MS Garcia-Solis, E Ghazikhanian, V Ghosh, P Gorbunov, YG Gos, H Grebenyuk, O Grosnick, D Guertin, SM Guimaraes, KSFF Gupta, N Haag, B Hallman, TJ Hamed, A Harris, JW He, W Heinz, M Henry, TW Hepplemann, S Hippolyte, B Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Hofman, D Hollis, R Horner, MJ Huang, HZ Huang, SL Hughes, EW Humanic, TJ Igo, G Iordanova, A Jacobs, P Jacobs, WW Jakl, P Jia, F Jones, PG Judd, EG Kabana, S Kang, K Kapitan, J Kaplan, M Keane, D Kechechyan, A Kettler, D Khodyrev, VY Kim, BC Kiryluk, J Kisiel, A Kislov, EM Klein, SR Knospe, AG Kocoloski, A Koetke, DD Kollegger, T Kopytine, M Kotchenda, L Kouchpil, V Kowalik, KL Kravtsov, P Kravtsov, VI Krueger, K Kuhn, C Kulikov, AI Kumar, A Kurnadi, P Kuznetsov, AA Lamont, MAC Landgraf, JM Lange, S LaPointe, S Laue, F Lauret, J Lebedev, A Lednicky, R Lee, CH Lehocka, S LeVine, MJ Li, C Li, Q Li, Y Lin, G Lin, X Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Liu, L Liu, Z Ljubicic, T Llope, WJ Long, H Longacre, RS Love, WA Lu, Y Ludlam, T Lynn, D Ma, GL Ma, JG Ma, YG Magestro, D Mahapatra, DP Majka, R Mangotra, LK Manweiler, R Margetis, S Markert, C Martin, L Matis, HS Matulenko, YA McClain, CJ McShane, TS Melnick, Y Meschanin, A Millane, J Miller, ML Minaev, NG Mioduszewski, S Mironov, C Mischke, A Mishra, DK Mitchell, J Mohanty, B Molnar, L Moore, CF Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Nepali, C Netrakanti, PK Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okorokov, V Oldenburg, M Olson, D Pachr, M Pal, SK Panebratsev, Y Pavlinov, AI Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Planinic, M Pluta, J Poljak, N Porile, N Porter, J Poskanzer, AM Potekhin, M Potrebenikova, E Potukuchi, BVKS Prindle, D Pruneau, C Putschke, J Qattan, IA Rakness, G Raniwala, R Raniwala, S Ray, RL Razin, SV Reinnarth, J Relyea, D Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Sahoo, R Sakuma, T Salur, S Sandweiss, J Sarsour, M Sazhin, PS Schambach, J Scharenberg, RP Schmitz, N Schweda, K Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shen, WQ Shimanskiy, SS Sichtermann, EP Simon, F Singaraju, RN Smirnov, N Snellings, R Sorensen, P Sowinski, J Speltz, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Staszak, D Stock, R Stolpovsky, A Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sugarbaker, E Sumbera, M Sun, Z Surrow, B Swanger, M Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tarnowsky, T Thomas, JH Timmins, AR Timoshenko, S Tokarev, M Trainor, TA Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van der Kolk, N van Leeuwen, M Vander Molen, AM Varma, R Vasilevski, IM Vasiliev, AN Vernet, R Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Waggoner, WT Wang, F Wang, G Wang, JS Wang, XL Wang, Y Watson, JW Webb, JC Westfall, GD Wetzler, A Whitten, C Wieman, H Wissink, SW Witt, R Wu, J Xu, N Xu, QH Xu, Z Yepes, P Yoo, IK Yurevich, VI Zhan, W Zhang, H Zhang, WM Zhang, Y Zhang, ZP Zhao, Y Zhong, C Zhou, J Zoulkarneev, R Zoulkarneeva, Y Zubarev, AN Zuo, JX AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Bai, Y. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Baumgart, S. Bekele, S. Belaga, V. V. Bellingeri-Laurikainen, A. Bellwied, R. Benedosso, F. Betts, R. R. Bhardwaj, S. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Bland, L. C. Blyth, S-L. Bombara, M. Bonner, B. E. Botje, M. Bouchet, J. Brandin, A. V. Bravar, A. Burton, T. P. Bystersky, M. Cadman, R. V. Cai, X. Z. Caines, H. Sanchez, M. Calderon de la Barca Callner, J. Castillo, J. Catu, O. Cebra, D. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Cheng, J. Cherney, M. Chikanian, A. Christie, W. Chung, S. U. Coffin, J. P. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Das, S. Dash, S. Daugherity, M. de Moura, M. M. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. Didenko, L. Dietel, T. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Du, F. Dunin, V. B. Dunlop, J. C. Mazumdar, M. R. Dutta Eckardt, V. Edwards, W. R. Efimov, L. G. Emelianov, V. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Fachini, P. Fatemi, R. Fedorisin, J. Filimonov, K. Filip, P. Finch, E. Fine, V. Fisyak, Y. Fu, J. Gagliardi, C. A. Gaillard, L. Ganti, M. S. Garcia-Solis, E. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. G. Gos, H. Grebenyuk, O. Grosnick, D. Guertin, S. M. Guimaraes, K. S. F. F. Gupta, N. Haag, B. Hallman, T. J. Hamed, A. Harris, J. W. He, W. Heinz, M. Henry, T. W. Hepplemann, S. Hippolyte, B. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Hofman, D. Hollis, R. Horner, M. J. Huang, H. Z. Huang, S. L. Hughes, E. W. Humanic, T. J. Igo, G. Iordanova, A. Jacobs, P. Jacobs, W. W. Jakl, P. Jia, F. Jones, P. G. Judd, E. G. Kabana, S. Kang, K. Kapitan, J. Kaplan, M. Keane, D. Kechechyan, A. Kettler, D. Khodyrev, V. Yu. Kim, B. C. Kiryluk, J. Kisiel, A. Kislov, E. M. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kollegger, T. Kopytine, M. Kotchenda, L. Kouchpil, V. Kowalik, K. L. Kravtsov, P. Kravtsov, V. I. Krueger, K. Kuhn, C. Kulikov, A. I. Kumar, A. Kurnadi, P. Kuznetsov, A. A. Lamont, M. A. C. Landgraf, J. M. Lange, S. LaPointe, S. Laue, F. Lauret, J. Lebedev, A. Lednicky, R. Lee, C-H. Lehocka, S. LeVine, M. J. Li, C. Li, Q. Li, Y. Lin, G. Lin, X. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Liu, L. Liu, Z. Ljubicic, T. Llope, W. J. Long, H. Longacre, R. S. Love, W. A. Lu, Y. Ludlam, T. Lynn, D. Ma, G. L. Ma, J. G. Ma, Y. G. Magestro, D. Mahapatra, D. P. Majka, R. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Martin, L. Matis, H. S. Matulenko, Yu. A. McClain, C. J. McShane, T. S. Melnick, Yu. Meschanin, A. Millane, J. Miller, M. L. Minaev, N. G. Mioduszewski, S. Mironov, C. Mischke, A. Mishra, D. K. Mitchell, J. Mohanty, B. Molnar, L. Moore, C. F. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Nepali, C. Netrakanti, P. K. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okorokov, V. Oldenburg, M. Olson, D. Pachr, M. Pal, S. K. Panebratsev, Y. Pavlinov, A. I. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Planinic, M. Pluta, J. Poljak, N. Porile, N. Porter, J. Poskanzer, A. M. Potekhin, M. Potrebenikova, E. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Putschke, J. Qattan, I. A. Rakness, G. Raniwala, R. Raniwala, S. Ray, R. L. Razin, S. V. Reinnarth, J. Relyea, D. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Sahoo, R. Sakuma, T. Salur, S. Sandweiss, J. Sarsour, M. Sazhin, P. S. Schambach, J. Scharenberg, R. P. Schmitz, N. Schweda, K. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shen, W. Q. Shimanskiy, S. S. Sichtermann, E. P. Simon, F. Singaraju, R. N. Smirnov, N. Snellings, R. Sorensen, P. Sowinski, J. Speltz, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Staszak, D. Stock, R. Stolpovsky, A. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sugarbaker, E. Sumbera, M. Sun, Z. Surrow, B. Swanger, M. Symons, T. J. M. de Toledo, A. Szanto Takahashi, J. Tang, A. H. Tarnowsky, T. Thomas, J. H. Timmins, A. R. Timoshenko, S. Tokarev, M. Trainor, T. A. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van der Kolk, N. van Leeuwen, M. Vander Molen, A. M. Varma, R. Vasilevski, I. M. Vasiliev, A. N. Vernet, R. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Waggoner, W. T. Wang, F. Wang, G. Wang, J. S. Wang, X. L. Wang, Y. Watson, J. W. Webb, J. C. Westfall, G. D. Wetzler, A. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wu, J. Xu, N. Xu, Q. H. Xu, Z. Yepes, P. Yoo, I-K. Yurevich, V. I. Zhan, W. Zhang, H. Zhang, W. M. Zhang, Y. Zhang, Z. P. Zhao, Y. Zhong, C. Zhou, J. Zoulkarneev, R. Zoulkarneeva, Y. Zubarev, A. N. Zuo, J. X. CA STAR Collaboration TI Mass, quark-number, and root s(NN) dependence of the second and fourth flow harmonics in ultrarelativistic nucleus-nucleus collisions SO PHYSICAL REVIEW C LA English DT Article ID ELLIPTIC FLOW; ANISOTROPIC FLOW; PARTICLE IDENTIFICATION; SIGNATURE; STAR AB We present STAR measurements of the azimuthal anisotropy parameter v(2) for pions, kaons, protons, Lambda,(Lambda) over bar,Xi+ (Xi) over bar, and Omega+ (Omega) over bar, along with v(4) for pions, kaons, protons, and Lambda+(Lambda) over bar at midrapidity for Au+Au collisions at root s(NN)=62.4 and 200 GeV. The v(2)(p(T)) values for all hadron species at 62.4 GeV are similar to those observed in 130 and 200 GeV collisions. For observed kinematic ranges, v(2) values at 62.4, 130, and 200 GeV are as little as 10-15% larger than those in Pb+Pb collisions at root s(NN)=17.3 GeV. At intermediate transverse momentum (p(T) from 1.5-5 GeV/c), the 62.4 GeV v(2)(p(T)) and v(4)(p(T)) values are consistent with the quark-number scaling first observed at 200 GeV. A four-particle cumulant analysis is used to assess the nonflow contributions to pions and protons and some indications are found for a smaller nonflow contribution to protons than pions. Baryon v(2) is larger than antibaryon v(2) at 62.4 and 200 GeV, perhaps indicating either that the initial spatial net-baryon distribution is anisotropic, that the mechanism leading to transport of baryon number from beam- to midrapidity enhances v(2) or that antibaryon and baryon annihilation is larger in the in-plane direction. C1 Yale Univ, New Haven, CT 06520 USA. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Illinois, Chicago, IL USA. Creighton Univ, Omaha, NE 68178 USA. Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. JINR, Lab High Energy, Dubna, Russia. JINR, Particle Phys Lab, Dubna, Russia. Goethe Univ Frankfurt, D-6000 Frankfurt, Germany. Inst Phys, Bhubaneswar 751005, Orissa, India. Indian Inst Technol, Bombay 400076, Maharashtra, India. Indiana Univ, Bloomington, IN 47408 USA. Inst Rech Subatom, Strasbourg, France. Univ Jammu, Jammu 180001, India. Kent State Univ, Kent, OH 44242 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Inst Modern Phys, Lanzhou, Peoples R China. MIT, Cambridge, MA 02139 USA. Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. Michigan State Univ, E Lansing, MI 48824 USA. Moscow Engn Phys Inst, Moscow 115409, Russia. CUNY City Coll, New York, NY 10031 USA. NIKHEF H, NL-1009 DB Amsterdam, Netherlands. Univ Utrecht, Utrecht, Netherlands. Ohio State Univ, Columbus, OH 43210 USA. Panjab Univ, Chandigarh 160014, India. Penn State Univ, University Pk, PA 16802 USA. Inst High Energy Phys, Protvino, Russia. Purdue Univ, W Lafayette, IN 47907 USA. Pusan Natl Univ, Pusan 609735, South Korea. Univ Rajasthan, Jaipur 302004, Rajasthan, India. Rice Univ, Houston, TX 77251 USA. Univ Sao Paulo, Sao Paulo, Brazil. Univ Sci & Technol China, Hefei 230026, Peoples R China. Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. SUBATECH, Nantes, France. Texas A&M Univ, College Stn, TX 77843 USA. Univ Texas, Austin, TX 78712 USA. Tsinghua Univ, Beijing 100084, Peoples R China. Valparaiso Univ, Valparaiso, IN 46383 USA. Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. Warsaw Univ Technol, Warsaw, Poland. Univ Washington, Seattle, WA 98195 USA. Wayne State Univ, Detroit, MI 48201 USA. HZNU, CCNU, Inst Particle Phys, Wuhan 430079, Peoples R China. Univ Zagreb, HR-10002 Zagreb, Croatia. Argonne Natl Lab, Argonne, IL 60439 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Univ Birmingham, Birmingham, W Midlands, England. CALTECH, Pasadena, CA 91125 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. RP Abelev, BI (reprint author), Yale Univ, New Haven, CT 06520 USA. RI Planinic, Mirko/E-8085-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Castillo Castellanos, Javier/G-8915-2013; Voloshin, Sergei/I-4122-2013; Lednicky, Richard/K-4164-2013; Dong, Xin/G-1799-2014; Cosentino, Mauro/L-2418-2014; Sumbera, Michal/O-7497-2014; Barnby, Lee/G-2135-2010; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Strikhanov, Mikhail/P-7393-2014; Dogra, Sunil /B-5330-2013; Fornazier Guimaraes, Karin Silvia/H-4587-2016; Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Suaide, Alexandre/L-6239-2016; van der Kolk, Naomi/M-9423-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; OI Peitzmann, Thomas/0000-0002-7116-899X; Castillo Castellanos, Javier/0000-0002-5187-2779; Dong, Xin/0000-0001-9083-5906; Cosentino, Mauro/0000-0002-7880-8611; Sumbera, Michal/0000-0002-0639-7323; Barnby, Lee/0000-0001-7357-9904; Takahashi, Jun/0000-0002-4091-1779; Strikhanov, Mikhail/0000-0003-2586-0405; Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Nattrass, Christine/0000-0002-8768-6468; Suaide, Alexandre/0000-0003-2847-6556; van der Kolk, Naomi/0000-0002-8670-0408; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Mohanty, Bedangadas/0000-0001-9610-2914; Bhasin, Anju/0000-0002-3687-8179; Qattan, Issam/0000-0001-5079-9840 NR 55 TC 89 Z9 92 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2007 VL 75 IS 5 AR 054906 DI 10.1103/PhysRevC.75.054906 PG 11 WC Physics, Nuclear SC Physics GA 173RV UT WOS:000246891100058 ER PT J AU Adler, SS Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Al-Jamel, A Alexander, J Aoki, K Aphecetche, L Armendariz, R Aronson, SH Averbeck, R Awes, TC Babintsev, V Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Bathe, S Batsouli, S Baublis, V Bauer, F Bazilevsky, A Belikov, S Bjorndal, MT Boissevain, JG Borel, H Brooks, ML Brown, DS Bruner, N Bucher, D Buesching, H Bumazhnov, V Bunce, G Burward-Hoy, JM Butsyk, S Camard, X Chand, P Chang, WC Chernichenko, S Chi, CY Chiba, J Chiu, M Choi, IJ Choudhury, RK Chujo, T Cianciolo, V Cobigo, Y Cole, BA Comets, MP Constantin, P Csanad, M Csorgo, T Cussonneau, JP d'Enterria, D Das, K David, G Deak, F Delagrange, H Denisov, A Deshpande, A Desmond, EJ Devismes, A Dietzsch, O Drachenberg, JL Drapier, O Drees, A Durum, A Dutta, D Dzhordzhadze, V Efremenko, YV En'yo, H Espagnon, B Esumi, S Fields, DE Finck, C Fleuret, F Fokin, SL Fox, BD Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fukao, Y Fung, SY Gadrat, S Germain, M Glenn, A Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gustafsson, HA Hachiya, T Haggerty, JS Hamagaki, H Hansen, AG Hartouni, EP Harvey, M Hasuko, K Hayano, R He, X Heffner, M Hemmick, TK Heuser, JM Hidas, P Hiejima, H Hill, JC Hobbs, R Holzmann, W Homma, K Hong, B Hoover, A Horaguchi, T Ichihara, T Ikonnikov, VV Imai, K Inaba, M Inuzuka, M Isenhower, D Isenhower, L Ishihara, M Issah, M Isupov, A Jacak, BV Jia, J Jinnouchi, O Johnson, BM Johnson, SC Joo, KS Jouan, D Kajihara, F Kametani, S Kamihara, N Kaneta, M Kang, JH Katou, K Kawabata, T Kazantsev, AV Kelly, S Khachaturov, B Khanzadeev, A Kikuchi, J Kim, DJ Kim, E Kim, GB Kim, HJ Kinney, E Kiss, A Kistenev, E Kiyomichi, A Klein-Boesing, C Kobayashi, H Kochenda, L Kochetkov, V Kohara, R Komkov, B Konno, M Kotchetkov, D Kozlov, A Kroon, PJ Kuberg, CH Kunde, GJ Kurita, K Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lajoie, JG Le Bornec, Y Lebedev, A Leckey, S Lee, DM Leitch, MJ Leite, MAL Li, XH Lim, H Litvinenko, A Liu, MX Maguire, CF Makdisi, YI Malakhov, A Manko, VI Mao, Y Martinez, G Masui, H Matathias, F Matsumoto, T McCain, MC McGaughey, PL Miake, Y Miller, TE Milov, A Mioduszewski, S Mishra, GC Mitchell, JT Mohanty, AK Morrison, DP Moss, JM Mukhopadhyay, D Muniruzzaman, M Nagamiya, S Nagle, JL Nakamura, T Newby, J Nyanin, AS Nystrand, J O'Brien, E Ogilvie, CA Ohnishi, H Ojha, ID Okada, H Okada, K Oskarsson, A Otterlund, I Oyama, K Ozawa, K Pal, D Palounek, APT Pantuev, V Papavassiliou, V Park, J Park, WJ Pate, SF Pei, H Penev, V Peng, JC Pereira, H Peresedov, V Pierson, A Pinkenburg, C Pisani, RP Purschke, ML Purwar, AK Qualls, JM Rak, J Ravinovich, I Read, KF Reuter, M Reygers, K Riabov, V Riabov, Y Roche, G Romana, A Rosati, M Rosendahl, SSE Rosnet, P Rykov, VL Ryu, SS Saito, N Sakaguchi, T Sakai, S Samsonov, V Sanfratello, L Santo, R Sato, HD Sato, S Sawada, S Schutz, Y Semenov, V Seto, R Shea, TK Shein, I Shibata, TA Shigaki, K Shimomura, M Sickles, A Silva, CL Silvermyr, D Sim, KS Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Sullivan, JP Takagi, S Takagui, EM Taketani, A Tanaka, KH Tanaka, Y Tanida, K Tannenbaum, MJ Taranenko, A Tarjan, P Thomas, TL Togawa, M Tojo, J Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Tydesjo, H Tyurin, N Uam, TJ Velkovska, J Velkovsky, M Veszpremi, V Vinogradov, AA Volkov, MA Vznuzdaev, E Wang, XR Watanabe, Y White, SN Willis, N Wohn, FK Woody, CL Xie, W Yanovich, A Yokkaichi, S Young, GR Yushmanov, IE Zajc, WA Zhang, C Zhou, S Zimanyi, J Zolin, L Zong, X Vanhecke, HW AF Adler, S. S. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Al-Jamel, A. Alexander, J. Aoki, K. Aphecetche, L. Armendariz, R. Aronson, S. H. Averbeck, R. Awes, T. C. Babintsev, V. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Bathe, S. Batsouli, S. Baublis, V. Bauer, F. Bazilevsky, A. Belikov, S. Bjorndal, M. T. Boissevain, J. G. Borel, H. Brooks, M. L. Brown, D. S. Bruner, N. Bucher, D. Buesching, H. Bumazhnov, V. Bunce, G. Burward-Hoy, J. M. Butsyk, S. Camard, X. Chand, P. Chang, W. C. Chernichenko, S. Chi, C. Y. Chiba, J. Chiu, M. Choi, I. J. Choudhury, R. K. Chujo, T. Cianciolo, V. Cobigo, Y. Cole, B. A. Comets, M. P. Constantin, P. Csanad, M. Csorgo, T. Cussonneau, J. P. d'Enterria, D. Das, K. David, G. Deak, F. Delagrange, H. Denisov, A. Deshpande, A. Desmond, E. J. Devismes, A. Dietzsch, O. Drachenberg, J. L. Drapier, O. Drees, A. Durum, A. Dutta, D. Dzhordzhadze, V. Efremenko, Y. V. En'yo, H. Espagnon, B. Esumi, S. Fields, D. E. Finck, C. Fleuret, F. Fokin, S. L. Fox, B. D. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fukao, Y. Fung, S.-Y. Gadrat, S. Germain, M. Glenn, A. Gonin, M. Gosset, J. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Gross Gustafsson, H.-A. Hachiya, T. Haggerty, J. S. Hamagaki, H. Hansen, A. G. Hartouni, E. P. Harvey, M. Hasuko, K. Hayano, R. He, X. Heffner, M. Hemmick, T. K. Heuser, J. M. Hidas, P. Hiejima, H. Hill, J. C. Hobbs, R. Holzmann, W. Homma, K. Hong, B. Hoover, A. Horaguchi, T. Ichihara, T. Ikonnikov, V. V. Imai, K. Inaba, M. Inuzuka, M. Isenhower, D. Isenhower, L. Ishihara, M. Issah, M. Isupov, A. Jacak, B. V. Jia, J. Jinnouchi, O. Johnson, B. M. Johnson, S. C. Joo, K. S. Jouan, D. Kajihara, F. Kametani, S. Kamihara, N. Kaneta, M. Kang, J. H. Katou, K. Kawabata, T. Kazantsev, A. V. Kelly, S. Khachaturov, B. Khanzadeev, A. Kikuchi, J. Kim, D. J. Kim, E. Kim, G.-B. Kim, H. J. Kinney, E. Kiss, A. Kistenev, E. Kiyomichi, A. Klein-Boesing, C. Kobayashi, H. Kochenda, L. Kochetkov, V. Kohara, R. Komkov, B. Konno, M. Kotchetkov, D. Kozlov, A. Kroon, P. J. Kuberg, C. H. Kunde, G. J. Kurita, K. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lajoie, J. G. Le Bornec, Y. Lebedev, A. Leckey, S. Lee, D. M. Leitch, M. J. Leite, M. A. L. Li, X. H. Lim, H. Litvinenko, A. Liu, M. X. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Manko, V. I. Mao, Y. Martinez, G. Masui, H. Matathias, F. Matsumoto, T. McCain, M. C. McGaughey, P. L. Miake, Y. Miller, T. E. Milov, A. Mioduszewski, S. Mishra, G. C. Mitchell, J. T. Mohanty, A. K. Morrison, D. P. Moss, J. M. Mukhopadhyay, D. Muniruzzaman, M. Nagamiya, S. Nagle, J. L. Nakamura, T. Newby, J. Nyanin, A. S. Nystrand, J. O'Brien, E. Ogilvie, C. A. Ohnishi, H. Ojha, I. D. Okada, H. Okada, K. Oskarsson, A. Otterlund, I. Oyama, K. Ozawa, K. Pal, D. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Park, W. J. Pate, S. F. Pei, H. Penev, V. Peng, J.-C. Pereira, H. Peresedov, V. Pierson, A. Pinkenburg, C. Pisani, R. P. Purschke, M. L. Purwar, A. K. Qualls, J. M. Rak, J. Ravinovich, I. Read, K. F. Reuter, M. Reygers, K. Riabov, V. Riabov, Y. Roche, G. Romana, A. Rosati, M. Rosendahl, S. S. E. Rosnet, P. Rykov, V. L. Ryu, S. S. Saito, N. Sakaguchi, T. Sakai, S. Samsonov, V. Sanfratello, L. Santo, R. Sato, H. D. Sato, S. Sawada, S. Schutz, Y. Semenov, V. Seto, R. Shea, T. K. Shein, I. Shibata, T.-A. Shigaki, K. Shimomura, M. Sickles, A. Silva, C. L. Silvermyr, D. Sim, K. S. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Sullivan, J. P. Takagi, S. Takagui, E. M. Taketani, A. Tanaka, K. H. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Taranenko, A. Tarjan, P. Thomas, T. L. Togawa, M. Tojo, J. Torii, H. Towell, R. S. Tram, V.-N. Tserruya, I. Tsuchimoto, Y. Tydesjo, H. Tyurin, N. Uam, T. J. Velkovska, J. Velkovsky, M. Veszpremi, V. Vinogradov, A. A. Volkov, M. A. Vznuzdaev, E. Wang, X. R. Watanabe, Y. White, S. N. Willis, N. Wohn, F. K. Woody, C. L. Xie, W. Yanovich, A. Yokkaichi, S. Young, G. R. Yushmanov, I. E. Zajc, W. A. Zhang, C. Zhou, S. Zimanyi, J. Zolin, L. Zong, X. vanHecke, H. W. CA PHENIX Collaboration TI Production of omega mesons at large transverse momenta in p+p and d+Au collisions at root S-NN=200 GeV SO PHYSICAL REVIEW C LA English DT Article ID ENERGY-LOSS; DECAYS AB The PHENIX experiment at RHIC has measured the invariant cross section for omega-meson production at midrapidity in the transverse momentum range 2.5 < p(T)< 9.25 GeV/c in p+p and d+Au collisions at root s(NN) = 200 GeV. Measurements in two decay channels (omega ->pi(0)pi(+)pi(-) and omega ->pi(0)gamma) yield consistent results, and the reconstructed omega mass agrees with the accepted value within the p(T) range of the measurements. The omega/pi(0) ratio is found to be 0.85 +/- 0.05(stat)+/- 0.09(sys) in p+p and 0.94 +/- 0.08(stat)+/- 0.12(sys) in d+Au collisions, independent of p(T). The nuclear modification factor R-dA(omega) is 1.03 +/- 0.12(stat)+/- 0.21(sys) and 0.83 +/- 0.21(stat)+/- 0.17(sys) in minimum bias and central (0-20%) d+Au collisions, respectively. C1 Abilene Christian Univ, Abilene, TX 79699 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. Brookhaven Natl Lab, Upton, NY 11973 USA. Univ Calif Riverside, Riverside, CA 92521 USA. CIAE, Beijing, Peoples R China. Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. Univ Colorado, Boulder, CO 80309 USA. Columbia Univ, New York, NY 10027 USA. Nevis Labs, Irvington, NY 10533 USA. CEA Saclay, Dapnia, F-91191 Gif Sur Yvette, France. Univ Debrecen, H-4010 Debrecen, Hungary. Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. Florida State Univ, Tallahassee, FL 32306 USA. Georgia State Univ, Atlanta, GA 30303 USA. Hiroshima Univ, Higashihiroshima 7398526, Japan. State Res Ctr Russian Federat, IHEP Protvino, Inst High Energy Phys, RU-142281 Protvino, Russia. Univ Illinois, Urbana, IL 61801 USA. Iowa State Univ, Ames, IA 50011 USA. Joint Inst Nucl Res, RU-141980 Dubna, Moscow, Russia. High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. Hungarian Acad Sci, KFKI Res Inst Particle & Nucl Phys, MTA KFKI RMKI, H-1525 Budapest 114, Hungary. Korea Univ, Seoul 136701, South Korea. Russian Res Ctr, Kurchatov Inst, Moscow, Russia. Kyoto Univ, Kyoto 6068502, Japan. Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Clermont Ferrand, LPC, CNRS, IN2P3, F-63177 Clermont Ferrand, France. Lund Univ, Dept Phys, SE-22100 Lund, Sweden. Univ Munster, Inst Kernphys, D-48149 Munster, Germany. Myongji Univ, Yongin 449728, Kyonggido, South Korea. Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. Univ New Mexico, Albuquerque, NM 87131 USA. New Mexico State Univ, Las Cruces, NM 88003 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Paris 11, IPN, CNRS, IN2P3, F-91406 Orsay, France. Peking Univ, Beijing 100871, Peoples R China. Petersburg Nucl Phys Inst, RU-188300 Gatchina, Leningrad, Russia. RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Moscow 117936, Russia. Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. Seoul Natl Univ, Syst Elect Lab, Seoul, South Korea. SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Univ Nantes, CNRS, IN2P3, Ecole Mines Nantes,SUBATECH, F-44307 Nantes, France. Univ Tennessee, Knoxville, TN 37996 USA. Tokyo Inst Technol, Meguro Ku, Dept Phys, Tokyo 1528551, Japan. Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. Vanderbilt Univ, Nashville, TN 37235 USA. Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. Weizmann Inst Sci, IL-76100 Rehovot, Israel. Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Adler, SS (reprint author), Abilene Christian Univ, Abilene, TX 79699 USA. EM zajc@nevis.columbia.edu RI Csorgo, Tamas/I-4183-2012; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017; Semenov, Vitaliy/E-9584-2017; seto, richard/G-8467-2011; Csanad, Mate/D-5960-2012 OI Hayano, Ryugo/0000-0002-1214-7806; Sorensen, Soren /0000-0002-5595-5643; Taketani, Atsushi/0000-0002-4776-2315; Csorgo, Tamas/0000-0002-9110-9663; NR 26 TC 29 Z9 29 U1 6 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2007 VL 75 IS 5 AR 051902 DI 10.1103/PhysRevC.75.051902 PG 6 WC Physics, Nuclear SC Physics GA 173RV UT WOS:000246891100007 ER PT J AU Alford, MG Braby, M Reddy, S Schafer, T AF Alford, Mark G. Braby, Matt Reddy, Sanjay Schafer, Thomas TI Bulk viscosity due to kaons in color-flavor-locked quark matter SO PHYSICAL REVIEW C LA English DT Article ID HIGH-DENSITY; SYMMETRY-BREAKING; NEUTRON-STARS; PHASE; QCD; SUPERCONDUCTIVITY; INSTABILITIES; LOCKING; PULSARS AB We calculate the bulk viscosity of color-superconducting quark matter in the color-flavor-locked (CFL) phase. We assume that the lightest bosons are the superfluid mode H and the kaons K-0 and K+, and that there is no kaon condensate. We calculate the rate of strangeness-equilibrating processes that convert kaons into superfluid modes, and the resultant bulk viscosity. We find that for oscillations with a timescale of milliseconds, at temperatures T < 1 MeV, the CFL bulk viscosity is much less than that of unpaired quark matter, but at higher temperatures the bulk viscosity of CFL matter can become larger. C1 Washington Univ, Dept Phys, St Louis, MO 63130 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. RP Alford, MG (reprint author), Washington Univ, Dept Phys, St Louis, MO 63130 USA. OI Schaefer, Thomas/0000-0002-2297-782X NR 34 TC 43 Z9 43 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2007 VL 75 IS 5 AR 055209 DI 10.1103/PhysRevC.75.055209 PG 12 WC Physics, Nuclear SC Physics GA 173RV UT WOS:000246891100074 ER PT J AU Alver, B Back, BB Baker, MD Ballintijn, M Barton, DS Betts, RR Bindel, R Busza, W Chai, Z Chetluru, V Garcia, E Gburek, T Gulbrandsen, K Hamblen, J Harnarine, I Henderson, C Hofman, DJ Hollis, RS Holynski, R Holzman, B Iordanova, A Kane, JL Kulinich, P Kuo, CM Li, W Lin, WT Lozides, C Manly, S Mignerey, AC Nouicer, R Olszewski, A Pak, R Reed, C Richardson, E Roland, C Roland, G Sagerer, J Sedykh, I Smith, CE Stankiewicz, MA Steinberg, P Stephens, GSF Sukhanov, A Szopstak, A Tonjes, MB Trzupek, A van Nieuwenhuizen, GJ Vaurynovich, SS Verier, R Veres, GI Walters, P Wenger, E Willhelm, D Wolfs, FLH Wosiek, B Wozniak, K Wyngaardt, S Wyslouch, B AF Alver, B. Back, B. B. Baker, M. D. Ballintijn, M. Barton, D. S. Betts, R. R. Bindel, R. Busza, W. Chai, Z. Chetluru, V. Garcia, E. Gburek, T. Gulbrandsen, K. Hamblen, J. Harnarine, I. Henderson, C. Hofman, D. J. Hollis, R. S. Holynski, R. Holzman, B. Iordanova, A. Kane, J. L. Kulinich, P. Kuo, C. M. Li, W. Lin, W. T. Lozides, C. Manly, S. Mignerey, A. C. Nouicer, R. Olszewski, A. Pak, R. Reed, C. Richardson, E. Roland, C. Roland, G. Sagerer, J. Sedykh, I. Smith, C. E. Stankiewicz, M. A. Steinberg, P. Stephens, G. S. F. Sukhanov, A. Szopstak, A. Tonjes, M. B. Trzupek, A. van Nieuwenhuizen, G. J. Vaurynovich, S. S. Verier, R. Veres, G. I. Walters, P. Wenger, E. Willhelm, D. Wolfs, F. L. H. Wosiek, B. Wozniak, K. Wyngaardt, S. Wyslouch, B. TI Cluster properties from two-particle angular correlations in p+p collisions at root s=200 and 410 GeV SO PHYSICAL REVIEW C LA English DT Article ID RAPIDITY CORRELATIONS; PARTICLES; ENERGIES; MODELS AB We present results on two-particle angular correlations in proton-proton collisions at center-of-mass energies of 200 and 410 GeV. The PHOBOS experiment at the BNL Relativistic Heavy Ion Collider has a uniquely large coverage for charged particles, giving the opportunity to explore the correlations at both short- and long-range scales. At both energies, a complex two-dimensional correlation structure in Delta eta and Delta phi is observed. In the context of an independent cluster model of short-range correlations, the cluster size and its decay width are extracted from the two-particle pseudorapidity correlation function and compared with previous measurements in proton-proton and proton-antiproton collisions, as well as PYTHIA and HIJING predictions. C1 MIT, Cambridge, MA 02139 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. PAN, Inst Phys Nucl, Krakow, Poland. Natl Cent Univ, Chungli 32054, Taiwan. Univ Illinois, Chicago, IL 60607 USA. Univ Maryland, College Pk, MD 20742 USA. Univ Rochester, Rochester, NY 14627 USA. RP Alver, B (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Mignerey, Alice/D-6623-2011; Messier, Claude/A-2322-2008; OI Messier, Claude/0000-0002-4791-1763; Holzman, Burt/0000-0001-5235-6314 NR 17 TC 35 Z9 35 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2007 VL 75 IS 5 AR 054913 DI 10.1103/PhysRevC.75.054913 PG 8 WC Physics, Nuclear SC Physics GA 173RV UT WOS:000246891100065 ER PT J AU Bertulani, CA AF Bertulani, C. A. TI Electrodisintegration following beta decay SO PHYSICAL REVIEW C LA English DT Article AB I show that the disintegration of weakly-bound nuclei and the ionization of weakly-bound atomic electrons due to their interaction with leptons from beta decay is a negligible effect. C1 Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Bertulani, CA (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. NR 5 TC 1 Z9 1 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2007 VL 75 IS 5 AR 057602 DI 10.1103/PhysRevC.75.057602 PG 3 WC Physics, Nuclear SC Physics GA 173RV UT WOS:000246891100095 ER PT J AU Bonneau, L Kawano, T Watanabe, T Chiba, S AF Bonneau, L. Kawano, T. Watanabe, T. Chiba, S. TI Nucleon direct-semidirect radiative capture with Skyrme-Hartree-Fock-BCS bound states SO PHYSICAL REVIEW C LA English DT Article ID NEUTRON CAPTURE; DEFORMED-NUCLEI; CROSS-SECTIONS; SEMI-DIRECT; COUPLING INTERACTION; ENERGETIC NEUTRONS; RESONANCE; MODELS; MASS; DENSITIES AB The nucleon direct-semidirect (DSD) capture cross sections are obtained by calculating a transition amplitude to the Hartree-Fock-BCS bound states. The radial matrix elements in the DSD amplitudes are calculated from the radial part of the single-particle wave functions. For deformed nuclei the single-particle states are expanded in the cylindrical harmonic-oscillator basis and then projected on the spherical harmonic-oscillator basis. The pairing correlations are treated in the BCS approach and the calculated spectroscopic factors are in fairly good agreement with experimental data in the even tin isotopes from Sn-116 to Sn-124. The resulting DSD cross sections for the neutron capture by Pb-208 and U-238 are found to be in good agreement with the available experimental data. The calculations are also performed for the neutron capture on Sn-122 and Sn-132 isotopes that are important for the r-process in astrophysics. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Kyushu Univ, Dept Appl Quantum Phys & Nucl Engn, Nishi Ku, Fukuoka 8190395, Japan. Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. RP Bonneau, L (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM bonneau@lanl.gov NR 51 TC 16 Z9 16 U1 0 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2007 VL 75 IS 5 AR 054618 DI 10.1103/PhysRevC.75.054618 PG 10 WC Physics, Nuclear SC Physics GA 173RV UT WOS:000246891100052 ER PT J AU Chiara, CJ Devlin, M Ideguchi, E LaFosse, DR Lerma, F Reviol, W Ryu, SK Sarantites, DG Pechenaya, OL Baktash, C Galindo-Uribarri, A Carpenter, MP Janssens, RVF Lauritsen, T Lister, CJ Reiter, P Seweryniak, D Fallon, P Gorgen, A Macchiavelli, AO Rudolph, D Stoitcheva, G Ormand, WE AF Chiara, C. J. Devlin, M. Ideguchi, E. LaFosse, D. R. Lerma, F. Reviol, W. Ryu, S. K. Sarantites, D. G. Pechenaya, O. L. Baktash, C. Galindo-Uribarri, A. Carpenter, M. P. Janssens, R. V. F. Lauritsen, T. Lister, C. J. Reiter, P. Seweryniak, D. Fallon, P. Gorgen, A. Macchiavelli, A. O. Rudolph, D. Stoitcheva, G. Ormand, W. E. TI Probing sd-fp cross-shell interactions via terminating configurations in Sc-42,Sc-43 SO PHYSICAL REVIEW C LA English DT Article ID HIGH-SPIN STATES; LIFETIME MEASUREMENTS; NUCLEI; SC-43; GAMMASPHERE; MICROBALL; DECAY AB An experimental study of the lower fp-shell nuclei Sc-42,Sc-43 was performed via alpha pn and alpha p evaporation, respectively, from Ne-20 + Si-28 and Mg-24 + Mg-24 fusion-evaporation reactions. The experiments were conducted with the Gammasphere and Microball detector arrays. The level schemes of both nuclei have been extended considerably. Terminating states associated with the f(7/2)(n) and d(3/2)(-1)f(7/2)(n+1) configurations were identified in each nuclide and incorporated into detailed comparisons with neighboring nuclei and with shell model calculations. The energy differences between the terminating states provide a test of the sd-fp cross-shell interactions in these calculations. C1 Washington Univ, Dept Chem, St Louis, MO 63130 USA. Washington Univ, Dept Phys, St Louis, MO 63130 USA. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. Lund Univ, Dept Phys, S-22100 Lund, Sweden. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Chiara, CJ (reprint author), Washington Univ, Dept Chem, St Louis, MO 63130 USA. RI Rudolph, Dirk/D-4259-2009; Carpenter, Michael/E-4287-2015; Devlin, Matthew/B-5089-2013 OI Rudolph, Dirk/0000-0003-1199-3055; Carpenter, Michael/0000-0002-3237-5734; Devlin, Matthew/0000-0002-6948-2154 NR 31 TC 13 Z9 13 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2007 VL 75 IS 5 AR 054305 DI 10.1103/PhysRevC.75.054305 PG 18 WC Physics, Nuclear SC Physics GA 173RV UT WOS:000246891100015 ER PT J AU Dashdorj, D Kawano, T Garrett, PE Becker, JA Agvaanluvsan, U Bernstein, LA Chadwick, MB Devlin, M Fotiades, N Mitchell, GE Nelson, RO Younes, W AF Dashdorj, D. Kawano, T. Garrett, P. E. Becker, J. A. Agvaanluvsan, U. Bernstein, L. A. Chadwick, M. B. Devlin, M. Fotiades, N. Mitchell, G. E. Nelson, R. O. Younes, W. TI Effect of preequilibrium spin distribution on Ti-48+n cross sections SO PHYSICAL REVIEW C LA English DT Article ID MULTISTEP COMPOUND; STATISTICAL-THEORY; MODEL AB Nuclear model calculations of discrete gamma-ray production cross sections produced in Ti-48(n,n(')gamma(i))Ti-48 and Ti-48(n,2n gamma(i))Ti-47 reactions were made as a function of incident neutron energy from E-n=1 MeV to 35 MeV and compared with new experimental results using the large-scale Compton-suppressed germanium array for neutron induced excitations (GEANIE) at LANSCE. The Hauser-Feshbach reaction code GNASH, incorporating the spin distribution for the preequilibrium process calculated with the Feshbach-Kerman-Koonin (FKK) quantum-mechanical preequilibrium theory, was used to calculate partial gamma-ray transition cross sections. The comparisons of calculated and experimental data demonstrate that, the FKK model for preequilibrium leads a better overall reproduction of the experimental data above E-n=10 MeV, where preequilibrium processes are important. The FKK calculation predicts a strong reduction in the high-spin state population in Ti-48 by inelastic scattering. Population of low-spin states was also affected, however the change in the low-lying 983.5-keV (2(+)) state production is small because almost all gamma-ray decay cascades feed this transition. In addition, the FKK calculation has a significant impact on the partial gamma-ray transition cross sections for the (n,2n) reaction above E-n=15 MeV. The calculated cross sections for high-spin states in Ti-47 are reduced, and those from the low-spin states are enhanced, in agreement with the experimental cross section data. C1 N Carolina State Univ, Raleigh, NC 27695 USA. Triangle Univ, Nucl Lab, Durham, NC 27708 USA. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. RP Dashdorj, D (reprint author), N Carolina State Univ, Raleigh, NC 27695 USA. EM dashdorj1@llnl.gov RI Devlin, Matthew/B-5089-2013 OI Devlin, Matthew/0000-0002-6948-2154 NR 27 TC 18 Z9 18 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2007 VL 75 IS 5 AR 054612 DI 10.1103/PhysRevC.75.054612 PG 8 WC Physics, Nuclear SC Physics GA 173RV UT WOS:000246891100046 ER PT J AU Forssen, C Dietrich, FS Escher, J Hoffman, RD Kelley, K AF Forssen, C. Dietrich, F. S. Escher, J. Hoffman, R. D. Kelley, K. TI Determining neutron capture cross sections via the surrogate reaction technique SO PHYSICAL REVIEW C LA English DT Article ID ASYMPTOTIC GIANT BRANCH; NUCLEAR-LEVEL DENSITY; NUCLEOSYNTHESIS; ASTROPHYSICS; EVOLUTION; STARS AB Indirect methods play an important role in the determination of nuclear reaction cross sections that are hard to measure directly. In this paper we investigate the feasibility of using the so-called surrogate method to extract neutron capture cross sections for low-energy compound-nuclear reactions in spherical and near-spherical nuclei. We present the surrogate method and develop a statistical nuclear reaction simulation to explore different approaches to utilizing surrogate reaction data. We assess the success of each approach by comparing the extracted cross sections with a predetermined benchmark. In particular, we employ regional systematics of nuclear properties in the 34 <= Z <= 46 region to calculate (n,gamma) cross sections for a series of Zr isotopes and to simulate a surrogate experiment and the extraction of the desired cross section. We identify one particular approach that may provide very useful estimates of the cross section, and we discuss some of the limitations of the method. General recommendations for future (surrogate) experiments are also given. C1 Chalmers, SE-41296 Gothenburg, Sweden. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Forssen, C (reprint author), Chalmers, SE-41296 Gothenburg, Sweden. EM c.forssen@fy.chalmers.se RI Forssen, Christian/C-6093-2008; Escher, Jutta/E-1965-2013 OI Forssen, Christian/0000-0003-3458-0480; NR 37 TC 36 Z9 36 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2007 VL 75 IS 5 AR 055807 DI 10.1103/PhysRevC.75.055807 PG 14 WC Physics, Nuclear SC Physics GA 173RV UT WOS:000246891100084 ER PT J AU Fotiades, N Nelson, RO Devlin, M Cizewski, JA Becker, JA Younes, W Krucken, R Clark, RM Fallon, P Lee, IY Macchiavelli, AO Ethvignot, T Granier, T AF Fotiades, N. Nelson, R. O. Devlin, M. Cizewski, J. A. Becker, J. A. Younes, W. Kruecken, R. Clark, R. M. Fallon, P. Lee, I. Y. Macchiavelli, A. O. Ethvignot, T. Granier, T. TI High-spin states in Xe-135 SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR-DATA SHEETS AB The high-spin structure of the Xe-135 isotope was studied via prompt gamma-ray spectroscopy in two different experiments: (i) as a fission fragment following the fission of the Th-226 compound nucleus formed in a fusion-fission reaction and (ii) as an evaporation residue in the Xe-136(n,2n gamma)Xe-135 reaction. The level scheme above the previously known 11/2(-) isomer was established up to 3170-keV excitation energy. A strong sequence has been firmly assigned to Xe-135 and forms the yrast decay path including the (15/2(-)) and (19/2(-)) states. A much weaker sequence of gamma rays has been observed and tentatively assigned to Xe-135 and is a candidate for the off-yrast sequence that includes the (13/2(-)) and (17/2(-)) states, expected in the weak coupling of the h(11/2) neutron to the even-A core. The experimental results are compared with predictions from shell-model calculations. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Rutgers State Univ, Dept Phys & Astron, New Brunswick, NJ 08903 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Tech Univ Munich, Phys Dept E12, D-85748 Garching, Germany. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. CEA, DAM Ile France, DPTA, Serv Phys Nucl, F-91680 Bruyeres Le Chatel, France. RP Fotiades, N (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM fotia@lanl.gov RI Devlin, Matthew/B-5089-2013; Kruecken, Reiner/A-1640-2013; OI Devlin, Matthew/0000-0002-6948-2154; Kruecken, Reiner/0000-0002-2755-8042; Fotiadis, Nikolaos/0000-0003-1410-3871 NR 19 TC 8 Z9 8 U1 0 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2007 VL 75 IS 5 AR 054322 DI 10.1103/PhysRevC.75.054322 PG 6 WC Physics, Nuclear SC Physics GA 173RV UT WOS:000246891100032 ER PT J AU Freeman, SJ Schiffer, JP Villari, ACC Clark, JA Deibel, C Gros, S Heinz, A Hirata, D Jiang, CL Kay, BP Parikh, A Parker, PD Qian, J Rehm, KE Tang, XD Werner, V Wrede, C AF Freeman, S. J. Schiffer, J. P. Villari, A. C. C. Clark, J. A. Deibel, C. Gros, S. Heinz, A. Hirata, D. Jiang, C. L. Kay, B. P. Parikh, A. Parker, P. D. Qian, J. Rehm, K. E. Tang, X. D. Werner, V. Wrede, C. TI Pair correlations in nuclei involved in neutrinoless double beta decay: Ge-76 and Se-76 SO PHYSICAL REVIEW C LA English DT Article AB Precision measurements were carried out to test the similarities between the ground states of Ge-76 and Se-76. The extent to which these two nuclei can be characterized as consisting of correlated pairs of neutrons in a BCS-like ground state was studied. The pair removal (p,t) reaction was measured at the far forward angle of 3(degrees). The relative cross sections are consistent (at the 5% level) with the description of these nuclei in terms of a correlated pairing state outside the N=28 closed shells with no pairing vibrations. Data were also obtained for Ge-74 and Se-78. C1 Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. Argonne Natl Lab, Argonne, IL 60439 USA. CEA, IN2P3, GANIL, DSM CNRS, F-14076 Caen, France. Yale Univ, AW Wright Nucl Struct Lab, New Haven, CT 06520 USA. Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. RP Schiffer, JP (reprint author), Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. EM schiffer@anl.gov RI Freeman, Sean/B-1280-2010; Qian, Jing/F-9639-2010; Kay, Benjamin/F-3291-2011; Heinz, Andreas/E-3191-2014; Hirata, Daisy/F-3199-2013; Tang, Xiaodong /F-4891-2016; Werner, Volker/C-1181-2017 OI Freeman, Sean/0000-0001-9773-4921; Kay, Benjamin/0000-0002-7438-0208; Werner, Volker/0000-0003-4001-0150 NR 13 TC 27 Z9 27 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2007 VL 75 IS 5 AR 051301 DI 10.1103/PhysRevC.75.051301 PG 4 WC Physics, Nuclear SC Physics GA 173RV UT WOS:000246891100002 ER PT J AU Gibelin, J Beaumel, D Motobayashi, T Aoi, N Baba, H Blumenfeld, Y Dombradi, Z Elekes, Z Fortier, S Frascaria, N Fukuda, N Gomi, T Ishikawa, K Kondo, Y Kubo, T Lima, V Nakamura, T Saito, A Satou, Y Takeshita, E Takeuchi, S Teranishi, T Togano, Y Vinodkumar, AM Yanagisawa, Y Yoshida, K AF Gibelin, J. Beaumel, D. Motobayashi, T. Aoi, N. Baba, H. Blumenfeld, Y. Dombradi, Zs. Elekes, Z. Fortier, S. Frascaria, N. Fukuda, N. Gomi, T. Ishikawa, K. Kondo, Y. Kubo, T. Lima, V. Nakamura, T. Saito, A. Satou, Y. Takeshita, E. Takeuchi, S. Teranishi, T. Togano, Y. Vinodkumar, A. M. Yanagisawa, Y. Yoshida, K. TI Measurement of the B(E2,0(1)(+)-> 2(1)(+)) in the N=16 nucleus Ne-26 SO PHYSICAL REVIEW C LA English DT Article ID NEUTRON DRIP-LINE; GIANT-RESONANCES; EXCITATION; MEV/U; MASS AB Differential cross section of the inelastic scattering of a 54 MeV/nucleon Ne-26 beam on a lead target has been measured by detecting the deexcitation gamma-rays. Analysis of the first 2(+) state angular distribution of the inelastically scattered nuclei shows that the process cannot be considered as a pure Coulomb excitation, and nuclear contribution must be taken into account. The charge deformation deduced, beta(C)(2)=0.392 +/- 0.024, corresponds to a B(E2)=141 +/- 18 e(2) fm(2) in agreement with a N=16 subshell closure. C1 CNRS, IN2P3, Inst Phys Nucl, F-91406 Orsay, France. Rikkyo Univ, Dept Phys, Tokyo 1718501, Japan. Inst Phys & Chem Res, RIKEN, Wako, Saitama 3510198, Japan. Hungarian Acad Sci, Inst Nucl Res, H-4001 Debrecen, Hungary. Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. Univ Tokyo, Ctr Nucl Study, Wako, Saitama 3510198, Japan. Kyushu Univ, Dept Phys, Fukuoka 8128581, Japan. RP Gibelin, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM gibelin@ipno.in2p3.fr RI Dombradi, Zsolt/B-3743-2012; Teranishi, Takashi/D-2166-2012; Attukalathil, Vinodkumar/A-7441-2009; Elekes, Zoltan/J-4531-2012; Satou, Yoshiteru/N-2632-2014; Nakamura, Takashi/N-5390-2015; Takeuchi, Satoshi/O-1529-2016; OI Attukalathil, Vinodkumar/0000-0002-8204-7800; Satou, Yoshiteru/0000-0003-3627-0435; Nakamura, Takashi/0000-0002-1838-9363; GIBELIN, Julien/0000-0001-6751-3714 NR 22 TC 21 Z9 21 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2007 VL 75 IS 5 AR 057306 DI 10.1103/PhysRevC.75.057306 PG 4 WC Physics, Nuclear SC Physics GA 173RV UT WOS:000246891100093 ER PT J AU Jiang, CL Back, BB Janssens, RVF Rehm, KE AF Jiang, C. L. Back, B. B. Janssens, R. V. F. Rehm, K. E. TI Radius of curvature of the S factor maximum in sub-barrier fusion hindrance SO PHYSICAL REVIEW C LA English DT Article ID SUB-BARRIER FUSION; REACTION CROSS-SECTION; COULOMB BARRIER; LOW ENERGIES; O-16&O-16; C-12&O-16; SYSTEMS; NI-58; O-16 AB A maximum of the S(E) factor is evidence for an onset of sub-barrier fusion hindrance and it can be well described by a radius-of-curvature expression near the maximum. The systematics of this radius of curvature has been studied over a wide range of projectile-target combinations. It follows a tentative general trend as a function of the parameter zeta=Z(1)Z(2)root mu, and is strongly affected by effects associated with the nuclear structure of the nuclei in the entrance channel. It also explains the reason why the S factor maximum is not easily recognized visually for lighter, astrophysically interesting fusion systems. C1 Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Jiang, CL (reprint author), Argonne Natl Lab, Div Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 29 TC 14 Z9 14 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2007 VL 75 IS 5 AR 057604 DI 10.1103/PhysRevC.75.057604 PG 4 WC Physics, Nuclear SC Physics GA 173RV UT WOS:000246891100097 ER PT J AU Liang, JF Shapira, D Beene, JR Gross, CJ Varner, RL Galindo-Uribarri, A del Campo, JG Hausladen, PA Mueller, PE Stracener, DW Amro, H Kolata, JJ Bierman, JD Caraley, AL Jones, KL Larochelle, Y Loveland, W Peterson, D AF Liang, J. F. Shapira, D. Beene, J. R. Gross, C. J. Varner, R. L. Galindo-Uribarri, A. del Campo, J. Gomez Hausladen, P. A. Mueller, P. E. Stracener, D. W. Amro, H. Kolata, J. J. Bierman, J. D. Caraley, A. L. Jones, K. L. Larochelle, Y. Loveland, W. Peterson, D. TI Fusion of radioactive Sn-132 with Ni-64 SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION REACTIONS; OBLATE TARGET NUCLEI; NEUTRON-RICH NUCLEI; EVEN-EVEN NUCLIDES; BARRIER DISTRIBUTIONS; SUPERHEAVY ELEMENTS; SUBBARRIER FUSION; QUASI-FISSION; BEAMS; MODEL AB Evaporation residue and fission cross sections of radioactive Sn-132 on Ni-64 were measured near the Coulomb barrier. A large subbarrier fusion enhancement was observed. Coupled-channel calculations, including inelastic excitation of the projectile and target, and neutron transfer are in good agreement with the measured fusion excitation function. When the change in nuclear size and shift in barrier height are accounted for, there is no extra fusion enhancement in Sn-132+Ni-64 with respect to stable Sn+Ni-64. A systematic comparison of evaporation residue cross sections for the fusion of even Sn112-124 and Sn-132 with Ni-64 is presented. C1 Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. Gonzaga Univ, Phys Dept AD51, Spokane, WA 99258 USA. SUNY Coll Oswego, Dept Phys, Oswego, NY 13126 USA. Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37966 USA. Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA. RP Liang, JF (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RI Jones, Katherine/B-8487-2011 OI Jones, Katherine/0000-0001-7335-1379 NR 48 TC 45 Z9 46 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2007 VL 75 IS 5 AR 054607 DI 10.1103/PhysRevC.75.054607 PG 9 WC Physics, Nuclear SC Physics GA 173RV UT WOS:000246891100041 ER PT J AU Nesaraja, CD Shu, N Bardayan, DW Blackmon, JC Chen, YS Kozub, RL Smith, MS AF Nesaraja, C. D. Shu, N. Bardayan, D. W. Blackmon, J. C. Chen, Y. S. Kozub, R. L. Smith, M. S. TI Nuclear structure properties of astrophysical importance for Ne-19 above the proton threshold energy SO PHYSICAL REVIEW C LA English DT Article ID GAMMA-RAY EMISSION; F-18(P,ALPHA)O-15 REACTION; POSITRON-ANNIHILATION; ELASTIC-SCATTERING; ALPHA-PARTICLES; UNBOUND STATES; REACTION-RATES; NOVAE; NUCLEOSYNTHESIS; BURSTS AB Knowledge of the F-18(p,alpha)O-15 and F-18(p,gamma)Ne-19 astrophysical reaction rates are important to understand gamma-ray emission from nova explosions and heavy-element production in x-ray bursts. The rates for these reactions have been uncertain, in part due to a lack of a comprehensive examination of the available structure information in the compound nucleus Ne-19. We have examined the latest experimental measurements with radioactive and stable beams, collected all the structure information in the nucleus Ne-19 and its mirror F-19, and made estimates of unmeasured Ne-19 nuclear-level parameters. These parameters will be useful for future reaction rate calculations. C1 Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. China Inst Atom Energy, Beijing 102413, Peoples R China. Tennessee Technol Univ, Dept Phys, Cookeville, TN 38505 USA. RP Nesaraja, CD (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. OI Nesaraja, Caroline/0000-0001-5571-8341 NR 55 TC 27 Z9 27 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2007 VL 75 IS 5 AR 055809 DI 10.1103/PhysRevC.75.055809 PG 9 WC Physics, Nuclear SC Physics GA 173RV UT WOS:000246891100086 ER PT J AU Qiang, Y Annand, J Arrington, J Azimov, YI Bertozzi, W Cates, G Chen, JP Choi, S Chudakov, E Cusanno, F de Jager, CW Epstein, M Feuerbach, RJ Garibaldi, F Gayou, O Gilman, R Gomez, J Hamilton, DJ Hansen, JO Higinbotham, DW Holmstrom, T Iodice, M Jiang, X Jones, M LeRose, J Lindgren, R Liyanage, N Margaziotis, DJ Markowitz, P Mamyan, V Michaels, R Meziani, ZE Monaghan, P Munoz-Camacho, C Nelyubin, V Paschke, K Piasetzky, E Rachek, I Reimer, PE Reinhold, J Reitz, B Roche, R Saha, A Sarty, AJ Schulte, E Shahinyan, A Sheyor, R Singh, J Strakovsky, II Subedi, R Suleiman, R Sulkovsky, V Wojtsekhowski, B Zheng, X AF Qiang, Y. Annand, J. Arrington, J. Azimov, Ya. I. Bertozzi, W. Cates, G. Chen, J. P. Choi, Seonho Chudakov, E. Cusanno, F. de Jager, C. W. Epstein, M. Feuerbach, R. J. Garibaldi, F. Gayou, O. Gilman, R. Gomez, J. Hamilton, D. J. Hansen, J.-O. Higinbotham, D. W. Holmstrom, T. Iodice, M. Jiang, X. Jones, M. LeRose, J. Lindgren, R. Liyanage, N. Margaziotis, D. J. Markowitz, P. Mamyan, V. Michaels, R. Meziani, Z.-E. Monaghan, P. Munoz-Camacho, C. Nelyubin, V. Paschke, K. Piasetzky, E. Rachek, I. Reimer, P. E. Reinhold, J. Reitz, B. Roche, R. Saha, A. Sarty, A. J. Schulte, E. Shahinyan, A. Sheyor, R. Singh, J. Strakovsky, I. I. Subedi, R. Suleiman, R. Sulkovsky, V. Wojtsekhowski, B. Zheng, X. CA Jefferson Lab Hall A Collaboration TI Search for Sigma(0)(5),N-5(0), and Theta(++) pentaquark states SO PHYSICAL REVIEW C LA English DT Article ID JEFFERSON-LAB; HALL-A; PHYSICS AB A high-resolution (sigma(instr.)=1.5 MeV) search for narrow states (Gamma < 10 MeV) with masses of M-x approximate to 1500-1850 MeV in ep -> e(')K(+)X,e(')K(-)X, and e(')pi X+ electroproduction at small angles and low Q(2) was performed. These states would be candidate partner states of the reported Theta(+)(1540) pentaquark. No statistically significant signal was observed in any of the channels at 90% C.L. Upper limits on forward production were determined to be between 0.8% and 4.9% of the Lambda(1520) production cross section, depending on the channel and the assumed mass and width of the state. C1 MIT, Cambridge, MA 02139 USA. Univ Glasgow, Glasgow, Lanark, Scotland. Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. Inst Nucl Phys, RU-188300 St Petersburg, Russia. Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. Thomas Jefferson Nacl Accelerator Facil, Newport News, VA 23606 USA. Temple Univ, Philadelphia, PA 19122 USA. Calif State Univ Los Angeles, Los Angeles, CA 90032 USA. Rutgers State Univ, Piscataway, NJ 08854 USA. Coll William & Mary, Williamsburg, VA 23187 USA. Ist Nazl Fis Nucl, Rome, Italy. Florida Int Univ, Miami, FL 33199 USA. Yerevan Phys Inst, Yerevan 375036, Armenia. SACLAY, Gif Sur Yvette, France. Univ Massachusetts, Amherst, MA 01003 USA. Tel Aviv Univ, IL-69978 Tel Aviv, Israel. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Florida State Univ, Tallahassee, FL 32306 USA. St Marys Univ, Halifax, NS B3H 3C3, Canada. George Washington Univ, Washington, DC 20052 USA. Kent State Univ, Kent, OH 44242 USA. RP Qiang, Y (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Arrington, John/D-1116-2012; Monaghan, Pat/A-4271-2008; Reimer, Paul/E-2223-2013; Mamyan, Vahe/K-4778-2012; Singh, Jaideep/H-2346-2013; Sarty, Adam/G-2948-2014; Higinbotham, Douglas/J-9394-2014 OI Arrington, John/0000-0002-0702-1328; Singh, Jaideep/0000-0002-4810-4824; Higinbotham, Douglas/0000-0003-2758-6526 NR 21 TC 6 Z9 6 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2007 VL 75 IS 5 AR 055208 DI 10.1103/PhysRevC.75.055208 PG 5 WC Physics, Nuclear SC Physics GA 173RV UT WOS:000246891100073 ER PT J AU Rzaca-Urban, T Pagowska, K Urban, W Zlomaniec, A Genevey, J Pinston, JA Simpson, GS Sarkar, MS Sarkar, S Faust, H Scherillo, A Tsekhanovich, I Orlandi, R Durell, JL Smith, AG Ahmand, I AF Rzaca-Urban, T. Pagowska, K. Urban, W. Zlomaniec, A. Genevey, J. Pinston, J. A. Simpson, G. S. Sarkar, M. Saha Sarkar, S. Faust, H. Scherillo, A. Tsekhanovich, I. Orlandi, R. Durell, J. L. Smith, A. G. Ahmand, I. TI First observation of excited states in the I-138 nucleus SO PHYSICAL REVIEW C LA English DT Article ID SPONTANEOUS FISSION; ISOMER; IDENTIFICATION; DETECTORS; PRODUCTS; ISOTOPES; NEUTRON; REGION; DECAY; BANDS AB Excited states in the I-138 nucleus, including T-1/2=1.3 mu s isomer decaying by a stretched E2 transition of 68 keV, were observed for the first time. The I-138 nucleus was populated in the spontaneous fission of Cm-248 and studied by means of prompt gamma-ray spectroscopy using the EUROGAM 2 array. The microsecond isomer was populated in the neutron-induced fission of U-235 and observed at the LOHENGRIN separator. Excitation scheme consists of a low-spin part and a medium-spin, Delta I=1, band based on the 7(-) state with the (pi g(7/2)nu f(7/2))(7)(-) dominating configuration, as predicted by the shell model. The shell-model calculations of I-138 provide the optimum reproduction of the experimental scheme when the pi d(5/2) orbital is lowered by 600 keV relative to its position in Sb-133. In the calculation the isomeric level has spin and parity 3(-) and deexcites by an E2 isomeric transition to the 1(-) level, located only 9 keV above the predicted 0(-) ground state. Considering additional information on the ground-state spin from the literature, we propose that in I-138 the 1(-) level corresponds to the ground state and the 0(-) is located above. We note, however, that additional measurements are required to resolve this problem. C1 Warsaw Univ, Fac Phys, PL-00681 Warsaw, Poland. Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subaton & Cosmol, F-38026 St Martin Dheres, France. Saha Inst Nucl Phys, Kolkata 700064, W Bengal, India. Bengal Engn & Sci Univ, Dept Phys, Sibpur 711103, Howrah, India. Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England. Argonne Natl Lab, Argonne, IL 60439 USA. RP Rzaca-Urban, T (reprint author), Warsaw Univ, Fac Phys, Ul Hoza 69, PL-00681 Warsaw, Poland. RI Saha Sarkar, Maitreyee/E-8294-2012 OI Saha Sarkar, Maitreyee/0000-0002-9465-4210 NR 34 TC 10 Z9 10 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2007 VL 75 IS 5 AR 054319 DI 10.1103/PhysRevC.75.054319 PG 8 WC Physics, Nuclear SC Physics GA 173RV UT WOS:000246891100029 ER PT J AU Tadevosyan, V Blok, HP Huber, GM Abbott, D Anklin, H Armstrong, C Arrington, J Assamagan, K Avery, S Baker, OK Bochna, C Brash, EJ Breuer, H Chant, N Dunne, J Eden, T Ent, R Gaskell, D Gilman, R Gustafsson, K Hinton, W Jackson, H Jones, MK Keppel, C Kim, PH Kim, W Klein, A Koltenuk, D Liang, M Lolos, GJ Lung, A Mack, DJ McKee, D Meekins, D Mitchell, J Mkrtchyan, H Mueller, B Niculescu, G Niculescu, I Pitz, D Potterveld, D Qin, LM Reinhold, J Shin, IK Stepanyan, S Tang, LG van der Meer, RLJ Vansyoc, K Van Westrum, D Volmer, J Vulcan, W Wood, S Yan, C Zhao, WX Zihlmann, B AF Tadevosyan, V. Blok, H. P. Huber, G. M. Abbott, D. Anklin, H. Armstrong, C. Arrington, J. Assamagan, K. Avery, S. Baker, O. K. Bochna, C. Brash, E. J. Breuer, H. Chant, N. Dunne, J. Eden, T. Ent, R. Gaskell, D. Gilman, R. Gustafsson, K. Hinton, W. Jackson, H. Jones, M. K. Keppel, C. Kim, P. H. Kim, W. Klein, A. Koltenuk, D. Liang, M. Lolos, G. J. Lung, A. Mack, D. J. McKee, D. Meekins, D. Mitchell, J. Mkrtchyan, H. Mueller, B. Niculescu, G. Niculescu, I. Pitz, D. Potterveld, D. Qin, L. M. Reinhold, J. Shin, I. K. Stepanyan, S. Tang, L. G. van der Meer, R. L. J. Vansyoc, K. Van Westrum, D. Volmer, J. Vulcan, W. Wood, S. Yan, C. Zhao, W.-X. Zihlmann, B. CA Jefferson Lab F Collaboration TI Determination of the pion charge form factor for Q(2)=0.60-1.60 GeV2 SO PHYSICAL REVIEW C LA English DT Article ID RESONANCE REGION; SUM-RULES; ELECTROPRODUCTION; QCD AB The data analysis for the reaction H-1(e,e(')pi(+))n, which was used to determine values for the charged pion form factor F-pi for values of Q(2)= 0.6-1.6 GeV2, has been repeated with careful inspection of all steps and special attention to systematic uncertainties. Also the method used to extract F-pi from the measured longitudinal cross section was critically reconsidered. Final values for the separated longitudinal and transverse cross sections and the extracted values of F-pi are presented. C1 Yerevan Phys Inst, Yerevan 375036, Armenia. Vrije Univ Amsterdam, Fac Nat & Sterrenkunde, NL-1081 HV Amsterdam, Netherlands. Univ Amsterdam, Programming Res Grp, NL-1009 DB Amsterdam, Netherlands. Univ Regina, Regina, SK S4S 0A2, Canada. TJNAF, Div Phys, Newport News, VA 23606 USA. Florida Int Univ, Miami, FL 33119 USA. Coll William & Mary, Williamsburg, VA 23187 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Hampton Univ, Hampton, VA 23668 USA. Univ Illinois, Urbana, IL 61801 USA. Univ Maryland, College Pk, MD 20742 USA. Norfolk State Univ, Norfolk, VA 23504 USA. Oregon State Univ, Corvallis, OR 97331 USA. Rutgers State Univ, Piscataway, NJ 08855 USA. Kyungpook Natl Univ, Taegu 702701, South Korea. Old Dominion Univ, Norfolk, VA 23529 USA. Univ Penn, Philadelphia, PA 19104 USA. New Mexico State Univ, Las Cruces, NM 88003 USA. Univ Colorado, Boulder, CO USA. CEA Saclay, DAPNIA, SPhN, F-91191 Gif Sur Yvette, France. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. Dept Phys, Cambridge, MA 02139 USA. Univ Virginia, Charlottesville, VA 22901 USA. RP Tadevosyan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Arrington, John/D-1116-2012 OI Arrington, John/0000-0002-0702-1328 NR 28 TC 133 Z9 133 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2007 VL 75 IS 5 AR 055205 DI 10.1103/PhysRevC.75.055205 PG 9 WC Physics, Nuclear SC Physics GA 173RV UT WOS:000246891100070 ER PT J AU Toshito, T Kodama, K Sihver, L Yusa, K Ozaki, M Amako, K Kameoka, S Murakami, K Sasaki, T Aoki, S Ban, T Fukuda, T Komatsu, M Kubota, H Naganawa, N Nakamura, T Nakano, T Natsume, M Niwa, K Takahashi, S Yoshida, J Yoshida, H Kanazawa, M Kanematsu, N Komori, M Sato, S Asai, M Koi, T Fukushima, C Ogawa, S Shibasaki, M Shibuya, H AF Toshito, T. Kodama, K. Sihver, L. Yusa, K. Ozaki, M. Amako, K. Kameoka, S. Murakami, K. Sasaki, T. Aoki, S. Ban, T. Fukuda, T. Komatsu, M. Kubota, H. Naganawa, N. Nakamura, T. Nakano, T. Natsume, M. Niwa, K. Takahashi, S. Yoshida, J. Yoshida, H. Kanazawa, M. Kanematsu, N. Komori, M. Sato, S. Asai, M. Koi, T. Fukushima, C. Ogawa, S. Shibasaki, M. Shibuya, H. TI Measurements of total and partial charge-changing cross sections for 200-to 400-MeV/nucleon C-12 on water and polycarbonate SO PHYSICAL REVIEW C LA English DT Article ID LIGHT-ION BEAMS; NUCLEAR-EMULSION; SYSTEM; FRAGMENTATION; RADIOTHERAPY; ABSORBERS; PROTON AB We have studied charged nuclear fragments produced by 200- to 400-MeV/nucleon carbon ions, interacting with water and polycarbonate, using a newly developed emulsion detector. Total and partial charge-changing cross sections for the production of B, Be, and Li fragments were measured and compared with both previously published measurements and model predictions. This study is of importance for validating and improving carbon-ion therapy treatment planning systems and for estimating the radiological risks for personnel on space missions, because carbon is a significant component of galactic cosmic rays. C1 Japan Sci & Technol Agcy, CREST, Kawaguchi 3320012, Japan. KEK, Tsukuba, Ibaraki 3050801, Japan. Aichi Univ Educ, Kariya, Aichi 4488542, Japan. Chalmers, SE-41296 Gothenburg, Sweden. Roanoke Coll, Salem, VA 24153 USA. Gunma Univ, Maebashi, Gumma 3718510, Japan. JAXA, Sagamihara, Kanagawa 2298510, Japan. Kobe Univ, Kobe, Hyogo 6578501, Japan. Nagoya Univ, Nagoya, Aichi 4648602, Japan. Naruto Univ Educ, Naruto 7728502, Japan. NIRS, Chiba 2638555, Japan. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Toho Univ, Funabashi, Chiba 2748510, Japan. RP Toshito, T (reprint author), Japan Sci & Technol Agcy, CREST, Kawaguchi 3320012, Japan. RI Kanematsu, Nobuyuki/B-9130-2008; Ozaki, Masanobu/K-1165-2013; Komori, Masataka/I-6259-2014; Aoki, Shigeki/L-6044-2015 OI Kanematsu, Nobuyuki/0000-0002-2534-9933; Komori, Masataka/0000-0002-4545-4917; NR 27 TC 26 Z9 28 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2007 VL 75 IS 5 AR 054606 DI 10.1103/PhysRevC.75.054606 PG 8 WC Physics, Nuclear SC Physics GA 173RV UT WOS:000246891100040 ER PT J AU Zalewski, M Satula, W Nazarewicz, W Stoitcheva, G Zdunczuk, H AF Zalewski, M. Satula, W. Nazarewicz, W. Stoitcheva, G. Zdunczuk, H. TI Shell model and mean-field description of band termination in the A similar to 44 nuclei SO PHYSICAL REVIEW C LA English DT Article ID HARMONIC-OSCILLATOR BASIS; NEUTRON-STAR DENSITIES; HIGH-SPIN STATES; SKYRME PARAMETRIZATION; ROTATIONAL BANDS; SUBNUCLEAR; EQUATIONS; PROGRAM; VERSION AB We study nuclear high-spin states undergoing the transition to the fully stretched configuration with maximum angular momentum I-max within the space of valence nucleons. To this end, we perform a systematic theoretical analysis of non-fully-stretched I-max-2 and I-max-1 f(7/2)(n) seniority isomers and d(3/2)(-1)f(7/2)(n+1) intruder states in the A similar to 44 nuclei from the lower-fp shell. We employ two theoretical approaches: (i) the density functional theory based on the cranked self-consistent Skyrme-Hartree-Fock method, and (ii) the nuclear shell model in the full sdfp configuration space allowing for 1p-1h cross-shell excitations. We emphasize the importance of restoration of broken angular momentum symmetry inherently obscuring the mean-field treatment of high-spin states. Overall good agreement with experimental data is obtained. C1 Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. Oak Ridge Natl Lab, Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Zalewski, M (reprint author), Univ Warsaw, Inst Theoret Phys, Hoza 69, PL-00681 Warsaw, Poland. NR 28 TC 8 Z9 8 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2007 VL 75 IS 5 AR 054306 DI 10.1103/PhysRevC.75.054306 PG 7 WC Physics, Nuclear SC Physics GA 173RV UT WOS:000246891100016 ER PT J AU Zschiesche, D Tolos, L Schaffner-Bielich, J Pisarski, RD AF Zschiesche, D. Tolos, L. Schaffner-Bielich, Juergen Pisarski, Robert D. TI Cold, dense nuclear matter in a SU(2) parity doublet model SO PHYSICAL REVIEW C LA English DT Article ID MEAN-FIELD THEORY; LINEAR SIGMA-MODEL; CHIRAL-SYMMETRY; BROKEN SCALE; FINITE NUCLEI; MESONS; PHENOMENOLOGY; TEMPERATURE; TRANSITION; INVARIANCE AB We study dense nuclear matter and the chiral phase transition in a SU(2) parity doublet model at zero temperature. The model is defined by adding the chiral partner of the nucleon, the N-', to the linear sigma model, treating the mass of the N-' as an unknown free parameter. The parity doublet model gives a reasonable description of the properties of cold nuclear matter, and avoids unphysical behavior present in the standard SU(2) linear sigma model. If the N-' is identified as the N-'(1535), the parity doublet model shows a first order phase transition to a chirally restored phase at large densities, rho approximate to 10 rho(0), defining the transition by the degeneracy of the masses of the nucleon and the N-'. If the mass of the N-' is chosen to be 1.2 GeV, then the critical density of the chiral phase transition is lowered to three times normal nuclear matter density, and for physical values of the pion mass, the first order transition turns into a smooth crossover. C1 Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil. Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany. Gesell Schwerionenforsch mbH, D-64291 Darmstadt, Germany. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Zschiesche, D (reprint author), Univ Fed Rio de Janeiro, Inst Fis, CP 68-528, BR-21941972 Rio De Janeiro, Brazil. EM detlef@if.ufrj.br; tolos@th.physik.uni-frankfurt.de; schaffner@astro.uni-frankfurt.de; pisarski@quark.phy.bnl.gov RI Tolos, Laura/F-2515-2016 OI Tolos, Laura/0000-0003-2304-7496 NR 43 TC 31 Z9 32 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2007 VL 75 IS 5 AR 055202 DI 10.1103/PhysRevC.75.055202 PG 9 WC Physics, Nuclear SC Physics GA 173RV UT WOS:000246891100067 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Berntzon, L Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Boos, E Borcherding, F Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Calvet, S Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Das, M Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Estrada, J Evans, H Evdokimov, A Evdokimov, VN Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Gounder, K Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jenkins, A Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kaefer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, JM Kalk, JR Kappler, S Karmanov, D Kasper, J Katsanos, I Kau, D Kaur, R Kehoe, R Kermiche, S Kesisoglou, S Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Kryemadhi, A Krzywdzinski, S Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lager, S Lammers, S Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Leonidopoulos, C Lesne, V Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Z Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK McCarthy, R McCroskey, R Meder, D Melnitchouk, A Mendes, A Mendoza, L Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Millet, T Mitrevski, J Molina, J Mondal, NK Monk, J Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundim, L Mutaf, YD Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Oguri, V Oliveira, N Oshima, N Otec, R Garzon, GJOY Owen, M Padley, P Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Peters, K Petroff, P Petteni, M Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG Popov, AV da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rani, KJ Ranjan, K Rapidis, PA Ratoff, PN Renkel, P Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Siccardi, V Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Snow, R Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tiller, B Titov, M Tokmenin, VV Tomoto, M Toole, T Torchiani, I Towers, S Trefzger, T Trincaz-Duvoid, S Tsybychev, D Tuchming, B Tully, C Turcot, AS Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vlimant, JR Von Toerne, E Voutilainen, M Vreeswijk, M Wahl, HD Wang, L Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Womersley, J Wood, DR Wyatt, TR Xie, Y Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, C Yu, J Yurkewicz, A Zatserklyaniy, A Zeitnitz, C Zhang, D Zhao, T Zhao, Z Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Agelou, M. Agram, J.-L. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Askew, A. Asman, B. Assis Jesus, A. C. S. Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Bargassa, P. Baringer, P. Barnes, C. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Berntzon, L. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Binder, M. Biscarat, C. Black, K. M. Blackler, I. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Blumenschein, U. Boehnlein, A. Boeriu, O. Bolton, T. A. Boos, E. Borcherding, F. Borissov, G. Bos, K. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burke, S. Burnett, T. H. Busato, E. Buszello, C. P. Butler, J. M. Calvet, S. Cammin, J. Caron, S. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chapin, D. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Claes, D. Clement, B. Clement, C. Coadou, Y. Cooke, M. Cooper, W. E. Coppage, D. Corcoran, M. Cousinou, M.-C. Cox, B. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Das, M. Davies, B. Davies, G. Davis, G. A. De, K. de Jong, P. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Demine, P. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Doidge, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Edwards, T. Ellison, J. Elmsheuser, J. Elvira, V. D. Eno, S. Ermolov, P. Estrada, J. Evans, H. Evdokimov, A. Evdokimov, V. N. Fatakia, S. N. Feligioni, L. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fleck, I. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gardner, J. Gavrilov, V. Gay, A. Gay, P. Gele, D. Gelhaus, R. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Gounder, K. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J.-F. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hong, S. J. Hooper, R. Houben, P. Hu, Y. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jenkins, A. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kaefer, D. Kahn, S. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kalk, J. R. Kappler, S. Karmanov, D. Kasper, J. Katsanos, I. Kau, D. Kaur, R. Kehoe, R. Kermiche, S. Kesisoglou, S. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Klima, B. Kohli, J. M. Konrath, J.-P. Kopal, M. Korablev, V. M. Kotcher, J. Kothari, B. Koubarovsky, A. Kozelov, A. V. Kozminski, J. Kryemadhi, A. Krzywdzinski, S. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lager, S. Lammers, S. Landsberg, G. Lazoflores, J. Le Bihan, A.-C. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Leonidopoulos, C. Lesne, V. Leveque, J. Lewis, P. Li, J. Li, Q. Z. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Lounis, A. Love, P. Lubatti, H. J. Lynker, M. Lyon, A. L. Maciel, A. K. A. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Magnan, A.-M. Makovec, N. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martens, M. Mattingly, S. E. K. McCarthy, R. McCroskey, R. Meder, D. Melnitchouk, A. Mendes, A. Mendoza, L. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Michaut, M. Miettinen, H. Millet, T. Mitrevski, J. Molina, J. Mondal, N. K. Monk, J. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundim, L. Mutaf, Y. D. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Nelson, S. Neustroev, P. Noeding, C. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Oguri, V. Oliveira, N. Oshima, N. Otec, R. Garzon, G. J. Otero y Owen, M. Padley, P. Parashar, N. Park, S.-J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Perea, P. M. Perez, E. Peters, K. Petroff, P. Petteni, M. Piegaia, R. Pleier, M.-A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M.-E. Pompos, A. Pope, B. G. Popov, A. V. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rani, K. J. Ranjan, K. Rapidis, P. A. Ratoff, P. N. Renkel, P. Reucroft, S. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Royon, C. Rubinov, P. Ruchti, R. Rud, V. I. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schmitt, C. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sengupta, S. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shephard, W. D. Shivpuri, R. K. Shpakov, D. Siccardi, V. Sidwell, R. A. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smith, R. P. Snow, R. Snow, J. Snyder, S. Soeldner-Rembold, S. Song, X. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stevenson, K. Stolin, V. Stone, A. Stoyanova, D. A. Strandberg, J. Strang, M. A. Strauss, M. Stroehmer, R. Strom, D. Strovink, M. Stutte, L. Sumowidagdo, S. Sznajder, A. Talby, M. Tamburello, P. Taylor, W. Telford, P. Temple, J. Tiller, B. Titov, M. Tokmenin, V. V. Tomoto, M. Toole, T. Torchiani, I. Towers, S. Trefzger, T. Trincaz-Duvoid, S. Tsybychev, D. Tuchming, B. Tully, C. Turcot, A. S. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vartapetian, A. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vlimant, J.-R. Von Toerne, E. Voutilainen, M. Vreeswijk, M. Wahl, H. D. Wang, L. Warchol, J. Watts, G. Wayne, M. Weber, M. Weerts, H. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Womersley, J. Wood, D. R. Wyatt, T. R. Xie, Y. Xuan, N. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, C. Yu, J. Yurkewicz, A. Zatserklyaniy, A. Zeitnitz, C. Zhang, D. Zhao, T. Zhao, Z. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zutshi, V. Zverev, E. G. TI Multivariate searches for single top quark production with the D0 detector SO PHYSICAL REVIEW D LA English DT Article ID FERMILAB-TEVATRON; HADRON COLLIDERS; ROOT-S=1.96 TEV; PAIR PRODUCTION; CROSS-SECTION; COLLISIONS; DECAY; PHYSICS; EVENTS; QCD AB We present a search for electroweak production of single top quarks in the s-channel (p (p) over bar -> t (b) over bar +X) and t-channel (p (p) over bar -> tq (b) over bar +X) modes. We have analyzed 230 pb(-1) of data collected with the D0 detector at the Fermilab Tevatron Collider at a center-of-mass energy of root s=1.96 TeV. No evidence for a single top quark signal is found. We set 95% confidence level upper limits on the production cross sections, based on binned likelihoods formed from a neural network output. The observed (expected) limits are 6.4 pb (4.5 pb) in the s-channel and 5.0 pb (5.8 pb) in the t-channel. C1 Joint Inst Nucl Res, Dubna, Russia. Univ Buenos Aires, RA-1053 Buenos Aires, DF, Argentina. Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. Univ Fed Rio de Janeiro, BR-21941 Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Univ Alberta, Edmonton, AB T6G 2M7, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. York Univ, Toronto, ON M3J 2R7, Canada. McGill Univ, Montreal, PQ H3A 2T5, Canada. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ Prague, Ctr Particle Phys, CR-11636 Prague 1, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republ, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, F-38041 Grenoble, France. Univ Aix Marseille 2, CNRS, IN2P3, CPPM, Marseille, France. Lab Accelerateur Lineaire, CNRS, IN2P3, F-91405 Orsay, France. Univ Paris 06, CNRS, IN2P3, LPNHE, F-75252 Paris 05, France. Univ Paris 07, CNRS, IN2P3, LPNHE, F-75221 Paris 05, France. CEA, DAPNIA, Serv Phys Particules, Saclay, France. Univ Strasbourg 1, CNRS, IN2P3, IReS, F-67070 Strasbourg, France. Univ Haut Alsace, Mulhouse, France. Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. Rhein Westfal TH Aachen, Phys Inst A 3, D-5100 Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, D-7800 Freiburg, Germany. Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Berg Univ Gesamthsch Wuppertal, Fachbereich Phys, D-42097 Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. FOM, Inst NIKHEF, NL-1098 SJ Amsterdam, Netherlands. Univ Amsterdam, NIKHEF, NL-1012 WX Amsterdam, Netherlands. Radboud Univ Nijmegen, NIKHEF, Nijmegen, Netherlands. Inst Theoret & Expt Phys, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Lund Univ, S-22100 Lund, Sweden. Royal Inst Technol, Stockholm, Sweden. Univ Stockholm, S-10691 Stockholm, Sweden. Univ Uppsala, S-75105 Uppsala, Sweden. Univ Zurich, Inst Phys, CH-8006 Zurich, Switzerland. Univ Lancaster, Lancaster LA1 4YW, England. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Purdue Univ Calumet, Hammond, IN 46323 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. SUNY Buffalo, Buffalo, NY 14260 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Oklahoma State Univ, Stillwater, OK 74078 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Bargassa, Pedrame/O-2417-2016; Juste, Aurelio/I-2531-2015; Oguri, Vitor/B-5403-2013; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Telford, Paul/B-6253-2011; Nomerotski, Andrei/A-5169-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; OI Sawyer, Lee/0000-0001-8295-0605; Bargassa, Pedrame/0000-0001-8612-3332; Hedin, David/0000-0001-9984-215X; Wahl, Horst/0000-0002-1345-0401; Juste, Aurelio/0000-0002-1558-3291; de Jong, Sijbrand/0000-0002-3120-3367; Landsberg, Greg/0000-0002-4184-9380; Blessing, Susan/0000-0002-4455-7279; Gershtein, Yuri/0000-0002-4871-5449; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; Malik, Sudhir/0000-0002-6356-2655; Haas, Andrew/0000-0002-4832-0455; Weber, Michele/0000-0002-2770-9031; Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Filthaut, Frank/0000-0003-3338-2247; Naumann, Axel/0000-0002-4725-0766; Fatakia, Sarosh/0000-0003-0430-3191; Bertram, Iain/0000-0003-4073-4941; Belanger-Champagne, Camille/0000-0003-2368-2617; Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Leonidopoulos, Christos/0000-0002-7241-2114; Bean, Alice/0000-0001-5967-8674; Madaras, Ronald/0000-0001-7399-2993; De, Kaushik/0000-0002-5647-4489; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; Blekman, Freya/0000-0002-7366-7098; Blazey, Gerald/0000-0002-7435-5758; Evans, Harold/0000-0003-2183-3127; Beuselinck, Raymond/0000-0003-2613-7446; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Qian, Jianming/0000-0003-4813-8167; Strovink, Mark/0000-0001-7020-7769; Begel, Michael/0000-0002-1634-4399 NR 45 TC 13 Z9 13 U1 0 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2007 VL 75 IS 9 AR 092007 DI 10.1103/PhysRevD.75.092007 PG 27 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 173RX UT WOS:000246891300012 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Berntzon, L Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, K Chan, KM Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E Martins, CD Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Hansson, P Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, JM Kalk, JR Kappler, S Karmanov, D Kasper, J Kasper, P Katsanos, I Kau, D Kaur, R Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Krop, D Kryemadhi, A Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lam, D Lammers, S Landsberg, G Lazoflores, J Lebrun, P Lee, WM Leflat, A Lehner, F Lesne, V Leveque, J Lewis, P Li, J Li, L Li, QZ Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Z Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendes, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Monk, J Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Noeding, C Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Oguri, V Oliveira, N Onoprienko, D Oshima, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Rani, KJ Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Shpakov, D Siccardi, V Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Smith, RP Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Talby, M Tamburello, P Tanasijczuk, A Taylor, W Telford, P Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Tomoto, M Toole, T Torchiani, I Trefzger, T Trincaz-Duvoid, S Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ van Eijk, B Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vlimant, JR Von Toerne, E Voutilainen, M Vreeswijk, M Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Weerts, H Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, C Yu, J Yurkewicz, A Zatserklyaniy, A Zeitnitz, C Zhang, D Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A.-F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Berntzon, L. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Binder, M. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Borissov, G. Bos, K. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Burdin, S. Burke, S. Burnett, T. H. Busato, E. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Caron, S. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. Chan, K. M. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clement, B. Clement, C. Coadou, Y. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M.-C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, P. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J.-F. Grohsjean, A. Grunendahl, S. Grunewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Hansson, P. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hooper, R. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kaefer, D. Kahn, S. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kalk, J. R. Kappler, S. Karmanov, D. Kasper, J. Kasper, P. Katsanos, I. Kau, D. Kaur, R. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Klima, B. Kohli, J. M. Konrath, J.-P. Kopal, M. Korablev, V. M. Kotcher, J. Kothari, B. Koubarovsky, A. Kozelov, A. V. Krop, D. Kryemadhi, A. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lam, D. Lammers, S. Landsberg, G. Lazoflores, J. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lesne, V. Leveque, J. Lewis, P. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Lounis, A. Love, P. Lubatti, H. J. Lynker, M. Lyon, A. L. Maciel, A. K. A. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Makovec, N. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendes, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Michaut, M. Miettinen, H. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Monk, J. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Noeding, C. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Oguri, V. Oliveira, N. Onoprienko, D. Oshima, N. Osta, J. Otec, R. Garzon, G. J. Otero y Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S.-J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Perea, P. M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M.-A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M.-E. Pompos, A. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Rani, K. J. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Royon, C. Rubinov, P. Ruchti, R. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schmitt, C. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Sengupta, S. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Shpakov, D. Siccardi, V. Sidwell, R. A. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Smith, R. P. Snow, G. R. Snow, J. Snyder, S. Soldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, M. Stroehmer, R. Strom, D. Strovink, M. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Talby, M. Tamburello, P. Tanasijczuk, A. Taylor, W. Telford, P. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Tomoto, M. Toole, T. Torchiani, I. Trefzger, T. Trincaz-Duvoid, S. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. van Eijk, B. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vartapetian, A. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vlimant, J.-R. Von Toerne, E. Voutilainen, M. Vreeswijk, M. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Weerts, H. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, C. Yu, J. Yurkewicz, A. Zatserklyaniy, A. Zeitnitz, C. Zhang, D. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Measurement of the top quark mass in the lepton plus jets channel using the ideogram method SO PHYSICAL REVIEW D LA English DT Article ID PRODUCTION CROSS-SECTION; P(P)OVER-BAR COLLISIONS; FRAGMENTATION FUNCTION; PARTON DISTRIBUTIONS; W-BOSON; DETECTOR; PHYSICS; EVENTS; DECAYS AB A measurement of the top quark mass using events with one charged lepton, missing transverse energy, and jets in the final state, collected by the D0 detector from p (p) over bar collisions at root s=1.96 TeV at the Fermilab Tevatron collider, is presented. A constrained fit is used to fully reconstruct the kinematics of the events. For every event a top quark mass likelihood is calculated taking into account all possible jet assignments and the probability that an event is signal or background. Lifetime-based identification of b jets is employed to enhance the separation between t (t) over bar signal and background from other physics processes and to improve the assignment of the observed jets to the quarks in the t (1) over bar hypothesis. We extract a multiplicative jet energy scale (JES) factor in situ, greatly reducing the systematic effect related to the jet energy measurement. In a data sample with an integrated luminosity of 425 pb(-1), we observe 230 candidate events, with an estimated background of 123 events, and measure m(t)=173.7 +/- 4.4(stat+JES)(-2.0)(+2.1)(syst) GeV. This result represents the first application of the ideogram technique to the measurement of the top quark mass in lepton+jets events. C1 LAFEX, Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. Univ Fed Rio de Janeiro, BR-21941 Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, Sao Paulo, Brazil. Univ Alberta, Edmonton, AB T6G 2M7, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. York Univ, Toronto, ON M3J 2R7, Canada. McGill Univ, Montreal, PQ H3A 2T5, Canada. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ Prague, Ctr Praticle Phys, CR-11636 Prague 1, Czech Republic. Czech Tech Univ, Prague, Czech Republic. Acad Sci Czech Republ, Inst Phys, Ctr Particle Phys, CR-10400 Prague, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. Univ Clermont Ferrand, CNRS, IN2P3, Lab Phys Corpusclaire, Clermont Ferrand, France. Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, F-38041 Grenoble, France. Univ Aix Marseille 2, CNRS, IN2P3, CPPM, Marseille, France. Univ Paris 11, Orsay, France. CNRS, IN2P3, Lab Accelerateur Lineaire, Orsay, France. Univ Paris 06, CNRS, IN2P3, LPNHE, F-75005 Paris, France. Univ Paris 07, CNRS, IN2P3, LPNHE, F-75221 Paris 05, France. CEA Saclay, Serv Phys Particules, DAPNIA, Gif Sur Yvette, France. Univ Strasbourg 1, CNRS, IN2P3, IPHC, F-67070 Strasbourg, France. Univ Haute Alsace, Mulhouse, France. Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. Rhein Westfal TH Aachen, Phys Inst A 3, D-5100 Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, D-7800 Freiburg, Germany. Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, D-8000 Munich, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, D-7800 Freiburg, Germany. Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Gesamthsch Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh, India. Univ Delhi, Delhi, India. Tata inst Fundamental Res, Bombay, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul, South Korea. Sungkyunkwan Univ, Suwon, South Korea. CINVESTAV, Mexico City, DF, Mexico. NIKHEF, Fom Inst, Amsterdam, Netherlands. Univ Amsterdam, NIKHEF, NL-1009 AT Amsterdam, Netherlands. Radboud Univ Nijmegen, NIKHEF, Nijmegen, Netherlands. Joint Inst Nucl Res, Dubna, Russia. Inst Theoret & Expt Phys, Moscow, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Lund Univ, S-22100 Lund, Sweden. Royal Inst Technol, S-10044 Stockholm, Sweden. Univ Stockholm, S-10691 Stockholm, Sweden. Univ Uppsala, S-75105 Uppsala, Sweden. Univ Zurich, Inst Phys, CH-8006 Zurich, Switzerland. Univ Lancaster, Lancaster LA1 4YW, England. Univ London Imperial Coll Sci Technol & Med, London SW7 2AY, England. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Purdue Univ Calumet, Hammond, IN 46323 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Boston Univ, Boston, MA 02115 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. SUNY Buffalo, Buffalo, NY 14260 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Oklahoma City, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Oklahoma State Univ, Stillwater, OK 74078 USA. Brown Univ, Providence, RI 02912 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, RA-1053 Buenos Aires, DF, Argentina. RI Oguri, Vitor/B-5403-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Telford, Paul/B-6253-2011; Nomerotski, Andrei/A-5169-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Leflat, Alexander/D-7284-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013 OI Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Dudko, Lev/0000-0002-4462-3192; De, Kaushik/0000-0002-5647-4489; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311 NR 50 TC 18 Z9 18 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2007 VL 75 IS 9 AR 092001 DI 10.1103/PhysRevD.75.092001 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 173RX UT WOS:000246891300006 ER PT J AU Abulencia, A Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arguin, JF Arisawa, T Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Budroni, S Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carillo, S Carlsmith, D Carosi, R Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciljak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Cyr, D DaRonco, S D'Auria, S Davies, T D'Onofrio, M Dagenhart, D de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G Dell'Orso, M Delli Paoli, F Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR DiTuro, P Dorr, C Donati, S Donega, M Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Garberson, F Garfinkel, AF Gay, C Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, A Gibson, K Gimmell, JL Ginsburg, C Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Griffiths, M Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ishizawa, Y Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jensen, H Jeon, EJ Jindariani, S Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kovalev, A Kraan, AC Kraus, J Kravchenko, I Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Lindgren, M Lipeles, E Liss, TM Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Manca, G Margaroli, F Marginean, R Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Maruyama, T Mastrandrea, P Masubuchi, T Matsunaga, H Mattson, ME Mazini, R Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyamoto, A Moed, S Moggi, N Mohr, B Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Nachtman, J Nagano, A Naganoma, J Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nigmanov, T Nodulman, L Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Papadimitriou, V Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ranjan, N Rappoccio, S Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Ruiz, A Russ, J Rusu, V Saarikko, H Sabik, S Safonov, A Sakumoto, WK Salamanna, G Salto, O Saltzberg, D Sanchez, C Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Sjolin, J Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Staveris-Polykalas, A St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suzuki, T Taffard, A Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tsuchiya, R Tsuno, S Turini, N Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Veramendi, G Veszpremi, V Vidal, R Vila, I Vilar, R Vine, T Vollrath, I Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, J Wagner, W Wallny, R Wang, SM Warburton, A Waschke, S Waters, D Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zhou, J Zucchelli, S AF Abulencia, A. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Ambrose, D. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arguin, J.-F. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Bedeschi, F. Behari, S. Belforte, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Budroni, S. Burkett, K. Busetto, G. Bussey, P. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carillo, S. Carlsmith, D. Carosi, R. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciljak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Cyr, D. DaRonco, S. D'Auria, S. Davies, T. D'Onofrio, M. Dagenhart, D. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. Dell'Orso, M. Delli Paoli, F. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. DiTuro, P. Doerr, C. Donati, S. Donega, M. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Foland, A. Forrester, S. Foster, G. W. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garberson, F. Garfinkel, A. F. Gay, C. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, A. Gibson, K. Gimmell, J. L. Ginsburg, C. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Griffiths, M. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B.-Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S.-C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ishizawa, Y. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jensen, H. Jeon, E. J. Jindariani, S. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kovalev, A. Kraan, A. C. Kraus, J. Kravchenko, I. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Liss, T. M. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Loverre, P. Lu, R.-S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Manca, G. Margaroli, F. Marginean, R. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Maruyama, T. Mastrandrea, P. Masubuchi, T. Matsunaga, H. Mattson, M. E. Mazini, R. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyamoto, A. Moed, S. Moggi, N. Mohr, B. Moore, R. Morello, M. Fernandez, P. Movilla Mulmenstadt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Nachtman, J. Nagano, A. Naganoma, J. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nigmanov, T. Nodulman, L. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Papadimitriou, V. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ranjan, N. Rappoccio, S. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Sabik, S. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Saltzberg, D. Sanchez, C. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Sjolin, J. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. St. Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Takikawa, K. Tanaka, M. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tsuchiya, R. Tsuno, S. Turini, N. Ukegawa, F. Unverhau, T. Uozumi, S. Usynin, D. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Veramendi, G. Veszpremi, V. Vidal, R. Vila, I. Vilar, R. Vine, T. Vollrath, I. Volobouev, I. Volpi, G. Wurthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, J. Wagner, W. Wallny, R. Wang, S. M. Warburton, A. Waschke, S. Waters, D. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zhou, J. Zucchelli, S. CA CDF Collaboration TI Search for W ' boson decaying to electron-neutrino pairs in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID LEFT-RIGHT SYMMETRY; VIOLATION; PARITY AB We present the results of a search for W(') boson decaying to electron-neutrino pairs in p (p) over bar collisions at a center-of-mass energy of 1.96 TeV, using a data sample corresponding to 205 pb(-1) of integrated luminosity collected by the CDF II detector at Fermilab. We observe no evidence for this decay mode and set limits on the production cross section times branching fraction, assuming the neutrinos from W(') boson decays to be light. If we assume the manifest left-right symmetric model, we exclude a W(') boson with mass less than 788 GeV/c(2) at the 95% confidence level. C1 Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Engn, E-08193 Barcelona, Spain. Baylor Univ, Waco, TX 76798 USA. Univ Bologna, INFN, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Univ Illinois, Urbana, IL 61801 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. KEK, High Energy Accelerator Res Organizat, Ibaraki 305, Japan. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Inst Theoret & Expt Phys, Moscow 117259, Russia. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Sez Padova Trento, Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Siena & Scuola Normale Super, Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Sez roma 1, INFN, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Univ Trieste, INFN, I-34127 Trieste, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Abulencia, A (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RI Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Lysak, Roman/H-2995-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Warburton, Andreas/N-8028-2013; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; Kim, Soo-Bong/B-7061-2014; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013 OI Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Warburton, Andreas/0000-0002-2298-7315; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643 NR 31 TC 23 Z9 23 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2007 VL 75 IS 9 AR 091101 DI 10.1103/PhysRevD.75.091101 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 173RX UT WOS:000246891300001 ER PT J AU Abulencia, A Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arguin, JF Arisawa, T Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Budroni, S Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carillo, S Carlsmith, D Carosi, R Carron, S Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciljak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Cyr, D DaRonco, S Datta, M D'Auria, S Davies, T D'Onofrio, M Dagenhart, D de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G Dell'Orso, M Delli Paoli, F Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR DiTuro, P Dorr, C Donati, S Donega, M Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Garberson, F Garfinkel, AF Gay, C Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, A Gibson, K Gimmell, JL Ginsburg, C Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Griffiths, M Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ishizawa, Y Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jensen, H Jeon, EJ Jindariani, S Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kovalev, A Kraan, AC Kraus, J Kravchenko, I Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Manca, G Margaroli, F Marginean, R Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Maruyama, T Mastrandrea, P Masubuchi, T Matsunaga, H Mattson, ME Mazini, R Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyamoto, A Moed, S Moggi, N Mohr, B Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Nachtman, J Nagano, A Naganoma, J Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nigmanov, T Nodulman, L Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Papadimitriou, V Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ranjan, N Rappoccio, S Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Ruiz, A Russ, J Rusu, V Saarikko, H Sabik, S Safonov, A Sakumoto, WK Salamanna, G Salto, O Saltzberg, D Sanchez, C Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Sjolin, J Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Staveris-Polykalas, A St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suzuki, T Taffard, A Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tsuchiya, R Tsuno, S Turini, N Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Veramendi, G Veszpremi, V Vidal, R Vila, I Vilar, R Vine, T Vollrath, I Volobouev, I Volpi, G Wuerthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, J Wagner, W Wallny, R Wang, SM Warburton, A Waschke, S Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zhou, J Zucchelli, S AF Abulencia, A. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Ambrose, D. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arguin, J.-F. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Bedeschi, F. Behari, S. Belforte, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Budroni, S. Burkett, K. Busetto, G. Bussey, P. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carillo, S. Carlsmith, D. Carosi, R. Carron, S. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciljak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Cyr, D. DaRonco, S. Datta, M. D'Auria, S. Davies, T. D'Onofrio, M. Dagenhart, D. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. Dell'Orso, M. Delli Paoli, F. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. DiTuro, P. Doerr, C. Donati, S. Donega, M. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Foland, A. Forrester, S. Foster, G. W. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garberson, F. Garfinkel, A. F. Gay, C. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, A. Gibson, K. Gimmell, J. L. Ginsburg, C. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Griffiths, M. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B.-Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S.-C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ishizawa, Y. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jensen, H. Jeon, E. J. Jindariani, S. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kovalev, A. Kraan, A. C. Kraus, J. Kravchenko, I. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Loverre, P. Lu, R.-S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Manca, G. Margaroli, F. Marginean, R. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Maruyama, T. Mastrandrea, P. Masubuchi, T. Matsunaga, H. Mattson, M. E. Mazini, R. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyamoto, A. Moed, S. Moggi, N. Mohr, B. Moore, R. Morello, M. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Nachtman, J. Nagano, A. Naganoma, J. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nigmanov, T. Nodulman, L. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Papadimitriou, V. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ranjan, N. Rappoccio, S. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Sabik, S. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Saltzberg, D. Sanchez, C. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Sjolin, J. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. St. Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Takikawa, K. Tanaka, M. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tsuchiya, R. Tsuno, S. Turini, N. Ukegawa, F. Unverhau, T. Uozumi, S. Usynin, D. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Veramendi, G. Veszpremi, V. Vidal, R. Vila, I. Vilar, R. Vine, T. Vollrath, I. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, J. Wagner, W. Wallny, R. Wang, S. M. Warburton, A. Waschke, S. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zhou, J. Zucchelli, S. CA CDF Collaboration TI Measurement of the inclusive jet cross section using the k(T) algorithm in p(p)over-bar collisions at root s=1.96 TeV with the CDF II detector SO PHYSICAL REVIEW D LA English DT Article ID CENTRAL ELECTROMAGNETIC CALORIMETER; HADRON-COLLISIONS; FRAGMENTATION; PERFORMANCE; COLLIDER; PHYSICS AB We report on measurements of the inclusive jet production cross section as a function of the jet transverse momentum in p (p) over bar collisions at root s=1.96 TeV, using the k(T) algorithm and a data sample corresponding to 1.0 fb(-1) collected with the Collider Detector at Fermilab in run II. The measurements are carried out in five different jet rapidity regions with vertical bar y(jet)vertical bar < 2.1 and transverse momentum in the range 54 < p(T)(jet)< 700 GeV/c. Next-to-leading order perturbative QCD predictions are in good agreement with the measured cross sections. C1 Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. Baylor Univ, Waco, TX 76798 USA. Univ Bologna, Inst Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Comenius Univ, Bratislava 84248, Slovakia. Slovak Acad Sci, Inst Expt Phys, Kosice 04001, Slovakia. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva 4, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan. Kyungpook Natl Univ, Ctr High Energy Phys, Seoul 151742, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. MIT, Cambridge, MA 02138 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Inst Theoret & Expt Phys, ITEP, Moscow 117259, Russia. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RD, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Univ Siena, Ist Nazl Fis Nucl, I-53100 Siena, Italy. Scuola Normale Super Pisa, I-56127 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Rochester, Rochester, NY 14627 USA. Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Univ Trieste, Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Udine, Ist Nazl Fis Nucl, I-33100 Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Abulencia, A (reprint author), Univ Illinois, Urbana, IL 61801 USA. RI Lysak, Roman/H-2995-2014; Scodellaro, Luca/K-9091-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; Azzi, Patrizia/H-5404-2012; Kim, Soo-Bong/B-7061-2014; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016 OI Scodellaro, Luca/0000-0002-4974-8330; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117 NR 41 TC 94 Z9 95 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2007 VL 75 IS 9 AR 092006 DI 10.1103/PhysRevD.75.092006 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 173RX UT WOS:000246891300011 ER PT J AU Abulencia, A Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arguin, JF Arisawa, T Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Budroni, S Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carillo, S Carlsmith, D Carosi, R Carron, S Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciljak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Cyr, D DaRonco, S Datta, M D'Auria, S Davies, T D'Onofrio, M Dagenhart, D de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G Dell'Orso, M Paoli, FD Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR DiTuro, P Dorr, C Donati, S Donega, M Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Garberson, F Garfinkel, AF Gay, C Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, A Gibson, K Gimmell, JL Ginsburg, C Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Griffiths, M Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ishizawa, Y Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jensen, H Jeon, EJ Jindariani, S Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kovalev, A Kraan, AC Kraus, J Kravchenko, I Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Manca, G Margaroli, F Marginean, R Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Maruyama, T Mastrandrea, P Masubuchi, T Matsunaga, H Mattson, ME Mazini, R Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyamoto, A Moed, S Moggi, N Mohr, B Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Nachtman, J Nagano, A Naganoma, J Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nigmanov, T Nodulman, L Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Papadimitriou, V Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ranjan, N Rappoccio, S Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Ruiz, A Russ, J Rusu, V Saarikko, H Sabik, S Safonov, A Sakumoto, WK Salamanna, G Salto, O Saltzberg, D Sanchez, C Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Sjolin, J Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Staveris-Polykalas, A Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suzuki, T Taffard, A Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tsuchiya, R Tsuno, S Turini, N Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Veramendi, G Veszpremi, V Vidal, R Vila, I Vilar, R Vine, T Vollrath, I Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, J Wagner, W Wallny, R Wang, SM Warburton, A Waschke, S Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zhou, J Zucchelli, S AF Abulencia, A. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Ambrose, D. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arguin, J.-F. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Bedeschi, F. Behari, S. Belforte, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Budroni, S. Burkett, K. Busetto, G. Bussey, P. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carillo, S. Carlsmith, D. Carosi, R. Carron, S. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciljak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Cyr, D. DaRonco, S. Datta, M. D'Auria, S. Davies, T. D'Onofrio, M. Dagenhart, D. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. Dell'Orso, M. Paoli, F. Delli Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. DiTuro, P. Doerr, C. Donati, S. Donega, M. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Foland, A. Forrester, S. Foster, G. W. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garberson, F. Garfinkel, A. F. Gay, C. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, A. Gibson, K. Gimmell, J. L. Ginsburg, C. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Griffiths, M. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B.-Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S.-C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ishizawa, Y. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jensen, H. Jeon, E. J. Jindariani, S. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kovalev, A. Kraan, A. C. Kraus, J. Kravchenko, I. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Loverre, P. Lu, R.-S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Manca, G. Margaroli, F. Marginean, R. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Maruyama, T. Mastrandrea, P. Masubuchi, T. Matsunaga, H. Mattson, M. E. Mazini, R. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyamoto, A. Moed, S. Moggi, N. Mohr, B. Moore, R. Morello, M. Fernandez, P. Movilla Mulmenstadt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Nachtman, J. Nagano, A. Naganoma, J. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nigmanov, T. Nodulman, L. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Papadimitriou, V. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ranjan, N. Rappoccio, S. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Sabik, S. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Saltzberg, D. Sanchez, C. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Sjolin, J. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Takikawa, K. Tanaka, M. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tsuchiya, R. Tsuno, S. Turini, N. Ukegawa, F. Unverhau, T. Uozumi, S. Usynin, D. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Veramendi, G. Veszpremi, V. Vidal, R. Vila, I. Vilar, R. Vine, T. Vollrath, I. Volobouev, I. Volpi, G. Wurthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, J. Wagner, W. Wallny, R. Wang, S. M. Warburton, A. Waschke, S. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zhou, J. Zucchelli, S. CA CDF Collaboration TI Measurement of sigma(p(p)over-bar -> Z) center dot B(Z -> tau tau) in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID YAN K-FACTOR; DRELL-YAN; PARTON DISTRIBUTIONS; CROSS-SECTION; COLLIDER; BOSON AB We present a measurement of the inclusive production cross section for Z bosons decaying to tau leptons in p (p) over bar collisions at root s=1.96 TeV. We use a channel with one hadronically-decaying and one electronically-decaying tau. This measurement is based on 350 pb(-1) of CDF Run II data. Using a sample of 504 opposite sign e tau events with a total expected background of 190 events, we obtain sigma(p (p) over bar -> 4Z)center dot B(Z ->tau tau)=264 +/- 23(stat)+/- 14(syst)+/- 15(lumi) pb, in agreement with the next-to-next-to-leading order QCD prediction. This is the first CDF cross section measurement using hadronically-decaying taus in Run II. C1 Univ Illinois, Urbana, IL 61801 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. Baylor Univ, Waco, TX 76798 USA. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Comenius Univ, Bratislava 84248, Slovakia. Slovak Acad Sci, Inst Expt Phys, Kosice 04001, Slovakia. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Nazl Frascati Lab, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva 4, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. Univ Helsinki, FIN-00014 Helsinki, Finland. Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. KEK, High Energy Accelerator Res Org, Ibaraki 305, Japan. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. Ctr Invest Energet & Medioambientales & Tecnol, E-28040 Madrid, Spain. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Inst Theoret & Expt Phys, Moscow 117529, Russia. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl, I-56100 Pisa, Italy. Scuola Normale Super Pisa, I-56127 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Univ Trieste, Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Udine, Ist Nazl Fis Nucl, I-33100 Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Abulencia, A (reprint author), Univ Illinois, Urbana, IL 61801 USA. RI Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Ivanov, Andrew/A-7982-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Ruiz, Alberto/E-4473-2011; Azzi, Patrizia/H-5404-2012; Punzi, Giovanni/J-4947-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Annovi, Alberto/G-6028-2012; messina, andrea/C-2753-2013; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Warburton, Andreas/N-8028-2013 OI Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Ivanov, Andrew/0000-0002-9270-5643; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Warburton, Andreas/0000-0002-2298-7315 NR 33 TC 20 Z9 20 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2007 VL 75 IS 9 AR 092004 DI 10.1103/PhysRevD.75.092004 PG 26 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 173RX UT WOS:000246891300009 ER PT J AU Achterberg, A Ackermann, M Adams, J Ahrens, J Andeen, K Atlee, DW Bahcall, JN Bai, X Baret, B Barwick, SW Bay, R Beattie, K Becka, T Becker, JK Becker, KH Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Blaufuss, E Boersma, DJ Bohm, C Bolmont, J Boser, S Botner, O Bouchta, A Braun, J Burgess, C Burgess, T Castermans, T Chirkin, D Christy, B Clem, J Cowen, DF D'Agostino, MV Davour, A Day, CT De Clercq, C Demirors, L Descamps, F Desiati, P DeYoung, T Diaz-Velez, JC Dreyer, J Dumm, JP Duvoort, MR Edwards, WR Ehrlich, R Eisch, J Ellsworth, RW Evenson, PA Fadiran, O Fazely, AR Feser, T Filimonov, K Fox, BD Gaisser, TK Gallagher, J Ganugapati, R Geenen, H Gerhardt, L Goldschmidt, A Goodman, JA Gozzini, R Grullon, S Gross, A Gunasingha, RM Gurtner, M Hallgren, A Halzen, F Han, K Hanson, K Hardtke, D Hardtke, R Harenberg, T Hart, JE Hauschildt, T Hays, D Heise, J Helbing, K Hellwig, M Herquet, P Hill, GC Hodges, J Hoffman, KD Hommez, B Hoshina, K Hubert, D Hughey, B Hulth, PO Hultqvist, K Hundertmark, S Hulss, JP Ishihara, A Jacobsen, J Japaridze, GS Johansson, H Jones, A Joseph, JM Kampert, KH Karle, A Kawai, H Kelley, JL Kestel, M Kitamura, N Klein, SR Klepser, S Kohnen, G Kolanoski, H Kowalski, M Kopke, L Krasberg, M Kuehn, K Landsman, H Leich, H Leier, D Leuthold, M Liubarsky, I Lundberg, J Lunemann, J Madsen, J Mase, K Matis, HS McCauley, T McParland, CP Meli, A Messarius, T Meszaros, P Miyamoto, H Mokhtarani, A Montaruli, T Morey, A Morse, R Movit, SM Munich, K Nahnhauer, R Nam, JW Niessen, P Nygren, DR Ogelman, H Olivas, A Patton, S Pena-Garay, C Heros, CPDL Piegsa, A Pieloth, D Pohl, AC Porrata, R Pretz, J Price, PB Przybylski, GT Rawlins, K Razzaque, S Resconi, E Rhode, W Ribordy, M Rizzo, A Robbins, S Roth, P Rott, C Rutledge, D Ryckbosch, D Sander, HG Sarkar, S Schlenstedt, S Schmidt, T Schneider, D Seckel, D Seo, SH Seunarine, S Silvestri, A Smith, AJ Solarz, M Song, C Sopher, JE Spiczak, GM Spiering, C Stamatikos, M Stanev, T Steffen, P Stezelberger, T Stokstad, RG Stoufer, MC Stoyanov, S Strahler, EA Straszheim, T Sulanke, KH Sullivan, GW Sumner, TJ Taboada, I Tarasova, O Tepe, A Thollander, L Tilav, S Tluczykont, M Toale, PA Turcan, D van Eijndhoven, N Vandenbroucke, J Van Overloop, A Voigt, B Wagner, W Walck, C Waldmann, H Walter, M Wang, YR Wendt, C Wiebusch, CH Wikstrom, G Williams, DR Wischnewski, R Wissing, H Woschnagg, K Xu, XW Yodh, G Yoshida, S Zornoza, JD AF Achterberg, A. Ackermann, M. Adams, J. Ahrens, J. Andeen, K. Atlee, D. W. Bahcall, J. N. Bai, X. Baret, B. Barwick, S. W. Bay, R. Beattie, K. Becka, T. Becker, J. K. Becker, K.-H. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Blaufuss, E. Boersma, D. J. Bohm, C. Bolmont, J. Boeser, S. Botner, O. Bouchta, A. Braun, J. Burgess, C. Burgess, T. Castermans, T. Chirkin, D. Christy, B. Clem, J. Cowen, D. F. D'Agostino, M. V. Davour, A. Day, C. T. De Clercq, C. Demirors, L. Descamps, F. Desiati, P. DeYoung, T. Diaz-Velez, J. C. Dreyer, J. Dumm, J. P. Duvoort, M. R. Edwards, W. R. Ehrlich, R. Eisch, J. Ellsworth, R. W. Evenson, P. A. Fadiran, O. Fazely, A. R. Feser, T. Filimonov, K. Fox, B. D. Gaisser, T. K. Gallagher, J. Ganugapati, R. Geenen, H. Gerhardt, L. Goldschmidt, A. Goodman, J. A. Gozzini, R. Grullon, S. Gross, A. Gunasingha, R. M. Gurtner, M. Hallgren, A. Halzen, F. Han, K. Hanson, K. Hardtke, D. Hardtke, R. Harenberg, T. Hart, J. E. Hauschildt, T. Hays, D. Heise, J. Helbing, K. Hellwig, M. Herquet, P. Hill, G. C. Hodges, J. Hoffman, K. D. Hommez, B. Hoshina, K. Hubert, D. Hughey, B. Hulth, P. O. Hultqvist, K. Hundertmark, S. Huelss, J.-P. Ishihara, A. Jacobsen, J. Japaridze, G. S. Johansson, H. Jones, A. Joseph, J. M. Kampert, K.-H. Karle, A. Kawai, H. Kelley, J. L. Kestel, M. Kitamura, N. Klein, S. R. Klepser, S. Kohnen, G. Kolanoski, H. Kowalski, M. Koepke, L. Krasberg, M. Kuehn, K. Landsman, H. Leich, H. Leier, D. Leuthold, M. Liubarsky, I. Lundberg, J. Lunemann, J. Madsen, J. Mase, K. Matis, H. S. McCauley, T. McParland, C. P. Meli, A. Messarius, T. Meszaros, P. Miyamoto, H. Mokhtarani, A. Montaruli, T. Morey, A. Morse, R. Movit, S. M. Muenich, K. Nahnhauer, R. Nam, J. W. Niessen, P. Nygren, D. R. Ogelman, H. Olivas, A. Patton, S. Pena-Garay, C. Heros, C. Perez de los Piegsa, A. Pieloth, D. Pohl, A. C. Porrata, R. Pretz, J. Price, P. B. Przybylski, G. T. Rawlins, K. Razzaque, S. Resconi, E. Rhode, W. Ribordy, M. Rizzo, A. Robbins, S. Roth, P. Rott, C. Rutledge, D. Ryckbosch, D. Sander, H.-G. Sarkar, S. Schlenstedt, S. Schmidt, T. Schneider, D. Seckel, D. Seo, S. H. Seunarine, S. Silvestri, A. Smith, A. J. Solarz, M. Song, C. Sopher, J. E. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Steffen, P. Stezelberger, T. Stokstad, R. G. Stoufer, M. C. Stoyanov, S. Strahler, E. A. Straszheim, T. Sulanke, K.-H. Sullivan, G. W. Sumner, T. J. Taboada, I. Tarasova, O. Tepe, A. Thollander, L. Tilav, S. Tluczykont, M. Toale, P. A. Turcan, D. van Eijndhoven, N. Vandenbroucke, J. Van Overloop, A. Voigt, B. Wagner, W. Walck, C. Waldmann, H. Walter, M. Wang, Y.-R. Wendt, C. Wiebusch, C. H. Wikstrom, G. Williams, D. R. Wischnewski, R. Wissing, H. Woschnagg, K. Xu, X. W. Yodh, G. Yoshida, S. Zornoza, J. D. TI Five years of searches for point sources of astrophysical neutrinos with the AMANDA-II neutrino telescope SO PHYSICAL REVIEW D LA English DT Article ID HIGH-ENERGY NEUTRINOS; FLUX AB We report the results of a five-year survey of the northern sky to search for point sources of high energy neutrinos. The search was performed on the data collected with the AMANDA-II neutrino telescope in the years 2000 to 2004, with a live time of 1001 days. The sample of selected events consists of 4282 upward going muon tracks with high reconstruction quality and an energy larger than about 100 GeV. We found no indication of point sources of neutrinos and set 90% confidence level flux upper limits for an all-sky search and also for a catalog of 32 selected sources. For the all-sky search, our average (over declination and right ascension) experimentally observed upper limit Phi(0)=(E/1 TeV)(gamma)center dot d Phi/dE to a point source flux of muon and tau neutrino (detected as muons arising from taus) is Phi(nu mu)+nu(0)(mu)+Phi(nu tau)+nu(0)(tau)=11.1x 10(-11) TeV-1 cm(-2) s(-1), in the energy range between 1.6 TeV and 2.5 PeV for a flavor ratio Phi(nu mu)+nu(0)(mu)/Phi(nu tau)+nu(0)(tau)=1 and assuming a spectral index gamma=2. It should be noticed that this is the first time we set upper limits to the flux of muon and tau neutrinos. In previous papers we provided muon neutrino upper limits only neglecting the sensitivity to a signal from tau neutrinos, which improves the limits by 10% to 16%. The value of the average upper limit presented in this work corresponds to twice the limit on the muon neutrino flux Phi(nu mu)+nu(0)(mu)=5.5x10(-11) TeV-1 cm(-2) s(-1). A stacking analysis for preselected active galactic nuclei and a search based on the angular separation of the events were also performed. We report the most stringent flux upper limits to date, including the results of a detailed assessment of systematic uncertainties. C1 DESY, D-15735 Zeuthen, Germany. Inst Adv Study, Princeton, NJ 08540 USA. Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. Penn State Univ, Dept Phys, University Pk, PA 16802 USA. Univ Uppsala, Div High Energy Phys, S-75121 Uppsala, Sweden. Univ Utrecht, Dept Phys & Astron, NL-3584 CC Utrecht, Netherlands. Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany. Univ Alaska, Dept Phys & Astron, Anchorage, AK 99508 USA. Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. So Univ, Dept Phys, Baton Rouge, LA 70813 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium. Vrije Univ Brussels, Dienst ELEM, B-1050 Brussels, Belgium. Chiba Univ, Dept Phys, Chiba 2638522, Japan. Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. Univ Maryland, Dept Phys, College Pk, MD 20742 USA. Univ Dortmund, Dept Phys, D-44221 Dortmund, Germany. Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. Max Planck Inst Kernphys, D-69177 Heidelberg, Germany. Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England. Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. Univ Mainz, Inst Phys, D-55099 Mainz, Germany. Univ Mons, B-7000 Mons, Belgium. Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. Univ Oxford, Dept Phys, Oxford OX1 3NP, England. RP Ackermann, M (reprint author), DESY, D-15735 Zeuthen, Germany. EM markus.ackermann@desy.de; elisa.bernardini@desy.de RI Song, Chihwa/A-3455-2008; Hundertmark, Stephan/A-6592-2010; Wiebusch, Christopher/G-6490-2012; Kowalski, Marek/G-5546-2012; Hallgren, Allan/A-8963-2013; Botner, Olga/A-9110-2013; Tjus, Julia/G-8145-2012; Zornoza, Juan de Dios/L-1604-2014; Sarkar, Subir/G-5978-2011; OI Perez de los Heros, Carlos/0000-0002-2084-5866; Hubert, Daan/0000-0002-4365-865X; Wiebusch, Christopher/0000-0002-6418-3008; Zornoza, Juan de Dios/0000-0002-1834-0690; Sarkar, Subir/0000-0002-3542-858X; Rott, Carsten/0000-0002-6958-6033 NR 19 TC 49 Z9 49 U1 0 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2007 VL 75 IS 10 AR 102001 DI 10.1103/PhysRevD.75.102001 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 173RY UT WOS:000246891400008 ER PT J AU Adamson, P Andreopoulos, C Arms, KE Armstrong, R Auty, DJ Avvakumov, S Ayres, DS Baller, B Barish, B Barnes, PD Barr, G Barrett, WL Beall, E Becker, BR Belias, A Bergfeld, T Bernstein, RH Bhattacharya, D Bishai, M Blake, A Bock, B Bock, GJ Boehm, J Boehnlein, DJ Bogert, D Border, PM Bower, C Buckley-Geer, E Cabrera, A Chapman, JD Cherdack, D Childress, S Choudhary, BC Cobb, JH Culling, AJ de Jong, JK De Santo, A Dierckxsens, M Diwan, MV Dorman, M Drakoulakos, D Durkin, T Erwin, AR Escobar, CO Evans, JJ Harris, EF Feldman, GJ Fields, TH Ford, R Frohne, MV Gallagher, HR Giurgiu, GA Godley, A Gogos, J Goodman, MC Gouffon, P Gran, R Grashorn, EW Grossman, N Grzelak, K Habig, A Harris, D Harris, PG Hartnell, J Hartouni, EP Hatcher, R Heller, K Holin, A Howcroft, C Hylen, J Indurthy, D Irwin, GM Ishitsuka, M Jaffe, DE James, C Jenner, L Jensen, D Joffe-Minor, T Kafka, T Kang, HJ Kasahara, SMS Kim, MS Koizumi, G Kopp, S Kordosky, M Koskinen, DJ Kotelnikov, SK Kreymer, A Kumaratunga, S Lang, K Lebedev, A Lee, R Ling, J Liu, J Litchfield, PJ Litchfield, RP Lucas, P Mann, WA Marchionni, A Marino, AD Marshak, ML Marshall, JS Mayer, N McGowan, AM Meier, JR Merzon, GI Messier, MD Michael, DG Milburn, RH Miller, JL Miller, WH Mishra, SR Mislivec, A Miyagawa, PS Moore, CD Morfin, J Mualem, L Mufson, S Murgia, S Musser, J Naples, D Nelson, JK Newman, HB Nichol, RJ Nicholls, TC Ochoa-Ricoux, JP Oliver, WP Osiecki, T Ospanov, R Paley, J Paolone, V Para, A Patzak, T Pavlovic, Z Pearce, GF Peck, CW Peterson, EA Petyt, DA Ping, H Piteira, R Pittam, R Plunkett, RK Rahman, D Rameika, RA Raufer, TM Rebel, B Reichenbacher, J Reyna, DE Rosenfeld, C Rubin, HA Ruddick, K Ryabov, VA Saakyan, R Sanchez, MC Saoulidou, N Schneps, J Schreiner, P Semenov, VK Seun, SM Shanahan, P Smart, W Smirnitsky, V Smith, C Sousa, A Speakman, B Stamoulis, P Symes, PA Tagg, N Talaga, RL Tetteh-Lartey, E Thomas, J Thompson, J Thomson, MA Thron, JL Tinti, G Trostin, I Tsarev, VA Tzanakos, G Urheim, J Vahle, P Verebryusov, V Viren, B Ward, CP Ward, DR Watabe, M Weber, A Webb, RC Wehmann, A West, N White, C Wojcicki, SG Wright, DM Wu, QK Yang, T Yumiceva, FX Zheng, H Zois, M Zwaska, R AF Adamson, P. Andreopoulos, C. Arms, K. E. Armstrong, R. Auty, D. J. Avvakumov, S. Ayres, D. S. Baller, B. Barish, B. Barnes, P. D., Jr. Barr, G. Barrett, W. L. Beall, E. Becker, B. R. Belias, A. Bergfeld, T. Bernstein, R. H. Bhattacharya, D. Bishai, M. Blake, A. Bock, B. Bock, G. J. Boehm, J. Boehnlein, D. J. Bogert, D. Border, P. M. Bower, C. Buckley-Geer, E. Cabrera, A. Chapman, J. D. Cherdack, D. Childress, S. Choudhary, B. C. Cobb, J. H. Culling, A. J. de Jong, J. K. De Santo, A. Dierckxsens, M. Diwan, M. V. Dorman, M. Drakoulakos, D. Durkin, T. Erwin, A. R. Escobar, C. O. Evans, J. J. Harris, E. Falk Feldman, G. J. Fields, T. H. Ford, R. Frohne, M. V. Gallagher, H. R. Giurgiu, G. A. Godley, A. Gogos, J. Goodman, M. C. Gouffon, P. Gran, R. Grashorn, E. W. Grossman, N. Grzelak, K. Habig, A. Harris, D. Harris, P. G. Hartnell, J. Hartouni, E. P. Hatcher, R. Heller, K. Holin, A. Howcroft, C. Hylen, J. Indurthy, D. Irwin, G. M. Ishitsuka, M. Jaffe, D. E. James, C. Jenner, L. Jensen, D. Joffe-Minor, T. Kafka, T. Kang, H. J. Kasahara, S. M. S. Kim, M. S. Koizumi, G. Kopp, S. Kordosky, M. Koskinen, D. J. Kotelnikov, S. K. Kreymer, A. Kumaratunga, S. Lang, K. Lebedev, A. Lee, R. Ling, J. Liu, J. Litchfield, P. J. Litchfield, R. P. Lucas, P. Mann, W. A. Marchionni, A. Marino, A. D. Marshak, M. L. Marshall, J. S. Mayer, N. McGowan, A. M. Meier, J. R. Merzon, G. I. Messier, M. D. Michael, D. G. Milburn, R. H. Miller, J. L. Miller, W. H. Mishra, S. R. Mislivec, A. Miyagawa, P. S. Moore, C. D. Morfin, J. Mualem, L. Mufson, S. Murgia, S. Musser, J. Naples, D. Nelson, J. K. Newman, H. B. Nichol, R. J. Nicholls, T. C. Ochoa-Ricoux, J. P. Oliver, W. P. Osiecki, T. Ospanov, R. Paley, J. Paolone, V. Para, A. Patzak, T. Pavlovic, Z. Pearce, G. F. Peck, C. W. Peterson, E. A. Petyt, D. A. Ping, H. Piteira, R. Pittam, R. Plunkett, R. K. Rahman, D. Rameika, R. A. Raufer, T. M. Rebel, B. Reichenbacher, J. Reyna, D. E. Rosenfeld, C. Rubin, H. A. Ruddick, K. Ryabov, V. A. Saakyan, R. Sanchez, M. C. Saoulidou, N. Schneps, J. Schreiner, P. Semenov, V. K. Seun, S.-M. Shanahan, P. Smart, W. Smirnitsky, V. Smith, C. Sousa, A. Speakman, B. Stamoulis, P. Symes, P. A. Tagg, N. Talaga, R. L. Tetteh-Lartey, E. Thomas, J. Thompson, J. Thomson, M. A. Thron, J. L. Tinti, G. Trostin, I. Tsarev, V. A. Tzanakos, G. Urheim, J. Vahle, P. Verebryusov, V. Viren, B. Ward, C. P. Ward, D. R. Watabe, M. Weber, A. Webb, R. C. Wehmann, A. West, N. White, C. Wojcicki, S. G. Wright, D. M. Wu, Q. K. Yang, T. Yumiceva, F. X. Zheng, H. Zois, M. Zwaska, R. CA MINOS Collaboration TI Charge-separated atmospheric neutrino-induced muons in the MINOS far detector SO PHYSICAL REVIEW D LA English DT Article ID SUPER-KAMIOKANDE; OSCILLATIONS; PHYSICS; FLUX AB We found 140 neutrino-induced muons in 854.24 live days in the MINOS far detector, which has an acceptance for neutrino-induced muons of 6.91x10(6) cm(2) sr. We looked for evidence of neutrino disappearance in this data set by computing the ratio of the number of low momentum muons to the sum of the number of high momentum and unknown momentum muons for both data and Monte Carlo expectation in the absence of neutrino oscillations. The ratio of data and Monte Carlo ratios, R, is R=0.65(-0.12)(+0.15)(stat)+/- 0.09(syst), a result that is consistent with an oscillation signal. A fit to the data for the oscillation parameters sin(2)2 theta(23) and Delta m(23)(2) excludes the null oscillation hypothesis at the 94% confidence level. We separated the muons into mu(-) and mu(+) in both the data and Monte Carlo events and found the ratio of the total number of mu(-) to mu(+) in both samples. The ratio of those ratios, R boolean AND(CPT), is a test of CPT conservation. The result R boolean AND(CPT)=0.72(-0.18)(+0.24)(stat)(-0.04)(+0.08)(syst) is consistent with CPT conservation. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Athens, Dept Phys, GR-15771 Athens, Greece. Benedictine Univ, Dept Phys, Lisle, IL 60532 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. CALTECH, Lauritsen Univ, Pasadena, CA 91125 USA. Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. Univ Estadual Campinas, IF, BR-13083970 Campinas, SP, Brazil. Coll France, APC, F-75231 Paris 05, France. Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. IIT, Div Phys, Chicago, IL 60616 USA. Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. Indiana Univ, Dept Astron, Bloomington, IN 47405 USA. Inst High Energy Phys, RU-140284 Protvino, Moscow, Russia. Inst Theoret & Expt Phys, High Energy Expt Phys Dept, Moscow 117218, Russia. James Madison Univ, Dept Phys, Harrisonburg, VA 22807 USA. PN Lebedev Phys Inst, Dept Nucl Phys, Moscow 117924, Russia. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. UCL, Dept Phys & Astron, London WC1E 6BT, England. Univ Minnesota, Minneapolis, MN 55455 USA. Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. Univ Oxford, Subdept Particle Phys, Oxford OX1 3RH, England. Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. Stanford Univ, Dept Phys, Stanford, CA 94305 USA. Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. Univ Texas, Dept Phys, Austin, TX 78712 USA. Tufts Univ, Dept Phys, Medford, MA 02155 USA. Western Washington Univ, Dept Phys, Bellingham, WA 98225 USA. Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. RP Adamson, P (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RI Nichol, Ryan/C-1645-2008; Kotelnikov, Sergey/A-9711-2014; Tinti, Gemma/I-5886-2013; Gouffon, Philippe/I-4549-2012; Ryabov, Vladimir/E-1281-2014; Koskinen, David/G-3236-2014; Ling, Jiajie/I-9173-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Semenov, Vitaliy/E-9584-2017; Merzon, Gabriel/N-2630-2015; Evans, Justin/P-4981-2014 OI Hartnell, Jeffrey/0000-0002-1744-7955; Bernstein, Robert/0000-0002-7610-950X; Cherdack, Daniel/0000-0002-3829-728X; Weber, Alfons/0000-0002-8222-6681; Hartouni, Edward/0000-0001-9869-4351; Kotelnikov, Sergey/0000-0002-8027-4612; Gouffon, Philippe/0000-0001-7511-4115; Koskinen, David/0000-0002-0514-5917; Ling, Jiajie/0000-0003-2982-0670; Marchionni, Alberto/0000-0003-3039-9537; Evans, Justin/0000-0003-4697-3337 NR 41 TC 19 Z9 19 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2007 VL 75 IS 9 AR 092003 DI 10.1103/PhysRevD.75.092003 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 173RX UT WOS:000246891300008 ER PT J AU Aharony, O David, JR Gopakumar, R Komargodski, Z Razamat, SS AF Aharony, Ofer David, Justin R. Gopakumar, Rajesh Komargodski, Zohar Razamat, Shlomo S. TI Remarks on worldsheet theories dual to free large N gauge theories SO PHYSICAL REVIEW D LA English DT Article ID MEAN-FIELD APPROXIMATION; STRING THEORY; AMPLITUDES; SPACE AB We continue to investigate properties of the worldsheet conformal field theories (CFTs) which are conjectured to be dual to free large N gauge theories, using the mapping of Feynman diagrams to the worldsheet suggested in [R. Gopakumar, Phys. Rev. D 70, 025009 (2004); ibid.70, 025010 (2004); C. R. Physique 5, 1111 (2004); Phys. Rev. D 72, 066008 (2005)]. The modular invariance of these CFTs is shown to be built into the formalism. We show that correlation functions in these CFTs which are localized on subspaces of the moduli space may be interpreted as delta-function distributions, and that this can be consistent with a local worldsheet description given some constraints on the operator product expansion coefficients. We illustrate these features by a detailed analysis of a specific four-point function diagram. To reliably compute this correlator, we use a novel perturbation scheme which involves an expansion in the large dimension of some operators. C1 Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. Stanford Univ, SITP, Dept Phys, Stanford, CA 94305 USA. Stanford Univ, SLAC, Stanford, CA 94305 USA. Harish Chandra Res Inst, Allahabad 211019, Uttar Pradesh, India. Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. RP Aharony, O (reprint author), Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. RI David, Justin/B-5942-2013 NR 65 TC 14 Z9 14 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2007 VL 75 IS 10 AR 106006 DI 10.1103/PhysRevD.75.106006 PG 23 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 173RY UT WOS:000246891400069 ER PT J AU Aubert, B Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Sanchez, PD Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Watson, AT Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Sherwood, DJ Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Best, DS Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Cheng, CH Dvoretskii, A Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Nash, JA Nikolich, MB Vazquez, WP Behera, PK Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Denig, AG Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Cowan, R Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP LoSecco, JM Benelli, G Corwin, LA Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Rahimi, AM Regensburger, JJ Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Briand, H Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Gladney, L Biasini, M Covarelli, R Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Ricciardi, S Wilson, FF Aleksan, R Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Ricca, G Dittongo, S Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Cheng, B Dasu, S Datta, M Flood, KT Hollar, JJ Kutter, PE Mellado, B Mihalyi, A Pan, Y Pierini, M Prepost, R Wu, SL Yu, Z Neal, H AF Aubert, B. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Sanchez, P. del Amo Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Watson, A. T. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Sherwood, D. J. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Best, D. S. Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Cheng, C. H. Dvoretskii, A. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Cowan, R. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Benelli, G. Corwin, L. A. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Rahimi, A. M. Regensburger, J. J. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Briand, H. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Gladney, L. Biasini, M. Covarelli, R. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Ricciardi, S. Wilson, F. F. Aleksan, R. Emery, S. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Flood, K. T. Hollar, J. J. Kutter, P. E. Mellado, B. Mihalyi, A. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Yu, Z. Neal, H. CA BABAR Collaboration TI Measurement of the B-+/- -> rho(+/-) pi(0) branching fraction and direct CP asymmetry SO PHYSICAL REVIEW D LA English DT Article ID PHYSICS; DECAYS AB We present improved measurements of the branching fraction and CP asymmetry for the process B-+/-->rho(+/-)pi(0). The data sample corresponding to 211 fb(-1) comprises 232x10(6) Upsilon(4S)-> B (B) over bar decays collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. The yield and CP asymmetry are measured using an extended maximum likelihood fitting method. The branching fraction and CP asymmetry are found to be B(B-+/-->rho(+/-)pi(0))=[10.2 +/- 1.4(stat)+/- 0.9(syst)]x10(-6) and A(CP)(B-+/-->rho(+/-)pi(0))=-0.01 +/- 0.13(stat)+/- 0.02(syst). C1 CNRS, IN2P3, Lab Phys Particules, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. INFN, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100030, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Univ Birmingham, D-44780 Bochum, Germany. Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TH, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, D-01062 Dresden, Germany. Ecole Polytech, CNRS IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuer, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. INFN, I-44100 Ferrara, Italy. Tech Univ Dresden, Inst Kern, D-01062 Dresden, Germany. Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karachi, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. Univ Paris Sud 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Queen Mary Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Lab Nucl Sci, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. INFN, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. INFN, I-80126 Naples, Italy. NIKHEF, Natl Inst Nucl Phys& High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. INFN, I-35131 Padua, Italy. Univ Paris 06, CNRS, IN2P3, Lab Phys Nucl & Haute Energies, F-75252 Paris, France. Univ Paris 07, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19014 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super, I-56127 Pisa, Italy. INFN, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM, Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. INFN, I-10125 Turin, Italy. Univ Valencia, IFIC, CSIC, I-34127 Trieste, Italy. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), CNRS, IN2P3, Lab Phys Particules, F-74941 Annecy Le Vieux, France. RI Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Della Ricca, Giuseppe/B-6826-2013; Cavallo, Nicola/F-8913-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Peters, Klaus/C-2728-2008 OI Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Raven, Gerhard/0000-0002-2897-5323; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Della Ricca, Giuseppe/0000-0003-2831-6982; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Peters, Klaus/0000-0001-7133-0662 NR 16 TC 8 Z9 8 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2007 VL 75 IS 9 AR 091103 DI 10.1103/PhysRevD.75.091103 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 173RX UT WOS:000246891300003 ER PT J AU Beane, SR Bedaque, PF Orginos, K Savage, MJ AF Beane, S. R. Bedaque, P. F. Orginos, K. Savage, M. J. TI f(K)/f(pi) in full QCD with domain wall valence quarks SO PHYSICAL REVIEW D LA English DT Article ID CHIRAL PERTURBATION-THEORY; LATTICE QCD; FERMIONS; PHYSICS; MASS AB We compute the ratio of pseudoscalar decay constants f(K)/f(pi) using domain-wall valence quarks and rooted improved Kogut-Susskind sea quarks, at a lattice spacing of b similar to 0.125 fm. By employing continuum chiral perturbation theory, we extract the Gasser-Leutwyler low-energy constant L-5 and extrapolate f(K)/f(pi) to the physical point. We find f(K)/f(pi)=1.218 +/- 0.002(-0.024)(+0.011) where the first error is statistical and the second error is an estimate of the systematic due to chiral extrapolation and fitting procedures. This value agrees within the uncertainties with the determination by the MILC collaboration, calculated using Kogut-Susskind valence quarks, suggesting that systematic errors arising from the choice of lattice valence quark are small. C1 Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. Jefferson Lab, Newport News, VA 23606 USA. Univ Maryland, Dept Phys, College Pk, MD 20742 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Beane, SR (reprint author), Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. NR 53 TC 42 Z9 42 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2007 VL 75 IS 9 AR 094501 DI 10.1103/PhysRevD.75.094501 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 173RX UT WOS:000246891300044 ER PT J AU Carena, M Hubisz, J Perelstein, M Verdier, P AF Carena, Marcela Hubisz, Jay Perelstein, Maxim Verdier, Patrice TI Collider signatures for new T-parity-odd quarks in little Higgs models SO PHYSICAL REVIEW D LA English DT Article ID P(P)OVER-BAR COLLISIONS; SCALAR QUARKS; SEARCH; ENERGY; TEV AB Little Higgs models with T Parity contain new vectorlike fermions, the T-odd quarks or "TOQ's", which can be produced at hadron colliders with a QCD-strength cross section. Events with two acoplanar jets and large missing transverse energy provide a simple signature of TOQ production. We show that searches for this signature with the Tevatron Run II data can probe a significant part of the Little Higgs model parameter space not accessible to previous experiments, exploring TOQ masses up to about 400 GeV. This reach covers parts of the parameter space where the lightest T-odd particle can account for the observed dark matter relic abundance. We also comment on the prospects for this search at the Large Hadron Collider (LHC). C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Cornell Univ, Lab Elementary Particle Phys, Dept Phys, Ithaca, NY 14853 USA. Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. RP Carena, M (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. OI Verdier, Patrice/0000-0003-3090-2948 NR 34 TC 53 Z9 53 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2007 VL 75 IS 9 AR 091701 DI 10.1103/PhysRevD.75.091701 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 173RX UT WOS:000246891300005 ER PT J AU Geer, S Mena, O Pascoli, S AF Geer, Steve Mena, Olga Pascoli, Silvia TI Low energy neutrino factory for large theta(13) SO PHYSICAL REVIEW D LA English DT Article ID LEPTONIC CP VIOLATION; SUPER-BEAM FACILITY; BETA-BEAM; OSCILLATION EXPERIMENTS; PHYSICS; DEGENERACIES; GOLDEN; DISAPPEARANCE; APPEARANCE; PARAMETERS AB If the value of theta(13) is within the reach of the upcoming generation of long-baseline experiments, T2K and NO nu A, we show that a low-energy neutrino factory, with peak energy in the few GeV range, would provide a sensitive tool to explore CP violation and the neutrino mass hierarchy. We consider baselines with the typical length 1000-1500 km. The unique performance of the low-energy neutrino factory is due to the rich neutrino oscillation pattern at energies between 1 and 4 GeV at baselines O(1000) km. We perform both a semianalytical study of the sensitivities and a numerical analysis to explore how well this setup can measure theta(13), CP violation, and determine the type of mass hierarchy and the theta(23) octant. A low-energy neutrino factory provides a powerful tool to resolve ambiguities and make precise parameter determinations, for both large and fairly small values of the mixing parameter theta(13). C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. Univ Roma La Sapienza, Ist Nazl Fis Nucl, Dipartimento Fis, Sez Roma, I-00185 Rome, Italy. Univ Durham, Dept Phys, IPPP, Durham DH1 3LE, England. RP Geer, S (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM sgeer@fnal.gov; omena@fnal.gov; silvia.pascoli@durham.ac.uk NR 99 TC 53 Z9 53 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2007 VL 75 IS 9 AR 093001 DI 10.1103/PhysRevD.75.093001 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 173RX UT WOS:000246891300013 ER PT J AU Goldman, T Stephenson, GJ McKellar, BHJ AF Goldman, T. Stephenson, G. J., Jr. McKellar, B. H. J. TI Multichannel oscillations and relations between LSND, KARMEN, and MiniBooNE, with and without CP violation SO PHYSICAL REVIEW D LA English DT Article ID NEUTRINO MASSES; DIRAC NEUTRINOS; SYMMETRY; DECAYS; MODEL AB We show by examples that multichannel mixing can affect both the parameters extracted from neutrino oscillation experiments, and more general conclusions derived by fitting the experimental data under the assumption that only two channels are involved in the mixing. Implications for MiniBooNE are noted and an example based on maximal CP violation displays profound implications for the two data sets (nu(mu) and (nu) over bar (mu)) of that experiment. C1 Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA. Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. RP Goldman, T (reprint author), Los Alamos Natl Lab, Theoret Div, POB 1663, Los Alamos, NM 87545 USA. NR 36 TC 9 Z9 9 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2007 VL 75 IS 9 AR 091301 DI 10.1103/PhysRevD.75.091301 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 173RX UT WOS:000246891300004 ER PT J AU Li, C Holz, DE Cooray, A AF Li, Chao Holz, Daniel E. Cooray, Asantha TI Direct reconstruction of the dark energy scalar-field potential SO PHYSICAL REVIEW D LA English DT Article ID HIGH-REDSHIFT SUPERNOVAE; OMEGA(LAMBDA); OMEGA(M); EQUATION; UNIVERSE; STATE; SET AB While the accelerated expansion of the Universe is by now well established, an underlying scalar-field potential possibly responsible for this acceleration remains unconstrained. We present an attempt to reconstruct this potential using recent SN data, under the assumption that the acceleration is driven by a single scalar field. Current approaches to such reconstructions are based upon simple parametric descriptions of either the luminosity distance or the dark energy equation of state. We find that these various approximations lead to a range of derived evolutionary histories of the dark energy equation of state (although there is considerable overlap between the different potential shapes allowed by the data). Instead of these indirect reconstruction schemes, we discuss a technique to determine the potential directly from the data by expressing it in terms of a binned scalar field. We apply this technique to a recent SN data set, and compare the results with model-dependent approaches. In a similar fashion to direct estimates of the dark energy equation of state, we advocate direct reconstruction of the scalar-field potential as a way to minimize prior assumptions on the shape, and thus minimize the introduction of bias in the derived potential. C1 CALTECH, Pasadena, CA 91125 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92697 USA. RP Li, C (reprint author), CALTECH, Mail Code 130-33, Pasadena, CA 91125 USA. NR 32 TC 16 Z9 16 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2007 VL 75 IS 10 AR 103503 DI 10.1103/PhysRevD.75.103503 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 173RY UT WOS:000246891400016 ER PT J AU Liang, ZT Wang, XN AF Liang, Zuo-tang Wang, Xin-Nian TI Azimuthal and single-spin asymmetry in deep-inelastic lepton-nucleon scattering SO PHYSICAL REVIEW D LA English DT Article ID FINAL-STATE INTERACTIONS; MUON PROTON-SCATTERING; PARTON ENERGY-LOSS; POWER CORRECTIONS; SEMIINCLUSIVE LEPTOPRODUCTION; HADRONIC SCATTERING; HARD-SCATTERING; DRELL-YAN; DISTRIBUTIONS; FRAGMENTATION AB We derive a general framework for describing semi-inclusive deep-inelastic lepton-nucleon scattering in terms of the unintegrated parton distributions and other higher-twist parton correlations. Such a framework provides a consistent approach to the calculation of inclusive and semi-inclusive cross sections including higher-twist effects. As an example, we calculate the azimuthal asymmetries to the order of 1/Q in semi-inclusive process with transversely polarized target. A nonvanishing single-spin asymmetry in the "triggered inclusive process" is predicted to be 1/Q suppressed with a part of the coefficient related to a moment of the Sivers function. C1 Shandong Univ, Dept Phys, Jinan 250100, Peoples R China. Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Liang, ZT (reprint author), Shandong Univ, Dept Phys, Jinan 250100, Peoples R China. OI Wang, Xin-Nian/0000-0002-9734-9967 NR 35 TC 23 Z9 23 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2007 VL 75 IS 9 AR 094002 DI 10.1103/PhysRevD.75.094002 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 173RX UT WOS:000246891300022 ER PT J AU Murayama, H Nomura, Y AF Murayama, Hitoshi Nomura, Yasunori TI Simple scheme for gauge mediation SO PHYSICAL REVIEW D LA English DT Article ID DYNAMICAL SUPERSYMMETRY BREAKING; DUALITY; MODEL; CONFINEMENT; HIERARCHY; PHYSICS; TOOLS AB We present a simple scheme for constructing models that achieve successful gauge mediation of supersymmetry breaking. In addition to our previous work [H. Murayama and Y. Nomura, Phys. Rev. Lett. 98, 151803 (2007)] that proposed drastically simplified models using metastable vacua of supersymmetry breaking in vectorlike theories, we show there are many other successful models using various types of supersymmetry-breaking mechanisms that rely on enhanced low-energy U(1)(R) symmetries. In models where supersymmetry is broken by elementary singlets, one needs to assume U(1)(R) violating effects are accidentally small, while in models where composite fields break supersymmetry, emergence of approximate low-energy U(1)(R) symmetries can be understood simply on dimensional grounds. Even though the scheme still requires somewhat small parameters to sufficiently suppress gravity mediation, we discuss their possible origins due to dimensional transmutation. The scheme accommodates a wide range of the gravitino mass to avoid cosmological problems. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Murayama, H (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Murayama, Hitoshi/A-4286-2011; OI Nomura, Yasunori/0000-0002-1497-1479 NR 41 TC 57 Z9 57 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2007 VL 75 IS 9 AR 095011 DI 10.1103/PhysRevD.75.095011 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 173RX UT WOS:000246891300060 ER PT J AU Umeda, T AF Umeda, Takashi TI Constant contribution in meson correlators at finite temperature SO PHYSICAL REVIEW D LA English DT Article ID LATTICE; CHARMONIUM; TRANSITION; PLASMA AB We discuss a constant contribution to meson correlators at finite temperature. In the deconfinement phase of QCD, a colored single quark state is allowed as a finite energy state, which yields to a contribution of wraparound quark propagation to temporal meson correlators. We investigate the effects in the free quark case and quenched QCD at finite temperature. The "scattering" contribution causes a constant mode in meson correlators with zero spatial momentum and degenerate quark masses, which can dominate the correlators in the region of large imaginary times. In the free spectral function, the contribution yields a term proportional to omega delta(omega). Therefore this contribution is related to transport phenomena in the quark gluon plasma. It is possible to distinguish the constant contribution from the other part using several analysis methods proposed in this paper. As a result of the analyses, we find that drastic changes in charmonium correlators for chi(c) states just above the deconfinement transition are due to the constant contribution. The other differences in the chi(c) states are small. It may indicate the survival of chi(c) states after the deconfinement transition until, at least, 1.4T(c). C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Umeda, T (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 29 TC 72 Z9 72 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2007 VL 75 IS 9 AR 094502 DI 10.1103/PhysRevD.75.094502 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 173RX UT WOS:000246891300045 ER PT J AU Vallinotto, A Dodelson, S Schimd, C Uzanx, JP AF Vallinotto, Alberto Dodelson, Scott Schimd, Carlo Uzanx, Jean-Philippe TI Weak lensing of baryon acoustic oscillations SO PHYSICAL REVIEW D LA English DT Article ID LARGE-SCALE STRUCTURE; PROBING DARK ENERGY; DIGITAL SKY SURVEY; GALAXIES; MAGNIFICATION; SUPERNOVAE; UNIVERSE; SDSS AB Baryon acoustic oscillations (BAO) have recently been observed in the distribution of distant galaxies. The height and location of the BAO peak are strong discriminators of cosmological parameters. Here we consider the ways in which weak gravitational lensing distorts the BAO signal. We find two effects that can affect the height of the BAO peak in the correlation function at the percent level but that do not significantly impact the position of the peak and the measurement of the sound horizon. BAO turn out to be robust cosmological standard rulers. C1 Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. CEA Saclay, DAPNIA, F-91191 Gif Sur Yvette, France. RP Vallinotto, A (reprint author), Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, 98 Bis Blvd Arago, F-75014 Paris, France. EM vallinot@iap.fr; dodelson@canis.fnal.gov; carlo.schimd@cea.fr; uzan@iap.fr NR 43 TC 13 Z9 13 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2007 VL 75 IS 10 AR 103509 DI 10.1103/PhysRevD.75.103509 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 173RY UT WOS:000246891400022 ER PT J AU Aranson, IS Volfson, D Tsimring, LS AF Aranson, Igor S. Volfson, Dmitri Tsimring, Lev S. TI Swirling motion in a system of vibrated elongated particles SO PHYSICAL REVIEW E LA English DT Article ID FLUCTUATIONS AB Large-scale collective motion emerging in a monolayer of vertically vibrated elongated particles is studied. The motion is characterized by recurring swirls, with the characteristic scale exceeding several times the size of an individual particle. Our experiments identified a small horizontal component of the oscillatory acceleration of the vibrating plate in combination with orientation-dependent bottom friction (with respect to horizontal acceleration) as a source for the swirl formation. We developed a continuum model operating with the velocity field and local alignment tensor, which is in qualitative agreement with the experiment. C1 Argonne Natl Lab, Argonne, IL 60439 USA. Univ Calif San Diego, Inst Nonlinear Sci, La Jolla, CA 92093 USA. RP Aranson, IS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Aranson, Igor/I-4060-2013; OI Volfson, Dmitri/0000-0002-5167-7834 NR 36 TC 37 Z9 37 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD MAY PY 2007 VL 75 IS 5 AR 051301 DI 10.1103/PhysRevE.75.051301 PN 1 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 173RL UT WOS:000246890100044 PM 17677048 ER PT J AU Fendley, P Moore, JE Xu, CK AF Fendley, Paul Moore, Joel E. Xu, Cenke TI Gauge symmetry and non-Abelian topological sectors in a geometrically constrained model on the honeycomb lattice SO PHYSICAL REVIEW E LA English DT Article ID TRIANGULAR LATTICE; PHASE; MECHANICS AB We study a constrained statistical-mechanical model in two dimensions that has three useful descriptions. They are (i) the Ising model on the honeycomb lattice, constrained to have three up spins and three down spins on every hexagon, (ii) the three-color and fully packed loop model on the links of the honeycomb lattice, with loops around a single hexagon forbidden, and (iii) three Ising models on interleaved triangular lattices, with domain walls of the different Ising models not allowed to cross. Unlike the three-color model, the configuration space on the sphere or plane is connected under local moves. On higher-genus surfaces there are infinitely many dynamical sectors, labeled by a noncontractible set of nonintersecting loops. We demonstrate that at infinite temperature the transfer matrix admits an unusual structure related to a gauge symmetry for the same model on an anisotropic lattice. This enables us to diagonalize the original transfer matrix for up to 36 sites, finding an entropy per plaquette S/k(B)approximate to 0.3661 center dot and substantial evidence that the model is not critical. We also find the striking property that the eigenvalues of the transfer matrix on an anisotropic lattice are given in terms of Fibonacci numbers. We comment on the possibility of a topological phase, with infinite topological degeneracy, in an associated two-dimensional quantum model. C1 Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Fendley, P (reprint author), Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. RI Moore, Joel/O-4959-2016 OI Moore, Joel/0000-0002-4294-5761 NR 27 TC 3 Z9 3 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAY PY 2007 VL 75 IS 5 AR 051120 DI 10.1103/PhysRevE.75.051120 PN 1 PG 12 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 173RL UT WOS:000246890100031 PM 17677035 ER PT J AU Kemp, AJ Fuchs, J Sentoku, Y Sotnikov, V Bakeman, M Antici, P Cowan, TE AF Kemp, Andreas J. Fuchs, J. Sentoku, Y. Sotnikov, V. Bakeman, M. Antici, P. Cowan, T. E. TI Emittance growth mechanisms for laser-accelerated proton beams SO PHYSICAL REVIEW E LA English DT Article ID PLASMA-INTERACTION; IRRADIATION; SIMULATION; GENERATION; IGNITION; TARGET; PULSES; MODEL; CODE AB In recent experiments the transverse normalized rms emittance of laser-accelerated MeV ion beams was found to be <0.002 mm mrad, which is at least 100 times smaller than the emittance of thermal ion sources used in accelerators [T. E. Cowan , Phys. Rev. Lett. 92, 204801 (2004)]. We investigate the origin for the low emittance of laser-accelerated proton beams by studying several candidates for emittance-growth mechanisms. As our main tools, we use analytical models and one- and two-dimensional particle-in-cell simulations that have been modified to include binary collisions between particles. We find that the dominant source of emittance is filamentation of the laser-generated hot electron jets that drive the ion acceleration. Cold electron-ion collisions that occur before ions are accelerated contribute less than ten percent of the final emittance. Our results are in qualitative agreement with the experiment, for which we present a refined analysis relating emittance to temperature, a better representative of the fundamental beam physics. C1 Univ Nevada, Dept Phys, Reno, NV 89557 USA. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Univ Paris 06, CEA, CNRS UMR 7605, Lab Utilisat Lasers Intenses, F-75252 Paris 05, France. RP Kemp, AJ (reprint author), Univ Nevada, Dept Phys, Reno, NV 89557 USA. RI Sentoku, Yasuhiko/P-5419-2014; Fuchs, Julien/D-3450-2016; Cowan, Thomas/A-8713-2011 OI Fuchs, Julien/0000-0001-9765-0787; Cowan, Thomas/0000-0002-5845-000X NR 44 TC 23 Z9 23 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD MAY PY 2007 VL 75 IS 5 AR 056401 DI 10.1103/PhysRevE.75.056401 PN 2 PG 12 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 173RM UT WOS:000246890200057 PM 17677176 ER PT J AU McCoy, BK Liu, ZQ Wang, ST Pindak, R Takekoshi, K Ema, K Seed, A Huang, CC AF McCoy, B. K. Liu, Z. Q. Wang, S. T. Pindak, R. Takekoshi, K. Ema, K. Seed, A. Huang, C. C. TI Smectic-C-alpha(*) phase with two coexistent helical pitch values and a first-order smectic-C-alpha(*) to smectic-C-* transition SO PHYSICAL REVIEW E LA English DT Article ID LIQUID-CRYSTAL FILMS; OPTICAL REFLECTIVITY; ELLIPSOMETRY; ARRANGEMENTS; MEDIA AB Previous results from Kundu using dielectric relaxation have suggested a reentrant antiferroelectric-ferroelectric-antiferroelectric transition in the compound LN36. Our comprehensive studies of this compound using differential optical reflectivity, nonadiabatic scanning calorimetry, null transmission ellipsometry, and resonant x-ray diffraction show that in fact LN36 exhibits the usual phase sequence for chiral smectic liquid crystals: SmA(*)-SmC alpha*-SmC*-SmCFI1*-SmCA*. Moreover, the SmC alpha*-SmC* transition is a first-order transition, characterized by a discontinuous change in the helical pitch. At temperatures just above the SmC alpha*-SmC* transition, two different values for the helical pitch are simultaneously observed for the first time. C1 Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. Tokyo Inst Technol, Grad Sch Sci & Engn, Dept Phys, Tokyo 1528550, Japan. Kent State Univ, Dept Chem, Kent, OH 44242 USA. RP McCoy, BK (reprint author), Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. NR 22 TC 5 Z9 5 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAY PY 2007 VL 75 IS 5 AR 051706 DI 10.1103/PhysRevE.75.051706 PN 1 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 173RL UT WOS:000246890100079 PM 17677083 ER PT J AU Reed, EJ Soljacic, M Joannopoulos, JD AF Reed, Evan J. Soljacic, Marin Joannopoulos, J. D. TI Maxwell equation simulations of coherent optical photon emission from shock waves in crystals SO PHYSICAL REVIEW E LA English DT Article ID INDUCED ELECTRICAL-POLARIZATION; ALKALI-HALIDES AB We have predicted that weak coherent radiation in the 1-100 THz frequency regime can be emitted under some circumstances when a shock wave propagates through a polarizable crystal, like NaCl [Reed , Phys. Rev. Lett. 96, 013904 (2006)]. In this work, we present and analyze a new model of a shocked polarizable crystal that is amenable to systematic analytical study and direct numerical solution of Maxwell's equations to predict emitted coherent field amplitudes and properties. Our simulations and analysis indicate that the field amplitude of the effect decreases rapidly with increasing shock front rise distance. These models establish a fundamental limit of the ratio of emitted terahertz amplitude to the static polarization of a material. While this effect is treated classically in our previous work, we present a quantum perturbation analysis showing that it can also occur in the low-amplitude emission quantum limit. C1 MIT, Ctr Mat Sci & Engn, Cambridge, MA 02139 USA. MIT, Res Lab Elect, Cambridge, MA 02139 USA. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Reed, EJ (reprint author), MIT, Ctr Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM reed23@llnl.gov NR 13 TC 8 Z9 8 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAY PY 2007 VL 75 IS 5 AR 056611 DI 10.1103/PhysRevE.75.056611 PN 2 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 173RM UT WOS:000246890200071 PM 17677190 ER PT J AU Reichhardt, C Reichhardt, CJO AF Reichhardt, C. Reichhardt, C. J. Olson TI Defect fluctuations and lifetimes in disordered Yukawa systems SO PHYSICAL REVIEW E LA English DT Article ID COLLOIDAL GLASS-TRANSITION; LIQUID; DYNAMICS; MOTION AB We examine the time-dependent defect fluctuations and lifetimes for a bidisperse disordered assembly of Yukawa particles. At high temperatures, the noise spectrum of fluctuations is white and the coordination number lifetimes have a stretched exponential distribution. At lower temperatures, the system dynamically freezes, the defect fluctuations exhibit a 1/f spectrum, and there is a power law distribution of the coordination number lifetimes. Our results indicate that topological defect fluctuations may be a useful way to characterize disordered systems. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Reichhardt, C (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. OI Reichhardt, Cynthia/0000-0002-3487-5089 NR 19 TC 5 Z9 5 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAY PY 2007 VL 75 IS 5 AR 051407 DI 10.1103/PhysRevE.75.051407 PN 1 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 173RL UT WOS:000246890100061 PM 17677065 ER PT J AU Burov, A Lebedev, V AF Burov, A. Lebedev, V. TI Coherent synchrobetatron resonance SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Coherent synchrobetatron resonances can present a serious limit for low-energy synchrotrons. An excitation of a dipole transverse mode is considered at resonance condition. As an example, the growth rate for the Fermilab Booster is estimated. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Burov, A (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. NR 5 TC 3 Z9 3 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAY PY 2007 VL 10 IS 5 AR 054202 DI 10.1103/PhysRevSTAB.10.054202 PG 2 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 198VW UT WOS:000248656600009 ER PT J AU Danilov, V Aleksandrov, A Assadi, S Barhen, J Blokland, W Braiman, Y Brown, D Deibele, C Grice, W Henderson, S Holmes, J Liu, Y Shishlo, A Webster, A AF Danilov, V. Aleksandrov, A. Assadi, S. Barhen, J. Blokland, W. Braiman, Y. Brown, D. Deibele, C. Grice, W. Henderson, S. Holmes, J. Liu, Y. Shishlo, A. Webster, A. TI Proof-of-principle demonstration of high efficiency laser-assisted H- beam conversion to protons SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Thin carbon foils are used as strippers for charge exchange injection into high intensity proton rings. However, the stripping foils become radioactive and produce uncontrolled beam loss, which is one of the main factors limiting beam power in high intensity proton rings. Recently, we presented a scheme for laser stripping an H- beam for the Spallation Neutron Source (SNS) ring. First, H- atoms are converted to H-0 by a magnetic field, then H-0 atoms are excited from the ground state to the upper levels by a laser, and the excited states are converted to protons by a magnetic field. In this paper we report on the proof-of-principle demonstration of this scheme to give high efficiency (around 90%) conversion of H- beam into protons at SNS in Oak Ridge. The experimental setup is described, and comparison of the experimental data with simulations is presented. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. RP Danilov, V (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI Grice, Warren/L-8466-2013; OI Grice, Warren/0000-0003-4266-4692 NR 12 TC 18 Z9 18 U1 0 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAY PY 2007 VL 10 IS 5 AR 053501 DI 10.1103/PhysRevSTAB.10.053501 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 198VW UT WOS:000248656600005 ER PT J AU Keil, E Sessler, AM Trbojevic, D AF Keil, E. Sessler, A. M. Trbojevic, D. TI Hadron cancer therapy complex using nonscaling fixed field alternating gradient accelerator and gantry design SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Nonscaling fixed field alternating gradient (FFAG) rings for cancer hadron therapy offer reduced physical aperture and large dynamic aperture as compared to scaling FFAGs. The variation of tune with energy implies the crossing of resonances during acceleration. Our design avoids intrinsic resonances, although imperfection resonances must be crossed. We consider a system of three nonscaling FFAG rings for cancer therapy with 250 MeV protons and 400 MeV/u carbon ions. Hadrons are accelerated in a common radio frequency quadrupole and linear accelerator, and injected into the FFAG rings at v/c = 0.1294. H+/C6+ ions are accelerated in the two smaller/larger rings to 31 and 250 MeV/68.8 and 400 MeV/u kinetic energy, respectively. The lattices consist of doublet cells with a straight section for rf cavities. The gantry with triplet cells accepts the whole required momentum range at fixed field. This unique design uses either high-temperature superconductors or superconducting magnets reducing gantry magnet size and weight. Elements with a variable field at the beginning and at the end set the extracted beam at the correct position for a range of energies. C1 CERN, Geneva, Switzerland. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Keil, E (reprint author), CERN, Geneva, Switzerland. EM Eberhard.Keil@t-online.de NR 17 TC 21 Z9 21 U1 0 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAY PY 2007 VL 10 IS 5 AR 054701 DI 10.1103/PhysRevSTAB.10.054701 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 198VW UT WOS:000248656600013 ER PT J AU Poelker, M Grames, J Hansknecht, J Kazimi, R Musson, J AF Poelker, M. Grames, J. Hansknecht, J. Kazimi, R. Musson, J. TI Generation of electron bunches at low repetition rates using a beat-frequency technique SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Even at a continuous wave facility such as CEBAF at Jefferson Lab, an electron beam with long time intervals (tens of ns) between individual bunches can be useful, for example, to isolate sources of background via time of flight detection or to measure the energy of neutral particles that cannot be separated with a magnetic field. This paper describes a demonstrated method to quickly and easily deliver bunches with repetition rates of 20 to 100 MHz corresponding to time intervals between 50 and 10 ns (respectively). This is accomplished by changing the ON/OFF frequency of the photogun drive laser by a small amount (Delta f/f < 20%), resulting in a bunch frequency equal to the beat frequency between the radio frequencies of the drive laser and the photoinjector chopper system. C1 Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Poelker, M (reprint author), Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave, Newport News, VA 23606 USA. NR 12 TC 0 Z9 0 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAY PY 2007 VL 10 IS 5 AR 053502 DI 10.1103/PhysRevSTAB.10.053502 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 198VW UT WOS:000248656600006 ER PT J AU Stupakov, G Bane, KLF Zagorodnov, I AF Stupakov, G. Bane, K. L. F. Zagorodnov, I. TI Optical approximation in the theory of geometric impedance SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB In this paper we introduce an optical approximation into the theory of impedance calculation, one valid in the limit of high frequencies. This approximation neglects diffraction effects in the radiation process, and is conceptually equivalent to the approximation of geometric optics in electromagnetic theory. Using this approximation, we derive equations for the longitudinal impedance for arbitrary offsets, with respect to a reference orbit, of source and test particles. With the help of the Panofsky-Wenzel theorem, we also obtain expressions for the transverse impedance (also for arbitrary offsets). We further simplify these expressions for the case of the small offsets that are typical for practical applications. Our final expressions for the impedance, in the general case, involve two-dimensional integrals over various cross sections of the transition. We further demonstrate, for several known axisymmetric examples, how our method is applied to the calculation of impedances. Finally, we discuss the accuracy of the optical approximation and its relation to the diffraction regime in the theory of impedance. C1 Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Stupakov, G (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. NR 22 TC 16 Z9 16 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAY PY 2007 VL 10 IS 5 AR 054401 DI 10.1103/PhysRevSTAB.10.054401 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 198VW UT WOS:000248656600010 ER PT J AU Trbojevic, D Parker, B Keil, E Sessler, AM AF Trbojevic, D. Parker, B. Keil, E. Sessler, A. M. TI Carbon/proton therapy: A novel gantry design SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB A major expense and design challenge in carbon/proton cancer therapy machines are the isocentric gantries. The transport elements of the carbon/proton gantry are presently made of standard conducting dipoles. Because of their large weight, of the order of similar to 100 tons, the total weight of the gantry with support structure is similar to 600 tons. The novel gantry design that is described here is made of fixed field superconducting magnets, thus dramatically reducing magnet size and weight compared to conventional magnets. In addition, the magnetic field is constant throughout the whole energy region required for tumor treatment. Particles make very small orbit offsets, passing through the beam line. The beam line is built of combined-function dipoles such as a nonscaling fixed field alternating gradient (NS-FFAG) structure. The very large momentum acceptance NS-FFAG comes from very strong focusing and very small dispersion. The NS-FFAG small magnets almost completely filled the beam line. They first make a quarter (or close to a quarter) of an arc bending upward and an additional half of a circle beam line finishing so that the beam is pointed towards the patient. At the end of the gantry, additional magnets with a fast response are required to allow radial scanning and to provide the required position and spot size. The fixed field combined-function magnets for the carbon gantry could be made of superconducting magnets by using low temperature superconducting cable or by using high temperature superconductors. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. CERN, Geneva, Switzerland. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Trbojevic, D (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM dejan@bnl.gov NR 10 TC 10 Z9 10 U1 2 U2 6 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAY PY 2007 VL 10 IS 5 AR 053503 DI 10.1103/PhysRevSTAB.10.053503 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 198VW UT WOS:000248656600007 ER PT J AU Venturini, M Warnock, R Zholents, A AF Venturini, Marco Warnock, Robert Zholents, Alexander TI Vlasov solver for longitudinal dynamics in beam delivery systems for x-ray free electron lasers SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID COHERENT SYNCHROTRON-RADIATION; EQUATION; SPACE AB Direct numerical methods for solving the Vlasov equation offer some advantages over macroparticle simulations, as they do not suffer from the consequences of the statistical fluctuations inherent in using a number of macroparticles smaller than the bunch population. Unfortunately, these methods are more time consuming and generally considered impractical in a full 6D phase space. However, in a lower-dimension phase space they may become attractive if the beam dynamics is sensitive to the presence of small charge-density fluctuations and a high resolution is needed. In this paper we present a 2D Vlasov solver for studying the longitudinal beam dynamics in single-pass systems of interest for x-ray FELs, where characterization of the microbunching instability stemming from self-field amplified noise is of particular relevance. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Venturini, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM mventurini@lb1.gov NR 26 TC 16 Z9 16 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAY PY 2007 VL 10 IS 5 AR 054403 DI 10.1103/PhysRevSTAB.10.054403 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 198VW UT WOS:000248656600012 ER PT J AU Xu, HW Zhao, YS Zhang, JZ Hickmott, DD Daemen, LL AF Xu, Hongwu Zhao, Yusheng Zhang, Jianzhong Hickmott, Donald D. Daemen, Luke L. TI In situ neutron diffraction study of deuterated portlandite Ca(OD)(2) at high pressure and temperature SO PHYSICS AND CHEMISTRY OF MINERALS LA English DT Article DE portlandite; crystal structure; equation of state; bulk modulus; thermal expansion coefficient; neutron diffraction ID X-RAY-DIFFRACTION; EQUATION-OF-STATE; CA(OH)(2); BRUCITE; PHASE; COMPRESSION; MG(OH)2; GPA; AMORPHIZATION; REFINEMENT AB The structure of deuterated portlandite, Ca(OD)(2), has been investigated using time-of-flight neutron diffraction at pressures up to similar to 4.5 GPa and temperatures up to similar to 823 K. Rietveld analysis of the data reveals that with increasing pressure, unit-cell parameter c decreases at a rate about 4.5 times larger than that for a, which is largely due to rapid contraction of the interlayer spacing in this pressure range. Fitting of the determined cell volumes to the third-order Birch-Murnaghan equation of state yields a bulk modulus (K (0)) of 32.2 +/- 1.0 GPa and its first derivative (K (0)') of 4.4 +/- 0.6. Moreover, on compression, hydrogen-mediated interatomic interactions within the interlayer become strengthened, as reflected by decreases in interlayer D center dot center dot center dot O and D center dot center dot center dot D distances with increasing pressure. Correspondingly, D-D, the distance between the three equivalent sites over which D is disordered, increases, suggesting a pressure-induced hydrogen disorder. This behavior is similar to that reported in brucite at elevated pressure. On heating similar to 2.1 GPa, cell parameter c increases more rapidly than a, as expected. However, because of the pressure effect, the thermal expansion coefficients, particularly along c, are much smaller than those at ambient pressure. With increasing temperature, the three partially occupied D sites become further apart, and the D-mediated interactions, mainly the interlayer D center dot center dot center dot D repulsion, become weakened. C1 Los Alamos Natl Lab, Los Alamos Neutron Scattering Ctr, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Xu, HW (reprint author), Los Alamos Natl Lab, Los Alamos Neutron Scattering Ctr, Los Alamos, NM 87545 USA. EM hxu@lanl.gov RI Hickmott, Donald/C-2886-2011; Lujan Center, LANL/G-4896-2012; OI Xu, Hongwu/0000-0002-0793-6923; Zhang, Jianzhong/0000-0001-5508-1782 NR 26 TC 11 Z9 11 U1 0 U2 18 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0342-1791 J9 PHYS CHEM MINER JI Phys. Chem. Miner. PD MAY PY 2007 VL 34 IS 4 BP 223 EP 232 DI 10.1007/s00269-007-0141-2 PG 10 WC Materials Science, Multidisciplinary; Mineralogy SC Materials Science; Mineralogy GA 162PK UT WOS:000246099900002 ER PT J AU Chumakov, SG AF Chumakov, Sergei G. TI Scaling properties of subgrid-scale energy dissipation SO PHYSICS OF FLUIDS LA English DT Article ID LARGE-EDDY SIMULATION; ISOTROPIC TURBULENCE; KINETIC-ENERGY; MODEL; STRESS; FLUID; FLOWS AB We use direct numerical simulation of forced homogeneous isotropic turbulence with 256(3) and 512(3) grid points and Reynolds number based on Taylor microscale up to 250 to examine a priori the scaling properties of the subgrid-scale kinetic energy and its dissipation rate. It is found that the two quantities are strongly correlated and a power-law scaling assumption holds reasonably well. However, the scaling exponent, which was assumed to be weakly varying in previous studies, is found to change considerably with the filter characteristic width. (C) 2007 American Institute of Physics. C1 Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87544 USA. RP Chumakov, SG (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, POB 1663, Los Alamos, NM 87544 USA. EM chumakov@lanl.gov NR 22 TC 12 Z9 12 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD MAY PY 2007 VL 19 IS 5 AR 058104 DI 10.1063/1.2735001 PG 4 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 173SL UT WOS:000246892700049 ER PT J AU Cook, AW AF Cook, Andrew W. TI Artificial fluid properties for large-eddy simulation of compressible turbulent mixing SO PHYSICS OF FLUIDS LA English DT Article ID INCOMPRESSIBLE-FLOW; IMPLICIT LES; RESOLUTION; VISCOSITY; SCHEMES AB An alternative methodology is described for large-eddy simulation (LES) of flows involving shocks, turbulence, and mixing. In lieu of filtering the governing equations, it is postulated that the large-scale behavior of a LES fluid, i.e., a fluid with artificial properties, will be similar to that of a real fluid, provided the artificial properties obey certain constraints. The artificial properties consist of modifications to the shear viscosity, bulk viscosity, thermal conductivity, and species diffusivity of a fluid. The modified transport coefficients are designed to damp out high wavenumber modes, close to the resolution limit, without corrupting lower modes. Requisite behavior of the artificial properties is discussed and results are shown for a variety of test problems, each designed to exercise different aspects of the models. When combined with a tenth-order compact scheme, the overall method exhibits excellent resolution characteristics for turbulent mixing, while capturing shocks and material interfaces in a crisp fashion. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Cook, AW (reprint author), Lawrence Livermore Natl Lab, POB 5508, Livermore, CA 94550 USA. EM awcook@llnl.gov NR 39 TC 52 Z9 52 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD MAY PY 2007 VL 19 IS 5 AR 055103 DI 10.1063/1.2728937 PG 9 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 173SL UT WOS:000246892700024 ER PT J AU Amendt, P Cerjan, C Hamza, A Hinkel, DE Milovich, JL Robey, HF AF Amendt, Peter Cerjan, C. Hamza, A. Hinkel, D. E. Milovich, J. L. Robey, H. F. TI Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY OCT 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID INERTIAL CONFINEMENT FUSION; TETRAHEDRAL HOHLRAUMS; LASER-BEAMS; TARGETS; PLASMA; OMEGA; FILAMENTATION; ASYMMETRY; SYMMETRY; NOVA AB The goal of demonstrating ignition on the National Ignition Facility [J. D. Lindl , Phys. Plasmas 11, 339 (2003)] has motivated a revisit of double-shell (DS) targets as a complementary path to the cryogenic baseline approach. Expected benefits of DS ignition targets include noncryogenic deuterium-tritium (DT) fuel preparation, minimal hohlraum-plasma-mediated laser backscatter, low threshold-ignition temperatures (approximate to 4 keV) for relaxed hohlraum x-ray flux asymmetry tolerances, and minimal (two-) shock timing requirements. On the other hand, DS ignition presents several formidable challenges, encompassing room-temperature containment of high-pressure DT (approximate to 790 atm) in the inner shell, strict concentricity requirements on the two shells (< 3 mu m), development of nanoporous (< 100 nm cell size) low-density (< 100 mg/cc) metallic foams for structural support of the inner shell and hydrodynamic instability mitigation, and effective control of hydrodynamic instabilities on the high-Atwood-number interface between the DT fuel and the high-Z inner shell. Recent progress in DS ignition designs and required materials science advances at the nanoscale are described herein. Two new ignition designs that use rugby-shaped vacuum hohlraums are presented that utilize either 1 or 2 MJ of laser energy at 3 omega. The capability of the National Ignition Facility to generate the requested 2 MJ reverse-ramp pulse shape for DS ignition is expected to be comparable to the planned high-contrast (approximate to 100) pulse shape at 1.8 MJ for the baseline cryogenic target. Nanocrystalline, high-strength, Au-Cu alloy inner shells are under development using electrochemical deposition over a glass mandrel, exhibiting tensile strengths well in excess of 790 atm. Novel, low-density (85 mg/cc) copper foams have recently been demonstrated using 10 mg/cc SiO2 nanoporous aerogels with suspended Cu particles. A prototype demonstration of an ignition DS is planned for 2008, incorporating the needed novel nanomaterials science developments and the required fabrication tolerances for a realistic ignition attempt after 2010. (C) 2007 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Amendt, P (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. NR 31 TC 48 Z9 57 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 056312 DI 10.1063/1.2716406 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900120 ER PT J AU Bland, SN Lebedev, SV Chittenden, JP Hall, GN Suzuki-Vidal, F Ampleford, DJ Bott, SC Palmer, JBA Pikuz, SA Shelkovenko, TA AF Bland, S. N. Lebedev, S. V. Chittenden, J. P. Hall, G. N. Suzuki-Vidal, F. Ampleford, D. J. Bott, S. C. Palmer, J. B. A. Pikuz, S. A. Shelkovenko, T. A. TI Implosion and stagnation of wire array Z pinches SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY OCT 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID X-RAY POWER; DYNAMICS; PHASE AB Detailed measurements of the dynamics of aluminum wire array Z pinches from immediately prior to implosion until stagnation and dissipation on axis are presented. Before implosion, the -0.5 mm axial modulation seen in earlier laser probing images is observed as ablation on the surface of the wire cores facing away from the array axis. This results in the complete ablation of sections of the wire cores and a redistribution of current at the start of implosion. The dynamics of implosion are then strongly influenced by the number of wires in the array. With only eight wires, discrete snowplough bubbles expand from each wire toward the precursor. There is little, if any, correlation between the bubbles from adjacent wires, and a large temporal spread over which the bubbles arrive at the precursor is observed, along with a long rise time, low power soft x-ray pulse. With 32 or more wires, bubbles from adjacent wires merge close to the array edge to form an imploding sheath. The front edge of the sheath is well defined with a small spatial spread, and upon reaching the precursor, the start of a fast rising high power soft-x-ray pulse is seen. As x-ray emission increases, the stagnating column on axis starts to decrease in diameter, reaching a minimum at peak x-ray emission, which also coincides with the time when the rear edge of the snowplough reaches the column. Thereafter, the stagnated column is seen to go unstable, and trailing mass left behind during the implosion is accelerated toward the axis. Intense x-ray emission ends as this mass becomes cleared out. (C) 2007 American Institute of Physics. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England. AWE Plc, Reading RG7 4PR, Berks, England. Cornell Univ, Plasma Studies Lab, Ithaca, NY 14853 USA. RP Bland, SN (reprint author), Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. EM sn.bland@imperial.ac.uk RI Pikuz, Sergey/M-8231-2015; Shelkovenko, Tatiana/M-8254-2015 NR 29 TC 19 Z9 20 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 056315 DI 10.1063/1.2671940 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900123 ER PT J AU Bradley, DK Braun, DG Glendinning, SG Edwards, MJ Milovich, JL Sorce, CM Collins, GW Haan, SW Page, RH Wallace, RJ Kaae, JL AF Bradley, D. K. Braun, D. G. Glendinning, S. G. Edwards, M. J. Milovich, J. L. Sorce, C. M. Collins, G. W. Haan, S. W. Page, R. H. Wallace, R. J. Kaae, J. L. TI Very-high-growth-factor planar ablative Rayleigh-Taylor experiments SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY JAN 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID NATIONAL IGNITION FACILITY; NOVA; BERYLLIUM; TARGETS; CAPSULE; PLASMAS; ENERGY AB The Rayleigh-Taylor (RT) instability is an important factor in bounding the performance envelope of inertial confinement fusion targets. This paper describes an experiment for ablative RT instability that for the first time achieves growth factors close to those expected to occur in indirect-drive ignition targets at the National Ignition Facility (NIF) [J. A. Paisner, J. D. Boyes, S. A. Kumpan et al., Laser Focus World 30, 75 (1994)]. The large growth allows small-seed perturbations to be detected and can be used to place an upper bound on perturbation growth at the ablation front resulting from microstructure or surface roughness in the preferred Be ablator. The experiments were performed on the Omega laser [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Optics Communications 133, 495 (1997)] using a two stepped x-ray pulse consisting of an early time section to emulate the NIF foot followed by a higher-radiation-temperature drive sustained over an additional 5-7 ns. The trajectory of the ablator was measured using streaked backlit radiography, and the growth of a sinusoidal perturbation machined on the drive side of the ablator was measured using face-on radiography. The diagnostic view remained open until -11 ns with maximum growth factors measured to be -200. (C) 2007 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Gen Atom Co, San Diego, CA 92186 USA. RP Bradley, DK (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. RI Collins, Gilbert/G-1009-2011 NR 26 TC 31 Z9 32 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 056313 DI 10.1063/1.2721971 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900121 ER PT J AU Breslau, JA Jardin, SC Park, W AF Breslau, J. A. Jardin, S. C. Park, W. TI Three-dimensional modeling of the sawtooth instability in a small tokamak SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY JAN 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID DISCHARGES; SIMULATION; PLASMAS AB The sawtooth instability is one of the most fundamental dynamics of an inductive tokamak discharge such as will occur in ITER [R. Aymar et al., Plasma Phys. Controlled Fusion 44, 519 (2002)]. Sawtooth behavior is complex and remains incompletely explained. The Center for Extended MHD Modeling (CEMM) SciDAC project has undertaken an ambitious campaign to model this periodic motion in a small tokamak as accurately as possible using the extended MHD model. Both M3D [W. Park et al., Phys. Plasmas 6, 1796 (1999)] and NIMROD [C. R. Sovinec , Phys. Plasmas 10, 1727 (2003)] have been applied to this problem. Preliminary nonlinear MHD results show pronounced stochasticity in the magnetic field following the sawtooth crash but are not yet fully converged. Compared to the MHD model, extended MHD predicts plasma rotation, faster reconnection, and reduced field line stochasticity in the crash aftermath. The multiple time and space scales associated with the reconnection layer and growth time make this an extremely challenging computational problem. However, these calculations are providing useful guidelines to the numerical and physical requirements for more rigorous future studies. (C) 2007 American Institute of Physics. C1 Princeton Univ, Plasma Phys Lab, SciDAC Ctr Extended MHD Modeling, CEMM, Princeton, NJ 08543 USA. RP Breslau, JA (reprint author), Princeton Univ, Plasma Phys Lab, SciDAC Ctr Extended MHD Modeling, CEMM, POB 451, Princeton, NJ 08543 USA. EM jbreslau@pppl.gov RI Jardin, Stephen/E-9392-2010 NR 13 TC 14 Z9 14 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 056105 DI 10.1063/1.2695868 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900093 ER PT J AU Chan, VS Davidson, RC AF Chan, Vincent S. Davidson, Ronald C. TI Foreword: Papers from the 48th Annual Meeting of the APS Division of Plasma Physics, Philadelphia, Pennsylvania, 2006 SO PHYSICS OF PLASMAS LA English DT Editorial Material C1 Gen Atom Co, San Diego, CA 92186 USA. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Chan, VS (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 055301 DI 10.1063/1.2711403 PG 1 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900070 ER PT J AU Ciardi, A Lebedev, SV Frank, A Blackman, EG Chittenden, JP Jennings, CJ Ampleford, DJ Bland, SN Bott, SC Rapley, J Hall, GN Suzuki-Vidal, FA Marocchino, A Lery, T Stehle, C AF Ciardi, A. Lebedev, S. V. Frank, A. Blackman, E. G. Chittenden, J. P. Jennings, C. J. Ampleford, D. J. Bland, S. N. Bott, S. C. Rapley, J. Hall, G. N. Suzuki-Vidal, F. A. Marocchino, A. Lery, T. Stehle, C. TI The evolution of magnetic tower jets in the laboratory SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY JAN 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID YOUNG STELLAR OBJECTS; ARRAY Z-PINCHES; CURRENT-DRIVEN INSTABILITIES; ACCRETION DISKS; ASTROPHYSICAL JETS; SUPERSONIC JET; BIPOLAR FLOWS; EXPLOSIONS; SUPERNOVA; STARS AB The evolution of laboratory produced magnetic jets is followed numerically through three-dimensional, nonideal magnetohydrodynamic simulations. The experiments are designed to study the interaction of a purely toroidal field with an extended plasma background medium. The system is observed to evolve into a structure consisting of an approximately cylindrical magnetic cavity with an embedded magnetically confined jet on its axis. The supersonic expansion produces a shell of swept-up shocked plasma that surrounds and partially confines the magnetic tower. Currents initially flow along the walls of the cavity and in the jet but the development of current-driven instabilities leads to the disruption of the jet and a rearrangement of the field and currents. The top of the cavity breaks up, and a well-collimated, radiatively cooled, "clumpy" jet emerges from the system. (C) 2007 American Institute of Physics. C1 Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. Univ Rochester, Laser Energet Lab, Rochester, NY 14627 USA. Imperial Coll Sch Med, Blackett Lab, London SW7 2BW, England. Sandia Natl Labs, Albuquerque, NM 87123 USA. Dublin Inst Adv Studies, Dublin 2, Ireland. Observ Paris, Lab Univers & Theories, F-92195 Meudon, France. CNRS, UMR 8102, F-92195 Meudon, France. RP Ciardi, A (reprint author), Univ Rochester, Dept Phys & Astron, 601 Elmwood Ave, Rochester, NY 14627 USA. RI Lery, Thibaut/M-3380-2014; Hall, Gareth/C-4179-2015; Marocchino, Alberto/E-3571-2016; Lery, Thibaut/P-5626-2015 OI Lery, Thibaut/0000-0003-1290-6849; Marocchino, Alberto/0000-0002-5287-8355; Lery, Thibaut/0000-0003-1290-6849 NR 57 TC 75 Z9 75 U1 3 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 056501 DI 10.1063/1.2436479 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900126 ER PT J AU Coverdale, CA Deeney, C Velikovich, AL Davis, J Clark, RW Chong, YK Chittenden, J Chantrenne, S Ruiz, CL Cooper, GW Nelson, AJ Franklin, J LePell, PD Apruzese, JP Levine, J Banister, J AF Coverdale, C. A. Deeney, C. Velikovich, A. L. Davis, J. Clark, R. W. Chong, Y. K. Chittenden, J. Chantrenne, S. Ruiz, C. L. Cooper, G. W. Nelson, A. J. Franklin, J. LePell, P. D. Apruzese, J. P. Levine, J. Banister, J. TI Deuterium gas-puff Z-pinch implosions on the Z accelerator SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY JAN 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID NEUTRON-PRODUCTION; PLASMA-FOCUS; DRIVEN; ARGON; DIAGNOSTICS AB Experiments on the Z accelerator with deuterium gas-puff implosions have produced up to 3.7x10(13) (+/- 20%) neutrons at 2.34 MeV (+/- 0.10 MeV). Although the mechanism for generating these neutrons was not definitively identified, this neutron output is 100 times more than previously observed from neutron-producing experiments at Z. Dopant gases in the deuterium (argon and chlorine) were used to study implosion characteristics and stagnated plasma conditions through x-ray yield measurements and spectroscopy. Magnetohydrodynamic (MHD) calculations have suggested that the dopants improved the neutron output through better plasma compression, which has been studied in experiments increasing the dopant fraction. Scaling these experiments, and additional MHD calculations, suggest that -5x10(14) deuterium-deuterium (DD) neutrons could be generated at the 26-MA refurbished Z facility. (C) 2007 American Institute of Physics. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. USN, Res Lab, Div Plasma Phys, Washington, DC 20375 USA. Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England. Ktech Corp Inc, Albuquerque, NM 87123 USA. Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. L3 Commun Pulse Sci, San Leandro, CA 94577 USA. RP Coverdale, CA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RI Velikovich, Alexander/B-1113-2009 NR 31 TC 32 Z9 33 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 056309 DI 10.1063/1.2710207 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900117 ER PT J AU Degrassie, JS Rice, JE Burrell, KH Groebner, RJ Solomon, WM AF deGrassie, J. S. Rice, J. E. Burrell, K. H. Groebner, R. J. Solomon, W. M. TI Intrinsic rotation in DIII-D SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY OCT 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID ALCATOR C-MOD; OHMIC H-MODE; IMPURITY TOROIDAL ROTATION; ANOMALOUS MOMENTUM TRANSPORT; NEUTRAL BEAM INJECTION; D TOKAMAK; PLASMA ROTATION; HEATED DISCHARGES; ANGULAR-MOMENTUM; ELECTRIC-FIELD AB In the absence of any auxiliary torque input, the DIII-D plasma consists of nonzero toroidal angular momentum, in other words, it rotates. This effect is commonly observed in tokamaks, being referred to as intrinsic rotation. Measurements of intrinsic rotation profiles have been made in DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)] H-mode discharges, with both Ohmic heating (OH) and electron cyclotron heating (ECH) in which there is no auxiliary torque. Recently, the H-mode data set has been extended with the newly configured DIII-D simultaneous co- and counter-directed neutral beam injection (NBI) capability resulting in control of the local torque deposition, where co and counter refer to the direction relative to the toroidal plasma current. Understanding intrinsic rotation is important for projection toward burning plasma performance where any NBI torque will be relatively small. The toroidal velocity is recognizably important regarding issues of stability and confinement. In DIII-D ECH H-modes the rotation profile is hollow, co-directed at large minor radius and depressed, or actually counter-directed, nearer the magnetic axis. This profile varies with the ECH power deposition profile to some extent. In contrast, OH H-modes have a relatively flat co-directed rotation profile. There is a scaling of the DIII-D intrinsic toroidal velocity with W/I-p, as seen in intrinsic rotation in Alcator C-Mod [J. Rice, Nucl. Fusion 39, 1175 (1999)], where W is the total plasma thermal energy and I-p is the magnitude of the toroidal plasma current. This common scaling resulted in a dimensionless similarity experiment between DIII-D and Alcator C-Mod on intrinsic rotation, obtaining a single spatial point match in the toroidal velocity normalized to the ion thermal velocity. The balanced NBI capability in DIII-D is a useful tool to push scaling studies to higher values of the plasma normalized energy, notwithstanding the details of torque deposition for co-NBI versus counter-NBI. There are theories which address intrinsic rotation, both extensions of neoclassical theory and related to turbulent transport. At this time, the comparisons with theory are qualitative. (C) 2007 American Institute of Physics. C1 Gen Atom Co, San Diego, CA 92186 USA. MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Degrassie, JS (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. OI Solomon, Wayne/0000-0002-0902-9876 NR 61 TC 83 Z9 83 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 056115 DI 10.1063/1.2539055 PG 15 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900103 ER PT J AU Esarey, E Schroeder, CB Cormier-Michel, E Shadwick, BA Geddes, CGR Leemans, WP AF Esarey, E. Schroeder, C. B. Cormier-Michel, E. Shadwick, B. A. Geddes, C. G. R. Leemans, W. P. TI Thermal effects in plasma-based accelerators SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY JAN 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID COLLIDING LASER-PULSES; ELECTRON ACCELERATION; WAVE-BREAKING; WAKEFIELD; INJECTION; BEAMS; OSCILLATIONS; GENERATION; SIMULATION; AMPLITUDE AB Finite plasma temperature can modify the structure of the wake field, reduce the wave-breaking field, and lead to self-trapped electrons, which can degrade the electron bunch quality in a plasma-based accelerator. A relativistic warm fluid theory is used to describe the plasma temperature evolution and alterations to the structure of a nonlinear periodic wave exited in a warm plasma. The trapping threshold for a plasma electron and the fraction of electrons trapped from a thermal distribution are examined using a single-particle model. Numerical artifacts in particle-in-cell models that can mimic the physics associated with finite momentum spread are discussed. (C) 2007 American Institute of Physics. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Nevada, Dept Phys, Reno, NV 89557 USA. Inst Adv Phys, Conifer, CO 80433 USA. RP Esarey, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. OI Schroeder, Carl/0000-0002-9610-0166 NR 47 TC 8 Z9 8 U1 2 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 056707 DI 10.1063/1.2714022 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900138 ER PT J AU Froula, DH Divol, L Meezan, NB Dixit, S Neumayer, P Moody, JD Pollock, BB Ross, JS Suter, L Glenzer, SH AF Froula, D. H. Divol, L. Meezan, N. B. Dixit, S. Neumayer, P. Moody, J. D. Pollock, B. B. Ross, J. S. Suter, L. Glenzer, S. H. TI Laser beam propagation through inertial confinement fusion hohlraum plasmas SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY OCT 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID NATIONAL-IGNITION-FACILITY; STIMULATED-BRILLOUIN-SCATTERING; ION-ACOUSTIC-WAVES; THOMSON SCATTERING; LIGHT; TARGETS; SCALE; FILAMENTATION; PERFORMANCE; RADIATION AB A study of the laser-plasma interaction processes have been performed in plasmas that are created to emulate the plasma conditions in indirect drive inertial confinement fusion targets. The plasma emulator is produced in a gas-filled hohlraum; a blue 351-nm laser beam propagates along the axis of the hohlraum interacting with a high-temperature (Te= 3.5 keV), dense (ne= 5 x 10(20) cm(-3)), long-scale length (L - 2 mm ) plasma. Experiments at these conditions have demonstrated that the interaction beam produces less than 1% total backscatter resulting in transmission greater than 90% for laser intensities less than I < 2 x 1015 W cm(-2). The bulk plasma conditions have been independently characterized using Thomson scattering where the peak electron temperatures are shown to scale with the hohlraum heater beam energy in the range from 2 keV to 3.5 keV. This feature has allowed us to determine the thresholds for both backscattering and filamentation instabilities; the former measured with absolutely calibrated full aperture backscatter and near backscatter diagnostics and the latter with a transmitted beam diagnostics. Comparing the experimental results with detailed gain calculations for the onset of significant laser scattering processes shows a stimulated Brillouin scattering threshold (R= 10%) for a linear gain of 15; these high temperature, low density experiments produce plasma conditions comparable to those along the outer beams in ignition hohlraum designs. By increasing the gas fill density (ne= 1021 cm(-3)) in these targets, the inner beam ignition hohlraum conditions are accessed. In this case, stimulated Raman scattering dominates the backscattering processes and we show that scattering is small for gains less than 20 which can be achieved through proper choice of the laser beam intensity. (C) 2007 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. RP Froula, DH (reprint author), Lawrence Livermore Natl Lab, POB 808,L-399, Livermore, CA 94551 USA. EM froula1@llnl.gov NR 40 TC 11 Z9 15 U1 2 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 055705 DI 10.1063/1.2515054 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900077 ER PT J AU Fuchs, J Sentoku, Y d'Humieres, E Cowan, TE Cobble, J Audebert, P Kemp, A Nikroo, A Antici, P Brambrink, E Blazevic, A Campbell, EM Fernandez, JC Gauthier, JC Geissel, M Hegelich, M Karsch, S Popescu, H Renard-LeGalloudec, N Roth, M Schreiber, J Stephens, R Pepin, H AF Fuchs, J. Sentoku, Y. d'Humieres, E. Cowan, T. E. Cobble, J. Audebert, P. Kemp, A. Nikroo, A. Antici, P. Brambrink, E. Blazevic, A. Campbell, E. M. Fernandez, J. C. Gauthier, J.-C. Geissel, M. Hegelich, M. Karsch, S. Popescu, H. Renard-LeGalloudec, N. Roth, M. Schreiber, J. Stephens, R. Pepin, H. TI Comparative spectra and efficiencies of ions laser-accelerated forward from the front and rear surfaces of thin solid foils SO PHYSICS OF PLASMAS LA English DT Review ID SHORT-PULSE LASER; PROTON-BEAMS; PLASMA INTERACTION; FAST IGNITION; OVERDENSE PLASMAS; ISOTOPE PRODUCTION; ELECTRON; TARGETS; DRIVEN; SIMULATIONS AB The maximum energy of protons that are accelerated forward by high-intensity, short-pulse lasers from either the front or rear surfaces of thin metal foils is compared for a large range of laser intensities and pulse durations. In the regime of moderately long laser pulse durations (300-850 fs), and for high laser intensities [(1-6)x10(19) W/cm(2)], rear-surface acceleration is shown experimentally to produce higher energy particles with smaller divergence and a higher efficiency than front-surface acceleration. For similar laser pulse durations but for lower laser intensities (2x10(18) W cm(-2)), the same conclusion is reached from direct proton radiography of the electric fields associated with proton acceleration from the rear surface. For shorter (30-100 fs) or longer (1-10 ps) laser pulses, the same predominance of rear-surface acceleration in producing the highest energy protons is suggested by simulations and by comparison of analytical models with measured values. For this purpose, we have revised our previous analytical model of rear-surface acceleration [J. Fuchs et al., Nat. Phys. 2, 48 (2006)] to adapt it to the very short pulse durations. Finally, it appears, for the explored parameters, that rear-surface acceleration is the dominant mechanism. (C) 2007 American Institute of Physics. C1 Gen Atom Co, San Diego, CA 92121 USA. Ecole Polytech, CNRS, CEA, UPMC,LULI, F-91128 Palaiseau, France. Univ Nevada, Dept Phys, Reno, NV 89557 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Tech Univ Darmstadt, D-64289 Darmstadt, Germany. Max Planck Inst Quantum Opt, D-85748 Garching, Germany. INRS EMT, Varennes, PQ J3X 1S2, Canada. RP Fuchs, J (reprint author), Lab Utilisat Lasers Intenses, Palaiseau, France. EM julien.fuchs@polytechnique.fr RI Popescu, Horia/G-4487-2011; Fernandez, Juan/H-3268-2011; Fuchs, Julien/D-3450-2016; Cowan, Thomas/A-8713-2011; Sentoku, Yasuhiko/P-5419-2014; OI Fernandez, Juan/0000-0002-1438-1815; Fuchs, Julien/0000-0001-9765-0787; Cowan, Thomas/0000-0002-5845-000X; Stephens, Richard/0000-0002-7034-6141 NR 101 TC 49 Z9 50 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 053105 DI 10.1063/1.2720373 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900043 ER PT J AU Gomberoff, K Fajans, J Wurtele, J Friedman, A Grote, DP Cohen, RH Vay, JL AF Gomberoff, K. Fajans, J. Wurtele, J. Friedman, A. Grote, D. P. Cohen, R. H. Vay, J.-L. TI Simulation studies of non-neutral plasma equilibria in an electrostatic trap with a magnetic mirror SO PHYSICS OF PLASMAS LA English DT Article ID THERMAL-EQUILIBRIUM AB The equilibrium of an infinitely long, strongly magnetized, non-neutral plasma confined in a Penning-Malmberg trap with an additional mirror coil has been solved analytically [J. Fajans, Phys. Plasmas 10, 1209 (2003)] and shown to exhibit unusual features. Particles not only reflect near the mirror in the low field region, but also may be weakly trapped in part of the high field region. The plasma satisfies a Boltzmann distribution along field lines; however, the density and the potential vary along field lines. Some other simplifying assumptions were employed in order to analytically characterize the equilibrium; for example the interface region between the low and high field regions was not considered. The earlier results are confirmed in the present study, where two-dimensional particle-in-cell (PIC) simulations are performed with the Warp code in a more realistic configuration with an arbitrary (but physical) density profile, realistic trap geometry and magnetic field. A range of temperatures and radial plasma sizes are considered. Particle tracking is used to identify populations of trapped and untrapped particles. The present study also shows that it is possible to obtain local equilibria of non-neutral plasmas using a collisionless PIC code, by a scheme that uses the inherent numerical collisionality as a proxy for physical collisions. (C) 2007 American Institute of Physics. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Beam Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. Lawrence Livermore Natl Lab, Fus Energy Program, Livermore, CA 94550 USA. RP Gomberoff, K (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Beam Phys, Berkeley, CA 94720 USA. RI Fajans, Joel/J-6597-2016; wurtele, Jonathan/J-6278-2016 OI Fajans, Joel/0000-0002-4403-6027; wurtele, Jonathan/0000-0001-8401-0297 NR 19 TC 12 Z9 12 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 052107 DI 10.1063/1.2727470 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900008 ER PT J AU Groth, M Allen, SL Boedo, JA Brooks, NH Elder, JD Fenstermacher, ME Groebner, RJ Lasnier, CJ McLean, AG Leonard, AW Lisgo, S Porter, GD Rensink, ME Rognlien, TD Rudakov, DL Stangeby, PC Wampler, WR Watkins, JG West, WP Whyte, DG AF Groth, M. Allen, S. L. Boedo, J. A. Brooks, N. H. Elder, J. D. Fenstermacher, M. E. Groebner, R. J. Lasnier, C. J. McLean, A. G. Leonard, A. W. Lisgo, S. Porter, G. D. Rensink, M. E. Rognlien, T. D. Rudakov, D. L. Stangeby, P. C. Wampler, W. R. Watkins, J. G. West, W. P. Whyte, D. G. TI Scrape-off layer transport and deposition studies in DIII-D SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY JAN 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID ALCATOR C-MOD; DETACHED DIVERTOR PLASMAS; CARBON TRANSPORT; C-13 DEPOSITION; INNER DIVERTOR; MAIN-WALL; D TOKAMAK; JET; DEUTERIUM; FLUX AB Trace (CH4)-C-13 injection experiments into the main scrape-off layer (SOL) of low density L-mode and high-density H-mode plasmas have been performed in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] to mimic the transport and deposition of carbon arising from a main chamber sputtering source. These experiments indicated entrainment of the injected carbon in plasma flow in the main SOL, and transport toward the inner divertor. Ex situ surface analysis showed enhanced C-13 surface concentration at the corner formed by the divertor floor and the angled target plate of the inner divertor in L-mode; in H-mode high surface concentration was found both at the corner and along the surface bounding the private flux region inboard of the outer strike point. Interpretative modeling was made consistent with these experimental results by imposing a parallel carbon ion flow in the main SOL toward the inner target, and a radial pinch toward the separatrix. Predictive modeling carried out to better understand the underlying plasma transport processes suggests that the deuterium flow in the main SOL is related to the degree of detachment of the inner divertor leg. These simulations show that carbon ions are entrained with the deuteron flow in the main SOL via frictional coupling, but higher charge-state carbon ions may be suspended upstream of the inner divertor X-point region due to balance of the friction force and the ion temperature gradient force. (C) 2007 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Gen Atom Co, San Diego, CA 92186 USA. Univ Toronto, Inst Aerosp Studies, N York, ON M3H 5T6, Canada. Sandia Natl Labs, Albuquerque, NM 87185 USA. MIT, Cambridge, MA 02139 USA. RP Groth, M (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM groth@fusion.gat.com RI Groth, Mathias/G-2227-2013 NR 68 TC 14 Z9 14 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 056120 DI 10.1063/1.2721978 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900108 ER PT J AU Gurcan, OD Diamond, PH Hahm, TS AF Gurcan, O. D. Diamond, P. H. Hahm, T. S. TI Spatial and spectral evolution of turbulence SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY JAN 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID DRIFT-WAVE TURBULENCE; ANOMALOUS TRANSPORT; INTERMITTENCY; SIMULATION; DYNAMICS; MODEL AB Spreading of turbulence as a result of nonlinear mode couplings and the associated spectral energy transfer is studied. A derivation of a simple two-field model is presented using the weak turbulence limit of the two-scale direct interaction approximation. This approach enables the approximate overall effect of nonlinear interactions to be written in the form of Fick's law and leads to a coupled reaction-diffusion system for turbulence intensity. For this purpose, various classes of triad interactions are examined, and the effects that do not lead to spreading are neglected. It is seen that, within this framework, large scale, radially extended eddies are the most effective structures in promoting spreading of turbulence. Thus, spectral evolution that tends toward such eddies facilitates spatial spreading. Self-consistent evolution of the background profile is also considered, and it is concluded that the profile is essentially slaved to the turbulence in this phase of rapid evolution, as opposed to the case of avalanches, where it is the turbulence intensity that would be slaved to the evolving profile. The characteristic quantity describing the evolving background profile is found to be the mean "potential vorticity" (PV). It is shown that the two-field model with self-consistent mean PV evolution can be reduced to a single Fisher-like turbulence intensity transport equation. In addition to the usual nonlinear diffusion term, this equation also contains a "pinch" of turbulence intensity. It is also noted that internal energy spreads faster than kinetic energy because of the respective spectral tendencies of these two quantities. (C) 2007 American Institute of Physics. C1 Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Gurcan, OD (reprint author), Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. RI Gurcan, Ozgur/A-1362-2013 OI Gurcan, Ozgur/0000-0002-2278-1544 NR 24 TC 9 Z9 9 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 055902 DI 10.1063/1.2436848 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900079 ER PT J AU Hansen, JF Robey, HF Klein, RI Miles, AR AF Hansen, J. F. Robey, H. F. Klein, R. I. Miles, A. R. TI Experiment on the mass-stripping of an interstellar cloud in a high Mach number post-shock flow SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY JAN 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID MOLECULAR CLOUDS; STAR-FORMATION; GAS CLOUDS; SUPERNOVA-REMNANTS; NOVA LASER; HYDRODYNAMICS; SIMULATION; VISCOSITY; COLLAPSE; PLASMA AB The high Mach number flow that follows an astrophysical shock can strip mass from interstellar clouds located in the flow. Eventually, the mass-stripping may fully strip the cloud, dispersing the entire cloud mass into the flow, and incidentally ending the cloud's star formation. Experiments have been carried out at the Omega laser [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)], attempting to simulate and quantify the mass-stripping as it occurs when a shock passes through interstellar clouds. Ten laser beams with 5 kJ of energy drive a strong shock into a cylinder filled with low-density foam with an embedded 120 mu m Al sphere simulating an interstellar cloud. The density ratio between Al and foam is -9. Time-resolved x-ray radiographs show the cloud getting compressed by the shock (t approximate to 5 ns), undergoing a classical Kelvin-Helmholtz roll-up (12 ns) followed by a Widnall instability (30 ns), an inherently 3D effect that breaks the 2D symmetry of the experiment. Material is continuously being stripped from the cloud at a rate that is shown to be inconsistent with laminar models for mass-stripping (the cloud is fully stripped by 80 - 100 ns, ten times faster than the laminar model). A new model for turbulent mass-stripping is presented that agrees with the observed rate. The model should scale to astrophysical conditions and may also be used as a benchmark for hydrodynamic computer codes. (C) 2007 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Hansen, JF (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 48 TC 11 Z9 11 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 056505 DI 10.1063/1.2714024 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900130 ER PT J AU Hubbard, AE Hughes, JW Bespamyatnov, IO Biewer, T Cziegler, I LaBombard, B Lin, Y McDermott, R Rice, JE Rowan, WL Snipes, JA Terry, JL Wolfe, SM Wukitch, S AF Hubbard, A. E. Hughes, J. W. Bespamyatnov, I. O. Biewer, T. Cziegler, I. LaBombard, B. Lin, Y. McDermott, R. Rice, J. E. Rowan, W. L. Snipes, J. A. Terry, J. L. Wolfe, S. M. Wukitch, S. CA Alcator C-Mod Grp TI H-mode pedestal and threshold studies over an expanded operating space on Alcator C-Mod SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY OCT 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID NO MOMENTUM INPUT; POWER THRESHOLD; EDGE PLASMA; ASDEX UPGRADE; TRANSITION; TRANSPORT; CONFINEMENT; TOKAMAK; PARAMETERS; ROTATION AB This paper reports on studies of the edge transport barrier and transition threshold of the high confinement (H) mode of operation on the Alcator C-Mod tokamak [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)], over a wide range of toroidal field (2.6-7.86 T) and plasma current (0.4-1.7 MA). The H-mode power threshold and edge temperature at the transition increase with field. Barrier widths, pressure limits, and confinement are nearly independent of field at constant current, but the operational space at high B shifts toward higher temperature and lower density and collisionality. Experiments with reversed field and current show that scrape-off-layer flows in the high-field side depend primarily on configuration. In configurations with the Bx del B drift away from the active X-point, these flows lead to more countercurrent core rotation, which apparently contributes to higher H-mode thresholds. In the unfavorable case, edge temperature thresholds are higher, and slow evolution of profiles indicates a reduction in thermal transport prior to the transition in particle confinement. Pedestal temperatures in this case are also higher than in the favorable configuration. Both high-field and reversed-field results suggest that parameters at the L-H transition are influencing the evolution and parameters of the H-mode pedestal. (C) 2007 American Institute of Physics. C1 Massachusetts Gen Hosp, Plasma Sci & Fus Ctr, Cambridge, MA 02129 USA. Univ Texas, Fus Res Ctr, Austin, TX 78712 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Hubbard, AE (reprint author), Massachusetts Gen Hosp, Plasma Sci & Fus Ctr, Cambridge, MA 02129 USA. RI Bespamyatnov, Igor/C-1200-2013 NR 36 TC 18 Z9 19 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 056109 DI 10.1063/1.2714297 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900097 ER PT J AU Hudson, SR Hole, MJ Dewar, RL AF Hudson, S. R. Hole, M. J. Dewar, R. L. TI Eigenvalue problems for Beltrami fields arising in a three-dimensional toroidal magnetohydrodynamic equilibrium problem SO PHYSICS OF PLASMAS LA English DT Article ID FORCE-FREE FIELDS; INTERNAL TRANSPORT BARRIERS; SURFACE CURRENT EQUILIBRIA; PLASMA-VACUUM SYSTEMS; AREA-PRESERVING MAPS; MAGNETIC-FIELDS; BOUNDARY CIRCLES; BALLOONING MODES; STABILITY; STELLARATOR AB A generalized energy principle for finite-pressure, toroidal magnetohydrodynamic (MHD) equilibria in general three-dimensional configurations is proposed. The full set of ideal-MHD constraints is applied only on a discrete set of toroidal magnetic surfaces (invariant tori), which act as barriers against leakage of magnetic flux, helicity, and pressure through chaotic field-line transport. It is argued that a necessary condition for such invariant tori to exist is that they have fixed, irrational rotational transforms. In the toroidal domains bounded by these surfaces, full Taylor relaxation is assumed, thus leading to Beltrami fields del xB=lambda B, where lambda is constant within each domain. Two distinct eigenvalue problems for lambda arise in this formulation, depending on whether fluxes and helicity are fixed, or boundary rotational transforms. These are studied in cylindrical geometry and in a three-dimensional toroidal region of annular cross section. In the latter case, an application of a residue criterion is used to determine the threshold for connected chaos. (C) 2007 American Institute of Physics. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. Australian Natl Univ, Dept Theoret Phys, Canberra, ACT 0200, Australia. Australian Natl Univ, Res Sch Phys Sci & Engn, Plasma Res Lab, Canberra, ACT 0200, Australia. RP Hudson, SR (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM shudson@pppl.gov RI Dewar, Robert/B-1300-2008; Hudson, Stuart/H-7186-2013 OI Dewar, Robert/0000-0002-9518-7087; Hudson, Stuart/0000-0003-1530-2733 NR 57 TC 29 Z9 29 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 052505 DI 10.1063/1.2722721 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900027 ER PT J AU Jones, OS Schein, J Rosen, MD Suter, LJ Wallace, RJ Dewald, EL Glenzer, SH Campbell, KM Gunther, J Hammel, BA Landen, OL Sorce, CM Olson, RE Rochau, GA Wilkens, HL Kaae, JL Kilkenny, JD Nikroo, A Regan, SP AF Jones, O. S. Schein, J. Rosen, M. D. Suter, L. J. Wallace, R. J. Dewald, E. L. Glenzer, S. H. Campbell, K. M. Gunther, J. Hammel, B. A. Landen, O. L. Sorce, C. M. Olson, R. E. Rochau, G. A. Wilkens, H. L. Kaae, J. L. Kilkenny, J. D. Nikroo, A. Regan, S. P. TI Proof of principle experiments that demonstrate utility of cocktail hohlraums for indirect drive ignition SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY JAN 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID TARGET PHYSICS; FUSION; RADIATION AB This work is a summary of experiments, numerical simulations, and analytic modeling that demonstrate improved radiation confinement when changing from a hohlraum made from gold to one made from a mixture of high Z materials ("cocktail"). First, the results from several previous planar sample experiments are described that demonstrated the potential of cocktail wall materials. Then a series of more recent experiments are described in which the radiation temperatures of hohlraums made from uranium-based cocktails were directly measured and compared with a gold reference hohlraum. Cocktail hohlraums meeting the oxygen specification (< 5% atomic fraction oxygen) demonstrated an increase in radiation of up to 7 eV, agreeing well with modeling. When applied to an indirectly driven fusion capsule absorbing -160 kJ of x-ray energy, these data suggest that a hohlraum made from a suitably chosen uranium-based cocktail would have about 17% less wall losses and require about 10% less laser energy than a gold hohlraum of the same size. (C) 2007 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Gen Atom Co, San Diego, CA 92186 USA. Laser Energet Lab, Rochester, NY 14623 USA. RP Jones, OS (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave,L-399, Livermore, CA 94550 USA. NR 20 TC 32 Z9 38 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 056311 DI 10.1063/1.2712426 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900119 ER PT J AU Kaganovich, ID Raitses, Y Sydorenko, D Smolyakov, A AF Kaganovich, I. D. Raitses, Y. Sydorenko, D. Smolyakov, A. TI Kinetic effects in a Hall thruster discharge SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY JAN 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID PRESSURE RF DISCHARGE; ELECTRON EMISSION; PLASMA; MODEL; WALL; FLOW; CONDUCTIVITY; SHEATH AB Recent analytical studies and particle-in-cell simulations suggested that the electron velocity distribution function in ExB discharge of annular geometry Hall thrusters is non-Maxwellian and anisotropic. The average kinetic energy of electron motion in the direction parallel to the thruster channel walls (across the magnetic field) is several times larger than that in the direction normal to the walls. Electrons are stratified into several groups depending on their origin (e.g., plasma or channel walls) and confinement (e.g., lost on the walls or trapped in the plasma). Practical analytical formulas are derived for the plasma flux to the wall, secondary electron fluxes, plasma potential, and electron cross-field conductivity. Calculations based on these formulas fairly agree with the results of numerical simulations. The self-consistent analysis demonstrates that the elastic electron scattering in collisions with atoms and ions plays a key role in formation of the electron velocity distribution function and the plasma potential with respect to the walls. It is shown that the secondary electron emission from the walls may significantly enhance the electron conductivity across the magnetic field but only weakly affects the insulating properties of the near-wall sheath. Such self-consistent decoupling between the secondary electron emission effects on the electron energy losses and the electron cross-field transport is currently not captured by the existing fluid and hybrid models of Hall thrusters. (C) 2007 American Institute of Physics. C1 Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. Univ Saskatchewan, Saskatoon, SK S7H 3E6, Canada. RP Kaganovich, ID (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 34 TC 42 Z9 42 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 057104 DI 10.1063/1.2709865 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900143 ER PT J AU Kaita, R Majeski, R Gray, T Kugel, H Mansfield, D Spaleta, J Timberlake, J Zakharov, L Doerner, R Lynch, T Maingi, R Soukhanovskii, V AF Kaita, R. Majeski, R. Gray, T. Kugel, H. Mansfield, D. Spaleta, J. Timberlake, J. Zakharov, L. Doerner, R. Lynch, T. Maingi, R. Soukhanovskii, V. TI Low recycling and high power density handling physics in the Current Drive Experiment-Upgrade with lithium plasma-facing components SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY JAN 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID LIQUID LITHIUM; SPHERICAL TORUS; CDX-U; LIMITERS; EDGE AB The Current Drive Experiment-Upgrade [T. Munsat, P. C. Efthimion, B. Jones, R. Kaita, R. Majeski, D. Stutman, and G. Taylor, Phys. Plasmas 9, 480 (2002)] spherical tokamak research program has focused on lithium as a large area plasma-facing component (PFC). The energy confinement times showed a sixfold or more improvement over discharges without lithium PFCs. This was an increase of up to a factor of 3 over ITER98P(y,1) scaling [ITER Physics Basis Editors, Nucl. Fusion 39, 2137 (1999)], and reflects the largest enhancement in confinement ever seen in Ohmic plasmas. Recycling coefficients of 0.3 or below were achieved, and they are the lowest to date in magnetically confined plasmas. The effectiveness of liquid lithium in redistributing heat loads at extremely high power densities was demonstrated with an electron beam, which was used to generate lithium coatings. When directed to a lithium reservoir, evaporation occurred only after the entire volume of lithium was raised to the evaporation temperature. The ability to dissipate a beam power density of about 60 MW/m(2) could have significant consequences for PFCs in burning plasma devices. (C) 2007 American Institute of Physics. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Kaita, R (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 26 TC 32 Z9 32 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 056111 DI 10.1063/1.2718509 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900099 ER PT J AU Key, MH AF Key, M. H. TI Status of and prospects for the fast ignition inertial fusion concept SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY JAN 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID LASER-PLASMA INTERACTIONS; PETAWATT-LASER; DRIVE TARGETS; PHYSICS BASIS; PROTON-BEAMS; POWER-PLANT; ELECTRON; FACILITY; TRANSPORT; PULSES AB Fast ignition is an alternate concept in inertial confinement fusion, which has the potential for easier ignition and greater energy multiplication. If realized, it could improve the prospects for inertial fusion energy. It poses stimulating challenges in science and technology, and the research is approaching a key stage in which the feasibility of fast ignition will be determined. This review covers the concepts, the state of the science and technology, the near-term prospects, and the challenges and risks involved in demonstrating high-gain fast ignition. (C) 2007 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Key, MH (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM key1@llnl.gov NR 91 TC 111 Z9 116 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 055502 DI 10.1063/1.2719178 PG 15 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900072 ER PT J AU Lanier, NE Workman, J Holmes, RL Graham, P Moore, A AF Lanier, N. E. Workman, J. Holmes, R. L. Graham, P. Moore, A. TI Highly resolved measurements of defect evolution under heated-and-shocked conditions SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY JAN 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID NATIONAL-IGNITION-FACILITY; TARGETS; SIMULATION; CAPSULES; DESIGN AB One of the principal advantages of a double-shell capsule design is the potential for ignition without requiring cryogenic implosions. These designs compress deuterium fuel by transferring kinetic energy from a laser-ablated outer shell to an inner shell by means of a nearly elastic symmetric collision. However, prior to this collision the inner shell experiences varying levels of preheat such that any nonuniformities can evolve significantly. It is the condition of these perturbations at the time the collision-induced shock compresses the inner shell that ultimately dictates capsule performance. With this in mind, a series of experiments have been performed on the OMEGA laser facility [R. T. Boehly et al., Opt. Comm. 133, 495 (1997)] that produce highly resolved measurements of defect evolution under heated-and-shocked conditions. Tin L-shell radiation is used to heat a layered package of epoxy and foam. The epoxy can be engineered with a variety of surface perturbations or defects. As the system evolves, a strong shock can be introduced with the subsequent hydrodynamic behavior imaged on calibrated film via x-ray radiography. This technique allows density variations of the evolving system to be quantitatively measured. This paper summarizes the hydrodynamic behavior of rectangular gaps under heated conditions with detailed experimental measurements of their residual density perturbations. Moreover, the impact of these residual density perturbations on shock deformation and material flow is discussed. (C) 2007 American Institute of Physics. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Atom Weap Estab, Aldermaston, England. RP Lanier, NE (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NR 17 TC 6 Z9 6 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 056314 DI 10.1063/1.2720799 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900122 ER PT J AU Lazarus, EA Luce, TC Austin, ME Brennan, DP Burrell, KH Chu, MS Ferron, JR Hyatt, AW Jayakumar, RJ Lao, LL Lohr, J Makowski, MA Osborne, TH Petty, CC Politzer, PA Prater, R Rhodes, TL Scoville, JT Solomon, WM Strait, EJ Turnbull, AD Waelbroeck, FL Zhang, C AF Lazarus, E. A. Luce, T. C. Austin, M. E. Brennan, D. P. Burrell, K. H. Chu, M. S. Ferron, J. R. Hyatt, A. W. Jayakumar, R. J. Lao, L. L. Lohr, J. Makowski, M. A. Osborne, T. H. Petty, C. C. Politzer, P. A. Prater, R. Rhodes, T. L. Scoville, J. T. Solomon, W. M. Strait, E. J. Turnbull, A. D. Waelbroeck, F. L. Zhang, C. TI Sawtooth oscillations in shaped plasmas SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY JAN 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID DIII-D TOKAMAK; EQUILIBRIUM RECONSTRUCTION; MHD STABILITY; PROFILE; MODES; IDEAL; ION; INSTABILITY; TRANSPORT; RATIO AB The role of interchange and internal kink modes in the sawtooth oscillations is explored by comparing bean- and oval-shaped plasmas. The n=1 instability that results in the collapse of the sawtooth has been identified as a quasi-interchange in the oval cases and the internal kink in the bean shape. The ion and electron temperature profiles are followed in detail through the sawtooth ramp. It is found that electron energy transport rates are very high in the oval and quite low in the bean shape. Ion energy confinement in the oval is excellent and the sawtooth amplitude (delta T/T) in the ion temperature is much larger than that of the electrons. The sawtooth amplitudes for ions and electrons are comparable in the bean shape. The measured q profiles in the bean and oval shapes are found to be consistent with neoclassical current diffusion of the toroidal current, and the observed differences in q largely result from the severe differences in electron energy transport. For both shapes the collapse flattens the q profile and after the collapse return to q(0)greater than or similar to 1. Recent results on intermediate shapes are reported. These shapes show that the electron energy transport improves gradually as the plasma triangularity is increased. (C) 2007 American Institute of Physics. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Gen Atom Co, San Diego, CA 92186 USA. Univ Texas, Austin, TX 78712 USA. Univ Tulsa, Tulsa, OK 74104 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. Acad Sinica, Inst Plasma Phys, Hefei, Peoples R China. RP Lazarus, EA (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI Waelbroeck, Francois/B-6988-2008; OI Waelbroeck, Francois/0000-0001-9324-3690; Solomon, Wayne/0000-0002-0902-9876 NR 39 TC 15 Z9 15 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 055701 DI 10.1063/1.2436849 PG 17 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900073 ER PT J AU Levinton, FM Yuh, H Bell, MG Bell, RE Delgado-Aparicio, L Finkenthal, M Fredrickson, ED Gates, DA Kaye, SM LeBlanc, BP Maingi, R Menard, JE Mikkelsen, D Mueller, D Raman, R Rewoldt, G Sabbagh, SA Stutman, D Tritz, K Wang, W AF Levinton, F. M. Yuh, H. Bell, M. G. Bell, R. E. Delgado-Aparicio, L. Finkenthal, M. Fredrickson, E. D. Gates, D. A. Kaye, S. M. LeBlanc, B. P. Maingi, R. Menard, J. E. Mikkelsen, D. Mueller, D. Raman, R. Rewoldt, G. Sabbagh, S. A. Stutman, D. Tritz, K. Wang, W. TI Transport with reversed shear in the national spherical torus experiment SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY JAN 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID CORE ELECTRON CONFINEMENT; MAGNETIC SHEAR; BARRIER FORMATION; T-10 TOKAMAK; Q-PROFILE; DIII-D; PLASMAS; DISCHARGES; TURBULENCE; PERFORMANCE AB In the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)], plasmas with strongly reversed magnetic shear, s equivalent to(r/q)(dq/dr)< 0, in the plasma core exhibit a marked improvement in electron confinement compared to otherwise similar plasmas with positive or only weakly reversed magnetic shear. The q profile itself is determined by the early evolution of the plasma current, the plasma cross section, and the neutral-beam heating power. In the region of shear reversal, the electron thermal diffusivity can be significantly reduced. Detailed experimental investigation of this phenomenon has been made possible by the successful development of a motional Stark effect (MSE) polarimetry diagnostic suitable for the low magnetic field in NSTX, typically 0.35-0.55 T. Measurements of the electron and ion temperature, density, and plasma toroidal rotation profiles are also available with high spatial and temporal resolution for analysis of the plasma transport properties. (C) 2007 American Institute of Physics. C1 Nova Photon Inc, Princeton, NJ 08540 USA. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. Univ Washington, Seattle, WA 98195 USA. Columbia Univ, New York, NY 10027 USA. RP Levinton, FM (reprint author), Nova Photon Inc, Princeton, NJ 08540 USA. RI Sabbagh, Steven/C-7142-2011; Stutman, Dan/P-4048-2015; OI Menard, Jonathan/0000-0003-1292-3286 NR 46 TC 32 Z9 32 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 056119 DI 10.1063/1.2734124 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900107 ER PT J AU Meezan, NB Berger, RL Divol, L Froula, DH Hinkel, DE Jones, OS London, RA Moody, JD Marinak, MM Niemann, C Neumayer, PB Prisbrey, ST Ross, JS Williams, EA Glenzer, SH Suter, LJ AF Meezan, N. B. Berger, R. L. Divol, L. Froula, D. H. Hinkel, D. E. Jones, O. S. London, R. A. Moody, J. D. Marinak, M. M. Niemann, C. Neumayer, P. B. Prisbrey, S. T. Ross, J. S. Williams, E. A. Glenzer, S. H. Suter, L. J. TI Role of hydrodynamics simulations in laser-plasma interaction predictive capability SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY OCT 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID NATIONAL-IGNITION-FACILITY; PROPAGATION; SCATTERING; TARGETS AB Efforts to predict and control laser-plasma interactions (LPI) in ignition hohlraum targets for the National Ignition Facility [G. H. Miller , Opt. Eng. 43, 2841 (2004)] are based on plasma conditions provided by radiation hydrodynamic simulations. Recent experiments provide compelling evidence that codes such as HYDRA [M. M. Marinak , Phys. Plasmas 8, 2275 (2001)] can accurately predict the plasma conditions in laser-heated targets such as gas-filled balloon (gasbag) and hohlraum platforms for studying LPI. Initially puzzling experimental observations are found to be caused by bulk hydrodynamic phenomena. Features in backscatter spectra and transmitted light spectra are reproduced from the simulated plasma conditions. Simulations also agree well with Thomson scattering measurements of the electron temperature. The calculated plasma conditions are used to explore a linear-gain based phenomenological model of backscatter. For long plasmas at ignition-relevant electron temperatures, the measured backscatter increases monotonically with gain and is consistent with linear growth for low reflectivities. These results suggest a role for linear gain postprocessing as a metric for assessing LPI risk. (C) 2007 American Institute of Physics. C1 Univ Calif Los Angeles, Los Angeles, CA USA. RP Meezan, NB (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM meezan1@llnl.gov NR 23 TC 20 Z9 20 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 056304 DI 10.1063/1.2710782 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900112 ER PT J AU Molvik, AW Covo, MK Cohen, R Friedman, A Lund, SM Sharp, W Vay, JL Baca, D Bieniosek, F Leister, C Seidl, P AF Molvik, A. W. Covo, M. Kireeff Cohen, R. Friedman, A. Lund, S. M. Sharp, W. Vay, J-L. Baca, D. Bieniosek, F. Leister, C. Seidl, P. TI Quantitative experiments with electrons in a positively charged beam SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY OCT 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID SIMULATIONS; DIAGNOSTICS; IONS AB Intense ion beams are difficult to maintain as non-neutral plasmas. Experiments and simulations are used to study the complex interactions between beam ions and (unwanted) electrons. Such "electron clouds" limit the performance of many accelerators. To characterize electron clouds, a number of parameters are measured, including total and local electron production and loss for each of three major sources, beam potential versus time, electron line-charge density, and gas pressure within the beam. Electron control methods include surface treatments to reduce electron and gas emission, and techniques to remove electrons from the beam or block their capture by the beam. Detailed self-consistent simulations include beam-transport fields and electron and gas generation and transport; these compute unexpectedly rich behavior, much of which is confirmed experimentally. For example, in a quadrupole magnetic field, ion and dense electron plasmas interact to produce multi-kV oscillations in the electron plasma and distortions of the beam velocity space distribution, without the system becoming homogeneous or locally neutral. (C) 2007 American Institute of Physics. C1 Heavy Ion Fus Sci Virtual Natl Lab, Berkeley, CA 94720 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Molvik, AW (reprint author), Heavy Ion Fus Sci Virtual Natl Lab, Berkeley, CA 94720 USA. NR 35 TC 3 Z9 3 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 056701 DI 10.1063/1.2436850 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900132 ER PT J AU Murillo, MS AF Murillo, Michael S. TI Ultrafast dynamics of neutral, ultracold plasmas SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY JAN 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID RELAXATION; DIFFRACTION; TRANSITIONS; SIMULATION; KINETICS; CLUSTERS; LIQUIDS; SYSTEMS; SCALE AB The ultrafast dynamics of a neutral, ultracold plasma following an energy landscape shift is studied theoretically and with simulation. To lowest order in time, the inertial dynamics on the new landscape can be characterized by the initial-state plasma microfield, which, for the randomly ordered case of an ultracold neutral plasma, is dominated by nearest-neighbor interactions. Formation of the pair correlation function arises after ballistic overshoot, which leads to oscillations in the effective temperature. Connections are made to similar properties of clusters, photoisomerization of molecules, and nonthermal melting in solids. (C) 2007 American Institute of Physics. C1 Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Murillo, MS (reprint author), Los Alamos Natl Lab, Div Phys, POB 1663, Los Alamos, NM 87545 USA. NR 32 TC 15 Z9 15 U1 2 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 055702 DI 10.1063/1.2436853 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900074 ER PT J AU Nakamura, K Nagler, B Toth, C Geddes, CGR Schroeder, CB Esarey, E Leemans, WP Gonsalves, AJ Hooker, SM AF Nakamura, K. Nagler, B. Toth, Cs. Geddes, C. G. R. Schroeder, C. B. Esarey, E. Leemans, W. P. Gonsalves, A. J. Hooker, S. M. TI GeV electron beams from a centimeter-scale channel guided laser wakefield accelerator SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY OCT 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID WAKE-FIELD ACCELERATION; FEMTOSECOND X-RAYS; PLASMA CHANNELS; PULSES; GENERATION; INJECTION; CAPILLARY; DISCHARGE; BREAKING; PHASE AB Laser wakefield accelerators can produce electric fields of order 10-100 GV/m, suitable for acceleration of electrons to relativistic energies. The wakefields are excited by a relativistically intense laser pulse propagating through a plasma and have a phase velocity determined by the group velocity of the light pulse. Two important effects that can limit the acceleration distance and hence the net energy gain obtained by an electron are diffraction of the drive laser pulse and particle-wake dephasing. Diffraction of a focused ultrashort laser pulse can be overcome by using preformed plasma channels. The dephasing limit can be increased by operating at a lower plasma density, since this results in an increase in the laser group velocity. Here we present detailed results on the generation of GeV-class electron beams using an intense femtosecond laser beam and a 3.3 cm long preformed discharge-based plasma channel [W. P. Leemans et al., Nature Physics 2, 696 (2006)]. The use of a discharge-based waveguide permitted operation at an order of magnitude lower density and 15 times longer distance than in previous experiments that relied on laser preformed plasma channels. Laser pulses with peak power ranging from 10-40 TW were guided over more than 20 Rayleigh ranges and high quality electron beams with energy up to 1 GeV were obtained by channeling a 40 TW peak power laser pulse. The dependence of the electron beam characteristics on capillary properties, plasma density, and laser parameters are discussed. (C) 2007 American Institute of Physics. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. Univ Tokyo, Nucl Profess Sch, Tokyo, Japan. RP Nakamura, K (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM WPLeemans@lbl.gov RI Hooker, Simon/D-1402-2015; OI Hooker, Simon/0000-0002-1243-520X; Schroeder, Carl/0000-0002-9610-0166 NR 45 TC 96 Z9 96 U1 0 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 056708 DI 10.1063/1.2718524 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900139 ER PT J AU Park, JK Boozer, AH Glasser, AH AF Park, Jong-Kyu Boozer, Allen H. Glasser, Alan H. TI Computation of three-dimensional tokamak and spherical torus equilibria SO PHYSICS OF PLASMAS LA English DT Article ID RESISTIVE WALL MODES; PERTURBED PLASMA EQUILIBRIA; DIII-D; INSTABILITIES; FEEDBACK; PHYSICS AB A nominally axisymmetric plasma configuration, such as a tokamak or a spherical torus, is highly sensitive to nonaxisymmetric magnetic perturbations due to currents outside of the plasma. The high sensitivity means that the primary interest is in the response of the plasma to very small perturbations, i.e., vertical bar(b) over right arrow/(B) over right arrow approximate to 10(-2) to 10(-4), which can be calculated using the theory of perturbed equilibria. The ideal perturbed equilibrium code (IPEC) is described and applied to the study of the plasma response in a spherical torus to such external perturbations. (C) 2007 American Institute of Physics. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Park, JK (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM jpark@pppl.gov NR 20 TC 100 Z9 100 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 052110 DI 10.1063/1.2732170 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900011 ER PT J AU Pomphrey, N Lazarus, E Zarnstorff, M Boozer, A Brooks, A AF Pomphrey, N. Lazarus, E. Zarnstorff, M. Boozer, A. Brooks, A. TI Novel design methods for magnetic flux loops in the National Compact Stellarator Experiment SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY JAN 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID EQUILIBRIA; PHYSICS; NCSX AB Magnetic pickup loops on the vacuum vessel (VV) can provide an abundance of equilibrium information for stellarators. A substantial effort has gone into designing flux loops for the National Compact Stellarator Experiment (NCSX) [Zarnstorff et al., Plasma Phys. Controlled Fusion 43, A237 (2001)], a three-field period quasi-axisymmetric stellarator under construction at the Princeton Plasma Physics Laboratory. The design philosophy, to measure all of the magnetic field distributions normal to the VV that can be measured, has necessitated the development of singular value decomposition algorithms for identifying efficient loop locations. Fields are expected to be predominantly stellarator symmetric (SS)-the symmetry of the machine design-with toroidal mode numbers per torus (n) equal to a multiple of 3 and possessing reflection symmetry in a period. However, plasma instabilities and coil imperfections will generate non-SS fields that must also be diagnosed. The measured symmetric fields will yield important information on the plasma current and pressure profile as well as on the plasma shape. All fields that obey the design symmetries could be measured by placing flux loops in a single half-period of the VV, but accurate resolution of nonsymmetric modes, quantified by the condition number of a matrix, requires repositioning loops to equivalent locations on the full torus. A subarray of loops located along the inside wall of the vertically elongated cross section was designed to detect n=3, m=5 or 6 resonant field perturbations that can cause important islands. Additional subarrays included are continuous in the toroidal and poloidal directions. Loops are also placed at symmetry points of the VV to obtain maximal sensitivity to asymmetric perturbations. Combining results from various calculations which have made extensive use of a database of 2500 free-boundary VMEC equilibria, has led to the choice of 225 flux loops for NCSX, of which 151 have distinct shapes. (C) 2007 American Institute of Physics. C1 Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Columbia Univ, New York, NY 10027 USA. RP Pomphrey, N (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI pomphrey, neil/G-4405-2010 NR 17 TC 9 Z9 9 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 056103 DI 10.1063/1.2472368 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900091 ER PT J AU Qin, H Cohen, RH Nevins, WM Xu, XQ AF Qin, H. Cohen, R. H. Nevins, W. M. Xu, X. Q. TI Geometric gyrokinetic theory for edge plasmas SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY JAN 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID GRADIENT-DRIVEN TURBULENCE; GUIDING CENTER MOTION; GOLDBERGER-LOW THEORY; PARTICLE SIMULATION; PERTURBATION-THEORY; EQUATIONS; TRANSPORT; MODES; INSTABILITIES; FORMULATION AB It turns out that gyrokinetic theory can be geometrically formulated as a special case of a geometrically generalized Vlasov-Maxwell system. It is proposed that the phase space of the space-time is a seven-dimensional fiber bundle P over the four-dimensional space-time M, and that a Poincare-Cartan-Einstein 1-form gamma on the seven-dimensional phase space determines a particle's worldline in the phase space. Through Liouville 6-form Omega and fiber integral, the 1-form gamma also uniquely defines a geometrically generalized Vlasov-Maxwell system as a field theory for the collective electromagnetic field. The geometric gyrokinetic theory is then developed as a special case of the geometrically generalized Vlasov-Maxwell system. In its most general form, gyrokinetic theory is about a symmetry, called gyrosymmetry, for magnetized plasmas, and the 1-form gamma again uniquely defines the gyrosymmetry. The objective is to decouple the gyrophase dynamics from the rest of the particle dynamics by finding the gyrosymmetry in gamma. Compared to other methods of deriving the gyrokinetic equations, the advantage of the geometric approach is that it allows any approximation based on mathematical simplification or physical intuition to be made at the 1-form level, and yet the field theories still have the desirable exact conservation properties, such as phase space volume conservation and energy-momentum conservation if the 1-form does not depend on the space-time coordinate explicitly. A set of generalized gyrokinetic equations valid for the edge plasmas is then derived using this geometric method. This formalism allows large-amplitude, time-dependent background electromagnetic fields to be developed fully nonlinearly in addition to small-amplitude, short-wavelength electromagnetic perturbations. The fact that we adopted the geometric method in the present study does not necessarily imply that the major results reported here cannot be achieved using classical methods. What the geometric method offers is a systematic treatment and simplified calculations. (C) 2007 American Institute of Physics. C1 Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Qin, H (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 53 TC 29 Z9 29 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 056110 DI 10.1063/1.2472596 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900098 ER PT J AU Raman, R Jarboe, TR Mueller, D Nelson, BA Bell, MG Ono, M Bigelow, T Kaita, R LeBlanc, B Maqueda, R Menard, J Paul, S Roquemore, L AF Raman, R. Jarboe, T. R. Mueller, D. Nelson, B. A. Bell, M. G. Ono, M. Bigelow, T. Kaita, R. LeBlanc, B. Maqueda, R. Menard, J. Paul, S. Roquemore, L. CA NSTX Res Team TI Plasma startup in the National Spherical Torus Experiment using transient coaxial helicity injection SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY JAN 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID MAGNETIC HELICITY; SUSTAINMENT; SPHEROMAK; TOKAMAK AB A method of plasma current generation known as coaxial helicity injection (CHI) has been successfully applied in the National Spherical Torus Experiment [M. Ono, S. M. Kaye, Y.-K. M. Peng et al., Nucl. Fusion 40, 3Y 557 (2000)] to form closed, nested magnetic surfaces carrying a plasma current up to 160 kA. In some discharges the generated current persists for surprisingly long, -400 ms. While the CHI method has previously been studied in smaller experiments, such as the Helicity Injected Tokamak (HIT-II) [R. Raman, T. R. Jarboe, B. A. Nelson , Phys Rev. Lett. 90, 075005 (2003)] at the University of Washington, the significance of these results are (a) demonstration of the process in a vessel volume thirty times larger than HIT-II on a size scale more comparable to a reactor, (b) a remarkable multiplication factor of 60 between the injected current and the achieved toroidal current, compared to six in previous experiments, and (c) for the first time, fast time scale visible imaging of the entire process that shows discharge formation, disconnection from the injector, and luminous structures consistent with the reconnection of magnetic field lines and closed flux surfaces. These significant results indicate favorable scaling with machine size. (C) 2007 American Institute of Physics. C1 Univ Washington, Seattle, WA 98195 USA. Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Nova Photon, Princeton, NJ 08543 USA. RP Raman, R (reprint author), Univ Washington, Seattle, WA 98195 USA. EM raman@aa.washington.edu OI Menard, Jonathan/0000-0003-1292-3286 NR 18 TC 7 Z9 7 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 056106 DI 10.1063/1.2515159 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900094 ER PT J AU Sanford, TWL Cuneo, ME Bliss, DE Jennings, CA Mock, RC Nash, TJ Stygar, WA Waisman, EM Chittenden, JP Haines, MG Peterson, DL AF Sanford, T. W. L. Cuneo, M. E. Bliss, D. E. Jennings, C. A. Mock, R. C. Nash, T. J. Stygar, W. A. Waisman, E. M. Chittenden, J. P. Haines, M. G. Peterson, D. L. TI Demonstrated transparent mode in nested wire arrays used for dynamic hohlraum Z pinches SO PHYSICS OF PLASMAS LA English DT Article ID X-RAY SOURCE; 2-DIMENSIONAL SIMULATIONS; ICF EXPERIMENTS; POWER; RADIATION; DRIVEN; FUSION; ACCELERATOR; IMPLOSION; FLOW AB The mass of the outer and inner wire array used to drive the baseline dynamic hohlraum (DH) with pedestal target [Sanford et al., Phys. Plasmas 13, 012701 (2006)] is reversed in order to determine if the nested wire array is operating in a hydrodynamic, or transparent-like mode [J. Davis et al., Appl. Phys. Lett. 70, 170 (1997)], when the outer array arrives at the radius of the inner array. In contrast to the baseline, mass reversal allows the modes to be distinguished by the difference in the timing of characteristic features of the x-ray radiation pulses in the two modes. For the reversed-mass DH, all parameters such as wire number, array radii, and target remained the same, except the diameters of the individual wires were adjusted to reverse the array masses. Measurements show unambiguously that the reversed-mass DH operates in a transparent-like mode, the outer array passing through the inner array with limited collisional interaction. Numerical simulations in the r-theta plane suggest that the underlying physics of the outer array collision with the inner between the two DHs (baseline and reversed-mass), remains similar, implying that the baseline also operates with transparency. Inflection in the rate of change of the current is measured 4-7 ns after the radiation signal and is associated with the outer-inner array interaction, indicating that the rear portion of the resulting plasma shell of the outer array carries the current prior to the collision. Numerical simulations together with analytic theory describe probable dynamics of the current switching from the outer to inner array. (C) 2007 American Institute of Physics. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sanford, TWL (reprint author), Sandia Natl Labs, Albuquerque, NM 87185 USA. NR 38 TC 11 Z9 13 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 052703 DI 10.1063/1.2730488 PG 17 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900036 ER PT J AU Sangster, TC Betti, R Craxton, RS Delettrez, JA Edgell, DH Elasky, LM Glebov, VY Goncharov, VN Harding, DR Jacobs-Perkins, D Janezic, R Keck, RL Knauer, JP Loucks, SJ Lund, LD Marshall, FJ McCrory, RL McKenty, PW Meyerhofer, DD Radha, PB Regan, SP Seka, W Shmayda, WT Skupsky, S Smalyuk, VA Soures, JM Stoeckl, C Yaakobi, B Frenje, JA Li, CK Petrasso, RD Seguin, FH Moody, JD Atherton, JA MacGowan, BD Kilkenny, JD Bernat, TP Montgomery, DS AF Sangster, T. C. Betti, R. Craxton, R. S. Delettrez, J. A. Edgell, D. H. Elasky, L. M. Glebov, V. Yu. Goncharov, V. N. Harding, D. R. Jacobs-Perkins, D. Janezic, R. Keck, R. L. Knauer, J. P. Loucks, S. J. Lund, L. D. Marshall, F. J. McCrory, R. L. McKenty, P. W. Meyerhofer, D. D. Radha, P. B. Regan, S. P. Seka, W. Shmayda, W. T. Skupsky, S. Smalyuk, V. A. Soures, J. M. Stoeckl, C. Yaakobi, B. Frenje, J. A. Li, C. K. Petrasso, R. D. Seguin, F. H. Moody, J. D. Atherton, J. A. MacGowan, B. D. Kilkenny, J. D. Bernat, T. P. Montgomery, D. S. TI Cryogenic DT and D-2 targets for inertial confinement fusion SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY JAN 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID NATIONAL IGNITION FACILITY; DIRECT-DRIVE IGNITION; IMPLOSION PERFORMANCE; LASER SYSTEM; ICF TARGETS; OMEGA; LAYER; CAPSULE; ENERGY; NIF AB Ignition target designs for inertial confinement fusion on the National Ignition Facility (NIF) [W. J. Hogan et al., Nucl. Fusion 41, 567 (2001)] are based on a spherical ablator containing a solid, cryogenic-fuel layer of deuterium and tritium. The need for solid-fuel layers was recognized more than 30 years ago and considerable effort has resulted in the production of cryogenic targets that meet most of the critical fabrication tolerances for ignition on the NIF. At the University of Rochester's Laboratory for Laser Energetics (LLE), the inner-ice surface of cryogenic DT capsules formed using beta-layering meets the surface-smoothness requirement for ignition (< 1-mu m rms in all modes). Prototype x-ray-drive cryogenic targets being produced at the Lawrence Livermore National Laboratory are nearing the tolerances required for ignition on the NIF. At LLE, these cryogenic DT (and D-2) capsules are being imploded on the direct-drive 60-beam, 30-kJ UV OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The designs of these cryogenic targets for OMEGA are energy scaled from the baseline direct-drive-ignition design for the NIF. Significant progress with the formation and characterization of cryogenic targets for both direct and x-ray drive will be described. Results from recent cryogenic implosions will also be presented. (C) 2007 American Institute of Physics. C1 Rochester Inst Technol, Laser Energet Lab, Rochester, NY 14623 USA. MIT, Plasma Sci Fus Ctr, Cambridge, MA 02139 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Gen Atom Co, San Diego, CA 92121 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sangster, TC (reprint author), Rochester Inst Technol, Laser Energet Lab, Rochester, NY 14623 USA. RI Goncharov, Valeri/H-4471-2011 NR 51 TC 32 Z9 33 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 058101 DI 10.1063/1.2671844 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900146 ER PT J AU Sarkisov, GS Rosenthal, SE Struve, KW Ivanov, VV Cowan, TE Astanovitskiy, A Haboub, A AF Sarkisov, G. S. Rosenthal, S. E. Struve, K. W. Ivanov, V. V. Cowan, T. E. Astanovitskiy, A. Haboub, A. TI Effect of current prepulse on wire array initiation on the 1-MA ZEBRA accelerator SO PHYSICS OF PLASMAS LA English DT Article ID ENERGY DEPOSITION; IMPLOSION; VACUUM AB Experiments on the 1-MA ZEBRA accelerator with reduced current prepulse duration, using a flashover switch, demonstrate a significant increase of initial energy deposition into the tungsten wire array before breakdown, and of total radiation energy from the Z pinch. Shorter current prepulse raises the current rate through each individual wire in the array and results in an increase of the energy deposition into wire cores before breakdown. In our experiments, the inferred tungsten wire temperature increases from similar to 800 K (with 250 ns prepulse) up to similar to 3700 K (with 60 ns prepulse). Total radiation energy increases from 12 to 16 kJ. Our experimental results relate wire-array initiation to heating of the individual array wires up to the time of breakdown. (C) 2007 American Institute of Physics. C1 Ktech Corp Inc, Albuquerque, NM 87123 USA. Sandia Natl Labs, Albuquerque, NM 87110 USA. Univ Nevada, Reno, NV 89506 USA. RP Sarkisov, GS (reprint author), Ktech Corp Inc, 10800 Gibson Blvd, Albuquerque, NM 87123 USA. RI Cowan, Thomas/A-8713-2011 OI Cowan, Thomas/0000-0002-5845-000X NR 16 TC 9 Z9 9 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 052704 DI 10.1063/1.2734575 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900037 ER PT J AU Shen, BF Li, YL Nemeth, K Shang, HR Chae, YC Soliday, R Crowell, R Frank, E Gropp, W Cary, J AF Shen, Baifei Li, Yuelin Nemeth, Karoly Shang, Hairong Chae, Yong-chul Soliday, Robert Crowell, Robert Frank, Edward Gropp, William Cary, John TI Electron injection by a nanowire in the bubble regime SO PHYSICS OF PLASMAS LA English DT Article ID WAKE-FIELD ACCELERATION; LASER-PLASMA INTERACTIONS; DENSITY TRANSITION; SELF-INJECTION; WAVE BREAKING; PULSES; BEAMS AB The triggering of wave-breaking in a three-dimensional laser plasma wake (bubble) is investigated. The Coulomb potential from a nanowire is used to disturb the wake field to initialize the wave-breaking. The electron acceleration becomes more stable and the laser power needed for self-trapping is lowered. Three-dimensional particle-in-cell simulations were performed. Electrons with a charge of about 100 pC can be accelerated stably to energy about 170 MeV with a laser energy of 460 mJ. The first step towards tailoring the electron beam properties such as the energy, energy spread, and charge is discussed. (C) 2007 American Institute of Physics. C1 Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, State Key Lab High Field Laser Phys, Shanghai 201800, Peoples R China. Argonne Natl Lab, Argonne Accelerator Inst, Argonne, IL 60439 USA. Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. Argonne Natl Lab, Accelerator Syst Div, Argonne, IL 60439 USA. RP Shen, BF (reprint author), Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, State Key Lab High Field Laser Phys, POB 800-211, Shanghai 201800, Peoples R China. RI Shen, Baifei/B-3396-2008; Frank, Edward/A-8865-2012; Nemeth, Karoly/L-7806-2014; OI Nemeth, Karoly/0000-0001-8366-1397; Gropp, William/0000-0003-2905-3029 NR 29 TC 32 Z9 37 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 053115 DI 10.1063/1.2728773 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900053 ER PT J AU Smirnov, A Raitses, Y Fisch, NJ AF Smirnov, Artem Raitses, Yegeny Fisch, Nathaniel J. TI Experimental and theoretical studies of cylindrical Hall thrusters SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY OCT 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID STATIONARY PLASMA THRUSTER; CROSS-FIELD TRANSPORT; ELECTRON EMISSION; WALL CONDUCTIVITY; NEAR-WALL; FLOW; OSCILLATIONS; SHEATH AB The Hall thruster is a mature electric propulsion device that holds considerable promise in terms of the propellant saving potential. The annular design of the conventional Hall thruster, however, does not naturally scale to low power. The efficiency tends to be lower and the lifetime issues are more aggravated. Cylindrical geometry Hall thrusters have lower surface-to-volume ratio than conventional thrusters and, thus, seem to be more promising for scaling down. The cylindrical Hall thruster (CHT) is fundamentally different from the conventional design in the way the electrons are confined and the ion space charge is neutralized. The performances of both the large (9-cm channel diameter, 600-1000 W) and miniaturized (2.6-cm channel diameter, 50-300 W) CHTs are comparable with those of the state-of-the-art conventional (annular) design Hall thrusters of similar sizes. A comprehensive experimental and theoretical study of the CHT physics has been conducted, addressing the questions of electron cross-field transport, propellant ionization, plasma-wall interaction, and formation of the electron distribution function. Probe measurements in the harsh plasma environment of the microthruster were performed. Several interesting effects, such as the unusually high ionization efficiency and enhanced electron transport, were observed. Kinetic simulations suggest the existence of the strong fluctuation-enhanced electron diffusion and predict the non-Maxwellian shape of the electron distribution function. Through the acquired understanding of the new physics, ways for further optimization of this means for low-power space propulsion are suggested. Substantial flexibility in the magnetic field configuration of the CHT is the key tool in achieving the high-efficiency operation. (C) 2007 American Institute of Physics. C1 Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Smirnov, A (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM asmirnov@trialphaenergy.com NR 58 TC 39 Z9 39 U1 1 U2 22 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 057106 DI 10.1063/1.2718522 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900145 ER PT J AU Smith, RF Pollaine, SM Moon, SJ Lorenz, KT Celliers, PM Eggert, JH Park, HS Collins, GW AF Smith, Raymond F. Pollaine, Stephen M. Moon, Stephen J. Lorenz, K. Thomas Celliers, Peter M. Eggert, Jon H. Park, Hye-Sook Collins, Gilbert W. TI High planarity x-ray drive for ultrafast shockless-compression experiments SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY OCT 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID ISENTROPIC COMPRESSION; KBAR; LEAD AB A spatially planar (Delta time/time similar to 0.2%) longitudinal stress drive extending over millimeter scale lengths is used to shocklessly compress an aluminum sample to a peak stress of 210 GPa over nanosecond time scales. Direct laser irradiation onto the inner wall of an Au halfraum creates an x ray distribution with a near-uniform blackbody temperature of up to 137 eV. The x rays ablate material from a low-Z foil in a region of planarity closely matched to the diameter of the halfraum. The resultant ablatively driven shock is converted into a ramp-stress-wave in a secondary aluminum target through unloading across an intermediate vacuum gap. Higher peak stresses and shorter associated risetimes result from increasing input laser energy. Ramp-compression experiments can provide single shot equation-of-state data close to the isentrope, information on the kinetics of phase transformations, and material strength at high pressures. (C) 2007 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Smith, RF (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. RI Collins, Gilbert/G-1009-2011 NR 24 TC 19 Z9 27 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 057105 DI 10.1063/1.2712450 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900144 ER PT J AU Startsev, EA Davidson, RC Qin, H AF Startsev, Edward A. Davidson, Ronald C. Qin, Hong TI Collective temperature anisotropy instabilities in intense charged particle beams SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY JAN 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID DELTA-F SIMULATION; RELATIVISTIC ELECTRON-BEAMS; ELECTROMAGNETIC INSTABILITIES; FILAMENTATION; PROPAGATION; PLASMAS; FIELD AB The classical electrostatic Harris instability and the electromagnetic Weibel instability, both driven by a large temperature anisotropy (T-parallel to b/T-perpendicular to <<< 1) that develops naturally in accelerators, are generalized to the case of a one-component intense charged particle beam with anisotropic temperature, including the important effects of finite transverse geometry and beam space-charge. Such instabilities may lead to an increase in the longitudinal velocity spread, which makes focusing the beam difficult, and may impose a limit on the beam luminosity and the minimum spot size achievable in focusing experiments. This paper describes recent advances in the theory and simulation of collective instabilities in intense charged particle beams caused by large temperature anisotropy. The new simulation tools that have been developed to study these instabilities are also described. Results of the investigations that identify the instability growth rates, levels of saturations, and conditions for quiescent beam propagation are also discussed. (C) 2007 American Institute of Physics. C1 Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Startsev, EA (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 31 TC 15 Z9 15 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 056705 DI 10.1063/1.2436847 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900136 ER PT J AU Strait, EJ Garofalo, AM Jackson, GL Okabayashi, M Reimerdes, H Chu, MS Fitzpatrick, R Groebner, RJ In, Y LaHaye, RJ Lanctot, MJ Liu, YQ Navratil, GA Solomon, WM Takahashi, H AF Strait, E. J. Garofalo, A. M. Jackson, G. L. Okabayashi, M. Reimerdes, H. Chu, M. S. Fitzpatrick, R. Groebner, R. J. In, Y. LaHaye, R. J. Lanctot, M. J. Liu, Y. Q. Navratil, G. A. Solomon, W. M. Takahashi, H. CA DIII-D Team TI Resistive wall mode stabilization by slow plasma rotation in DIII-D tokamak discharges with balanced neutral beam injection SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY JAN 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID TOROIDAL ROTATION; ERROR-FIELD; FEEDBACK; STABILITY; ITER AB Recent experiments in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] show that the resistive wall mode (RWM) can be stabilized by smaller values of plasma rotation than previously reported. Stable discharges have been observed with beta up to 1.4 times the no-wall kink stability limit and ion rotation velocity (measured from CVI emission) less than 0.3% of the Alfven speed at all integer rational surfaces, in contrast with previous DIII-D experiments that indicated critical values of 0.7%-2.5% of the local Alfven speed. Preliminary stability calculations for these discharges, using ideal magnetohydrodynamics with a drift-kinetic dissipation model, are consistent with the new experimental results. A key feature of these experiments is that slow plasma rotation was achieved by reducing the neutral beam torque. Earlier experiments with strong neutral beam torque used "magnetic braking" by applied magnetic perturbations to slow the rotation, and resonant effects of these perturbations may have led to a larger effective rotation threshold. In addition, the edge rotation profile may have a critical role in determining the RWM stability of these low-torque plasmas. (C) 2007 American Institute of Physics. C1 Gen Atom Co, San Diego, CA 92186 USA. Columbia Univ, New York, NY 10027 USA. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. Univ Texas, IFS, Austin, TX 78712 USA. FAR TECH, San Diego, CA USA. Chalmers, S-41296 Gothenburg, Sweden. RP Strait, EJ (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. RI Lanctot, Matthew J/O-4979-2016; OI Lanctot, Matthew J/0000-0002-7396-3372; Solomon, Wayne/0000-0002-0902-9876 NR 37 TC 45 Z9 45 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 056101 DI 10.1063/1.2472599 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900089 ER PT J AU Van Zeeland, MA Austin, ME Gorelenkov, NN Heidbrink, WW Kramer, GJ Makowski, MA McKee, GR Nazikian, R Ruskov, E Turnbull, AD AF Van Zeeland, M. A. Austin, M. E. Gorelenkov, N. N. Heidbrink, W. W. Kramer, G. J. Makowski, M. A. McKee, G. R. Nazikian, R. Ruskov, E. Turnbull, A. D. TI Coupling of global toroidal Alfven eigenmodes and reversed shear Alfven eigenmodes in DIII-D SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY OCT 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID BEAM IONS; PLASMAS; TOKAMAK; INSTABILITIES; STABILITY; PROFILE; DRIVEN; JT-60U AB Reversed shear Alfven eigenmodes (RSAEs) are typically thought of as being localized near the minima in the magnetic safety factor profile, however, their spatial coupling to global toroidal Alfven eigenmodes (TAEs) has been observed in DIII-D discharges. For a decreasing minimum magnetic safety factor, the RSAE frequency chirps up through that of stable and unstable TAEs. Coupling creates a small gap at the frequency degeneracy point forming two distinct global modes. The core-localized RSAE mode structure changes and becomes temporarily global. Similarly, near the mode frequency crossing point, the global TAE extends deeper into the plasma core. The frequency splitting and spatial structure of the two modes throughout the various coupling stages, as measured by an array of internal fluctuation diagnostics, are in close agreement with linear ideal MHD calculations using the NOVA code. The implications of this coupling for eigenmode stability is also investigated and marked changes are noted throughout the coupling process. (C) 2007 American Institute of Physics. C1 Gen Atom Co, San Diego, CA 92186 USA. Univ Texas, Fus Res Ctr, Austin, TX 78712 USA. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. Univ Calif Irvine, Irvine, CA 92697 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Wisconsin, Madison, WI 53706 USA. Univ Calif Irvine, Irvine, CA 92697 USA. RP Van Zeeland, MA (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. NR 33 TC 26 Z9 26 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 056102 DI 10.1063/1.2436489 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900090 ER PT J AU Vesey, RA Herrmann, MC Lemke, RW Desjarlais, MP Cuneo, ME Stygar, WA Bennett, GR Campbell, RB Christenson, PJ Mehlhorn, TA Porter, JL Slutz, SA AF Vesey, R. A. Herrmann, M. C. Lemke, R. W. Desjarlais, M. P. Cuneo, M. E. Stygar, W. A. Bennett, G. R. Campbell, R. B. Christenson, P. J. Mehlhorn, T. A. Porter, J. L. Slutz, S. A. TI Target design for high fusion yield with the double Z-pinch-driven hohlraum SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY JAN 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID NATIONAL IGNITION FACILITY; HEAVY-ION FUSION; CAPSULE IMPLOSIONS; RADIATION SYMMETRY; ENERGETICS; PROGRESS; MODELS; POWER AB A key demonstration on the path to inertial fusion energy is the achievement of high fusion yield (hundreds of MJ) and high target gain. Toward this goal, an indirect-drive high-yield inertial confinement fusion (ICF) target involving two Z-pinch x-ray sources heating a central secondary hohlraum is described by Hammer et al. [Phys. Plasmas 6, 2129 (1999)]. In subsequent research at Sandia National Laboratories, theoretical/computational models have been developed and an extensive series of validation experiments have been performed to study hohlraum energetics, capsule coupling, and capsule implosion symmetry for this system. These models have been used to design a high-yield Z-pinch-driven ICF target that incorporates the latest experience in capsule design, hohlraum symmetry control, and x-ray production by Z pinches. An x-ray energy output of 9 MJ per pinch, suitably pulse-shaped, is sufficient for this concept to drive 0.3-0.5 GJ capsules. For the first time, integrated two-dimensional (2D) hohlraum/capsule radiation-hydrodynamics simulations have demonstrated adequate hohlraum coupling, time-dependent radiation symmetry control, and the successful implosion, ignition, and burn of a high-yield capsule in the double Z-pinch hohlraum. An important new feature of this target design is mode-selective symmetry control: the use of burn-through shields offset from the capsule that selectively tune certain low-order asymmetry modes (P-2,P-4) without significantly perturbing higher-order modes and without a significant energy penalty. This paper will describe the capsule and hohlraum design that have produced 0.4-0.5 GJ yields in 2D simulations, provide a preliminary estimate of the Z-pinch load and accelerator requirements necessary to drive the system, and suggest future directions for target design work. (C) 2007 American Institute of Physics. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Vesey, RA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 62 TC 49 Z9 55 U1 3 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 056302 DI 10.1063/1.2472364 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900110 ER PT J AU Yamada, M AF Yamada, Masaaki TI Progress in understanding magnetic reconnection in laboratory and space astrophysical plasmas SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY JAN 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID HYBRID DRIFT INSTABILITY; CURRENT SHEET; SOLAR CORONA; PARTICLE SIMULATION; ACTIVE REGIONS; FIELD; TOKAMAK; FLARE; ACCELERATION; MAGNETOPAUSE AB This paper reviews the progress in understanding the fundamental physics of magnetic reconnection, focusing on significant results in the past decade from dedicated laboratory experiments, numerical simulations, and space astrophysical observations. Particularly in the area of local reconnection physics, many important findings have been made with respect to two-fluid dynamics, the profile of the neutral sheet, the effects of guide field, and scaling laws with respect to collisionality. Notable findings have been made on global reconnection dynamics through detailed documentation of magnetic self-organization phenomena in fusion plasmas as well as in solar flares. After a brief review of the well-known early work, we will discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. Especially, the recent data on local reconnection physics from the Magnetic Reconnection Experiment device [M. Yamada et al., Phys. Plasmas 13, 052119 (2006)] are used to compare experimental and numerical results. (C) 2007 American Institute of Physics. C1 Princeton Univ, Princeton Plasma Phys Lab, Ctr Magnet Selforg Lab & Astrophys Plasmas, Princeton, NJ 08543 USA. RP Yamada, M (reprint author), Princeton Univ, Princeton Plasma Phys Lab, Ctr Magnet Selforg Lab & Astrophys Plasmas, POB 451, Princeton, NJ 08543 USA. RI Yamada, Masaaki/D-7824-2015 OI Yamada, Masaaki/0000-0003-4996-1649 NR 86 TC 69 Z9 69 U1 2 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 058102 DI 10.1063/1.2740595 PG 16 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900147 ER PT J AU Yin, L Albright, BJ Hegelich, BM Bowers, KJ Flippo, KA Kwan, TJT Fernandez, JC AF Yin, L. Albright, B. J. Hegelich, B. M. Bowers, K. J. Flippo, K. A. Kwan, T. J. T. Fernandez, J. C. TI Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 48th Annual Meeting of the Division of Plasma Physics of the APS CY JAN 30-NOV 03, 2006 CL Philadelphia, PA SP APS, Div Plasma Phys ID ENERGETIC PROTON GENERATION; SOLID DENSITY TARGETS; HIGH-INTENSITY LASER; SHORT-PULSE LASER; FAST IGNITION; BEAMS; ABSORPTION; DRIVEN AB A new laser-driven ion acceleration mechanism using ultrathin targets has been identified from particle-in-cell simulations. After a brief period of target normal sheath acceleration (TNSA) [S. P. Hatchett et al., Phys. Plasmas 7, 2076 (2000)], two distinct stages follow: first, a period of enhanced TNSA during which the cold electron background converts entirely to hot electrons, and second, the "laser breakout afterburner" (BOA) when the laser penetrates to the rear of the target where a localized longitudinal electric field is generated with the location of the peak field co-moving with the ions. During this process, a relativistic electron beam is produced by the ponderomotive drive of the laser. This beam is unstable to a relativistic Buneman instability, which rapidly converts the electron energy into ion energy. This mechanism accelerates ions to much higher energies using laser intensities comparable to earlier TNSA experiments. At a laser intensity of 10(21) W/cm(2), the carbon ions accelerate as a quasimonoenergetic bunch to 100 s of MeV in the early stages of the BOA with conversion efficiency of order a few percent. Both are an order of magnitude higher than those realized from TNSA in recent experiments [Hegelich et al., Nature 441, 439 (2006)]. The laser-plasma interaction then evolves to produce a quasithermal energy distribution with maximum energy of -2 GeV. (C) 2007 American Institute of Physics. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Yin, L (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM lyin@lanl.gov RI Fernandez, Juan/H-3268-2011; Flippo, Kirk/C-6872-2009; OI Fernandez, Juan/0000-0002-1438-1815; Flippo, Kirk/0000-0002-4752-5141; Albright, Brian/0000-0002-7789-6525; Yin, Lin/0000-0002-8978-5320 NR 38 TC 200 Z9 201 U1 5 U2 42 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2007 VL 14 IS 5 AR 056706 DI 10.1063/1.2436857 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 173SN UT WOS:000246892900137 ER PT J AU Goldhaber, M AF Goldhaber, Maurice TI A bet, little boy, and spontaneous fission SO PHYSICS TODAY LA English DT Letter C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Goldhaber, M (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM goldhaber@bnl.gov NR 1 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD MAY PY 2007 VL 60 IS 5 BP 12 EP + DI 10.1063/1.2743105 PG 2 WC Physics, Multidisciplinary SC Physics GA 165TO UT WOS:000246328900006 ER PT J AU Jaros, J Nagamiya, S Steiner, H AF Jaros, John Nagamiya, Shoji Steiner, Herbert TI A bet, little boy, and spontaneous fission - Jaros, Nagamiya, and Steiner reply SO PHYSICS TODAY LA English DT Letter C1 SLAC, Menlo Pk, CA USA. Natl Lab High Energy Phys, KEK, Tsukuba, Ibaraki 305, Japan. Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Jaros, J (reprint author), SLAC, Menlo Pk, CA USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD MAY PY 2007 VL 60 IS 5 BP 14 EP 14 PG 1 WC Physics, Multidisciplinary SC Physics GA 165TO UT WOS:000246328900008 ER PT J AU Crease, RP AF Crease, Robert P. TI Critical point tale of two anniversaries SO PHYSICS WORLD LA English DT Editorial Material C1 SUNY Stony Brook, Dept Philosophy, Stony Brook, NY USA. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD MAY PY 2007 VL 20 IS 5 BP 18 EP 18 PG 1 WC Physics, Multidisciplinary SC Physics GA 166ZU UT WOS:000246421000019 ER PT J AU Kolesnichenko, YI Lutsenko, VV Marchenko, VS Weller, A White, RB Yakovenko, YV Yamazaki, K AF Kolesnichenko, Ya I. Lutsenko, V. V. Marchenko, V. S. Weller, A. White, R. B. Yakovenko, Yu V. Yamazaki, K. TI Magnetohydrodynamic activity and energetic ions in fusion plasmas SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 13th International Congress on Plasma Physics CY MAY 22-26, 2006 CL Kiev, UKRAINE SP ICPP, Int Advisory Comm, Natl Acad Sci Ukraine, Bogolyubov Inst Theoret Phys ID LOW-SHEAR TOKAMAKS; INTERNAL KINK; STELLARATORS; INSTABILITIES; STABILIZATION; EIGENMODES; STABILITY AB Selected issues of mutual influence of the energetic ions and collective phenomena in toroidal plasmas are considered. This includes peculiarities of energetic-ion-driven Alfven instabilities in stellarators, fishbone instability and magnetohydrodynamic activity during tangential neutral beam injection in tokamaks and spherical tori with the shearless core. C1 Inst Nucl Res, UA-03680 Kiev, Ukraine. Max Planck Inst Plasma Phys, D-17489 Greifswald, Germany. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. Nagoya Univ, Chikusa Ku, Nagoya, Aichi 4648603, Japan. RP Kolesnichenko, YI (reprint author), Inst Nucl Res, Prospect Nauky 47, UA-03680 Kiev, Ukraine. RI White, Roscoe/D-1773-2013; OI White, Roscoe/0000-0002-4239-2685; Yakovenko, Yuriy/0000-0002-3499-5275 NR 21 TC 3 Z9 3 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD MAY PY 2007 VL 49 IS 5A SI SI BP A159 EP A166 DI 10.1088/0741-3335/49/5A/S13 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 169KP UT WOS:000246591400014 ER PT J AU Barnat, EV Miller, PA Hebner, GA Paterson, AM Panagopoulos, T Hammond, E Holland, J AF Barnat, E. V. Miller, P. A. Hebner, G. A. Paterson, A. M. Panagopoulos, T. Hammond, E. Holland, J. TI Electric fields in the sheath formed in a 300 mm, dual frequency capacitive argon discharge SO PLASMA SOURCES SCIENCE & TECHNOLOGY LA English DT Article ID RF SHEATH; MODEL AB The spatial structure and temporal evolution of the electric fields in a sheath formed in a dual frequency, 300 mm capacitive argon discharge are measured as functions of relative mixing between a low frequency current and a high frequency current. It is found that the overall structure of the sheath (potential across the sheath and the thickness of the sheath) are dominated by the lower frequency component while (smaller) oscillations in these quantities are dictated by the higher frequency component. Comparisons of the measured spatial and temporal profiles are made for Lieberman's and Robiche et al sheath model and with a particle in a cell calculation. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Appl Mat Inc, Sunnyvale, CA 94086 USA. RP Barnat, EV (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM evbarna@sandia.gov NR 18 TC 13 Z9 13 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0963-0252 J9 PLASMA SOURCES SCI T JI Plasma Sources Sci. Technol. PD MAY PY 2007 VL 16 IS 2 BP 330 EP 336 DI 10.1088/0963-0252/16/2/016 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 168WZ UT WOS:000246556000016 ER PT J AU Kerfeld, CA Simons, RW AF Kerfeld, Cheryl A. Simons, Robert W. TI The undergraduate genomics research initiative SO PLOS BIOLOGY LA English DT Editorial Material ID TOOL C1 Univ Calif Los Angeles, Life Sci Core, Mol Biol Inst, Los Angeles, CA 90024 USA. Univ Calif Los Angeles, UCLA DOE, Inst Genom & Proteom, Los Angeles, CA 90024 USA. Univ Calif Los Angeles, Dept Microbiol Immunol & Mol Genet, Los Angeles, CA 90024 USA. EM ckerfeld@lbl.gov NR 16 TC 13 Z9 13 U1 0 U2 0 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1544-9173 J9 PLOS BIOL JI PLoS. Biol. PD MAY PY 2007 VL 5 IS 5 BP 980 EP 983 AR e141 DI 10.1371/journal.pbio.0050141 PG 4 WC Biochemistry & Molecular Biology; Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics GA 171EC UT WOS:000246716700004 PM 17503966 ER PT J AU Palenik, B Grimwood, J Aerts, A Rouze, P Salamov, A Putnam, N Dupont, C Jorgensen, R Derelle, E Rombauts, S Zhou, KM Otillar, R Merchant, SS Podell, S Gaasterland, T Napoli, C Gendler, K Manuell, A Tai, V Vallon, O Piganeau, G Jancek, S Heijde, M Jabbari, K Bowler, C Lohr, M Robbens, S Werner, G Dubchak, I Pazour, GJ Ren, QH Paulsen, I Delwiche, C Schmutz, J Rokhsar, D Van de Peer, Y Moreau, H Grigoriev, IV AF Palenik, Brian Grimwood, Jane Aerts, Andrea Rouze, Pierre Salamov, Asaf Putnam, Nicholas Dupont, Chris Jorgensen, Richard Derelle, Evelyne Rombauts, Stephane Zhou, Kemin Otillar, Robert Merchant, Sabeeha S. Podell, Sheila Gaasterland, Terry Napoli, Carolyn Gendler, Karla Manuell, Andrea Tai, Vera Vallon, Olivier Piganeau, Gwenael Jancek, Severine Heijde, Marc Jabbari, Kamel Bowler, Chris Lohr, Martin Robbens, Steven Werner, Gregory Dubchak, Inna Pazour, Gregory J. Ren, Qinghu Paulsen, Ian Delwiche, Chuck Schmutz, Jeremy Rokhsar, Daniel Van de Peer, Yves Moreau, Herve Grigoriev, Igor V. TI The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE green algae; picoeukaryote; genome evolution; selenium; synteny ID CYTOCHROME-C BIOGENESIS; CHLAMYDOMONAS-REINHARDTII; MOLECULAR-MECHANISMS; MARINE; SELENOCYSTEINE; DIVERSITY; EVOLUTION; SYSTEM; TOOL; DNA AB The smallest known eukaryotes, at approximate to 1-mu m diameter, are ostreococcus tauri and related species of marine phytoplankton. The genome of Ostreococcus lucimarinus has been completed and compared with that of O. tauri. This comparison reveals surprising differences across orthologous chromosomes in the two species from highly syntenic chromosomes in most cases to chromosomes with almost no similarity. Species divergence in these phytoplankton is occurring through multiple mechanisms acting differently on different chromosomes and likely including acquisition of new genes through horizontal gene transfer. We speculate that this latter process may be involved in altering the cell-surface characteristics of each species. In addition, the genome of O. lucimarinus provides insights into the unique metal metabolism of these organisms, which are predicted to have a large number of selenocysteine-containing proteins. Selenoenzymes are more catalytically active than similar enzymes lacking selenium, and thus the cell may require less of that protein. As reported here, selenoenzymes, novel fusion proteins, and loss of some major protein families including ones associated with chromatin are likely important adaptations for achieving a small cell size. C1 Univ Calif San Diego, Scripps Inst Oceanog, Scripps Genome Ctr, La Jolla, CA 92093 USA. Stanford Univ, Sch Med, Joint Genome Inst, Palo Alto, CA 94304 USA. Stanford Univ, Sch Med, Stanford Human Genome Ctr, Palo Alto, CA 94304 USA. US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. Univ Ghent, Lab Associe Inst Natl Rech Agron France, B-9052 Ghent, Belgium. Univ Arizona, Dept Plant Sci, Tucson, AZ 85721 USA. Univ Paris 06, CNRS, Observ Oceanol, Lab Arago,UMR 7628, F-66651 Banyuls sur Mer, France. Univ Ghent VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium. Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. Scripps Res Inst, Dept Cell Biol, La Jolla, CA 92037 USA. Univ Paris 06, CNRS, Inst Biol Physicochim, UMR 7141, F-75005 Paris, France. Ecole Normale Super, CNRS, Dept Biol, F-75230 Paris 05, France. Univ Mainz, Inst Allgemeine Bot, D-55099 Mainz, Germany. Univ Massachusetts, Sch Med, Program Mol Med, Worcester, MA 01605 USA. Inst Genom Res, Rockville, MD 20850 USA. Univ Maryland, College Pk, MD 20742 USA. RP Palenik, B (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, Scripps Genome Ctr, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM bpalenik@ucsd.edu; ivgrigoriev@lbl.gov RI Putnam, Nicholas/B-9968-2008; Lohr, Martin/A-1214-2009; Van de Peer, Yves/D-4388-2009; Piganeau, Gwenael/C-7600-2011; Paulsen, Ian/K-3832-2012; Schmutz, Jeremy/N-3173-2013; Rombauts, Stephane/D-7640-2014; Heijde, Marc/O-8958-2014; Delwiche, Charles/C-6549-2008 OI Pazour, Gregory/0000-0002-6285-8796; Putnam, Nicholas/0000-0002-1315-782X; Van de Peer, Yves/0000-0003-4327-3730; Piganeau, Gwenael/0000-0002-9992-4187; Paulsen, Ian/0000-0001-9015-9418; Schmutz, Jeremy/0000-0001-8062-9172; Rombauts, Stephane/0000-0002-3985-4981; Delwiche, Charles/0000-0001-7854-8584 NR 52 TC 327 Z9 465 U1 6 U2 66 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAY 1 PY 2007 VL 104 IS 18 BP 7705 EP 7710 DI 10.1073/pnas.0611046104 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 164MY UT WOS:000246239400072 PM 17460045 ER PT J AU Lykidis, A AF Lykidis, Athanasios TI Comparative genomics and evolution of eukaryotic phospholipid biosynthesis SO PROGRESS IN LIPID RESEARCH LA English DT Review DE phospholipid; genomics; evolution ID CDP-DIACYLGLYCEROL-SYNTHASE; CTP-PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE; MEMBRANE-BOUND PHOSPHATASES; HUMAN CARDIOLIPIN SYNTHASE; PHOSPHATIDYLETHANOLAMINE N-METHYLTRANSFERASE; ENCODING PHOSPHATIDYLSERINE SYNTHASE; INOSITOL PHOSPHORYLCERAMIDE SYNTHASE; YEAST SACCHAROMYCES-CEREVISIAE; LIPID-ACTIVATED CTP; ESCHERICHIA-COLI AB Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymes and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase. (C) 2007 Elsevier Ltd. All rights reserved. C1 DOE Joint Genome Inst, Genome Biol Program, Walnut Creek, CA 94598 USA. RP Lykidis, A (reprint author), DOE Joint Genome Inst, Genome Biol Program, 2800 Mitchell Dr, Walnut Creek, CA 94598 USA. EM alykidis@lbl.gov NR 169 TC 36 Z9 39 U1 1 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0163-7827 J9 PROG LIPID RES JI Prog. Lipid Res. PD MAY-JUL PY 2007 VL 46 IS 3-4 BP 171 EP 199 DI 10.1016/j.plipres.2007.03.003 PG 29 WC Biochemistry & Molecular Biology; Nutrition & Dietetics SC Biochemistry & Molecular Biology; Nutrition & Dietetics GA 195TG UT WOS:000248434200002 PM 17512056 ER PT J AU Owen, LA Bright, J Finkel, RC Jaiswal, MK Kaufman, DS Mahan, S Radtke, U Schneider, JS Sharp, W Singhvi, AK Warren, CN AF Owen, Lewis A. Bright, Jordon Finkel, Robert C. Jaiswal, Manoi K. Kaufman, Darrell S. Mahan, Shannon Radtke, Ulrich Schneider, Joan S. Sharp, Warren Singhvi, Ashok K. Warren, Claude N. TI Numerical dating of a Late Quaternary spit-shoreline complex at the northern end of Silver Lake playa, Mojave Desert, California: A comparison of the applicability of radiocarbon, luminescence, terrestrial cosmogenic nuclide, electron spin resonance, U-series and amino acid racemization methods SO QUATERNARY INTERNATIONAL LA English DT Article; Proceedings Paper CT Conference on Dating Quaternary Sediments and Landforms in Drylands CY MAR, 2005 CL Zzyzx, CA SP INQUA Dryland Dating Sub Commiss ID FELDSPAR COARSE GRAINS; UNITED-STATES; SINGLE-ALIQUOT; RIVER-BASIN; AGE; QUARTZ; TL; CARBONATES; SEDIMENTS; EMISSION AB A Late Quaternary spit-shoreline complex on the northern shore of Pleistocene Lake Mojave of southeastern California, USA was studied with the goal of comparing accelerator mass spectrometry (AMS) radiocarbon, luminescence, electron spin resonance (ESR), terrestrial cosmogenic radionuclide (TCN) surface exposure, amino acid racemization (AAR) and U-series dating methods. The pattern of ages obtained by the different methods illustrates the complexity of processes acting in the lakeshore environment and highlights the utility of a multi-method approach. TCN surface exposure ages (mostly similar to 20-30ka) record the initial erosion of shoreline benches, whereas radiocarbon ages on shells (determined in this and previous studies) within the spit, supported by AAR data, record its construction at fluctuating lake levels from similar to 16 to 10 ka. Luminescence ages on spit sediment (similar to 6-7ka) and ESR ages on spit shells (similar to 4 ka) are anomalously young relative to radiocarbon ages of shells within the same deposits. The significance of the surprisingly young luminescence ages is not clear. The younger ESR ages could be a consequence of post-mortem enrichment of U in the shells. High concentrations of detrital thorium in tufa coating spit gravels inhibited the use of single-sample U-series dating. Detailed comparisons such as this provide one of the few means of assessing the accuracy of Quaternary dating techniques. More such comparisons are needed. (C) 2007 Elsevier Ltd and INQUA. All rights reserved. C1 Univ Cincinnati, Dept Geol, Cincinnati, OH 45221 USA. No Arizona Univ, Dept Geol, Flagstaff, AZ 86011 USA. Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. Phys Res Lab, Planetary & Geosci Div, Ahmadabad 380009, Gujarat, India. US Geol Survey, Denver, CO 80225 USA. Univ Cologne, Dept Geog, D-50923 Cologne, Germany. Univ Calif Riverside, Dept Anthropol, Riverside, CA 92521 USA. Berkeley Geochronol Ctr, Berkeley, CA 94709 USA. Univ Nevada, Dept Anthropol & Eth Studies, Las Vegas, NV 89154 USA. RP Owen, LA (reprint author), Univ Cincinnati, Dept Geol, Cincinnati, OH 45221 USA. EM lewis.owen@uc.edu RI Kaufman, Darrell/A-2471-2008 OI Kaufman, Darrell/0000-0002-7572-1414 NR 63 TC 26 Z9 29 U1 1 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1040-6182 J9 QUATERN INT JI Quat. Int. PD MAY PY 2007 VL 166 BP 87 EP 110 DI 10.1016/j.quaint.2007.01.001 PG 24 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 177QA UT WOS:000247166400009 ER PT J AU Mowery, DM Assink, RA Derzon, DK Klamo, SB Bernstein, R Clough, RL AF Mowery, Daniel M. Assink, Roger A. Derzon, Dora K. Klamo, Sara B. Bernstein, Robert Clough, Roger L. TI Radiation oxidation of polypropylene: A solid-state C-13 NMR study using selective isotopic labeling SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article ID GAMMA-IRRADIATION; POSTIRRADIATION OXIDATION; ISOTACTIC POLYPROPYLENE; CROSS-LINKING; END-GROUPS; DEGRADATION; POLYETHYLENE; POLYMERS AB Polypropylene samples, in which the three different carbon atoms along the chain were selectively labeled with carbon-13, were subjected to radiation under inert and air atmospheres, and to post-irradiation exposure in air at various temperatures. By using solid-state C-13 NMR measurements at room temperature, we have been able to identify and quantify the oxidation products. The isotopic labeling provides insight into chemical reaction mechanisms, since oxidation products can be traced back to their positions of origin on the macromolecule. The major products include peroxides and alcohols, both formed at tertiary carbon sites along the chain. Other products include methyl ketones, acids, esters, peresters, and hemiketals formed from reaction at the tertiary carbon, together with in-chain ketones and esters from reaction at the secondary chain carbon. No evidence is found of products arising from reactions at the methyl side chain. Significant temperature-dependent differences are apparent; for example much higher yields of chain-end methyl ketones, which are the indicator product of chain scission, are generated for both elevated temperature irradiation and for post-irradiation treatment at elevated temperatures. Time-dependent plots of yields of the various oxidation products have been obtained under a wide range of conditions, including the post-irradiation oxidation of a sample at room temperature in air that has been monitored for 2 years. Radiation-oxidation products of polypropylene are contrasted to products measured for C-13-labeled polyethylene in an earlier investigation: the peroxides formed in irradiated polypropylene are remarkably longer lived, the non-peroxidic products are significantly different, and the overall ratios of oxidation products in polypropylene change relatively little as a function of the extent of oxidation. (C) 2006 Elsevier Ltd. All rights reserved. C1 Sandia Natl Labs, Organ Mat Dept, Albuquerque, NM 87185 USA. CALTECH, Arnold & Mabel Beckman Labs Chem Synth, Pasadena, CA 91125 USA. RP Clough, RL (reprint author), Sandia Natl Labs, Organ Mat Dept, POB 5800, Albuquerque, NM 87185 USA. EM rlcloug@sandia.gov RI Bernstein, Robert/F-8396-2013 NR 31 TC 20 Z9 21 U1 0 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD MAY PY 2007 VL 76 IS 5 BP 864 EP 878 DI 10.1016/j.radphyschem.2006.06.007 PG 15 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 154JP UT WOS:000245503300017 ER PT J AU McClelland, JF AF McClelland, John F. TI Perspective: Photoacoustic spectroscopy: "Linearization and signal recovery in photoacoustic infrared spectroscopy" [Rev. Sci. Instrum. 78, 051301 (2007)] SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Editorial Material C1 Iowa State Univ, Ames Lab, USDOE, Ames, IA 50011 USA. RP McClelland, JF (reprint author), Iowa State Univ, Ames Lab, USDOE, Ames, IA 50011 USA. NR 6 TC 1 Z9 1 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAY PY 2007 VL 78 IS 5 AR 050901 DI 10.1063/1.2736265 PG 2 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 173SP UT WOS:000246893100001 PM 17552804 ER PT J AU Mezonlin, ED Roberson, S Raynor, C Appartaim, R Johnson, JA Afanasyev, VI Kozlovsky, SS Moller, JM Hill, DN Hooper, EB McLean, HS Wood, RD AF Mezonlin, E. D. Roberson, S. Raynor, C. Appartaim, R. Johnson, J. A., III Afanasyev, V. I. Kozlovsky, S. S. Moller, J. M. Hill, D. N. Hooper, E. B. McLean, H. S. Wood, R. D. TI Neutral particle analyzer measurements on the SSPX spheromak SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB A neutral particle analyzer is used to measure the time-resolved energy spectrum of neutral hydrogen leaving a spheromak plasma. A gas cell filled with 10-50 mTorr of helium is used to strip electrons from incoming neutral hydrogen, lowering the minimum detectable energy well below that obtained with thin foils. Effective neutral particle temperature is calculated by fitting a Maxwellian energy distribution to the measured energy spectrum above and below similar to 300 eV. A computational model with approximated profiles of plasma density and neutral density is used with the measured neutral hydrogen flux to estimate the ion temperature. Measurement of the power flux due to neutral hydrogen emitted at the measurement location is extended to the whole plasma surface to estimate the total charge exchange power loss from the plasma. The initial results indicate that the charge exchange power loss represents only 2% of the total input gun power during the sustainment phase of the discharge. (C) 2007 American Institute of Physics. C1 Florida A&M Univ, Tallahassee, FL 32310 USA. AF Ioffe Phys Tech Inst, St Petersburg, Russia. St Petersburg State Polytech Univ, St Petersburg, Russia. Lawrence Livermore Natl Lab, Livermore, CA USA. RP Mezonlin, ED (reprint author), Florida A&M Univ, Tallahassee, FL 32310 USA. RI Afanasyev, Valery/C-7657-2014 NR 8 TC 10 Z9 10 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAY PY 2007 VL 78 IS 5 AR 053504 DI 10.1063/1.2737756 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 173SP UT WOS:000246893100014 PM 17552817 ER PT J AU Olfert, JS Checkel, MD Koch, CR AF Olfert, J. S. Checkel, M. D. Koch, C. R. TI Acoustic method for measuring the sound speed of gases over small path lengths SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ULTRASONIC TRANSDUCERS; PRECISION; MIXTURES; ANALYZER; AIR AB Acoustic "phase shift" methods have been used in the past to accurately measure the sound speed of gases. In this work, a phase shift method for measuring the sound speed of gases over small path lengths is presented. We have called this method the discrete acoustic wave and phase detection (DAWPD) method. Experimental results show that the DAWPD method gives accurate (+/- 3.2 m/s) and predictable measurements that closely match theory. The sources of uncertainty in the DAWPD method are examined and it is found that ultrasonic reflections and changes in the frequency ratio of the transducers (the ratio of driving frequency to resonant frequency) can be major sources of error. Experimentally, it is shown how these sources of uncertainty can be minimized. (C) 2007 American Institute of Physics. C1 Univ Alberta, Dept Mech Engn, Edmonton, AB T6G 2G8, Canada. RP Olfert, JS (reprint author), Brookhaven Natl Lab, Dept Atmospher Sci, Upton, NY 11973 USA. EM jolfert@bnl.gov OI Koch, Charles/0000-0002-6094-5933 NR 19 TC 1 Z9 1 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAY PY 2007 VL 78 IS 5 AR 054901 DI 10.1063/1.2736406 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 173SP UT WOS:000246893100048 PM 17552851 ER PT J AU Pinnaduwage, LA Gehl, AC Allman, SL Johansson, A Boisen, A AF Pinnaduwage, Lal A. Gehl, Anthony C. Allman, Steve L. Johansson, Alicia Boisen, Anja TI Miniature sensor suitable for electronic nose applications SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID DIMETHYL METHYLPHOSPHONATE; MICROCANTILEVERS; SYSTEM AB A major research effort has been devoted over the years for the development of chemical sensors for the detection of chemical and explosive vapors. However, the deployment of such chemical sensors will require the use of multiple sensors (probably tens of sensors) in a sensor package to achieve selective detection. In order to keep the overall detector unit small, miniature sensors with sufficient sensitivity of detection will be needed. We report sensitive detection of dimethyl methylphosphonate (DMMP), a stimulant for the nerve agents, using a miniature sensor unit based on piezoresistive microcantilevers. The sensor can detect parts-per-trillion concentrations of DMMP within 10 s exposure times. The small size of the sensor makes it ideally suited for electronic nose applications. (C) 2007 American Institute of Physics. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. Tech Univ Denmark, Dept Micro & Nanotechnol, DK-2800 Lyngby, Denmark. RP Pinnaduwage, LA (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. RI Allman, Steve/A-9121-2011; Boisen, Anja/F-9442-2011; Johansson, Alicia/H-5749-2012; OI Allman, Steve/0000-0001-6538-7048; Boisen, Anja/0000-0002-9918-6567; Gehl, Anthony/0000-0002-4841-403X NR 16 TC 20 Z9 20 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAY PY 2007 VL 78 IS 5 AR 055101 DI 10.1063/1.2735841 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 173SP UT WOS:000246893100051 PM 17552854 ER PT J AU Strachan, JP Chembrolu, V Yu, XW Tyliszczak, T Acremann, Y AF Strachan, J. P. Chembrolu, V. Yu, X. W. Tyliszczak, T. Acremann, Y. TI Synchronized and configurable source of electrical pulses for x-ray pump-probe experiments SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID MAGNETIZATION DYNAMICS; TRANSITION AB A method is described for the generation of software tunable patterns of nanosecond electrical pulses. The bipolar, high repetition rate (up to 250 MHz), fast rise time (<30 ps), square pulses are suitable for applications such as the excitation sequence in dynamic pump-probe experiments. Synchronization with the time structure of a synchrotron facility is possible as well as fine control of the relative delay in steps of 10 ps. The pulse generator described here is used to excite magnetic nanostructures with current pulses. Having an excitation system which can match the high repetition rate of a synchrotron allows for utilization of the full x-ray flux and is needed in experiments which require a large photon flux. The fast rise times allow for picosecond time resolution in pump-probe experiments. All pulse pattern parameters are configurable by software. (C) 2007 American Institute of Physics. C1 Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. Adv Light Source, Berkeley, CA 94720 USA. Stanford Linear Accelerator Ctr, PULSE Ctr, Menlo Pk, CA 94025 USA. RP Strachan, JP (reprint author), Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. NR 13 TC 5 Z9 5 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAY PY 2007 VL 78 IS 5 AR 054703 DI 10.1063/1.2735566 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 173SP UT WOS:000246893100045 PM 17552848 ER PT J AU Teixeira, FS Mansano, RD Salvadori, MC Cattani, M Brown, IG AF Teixeira, F. S. Mansano, R. D. Salvadori, M. C. Cattani, M. Brown, I. G. TI Atomic force microscope nanolithography of polymethylmethacrylate polymer SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID DIP-PEN NANOLITHOGRAPHY; C-60 MOLECULES; LITHOGRAPHY; SCALE; NANOSTRUCTURES; FABRICATION; SILICON; MANIPULATION; SURFACES; TIP AB We describe a nanolithography process for a polymethylmethacrylate (PMMA) surface using scanning contact atomic force microscopy. Parallel furrows were scribed with a pyramidal silicon tip using the same scan mechanism as used to image samples. The PMMA was first electron beam irradiated using a scanning electron microscope and developed. The topography formed is reproducible and predictable. Material from the region where the tip scribes is moved to nearby regions, and aligned, elongated PMMA fragments are seen to decorate the valleys between furrows. (C) 2007 American Institute of Physics. C1 Univ Sao Paulo, Polytech Sch, Integrated Syst Lab, BR-05508900 Sao Paulo, Brazil. Univ Sao Paulo, Inst Phys, BR-05315970 Sao Paulo, Brazil. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Salvadori, MC (reprint author), Univ Sao Paulo, Polytech Sch, Integrated Syst Lab, Avenida Prof Luciano Gualberto Travessa R-158, BR-05508900 Sao Paulo, Brazil. EM mcsalvador@if.usp.br RI Teixeira, Fernanda/A-9395-2013; Cattani, Mauro/N-9749-2013; Salvadori, Maria Cecilia/A-9379-2013 NR 34 TC 5 Z9 5 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAY PY 2007 VL 78 IS 5 AR 053702 DI 10.1063/1.2736311 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 173SP UT WOS:000246893100017 PM 17552820 ER PT J AU Leslie, JC Leslie, JC Heard, JT Truong, L AF Leslie, J. C. Leslie, J. C., II Heard, J. T. Truong, L. TI Filament wound composite drill pipe: new capabilities for oil and gas drilling operations SO SAMPE JOURNAL LA English DT Article AB Composite Drill Pipe (CDP) can provide new capabilities for oil and gas drilling operations. CDP is approximately one half the weight of comparable metal drill pipe. The lighter weight drill pipe will provide a capability to substantially increase the depth and lateral reach possible in drilling operations. CDP has much higher fatigue resistance than metallic drill pipe. Taking advantage of this capability, CDP has already been used to reopen "thought to be depleted (watered out) reservoirs" through Short Radius (SR) drilling operations. Wiring can be built into the walls of CDP This provides a capability to simultaneously transmit real time data from the Bottom Hole Assembly (BHA) to the well head and power from the well head down to the BHA. Recognizing these potentials, and the U.S. critical energy requirements, the U.S. Department of Energy, National Energy Technology Laboratory, has funded programs to develop and qualify cost-effective composite drill pipe (Contract No. DE-FC26-99FT40262). The program was started in 1999. To date a six inch diameter CDP is being tested for mechanical properties. This CDP, in 30 foot (9.14 meter) sections, is approximately 1/2 the weight of its steel counterpart. The program is currently proceeding with additional laboratory evaluation of this ER/DW CDP and is beginning a "down well" demonstration of the 'in-the-wall' data and power transmission system. As a spin off from the above effort, development of two and one half inch (6.35 cm) CDP, qualified for short radius (horizontal well) drilling, has been successfully used to re-open "thought to be depleted" oil and gas wells. The initial short radius (SR/CDP) drill pipe was used in radii in the 50 (15.2 m) foot range. Recognizing a need to accomplish an even shorter drilling radius, an ultra short radius (USR/CDP) pipe was designed and is being evaluated for drilling radii as small as 30 feet (9.14m). C1 ACPT Inc, Huntington Beach, CA USA. Natl Energy Technol Lab, Dept Energy, Oregon Town, WV USA. RP Leslie, JC (reprint author), ACPT Inc, Huntington Beach, CA USA. EM jleslie@acpt.com; jleslie@acpt.com NR 5 TC 0 Z9 0 U1 0 U2 4 PU SAMPE PUBLISHERS PI COVINA PA 1161 PARKVIEW DRIVE, COVINA, CA 91722 USA SN 0091-1062 J9 SAMPE J JI Sampe J. PD MAY-JUN PY 2007 VL 43 IS 3 BP 18 EP 25 PG 8 WC Engineering, Multidisciplinary; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 196WT UT WOS:000248514400004 ER PT J AU Jakobsen, B Poulsen, HF Lienert, U Huang, X Pantleon, W AF Jakobsen, B. Poulsen, H. F. Lienert, U. Huang, X. Pantleon, W. TI Investigation of the deformation structure in an aluminium magnesium alloy by high angular resolution three-dimensional X-ray diffraction SO SCRIPTA MATERIALIA LA English DT Article DE X-ray diffraction (XRD); aluminium alloy; AlMg; dislocation structure; plastic deformation ID MICROSTRUCTURAL EVOLUTION; AL-MG; RECOVERY; TENSILE AB The deformation structure in individual grains of an aluminium magnesium alloy deformed up to 10% in tension is characterized with high angular resolution three-dimensional X-ray diffraction. The three-dimensional intensity distribution (in reciprocal space) of all reflections investigated is rather smooth. The absence of individual sharp peaks indicates the absence of a dislocation cell structure, which was confirmed by transmission electron microscopy. Nevertheless, the formation of different orientation components associated with different elastic strains is evident within a grain. (c) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Riso Natl Lab, Mat Res Dept, Ctr Fundamental Res, DK-4000 Roskilde, Denmark. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Jakobsen, B (reprint author), Riso Natl Lab, Mat Res Dept, Ctr Fundamental Res, DK-4000 Roskilde, Denmark. EM bo.jakobsen@risoe.dk RI Poulsen, Henning/A-4131-2012; Pantleon, Wolfgang/L-9657-2014 OI Pantleon, Wolfgang/0000-0001-6418-6260 NR 15 TC 11 Z9 11 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2007 VL 56 IS 9 BP 769 EP 772 DI 10.1016/j.scriptamat.2007.01.022 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 149OW UT WOS:000245157300012 ER PT J AU Chen, P Xiong, ZT Wu, GT Liu, YF Hu, JJ Luo, WF AF Chen, Ping Xiong, Zhitao Wu, Guotao Liu, Yongfeng Hu, Jianjiang Luo, Weifang TI Metal-N-H systems for the hydrogen storage SO SCRIPTA MATERIALIA LA English DT Article DE amides; imides; nitrides; hydrogen storage ID LITHIUM AMIDE; DESORPTION; HYDRIDES; RELEASE; NANOSTRUCTURES; KINETICS; NITRIDE; AMMONIA; IMIDES; LIH AB The hydrogen storage in metal-N-H systems is reviewed. Exemplary systems including Li-N-H, Mg-N-H, Li-Mg-N-H and Li-Al-N-H are highlighted. Analyses and discussions are focused on the thermodynamics and kinetics of the respective systems. (c) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Natl Univ Singapore, Dept Phys, Fac Sci, Singapore 117542, Singapore. Natl Univ Singapore, Dept Chem, Fac Sci, Singapore 117543, Singapore. Sandia Natl Labs, Livermore, CA USA. RP Chen, P (reprint author), Natl Univ Singapore, Dept Phys, Fac Sci, Singapore 117542, Singapore. EM phychenp@nus.edu.sg RI Liu, Yongfeng/C-2989-2017; OI Yang, Shuman/0000-0002-9638-0890 NR 38 TC 61 Z9 62 U1 3 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2007 VL 56 IS 10 BP 817 EP 822 DI 10.1016/j.scriptamat.2007.01.001 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 154FE UT WOS:000245491500005 ER PT J AU Graetz, J Reilly, JJ AF Graetz, Jason Reilly, James J. TI Kinetically stabilized hydrogen storage materials SO SCRIPTA MATERIALIA LA English DT Article DE hydrides; hydrogen storage; hydrogen desorption; differential scanning calorimetry (DSC); aluminum hydride ID 2 SOLVENT ADDUCTS; ALUMINUM-HYDRIDE; THERMAL-DECOMPOSITION; MAGNESIUM ALANATE; SODIUM ALANATES; LIALH4; DEHYDROGENATION; ALH3; TETRAHYDROALUMINATE; POLYMORPHS AB Kinetically stabilized hydrides are characterized by a low reaction enthalpy and a decomposition reaction that is thermodynamically favorable under ambient conditions. The rapid, low temperature hydrogen evolution rates offer much promise for mobile proton exchange membrane fuel cell applications. However, a critical challenge exists to develop new methods to regenerate or recycle the hydride directly from the reactants and hydrogen gas. (c) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Brookhaven Natl Lab, Dept Energy Sci & Technol, Upton, NY 11973 USA. RP Graetz, J (reprint author), Brookhaven Natl Lab, Dept Energy Sci & Technol, Upton, NY 11973 USA. EM graetz@bnl.gov NR 29 TC 35 Z9 36 U1 1 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2007 VL 56 IS 10 BP 835 EP 839 DI 10.1016/j.scriptamat.2007.01.007 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 154FE UT WOS:000245491500008 ER PT J AU Yang, L Wang, XL Liu, CT Fernandez-Baca, JA Fu, CL Richardson, JW Shi, D AF Yang, L. Wang, X. -L. Liu, C. T. Fernandez-Baca, J. A. Fu, C. L. Richardson, J. W. Shi, D. TI Neutron diffraction study of the structure and low-temperature phase transformation in ternary NiAl+M (M = Ni, Fe, Co) alloys SO SCRIPTA MATERIALIA LA English DT Article DE nickel alummides; crystal structure; neutron diffraction; magnetic structure ordering ID THERMOELASTIC MARTENSITIC-TRANSFORMATION; AL ALLOYS; MAGNETISM AB Neutron diffraction was used to study the structure of ternary NiAl + M (M = Ni, Fe, Cc) alloys. The experiment confirmed the predictions by first-principle calculations on site preference by solute atoms. Moreover, a universal structural transformation was observed below 20 K in alloys where Al is partially replaced by M. The extra peaks at low-temperatures do not match those from known martensite phases, but are well indexed by a cubic structure. A possible mechanism for the low-temperature phase is discussed. (c) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Argonne Natl Lab, Argonne, IL 60439 USA. RP Wang, XL (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM wangxl@ornl.gov RI Wang, Xun-Li/C-9636-2010; Fernandez-Baca, Jaime/C-3984-2014 OI Wang, Xun-Li/0000-0003-4060-8777; Fernandez-Baca, Jaime/0000-0001-9080-5096 NR 11 TC 6 Z9 6 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2007 VL 56 IS 10 BP 911 EP 914 DI 10.1016/j.kriptamat.2006.12.043 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 154FE UT WOS:000245491500025 ER PT J AU Alfeeli, B Pickrell, G Garland, MA Wang, AB AF Alfeeli, Bassam Pickrell, Gary Garland, Marc A. Wang, Anbo TI Behavior of random hole optical fibers under gamma ray irradiation and its potential use in radiation sensing applications SO SENSORS LA English DT Article DE optical fiber sensor; microstructure optical fibers; ionizing radiation detection; radiation-induced effects ID PULSED X-RAY; STEADY-STATE EXPOSURES; INDUCED ATTENUATION; RESISTANCE; NEUTRON AB Effects of radiation on sensing and data transmission components are of great interest in many applications including homeland security, nuclear power generation, and military. A new type of microstructured optical fiber (MOF) called the random hole optical fiber (RHOF) has been recently developed. The RHOFs can be made in many different forms by varying the core size and the size and extent of porosity in the cladding region. The fibers used in this study possessed an outer diameter of 110 mu m and a core of approximately 20 mu m. The fiber structure contains thousands of air holes surrounding the core with sizes ranging from less than 100 nm to a few mu m. We present the first study of the behavior of RHOF under gamma irradiation. We also propose, for the first time to our knowledge, an ionizing radiation sensor system based on scintillation light from a scintillator phosphor embedded within a holey optical fiber structure. The RHOF radiation response was compared to normal single mode and multimode commercial fibers (germanium doped core, pure silica cladding) and to those of radiation resistant fibers ( pure silica core with fluorine doped cladding fibers). The comparison was done by measuring radiation-induced absorption (RIA) in all fiber samples at the 1550 nm wavelength window (1545 +/- 25 nm). The study was carried out under a high-intensity gamma ray field from a Co-60 source (with an exposure rate of 4x10(4) rad/hr) at an Oak Ridge National Laboratory gamma ray irradiation facility. Linear behavior, at dose values <10(6) rad, was observed in all fiber samples except in the pure silica core fluorine doped cladding fiber which showed RIA saturation at 0.01 dB. RHOF samples demonstrated low RIA (0.02 and 0.005 dB) compared to standard germanium doped core pure silica cladding (SMF and MMF) fibers. Results also showed the possibility of post-fabrication treatment to improve the radiation resistance of the RHOF fibers. C1 Virginia Polytech Inst & State Univ, Dept Mat Sci & Engn, Blacksburg, VA 24061 USA. Virginia Tech Ctr Photon Technol, Blacksburg, VA 24061 USA. Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Alfeeli, B (reprint author), Virginia Polytech Inst & State Univ, Dept Mat Sci & Engn, Blacksburg, VA 24061 USA. EM alfeeli@vt.edu; pickrell@vt.edu; garlandma@ornl.gov; awang@vt.edu RI Pickrell, Gary/E-9433-2013 NR 28 TC 9 Z9 9 U1 1 U2 5 PU MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL PI BASEL PA MATTHAEUSSTRASSE 11, CH-4057 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD MAY PY 2007 VL 7 IS 5 BP 676 EP 688 DI 10.3390/s7050676 PG 13 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 173WW UT WOS:000246904200003 ER PT J AU Allison, VJ Allison, VJ Yermakov, Z Miller, RM Jastrow, JD Matamala, R AF Allison, Victoria J. Allison, Victoria J. Yermakov, Zhanna Miller, R. Michael Jastrow, Julie D. Matamala, Roser TI Assessing soil microbial community composition across landscapes: Do surface soils reveal patterns? SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID FATTY-ACID PATTERNS; BIOMASS; DEPTH; PROFILES; LIPOPOLYSACCHARIDES; PHOSPHOLIPIDS; SUBSURFACE; GRASSLANDS; MANAGEMENT; VARIABLES AB Soil microbial community composition changes with both position in the landscape and depth in the soil column. Depth patterns may be stronger than landscape patterns, and thus landscape-level patterns determined from surface soils may not be representative of the soil column as a whole. We asked whether patterns determined from, surface soils and the integrated soil column reveal the same landscape-level patterns, predicting that because of the preponderance of biomass in surface soil, biomass-weighted patterns in an integrated soil column will be the same as in the surface soil. We found, that community composition in surface soils and in an integrated soil column revealed the same pattern of change with time, and were very highly positively, correlated. We suggest that in systems where resource inputs, and thus microbial biomass, declines strongly with depth, changes in composition of microbial communities across the landscape can be adequately determined from surface soils. C1 Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Allison, VJ (reprint author), Landcare Res, Private Bag 92170, Auckland 1142, New Zealand. EM allisonv@landcareresearch.co.nz NR 35 TC 13 Z9 13 U1 3 U2 14 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD MAY-JUN PY 2007 VL 71 IS 3 BP 730 EP 734 DI 10.2136/sssaj2006.0301N PG 5 WC Soil Science SC Agriculture GA 169OW UT WOS:000246602500011 ER PT J AU Lobell, DB Ortiz-Monasterio, JI Gurrola, FC Valenzuela, L AF Lobell, David B. Ortiz-Monasterio, J. Ivan Gurrola, Fidencio Cajigas Valenzuela, Lorenzo TI Identification of saline soils with multiyear remote sensing of crop yields SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID SALT TOLERANCE; CONDUCTIVITY AB Soil salinity is an important constraint to agricultural sustainability, but accurate information on its variation across agricultural regions and its impact on regional crop productivity are difficult to obtain. We evaluated the relationships between remotely sensed wheat (Triticum aestivum L.) yields and salinity in an irrigation district in the Colorado River Delta region. The goals of this study were to: (i) document the relative importance of salinity as a constraint to regional wheat production; and (ii) develop techniques to accurately identify saline fields. Estimates of wheat yield from 6 yr of Landsat data agreed well with ground-based records on individual fields (R-2 = 0.65). Salinity measurements on 122 randomly selected fields revealed that average 0- to 60-cm, salinity levels > 4 dS m(-1) reduced wheat yields, but the relative scarcity of such fields resulted in < 1% regional yield loss attributable to salinity. Moreover, low yield was not a reliable indicator of high salinity, because many other factors contributed to yield variability in individual years; however, temporal analysis of yield images derived from remote sensing data showed that a significant fraction of fields exhibited consistently low yields during the 6-yr period. A subsequent survey of 60 additional fields, half of which were consistently low yielding, revealed that this targeted subset had significantly higher salinity at 30- to 60-cm depth than the control group (P = 0.02). These results suggest that consistently low yields are an indicator of high subsurface salinity, and that multiyear yield maps derived from remote sensing therefore hold promise for mapping salinity across agricultural regions. C1 Lawrence Livermore Natl Lab, Energy & Environm Directorate, Livermore, CA 94550 USA. CIMMYT, Int Maize & Wheat Improvement Ctr, Wheat Program, Mexico City 06600, DF, Mexico. Ctr Estudios Super Estado Sonora, San Luis Ri Colorado 83400, Mexico. RP Lobell, DB (reprint author), Lawrence Livermore Natl Lab, Energy & Environm Directorate, Livermore, CA 94550 USA. EM dlobell@llnl.gov NR 21 TC 29 Z9 34 U1 2 U2 18 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD MAY-JUN PY 2007 VL 71 IS 3 BP 777 EP 783 DI 10.2136/sssaj2006.0306 PG 7 WC Soil Science SC Agriculture GA 169OW UT WOS:000246602500017 ER PT J AU He, ZQ Honeycutt, CW Zhang, TQ Pellechia, PJ Caliebe, WA AF He, Zhongqi Honeycutt, C. Wayne Zhang, Tiequan Pellechia, Perry J. Caliebe, Wolfgang A. TI Distinction of metal species of phytate by solid-state spectroscopic techniques SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID AMENDED POULTRY LITTER; P-31 NMR; PHOSPHORUS SPECIATION; XANES SPECTROSCOPY; PHOSPHATES; SOILS; MANURE; SPECTRA; WATER AB Solid-state P-31 nuclear magnetic resonance (NMR) and x-ray absorption near edge structure (XANES) spectroscopies have provided knowledge on metal speciation of inorganic P. No effort has been made, however, to accurately assign speciated metal phytates (inositol hexaphosphoric acid salts) using these advanced techniques. Phytate is a predominant form of organic P in animal manure, soil, and other organic substances as each year 51 million Mg of phytate are formed in crops and fruits globally. Currently, the interactions and fate of phytate in the environment are poorly understood. Here we show the solidstate spectral characteristics of six metal phytates. Both spectra were affected by the metal species of the phytates, as significant differences were observed in the shape and position of spectra among the metal phytates. Reference spectra of these pure metal phytate compounds may help in identifying metal species of phytate in environmental samples by these advanced spectroscopic technologies. C1 USDA ARS, New England Plant Soil & Water Lab, Orono, ME 04469 USA. Agr & Agri Food Canada, Greenhouse & Proc Crops Res Ctr, Harrow, ON N0R 1G0, Canada. Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP He, ZQ (reprint author), USDA ARS, New England Plant Soil & Water Lab, Orono, ME 04469 USA. EM zhongqi.he@ars.usda.gov OI He, Zhongqi/0000-0003-3507-5013 NR 28 TC 17 Z9 18 U1 1 U2 7 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD MAY-JUN PY 2007 VL 71 IS 3 BP 940 EP 943 DI 10.2136/sssaj2006.0175N PG 4 WC Soil Science SC Agriculture GA 169OW UT WOS:000246602500036 ER PT J AU Gannaz, B Chiarizia, R Antonio, MR Hill, C Cote, G AF Gannaz, Benoit Chiarizia, Renato Antonio, Mark R. Hill, Clement Cote, Gerard TI Extraction of lanthanides(III) and Am(III) by mixtures of malonamide and dialkylphosphoric acid SO SOLVENT EXTRACTION AND ION EXCHANGE LA English DT Article DE malonamides; di-n-hexylphosphoric acid; Am(III); Eu(III); extraction; separation ID CHEMICAL SEPARATIONS; ELEMENTS AB N,N'-dimethyl-N,N'-dioctylhexylethoxymalonamide, DMDOHEMA, and di-n-hexylphosphoric acid, HDHP, are the extractants of reference for the French DIAMEX-SANEX process for the separation of trivalent actinide ions from the lantharride ions. In this work, the extraction of Eu3+ and Am3+ by the two extractants, alone or in mixtures, has been investigated under a variety of experimental conditions.The two cations are extracted by HDHP as the M(DHP (.) HDHP)(3) complexes with an Eu/Am separation factor of similar to 10. With DMDOHEMA, Eu3+ and Am3+ are extracted as the M(NO3)(3)(DMDOHEMA)(2) disolvate species with an Am/Eu separation factor of similar to 2. The metal distribution ratios measured with a mixture of the two reagents indicated that almost all lanthanides are extracted equally well. The extraction of Eu3+ and Am3+ by HDHP-DMDOHEMA mixtures exhibits a change of extraction mechanism and a reversal of selectivity taking place at similar to 1 M HNO3 in the aqueous phase. Below this aqueous acidity, HDHP dominates the metal extraction by the mixture, whereas DMDOHEMA is the predominant extractant at higher aqueous acidities. Some measurements indicated apparent modest antagonism between the two extractants in the extraction of Eu3+ and synergism in the extraction of Am3+. These data were interpreted as resulting from the formation in the organic phase of mixed HDHP-DMDOHEMA species containing two HDHP and five DMDOHEMA molecules. C1 Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. CEA Valrho, DEN, VRH, DRCP,SCPS,LCSE, Bagnols Sur Ceze, France. Univ Paris 06, ENSCP, Paris, France. RP Chiarizia, R (reprint author), Argonne Natl Lab, Div Chem, 9700 S Cass Ave, Argonne, IL 60439 USA. EM chiarizia@anl.gov NR 27 TC 42 Z9 42 U1 1 U2 14 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0736-6299 J9 SOLVENT EXTR ION EXC JI Solvent Extr. Ion Exch. PD MAY-JUN PY 2007 VL 25 IS 3 BP 313 EP 337 DI 10.1080/07366290701285512 PG 25 WC Chemistry, Multidisciplinary SC Chemistry GA 169WI UT WOS:000246622400001 ER PT J AU Chiarizia, R Briand, A AF Chiarizia, Renato Briand, Alexandra TI Third phase formation in the extraction of inorganic acids by TBP in n-octane SO SOLVENT EXTRACTION AND ION EXCHANGE LA English DT Article DE TBP; inorganic acids; extraction; third phase formation ID PLUTONIUM 3RD-PHASE-FORMATION; 3RD-PHASE FORMATION; BUTYL PHOSPHATE; DODECANE SYSTEM; NITRIC-ACID; SANS; DILUENT; WATER; SCATTERING; NITRATE AB The extraction of HNO3, HClO4, H2SO4 and H3PO4 by 20% (v/v) TBP (0.73 M) in n-octane was measured under identical conditions up to and beyond the critical point of third phase formation (Limiting Organic Concentration, or LOC condition). The data, together with those obtained previously for HCl, allowed us to establish the following lyotropic series of effectiveness with respect to third phase formation in the extraction of acids by TBP: HClO4 > H2SO4 > HCl > H3PO4 > HNO3. This series correlates with the amount of water present into the organic phase at the point of phase splitting. This result reinforces the validity of the reverse micellar model developed previously for the extraction of metal salts by TBP. The measurements of LOC values as a function of temperature revealed major differences among the acid-TBP systems investigated. For HClO4, the strong increase of the LOC value with increasing temperatures is accompanied by a large favorable entropy change. The opposite is true for HCl, while H2SO4 and H3PO4 represent intermediate cases. Measurements of the LOC values for the extraction of HClO4 by TBP dissolved in a series of diluents confirmed that topological parameters, such as the Connectivity Index, CI, are useful for predicting the critical condition for phase splitting in different diluents. Based on the linear correlation between LOC values for HClO4 and CI values of diluents, the effective Connectivity Index of the French nuclear reprocessing diluent, HTP, a complex mixture of highly branched alkanes, was determined. C1 Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Chiarizia, R (reprint author), Argonne Natl Lab, Div Chem, 9700 S Cass Ave, Argonne, IL 60439 USA. EM chiarizia@anl.gov NR 32 TC 26 Z9 26 U1 3 U2 16 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0736-6299 J9 SOLVENT EXTR ION EXC JI Solvent Extr. Ion Exch. PD MAY-JUN PY 2007 VL 25 IS 3 BP 351 EP 371 DI 10.1080/07366290701285397 PG 21 WC Chemistry, Multidisciplinary SC Chemistry GA 169WI UT WOS:000246622400003 ER PT J AU Harmon, BW Ensor, DD Delmau, LH Moyer, BA AF Harmon, Ben W. Ensor, Dale D. Delmau, Laetitia H. Moyer, Bruce A. TI Extraction of cesium by a calix[4]arene-crown-6 ether bearing a pendant amine group SO SOLVENT EXTRACTION AND ION EXCHANGE LA English DT Article DE 5-aminomethylcalix[4]arene-[bis-4-(2-ethylhexyl)benzo-crown-6]; cesium; solvent extraction; formation constants; pH-switching ID NITRATE EXTRACTION; 1,3-ALTERNATE; SYSTEMS; COMPLEX AB The goal of this work was to evaluate the role of the amino group of 5-aminomethylcalix[4]arene-[bis-4-(2-ethylhexyl)benzo-crown-6] (AMBEHB) in the extraction of cesium from acidic and basic mixtures of sodium nitrate and other concentrated salts. The extraction of cesium from nitrate media was measured as a function of extractant concentration, nitrate concentration, cesium concentration, and pH over the range 1-13. The initial studies showed a moderate decrease in the extraction of cesium in acidic media, which indicated the binding of cesium by the calixarene-crown was weakened by the protonation of the amine group. The results also indicated that a 1:1:1 Cs-ligand-nitrate complex is formed in the organic phase. To further evaluate AMBEHB, the empirical data were mathematically modeled to determine the formation constants of the complexes formed in the organic phase. The resulting formation constants showed that the attachment of the amine group to the calixarene-crown molecule reduced the binding stability for the cesium ion upon contact with an acidic solution. This supports the hypothesis of charge repulsion as the basis for more efficient stripping of cesium via pH-switching. C1 Tennessee Technol Univ, Dept Chem, Cookeville, TN 38505 USA. Oak Ridge Natl Lab, Chem Separat Grp, Div Chem Sci, Oak Ridge, TN USA. RP Ensor, DD (reprint author), Tennessee Technol Univ, Dept Chem, POB 5055, Cookeville, TN 38505 USA. EM densor@tntech.edu RI Moyer, Bruce/L-2744-2016 OI Moyer, Bruce/0000-0001-7484-6277 NR 19 TC 8 Z9 9 U1 0 U2 9 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0736-6299 J9 SOLVENT EXTR ION EXC JI Solvent Extr. Ion Exch. PD MAY-JUN PY 2007 VL 25 IS 3 BP 373 EP 388 DI 10.1080/07366290701285348 PG 16 WC Chemistry, Multidisciplinary SC Chemistry GA 169WI UT WOS:000246622400004 ER PT J AU Schoonover, JR Steckle, WP Cox, JD Johnston, CT Wang, YQ Gillikin, AM Palmer, RA AF Schoonover, Jon R. Steckle, Warren P., Jr. Cox, Jonathan D. Johnston, Cliff T. Wang, Yanqia Gillikin, Angela M. Palmer, Richard A. TI Humidity-dependent dynamic infrared linear dichroism study of a poly(ester urethane) SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY LA English DT Article DE FTIR; infrared linear dichroism; polyester urethane); infrared microbalance ID FT-IR; WATER; ELASTOMER; SPECTROSCOPY; DEGRADATION AB Fourier transform infrared techniques, infrared difference spectroscopy and dynamic infrared linear dichroism (DIRLD), have been utilized to explore the effects of humidity and water absorption on a poly(ester urethane). An environmental infrared microbalance cell was used to measure the infrared spectra as a function of humidity and accompanying weight change for the absorption-desorption processes. The infrared difference data indicate that exposure to humidity affects the hydrogen-bonding interactions in the polymer. Dynamic infrared linear dichroism studies in tensile deformation mode as a function of humidity demonstrate how changes in water content affect the orientational response of functional groups. Complex behavior as a function of humidity for functional groups involved in hydrogen bonding indicates that water absorbed by the polymer affects the micro-environments near these functional groups. (c) 2006 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. Purdue Univ, W Lafayette, IN 47907 USA. Duke Univ, Dept Chem, Durham, NC 27708 USA. RP Schoonover, JR (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM schoons@lanl.gov RI Johnston, Cliff/B-2215-2009 OI Johnston, Cliff/0000-0002-8462-9724 NR 14 TC 6 Z9 6 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1386-1425 J9 SPECTROCHIM ACTA A JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. PD MAY PY 2007 VL 67 IS 1 BP 208 EP 213 DI 10.1016/j.saa.2006.07.015 PG 6 WC Spectroscopy SC Spectroscopy GA 162KK UT WOS:000246085800028 PM 16950649 ER PT J AU Bushaw, BA Raeder, S Ziegler, SL Wendt, K AF Bushaw, Bruce A. Raeder, Sebastian Ziegler, Summer L. Wendt, Klaus TI Triple-resonance autoionization of uranium optimized for diode laser excitation SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE uranium; autoionization; laser spectroscopy; diode lasers ID DISCHARGE OPTOGALVANIC SPECTROSCOPY; ATOMIC URANIUM; ISOTOPIC ANALYSIS; CROSS-SECTIONS; PHOTOIONIZATION; LIFETIMES AB The photoionization of uranium via three-step excitation has been optimized for isotope selective trace analysis. A search found 13 new J=6, 7, and 8 odd-parity states in the 36,850-37,200 cm(-1) region that allow blue-red-red three-photon excitation at wavelengths favorable for commercial diode laser systems. From each of these 13 states, near-threshold autoionization spectra were recorded at a resolution of 3 x 10(-4) cm(-1). Some 30 even-parity autoionizing levels with J=5 to 9 have also been observed and characterized. Comparison of the spectra allows J assignment for the new intermediate levels as well as selection of an optimized path for trace analysis. We show that, for a chosen scheme using a narrow J=9 autoionizing resonance at 49,972 cm(-1), all of the excitation steps can be saturated with powers available from single-mode cw diode laser systems when exciting an atomic beam in perpendicular geometry. (C) 2007 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. Univ Mainz, Inst Phys, D-55099 Mainz, Germany. RP Bushaw, BA (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM bruce.bushaw@pnl.gov RI Wendt, Klaus/D-7306-2011; Raeder, Sebastian/F-5910-2013 OI Wendt, Klaus/0000-0002-9033-9336; NR 17 TC 7 Z9 7 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD MAY PY 2007 VL 62 IS 5 BP 485 EP 491 DI 10.1016/j.sab.2007.04.015 PG 7 WC Spectroscopy SC Spectroscopy GA 196DX UT WOS:000248463000009 ER PT J AU Hogden, J Rubin, P McDermott, E Katagiri, S Goldstein, L AF Hogden, John Rubin, Philip McDermott, Erik Katagiri, Shigeru Goldstein, Louis TI Inverting mappings from smooth paths through R-n to paths through R-m: A technique applied to recovering articulation from acoustics SO SPEECH COMMUNICATION LA English DT Review DE speech inverse problem; dimensionality reduction; channel normalization ID NONLINEAR DIMENSIONALITY REDUCTION; AUTOMATIC SPEECH RECOGNITION; VOCAL-TRACT; PRODUCTION MODELS; INVERSE PROBLEM; PERCEPTION; MOVEMENTS; GEOMETRY; TRANSFORMATION; ALGORITHMS AB Motor theories, which postulate that speech perception is related to linguistically significant movements of the vocal tract, have guided speech perception research for nearly four decades but have had little impact on automatic speech recognition. In this paper, we describe a signal processing technique named MIMICRI that may help link motor theory with automatic speech recognition by providing a practical approach to recovering articulator positions from acoustics. MIMICRI's name reflects three important operations it can perform on time-series data: it can reduce the dimensionality of a data set (manifold inference); it can blindly invert nonlinear functions applied to the data (mapping inversion); and it can use temporal context to estimate intermediate data (contextual recovery of information). In order for MIMICRI to work, the signals to be analyzed must be functions of unobservable signals that lie on a linear subspace of the set of all unobservable signals. For example, MIMICRI will typically work if the unobservable signals are band-pass and we know the pass-band, as is the case for articulator motions. We discuss the abilities of MIMICRI as they relate to speech processing applications, particularly as they relate to inverting the mapping from speech articulator positions to acoustics. We then present a mathematical proof that explains why MIMICRI can invert nonlinear functions, which it can do even in some cases in which the mapping from the unobservable variables to the observable variables is many-to-one. Finally, we show that MIMICRI is able to infer accurately the positions of the speech articulators from speech acoustics for vowels. Five parameters. estimated by MIMICRI were more linearly related to articulator positions than 128 spectral energies. (c) 2007 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Haskins Labs Inc, New Haven, CT 06511 USA. NTT Corp, NTT Commun Sci Labs, Kyoto, Japan. Doshisha Univ, Fac Engn, Dept Informat Syst Design, Kyoto 6100394, Japan. RP Hogden, J (reprint author), Los Alamos Natl Lab, MS B265, Los Alamos, NM 87545 USA. EM hogden@lanl.gov; rubin@haskins.yale.edu; mcd@csiab.kecl.ntt.co.jp; skatagir@mail.doshisha.ac.jp; goldstein@haskins.yale.edu NR 101 TC 10 Z9 10 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-6393 EI 1872-7182 J9 SPEECH COMMUN JI Speech Commun. PD MAY PY 2007 VL 49 IS 5 BP 361 EP 383 DI 10.1016/j.specom.2007.02.008 PG 23 WC Acoustics; Computer Science, Interdisciplinary Applications SC Acoustics; Computer Science GA 179NH UT WOS:000247296100004 ER PT J AU Wang, DM Ren, YH Liu, X Furdyna, JK Grimsditch, M Merlin, R AF Wang, D. M. Ren, Y. H. Liu, X. Furdyna, J. K. Grimsditch, M. Merlin, R. TI Ultrafast optical study of magnons in the ferromagnetic semiconductor GaMnAs SO SUPERLATTICES AND MICROSTRUCTURES LA English DT Article; Proceedings Paper CT 6th International Conference on Physics of Light-Matter Coupling in Nanostructures CY SEP 25-29, 2006 CL Magdeburg, GERMANY SP Deutsch Forschungsgemeinsch, Otto von Guericke Univ Magdeburg, Azzurro Semicond, Bruker AXS DE ferromagnetic semiconductor; GaMnAs; spin waves ID GA1-XMNXAS AB Coherent oscillations of the magnetization were observed in magneto-optical Kerr measurements in thin films of the ferromagnetic semiconductor GaMnAs. For magnetic fields oriented in the film plane, two precession modes were observed. Their frequencies increase with the field when it is along the [100] axis, whereas they behave non-monotonically when the field is oriented along the in-plane hard axis [110]. Spectra are also presented for fields applied normal to the film plane. From the measured field-dependence of the magnon frequency, the spin stiffness and magnetic anisotropy constants were obtained. (c) 2007 Elsevier Ltd. All rights reserved. C1 Univ Michigan, FOCUS Ctr, Ann Arbor, MI 48109 USA. Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Wang, DM (reprint author), CUNY Hunter Coll, Dept Phys & Astron, 695 Pk Ave, New York, NY 10021 USA. EM daimianw@umich.edu OI Merlin, Roberto/0000-0002-5584-0248 NR 8 TC 4 Z9 4 U1 0 U2 2 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0749-6036 J9 SUPERLATTICE MICROST JI Superlattices Microstruct. PD MAY-JUN PY 2007 VL 41 IS 5-6 BP 372 EP 375 DI 10.1016/j.spmi.2007.03.009 PG 4 WC Physics, Condensed Matter SC Physics GA 188IP UT WOS:000247913900020 ER PT J AU Krstajic, NV Vracar, LM Radmilovic, VR Neophytides, SG Labou, M Jaksic, JM Tunold, R Falaras, P Jaksic, MM AF Krstajic, Nedeljko V. Vracar, Ljijana M. Radmilovic, Velimir R. Neophytides, Stelios G. Labou, Miranda Jaksic, Jelena M. Tunold, Reidar Falaras, Polycarpos Jaksic, Milan M. TI Advances in interactive supported electrocatalysts for hydrogen and oxygen electrode reactions SO SURFACE SCIENCE LA English DT Article DE Magneli phases; SMSI (strong metal-support interaction); monoatomic network; reversible H-2/Au/TiO2 electrode; synergistic interactive electrocatalysts; hypo-hyper-d-d-bonding; spillover; primary oxide (M-OH) ID INITIO MOLECULAR-DYNAMICS; GOLD ELECTRODES; CATALYTIC-ACTIVITY; ELECTROCHEMICAL MODIFICATION; PLATINUM-ELECTRODES; REDUCTION REACTION; ALKALINE-SOLUTION; AU/TIO2 CATALYST; ATOMIC-HYDROGEN; CURRENT-DENSITY AB Magneli phases [A. Magneli, Acta Chem. Scand. 13 (1959) 5] have been introduced as a unique electron conductive and interactive support for electrocatalysis both in hydrogen (HELR) and oxygen (OELR) electrode reactions in water electrolysis and Low Temperature PEM Fuel Cells (LT PEM FC). The Strong Metal-Support Interaction (SMSI) that imposes the former implies: (i) the hypo-hyper-d-interbonding effect and its catalytic consequences, and (ii) the interactive primary oxide (M-OH) spillover from the hypo-d-oxide support as a dynamic electrocatalytic contribution. The stronger the bonding, the more strained appear d-orbitals, thereby the less strong the intermediate adsorptive strength in the rate determining step (RDS), and consequently, the faster the facilitated catalytic electrode reaction arises. At the same time the primary oxide spillover transferred from the hypo-d-oxide support directly interferes and reacts either individually and directly to contribute to finish the oxygen reduction, or with other interactive species, like CO to contribute to the CO tolerance. In such a respect, the conditions to provide Au to act as the reversible hydrogen electrode have been proved either by its potentiodynamic surface reconstruction in a heavy water solution, or by the nanostructured SMSI An on anatase titania with characteristic strained d-orbitals in such a hypo-hyper-d-interactive bonding (Au/TiO2). In the same context, some spontaneous tendency towards monoatomic network dispersion of Pt upon Magneli phases makes it possible to produce an advanced interactive supported electrocatalyst for cathodic oxygen reduction (ORR). The strained hypo-hyper-d-interelectronic and inter-d-orbital metal/hypo-d-oxide support bonding relative to the strength of the latter, has been inferred to be the basis of the synergistic electrocatalytic effect both in the HELR and ORR. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Belgrade, Fac Technol & Met, Belgrade 11001, Serbia. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. Univ Patras, Dept Chem, Patras 26500, Greece. Univ Patras, Inst Chem Engn & High Temperature Chem Proc, FORTH, Patras 26500, Greece. NTNU, Dept Mat Sci & Engn, Trondheim, Norway. NCSR Demokritos, Inst Phys Chem, Athens, Greece. RP Jaksic, MM (reprint author), Univ Patras, Inst Chem Engn & High Temperature Chem Proc, FORTH, POB 1414,Stadiou Rd, Patras 26500, Greece. EM milan@iceht.forth.gr NR 80 TC 51 Z9 53 U1 4 U2 60 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD MAY 1 PY 2007 VL 601 IS 9 BP 1949 EP 1966 DI 10.1016/j.susc.2007.02.019 PG 18 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 168UU UT WOS:000246550300008 ER PT J AU Ruth, M Bernier, C Meier, A Laitner, J AF Ruth, Matthias Bernier, Clark Meier, Alan Laitner, John (Skip) TI PowerPlay: Exploring decision making behaviors in energy efficiency markets SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE energy Efficiency; efficiency gap; simulation game; energy policy; greenhouse gas emissions; consumer choice; household appliances; experimental economics; technology policy ID INDIVIDUAL DISCOUNT RATES; DURABLES; PURCHASE AB Computer models are widely used to analyze decisions about energy efficiency improvements in the residential and commercial sectors. Few models exist that can actually be run interactively by decision makers to play out alternative future scenarios. None are available that interactively capture the dynamics, subtleties and complexities of interdependent decisions by utilities, households and firms in an ever-changing technological and economic environment. This paper presents the features and experiences of PowerPlay, a computer-facilitated game which fills that gap and does more: it is a game to be played by at least a dozen player groups who interact with each other, make deals (or break them), plan for the future and revise decisions. The computer model functions like a game board to trace actions and offer choices. The observed behaviors can be analyzed to advance understanding of investment strategies and consumer choices; to generate experimentally-based data on energy efficiency changes; and to provide the basis for analyses that can substantiate or complement historical, time-series driven specifications of energy models. (c) 2006 Published. by Elsevier Inc. C1 Univ Maryland, Ctr Integrat Environm Res, College Pk, MD 20742 USA. Univ Maryland, Environm Policy Program, Sch Publ Policy, College Pk, MD 20742 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Amer Council Energy Efficient Econ, Washington, DC 20036 USA. RP Ruth, M (reprint author), Univ Maryland, Ctr Integrat Environm Res, College Pk, MD 20742 USA. EM mruth1@umd.edu NR 17 TC 2 Z9 2 U1 2 U2 10 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0040-1625 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD MAY PY 2007 VL 74 IS 4 BP 470 EP 490 DI 10.1016/j.techfore.2006.05.012 PG 21 WC Business; Planning & Development SC Business & Economics; Public Administration GA 167FQ UT WOS:000246437200004 ER PT J AU Graves, T Hamada, M Booker, J Decroix, M Chilcoat, K Bowyer, C AF Graves, Todd Hamada, Michael Booker, Jane Decroix, Michele Chilcoat, Kathy Bowyer, Clint TI Estimating a proportion using stratified data from both convenience and random samples SO TECHNOMETRICS LA English DT Article DE Bayesian; biased sampling; discrete data; extended-hypergeometric and hypergeometric distributions; finite population; Markov chain Monte Carlo ID NONRESPONSE; MODEL AB Estimating the proportion of an attribute present in a population can be challenging when the population is stratified by lots produced by a common manufacturing process and the available data arise from both random and convenience samples. Moreover, all of the lots may not have been sampled. This article proposes a Bayesian methodology for making inferences about a proportion that properly accounts for the potential bias of the convenience samples, the stratification by lots, and the fact that not all of the lots have been sampled. The methodology is illustrated with a simulated population; however, the solution is motivated by a similar, but proprietary, production situation. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Graves, T (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM tgraves@lanl.gov NR 18 TC 1 Z9 1 U1 1 U2 4 PU AMER STATISTICAL ASSOC PI ALEXANDRIA PA 1429 DUKE ST, ALEXANDRIA, VA 22314 USA SN 0040-1706 J9 TECHNOMETRICS JI Technometrics PD MAY PY 2007 VL 49 IS 2 BP 164 EP 171 DI 10.1198/004017007000000047 PG 8 WC Statistics & Probability SC Mathematics GA 161YL UT WOS:000246053000005 ER PT J AU Prewitt, RM Montross, MD Shearer, SA Stombaugh, TS Higgins, SF McNeill, SG Sokhansanj, S AF Prewitt, R. M. Montross, M. D. Shearer, S. A. Stombaugh, T. S. Higgins, S. F. McNeill, S. G. Sokhansanj, S. TI Corn stover availability and collection efficiency using typical hay equipment SO TRANSACTIONS OF THE ASABE LA English DT Article DE bale; baling; bioenergy; biomass; harvest; maize; residue; yield AB Corn stover has been identified as a potential feedstock for the production of fermentable sugars and thermochemical processes. The availability and efficiency of typical hay equipment for collecting corn stover has not been well quantified. Corn stover was collected for two years on a central Kentucky farm near Louisville. Six different harvesting treatments, using traditional hay equipment, were used to harvest corn stover A rotary mower, rotary scythe (flail-type mower with windrow-forming shields), parallel bar rake, and a round baler were utilized. The average stover moisture content prior to grain harvest was above 40%, and field drying was required before baling. All treatments were analyzed for collection efficiency and corn stover yield. The stover collection yields varied from 1.93 to 5.34 dry t/ha, with collection efficiencies (ratio of stover collected to the total above-ground stover excluding grain) between 32.1% and 94.5%. The most promising collection strategy was disengaging the straw chopper and spreader to produce a windrow behind the combine. This windrow could then be baled in a separate operation that resulted in a collection efficiency of 74.1%. C1 Univ Kentucky, Dept Biosyst & Agr Engn, Lexington, KY 40546 USA. Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Montross, MD (reprint author), Univ Kentucky, Dept Biosyst & Agr Engn, 128 Barnhart Bldg, Lexington, KY 40546 USA. EM mon-tross@bae.uky.edu RI Shearer, Scott/C-8055-2012 NR 12 TC 8 Z9 10 U1 1 U2 8 PU AMER SOC AGRICULTURAL & BIOLOGICAL ENGINEERS PI ST JOSEPH PA 2950 NILES RD, ST JOSEPH, MI 49085-9659 USA SN 0001-2351 J9 T ASABE JI Trans. ASABE PD MAY-JUN PY 2007 VL 50 IS 3 BP 705 EP 711 PG 7 WC Agricultural Engineering SC Agriculture GA 190CY UT WOS:000248036800002 ER PT J AU Lo, WC Sposito, G Majer, E AF Lo, Wei-Cheng Sposito, Garrison Majer, Ernest TI Low-frequency dilatational wave propagation through unsaturated porous media containing two immiscible fluids SO TRANSPORT IN POROUS MEDIA LA English DT Article DE dilatational waves; immiscible fluid flow; poroelastic behavior ID HYDRAULIC CONDUCTIVITY; RELATIVE PERMEABILITY; CAPILLARY-PRESSURE; ELASTIC WAVES; 2-PHASE FLUID; SATURATION; MODEL; FLOW; POROELASTICITY; STIMULATION AB An analytical theory is presented for the low-frequency behavior of dilatational waves propagating through a homogeneous elastic porous medium containing two immiscible fluids. The theory is based on the Berryman-Thigpen-Chin (BTC) model, in which capillary pressure effects are neglected. We show that the BTC model equations in the frequency domain can be transformed, at sufficiently low frequencies, into a dissipative wave equation (telegraph equation) and a propagating wave equation in the time domain. These partial differential equations describe two independent modes of dilatational wave motion that are analogous to the Biot fast and slow compressional waves in a single-fluid system. The equations can be solved analytically under a variety of initial and boundary conditions. The stipulation of "low frequency" underlying the derivation of our equations in the time domain is shown to require that the excitation frequency of wave motions be much smaller than a critical frequency. This frequency is shown to be the inverse of an intrinsic time scale that depends on an effective kinematic shear viscosity of the interstitial fluids and the intrinsic permeability of the porous medium. Numerical calculations indicate that the critical frequency in both unconsolidated and consolidated materials containing water and a nonaqueous phase liquid ranges typically from kHz to MHz. Thus engineering problems involving the dynamic response of an unsaturated porous medium to low excitation frequencies (e.g., seismic wave stimulation) should be accurately modeled by our equations after suitable initial and boundary conditions are imposed. C1 Natl Cheng Kung Univ, Dept Hydraul & Ocean Engn, Tainan 701, Taiwan. Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Geophys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. RP Lo, WC (reprint author), Natl Cheng Kung Univ, Dept Hydraul & Ocean Engn, Tainan 701, Taiwan. EM lowc@mail.ncku.edu.tw NR 41 TC 14 Z9 15 U1 0 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 EI 1573-1634 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD MAY PY 2007 VL 68 IS 1 BP 91 EP 105 DI 10.1007/s11242-006-9059-2 PG 15 WC Engineering, Chemical SC Engineering GA 177GH UT WOS:000247141100006 ER PT J AU Or, D Ghezzehei, TA AF Or, Dani Ghezzehei, Teamrat A. TI Traveling liquid bridges in unsaturated fractured porous media SO TRANSPORT IN POROUS MEDIA LA English DT Article ID FLOW; INFILTRATION; DROPS; DRAINAGE; SEEPAGE; NETWORK; SURFACE; PHYSICS; MODEL; SHAPE AB Interplay between capillary, gravity and viscous forces in unsaturated fractures gives rise to a range of complex flow phenomena. Evidence of highly intermittent fluxes, preferential and sustainable flow pathways lead to potentially significant flow focusing of concern for regulatory and management of water resources in fractured rock formations. In previous work [Ghezzehei TA,Or D.: Water Resour. Res. In Review(2005)] we developed mechanistic models for formation, growth and detachment of liquid bridges in geometrical irregularities within fractures. Such discrete and intermittent flows present a challenge to standard continuum theories. Our focus here is on predicting travel velocities of detached liquid elements and their interactions with fracture walls. The scaling relationships proposed by Podgorski et al. [Podgorski, T, et al.: Phys. Rev. Lett. 8703(3), 6102-NIL_95 (2001)] provide a general framework for processes affecting travel velocities of discrete liquid elements in fractures, tubes, and in coarse porous media. Comparison of travel velocity and distance by discrete bridges relative to equivalent continuous film flow reveal significantly faster and considerably larger distances traversed by liquid bridges relative to liquid films. Coalescence and interactions between liquid bridges result in complex patterns of travel times and distances. Mass loss on rough fracture surfaces shortens travel distances of an element; however, results show that such retardation provides new opportunities for coalescence of subsequent liquid elements traveling along the same path, resulting in mass accumulation and formation of larger liquid elements traveling larger distances relative to smooth fracture surfaces. Such flow focusing processes may be amplified considering a population of liquid bridges within a fracture plane and mass accumulation in fracture intersections. C1 Ecole Polytech Fed Lausanne, Sch Architectural Civil & Environm Engn ENAC ISTE, CH-1015 Lausanne, Switzerland. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Or, D (reprint author), Ecole Polytech Fed Lausanne, Sch Architectural Civil & Environm Engn ENAC ISTE, Batiment GR 2,Room 399, CH-1015 Lausanne, Switzerland. EM dani.or@epfl.ch RI Ghezzehei, Teamrat/G-7483-2011; Or, Dani/D-8768-2012 OI Ghezzehei, Teamrat/0000-0002-0287-6212; Or, Dani/0000-0002-3236-2933 NR 26 TC 14 Z9 14 U1 2 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0169-3913 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD MAY PY 2007 VL 68 IS 1 BP 129 EP 151 DI 10.1007/s11242-006-9060-9 PG 23 WC Engineering, Chemical SC Engineering GA 177GH UT WOS:000247141100008 ER PT J AU Saklakoglu, N Saklakoglu, IE Ceyhun, V Monteiro, OR Brown, IG AF Saklakoglu, N. Saklakoglu, I. E. Ceyhun, V. Monteiro, O. R. Brown, I. G. TI Sliding wear behaviour of Zr-ion-implanted D3 tool steel SO TRIBOLOGY INTERNATIONAL LA English DT Article DE tribology; wear; metal-vapour vacuum arc; stainless steels; Zr-ion implantation; tool steel ID STAINLESS-STEEL; FRETTING WEAR; TIN COATINGS; SURFACE; METALS; FACILITY AB The wear and friction characteristics of zirconium-ion-implanted AISI D3 tool steel have been investigated using pin-on-disc methods. Ion implantation was carried out using a vacuum-arc-based ion implanter to form multicharged zirconium ion beams at a mean ion energy of 130 keV, and the implantation doses investigated were approximately 3.6 x 10(16) 5 x 10(16) and 1 x 10(17) ions cm(-2). It was found that Zr implantation decreased both the wear and the coefficient of friction. The beneficial effects of Zr implantation in terms of associated Auger electron spectroscopy, Rutherford backscattering spectroscopy and scanning electron microscopy microprobe analyses are described. (c) 2006 Elsevier Ltd. All rights reserved. C1 Celal Bayar Univ, Dept Mech Engn, TR-45140 Manisa, Turkey. Ege Univ, Dept Mech Engn, TR-35100 Izmir, Turkey. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Saklakoglu, N (reprint author), Celal Bayar Univ, Dept Mech Engn, TR-45140 Manisa, Turkey. EM nakbas@bayar.edu.tr NR 28 TC 2 Z9 3 U1 1 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-679X EI 1879-2464 J9 TRIBOL INT JI Tribol. Int. PD MAY PY 2007 VL 40 IS 5 BP 794 EP 799 DI 10.1016/j.triboint.2006.07.004 PG 6 WC Engineering, Mechanical SC Engineering GA 136IE UT WOS:000244215000010 ER PT J AU Seaman, JC Looney, BB Harris, MK AF Seaman, J. C. Looney, B. B. Harris, M. K. TI Research in support of remediation activities at the Savannah River Site SO VADOSE ZONE JOURNAL LA English DT Editorial Material ID SOIL VAPOR EXTRACTION; FACILITATED TRANSPORT; GROUNDWATER COLLOIDS; BAROMETRIC-PRESSURE; CONTAMINANT METALS; SURFACE MOISTURE; NONUNIFORM FLOW; KAOLINITIC SOIL; SEDIMENTS; AQUIFER AB The USDOE Savannah River Site ( SRS), an 803-km(2) (310-mile(2)) facility located south of Aiken, SC on the upper Atlantic Coastal Plain and bounded to the west by the Savannah River, was established in the 1950s for the production and refinement of nuclear materials. To fulfill this mission during the past 50 years SRS has operated fi ve nuclear reactors, two large chemical separation areas, waste disposal facilities (landfills, waste ponds, waste tanks, and waste stabilization), and a large number of research and logistics support facilities. Contaminants of concern (COC) resulting from site operations include chlorinated solvents, radionuclides, metals, and metalloids, often found as complex mixtures that greatly complicate remediation efforts when compared with civilian industries. The objective of this article is to provide a description of the lithology and hydrostatigraphy of the SRS, as well as a brief history of site operations and research activities as a preface to the current special section of Vadose Zone Journal (VZJ) dedicated to SRS, focusing mainly on issues that are unique to the USDOE complex. Contributions to the special section reflect a diverse range of topics, from hydrologic tracer experiments conducted both within the vadose and saturated zones to studies specifically aimed at identifying geochemical processes controlling the migration and partitioning of specific contaminants (e. g., TCE, Cs-137, U, and Pu) in SRS subsurface environments. Addressing the diverse environmental challenges of the SRS provides a unique opportunity to conduct both fundamental and applied research across a range of experimental scales. Hence, the SRS has been a pioneering force in several areas of environmental research and remediation, often through active interdisciplinary collaboration with researchers from other USDOE facilities, academic and federal institutions, and commercial entities. C1 Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. Savannah River Natl Lab, Aiken, SC 29808 USA. RP Seaman, JC (reprint author), Univ Georgia, Savannah River Ecol Lab, Drawer E, Aiken, SC 29802 USA. EM seaman@srel.edu NR 106 TC 7 Z9 7 U1 1 U2 7 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD MAY PY 2007 VL 6 IS 2 BP 316 EP 326 DI 10.2136/vzj2007.0044 PG 11 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 196ST UT WOS:000248503000012 ER PT J AU Flach, GP Crapse, KP Phifer, MA Collard, LB Koffman, LD AF Flach, G. P. Crapse, K. P. Phifer, M. A. Collard, L. B. Koffman, L. D. TI An unsteady dual porosity representation of tritium leaching from buried concrete rubble SO VADOSE ZONE JOURNAL LA English DT Article ID AGGREGATED POROUS-MEDIA; SOLUTE TRANSPORT; MASS-TRANSFER; MODEL; DISPERSION; DIFFUSION AB Decontamination and decommissioning at the Savannah River Site near Aiken, SC, have produced on-site disposals of low-level solid radioactive waste in the form of concrete rubble. In the case of a former tritium extraction facility, building demolition produced a significant volume of rubble containing tritium. The contaminated debris comprises a heterogeneous mixture of coarse aggregate sizes, shapes, and internal tritium distributions. The rubble was disposed in unlined earthen trenches that were subsequently backfilled and exposed to normal infiltration. To forecast tritium flux to the water table, an unsteady dual-porosity model was developed to describe vadose zone leaching and transport. Tritium release was assumed to be controlled by diffusion within concrete, while advective and diffusive transport occur in the surrounding backfill. Rubble size and shape variations were characterized through a combination of physical measurement and photographic image analysis. For simplicity, the characterization data were reduced to an approximately equivalent distribution of one-dimensional slab thicknesses for representation in the dual-porosity formulation. Tritium flux to the water table from concrete rubble was predicted to be roughly 40% of that from uniformly contaminated soil. The lower flux is a result of slow release to soil pore water and a reduced effective trench conductivity from the presence of impervious concrete. At early times, tritium release from concrete in the lower trench is depressed by downward migration of tritium from overlying material. The pattern reverses at later times, when tritium is largely exhausted in the upper trench but higher residuals occupy the lower trench. C1 Savannah River Natl Lab, Aiken, SC 29808 USA. RP Flach, GP (reprint author), Savannah River Natl Lab, Savannah River Site, Aiken, SC 29808 USA. EM gregory.flach@sml.doe.gov NR 26 TC 2 Z9 2 U1 2 U2 6 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD MAY PY 2007 VL 6 IS 2 BP 336 EP 343 DI 10.2136/vzj2006.0051 PG 8 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 196ST UT WOS:000248503000014 ER PT J AU Demirkanli, DI Molz, FJ Kaplan, DI Fjeld, RA Serkiz, SM AF Demirkanli, Deniz I. Molz, Fred J. Kaplan, Daniel I. Fjeld, Robert A. Serkiz, Steven M. TI Modeling long-term plutonium transport in the Savannah River Site vadose zone SO VADOSE ZONE JOURNAL LA English DT Article ID OXIDATION-STATES; SHALLOW AQUIFER; REDUCTION; ADSORPTION; MIGRATION; GROUNDWATER; ENVIRONMENT; SPECIATION; CHEMISTRY; GOETHITE AB Improved understanding of fl ow and radionuclide transport in vadose zone sediments is fundamental to future planning involving radioactive materials. To that end, long-term experiments were conducted at the Savannah River Site (SRS), where a series of lysimeters containing sources of different Pu oxidation states were placed in the shallow subsurface and exposed to the environment for 2 to 11 yr. After the experiments, Pu activity concentrations were measured along vertical cores from the lysimeters. Plutonium distributions were anomalous in nature - transport from oxidized Pu sources was less than expected, and a small fraction of Pu from reduced sources moved more. Studies conducted with these lysimeter sediments indicated that surface-mediated, oxidation - reduction ( redox) reactions may be responsible for the anomalies. This hypothesis is tested by performing transient Pu transport simulations that include retardation and first-order redox reactions on mineral surfaces within a steady-state flow field. These simulations affirm the consistency of the surface-mediated, redox hypothesis with observed Pu activity profiles below the source. Such profiles are captured well by a steady-state, net downward fl ow model. The redox model explains how Pu(V/VI) sources release activity that moves downward more slowly than expected, and how Pu(III/IV) sources result in a small fraction of activity that moves downward farther than expected. The calibrated parameter values were robust and well defined throughout all simulations. Approximate retardation factors for Pu(V/VI) were 15, and for Pu(III/IV) were 10,000. For these values, k(o) averaged 2.4 x 10(-7) h(-1); kr averaged 7.1 x 10(-4) h(-1) (standard deviations are 1.6 x 10(-7) h(-1) and 1.6 x 10(-4) h(-1) respectively). C1 Clemson Univ, Dept Environm Engn & Sci, LG Rich Environm Res Lab, Anderson, SC 29625 USA. Savannah River Natl Lab, Aiken, SC 29808 USA. RP Molz, FJ (reprint author), Clemson Univ, Dept Environm Engn & Sci, LG Rich Environm Res Lab, 342 Comp Court, Anderson, SC 29625 USA. EM fredi@clemson.edu NR 27 TC 10 Z9 10 U1 2 U2 9 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD MAY PY 2007 VL 6 IS 2 BP 344 EP 353 DI 10.2136/vzj2006.0042 PG 10 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 196ST UT WOS:000248503000015 ER PT J AU Serkiz, SM Johnson, WH Wile, LMJ Clark, SB AF Serkiz, S. M. Johnson, W. H. Wile, L. M. Johnson Clark, S. B. TI Environmental availability of uranium in an acidic plume at the Savannah River Site SO VADOSE ZONE JOURNAL LA English DT Article ID SEQUENTIAL EXTRACTION PROCEDURE; TRACE-METALS; SEDIMENTS; AQUIFER; SPECIATION; ACTINIDE; SOILS; MODEL AB Uranium partitioning in soils collected from an acid and U impacted sandy Coastal Plain aquifer at the Savannah River Site (SRS) was investigated. The influences of hydrologic regime (vadose zone or saturated zone), proximity to the source input ( impacted or unimpacted soils), and soil weathering (field or laboratory-spiked soils) on the environmental availability U were examined. Environmental availability ( availability for groundwater transport) was operationally defined using a sequential extraction technique and was applied to vadose zone, saturated zone, and background soils. For saturated zone locations, matched porewater-soil sets of field samples were collected, and data generated from these samples were used to examine U partitioning under field conditions. Laboratory batch sorption studies of uranyl ion to background soils were conducted as a function of pH. Subsequently, the soil used in the sorption study was subjected to sequential extraction to investigate the environmental availability in laboratory spiked samples. Based on sequential extraction behavior of U-impacted soils and background soils and the acidic plume chemistry, U concentrations in the fi rst three sequential extraction steps [deionized water, CaCl2, and acetic acid/Ca(NO3)(2)] were operationally defined as available, and the final two extraction steps (crystalline iron oxide and residual extraction steps) were operationally defined as unavailable. Based on this operational definition, soils impacted by the acidic U plume exhibited a greater fraction of available and total U. Vadose-zone soils had a smaller fraction of available U than corresponding saturated zone samples. Sequential extractions of U sorbed to background soils in a short-term laboratory experiment showed greater U availability compared with field soils collected within the contaminant plume. Field-derived K-d values ranged from 0.1 to 300 L kg(-1) and were highly correlated with porewater pH. C1 Westinghouse Savannah River Co, Savannah River Natl Lab, Aiken, SC 29808 USA. Georgia Inst Technol, Nucl Engn & Hlth Phys Programs, Sch Mech Engn, Atlanta, GA 30332 USA. Clemson Univ, Environm Engn & Sci Dept, Clemson, SC 29634 USA. Washington State Univ, Dept Chem, Pullman, WA 99164 USA. RP Serkiz, SM (reprint author), Westinghouse Savannah River Co, Savannah River Natl Lab, Aiken, SC 29808 USA. EM steven.serkiz@srnl.doe.gov NR 38 TC 12 Z9 12 U1 2 U2 8 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD MAY PY 2007 VL 6 IS 2 BP 354 EP 362 DI 10.2136/vzj2006.0072 PG 9 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 196ST UT WOS:000248503000016 ER PT J AU Seaman, JC Bertsch, PM Kaplan, DI AF Seaman, J. C. Bertsch, P. M. Kaplan, D. I. TI Spatial and temporal variability in colloid dispersion as a function of groundwater injection rate within Atlantic coastal plain sediments SO VADOSE ZONE JOURNAL LA English DT Article ID GRADIENT FLOW CONDITIONS; FACILITATED TRANSPORT; CONTAMINANT TRANSPORT; POROUS-MEDIA; HANFORD SEDIMENTS; MOBILE COLLOIDS; AQUIFER SAND; IN-SITU; MOBILIZATION; SOIL AB A subsurface injection experiment was conducted on the USDOE's Savannah River Site ( SRS) to determine the influence of pump-and-treat remediation activities on the generation and transport of groundwater colloids. The impact of colloid generation on formation permeability at injection rates ranging from 19 to 132 L min(-1) was monitored using a set of six sampling wells radially spaced at approximate distances of 2.0, 3.0, and 4.5 m from a central injection well. Each sampling well was further divided into three discrete sampling depths that were pumped continuously at a rate of similar to 0.1 L min(-1) throughout the course of the injection experiment. Discrete samples were collected for turbidity and chemical analysis. Turbidity varied greatly between sampling wells and zones within a given well, ranging from < 1 to 740 NTU. The two sampling wells closest to the injection well displayed the greatest response in terms of turbidity to increases in injection rate. Transient spikes in turbidity generally corresponded to incremental increases in the injection rate that were followed by a decrease in turbidity to a stable injection rate-dependent level. Mineralogical analysis of the resulting suspensions confirmed the presence of kaolinite, goethite, and to a much lesser degree, quartz and illite, with many of the particles too large (> 1 mu m) to be readily mobile within the formation. Turbidity measurements taken during this study indicate that colloid mobilization induced by water injection was both spatially and temporally heterogeneous. Furthermore, colloid release did not follow simple predictions based on shear force, presumably due to the complexities encountered in real heterogeneous systems. These findings have important implications to our understanding of how colloids and the co-contaminants are mobilized in the subsurface environment, as well as for the development of monitoring practices that minimize the creation of colloidal artifacts. Technical and logistical obstacles encountered in conducting such an extensive field experiment are also discussed. C1 Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. Savannah River Natl Lab, Aiken, SC 29808 USA. RP Seaman, JC (reprint author), Univ Georgia, Savannah River Ecol Lab, Drawer E, Aiken, SC 29802 USA. EM seaman@srel.edu NR 67 TC 5 Z9 5 U1 1 U2 12 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD MAY PY 2007 VL 6 IS 2 BP 363 EP 372 DI 10.2136/vzj2006.0048 PG 10 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 196ST UT WOS:000248503000017 ER PT J AU Seaman, JC Bertsch, PM Wilson, M Singer, J Majs, F Aburime, SA AF Seaman, J. C. Bertsch, P. M. Wilson, M. Singer, J. Majs, F. Aburime, S. A. TI Tracer migration in a radially divergent flow field: Longitudinal dispersivity and anionic tracer retardation SO VADOSE ZONE JOURNAL LA English DT Article ID SCALE-DEPENDENT DISPERSION; FORCED-GRADIENT EXPERIMENT; VARIABLE CHARGE PROPERTIES; PORE-WATER VELOCITY; SOLUTE TRANSPORT; NONREACTIVE TRACERS; BORDEN AQUIFER; FLUOROBENZOATE TRACERS; HETEROGENEOUS AQUIFER; NONUNIFORM FLOW AB Hydrodynamic dispersion, the combined effects of chemical diffusion and differences in solute path length and fl ow velocity, is an important factor controlling contaminant migration in the subsurface environment. However, few comprehensive threedimensional datasets exist for critically evaluating the impact of travel distance and site heterogeneity on solute dispersion, and the conservative nature of several commonly used groundwater tracers is still in question. Therefore, we conducted a series of field-scale experiments using tritiated water ((HHO)-H-3-H-1), bromide (Br-), and two fluorobenzoates (2,4 Di-FBA, 2,6 Di-FBA) as tracers in the water-table aquifer on the USDOE's Savannah River Site (SRS), located on the upper Atlantic Coastal Plain. For each experiment, tracer-free groundwater was injected for approximately 24 h (56.7 L min(-1)) to establish a steady-state forced radial gradient before the introduction of a tracer pulse. After the tracer pulse, which lasted from 256 to 560 min, the forced gradient was maintained throughout the experiment using nonlabeled groundwater. Tracer migration was monitored using six multilevel monitoring wells, radially spaced at approximate distances of 2.0, 3.0, and 4.5 m from the central injection well. Each sampling well was further divided into three discrete sampling depths that were pumped continuously (similar to 0.1 L min(-1)) throughout the course of the experiments. Longitudinal dispersivity (a L) and travel times for 3H1HO breakthrough were estimated by fitting the field data to analytical approximations of the advection-dispersion equation (ADE) for uniform and radial fl ow conditions. Dispersivity varied greatly between wells located at similar transport distances and even between zones within a given well, which we attributed to variability in the hydraulic conductivity at the study site. The radial fl ow equation generally described tritium breakthrough better than the uniform flow solution, as indicated by the coefficient of determination, r2, yielding lower a L while accounting for breakthrough tailing inherent to radial fl ow conditions. Complex multiple-peak breakthrough patterns were observed within certain sampling zones, indicative of multiple major fl ow paths and the superposition of resulting breakthrough curves. A strong correlation was found between a L and arrival times observed from one experiment to the next, indicative of the general reproducibility of the tracer results. Temporal moment analysis was used to evaluate tracer migration rate as an indicator of variations in hydraulic conductivity and fl ow velocity, as well as mass recovery and retardation for the ionic solutes compared with tritiated water. Retardation factors for Br- ranged from 0.99 to 1.67 with no clear trend with respect to transport distance; however, Br- mass recovery decreased with distance, suggesting that the retardation values are biased in terms of early arrival because of limited detection and an insufficient monitoring duration. Anion retardation was attributed to sorption by iron oxides. Similar results were observed for the FBA tracers. The assumption of conservative behavior for the anionic tracers would generally result in higher a L values and lower estimated fl ow velocities. C1 Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Seaman, JC (reprint author), Univ Georgia, Savannah River Ecol Lab, Drawer E, Aiken, SC 29802 USA. EM seaman@srel.edu OI Majs, Frantisek/0000-0003-1525-7709 NR 63 TC 8 Z9 9 U1 1 U2 14 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD MAY PY 2007 VL 6 IS 2 BP 373 EP 386 DI 10.2136/vzj2006.0109 PG 14 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 196ST UT WOS:000248503000018 ER PT J AU Dilmore, R Neufeld, RD Hammack, RW AF Dilmore, Robert Neufeld, Ronald D. Hammack, Richard W. TI Kinetics of chemoheterotrophic microbially mediated reduction of ferric EDTA and the nitrosyl adduct of ferrous EDTA for the treatment and regeneration of spent nitric oxide scrubber liquor SO WATER ENVIRONMENT RESEARCH LA English DT Article DE anaerobic treatment; anoxic treatment; denitrification; ferrous EDTA; iron reduction; linear-sweep voltammetry; nitric oxide; scrubber liquor; nitrosyl adduct ID FLUE-GAS; ABSORPTION; NO AB Biomass from a prototype reactor was used to investigate the kinetics of chemoheterotrophic reduction of solutions of ferric ethylenediaminetetraacetic acid (EDTA) and solutions containing the nitrosyl adduct of ferrous EDTA using ethanol as the primary electron donor and carbon source. A series of batch experiments were conducted using biomass extracted from the scrubber solution treatment and regeneration stage of a prototype iron EDTA-based unit process for the absorption of nitric oxide with subsequent biological treatment. Using a linear-sweep voltammetric method for analysis of the ferric EDTA concentration, iron-reducing bacteria were found to behave according to the Monod kinetic model, at initial concentrations up to 2.16 g chemical oxygen demand (COD) as ethanol per liter, with a half-velocity constant of 0.532 g COD as ethanol/L and a maximum specific utilization rate of 0.127 mol/L of ferric ethylenediamine-tetraacetic acid [Fe(III)EDTA]*(g volatile suspended solids [VSS]/L)d(-1). Based on batch analyses, biomass yield and endogenous decay values of iron-reducing bacteria were estimated to be 0.055 g VSS/g COD and 0.017 L/d, respectively. An average of 1.64 times the theoretical (stoichiometric) demand of ethanol was used to complete reduction reactions. Kinetics of the reduction of the nitrosyl adduct of ferrous EDTA are summarized by the following kinetic constants: half-velocity constant (Ks) of 0.39 g COD/L, maximum specific utilization rate (k) of 0.2 mol/L [NO - Fe(II)EDTA2-](g VSS/L)d(-1), and inhibition constant (K-I) of 0.33 g COD/L, as applied to the modified Mound kinetic expression described herein. Based on batch analyses, the biomass yield of nitrosyl-adduct-reducing bacteria was estimated to be 0.259 g VSS/g COD. endogenous decay was experimentally determined to be 0.0569 L/d, and an average of 1.26 times the stoichiometric demand of ethanol was used to complete reduction reactions. C1 Univ Pittsburgh, Dept Civil & Environm Engn, Pittsburgh, PA 15260 USA. US DOE, Natl Energy Technol Lab, Off Sci & Technol, Clean Air Technol Div, Pittsburgh, PA USA. EM neufeld@engr.pitt.edu NR 26 TC 2 Z9 2 U1 1 U2 7 PU WATER ENVIRONMENT FEDERATION PI ALEXANDRIA PA 601 WYTHE ST, ALEXANDRIA, VA 22314-1994 USA SN 1061-4303 J9 WATER ENVIRON RES JI Water Environ. Res. PD MAY PY 2007 VL 79 IS 5 BP 479 EP 487 DI 10.2175/106143006X115390 PG 9 WC Engineering, Environmental; Environmental Sciences; Limnology; Water Resources SC Engineering; Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 171JU UT WOS:000246732900004 PM 17571837 ER PT J AU Muramatsu, Y Takebe, T Sawamura, A Iihara, J Nanba, A Imai, T Denlinger, JD Perera, RCC AF Muramatsu, Yasuji Takebe, Toshihiko Sawamura, Akitaka Iihara, Junji Nanba, Akihiko Imai, Takahiro Denlinger, Jonathan D. Perera, Rupert C. C. TI Two-acceptor levels in the band gap of boron-doped diamond semiconductors analyzed by soft x-ray absorption spectroscopy and DV-X alpha calculations SO X-RAY SPECTROMETRY LA English DT Article; Proceedings Paper CT European X-Ray Spectrometry Conference (EXRS 2006) CY JUN 19-23, 2006 CL Paris, FRANCE ID ELECTRONIC-STRUCTURE; CLUSTER CALCULATIONS AB To clarify the electronic structure of semiconducting boron-doped diamond, especially the two-acceptor levels observed in the soft x-ray absorption spectra in the C K region, the density of states (DOS) of a B-doped diamond cluster model, BC146H148, were calculated using discrete variational (DV)-X alpha MO methods. The results were compared to the measured x-ray spectra. In the calculations, the localized acceptor levels (lowest unoccupied molecular orbitals: (LUMOs)) appeared just above the highest occupied molecular orbitals (HOMOs) of the C atom that was directly bonded to the B atom, and the other C atoms that were bonded to the C atoms next to the B atom. However, a chemical shift of the LUMOs was not observed between the C atoms. On the other hand, a chemical shift of the occupied C 1s orbitals was observed between these C atoms. Therefore, it is concluded that the two-acceptor levels in the C atoms result from the chemical shift of the inner C 1s orbitals due to the local structure differences between the C atoms in B-doped diamond. Copyright (c) 2007 John Wiley & Sons, Ltd. C1 Univ Hyogo, Grad Sch Engn, Himeji, Hyogo 6712201, Japan. Sumitomo Elect Ind Ltd, Anal Technol Res Ctr, Itami, Hyogo 6650016, Japan. Sumitomo Elect Ind Ltd, Semicond R&D Labs, Itami, Hyogo 6650016, Japan. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Muramatsu, Y (reprint author), Univ Hyogo, Grad Sch Engn, 2617 Shosha, Himeji, Hyogo 6712201, Japan. EM murama@eng.u-hyogo.ac.jp RI Sawamura, Atsushi/A-6907-2012 NR 13 TC 6 Z9 6 U1 0 U2 4 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0049-8246 J9 X-RAY SPECTROM JI X-Ray Spectrom. PD MAY-JUN PY 2007 VL 36 IS 3 BP 162 EP 166 DI 10.1002/xrs.959 PG 5 WC Spectroscopy SC Spectroscopy GA 163MO UT WOS:000246164200004 ER PT J AU Luo, HM Yu, M Dai, S AF Luo, Huimin Yu, Miao Dai, Sheng TI Solvent extraction of Sr2+ and Cs+ based on hydrophobic protic ionic liquids SO ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES LA English DT Article DE protic ionic liquids; solvent extraction; crown ethers ID TEMPERATURE MOLTEN-SALTS; CROWN-ETHERS; AQUEOUS-SOLUTIONS; METAL-IONS; ANIONS; ELECTROLYTES; CONDUCTIVITY; GREENNESS; EXCHANGE; CATIONS AB A series of new hydrophobic and protic alkylammonium ionic liquids with bis(trifluoromethylsulfonyl)imide or bis(perfluoroethylsulfonyl)imide as conjugated anions was synthesized in a one-pot reaction with a high yield. In essence our synthesis method involves the combination of neutralization and metathesis reactions. Some of these hydrophobic and protic ionic liquids were liquids at room temperature and therefore investigated as new extraction media for separation of Sr2+ and Cs+ from aqueous solutions. An excellent extraction efficiency was found for some of these ionic liquids using dicyclohexano-18-crown-6 and calix[4]arene-bis(tert-octylbenzo-crown-6) as extractants. The observed enhancement in the extraction efficiency can be attributed to the greater hydrophilicity of the cations of the protic ionic liquids. The application of the protic ionic liquids as new solvent systems for solvent extraction opens up a new avenue in searching for simple and efficient ionic liquids for tailored separation processes. C1 Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. Univ Florida, Dept Chem, Gainesville, FL 32612 USA. Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA. RP Luo, HM (reprint author), Oak Ridge Natl Lab, Nucl Sci & Technol Div, POB 2008, Oak Ridge, TN 37831 USA. EM luoh@ornl.gov; dais@ornl.gov RI Dai, Sheng/K-8411-2015 OI Dai, Sheng/0000-0002-8046-3931 NR 35 TC 12 Z9 12 U1 3 U2 10 PU VERLAG Z NATURFORSCH PI TUBINGEN PA POSTFACH 2645, 72016 TUBINGEN, GERMANY SN 0932-0784 J9 Z NATURFORSCH A JI Z. Naturfors. Sect. A-J. Phys. Sci. PD MAY-JUN PY 2007 VL 62 IS 5-6 BP 281 EP 291 PG 11 WC Chemistry, Physical; Physics, Multidisciplinary SC Chemistry; Physics GA 192DI UT WOS:000248180600009 ER PT J AU Gardner, TH Shekhawat, D Berry, DA Smith, MW Salazar, M Kugler, EL AF Gardner, Todd H. Shekhawat, Dushyant Berry, David A. Smith, Mark W. Salazar, Maria Kugler, Edwin L. TI Effect of nickel hexaaluminate mirror cation on structure-sensitive reactions during n-tetradecane partial oxidation SO APPLIED CATALYSIS A-GENERAL LA English DT Article DE nickel; hexaaluminate; partial oxidation; sulfur; diesel; fuel cell ID CATALYTIC COMBUSTION; SYNTHESIS GAS; DIESEL FUEL; METHANE; SYNGAS; COKE; CARBON AB Reforming studies were conducted on nickel-substituted hexaaluminate catalysts, ANi(0.4)Al(11.6)O(19-delta) (A = La, Sr and Ba), to reform liquid hydrocarbon fuels into Hz-rich synthesis gas for fuel cell applications. The reaction conditions studied were the partial oxidation of n-tetradecane (I) and n-tetradecane with 50 ppmw sulfur as dibenzothiophene (II). Hexaaluminate catalyst activity toward reaction conditions (I) and (II) as well as the surface Ni concentration and dispersion was shown to correlate with the type of mirror cation substituted into the lattice. The Ni surface concentration was determined by XPS to be 5.3, < 0.1 and 0.7 wt.% for LaNi0.4Al11.6O19-delta, BaNi0.4Al11.6O19-delta and SrNi0.4Al11.6O19-delta, respectively. SrNi0.4Al11.6O19-delta and BaNi0.4Al11.6O19-delta catalysts exhibited stable performance for reaction condition (I), while the loss in activity exhibited overtime by LaNi0.4Al11.6O19-delta suggested site blocking by carbon deposition. Under reaction condition (II), additional activity loss was experienced by both LaNi0.4Al11.6O19-delta and SrNio(0.4)Al(11.6)O(19-delta) catalysts due to the presence of dibenzothiophene. However, LaNi0.4Al11.6O19-delta experienced more severe and partially reversible site blocking where SrNio(0.4)Al(11.6)O(19-delta) experienced a less severe loss of activity, selectivity and irreversible site blocking. The behavior observed in nickel-substituted hexaaluminate catalysts suggests that the different mirror cations influenced the coordination of Ni sites within the lattice and adsorption of hydrocarbons to the surface of the catalysts. Published by Elsevier B.V. C1 US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. REM Engn Serv, Morgantown, WV 26505 USA. W Virginia Univ, Dept Chem Engn, Morgantown, WV 26505 USA. RP Gardner, TH (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM todd.gardner@netl.doe.gov; dushyant.shekhawat@netl.doe.gov; david.berry@ned.doe.gov; mark.smith@re.netl.doe.gov; maria.salazar-villaphando@netl.doe.gov; edwin.kugler@mail.wvu.edu NR 30 TC 39 Z9 39 U1 0 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-860X J9 APPL CATAL A-GEN JI Appl. Catal. A-Gen. PD APR 30 PY 2007 VL 323 BP 1 EP 8 DI 10.1016/j.apcata.2007.01.051 PG 8 WC Chemistry, Physical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA 171RX UT WOS:000246754200001 ER PT J AU Jiang, WH Liu, FX Liaw, PK Choo, H AF Jiang, W. H. Liu, F. X. Liaw, P. K. Choo, H. TI Shear strain in a shear band of a bulk-metallic glass in compression SO APPLIED PHYSICS LETTERS LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; DEFORMATION-INDUCED NANOCRYSTALLIZATION; SERRATED PLASTIC-FLOW; NOTCH BENDING TESTS; CU-SI ALLOY; AMORPHOUS METALS; RATE DEPENDENCE; INHOMOGENEOUS FLOW; FREE-VOLUME; NANOINDENTATION AB Using an infrared camera, the authors observe in situ the dynamic shear-banding operations in the geometrically constrained specimens of a bulk-metallic glass during compression at various strain rates. Based on the observed number of shear bands in a collection of simultaneous shear-banding operations that cause a serration, the authors calculate the shear strains in individual shear bands. The results demonstrate that the shear strain in a shear band is up to 10(3)%-10(4)% and dependent on strain rates. The higher the strain rates, the larger the strain in a shear band. (c) 2007 American Institute of Physics. C1 Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Jiang, WH (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM wjiang5@utk.edu RI Choo, Hahn/A-5494-2009 OI Choo, Hahn/0000-0002-8006-8907 NR 39 TC 38 Z9 38 U1 0 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 30 PY 2007 VL 90 IS 18 AR 181903 DI 10.1063/1.2734502 PG 3 WC Physics, Applied SC Physics GA 164CK UT WOS:000246210000034 ER PT J AU Shaner, EA Wanke, MC Grine, AD Lyo, SK Reno, JL Allen, SJ AF Shaner, E. A. Wanke, M. C. Grine, A. D. Lyo, S. K. Reno, J. L. Allen, S. J. TI Enhanced responsivity in membrane isolated split-grating-gate plasmonic terahertz detectors SO APPLIED PHYSICS LETTERS LA English DT Article ID TRANSISTOR; MODES AB A 50-fold increase in responsivity of plasmon resonant detectors is achieved by thermally isolating the detector on a thin membrane. Terahertz radiation is resonantly absorbed in the grating-gated channel while temperature modulation is sensed by the resistance of a narrow center region biased to pinch off. Thermal isolation enhances the temperature rise on absorption. Detectors with and without the additional thermal isolation demonstrate a linear power dependence. (c) 2007 American Institute of Physics. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Univ Calif Santa Barbara, Ctr Terahertz Sci & Technol, Santa Barbara, CA 93106 USA. RP Shaner, EA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM eashane@sandia.gov NR 7 TC 36 Z9 36 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 30 PY 2007 VL 90 IS 18 AR 181127 DI 10.1063/1.2735943 PG 3 WC Physics, Applied SC Physics GA 164CK UT WOS:000246210000027 ER PT J AU Soer, WA De Hosson, JTM Minor, AM Shan, Z Asif, SAS Warren, OL AF Soer, W. A. De Hosson, J. Th. M. Minor, A. M. Shan, Z. Asif, S. A. Syed Warren, O. L. TI Incipient plasticity in metallic thin films SO APPLIED PHYSICS LETTERS LA English DT Article ID YIELD-POINT; NANOINDENTATION; DEFORMATION; INDENTATION AB The authors have compared the incipient plastic behaviors of Al and Al-Mg thin films during indentation under load control and displacement control. In Al-Mg, solute pinning limits the ability of dislocations to propagate into the crystal and thus substantially affects the appearance of plastic instabilities as compared to pure Al. Displacement control allows for a more sensitive detection of such instabilities, as it does not require collective dislocation motion to the extent required by load-controlled indentation in order to resolve a yield event. This perception is supported by in situ transmission electron microscopy observations. (C) 2007 American Institute of Physics. C1 Univ Groningen, Dept Appl Phys, Netherlands Inst Met Res, NL-9747 AG Groningen, Netherlands. Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. Hysitron Inc, Minneapolis, MN 55344 USA. RP De Hosson, JTM (reprint author), Univ Groningen, Dept Appl Phys, Netherlands Inst Met Res, Nijenborgh 4, NL-9747 AG Groningen, Netherlands. EM j.t.m.de.hosson@rug.nl RI De Hosson, Jeff/C-2169-2013; OI De Hosson, Jeff/0000-0002-2587-3233 NR 15 TC 23 Z9 23 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 30 PY 2007 VL 90 IS 18 AR 181924 DI 10.1063/1.2736479 PG 3 WC Physics, Applied SC Physics GA 164CK UT WOS:000246210000055 ER PT J AU Santiso, EE Kostov, MK George, AM Nardelli, MB Gubbins, KE AF Santiso, Erik E. Kostov, Milen K. George, Aaron M. Nardelli, Marco Buongiorno Gubbins, Keith E. TI Confinement effects on chemical reactions - Toward an integrated rational catalyst design SO APPLIED SURFACE SCIENCE LA English DT Article; Proceedings Paper CT 6th International Symposiium on Effects of Surface Heterogeneity in Adsorption and Catalysis on Solids CY AUG 28-SEP 02, 2006 CL Zakopane, POLAND DE confinement effects; catalyst design; chemical reactions; graphitic carbons ID POTENTIAL-ENERGY SURFACE; DENSITY-FUNCTIONAL THEORY; AB-INITIO CALCULATIONS; UNIMOLECULAR REACTIONS; ROTATIONAL BARRIERS; REACTION EQUILIBRIA; CARBON MICROPORES; NO DIMERIZATION; FORMALDEHYDE; DISSOCIATION AB Most chemical reactions of practical interest are carried out in nano-structured materials, which can enhance reactions due to their large specific surface area, their interactions with the reacting mixture and confinement effects. An experimental investigation of the role of each possible catalytic effect is challenging, since experimental measurements reflect an integration over multiple effects. In this work, we present a review of our most recent research on some of the factors that can influence a chemical reaction in confinement through the study of several model systems. We first consider the influence of steric hindrance on the equilibrium and kinetics for the rotational isomerizations of several small hydrocarbons [E.E. Santiso, M. Buongiorno Nardelli, K.E. Gubbins, Proc. Natl. Acad. Sci. U.S.A., (2007), in press]. These examples illustrate how reaction rates can vary doubly exponentially with the dimensions of the confining material (the 'shape-catalytic' effect). As a second example, we consider the unimolecular decomposition of formaldehyde on graphitic carbon pores of various sizes [E.E. Santiso, A.M. George, K.E. Gubbins, M. Buongiorno Nardelli, J. Chem. Phys. 125 (2006) 084711]. These results illustrate the influence of electrostatic interactions with the supporting material on the reaction mechanism and equilibrium yield for reactions involving a charge transfer. As a final example, we consider the interaction of a water molecule with a defective carbon substrate as an example of a chemical interaction that can be enhanced through a shape-catalytic effect. We first show using ab initio calculations how a vacancy site on a graphene surface can induce the thermal splitting of water at relatively low temperatures [M.K. Kostov, E.E. Santiso, A.M. George, K.E. Gubbins, M. Buongiorno Nardelli, Phys. Rev. Lett. 95 (2005) 136105]. We then examine the dissociation on a vacancy site on a nanotube surface, which shows the shape-catalytic effect of the surface curvature. These results are a first step toward the design of catalytic materials that take advantage of different enhancing effects simultaneously. (C) 2007 Elsevier B.V. All rights reserved. C1 N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA. N Carolina State Univ, Ctr High Performance Simulat, Raleigh, NC 27695 USA. N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37381 USA. RP Santiso, EE (reprint author), N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA. EM eesantis@unity.ncsu.edu RI Buongiorno Nardelli, Marco/C-9089-2009 NR 60 TC 27 Z9 28 U1 5 U2 53 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD APR 30 PY 2007 VL 253 IS 13 BP 5570 EP 5579 DI 10.1016/j.apsusc.2006.12.121 PG 10 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 168SM UT WOS:000246544300002 ER PT J AU Adamczyk, Z Weronski, P Barbasz, J Kolasinska, M AF Adamczyk, Zbigniew Weronski, Pawel Barbasz, Jakub Kolasinska, Marta TI Modelling self-assembling of colloid particles in multilayered structures SO APPLIED SURFACE SCIENCE LA English DT Article; Proceedings Paper CT 6th International Symposium on Effects of Surface Heterogeneity in Adsorption and Catalysis on Solids CY AUG 28-SEP 02, 2006 CL Zakopane, POLAND DE adsorption of colloid particles; colloid adsorption; deposition of particles; hard sphere adsorption; irreversible adsorption of colloid particles; multilayer adsorption of particles; polyelectrolyte adsorption; random sequential adsorption; simulations of multilayer adsorption; self-assembling of colloid particles ID SITE HETEROGENEOUS SURFACES; ULTRATHIN POLYMER-FILM; IRREVERSIBLE ADSORPTION; POLYELECTROLYTE MULTILAYERS; SEQUENTIAL ADSORPTION; ELECTROSTATIC ADSORPTION; LATEX-PARTICLES; DEPOSITION; LAYER; POLYCATION AB Simulations of particle multilayer build-up in the layer by layer (LbL) self-assembling processes have been performed according to the generalized random sequential adsorption (RSA) scheme. The first (precursor) layer having an arbitrary coverage of adsorption centers was generated using the standard RSA scheme pertinent to homogeneous surface. Formation of the consecutive layers (up to 20) was simulated by assuming short-range interaction potentials for two kinds of particles of equal size. Interaction of two particles of different kind resulted in irreversible and localized adsorption upon their contact, whereas particles of the same kind were assumed to interact via the hard potential (no adsorption possible). Using this algorithm theoretical simulations were performed aimed at determining the particle volume fraction as a function of the distance from the interface, as well as the multilayer film roughness and thickness as a function of the number of layers. The simulations revealed that particle concentration distribution in the film was more uniform for low precursor layer density than for higher density, where well-defined layers of closely packed particles appeared. On the other hand, the roughness of the film was the lowest at the highest precursor layer density. It was also predicted theoretically that for low precursor layer density the film thickness increased with the number of layers in a non-linear way. However, for high precursor layer density, the film thickness increased linearly with the number of layers and the average layer thickness was equal to 1.58 of the particle radius, which is close to the closely packed hexagonal layer thickness equal to 1.73. It was concluded by analysing the existing data for colloid particles and polyelectrolytes that the theoretical results can be effectively exploited for interpretation of the LbL processes involving colloid particles and molecular species like polymers or proteins. (c) 2006 Elsevier B.V. All rights reserved. C1 Polish Acad Sci, Inst Catalysis & Surface Chem, PL-30239 Krakow, Poland. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Adamczyk, Z (reprint author), Polish Acad Sci, Inst Catalysis & Surface Chem, Niezapominajek 8, PL-30239 Krakow, Poland. EM ncadamcz@cyf-kr.edu.pl RI Adamczyk, Zbigniew/K-4697-2012 NR 40 TC 12 Z9 12 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 EI 1873-5584 J9 APPL SURF SCI JI Appl. Surf. Sci. PD APR 30 PY 2007 VL 253 IS 13 BP 5776 EP 5780 DI 10.1016/j.apsusc.2006.12.051 PG 5 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 168SM UT WOS:000246544300041 ER PT J AU Veith, GM Lupini, AR Pennycook, SJ Villa, A Prati, L Dudney, NJ AF Veith, Gabriel M. Lupini, Andrew R. Pennycook, Stephen J. Villa, Alberto Prati, Laura Dudney, Nancy J. TI Magnetron sputtering of gold nanoparticles onto WO3 and activated carbon SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT Gold 2006 Meeting CY SEP 03-06, 2006 CL Univ Limerick, Limerick, IRELAND SP World Gold Council HO Univ Limerick DE sputtering; gold catalyst; acidic support; glycerol oxidation; aberration corrected; scanning transmission electron microscopy ID LIQUID-PHASE OXIDATION; CO OXIDATION; SELECTIVE OXIDATION; CATALYSTS; GLYCEROL; OXIDES; ACID AB In this paper we describe the production and investigation of two supported gold catalyst systems prepared by magnetron sputtering: Au on WO3 and Au on activated carbon. The magnetron sputtering technique entails using an argon plasma to sputter a high purity gold target producing a flux of gold atoms which are deposited onto a constantly tumbling support material. This technique offers a number of advantages over conventional chemical preparation methods. One advantage is the ability to create gold nanoparticles (diameters < 3 nm) on unusual support materials, such as WO3 and carbon, which are generally not accessible using the ubiquitous deposition-precipitation technique. We present data demonstrating the formation of catalytic gold nanoparticles with average diameters of 1.7 nm (Au/C) and 2.1 nn (Au/WO3), as well as a substantial number of single atom species on the Au/C sample. Prototypical carbon monoxide oxidation (Au/WO3) and glycerol oxidation (Au/C) reactions were performed in order to gauge the activity of these catalysts. The WO3 supported catalyst exhibits substantial catalytic activity from room temperature to 135 degrees C (0.0018-0.082 mol CO/mol Au s) with an activation energy near 23 kJ/mol. The activity of the Au/C catalyst was compared to a Au/C catalyst prepared from a poly(vinyl alcohol) (PVA) sol. The smaller catalysts prepared by sputtering are more active than the large gold particles prepared using the PVA sol, however the larger gold nanoparticles are substantially more selective towards the production of intermediate products from the oxidation of glycerol. Published by Elsevier B.V. C1 Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. Univ Milan, Dipartimento Chim Inorgan Met Organ & Analit, I-20133 Milan, Italy. RP Veith, GM (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM veithgm@ornl.gov RI Villa, Alberto/H-7355-2013; Dudney, Nancy/I-6361-2016; Prati, Laura/Q-3970-2016 OI Villa, Alberto/0000-0001-8656-6256; Dudney, Nancy/0000-0001-7729-6178; Prati, Laura/0000-0002-8227-9505 NR 23 TC 40 Z9 40 U1 5 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD APR 30 PY 2007 VL 122 IS 3-4 BP 248 EP 253 DI 10.1016/j.cattod.2007.01.010 PG 6 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 173ZC UT WOS:000246910000011 ER PT J AU Feineman, MD Ryerson, FJ DePaolo, DJ Plank, T AF Feineman, Maureen D. Ryerson, Frederick J. DePaolo, Donald J. Plank, Terry TI Zoisite-aqueous fluid trace element partitioning with implications for subduction zone fluid composition SO CHEMICAL GEOLOGY LA English DT Article; Proceedings Paper CT 15th V M Goldschmidt Conference/Meeting of IGCP-510 CY MAY 20-25, 2005 CL Univ Idaho, Moscow, ID HO Univ Idaho DE zoisite; eclogite; trace element partitioning; slab-derived fluid; island arc basalt; Northeast Japan Arc ID BASALTIC VOLCANIC-ROCKS; HIGH-PRESSURE STABILITY; EXPERIMENTAL CONSTRAINTS; HYDROTHERMAL EXPERIMENTS; NORTHEASTERN JAPAN; HYDROUS PHASES; MANTLE WEDGE; CRUST; SLAB; CONSEQUENCES AB Zoisite-fluid trace element partition coefficients have been determined and are used to model fluids generated during the breakdown of hydrous phases in a subducting slab. Partition coefficients were determined for Rb, Ba, Th, U, Nb, Ta, Pb, Sr, and nine rare earth elements (REE) at 750-900 degrees C and 2.0 GPa. Our results show that Sr and Pb are extremely compatible in zoisite relative to other high-pressure phases (DSr > 100, DPb > 10), The zoisite-fluid partition coefficients are combined with previously determined partition coefficients for eclogite-facies minerals (garnet, cpx, rutile, phengite) to generate reaction-specific partition coefficients as well as bulk eclogite-fluid partition coefficients. Batch equilibrium models are then used to approximate the conditions of fluid formation in the slab. Two kinds of fluids are modeled - 1) fluids resulting from specific zoisite breakdown reactions, and 2) combined fluids from a variety of continuous and discontinuous reactions that have had the opportunity to equilibrate with a residual zoisite-bearing eclogite assemblage. We find that fluids generated during individual reactions have much more extreme trace element enrichments than those that have equilibrated with the eclogitic slab as a whole. In particular, fluids generated during zoisite-breakdown reactions tend to be strongly enriched in Pb and Sr. Fluids of extreme composition from individual dehydration reactions may be preserved as fluid inclusions and veins in exhumed eclogites. Fluids that have equilibrated with zoisite-bearing eclogite have a more moderate trace element enrichment pattern that is more consistent with the fluid component sampled by island arc basalts (IAB) in the zone of melting beneath the volcanic front. We propose that fluids generated in the slab, which may initially have extreme patterns of trace element enrichment and fractionation, and may show extreme variation on a small spatial scale, are ultimately at least partially equilibrated with the bulk eclogite. Subsequent mixing with partial melts of the sediment layer and exchange with the mantle wedge en route to the melting region serve to further homogenize the fluids. Therefore, we expect that "metamorphic" subduction zone fluids recorded by inclusions and veins in eclogite will differ quite markedly in composition from "metasomatic" subduction zone fluids that contribute to the formation of island arc basalts, even though their origin may be the same. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. Lawrence Livermore Natl Lab, Dept Earth Sci, Livermore, CA 94551 USA. Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. Boston Univ, Dept Earth Sci, Boston, MA 02215 USA. RP Feineman, MD (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM mdf12@psu.edu RI Plank, Terry/D-9542-2012 NR 44 TC 43 Z9 43 U1 1 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 J9 CHEM GEOL JI Chem. Geol. PD APR 30 PY 2007 VL 239 IS 3-4 BP 250 EP 265 DI 10.1016/j.chemgeo.2007.01.008 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 168TO UT WOS:000246547100006 ER PT J AU Kavner, A Walker, D Sutton, S Newville, M AF Kavner, A. Walker, D. Sutton, S. Newville, M. TI Externally-driven charge transfer in silicates at high pressure and temperature: A XANES study SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE X-ray absorption edge spectroscopy; electrochemistry; oxygen fugacity; oxidation state ID IRON OXIDATION-STATES; VANADIUM; MELTS; PYROXENE; SPINEL; SPECTRA; GLASSES; BEARING; MAGMAS; RH AB Modest perturbations induced by an externally-applied electric field can generate significant variations in effective oxygen fugacity in high temperature silicates. This result has at least two-fold importance: first, it is a new petrologic technique to examine the behavior of a single sample under a large range of effective oxygen fugacity; and second, it is a mechanism for planetary electric fields to generate potentially significant chemical heterogeneities within planetary interiors. The redox state of Fe and V within a partially melted basaltic andesite was manipulated in situ in a piston-cylinder experiment with a DC power supply providing a source and sink of electrons to the sample. A 1 V electrical potential difference was applied across vanadium-doped synthetic basalt samples for 24 h. at 20 kbar and 1400 degrees C in a specially-designed piston cylinder sample assembly. Three experiments were performed: a control sample with no applied voltage, one with bottom ground and top anode (+1 V), and a third with top ground and bottom anode (+1 V). Synchrotron-based X-ray absorption near edge structure spectroscopy (XANES) was used to provide maps of iron and vanadium oxidation states with 5 mu m x 5 mu m spatial resolution throughout the recovered samples. Systematic increasing oxidation states of V and Fe were observed approaching the anode. Oxidation states were mapped to corresponding local oxygen fugacities by comparison with a series of samples synthesized under known oxygen fugacity conditions from previous studies. Both Fe and V markers indicate that the 1 V potential drop across the sample induces effective oxygen fugacity perturbations of 10 orders of magnitude. Therefore, it is possible that the presence of modest poloidal electric fields (similar to 10(-6) V/m) within the Earth's outer core may provide an electrochemical driving force for localized charge transfer reactions in certain overlying mantle areas, generating local order-of-magnitude differences in effective oxygen fugacity. (C) 2007 Elsevier B.V. All rights reserved. C1 Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. Argonne Natl Lab, Adv Photon Source, Consortium Adv Radiat Sources, Argonne, IL 60439 USA. RP Kavner, A (reprint author), Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. EM akavner@ucla.edu RI Kavner, Abby/A-4904-2009 NR 23 TC 9 Z9 9 U1 2 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD APR 30 PY 2007 VL 256 IS 3-4 BP 314 EP 327 DI 10.1016/j.epsl.2006.12.020 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 176CU UT WOS:000247061300002 ER PT J AU Skanthakumar, S Antonio, MR Wilson, RE Soderholm, L AF Skanthakumar, S. Antonio, Mark R. Wilson, Richard E. Soderholm, L. TI The curium aqua ion SO INORGANIC CHEMISTRY LA English DT Article ID AQUEOUS CHLORIDE SOLUTIONS; X-RAY-DIFFRACTION; RARE-EARTH IONS; ABSORPTION FINE-STRUCTURE; COORDINATION HYDRATION; NONAAQUALANTHANOID(III) TRIS(TRIFLUOROMETHANESULFONATES); REDOX SPECIATION; SPECTROSCOPY; FLUORESCENCE; HYDROLYSIS AB The coordination environment of the hydrated Cm3+ ion is probed both in the solid state and in solution. The analysis of single-crystal X-ray diffraction data from [Cm(H2O)(9)](CF3SO3)(3) determines that the Cm species is surrounded by nine coordinating waters with a tricapped-trigonal-prismatic geometry involving six short Cm-O distances at 2.453(1) angstrom and three longer Cm-O distances at 2.545(1) angstrom. The Cm nona-aqua triflate is isostructural with the series of lanthanide and actinide [R(H2O)(9)](CF3SO3)(3) (R = La-Lu, Pu) compounds. A similar nona-aqua geometry is seen for the coordination environment of Cm in aqueous solution, as probed by high-energy X-ray scattering and extended X-ray absorption fine structure spectroscopy, although the splitting in the first coordination shell is increased from 0.092(2) in the solid to 0.16(2) angstrom in solution. This increase in splitting of the Cm-water distances in the first coordination sphere is discussed in terms of its potential relevance to the previously observed decrease in coordinating waters with decreasing ionic radius about the f-ion in solution. C1 Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Skanthakumar, S (reprint author), Argonne Natl Lab, Div Chem, 9700 S Cass Ave, Argonne, IL 60439 USA. EM Skantha@anl.gov RI Wilson, Richard/H-1763-2011 OI Wilson, Richard/0000-0001-8618-5680 NR 48 TC 79 Z9 79 U1 4 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD APR 30 PY 2007 VL 46 IS 9 BP 3485 EP 3491 DI 10.1021/ic061798b PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 159NB UT WOS:000245871700011 PM 17407283 ER PT J AU Bray, TH Ling, J Choi, ES Brooks, JS Beitz, JV Sykora, RE Haire, RG Stanbury, DM Albrecht-Schmitt, TE AF Bray, Travis H. Ling, Jie Choi, Eun Sang Brooks, James S. Beitz, James V. Sykora, Richard E. Haire, Richard G. Stanbury, David M. Albrecht-Schmitt, Thomas E. TI Critical role of water content in the formation and reactivity of uranium, neptunium, and plutonium iodates under hydrothermal conditions: Implications for the oxidative dissolution of spent nuclear fuel SO INORGANIC CHEMISTRY LA English DT Article ID FRAMEWORK; IODINE AB The reactions of (NpO2)-Np-237 with excess iodate under acidic hydrothermal conditions result in the isolation of the neptunium(IV), neptunium(V), and neptunium(VI) iodates, Np(IO3)(4), Np(IO3)(4)center dot nH(2)O center dot nHIO(3), NpO2(IO3), NpO2(IO3)(2)(H2O), and NpO2(IO3)(2)center dot H2O, depending on both the pH and the amount of water present in the reactions. Reactions with less water and lower pH favor reduced products. Although the initial redox processes involved in the reactions between (NpO2)-Np-237 or (PuO2)-Pu-242 and iodate are similar, the low solubility of Pu(IO3)(4) dominates product formation in plutonium iodate reactions to a much greater extent than does Np(IO3)(4) in the neptunium iodate system. UO2 reacts with iodate under these conditions to yield uranium(VI) iodates solely. The isotypic structures of the actinide(IV) iodates, An(IO3)(4) (An = Np, Pu), are reported and consist of one-dimensional chains of dodecahedral An(IV) cations bridged by iodate anions. The structure of Np(IO3)(4)center dot nH(2)O center dot nHIO(3) is constructed from NpO9 tricapped-trigonal prisms that are bridged by iodate into a polar three-dimensional framework structure. Second-harmonic-generation measurements on a polycrystalline sample of the Th analogue of Np(IO3)(4)center dot nH(2)O center dot nHIO(3) reveal a response of approximately 12x that of alpha-SiO2. Single-crystal magnetic susceptibility measurements of Np(IO3)(4) show magnetically isolated Np(IV) ions. C1 Auburn Univ, Dept Chem & Biochem, Auburn, AL 36849 USA. Auburn Univ, EC LEach Nucl Sci Ctr, Auburn, AL 36849 USA. Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA. Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. Univ S Alabama, Dept Chem, Mobile, AL 36688 USA. Oak Ridge Natl Lab, Div Chem Sci, Transuranium Res Lab, Oak Ridge, TN 37831 USA. RP Albrecht-Schmitt, TE (reprint author), Auburn Univ, Dept Chem & Biochem, Auburn, AL 36849 USA. EM albreth@auburn.edu RI Ling, Jie/A-4136-2011 NR 36 TC 19 Z9 20 U1 2 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD APR 30 PY 2007 VL 46 IS 9 BP 3663 EP 3668 DI 10.1021/ic070170d PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 159NB UT WOS:000245871700031 PM 17397146 ER PT J AU Boyle, TJ Ottley, LAM Daniel-Taylor, SD Tribby, LJ Bunge, SD Costello, AL Alam, TM Gordon, JC McCleskey, TM AF Boyle, Timothy J. Ottley, Leigh Anna M. Daniel-Taylor, Sherrika D. Tribby, Louis J. Bunge, Scott D. Costello, Alison L. Alam, Todd M. Gordon, John C. McCleskey, T. Mark TI Isostructural neo-pentoxide derivatives of group 3 and the lanthanide series metals for the production of Ln(2)O(3) nanoparticles SO INORGANIC CHEMISTRY LA English DT Article ID X-RAY STRUCTURES; NUCLEAR MAGNETIC RESONANCE; THIN-FILMS; COMPLEXES; FAMILY; SUSCEPTIBILITY; ALKOXIDES AB The synthesis and characterization of a series of neo-pentoxide (OCH2C(CH3)(3) or ONep) derivatives of group 3 and the lanthanide (Ln) series' metals were undertaken via an amide/alcohol exchange route. Surprisingly, the products isolated and characterized by single-crystal X-ray diffraction yielded isostructural species for every trivalent cation studied: [Ln(mu-ONep)(2)(ONep)](4) [Ln = Sc (1), Y (2), La (3), Ce (4), Pr (5), Nd (6), Sm (7), Eu (8), Gd (9), Tb (10), Dy (11), Ho (12), Er (13), Tm (14), Yb (15), Lu (16)]. Compounds 3, 4, 6, and 11 have been previously reported. Within this series of complexes, the Ln metal centers are oriented in a square with each Ln-Ln edge interconnected via two mu-ONep ligands; each metal center also binds one terminal ONep ligand. NMR data of 1-3 indicate that the solid-state structure is retained in solution. FTIR spectroscopy (KBr pellet) revealed the presence of significant Ln- - -H-C interactions within one set of the bridging ONep ligands in all cases; the stretching frequencies of these C-H bonds appear to increase in magnitude with decrease in metal ion radius. These complexes were used to generate nanoparticles through solution hydrolysis routes, resulting in the formation of lanthanide oxide nanoparticles and rods. The emission properties of these ceramics were preliminarily investigated using UV-vis and PL measurements. C1 Sandia Natl Labs, Adv Mat Labs, Albuquerque, NM 87106 USA. RP Boyle, TJ (reprint author), Sandia Natl Labs, Adv Mat Labs, 1001 Univ Blvd SE, Albuquerque, NM 87106 USA. EM tjboyle@Sandia.gov RI McCleskey, Thomas/J-4772-2012; OI Mccleskey, Thomas/0000-0003-3750-3245 NR 24 TC 27 Z9 27 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD APR 30 PY 2007 VL 46 IS 9 BP 3705 EP 3713 DI 10.1021/ic070253u PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 159NB UT WOS:000245871700036 PM 17385854 ER PT J AU Zentgraf, T Huber, R Nielsen, NC Chemla, DS Kaindl, RA AF Zentgraf, Thomas Huber, Rupert Nielsen, Nils C. Chemla, Daniel S. Kaindl, Robert A. TI Ultrabroadband 50-130 THz pulses generated via phase-matched difference frequency mixing in LiIO3 SO OPTICS EXPRESS LA English DT Article ID OPTICAL PARAMETRIC AMPLIFICATION; FEMTOSECOND PULSES; REPETITION RATE; MU-M; GASE; CRYSTALS AB We report the generation of ultrabroadband pulses spanning the 50-130 THz frequency range via phase-matched difference frequency mixing within the broad spectrum of sub-10 fs pulses in LiIO3. Model calculations reproduce the octave-spanning spectra and predict few-cycle THz pulse durations less than 20 fs. The broad applicability of this scheme is demonstrated with 9-fs pulses from a Ti:sapphire oscillator and with 7-fs amplified pulses from a hollow fiber compressor as pump sources. (c) 2007 Optical Society of America C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zentgraf, T (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Zentgraf, Thomas/G-8848-2013 OI Zentgraf, Thomas/0000-0002-8662-1101 NR 24 TC 30 Z9 31 U1 0 U2 7 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD APR 30 PY 2007 VL 15 IS 9 BP 5775 EP 5781 DI 10.1364/OE.15.005775 PG 7 WC Optics SC Optics GA 166QU UT WOS:000246395000056 PM 19532835 ER PT J AU Guenther, C Breault, R AF Guenther, Chris Breault, Ronald TI Wavelet analysis to characterize cluster dynamics in a circulating fluidized bed SO POWDER TECHNOLOGY LA English DT Article DE clusters; wavelets; multiphase flow; CFB ID BEHAVIOR; FLUCTUATION; WALL AB A common hydrodynamic feature in heavily loaded circulating fluidized beds is the presence of clusters. The continuous formation and destruction of clusters strongly influences particle hold-up, pressure drop, heat transfer at the wall, and mixing. In this paper fiber optic data is analyzed using discrete wavelet analysis to characterize the dynamic behavior of clusters. Five radial positions at three different axial locations under five different operating conditions spanning three different flow regimes were analyzed using discrete wavelets. Results are summarized with respect to cluster size and frequency. (c) 2006 Elsevier B.V. All rights reserved. C1 US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Guenther, C (reprint author), US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM chris.guenther@netl.doe.gov OI Breault, Ronald/0000-0002-5552-4050 NR 19 TC 43 Z9 46 U1 2 U2 18 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD APR 30 PY 2007 VL 173 IS 3 BP 163 EP 173 DI 10.1016/j.powtec.2006.12.016 PG 11 WC Engineering, Chemical SC Engineering GA 165TM UT WOS:000246328600002 ER PT J AU Rosenthal, SJ McBride, J Pennycook, SJ Feldman, LC AF Rosenthal, Sandra J. McBride, James Pennycook, Stephen J. Feldman, Leonard C. TI Synthesis, surface studies, composition and structural characterization of CdSe, core/shell and biologically active nanocrystals SO SURFACE SCIENCE REPORTS LA English DT Review DE cadmium; selenium; selenide; CdSe; nanocrystal; quantum dot; nanoparticle; surface; synthesis; electron microscopy; Z-STEM; RBS; alloy; core/shell; fluorescence; quantum yield; growth mechanism; expitaxy; spectroscopy ID SEMICONDUCTOR QUANTUM DOTS; LIGHT-EMITTING-DIODES; TRANSMISSION ELECTRON-MICROSCOPE; CADMIUM SELENIDE NANOCRYSTALS; CORE-SHELL NANOCRYSTALS; CHARGE-CARRIER DYNAMICS; SOLAR-CELLS; IN-VIVO; POLYMER COMPOSITES; EPITAXIAL-GROWTH AB Nanostructures, with their very large surface to volume ratio and their non-planar geometry, present an important challenge to surface scientists. New issues arise as to surface characterization, quantification and interface formation. This review summarizes the current state of the art in the synthesis, composition, surface and interface control of CdSe nanocrystal systems, one of the most studied and useful nanostructures. (C) 2007 Elsevier B.V. All rights reserved. C1 Vanderbilt Univ, Dept Chem, Nashville, TN 37235 USA. Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN USA. RP Rosenthal, SJ (reprint author), Vanderbilt Univ, Dept Chem & Phys, 7330 Stevenson CenterStn B 351822, Nashville, TN 37235 USA. EM sandra.j.rosenthal@vanderbilt.edu RI McBride, James/D-2934-2012 OI McBride, James/0000-0003-0161-7283 FU NIBIB NIH HHS [R01 EB003728, R01 EB003728-02]; NIGMS NIH HHS [P20 GM072048, P20 GM072048-02] NR 147 TC 146 Z9 147 U1 10 U2 102 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-5729 J9 SURF SCI REP JI Surf. Sci. Rep. PD APR 30 PY 2007 VL 62 IS 4 BP 111 EP 157 DI 10.1016/j.surfrep.2007.02.001 PG 47 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 166IZ UT WOS:000246373700001 PM 21479151 ER PT J AU Yan, BZ Stoner, DL Scott, JR AF Yan, Beizhan Stoner, Daphne L. Scott, Jill R. TI Direct LD-FTMS detection of mineral-associated PAHs and their influence on the detection of co-existing amino acids SO TALANTA LA English DT Article DE PAH; minerals; amino acids; laser desorption; FTMS; LDMS ID POLYCYCLIC AROMATIC-HYDROCARBONS; TIME-OF-FLIGHT; ASSISTED-LASER-DESORPTION/IONIZATION; INTERPLANETARY DUST PARTICLES; TRANSFORM MASS-SPECTROMETER; MALDI SAMPLE PREPARATION; ORGANIC-COMPOUNDS; GAS-PHASE; DESORPTION; MATRIX AB Polycyclic aromatic hydrocarbon (PAH) compounds and amino acids (AAs) are both ubiquitous throughout the universe and can be co-located in mineral matrices (e.g., meteorites); therefore, co-detection of PAHs and AAs associated with terrestrial and extra-terrestrial minerals is of interest. Nine PAH compounds representing four chemical classes of PAH (unsubstituted, acetyl-, amino-, and nitro-substituted) were applied onto the surface of quartz, plagioclase, olivine, and ilmenite mineral standards and analyzed using laser desorption/ionization Fourier transform mass spectrometry (LD-FTMS). Mass-to-charge peaks derived from PAH compounds were detected from the surfaces of all minerals evaluated. All PAH compounds were detected in the positive ion mode, whereas only nitro-substituted PAH compounds were detected in negative ion mode. In this and earlier studies, the ability to directly detect mineral-associated AAs by LD-FTMS was dependent on the mineral geomatrix. On iron-bearing minerals AAs appeared as highly fragmented ions in the spectra or were not detectable; however, the addition of the PAH chrysene enabled the ionization and detection of AAs threonine and histidine by LD-FTMS. Thus, for mineral systems such as meteorites, interstellar dust particles, soils, and sediments, the co-detection of AAs associated with PAHs by LD-FTMS is feasible. (c) 2006 Elsevier B.V. All rights reserved. C1 Idaho Natl Lab, Idaho Falls, ID 83415 USA. Univ Idaho, Dept Chem, Idaho Falls, ID 83402 USA. RP Scott, JR (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM jill.scott@inl.gov NR 51 TC 9 Z9 10 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-9140 J9 TALANTA JI Talanta PD APR 30 PY 2007 VL 72 IS 2 BP 634 EP 641 DI 10.1016/j.talanta.2006.11.031 PG 8 WC Chemistry, Analytical SC Chemistry GA 165QU UT WOS:000246321200045 PM 19071666 ER PT J AU Gaunt, AJ Reilly, SD Hayton, TW Scott, BL Neu, MP AF Gaunt, Andrew J. Reilly, Sean D. Hayton, Trevor W. Scott, Brian L. Neu, Mary P. TI An entry route into non-aqueous plutonyl coordination chemistry SO CHEMICAL COMMUNICATIONS LA English DT Article ID HETEROCYCLIC CARBENE COMPLEXES; STRUCTURAL-CHARACTERIZATION; CRYSTAL-STRUCTURE; ABSORPTION-SPECTRA; URANYL; COMPOUND; PU(VI) AB The Pu(VI) molecular complex, [PuO2Cl2(thf)(2)](2), is prepared by addition of a HCl/Et2O solution to a suspension Of PuO2CO3 in thf, yielding the first example of a precursor suitable for investigation of the non-aqueous chemistry of the plutonyl dioxo cation under inert atmospheric conditions. C1 Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Gaunt, AJ (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM gaunt@lanl.gov; mneu@lanl.gov RI Scott, Brian/D-8995-2017; OI Scott, Brian/0000-0003-0468-5396; Gaunt, Andrew/0000-0001-9679-6020 NR 24 TC 15 Z9 15 U1 0 U2 3 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 J9 CHEM COMMUN JI Chem. Commun. PD APR 28 PY 2007 IS 16 BP 1659 EP 1661 DI 10.1039/b618577k PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 162RY UT WOS:000246108400025 PM 17530092 ER PT J AU Elles, CG Shkrob, IA Crowell, RA Bradforth, SE AF Elles, Christopher G. Shkrob, Ilya A. Crowell, Robert A. Bradforth, Stephen E. TI Excited state dynamics of liquid water: Insight from the dissociation reaction following two-photon excitation SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID HYDROGEN-BOND NETWORK; MOLECULAR-DYNAMICS; HYDRATED ELECTRONS; TEMPERATURE-DEPENDENCE; ABSORPTION SPECTRA; ENERGY DEPENDENCE; PHOTODISSOCIATION; IONIZATION; SPECTROSCOPY; PHOTOLYSIS AB The authors use transient absorption spectroscopy to monitor the ionization and dissociation products following two-photon excitation of pure liquid water. The primary decay mechanism changes from dissociation at an excitation energy of 8.3 eV to ionization at 12.4 eV. The two channels occur with similar yield for an excitation energy of 9.3 eV. For the lowest excitation energy, the transient absorption at 267 nm probes the geminate recombination kinetics of the H and OH fragments, providing a window on the dissociation dynamics. Modeling the OH geminate recombination indicates that the dissociating H atoms have enough kinetic energy to escape the solvent cage and one or two additional solvent shells. The average initial separation of H and OH fragments is 0.7 +/- 0.2 nm. Our observation suggests that the hydrogen bonding environment does not prevent direct dissociation of an O-H bond in the excited state. We discuss the implications of our measurement for the excited state dynamics of liquid water and explore the role of those dynamics in the ionization mechanism at low excitation energies. (c) 2007 American Institute of Physics. C1 Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. RP Elles, CG (reprint author), Argonne Natl Lab, Div Chem, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rob_crowell@anl.gov; stephen.bradforth@usc.edu RI Bradforth, Stephen/B-5186-2008; Elles, Christopher/C-3906-2008 OI Bradforth, Stephen/0000-0002-6164-3347; NR 56 TC 36 Z9 37 U1 4 U2 30 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 28 PY 2007 VL 126 IS 16 AR 164503 DI 10.1063/1.2727468 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 162FN UT WOS:000246072300031 PM 17477610 ER PT J AU Liu, P Rodriguez, JA AF Liu, Ping Rodriguez, Jose A. TI Water-gas-shift reaction on metal nanoparticles and surfaces SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID CATALYSTS; CERIA; AU; MECHANISM; CU(111); KINETICS; CU AB Density functional theory was employed to investigate the water-gas-shift reaction (WGS, CO+H2O -> H-2+CO2) on Au-29 and Cu-29 nanoparticles seen with scanning tunneling microscopy in model Au/CeO2(111) and Cu/CeO2(111) catalysts. Au(100) and Cu(100) surfaces were also included for comparison. According to the calculations of the authors, the WGS on these systems operate via either redox or associative carboxyl mechanism, while the rate-limiting step is the same, water dissociation. The WGS activity decreases in a sequence: Cu-29 > Cu(100)> Au-29 > Au(100), which agrees well with the experimental observations. Both nanoparticles are more active than their parent bulk surfaces. The nanoscale promotion on the WGS activity is associated with the low-coordinated corner and the edge sites as well as the fluxionality of the particles, which makes the nanoparticles more active than the flat surfaces for breaking the O-H bond. In addition, the role of the oxide support during the WGS was addressed by comparing the activity seen in the calculations of the authors for the Au-29 and Cu-29 nanoparticles and activity reported for X/CeO2(111) and X/ZnO(000 < overline > i )(X=Cu or Au) surfaces. (c) 2007 American Institute of Physics. C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Liu, P (reprint author), Brookhaven Natl Lab, Dept Chem, Bldg 555, Upton, NY 11973 USA. EM pingliu3@bnl.gov NR 33 TC 127 Z9 128 U1 8 U2 84 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 28 PY 2007 VL 126 IS 16 AR 164705 DI 10.1063/1.2722747 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 162FN UT WOS:000246072300043 PM 17477622 ER PT J AU Lochan, RC Head-Gordon, M AF Lochan, Rohini C. Head-Gordon, Martin TI Orbital-optimized opposite-spin scaled second-order correlation: An economical method to improve the description of open-shell molecules SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID PLESSET PERTURBATION-THEORY; DENSITY-FUNCTIONAL THEORY; ELECTRONIC-STRUCTURE METHOD; COUPLED-CLUSTER THEORY; GAUSSIAN-BASIS SETS; WAVE-FUNCTIONS; DOUBLES MODEL; VIBRATIONAL FREQUENCIES; CORRELATION ENERGIES; QUANTUM-CHEMISTRY AB Coupled-cluster methods based on Brueckner orbitals are well known to resolve the problems of symmetry breaking and spin contamination that are often associated with Hartree-Fock orbitals. However, their computational cost is large enough to prevent application to large molecules. Here the authors present a simple approximation where the orbitals are optimized with the mean-field energy plus a correlation energy taken as the opposite-spin component of the second-order many-body correlation energy, scaled by an empirically chosen parameter (recommended as 1.2 for general applications). This "optimized second-order opposite-spin" (abbreviated as O2) method requires fourth-order computation on each orbital iteration. O2 is shown to yield predictions of structure and frequencies for closed-shell molecules that are very similar to scaled second-order Moller-Plesset methods. However, it yields substantial improvements for open-shell molecules, where problems with spin contamination and symmetry breaking are shown to be greatly reduced. (c) 2007 American Institute of Physics. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Lochan, RC (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. NR 74 TC 72 Z9 72 U1 2 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 28 PY 2007 VL 126 IS 16 AR 164101 DI 10.1063/1.2718952 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 162FN UT WOS:000246072300004 PM 17477583 ER PT J AU Prasad, R Umezawa, N Domin, D Salomon-Ferrer, R Lester, WA AF Prasad, Rajendra Umezawa, Naoto Domin, Dominik Salomon-Ferrer, Romelia Lester, William A., Jr. TI Quantum Monte Carlo study of first-row atoms using transcorrelated variational Monte Carlo trial functions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID FOCK WAVE-FUNCTIONS; MOLECULES; OPTIMIZATION; CHEMISTRY; ACCURACY; ENERGIES; NEON; HE AB The effect of using the transcorrelated variational Monte Carlo (TC-VMC) approach to construct a trial function for fixed node diffusion Monte Carlo (DMC) energy calculations has been investigated for the first-row atoms, Li to Ne. The computed energies are compared with fixed node DMC energies obtained using trial functions constructed from Hartree-Fock and density functional levels of theory. Despite major VMC energy improvement with TC-VMC trial functions, no improvement in DMC energy was observed using these trial functions for the first-row atoms studied. The implications of these results on the nodes of the trial wave functions are discussed. (c) 2007 American Institute of Physics. C1 Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. Natl Inst Mat Sci, Nanomat Lab, Tsukuba, Ibaraki 3050044, Japan. RP Prasad, R (reprint author), Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. RI Prasad, Rajendra/C-9472-2015 OI Prasad, Rajendra/0000-0003-1919-0708 NR 26 TC 9 Z9 9 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 28 PY 2007 VL 126 IS 16 AR 164109 DI 10.1063/1.2715581 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 162FN UT WOS:000246072300012 PM 17477591 ER PT J AU Stimson, S Evans, M Hsu, CW Ng, CY AF Stimson, S. Evans, M. Hsu, C.-W. Ng, C. Y. TI Rotationally resolved vacuum ultraviolet pulsed field ionization-photoelectron vibrational bands for HD+(X (2)Sigma(+)(g),v(+)=0-20) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR ION HD; HIGH-RESOLUTION PHOTOIONIZATION; DIATOMIC-MOLECULES; SYNCHROTRON-RADIATION; ANGULAR-DISTRIBUTION; DISSOCIATION LIMIT; RYDBERG STATES; GENERAL THEORY; SPECTROSCOPY; SPECTRUM AB The authors have obtained rotationally resolved vacuum ultraviolet pulsed field ionization-photoelectron (vuv-PFI-PE) spectrum of HD in the photon energy range of 15.29-18.11 eV, covering the ionization transitions HD+(X (2)Sigma(+)(g),nu(+)=0-21,N+)<- HD(X (1)Sigma(+)(g),nu ''=0,J ''). The assignment of rotational transitions resolved in the vuv-PFI-PE vibrational bands for HD+(X (2)Sigma(+)(g),nu(+)=0-20) and their simulation using the Buckingham-Orr-Sichel (BOS) model are presented. Rotational branches corresponding to the Delta N=N+-J ''=0, +/- 1, +/- 2, +/- 3, and +/- 4 transitions are observed in the vuv-PFI-PE spectrum of HD. The BOS simulation shows that the perturbation of vuv-PFI-PE rotational line intensities due to near resonance autoionization is very minor at v(+)>= 5 and decreases as v(+) is increased. Thus, the rotationally resolved PFI-PE bands for HD+(nu(+)>= 5) presented here provide reliable estimates of state-to-state cross sections for direct photoionization of HD, while the rotationally resolved PFI-PE bands for HD+(v(+)< 5) are useful data for fundamental understanding of the near resonance autoionizing mechanism. On the basis of the rovibrational assignment of the vuv-PFI-PE bands, the ionization energies for the formation of HD+(X (2)Sigma(+)(g),nu(+)=0-20,N+) from HD(X (1)Sigma(+)(g),nu ''=0,J '') and the vibrational constants (omega(e), omega(e)chi(e), omega(e)y(e), and omega(e)z(e)), the rotational constants (B-e and alpha(e)), the vibrational energy spacings, and the dissociation energy for HD+(X (2)Sigma(+)(g)) are determined. As expected, these values are found to be in excellent agreement with high level theoretical predictions. (c) 2007 American Institute of Physics. C1 Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Ng, CY (reprint author), Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. EM cyng@chem.ucdavis.edu NR 47 TC 3 Z9 3 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 28 PY 2007 VL 126 IS 16 AR 164303 DI 10.1063/1.2720843 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 162FN UT WOS:000246072300019 PM 17477598 ER PT J AU Yeganeh, S Ratner, MA Mujica, V AF Yeganeh, Sina Ratner, Mark A. Mujica, Vladimiro TI Dynamics of charge transfer: Rate processes formulated with nonequilibrium Green's functions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ELECTRON-TRANSFER REACTIONS; MOLECULAR WIRES; XAFS THEORY; CONDUCTION; TEMPERATURE; ENERGY; MODEL; DEPENDENCE; INTERFACES; SCATTERING AB The authors examine the connection between electron transport under bias in a junction and nonadiabatic intramolecular electron transfer (ET). It is shown that under certain assumptions it is possible to define a stationary current that allows the computation of the intramolecular transfer rate using the same formalism that is employed in the description of transport. They show that the nonequilibrium Green's function formalism of quantum transport can be used to calculate the ET rate. The formal connection between electron transport and electron transfer is made, and they work out the simple case of an electronic level coupled to a vibrational mode representing a thermal bath and show that the result is the same as expected from a Fermi golden rule treatment, and in the high-temperature limit yields the Marcus electron transfer theory. The usefulness of this alternative formulation of rates is discussed. (c) 2007 American Institute of Physics. C1 Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. Northwestern Univ, Ctr Nanofabricat & Mol Self Assembly, Evanston, IL 60208 USA. Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. Cent Univ Venezuela, Fac Ciencias, Escuela Quim, Caracas 1020A, Venezuela. RP Yeganeh, S (reprint author), Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. EM ratner@northwestern.edu; vmujica@northwestern.edu NR 48 TC 16 Z9 16 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 28 PY 2007 VL 126 IS 16 AR 161103 DI 10.1063/1.2735606 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 162FN UT WOS:000246072300003 PM 17477582 ER PT J AU Agarwal, R Burley, SK Swaminathan, S AF Agarwal, Rakhi Burley, Stephen K. Swaminathan, Subramanyam TI Structural analysis of a ternary complex of allantoate amidohydrolase from Escherichia coli reveals its mechanics SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE allantoate amidohydrolase; crystal structure; di-zinc-dependent exopeptidases; allosteric effector; hinge region ID MALTODEXTRIN-BINDING-PROTEIN; CIS PEPTIDE-BONDS; CARBONIC-ANHYDRASE; ZINC COORDINATION; ACTIVE-TRANSPORT; HINGE REGION; ENZYME; CATALYSIS; INACTIVATION; CHEMOTAXIS AB Purine metabolism plays a major role in regulating the availability of purine nucleotides destined for nucleic acid synthesis. Allantoate amidohydrolase catalyzes the conversion of allantoate to (S)-ureidoglycolate, one of the crucial alternate steps in purine metabolism. The crystal structure of a ternary complex of allantoate amiclohydrolase with its substrate allantoate and an allosteric effector, a sulfate ion, from Escherichia coli was determined to understand better the catalytic mechanism and substrate specificity. The 2.25 A resolution X-ray structure reveals an alpha/beta scaffold akin to zinc exopeptidases of the peptidase M20 family and lacks the (beta/alpha)(8)-barrel fold characteristic of the amidohydrolases. Arrangement of the substrate and the two co-catalytic zinc ions at the active site governs catalytic specificity for hydrolysis of N-carbamyl versus the peptide bond in exopeptidases. In its crystalline form, allantoate amidohydrolase adopts a relatively open conformation. However, structural analysis reveals the possibility of a significant movement of domains via rotation about two hinge regions upon allosteric effector and substrate binding resulting in a closed catalytically competent conformation by bringing the substrate allantoate closer to cocatalytic zinc ions. Two cis-prolyl peptide bonds found on either side of the dimerization domain in close proximity to the substrate and ligand-binding sites may be involved in protein folding and in preserving the integrity of the catalytic site. (c) 2007 Elsevier Ltd. All rights reserved. C1 Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. SGX Pharmaceut Inc, San Diego, CA 92121 USA. RP Swaminathan, S (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM swami@bnl.gov FU NIGMS NIH HHS [GM62529] NR 42 TC 24 Z9 26 U1 0 U2 2 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD APR 27 PY 2007 VL 368 IS 2 BP 450 EP 463 DI 10.1016/j.jmb.2007.02.028 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 159WD UT WOS:000245897400014 PM 17362992 ER PT J AU Adare, A Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Al-Bataineh, H Alexander, J Al-Jamel, A Aoki, K Aphecetche, L Armendariz, R Aronson, SH Asai, J Atomssa, ET Averbeck, R Awes, TC Azmoun, B Babintsev, V Baksay, G Baksay, L Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Bathe, S Batsouli, S Baublis, V Bauer, F Bazilevsky, A Belikov, S Bennett, R Berdnikov, Y Bickley, AA Bjorndal, MT Boissevain, JG Borel, H Boyle, K Brooks, ML Brown, DS Bucher, D Buesching, H Bumazhnov, V Bunce, G Burward-Hoy, JM Butsyk, S Campbell, S Chai, JS Chang, BS Charvet, JL Chernichenko, S Chiba, J Chi, CY Chiu, M Choi, IJ Chujo, T Chung, P Churyn, A Cianciolo, V Cleven, CR Cobigo, Y Cole, BA Comets, MP Constantin, P Csanad, M Csorgo, T Dahms, T Das, K David, G Deaton, MB Dehmelt, K Delagrange, H Denisov, A d'Enterria, D Deshpande, A Desmond, EJ Dietzsch, O Dion, A Donadelli, M Drachenberg, JL Drapier, O Drees, A Dubey, AK Durum, A Dzhordzhadze, V Efremenko, YV Egdemir, J Ellinghaus, F Emam, WS Enokizono, A En'yo, H Espagnon, B Esumi, S Eyser, KO Fields, DE Finger, M Fleuret, F Fokin, SL Forestier, B Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fujiwara, K Fukao, Y Fung, SY Fusayasu, T Gadrat, S Garishvili, I Gastineau, F Germain, M Glenn, A Gong, H Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Gustafsson, HA Hachiya, T Henni, AH Haegemann, C Haggerty, JS Hagiwara, MN Hamagaki, H Han, R Harada, H Hartouni, EP Haruna, K Harvey, M Haslum, E Hasuko, K Hayano, R Heffner, M Hemmick, TK Hester, T Heuser, JM He, X Hiejima, H Hill, JC Hobbs, R Hohlmann, M Holmes, M Holzmann, W Homma, K Hong, B Horaguchi, T Hornback, D Hur, MG Ichihara, T Imai, K Inaba, M Inoue, Y Isenhower, D Isenhower, L Ishihara, M Isobe, T Issah, M Isupov, A Jacak, BV Jia, J Jin, J Jinnouchi, O Johnson, BM Joo, KS Jouan, D Kajihara, F Kametani, S Kamihara, N Kamin, J Kaneta, M Kang, JH Kano, H Kanou, H Kawagishi, T Kawall, D Kazantsev, AV Kelly, S Khanzadeev, A Kikuchi, J Kim, DH Kim, DJ Kim, E Kim, YS Kinney, E Kiss, A Kistenev, E Kiyomichi, A Klay, J Klein-Boesing, C Kochenda, L Kochetkov, V Komkov, B Konno, M Kotchetkov, D Kozlov, A Kral, A Kravitz, A Kroon, PJ Kubart, J Kunde, GJ Kurihara, N Kurita, K Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lai, YS Lajoie, JG Lebedev, A Le Bornec, Y Leckey, S Lee, DM Lee, MK Lee, T Leitch, MJ Leite, MAL Lenzi, B Lim, H Liska, T Litvinenko, A Liu, MX Li, X Li, XH Love, B Lynch, D Maguire, CF Makdisi, YI Malakhov, A Malik, MD Manko, VI Mao, Y Masek, L Masui, H Matathias, F McCain, MC McCumber, M McGaughey, PL Miake, Y Mikes, P Miki, K Miller, TE Milov, A Mioduszewski, S Mishra, GC Mishra, M Mitchell, JT Mitrovski, M Morreale, A Morrison, DP Moss, JM Moukhanova, TV Mukhopadhyay, D Murata, J Nagamiya, S Nagata, Y Nagle, JL Naglis, M Nakagawa, I Nakamiya, Y Nakamura, T Nakano, K Newby, J Nguyen, M Norman, BE Nyanin, AS Nystrand, J O'Brien, E Oda, SX Ogilvie, CA Ohnishi, H Ojha, ID Okada, H Okada, K Oka, M Omiwade, OO Oskarsson, A Otterlund, I Ouchida, M Ozawa, K Pak, R Pal, D Palounek, APT Pantuev, V Papavassiliou, V Park, J Park, WJ Pate, SF Pei, H Peng, JC Pereira, H Peresedov, V Peressounko, DY Pinkenburg, C Pisani, RP Purschke, ML Purwar, AK Qu, H Rak, J Rakotozafindrabe, A Ravinovich, I Read, KF Rembeczki, S Reuter, M Reygers, K Riabov, V Riabov, Y Roche, G Romana, A Rosati, M Rosendahl, SSE Rosnet, P Rukoyatkin, P Rykov, VL Ryu, SS Sahlmueller, B Saito, N Sakaguchi, T Sakai, S Sakata, H Samsonov, V Sato, HD Sato, S Sawada, S Seele, J Seidl, R Semenov, V Seto, R Sharma, D Shea, TK Shein, I Shevel, A Shibata, TA Shigaki, K Shimomura, M Shohjoh, T Shoji, K Sickles, A Silva, CL Silvermyr, D Silvestre, C Sim, KS Singh, CP Singh, V Skutnik, S Slunecka, M Smith, WC Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Suire, C Sullivan, JP Sziklai, J Tabaru, T Takagi, S Takagui, EM Taketani, A Tanaka, KH Tanaka, Y Tanida, K Tannenbaum, MJ Taranenko, A Tarjan, P Thomas, TL Togawa, M Toia, A Tojo, J Tomasek, L Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Tuli, SK Tydesjo, H Tyurin, N Vale, C Valle, H van Hecke, HW Velkovska, J Vertesi, R Vinogradov, AA Virius, M Vrba, V Vznuzdaev, E Wagner, M Walker, D Wang, XR Watanabe, Y Wessels, J White, SN Willis, N Winter, D Woody, CL Wysocki, M Xie, W Yamaguchi, Y Yanovich, A Yasin, Z Ying, J Yokkaichi, S Young, GR Younus, I Yushmanov, IE Zajc, WA Zaudtke, O Zhang, C Zhou, S Zimanyi, J Zolin, L AF Adare, A. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Al-Bataineh, H. Alexander, J. Al-Jamel, A. Aoki, K. Aphecetche, L. Armendariz, R. Aronson, S. H. Asai, J. Atomssa, E. T. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Baksay, G. Baksay, L. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Bathe, S. Batsouli, S. Baublis, V. Bauer, F. Bazilevsky, A. Belikov, S. Bennett, R. Berdnikov, Y. Bickley, A. A. Bjorndal, M. T. Boissevain, J. G. Borel, H. Boyle, K. Brooks, M. L. Brown, D. S. Bucher, D. Buesching, H. Bumazhnov, V. Bunce, G. Burward-Hoy, J. M. Butsyk, S. Campbell, S. Chai, J.-S. Chang, B. S. Charvet, J.-L. Chernichenko, S. Chiba, J. Chi, C. Y. Chiu, M. Choi, I. J. Chujo, T. Chung, P. Churyn, A. Cianciolo, V. Cleven, C. R. Cobigo, Y. Cole, B. A. Comets, M. P. Constantin, P. Csanad, M. Csoergo, T. Dahms, T. Das, K. David, G. Deaton, M. B. Dehmelt, K. Delagrange, H. Denisov, A. d'Enterria, D. Deshpande, A. Desmond, E. J. Dietzsch, O. Dion, A. Donadelli, M. Drachenberg, J. L. Drapier, O. Drees, A. Dubey, A. K. Durum, A. Dzhordzhadze, V. Efremenko, Y. V. Egdemir, J. Ellinghaus, F. Emam, W. S. Enokizono, A. En'yo, H. Espagnon, B. Esumi, S. Eyser, K. O. Fields, D. E. Finger, M. Fleuret, F. Fokin, S. L. Forestier, B. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fujiwara, K. Fukao, Y. Fung, S.-Y. Fusayasu, T. Gadrat, S. Garishvili, I. Gastineau, F. Germain, M. Glenn, A. Gong, H. Gonin, M. Gosset, J. Goto, Y. Granier de Cassagnac, R. Grau, N. Greene, S. V. Grosse Perdekamp, M. Gunji, T. Gustafsson, H.-A. Hachiya, T. Hadj Henni, A. Haegemann, C. Haggerty, J. S. Hagiwara, M. N. Hamagaki, H. Han, R. Harada, H. Hartouni, E. P. Haruna, K. Harvey, M. Haslum, E. Hasuko, K. Hayano, R. Heffner, M. Hemmick, T. K. Hester, T. Heuser, J. M. He, X. Hiejima, H. Hill, J. C. Hobbs, R. Hohlmann, M. Holmes, M. Holzmann, W. Homma, K. Hong, B. Horaguchi, T. Hornback, D. Hur, M. G. Ichihara, T. Imai, K. Inaba, M. Inoue, Y. Isenhower, D. Isenhower, L. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Jacak, B. V. Jia, J. Jin, J. Jinnouchi, O. Johnson, B. M. Joo, K. S. Jouan, D. Kajihara, F. Kametani, S. Kamihara, N. Kamin, J. Kaneta, M. Kang, J. H. Kano, H. Kanou, H. Kawagishi, T. Kawall, D. Kazantsev, A. V. Kelly, S. Khanzadeev, A. Kikuchi, J. Kim, D. H. Kim, D. J. Kim, E. Kim, Y.-S. Kinney, E. Kiss, A. Kistenev, E. Kiyomichi, A. Klay, J. Klein-Boesing, C. Kochenda, L. Kochetkov, V. Komkov, B. Konno, M. Kotchetkov, D. Kozlov, A. Kral, A. Kravitz, A. Kroon, P. J. Kubart, J. Kunde, G. J. Kurihara, N. Kurita, K. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lai, Y.-S. Lajoie, J. G. Lebedev, A. Le Bornec, Y. Leckey, S. Lee, D. M. Lee, M. K. Lee, T. Leitch, M. J. Leite, M. A. L. Lenzi, B. Lim, H. Liska, T. Litvinenko, A. Liu, M. X. Li, X. Li, X. H. Love, B. Lynch, D. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Malik, M. D. Manko, V. I. Mao, Y. Masek, L. Masui, H. Matathias, F. McCain, M. C. McCumber, M. McGaughey, P. L. Miake, Y. Mikes, P. Miki, K. Miller, T. E. Milov, A. Mioduszewski, S. Mishra, G. C. Mishra, M. Mitchell, J. T. Mitrovski, M. Morreale, A. Morrison, D. P. Moss, J. M. Moukhanova, T. V. Mukhopadhyay, D. Murata, J. Nagamiya, S. Nagata, Y. Nagle, J. L. Naglis, M. Nakagawa, I. Nakamiya, Y. Nakamura, T. Nakano, K. Newby, J. Nguyen, M. Norman, B. E. Nyanin, A. S. Nystrand, J. O'Brien, E. Oda, S. X. Ogilvie, C. A. Ohnishi, H. Ojha, I. D. Okada, H. Okada, K. Oka, M. Omiwade, O. O. Oskarsson, A. Otterlund, I. Ouchida, M. Ozawa, K. Pak, R. Pal, D. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Park, W. J. Pate, S. F. Pei, H. Peng, J.-C. Pereira, H. Peresedov, V. Peressounko, D. Yu. Pinkenburg, C. Pisani, R. P. Purschke, M. L. Purwar, A. K. Qu, H. Rak, J. Rakotozafindrabe, A. Ravinovich, I. Read, K. F. Rembeczki, S. Reuter, M. Reygers, K. Riabov, V. Riabov, Y. Roche, G. Romana, A. Rosati, M. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Rykov, V. L. Ryu, S. S. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, S. Sakata, H. Samsonov, V. Sato, H. D. Sato, S. Sawada, S. Seele, J. Seidl, R. Semenov, V. Seto, R. Sharma, D. Shea, T. K. Shein, I. Shevel, A. Shibata, T.-A. Shigaki, K. Shimomura, M. Shohjoh, T. Shoji, K. Sickles, A. Silva, C. L. Silvermyr, D. Silvestre, C. Sim, K. S. Singh, C. P. Singh, V. Skutnik, S. Slunecka, M. Smith, W. C. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Suire, C. Sullivan, J. P. Sziklai, J. Tabaru, T. Takagi, S. Takagui, E. M. Taketani, A. Tanaka, K. H. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Taranenko, A. Tarjan, P. Thomas, T. L. Togawa, M. Toia, A. Tojo, J. Tomasek, L. Torii, H. Towell, R. S. Tram, V-N. Tserruya, I. Tsuchimoto, Y. Tuli, S. K. Tydesjo, H. Tyurin, N. Vale, C. Valle, H. van Hecke, H. W. Velkovska, J. Vertesi, R. Vinogradov, A. A. Virius, M. Vrba, V. Vznuzdaev, E. Wagner, M. Walker, D. Wang, X. R. Watanabe, Y. Wessels, J. White, S. N. Willis, N. Winter, D. Woody, C. L. Wysocki, M. Xie, W. Yamaguchi, Y. Yanovich, A. Yasin, Z. Ying, J. Yokkaichi, S. Young, G. R. Younus, I. Yushmanov, I. E. Zajc, W. A. Zaudtke, O. Zhang, C. Zhou, S. Zimanyi, J. Zolin, L. CA PHENIX Collaboration TI Energy loss and flow of heavy quarks in Au+Au collisions at root s(NN) = 200 GeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID GLUON PLASMA; QCD MATTER; COLLABORATION; PERSPECTIVE AB The PHENIX experiment at the BNL Relativistic Heavy Ion Collider (RHIC) has measured electrons with 0.3 < p(T) < 9 GeV/c at midrapidity (\y\ < 0.35) from heavy-flavor (charm and bottom) decays in Au + Au collisions at root s(NN) = 200 GeV. The nuclear modification factor R-AA relative to p + p collisions shows a strong suppression in central Au + Au collisions, indicating substantial energy loss of heavy quarks in the medium produced at RHIC energies. A large azimuthal anisotropy v(2) with respect to the reaction plane is observed for 0.5 < p(T) < 5 GeV/c indicating substantial heavy-flavor elliptic flow. Both R-AA and v(2) show a p(T) dependence different from those of neutral pions. A comparison to transport models which simultaneously describe R-AA(p(T)) and v(2)(p(T)) suggests that the viscosity to entropy density ratio is close to the conjectured quantum lower bound, i.e., near a perfect fluid. C1 Univ Colorado, Boulder, CO 80309 USA. Abilene Christian Univ, Abilene, TX 79699 USA. Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. Brookhaven Natl Lab, Upton, NY 11973 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Charles Univ Prague, Prague 11636, Czech Republic. CIAE, Beijing, Peoples R China. Univ Tokyo, Ctr Nucl Study, Grad Sch Sci, Bunkyo Ku, Tokyo 1130033, Japan. Columbia Univ, New York, NY 10027 USA. Nevis Labs, Irvington, NY 10533 USA. Czech Tech Univ, Prague 16636 6, Czech Republic. CEA Saclay, F-91191 Gif Sur Yvette, France. Univ Debrecen, H-4010 Debrecen, Hungary. Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. Florida Inst Technol, Melbourne, FL 32901 USA. Florida State Univ, Tallahassee, FL 32306 USA. Georgia State Univ, Atlanta, GA 30303 USA. Hiroshima Univ, Higashihiroshima 7398526, Japan. State Res Ctr Russian Federat, Inst High Energy Phys, IHEP Protvino, Protvino 142281, Russia. Univ Illinois, Urbana, IL 61801 USA. Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. Iowa State Univ, Ames, IA 50011 USA. Joint Inst Nucl Res, Dubna 141980, Russia. KAERI, Cyclotron Applicat Lab, Seoul, South Korea. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. Hungarian Acad Sci, MTA KFKI RMKI, KFKI Res Inst Particle & Nucl Phys, H-1525 Budapest, Hungary. Korea Univ, Seoul 136701, South Korea. IV Kurchatov Atom Energy Inst, Russian Res Ctr, Moscow 123182, Russia. Kyoto Univ, Kyoto 6068502, Japan. Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, F-91128 Palaiseau, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Clermont Ferrand, LPC, CNRS IN2P3, F-63177 Clermont Ferrand, France. Lund Univ, Dept Phys, SE-22100 Lund, Sweden. Univ Munster, Inst Kernphys, D-49149 Munster, Germany. Myongji Univ, Yongin 449728, Kyonggido, South Korea. Nagasaki Inst Appl Sci, Nagasaki, Japan. Univ New Mexico, Albuquerque, NM 87131 USA. New Mexico State Univ, Las Cruces, NM 88003 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Paris 11, IPN Orsay, CNRS, F-91406 Orsay, France. Peking Univ, Beijing 100871, Peoples R China. Petersburg Nucl Phys Inst, PNPI, St Petersburg 188300, Russia. RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. Rikkyo Univ, Dept Phys, Tokyo 1718501, Japan. St Petersburg State Polytech Univ, St Petersburg, Russia. Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. Seoul Natl Univ, Syst Elect Lab, Seoul, South Korea. SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Univ Nantes, SUBATECH, Ecole Mines Nantes, CNRS IN2P3, F-44307 Nantes, France. Univ Tennessee, Knoxville, TN 37996 USA. Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. Vanderbilt Univ, Nashville, TN 37235 USA. Waseda Univ, Adv Res Inst Sci & Engn, Tokyo 1620044, Japan. Weizmann Inst Sci, IL-76100 Rehovot, Israel. Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Adare, A (reprint author), Univ Colorado, Boulder, CO 80309 USA. RI Semenov, Vitaliy/E-9584-2017; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017; Csanad, Mate/D-5960-2012; YANG, BOGEUM/I-8251-2012; Csorgo, Tamas/I-4183-2012; seto, richard/G-8467-2011; Tomasek, Lukas/G-6370-2014; Dahms, Torsten/A-8453-2015; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014 OI Reuter, Michael/0000-0003-3881-8310; Campbell, Sarah/0000-0001-6717-9744; Csorgo, Tamas/0000-0002-9110-9663; Newby, Robert/0000-0003-3571-1067; Skutnik, Steve/0000-0001-6441-135X; Hartouni, Edward/0000-0001-9869-4351; Sorensen, Soren /0000-0002-5595-5643; Taketani, Atsushi/0000-0002-4776-2315; Tomasek, Lukas/0000-0002-5224-1936; Dahms, Torsten/0000-0003-4274-5476; Hayano, Ryugo/0000-0002-1214-7806; NR 42 TC 421 Z9 422 U1 8 U2 33 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 27 PY 2007 VL 98 IS 17 AR 172301 DI 10.1103/PhysRevLett.98.172301 PG 6 WC Physics, Multidisciplinary SC Physics GA 172KT UT WOS:000246803900014 ER PT J AU Adler, SS Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Al-Jamel, A Alexander, J Aoki, K Aphecetche, L Armendariz, R Aronson, SH Averbeck, R Awes, TC Babintsev, V Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Bathe, S Batsouli, S Baublis, V Bauer, F Bazilevsky, A Belikov, S Bjorndal, MT Boissevain, JG Borel, H Brooks, ML Brown, DS Bruner, N Bucher, D Buesching, H Bumazhnov, V Bunce, G Burward-Hoy, JM Butsyk, S Camard, X Chand, P Chang, WC Chernichenko, S Chi, CY Chiba, J Chiu, M Choi, IJ Choudhury, RK Chujo, T Cianciolo, V Cobigo, Y Cole, BA Comets, MP Constantin, P Csanad, M Csorgo, T Cussonneau, JP d'Enterria, D Das, K David, G Deak, F Delagrange, H Denisov, A Deshpande, A Desmond, EJ Devismes, A Dietzsch, O Drachenberg, JL Drapier, O Drees, A Durum, A Dutta, D Dzhordzhadze, V Efremenko, YV En'yo, H Espagnon, B Esumi, S Fields, DE Finck, C Fleuret, F Fokin, SL Fox, BD Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fukao, Y Fung, SY Gadrat, S Germain, M Glenn, A Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gustafsson, HA Hachiya, T Haggerty, JS Hamagaki, H Hansen, AG Hartouni, EP Harvey, M Hasuko, K Hayano, R He, X Heffner, M Hemmick, TK Heuser, JM Hidas, P Hiejima, H Hill, JC Hobbs, R Holzmann, W Homma, K Hong, B Hoover, A Horaguchi, T Ichihara, T Ikonnikov, VV Imai, K Inaba, M Inuzuka, M Isenhower, D Isenhower, L Ishihara, M Issah, M Isupov, A Jacak, BV Jia, J Jinnouchi, O Johnson, BM Johnson, SC Joo, KS Jouan, D Kajihara, F Kametani, S Kamihara, N Kaneta, M Kang, JH Katou, K Kawabata, T Kazantsev, AV Kelly, S Khachaturov, B Khanzadeev, A Kikuchi, J Kim, DJ Kim, E Kim, GB Kim, HJ Kinney, E Kiss, A Kistenev, E Kiyomichi, A Klein-Boesing, C Kobayashi, H Kochenda, L Kochetkov, V Kohara, R Komkov, B Konno, M Kotchetkov, D Kozlov, A Kroon, PJ Kuberg, CH Kunde, GJ Kurita, K Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lajoie, JG Le Bornec, Y Lebedev, A Leckey, S Lee, DM Leitch, MJ Leite, MAL Li, XH Lim, H Litvinenko, A Liu, MX Maguire, CF Makdisi, YI Malakhov, A Manko, VI Mao, Y Martinez, G Masui, H Matathias, F Matsumoto, T McCain, MC McGaughey, PL Miake, Y Miller, TE Milov, A Mioduszewski, S Mishra, GC Mitchell, JT Mohanty, AK Morrison, DP Moss, JM Mukhopadhyay, D Muniruzzaman, M Nagamiya, S Nagle, JL Nakamura, T Newby, J Nyanin, AS Nystrand, J O'Brien, E Ogilvie, CA Ohnishi, H Ojha, ID Okada, H Okada, K Oskarsson, A Otterlund, I Oyama, K Ozawa, K Pal, D Palounek, APT Pantuev, V Papavassiliou, V Park, J Park, WJ Pate, SF Pei, H Penev, V Peng, JC Pereira, H Peresedov, V Pierson, A Pinkenburg, C Pisani, RP Purschke, ML Purwar, AK Qualls, JM Rak, J Ravinovich, I Read, KF Reuter, M Reygers, K Riabov, V Riabov, Y Roche, G Romana, A Rosati, M Rosendahl, SSE Rosnet, P Rykov, VL Ryu, SS Sahlmueller, B Saito, N Sakaguchi, T Sakai, S Samsonov, V Sanfratello, L Santo, R Sato, HD Sato, S Sawada, S Schutz, Y Semenov, V Seto, R Shea, TK Shein, I Shibata, TA Shigaki, K Shimomura, M Sickles, A Silva, CL Silvermyr, D Sim, KS Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Sullivan, JP Takagi, S Takagui, EM Taketani, A Tanaka, KH Tanaka, Y Tanida, K Tannenbaum, MJ Taranenko, A Tarjan, P Thomas, TL Togawa, M Tojo, J Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Tydesjo, H Tyurin, N Uam, TJ Velkovska, J Velkovsky, M Veszpremi, V Vinogradov, AA Volkov, MA Vznuzdaev, E Wang, XR Watanabe, Y White, SN Willis, N Wohn, FK Woody, CL Xie, W Yanovich, A Yokkaichi, S Young, GR Yushmanov, IE Zajc, WA Zaudtke, O Zhang, C Zhou, S Zimanyi, J Zolin, L Zong, X Vanhecke, HW AF Adler, S. S. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Al-Jamel, A. Alexander, J. Aoki, K. Aphecetche, L. Armendariz, R. Aronson, S. H. Averbeck, R. Awes, T. C. Babintsev, V. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Bathe, S. Batsouli, S. Baublis, V. Bauer, F. Bazilevsky, A. Belikov, S. Bjorndal, M. T. Boissevain, J. G. Borel, H. Brooks, M. L. Brown, D. S. Bruner, N. Bucher, D. Buesching, H. Bumazhnov, V. Bunce, G. Burward-Hoy, J. M. Butsyk, S. Camard, X. Chand, P. Chang, W. C. Chernichenko, S. Chi, C. Y. Chiba, J. Chiu, M. Choi, I. J. Choudhury, R. K. Chujo, T. Cianciolo, V. Cobigo, Y. Cole, B. A. Comets, M. P. Constantin, P. Csanad, M. Csoergo, T. Cussonneau, J. P. d'Enterria, D. Das, K. David, G. Deak, F. Delagrange, H. Denisov, A. Deshpande, A. Desmond, E. J. Devismes, A. Dietzsch, O. Drachenberg, J. L. Drapier, O. Drees, A. Durum, A. Dutta, D. Dzhordzhadze, V. Efremenko, Y. V. En'yo, H. Espagnon, B. Esumi, S. Fields, D. E. Finck, C. Fleuret, F. Fokin, S. L. Fox, B. D. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fukao, Y. Fung, S.-Y. Gadrat, S. Germain, M. Glenn, A. Gonin, M. Gosset, J. Goto, Y. Granier de Cassagnac, R. Grau, N. Greene, S. V. Grosse Perdekamp, M. Gustafsson, H.-A. Hachiya, T. Haggerty, J. S. Hamagaki, H. Hansen, A. G. Hartouni, E. P. Harvey, M. Hasuko, K. Hayano, R. He, X. Heffner, M. Hemmick, T. K. Heuser, J. M. Hidas, P. Hiejima, H. Hill, J. C. Hobbs, R. Holzmann, W. Homma, K. Hong, B. Hoover, A. Horaguchi, T. Ichihara, T. Ikonnikov, V. V. Imai, K. Inaba, M. Inuzuka, M. Isenhower, D. Isenhower, L. Ishihara, M. Issah, M. Isupov, A. Jacak, B. V. Jia, J. Jinnouchi, O. Johnson, B. M. Johnson, S. C. Joo, K. S. Jouan, D. Kajihara, F. Kametani, S. Kamihara, N. Kaneta, M. Kang, J. H. Katou, K. Kawabata, T. Kazantsev, A. V. Kelly, S. Khachaturov, B. Khanzadeev, A. Kikuchi, J. Kim, D. J. Kim, E. Kim, G.-B. Kim, H. J. Kinney, E. Kiss, A. Kistenev, E. Kiyomichi, A. Klein-Boesing, C. Kobayashi, H. Kochenda, L. Kochetkov, V. Kohara, R. Komkov, B. Konno, M. Kotchetkov, D. Kozlov, A. Kroon, P. J. Kuberg, C. H. Kunde, G. J. Kurita, K. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lajoie, J. G. Le Bornec, Y. Lebedev, A. Leckey, S. Lee, D. M. Leitch, M. J. Leite, M. A. L. Li, X. H. Lim, H. Litvinenko, A. Liu, M. X. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Manko, V. I. Mao, Y. Martinez, G. Masui, H. Matathias, F. Matsumoto, T. McCain, M. C. McGaughey, P. L. Miake, Y. Miller, T. E. Milov, A. Mioduszewski, S. Mishra, G. C. Mitchell, J. T. Mohanty, A. K. Morrison, D. P. Moss, J. M. Mukhopadhyay, D. Muniruzzaman, M. Nagamiya, S. Nagle, J. L. Nakamura, T. Newby, J. Nyanin, A. S. Nystrand, J. O'Brien, E. Ogilvie, C. A. Ohnishi, H. Ojha, I. D. Okada, H. Okada, K. Oskarsson, A. Otterlund, I. Oyama, K. Ozawa, K. Pal, D. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Park, W. J. Pate, S. F. Pei, H. Penev, V. Peng, J.-C. Pereira, H. Peresedov, V. Pierson, A. Pinkenburg, C. Pisani, R. P. Purschke, M. L. Purwar, A. K. Qualls, J. M. Rak, J. Ravinovich, I. Read, K. F. Reuter, M. Reygers, K. Riabov, V. Riabov, Y. Roche, G. Romana, A. Rosati, M. Rosendahl, S. S. E. Rosnet, P. Rykov, V. L. Ryu, S. S. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, S. Samsonov, V. Sanfratello, L. Santo, R. Sato, H. D. Sato, S. Sawada, S. Schutz, Y. Semenov, V. Seto, R. Shea, T. K. Shein, I. Shibata, T.-A. Shigaki, K. Shimomura, M. Sickles, A. Silva, C. L. Silvermyr, D. Sim, K. S. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Sullivan, J. P. Takagi, S. Takagui, E. M. Taketani, A. Tanaka, K. H. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Taranenko, A. Tarjan, P. Thomas, T. L. Togawa, M. Tojo, J. Torii, H. Towell, R. S. Tram, V-N. Tserruya, I. Tsuchimoto, Y. Tydesjo, H. Tyurin, N. Uam, T. J. Velkovska, J. Velkovsky, M. Veszpremi, V. Vinogradov, A. A. Volkov, M. A. Vznuzdaev, E. Wang, X. R. Watanabe, Y. White, S. N. Willis, N. Wohn, F. K. Woody, C. L. Xie, W. Yanovich, A. Yokkaichi, S. Young, G. R. Yushmanov, I. E. Zajc, W. A. Zaudtke, O. Zhang, C. Zhou, S. Zimanyi, J. Zolin, L. Zong, X. vanHecke, H. W. CA PHENIX Collaboration TI Centrality dependence of pi(0) and eta production at large transverse momentum in root s(NN) = 200 GeV d+Au collisions SO PHYSICAL REVIEW LETTERS LA English DT Article ID ENERGY-LOSS; QCD AB The dependence of transverse momentum spectra of neutral pions and eta mesons with p(T) < 16 GeV/c and p(T) < 12 GeV/c, respectively, on the centrality of the collision has been measured at midrapidity by the PHENIX experiment at the BNL Relativistic Heavy Ion Collider (RHIC) in d + Au collisions at root s(NN) = 200 GeV. The measured yields are compared to those in p + p collisions at the same root s(NN) scaled by the number of underlying nucleon-nucleon collisions in d + Au. At all centralities, the yield ratios show no suppression, in contrast to the strong suppression seen for central An + Au collisions at RHIC. Only a weak p(T) and centrality dependence can be observed. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. Abilene Christian Univ, Abilene, TX 79699 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. Brookhaven Natl Lab, Upton, NY 11973 USA. Univ Calif Riverside, Riverside, CA 92521 USA. CIAE, Beijing, Peoples R China. Univ Tokyo, Ctr Nucl Study, Grad Sch Sci, Tokyo 1130033, Japan. Univ Colorado, Boulder, CO 80309 USA. Columbia Univ, New York, NY 10027 USA. Nevis Labs, Irvington, NY 10533 USA. CEA Saclay, F-91191 Gif Sur Yvette, France. Univ Debrecen, H-4010 Debrecen, Hungary. Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. Florida State Univ, Tallahassee, FL 32306 USA. Georgia State Univ, Atlanta, GA 30303 USA. Hiroshima Univ, Higashihiroshima 7398526, Japan. Inst High Energy Phys, IHEP Protvino, State Res Ctr Russian Federat, Protvino 142281, Russia. Univ Illinois, Urbana, IL 61801 USA. Iowa State Univ, Ames, IA 50011 USA. Joint Inst Nucl Res, Dubna 141980, Russia. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. Hungarian Acad Sci, MTA KFKI RMKI, KFKI Res Inst Particle & Nucl Phys, H-1525 Budapest 114, Hungary. Korea Univ, Seoul 136701, South Korea. IV Kurchatov Atom Energy Inst, Russian Res Ctr, Moscow 123182, Russia. Kyoto Univ, Kyoto 6068502, Japan. Ecole Polytech, Lab Leprince Ringuet, CNRS IN2P3, F-91128 Palaiseau, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Clermont Ferrand, LPC, CNRS IN2P3, F-63177 Clermont Ferrand, France. Lund Univ, Dept Phys, SE-22100 Lund, Sweden. Univ Munster, Inst Kernphys, D-48149 Munster, Germany. Myongji Univ, Yongin 449728, Kyonggido, South Korea. Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. Univ New Mexico, Albuquerque, NM 87131 USA. New Mexico State Univ, Las Cruces, NM 88003 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Paris 11, IPN, CNRS IN2P3, F-91406 Orsay, France. Peking Univ, Beijing 100871, Peoples R China. PNPI, St Petersburg 188300, Russia. RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. Seoul Natl Univ, Syst Elect Lab, Seoul, South Korea. SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Univ Nantes, SUBATECH, Ecole Mines, CNRS IN2P3, F-44307 Nantes, France. Univ Tennessee, Knoxville, TN 37996 USA. Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. Vanderbilt Univ, Nashville, TN 37235 USA. Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. Weizmann Inst Sci, IL-76100 Rehovot, Israel. Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Adler, SS (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM zajc@nevis.columbia.edu RI seto, richard/G-8467-2011; Csanad, Mate/D-5960-2012; Csorgo, Tamas/I-4183-2012; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017; Semenov, Vitaliy/E-9584-2017 OI Hayano, Ryugo/0000-0002-1214-7806; Sorensen, Soren /0000-0002-5595-5643; Taketani, Atsushi/0000-0002-4776-2315; NR 25 TC 108 Z9 109 U1 6 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 27 PY 2007 VL 98 IS 17 AR 172302 DI 10.1103/PhysRevLett.98.172302 PG 7 WC Physics, Multidisciplinary SC Physics GA 172KT UT WOS:000246803900015 ER PT J AU Aubert, B Bona, M Boutigny, D Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Grauges, E Palano, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Mir, LM Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Tackmann, K Wenzel, WA Sanchez, PD Barrett, M Harrison, TJ Hart, AJ Hawkes, CM Watson, AT Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Sherwood, DJ Teodorescu, L Linov, VEB Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Zhang, L Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Williams, DC Wilson, MG Winstrom, LO Albert, J Chen, E Cheng, CH Dvoretskii, A Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Brandt, T Kaiser, S Klose, V Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Flack, RL Nash, JA Nikolich, MB Vazquez, WP Behera, PK Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Denig, AG Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Rodier, S Roudeau, P Schune, MH Serrano, J Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP LoSecco, JM Benelli, G Corwin, LA Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Potter, CT Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL Leruste, P Malcles, J Ocariz, J Gladney, L Biasini, M Covarelli, R Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Haire, M Judd, D Wagoner, DE Biesiada, J Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Ricciardi, S Wilson, FF Aleksan, R Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Oyanguren, A Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Mellado, B Pan, Y Pierini, M Prepost, R Wu, SL Yu, Z Neal, H AF Aubert, B. Bona, M. Boutigny, D. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lopes Pegna, D. Lynch, G. Mir, L. M. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Tackmann, K. Wenzel, W. A. del Amo Sanchez, P. Barrett, M. Harrison, T. J. Hart, A. J. Hawkes, C. M. Watson, A. T. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Sherwood, D. J. Teodorescu, L. Linov, V. E. B. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Zhang, L. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Williams, D. C. Wilson, M. G. Winstrom, L. O. Albert, J. Chen, E. Cheng, C. H. Dvoretskii, A. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Brandt, T. Kaiser, S. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Flack, R. L. Nash, J. A. Nikolich, M. B. Panduro Vazquez, W. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Serrano, J. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Benelli, G. Corwin, L. A. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Potter, C. T. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. Leruste, Ph. Malcles, J. Ocariz, J. Gladney, L. Biasini, M. Covarelli, R. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Safai Tehrani, F. Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Ricciardi, S. Wilson, F. F. Aleksan, R. Emery, S. Gaidot, A. Ganzhur, S. F. Hamel de Monchenault, G. Kozanecki, W. Legendre, M. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Oyanguren, A. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Mellado, B. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Yu, Z. Neal, H. CA BaBar Collaboration TI Evidence for the rare decay B+ -> D-s(+) pi(0) SO PHYSICAL REVIEW LETTERS LA English DT Article ID HADRONIC DECAYS; B-MESONS; ANNIHILATION; PHASE; JETS AB We have searched for the rare decay B+ -> D-s(+) pi(0). The analysis is based on a sample of 232 X 10(6) Y(4S) -> B (B) over bar decays collected with the BABAR detector at the SLAC PEP-II e(+)e(-) storage ring. We find 19.6 signal events, corresponding to a significance of 4.7 sigma. The extracted signal yield including statistical and systematic uncertainties is 20.1(-6.0-1.5)(+6.8+0.4) and we measure B(B+ -> D-s(+) pi(0)) = (1.5(-0.4)(+0.5) +/- 0.1 +/- 0.2) X x 10(-5), where the first uncertainty is statistical, the second is systematic, and the last is due to the uncertainty on the D-s(+) decay and its daughter decay branching fractions. C1 CNRS, Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Savoie, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Univ Bari, Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, Lab Leprince Ringuet, CNRS, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Univ Ferrara, Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Univ Genoa, Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, Lab Accelerateur Lineaire, F-91898 Orsay, France. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Queen Mary Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Univ Milan, Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Univ Naples Federico II, Ist Nazl Fis Nucl, I-80126 Naples, Italy. Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Univ Padua, Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, CNRS, IN2P3, F-75252 Paris, France. Univ Paris 07, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Perugia, Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Univ Pisa, Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Univ Roma La Sapienza, Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Univ Turin, Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. Univ Trieste, Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), CNRS, Phys Particules Lab, IN2P3, F-74941 Annecy Le Vieux, France. RI Rizzo, Giuliana/A-8516-2015; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; dong, liaoyuan/A-5093-2015; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Peters, Klaus/C-2728-2008; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Della Ricca, Giuseppe/B-6826-2013; Cavallo, Nicola/F-8913-2012 OI Rizzo, Giuliana/0000-0003-1788-2866; Paoloni, Eugenio/0000-0001-5969-8712; Faccini, Riccardo/0000-0003-2613-5141; Raven, Gerhard/0000-0002-2897-5323; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Covarelli, Roberto/0000-0003-1216-5235; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Peters, Klaus/0000-0001-7133-0662; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Della Ricca, Giuseppe/0000-0003-2831-6982; NR 31 TC 3 Z9 3 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 27 PY 2007 VL 98 IS 17 AR 171801 DI 10.1103/PhysRevLett.98.171801 PG 7 WC Physics, Multidisciplinary SC Physics GA 172KT UT WOS:000246803900011 ER PT J AU Fukaya, H Aoki, S Chiu, TW Hashimoto, S Kaneko, T Matsufuru, H Noaki, J Ogawa, K Okamoto, M Onogi, T Yamada, N AF Fukaya, H. Aoki, S. Chiu, T. W. Hashimoto, S. Kaneko, T. Matsufuru, H. Noaki, J. Ogawa, K. Okamoto, M. Onogi, T. Yamada, N. CA JLQCD Collaboration TI Two-flavor lattice-QCD simulation in the epsilon regime with exact chiral symmetry SO PHYSICAL REVIEW LETTERS LA English DT Article ID RANDOM-MATRIX THEORY; MASSLESS QUARKS; DIRAC OPERATOR AB We perform lattice simulations of two-flavor QCD using Neuberger's overlap fermion, with which the exact chiral symmetry is realized at finite lattice spacings. The epsilon regime is reached by decreasing the light quark mass down to 3 MeV on a 16(3) X 32 lattice with a lattice spacing similar to 0.11 fin. We find a good agreement of the low-lying Dirac eigenvalue spectrum with the analytical predictions of the chiral random matrix theory, which reduces to the chiral perturbation theory in the epsilon regime. The chiral condensate is extracted as Sigma((MS) over bar)(2 GeV) = (251 +/- 7 +/- 11 MeV)(3), where the errors are statistical and an estimate of the higher order effects in the epsilon expansion. C1 RIKEN, Theoret Phys Lab, Wako, Saitama 3510198, Japan. Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. Brookhaven Natl Lab, Riken BNL Res Ctr, Upton, NY 11973 USA. Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. Natl Taiwan Univ, Ctr Theoret Sci, Taipei 10617, Taiwan. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. Grad Univ Adv Studies Sokendai, Sch High Energy Accelerator Sci, Tsukuba, Ibaraki 3050801, Japan. Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. RP Fukaya, H (reprint author), RIKEN, Theoret Phys Lab, Wako, Saitama 3510198, Japan. NR 25 TC 59 Z9 59 U1 1 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 27 PY 2007 VL 98 IS 17 AR 172001 DI 10.1103/PhysRevLett.98.172001 PG 4 WC Physics, Multidisciplinary SC Physics GA 172KT UT WOS:000246803900012 ER PT J AU Kaye, SM Bell, RE Gates, D LeBlanc, BP Levinton, FM Menard, JE Mueller, D Rewoldt, G Sabbagh, SA Wang, W Yuh, H AF Kaye, S. M. Bell, R. E. Gates, D. LeBlanc, B. P. Levinton, F. M. Menard, J. E. Mueller, D. Rewoldt, G. Sabbagh, S. A. Wang, W. Yuh, H. TI Scaling of electron and ion transport in the high-power spherical torus NSTXN SO PHYSICAL REVIEW LETTERS LA English DT Article ID CONFINEMENT; TOKAMAKS; PLASMAS AB Dedicated H-mode parameter scans in the high-power National Spherical Torus Experiment have been used to establish the confinement scaling and underlying tran sport-trends at low aspect ratio (R/a similar or equal to 1.3). These scans indicate a strong dependence of the global and thermal energy confinement times on the toroidal field, B-T(0.9), while their dependence on plasma current is weaker, I-p(0.4). Local transport analysis indicates that the electrons control the B-T scaling, whereas the ions control the I-p scaling, with chi(i) outside r/a = 0.5 at the neoclassical level. C1 Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. Nova Photon Inc, Princeton, NJ 08540 USA. Columbia Univ, Dept Appl Phys, New York, NY 10027 USA. RP Kaye, SM (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI Sabbagh, Steven/C-7142-2011 NR 11 TC 44 Z9 44 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 27 PY 2007 VL 98 IS 17 AR 175002 DI 10.1103/PhysRevLett.98.175002 PG 4 WC Physics, Multidisciplinary SC Physics GA 172KT UT WOS:000246803900027 ER PT J AU Sahagun, E Garcia-Mochales, P Sacha, GM Saenz, JJ AF Sahagun, E. Garcia-Mochales, P. Sacha, G. M. Saenz, J. J. TI Energy dissipation due to capillary interactions: Hydrophobicity maps in force microscopy SO PHYSICAL REVIEW LETTERS LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; WATER BRIDGES; CONDENSATION; SURFACE; TIP; SPECIMENS; HUMIDITY; BEHAVIOR; MENISCI AB The energy dissipation process involved in the formation and rupture of a nanometer-sized capillary-condensed water bridge is theoretically analyzed. With the help of numerical simulations, the dissipation contrast in amplitude-modulated atomic force microscopy is shown to be a result of a nontrivial interplay between the energy dissipated in each rupture process and the bistable motion of the cantilever. In the repulsive high amplitude regime, the dissipated power is a function of the tip and sample contact angles being independent of the elastic properties of the system. Working in this regime, energy dissipation images in air can be regarded as surface hydrophobicity maps. C1 Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain. Univ Autonoma Madrid, Inst Nicolas Cabrera, E-28049 Madrid, Spain. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Sahagun, E (reprint author), Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain. RI Saenz, Juan Jose/F-8871-2010; Gomez Monivas, Sacha/H-5611-2011 OI Saenz, Juan Jose/0000-0002-1411-5648; Gomez Monivas, Sacha/0000-0003-2280-5021 NR 50 TC 57 Z9 57 U1 3 U2 18 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 27 PY 2007 VL 98 IS 17 AR 176106 DI 10.1103/PhysRevLett.98.176106 PG 4 WC Physics, Multidisciplinary SC Physics GA 172KT UT WOS:000246803900040 ER PT J AU Schein, J Jones, O Rosen, M Dewald, E Glenzer, S Gunther, J Hammel, B Landen, O Suter, L Wallace, R AF Schein, Jochen Jones, Ogden Rosen, Mordecai Dewald, Eduard Glenzer, Siegfried Gunther, Janelle Hammel, Bruce Landen, Otto Suter, Laurence Wallace, Russell TI Demonstration of enhanced radiation drive in hohlraums made from a mixture of high-Z wall materials SO PHYSICAL REVIEW LETTERS LA English DT Article ID NATIONAL IGNITION FACILITY; ROSSELAND MEAN OPACITY; FUSION; PHYSICS AB We present results from experiments, numerical simulations and analytic modeling, demonstrating enhanced hohlraum performance. Care in the fabrication and handling of hohlraums with walls consisting of high-Z mixtures (cocktails) has led to our demonstration, for the first time, of a significant increase in radiation temperature compared to a pure Au hohlraum that is in agreement with predictions and is ascribable to reduced wall losses. The data suggest that a National Ignition Facility ignition hohlraum made of a U:Au:Dy cocktail should have similar to 17% reduction in wall losses compared to a similar gold hohlraum. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Schein, J (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. NR 18 TC 26 Z9 27 U1 1 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 27 PY 2007 VL 98 IS 17 AR 175003 DI 10.1103/PhysRevLett.98.175003 PG 4 WC Physics, Multidisciplinary SC Physics GA 172KT UT WOS:000246803900028 ER PT J AU Scully, SWJ Emmons, ED Gharaibeh, MF Phaneuf, RA Kilcoyne, ALD Schlachter, AS Schippers, S Muller, A Chakraborty, HS Madjet, ME Rost, JM AF Scully, S. W. J. Emmons, E. D. Gharaibeh, M. F. Phaneuf, R. A. Kilcoyne, A. L. D. Schlachter, A. S. Schippers, S. Mueller, A. Chakraborty, H. S. Madjet, M. E. Rost, J. M. TI Comment on "Photoexcitation of a volume plasmon in C-60 ions" - Reply SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material C1 Kerr Henderson Bacon & Woodrow Ltd, Belfast BT9 6BT, Antrim, North Ireland. Univ Nevada, Dept Phys, Reno, NV 89557 USA. Jordan Univ Sci & Technol, Dept Appl Phys Sci, Irbid 22110, Jordan. Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. Univ Giessen, Inst Atom & Mol Phys, D-35392 Giessen, Germany. NW Missouri State Univ, Dept Chem & Phys, Maryville, MO 64468 USA. Free Univ Berlin, D-14195 Berlin, Germany. Max Planck Inst Phys Komplexer Syst, D-08117 Dresden, Germany. RP Scully, SWJ (reprint author), Kerr Henderson Bacon & Woodrow Ltd, 29-31 Coll Gardens, Belfast BT9 6BT, Antrim, North Ireland. RI Muller, Alfred/A-3548-2009; Kilcoyne, David/I-1465-2013; Schippers, Stefan/A-7786-2008 OI Muller, Alfred/0000-0002-0030-6929; Schippers, Stefan/0000-0002-6166-7138 NR 4 TC 20 Z9 20 U1 0 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 27 PY 2007 VL 98 IS 17 AR 179602 DI 10.1103/PhysRevLett.98.179602 PG 1 WC Physics, Multidisciplinary SC Physics GA 172KT UT WOS:000246803900071 ER PT J AU Serpico, PD AF Serpico, Pasquale D. TI Cosmological neutrino mass detection: The best probe of neutrino lifetime SO PHYSICAL REVIEW LETTERS LA English DT Article ID DOUBLE-BETA DECAY; SEARCH AB Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as similar to 0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence, on neutrino secret interactions with (quasi)massless particles as in Majoron models. On the other hand, neutrino decay may provide a way out to explain a discrepancy less than or similar to 0.1 eV between cosmic neutrino bounds and lab data. C1 Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Serpico, PD (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. NR 33 TC 19 Z9 19 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 27 PY 2007 VL 98 IS 17 AR 171301 DI 10.1103/PhysRevLett.98.171301 PG 4 WC Physics, Multidisciplinary SC Physics GA 172KT UT WOS:000246803900009 ER PT J AU Sikivie, P Tanner, DB van Bibber, K AF Sikivie, P. Tanner, D. B. van Bibber, Karl TI Resonantly enhanced axion-photon regeneration SO PHYSICAL REVIEW LETTERS LA English DT Article ID FREQUENCY STABILIZATION; INVISIBLE-AXION; SEARCHES; PARTICLES AB Photon-regeneration experiments which search for the axion, or axionlike particles, may be resonantly enhanced by employing matched Fabry-Perot optical cavities encompassing both the axion production and conversion magnetic field regions. Compared to a simple photon-regeneration experiment, which uses the laser in a single-pass geometry, this technique can result in a gain in rate of order F(2), where F is the finesse of the cavities. This gain could feasibly be 10((10-12)), corresponding to an improvement in sensitivity in the axion-photon coupling g(a gamma gamma) of order F(1/2) similar to 10((2.5-3)), permitting a practical purely laboratory search to probe axion-photon couplings not previously excluded by stellar evolution limits or solar axion searches. C1 Univ Florida, Dept Phys, Gainesville, FL 32611 USA. CERN, Div Theoret Phys, CH-1211 Geneva 23, Switzerland. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Sikivie, P (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA. NR 21 TC 58 Z9 61 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 27 PY 2007 VL 98 IS 17 AR 172002 DI 10.1103/PhysRevLett.98.172002 PG 4 WC Physics, Multidisciplinary SC Physics GA 172KT UT WOS:000246803900013 ER PT J AU Tang, XZ AF Tang, X. Z. TI Driven resonance in partially relaxed plasmas SO PHYSICAL REVIEW LETTERS LA English DT Article ID COAXIAL HELICITY INJECTION; STEADY-STATE; MAGNETIC-FIELDS; SPHEROMAK; RELAXATION; EQUILIBRIA AB A Taylor-relaxed plasma (j = kB with k a constant) under external magnetic helicity injection encounters resonances in spatial frequencies of its force-free eigenmodes. Such driven resonance underlies the physics of magnetic self-organization and determines the flux amplification in laboratory helicity injection applications. Here we show that for partially relaxed plasmas where the deviation from the fully relaxed Taylor state, for example, a flux-dependent k, is a function of the normalized flux chi/chi(a), with chi(a) the poloidal flux at the magnetic axis, a modified driven resonance persists even if k(chi) has an order-unity variation across the flux surfaces. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Tang, XZ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. NR 15 TC 4 Z9 4 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 27 PY 2007 VL 98 IS 17 AR 175001 DI 10.1103/PhysRevLett.98.175001 PG 4 WC Physics, Multidisciplinary SC Physics GA 172KT UT WOS:000246803900026 ER PT J AU Zolensky, ME AF Zolensky, M. E. TI Report - Mineralogy and petrology of comet 81P/Wild 2 nucleus samples (vol 314, pg 1735, 2006) SO SCIENCE LA English DT Correction C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 1 TC 1 Z9 1 U1 2 U2 2 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD APR 27 PY 2007 VL 316 IS 5824 BP 543 EP 543 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 160ZC UT WOS:000245983100023 ER PT J AU Buesseler, KO Lamborg, CH Boyd, PW Lam, PJ Trull, TW Bidigare, RR Bishop, JKB Casciotti, KL Dehairs, F Elskens, M Honda, M Karl, DM Siegel, DA Silver, MW Steinberg, DK Valdes, J Van Mooy, B Wilson, S AF Buesseler, Ken O. Lamborg, Carl H. Boyd, Philip W. Lam, Phoebe J. Trull, Thomas W. Bidigare, Robert R. Bishop, James K. B. Casciotti, Karen L. Dehairs, Frank Elskens, Marc Honda, Makio Karl, David M. Siegel, David A. Silver, Mary W. Steinberg, Deborah K. Valdes, Jim Van Mooy, Benjamin Wilson, Stephanie TI Revisiting carbon flux through the ocean's twilight zone SO SCIENCE LA English DT Article ID PARTICLE-FLUX; PACIFIC; MATTER; MODEL; PUMP; CO2 AB The oceanic biological pump drives sequestration of carbon dioxide in the deep sea via sinking particles. Rapid biological consumption and remineralization of carbon in the "twilight zone" ( depths between the euphotic zone and 1000 meters) reduce the efficiency of sequestration. By using neutrally buoyant sediment traps to sample this chronically understudied realm, we measured a transfer efficiency of sinking particulate organic carbon between 150 and 500 meters of 20 and 50% at two contrasting sites. This large variability in transfer efficiency is poorly represented in biogeochemical models. If applied globally, this is equivalent to a difference in carbon sequestration of more than 3 petagrams of carbon per year. C1 Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 USA. Univ Otago, Natl Inst Water, Dunedin, New Zealand. Univ Otago, Atmospher Res Ctr Phys & Chem Oceanog, Dept Chem, Dunedin, New Zealand. Univ Tasmania, Antarctic Climate & Ecosyst Cooperat Res Ctr, Hobart, Tas 7001, Australia. CSIRO, Marine & Atmospher Res, Hobart, Tas 7001, Australia. Univ Hawaii, Dept Oceanog, Honolulu, HI 96822 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. Free Univ Brussels, B-1050 Brussels, Belgium. Mutsu Inst Oceanog, JAMSTEC, Kanagawa 2370061, Japan. Univ Calif Santa Barbara, Inst Computat Earth Syst Sci, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Ocean Sci Dept, Santa Cruz, CA 95064 USA. Coll William & Mary, Virginia Inst Marine Sci, Gloucester Point, VA 23062 USA. Woods Hole Oceanog Inst, Dept Phys Oceanog, Woods Hole, MA 02543 USA. RP Buesseler, KO (reprint author), Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 USA. EM kbuesseler@whoi.edu RI Siegel, David/C-5587-2008; Wright, Dawn/A-4518-2011; Trull, Tom/B-7028-2014; Boyd, Philip/J-7624-2014 OI Wright, Dawn/0000-0002-2997-7611; Boyd, Philip/0000-0001-7850-1911 NR 26 TC 276 Z9 279 U1 11 U2 111 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD APR 27 PY 2007 VL 316 IS 5824 BP 567 EP 570 DI 10.1126/science.1137959 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 160ZC UT WOS:000245983100036 PM 17463282 ER PT J AU Karcher, M Kauker, F Gerdes, R Hunke, E Zhang, J AF Karcher, M. Kauker, F. Gerdes, R. Hunke, E. Zhang, J. TI On the dynamics of Atlantic Water circulation in the Arctic Ocean SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID NORTH-ATLANTIC; INTERMEDIATE WATERS; POTENTIAL VORTICITY; NORDIC SEAS; MODEL; ICE; TEMPERATURES; VARIABILITY; GREENLAND; TRANSPORT AB [ 1] We use a subset of models from the coordinated experiment of the Arctic Ocean Model Intercomparison Project (AOMIP) to analyze differences in intensity and sense of rotation of Atlantic Water circulation. We focus on the interpretation of the potential vorticity (PV) balance. Results differ drastically for the Eurasian and the Amerasian Basins of the Arctic Ocean. We find indications that in the Eurasian Basin the lateral net flux of PV is a significant factor for the determination of the sense of rotation of Atlantic Water circulation on timescales beyond pentades. The main source of high PV causing cyclonic circulation in the Eurasian Basin is the Barents Sea, where the seasonal cycle of surface buoyancy fluxes forms stratified water that leaves the shelf and feeds the Atlantic Water Layer ( AWL) in the Arctic Basins. However, in the Amerasian Basin vertical PV fluxes are the more important factor. These are closely related to wind field changes. We find an intense response of the AWL flow to wind forcing, approximated by the sea level pressure difference between the Bering Sea and the central Canadian Basin, which describes about half the variance of AWL flow of the Amerasian Basin. An experiment driven with a repeated atmospheric climatology exhibits an extreme case where a permanent high pressure system over the Beaufort Sea dominates the circulation in the Amerasian Basin, demonstrating the potential of the Beaufort Gyre to adjust in such a way as to suppress a cyclonic AWL flow in the Amerasian Basin. In more realistic cases the Beaufort Gyre still modulates the Amerasian Basin AWL circulation significantly. C1 Alfred Wegener Inst Polar & Marine Res, D-27515 Bremerhaven, Germany. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Washington, Appl Phys Lab, Seattle, WA 98105 USA. OA Sys Ocean Atmosphere Syst, Hamburg, Germany. RP Karcher, M (reprint author), Alfred Wegener Inst Polar & Marine Res, D-27515 Bremerhaven, Germany. EM mkarcher@awi-bremerhaven.de NR 38 TC 44 Z9 44 U1 1 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD APR 26 PY 2007 VL 112 IS C4 AR C04S02 DI 10.1029/2006JC003630 PG 19 WC Oceanography SC Oceanography GA 163FO UT WOS:000246144400002 ER PT J AU Proshutinsky, A Ashik, I Hakkinen, S Hunke, E Krishfield, R Maltrud, M Maslowski, W Zhang, J AF Proshutinsky, A. Ashik, I. Haekkinen, S. Hunke, E. Krishfield, R. Maltrud, M. Maslowski, W. Zhang, J. TI Sea level variability in the Arctic Ocean from AOMIP models SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID LAPTEV SEA; FAST-ICE; NUMERICAL-MODEL; WIND; CIRCULATION; REGIMES; CLIMATE; SHELF; PARAMETERIZATION; PRESSURE AB [1] Monthly sea levels from five Arctic Ocean Model Intercomparison Project ( AOMIP) models are analyzed and validated against observations in the Arctic Ocean. The AOMIP models are able to simulate variability of sea level reasonably well, but several improvements are needed to reduce model errors. It is suggested that the models will improve if their domains have a minimum depth less than 10 m. It is also recommended to take into account forcing associated with atmospheric loading, fast ice, and volume water fluxes representing Bering Strait inflow and river runoff. Several aspects of sea level variability in the Arctic Ocean are investigated based on updated observed sea level time series. The observed rate of sea level rise corrected for the glacial isostatic adjustment at 9 stations in the Kara, Laptev, and East Siberian seas for 1954 - 2006 is estimated as 0.250 cm/yr. There is a well pronounced decadal variability in the observed sea level time series. The 5-year running mean sea level signal correlates well with the annual Arctic Oscillation (AO) index and the sea level atmospheric pressure (SLP) at coastal stations and the North Pole. For 1954 - 2000 all model results reflect this correlation very well, indicating that the long-term model forcing and model reaction to the forcing are correct. Consistent with the influences of AO-driven processes, the sea level in the Arctic Ocean dropped significantly after 1990 and increased after the circulation regime changed from cyclonic to anticyclonic in 1997. In contrast, from 2000 to 2006 the sea level rose despite the stabilization of the AO index at its lowest values after 2000. C1 Woods Hole Oceanog Inst, Dept Phys Oceanog, Woods Hole, MA 02543 USA. USN, Postgrad Sch, Dept Oceanog, Monterey, CA 93943 USA. Univ Washington, Polar Sci Ctr, Seattle, WA 98105 USA. Arctic & Antarctic Res Inst, St Petersburg 198095, Russia. NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Proshutinsky, A (reprint author), Woods Hole Oceanog Inst, Dept Phys Oceanog, MS 29,360 Woods Hole Rd, Woods Hole, MA 02543 USA. EM aproshutinsky@whoi.edu RI Hakkinen, Sirpa/E-1461-2012 NR 66 TC 23 Z9 23 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD APR 26 PY 2007 VL 112 IS C4 AR C04S08 DI 10.1029/2006JC003916 PG 25 WC Oceanography SC Oceanography GA 163FO UT WOS:000246144400005 ER PT J AU Thomas, JL Roeselova, M Dang, LX Tobias, DJ AF Thomas, Jennie L. Roeselova, Martina Dang, Liem X. Tobias, Douglas J. TI Molecular dynamics simulations of the solution-air interface of aqueous sodium nitrate SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID SUM-FREQUENCY GENERATION; LIQUID WATER-SURFACE; SEA-SALT PARTICLES; AIR/WATER INTERFACE; WATER/VAPOR INTERFACE; VIBRATIONAL SPECTROSCOPY; EXPERIMENTAL VALIDATION; STABILIZATION ENERGIES; ATMOSPHERIC CHEMISTRY; THEORETICAL-ANALYSIS AB Molecular dynamics simulations have been used to investigate the behavior of aqueous sodium nitrate in interfacial environments. Polarizable potentials for the water molecules and the nitrate ion in solution were employed. Calculated surface tension data at several concentrations are in good agreement with measured surface tension data. The surface potential of NaNO(3) solutions at two concentrations also compare favorably with experimental measurements. Density profiles suggest that NO(3)(-) resides primarily below the surface of the solutions over a wide range of concentrations. When the nitrate anions approach the surface of the solution, they are significantly undercoordinated compared to in the bulk, and this may be important for reactions where solvent cage effects play a role such as photochemical processes. Surface water orientation is perturbed by the presence of nitrate ions, and this has implications for experimental studies that probe interfacial water orientation. Nitrate ions near the surface also have a preferred orientation that places the oxygen atoms in the plane of the interface. C1 Acad Sci Czech Republic, Inst Organ Chem & Biochem, Ctr Biomol & Complex Mol Syst, Prague 16610 6, Czech Republic. Univ Calif Irvine, Environm Mol Sci Inst, Irvine, CA 92697 USA. Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. RP Roeselova, M (reprint author), Acad Sci Czech Republic, Inst Organ Chem & Biochem, Ctr Biomol & Complex Mol Syst, Flemingovo Nam 2, Prague 16610 6, Czech Republic. EM martina.roeselova@uochb.cas.cz; dtobias@uci.edu RI Roeselova, Martina/B-1029-2012; Tobias, Douglas/B-6799-2015 NR 81 TC 61 Z9 61 U1 2 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 26 PY 2007 VL 111 IS 16 BP 3091 EP 3098 DI 10.1021/jp0683972 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 158NE UT WOS:000245797400013 PM 17402716 ER PT J AU O'Neill, H Heller, WT Helton, KE Urban, VS Greenbaum, E AF O'Neill, Hugh Heller, William T. Helton, Katherine E. Urban, Volker S. Greenbaum, Elias TI Small-angle X-ray scattering study of photosystem I - Detergent complexes: Implications for membrane protein crystallization SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID ADVANCED PHOTON SOURCE; EXCITATION-ENERGY DISTRIBUTION; LIGHT-HARVESTING COMPLEX; BOVINE SERUM-ALBUMIN; ABSORPTION SPECTROSCOPY; 3-DIMENSIONAL STRUCTURE; ELECTRON-TRANSFER; CHLOROPHYLL-A; SHAPE; DIFFRACTION AB Small-angle X-ray scattering (SAXS) was used to investigate the structure of isolated photosystem I (PSI) complexes stabilized in detergent solution. Two different types of PSI preparation were investigated. In the first preparation, thylakoid membranes were solubilized with Triton X100 and purified by density gradient centrifugation. SAXS data indicated large scattering objects or microphases that can be described as sheets with similar to 68 A thickness and a virtually infinite lateral extension. The observed thickness agreed well with the dimension of a PSI molecule across the thylakoid membrane. In the second preparation, PSI was isolated as before but was further purified by anion exchange chromatography resulting in functional complexes consisting of single PSI units with attached surfactant as evidenced by the particle volume and gyration radius extracted from the SAXS data. Several approaches were used to model the solution conformation of the complex. Three different ellipsoidal modeling approaches, a uniform density ellipsoid of revolution, a triaxial solid ellipsoid, and a core-shell model, found extended structures with dimensions that were not consistent with the PSI crystal structure (Ben-Shem, A.; et al. Nature 2003, 426, 630-635). Additionally, the SAXS data could not be modeled using the crystal structure embedded in a disk of detergent. The final approach considered the possibility that protein was partially unfolded by the detergent. The data were modeled using a "beads-on-a-string" approach that describes detergent micelles associated with the unfolded polypeptide chains. This model reproduced the position and relative amplitude of a peak present in the SAXS data at 0.16 A(-1) but was not consistent with the data at larger length scales. We conclude that the polypeptide subunits at the periphery of the PSI complex were partially unfolded and associated with detergent micelles while the catalytically active core of the PSI complex remained structurally intact. This interpretation of the solution structure of isolated PSI complexes has broader implications for the investigation of the interactions of detergents and protein, especially for crystallization studies. C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Struct Mol Biol, Oak Ridge, TN 37831 USA. RP O'Neill, H (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM oneillhm@ornl.gov; urbanvs@ornl.gov RI ID, BioCAT/D-2459-2012; Urban, Volker/N-5361-2015; OI Urban, Volker/0000-0002-7962-3408; O'Neill, Hugh/0000-0003-2966-5527 NR 52 TC 11 Z9 11 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD APR 26 PY 2007 VL 111 IS 16 BP 4211 EP 4219 DI 10.1021/jp067463x PG 9 WC Chemistry, Physical SC Chemistry GA 158NH UT WOS:000245797700027 PM 17391018 ER PT J AU Pawsey, S Moudrakovski, I Ripmeester, J Wang, LQ Exarhos, GJ Rowsell, JLC Yaghi, OM AF Pawsey, Shane Moudrakovski, Igor Ripmeester, John Wang, Li-Qiong Exarhos, Gregory J. Rowsell, Jesse L. C. Yaghi, Omar M. TI Hyperpolarized Xe-129 nuclear magnetic resonance studies of isoreticular metal-organic frameworks SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NMR-SPECTROSCOPY; CHEMICAL-SHIFT; HYDROGEN ADSORPTION; CROSS-POLARIZATION; METHANE STORAGE; SINGLE-CRYSTAL; FREE-VOLUME; PORE-SIZE; XENON; EXCHANGE AB The pore environments of a series of isoreticular metal-organic frameworks (IRMOF) have been studied using hyperpolarized (HP) Xe-129 nuclear magnetic resonance (NMR) spectroscopy. Xenon gas behaved as an efficient probe molecule for interrogating the variability of adsorption sites in functionalized IRMOF materials through variations in the NMR chemical shift of the adsorbed xenon. The xenon adsorption enthalpies extracted from variable-temperature HP Xe-129 NMR were found to be lower than published values for the physisorption of xenon. The low heats of adsorption were corroborated by xenon adsorption measurements that revealed two atoms per pore under one atmosphere of pressure at 19 degrees C. Average pore diameters estimated from the empirical chemical shift and pore size correlations based on a geometrical model were compared with X-ray crystallography data. The exchange processes of xenon in IRMOFs also were explored using 2D exchange spectroscopy (EXSY) Xe-129 NMR. It was found the exchange of xenon from adsorption sites within the IRMOF to the free gas space is much slower than that between the adsorption sites within the lattice. Cross-polarization experiments showed that the preferred adsorption sites were spatially removed from the phenylene rings of the network. This agrees with previous spectroscopic, structural, and computational studies of gas adsorption (H-2, N-2, Ar) in IRMOFs that indicate the preferred binding sites reside near the carboxylate groups of the inorganic clusters. C1 Steacie Inst Mol Sci, Ottawa, ON K1A 0R6, Canada. Pacific NW Natl Lab, Fundamental Sci Div, Richland, WA 99354 USA. Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA. RP Pawsey, S (reprint author), Steacie Inst Mol Sci, Ottawa, ON K1A 0R6, Canada. EM shane.pawsey@nrc-cnrc.gc.ca NR 55 TC 29 Z9 30 U1 0 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 26 PY 2007 VL 111 IS 16 BP 6060 EP 6067 DI 10.1021/jp0668246 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 158NV UT WOS:000245799100036 ER PT J AU Binns, J DiCarlo, J Insley, JA Leggett, T Lueninghoener, C Navarro, JP Papka, ME AF Binns, Justin DiCarlo, Jonathan Insley, Joseph A. Leggett, Ti Lueninghoener, Cory Navarro, John-Paul Papka, Michael E. TI Enabling community access to TeraGrid visualization resources SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article; Proceedings Paper CT 14th Global Grid Forum Science Gateway Workshop CY JUN, 2005 CL Chicago, IL DE science gateways; community access; visualization AB Visualization is an important part of the data analysis process. Many researchers, however, do not have access to the resources required to do visualization effectively for large datasets. This problem is illustrated through several user scenarios. To remedy this problem, we propose a Visualization Gateway that provides simplified access to such resources to a broad population of users. The current implementation of this gateway is described, including the technology used and the services made available. In particular, a detailed description of a ParaView portlet is included. A proposed design for enabling access to community users is discussed. Technology as well as policy issues that were raised, including security and data management, are covered, as are methods for providing additional services, scaling to include additional resources, and other areas of future development. The paper concludes with a summary of the topics covered. Copyright (c) 2006 John Wiley & Sons, Ltd. C1 Univ Chicago, Res Inst, Computat Inst, Chicago, IL 60637 USA. Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Insley, JA (reprint author), Univ Chicago, Res Inst, Computat Inst, Suite 405,5640 S Ellis Ave, Chicago, IL 60637 USA. EM insley@ci.uchicago.edu NR 7 TC 3 Z9 3 U1 0 U2 0 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1532-0626 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD APR 25 PY 2007 VL 19 IS 6 BP 783 EP 794 DI 10.1002/cpe.1080 PG 12 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 158ZM UT WOS:000245834500004 ER PT J AU Cobb, JW Geist, A Kohl, JA Miller, SD Peterson, PF Pike, GG Reuter, MA Swain, T Vazhkudai, SS Vijayakumar, NN AF Cobb, John W. Geist, Al Kohl, James A. Miller, Stephen D. Peterson, Peter F. Pike, Gregory G. Reuter, Michael A. Swain, Tom Vazhkudai, Sudharshan S. Vijayakumar, Nithya N. TI The Neutron Science TeraGrid Gateway: a TeraGrid science gateway to support the spallation neutron source SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article; Proceedings Paper CT 14th Global Grid Forum Science Gateway Workshop CY JUN, 2005 CL Chicago, IL DE portal; neutron scattering; TeraGrid; science gateway; service architecture; Grid AB The National Science Foundation's Extensible Terascale Facility (ETF), or TeraGrid (http://www.teragrid. org/), is entering its operational phase. An example of an ETF science gateway effort is the Neutron Science TeraGrid Gateway (NSTG). The Oak Ridge National Laboratory (ORNL) resource provider effort (ORNL-RP) now in operation is bridging the gap between a large-scale experimental community and the TeraGrid as a large-scale national cyberinfrastructure. Of particular importance here is the collaboration with the Spallation Neutron Source (SNS) at ORNL. The U.S. Department of Energy's SNS (http://www.sns.gov/) at ORNL will be commissioned in the spring of 2006 as the world's brightest source of neutrons. Neutron science users can run experiments, generate datasets, perform data reduction, analysis, visualize results, collaborate with remotes users, and archive long-term data in repositories with curation services. The ORNL-RP and the SNS data analysis group have spent 18 months developing and exploring user requirements, including the creation of prototypical services such as a facility portal, data, and application execution services. We describe results from these efforts and discuss implications for science gateway creation. Finally, we show incorporation into implementation planning for the NSTG and SNS architectures. The plan is for a primarily portal-based user interaction supported by a service-oriented architecture for functional implementation. Published in 2006 by John Wiley & Sons, Ltd. C1 Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Comp Sci, Knoxville, TN 37996 USA. Indiana Univ, Dept Comp Sci, Bloomington, IN 47405 USA. RP Cobb, JW (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM cobbjw@ornl.gov RI Peterson, Peter/L-2496-2013 OI Peterson, Peter/0000-0002-1353-0348 NR 14 TC 5 Z9 5 U1 0 U2 5 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1532-0626 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD APR 25 PY 2007 VL 19 IS 6 BP 809 EP 826 DI 10.1002/cpe.1102 PG 18 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 158ZM UT WOS:000245834500006 ER PT J AU Alameda, J Christie, M Fox, G Futrelle, J Gannon, D Hategan, M Kandaswamy, G von Laszewski, G Nacar, MA Pierce, M Roberts, E Severance, C Thomas, M AF Alameda, Jay Christie, Marcus Fox, Geoffrey Futrelle, Joe Gannon, Dennis Hategan, Mihael Kandaswamy, Gopi von Laszewski, Gregor Nacar, Mehmet A. Pierce, Marlon Roberts, Eric Severance, Charles Thomas, Mary TI The Open Grid Computing environments collaboration: portlets and services for science gateways SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article; Proceedings Paper CT 14th Global Grid Forum Science Gateway Workshop CY JUN, 2005 CL Chicago, IL DE portlets; collaboration; Grid services ID SYSTEM AB We review the efforts of the Open Grid Computing Environments collaboration. By adopting a general three-tiered architecture based on common standards for portlets and Grid Web services, we can deliver numerous capabilities to science gateways from our diverse constituent efforts. In this paper, we discuss our support for standards-based Grid portlets using the Velocity development environment. Our Grid portlets are based on abstraction layers provided by the Java CoG kit, which hide the differences of different Grid toolkits. Sophisticated services are decoupled from the portal container using Web service strategies. We describe advance information, semantic data, collaboration, and science application services developed by our consortium. Copyright (c) 2006 John Wiley & Sons, Ltd. C1 Indiana Univ, Community Grids Lab, Bloomington, IN 47404 USA. Indiana Univ, Dept Comp Sci, Bloomington, IN 47404 USA. Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61301 USA. Univ Chicago, Computat Inst, Chicago, IL 60637 USA. Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. Univ Texas, Texas Adv Comp Ctr, Austin, TX 78758 USA. Univ Michigan, Sch Informat, Ann Arbor, MI 48109 USA. San Diego State Univ, Dept Comp Sci, San Diego, CA 92182 USA. RP Pierce, M (reprint author), Indiana Univ, Community Grids Lab, 501 N Morton,Suite 224, Bloomington, IN 47404 USA. EM mpierce@cs.indiana.edu RI von Laszewski, Gregor/C-2808-2012; OI von Laszewski, Gregor/0000-0001-9558-179X; Pierce, Marlon/0000-0002-9582-5712 NR 29 TC 28 Z9 28 U1 1 U2 5 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1532-0626 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD APR 25 PY 2007 VL 19 IS 6 BP 921 EP 942 DI 10.1002/cpe.1078 PG 22 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 158ZM UT WOS:000245834500014 ER PT J AU Kim, DH Chin, YH Muntean, G Yezerets, A Currier, N Epling, W Chen, HY Hess, H Peden, CHF AF Kim, Do Heui Chin, Ya-Huei Muntean, George Yezerets, Aleksey Currier, Neal Epling, William Chen, Hai-Ying Hess, Howard Peden, Charles H. F. TI Design of a reaction protocol for decoupling sulfur removal and thermal aging effects during desulfation of Pt-BaO/Al2O3 lean NOx trap catalysts SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID STORAGE CATALYST; REDUCTION CATALYST; REGENERATION; BAO/AL2O3; DEACTIVATION; MECHANISM AB A novel reaction protocol was designed to decouple the effects of thermal deactivation from those due to incomplete sulfur removal during desulfation steps of Ba-based lean NOx trap catalysts. The protocol was applied to two samples: a Pt-BaO/Al2O3 model catalyst and an enhanced model sample doped with promoter species. The results obtained from the reaction protocol demonstrate that desulfation temperatures need to be maintained below those that lead to significant Pt sintering in order to prevent permanent deactivation. In addition, the modified reaction protocol allows us to compare the desulfation behavior of samples with varying degrees of sulfation, while other approaches have difficulty differentiating the effects of thermal aging from those of sulfation. We believe that this approach provides a convenient way both to assess the relative sensitivities of various catalysts to desulfation conditions, and to develop desulfation strategies that minimize the separate but often linked deactivation effects of sulfation and high temperatures. C1 Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. Cummins Inc, Columbus, IN 47201 USA. Johnson Matthey, Wayne, PA 19087 USA. RP Kim, DH (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999, Richland, WA 99352 USA. EM do.kim@pnl.gov RI Kim, Do Heui/I-3727-2015; OI Peden, Charles/0000-0001-6754-9928 NR 19 TC 8 Z9 10 U1 0 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD APR 25 PY 2007 VL 46 IS 9 BP 2735 EP 2740 DI 10.1021/ie061542d PG 6 WC Engineering, Chemical SC Engineering GA 157ZL UT WOS:000245760300009 ER PT J AU Zhu, HN Mehrabadi, MM Massoudi, M AF Zhu, Huaning Mehrabadi, Morteza M. Massoudi, Mehrdad TI A comparative study of the hypoplasticity and the fabric-dependent dilatant double shearing models for granular materials SO INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS LA English DT Article DE granular materials; dilatant double shearing model; hypoplasticity; fabric; cyclic shear loading ID CONSTITUTIVE MODEL; HYPO-ELASTICITY; STRAIN LOCALIZATION; PLANAR DEFORMATION; FLOW; FORMULATION; PLASTICITY; SOILS AB In this paper, we consider the mechanical response of granular materials and compare the predictions of a hypoplastic model with that of a recently developed dilatant double shearing model which includes the effects of fabric. We implement the constitutive relations of the dilatant double shearing model and the hypoplastic model in the finite element program ABACUS/Explicit and compare their predictions in the triaxial compression and cyclic shear loading tests. Although the origins and the constitutive relations of the double shearing model and the hypoplastic model are quite different, we find that both models are capable of capturing typical behaviours of granular materials. This is significant because while hypoplasticity is phenomenological in nature, the double shearing model is based on a kinematic hypothesis and microstructural considerations, and can easily be calibrated through standard tests. Copyright (c) 2006 John Wiley & Sons, Ltd. C1 Tulane Univ, Dept Mech Engn, New Orleans, LA 70118 USA. US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Mehrabadi, MM (reprint author), Tulane Univ, Dept Mech Engn, New Orleans, LA 70118 USA. EM mmm@tulane.edu NR 55 TC 2 Z9 2 U1 0 U2 6 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0363-9061 J9 INT J NUMER ANAL MET JI Int. J. Numer. Anal. Methods Geomech. PD APR 25 PY 2007 VL 31 IS 5 BP 735 EP 756 DI 10.1002/nag.559 PG 22 WC Engineering, Geological; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA 158BK UT WOS:000245765700005 ER PT J AU Tang, YH Carmichael, GR Thongboonchoo, N Chai, TF Horowitz, LW Pierce, RB Al-Saadi, JA Pfister, G Vukovich, JM Avery, MA Sachse, GW Ryerson, TB Holloway, JS Atlas, EL Flocke, FM Weber, RJ Huey, LG Dibb, JE Streets, DG Brune, WH AF Tang, Youhua Carmichael, Gregory R. Thongboonchoo, Narisara Chai, Tianfeng Horowitz, Larry W. Pierce, Robert B. Al-Saadi, Jassim A. Pfister, Gabriele Vukovich, Jeffrey M. Avery, Melody A. Sachse, Glen W. Ryerson, Thomas B. Holloway, John S. Atlas, Elliot L. Flocke, Frank M. Weber, Rodney J. Huey, L. Gregory Dibb, Jack E. Streets, David G. Brune, William H. TI Influence of lateral and top boundary conditions on regional air quality prediction: A multiscale study coupling regional and global chemical transport models SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID GAS-AEROSOL EQUILIBRIUM; EASTERN UNITED-STATES; TROPOSPHERIC OZONE; TRACE-P; ART.; EMISSIONS; NOX; ASIA AB [1] The sensitivity of regional air quality model to various lateral and top boundary conditions is studied at 2 scales: a 60 km domain covering the whole USA and a 12 km domain over northeastern USA. Three global models (MOZART-NCAR, MOZART-GFDL and RAQMS) are used to drive the STEM-2K3 regional model with time-varied lateral and top boundary conditions (BCs). The regional simulations with different global BCs are examined using ICARTT aircraft measurements performed in the summer of 2004, and the simulations are shown to be sensitive to the boundary conditions from the global models, especially for relatively long-lived species, like CO and O-3. Differences in the mean CO concentrations from three different global-model boundary conditions are as large as 40 ppbv, and the effects of the BCs on CO are shown to be important throughout the troposphere, even near surface. Top boundary conditions show strong effect on O3 predictions above 4 km. Over certain model grids, the model's sensitivity to BCs is found to depend not only on the distance from the domain's top and lateral boundaries, downwind/upwind situation, but also on regional emissions and species properties. The near-surface prediction over polluted area is usually not as sensitive to the variation of BCs, but to the magnitude of their background concentrations. We also test the sensitivity of model to temporal and spatial variations of the BCs by comparing the simulations with time-varied BCs to the corresponding simulations with time-mean and profile BCs. Removing the time variation of BCs leads to a significant bias on the variation prediction and sometime causes the bias in predicted mean values. The effect of model resolution on the BC sensitivity is also studied. C1 Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA. NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA. NASA, Langley Res Ctr, Hampton, VA 23681 USA. Natl Ctr Atmospher Res, Boulder, CO 80307 USA. Univ N Carolina, Carolina Environm Program, Chapel Hill, NC 27599 USA. NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO 80305 USA. Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. RP Tang, YH (reprint author), NOAA, Natl Ctr Environm Protect, Environm Modeling Ctr, W-NP22 Room 207,5200 Auth Rd, Camp Springs, MD 20746 USA. EM youhua.tang@noaa.gov; gcarmich@engineering.uiowa.edu; nthongbo@cgrer.uiowa.edu; tchai@cgrer.uiowa.edu; larry.horowitz@noaa.gov; r.b.pierce@larc.nasa.gov; j.a.al-saadi@nasa.gov; pfister@ucar.edu; jeff_vukovich@unc.edu; m.a.avery@larc.nasa.gov; g.w.sachse@larc.nasa.gov; thomas.b.ryerson@noaa.gov; john.s.holloway@noaa.gov; eatlas@rsmas.miami.edu; ffl@ucar.edu; rweber@eas.gatech.edu; greg.huey@eas.gatech.edu; jack.dibb@unh.edu; dstreets@anl.gov; brune@ems.psu.edu RI Pfister, Gabriele/A-9349-2008; Tang, Youhua/D-5205-2016; Chai, Tianfeng/E-5577-2010; Manager, CSD Publications/B-2789-2015; Pierce, Robert Bradley/F-5609-2010; Holloway, John/F-9911-2012; Ryerson, Tom/C-9611-2009; Horowitz, Larry/D-8048-2014; Atlas, Elliot/J-8171-2015 OI Tang, Youhua/0000-0001-7089-7915; Chai, Tianfeng/0000-0003-3520-2641; Streets, David/0000-0002-0223-1350; Pierce, Robert Bradley/0000-0002-2767-1643; Holloway, John/0000-0002-4585-9594; Horowitz, Larry/0000-0002-5886-3314; NR 30 TC 47 Z9 48 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 25 PY 2007 VL 112 IS D10 AR D10S18 DI 10.1029/2006JD007515 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 163FC UT WOS:000246143200001 ER PT J AU Schulthess, TC Temmerman, WM Szotek, Z Svane, A Petit, L AF Schulthess, T. C. Temmerman, W. M. Szotek, Z. Svane, A. Petit, L. TI First-principles electronic structure of Mn-doped GaAs, GaP, and GaN semiconductors SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID NEUTRAL MANGANESE ACCEPTOR; EFFECTIVE-POTENTIAL METHOD; FERROMAGNETISM; EXCHANGE; APPROXIMATIONS; SPINTRONICS; (GA,MN)AS; EPITAXY; SYSTEMS; FILMS AB We present first-principles electronic structure calculations of Mn-doped III-V semiconductors based on the local spin-density approximation ( LSDA) as well as the self-interaction corrected local spin-density method ( SIC-LSD). We find that it is crucial to use a self-interaction free approach to properly describe the electronic ground state. The SIC-LSD calculations predict the proper electronic ground state configuration for Mn in GaAs, GaP, and GaN. Excellent quantitative agreement with experiment is found for the magnetic moment and p-d exchange in ( GaMn) As. These results allow us to validate commonly used models for magnetic semiconductors. Furthermore, we discuss the delicate problem of extracting binding energies of localized levels from density functional theory calculations. We propose three approaches to take into account final state effects to estimate the binding energies of the Mn d levels in GaAs. We find good agreement between computed values and estimates from photoemission experiments. C1 Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. SERC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England. Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. RP Schulthess, TC (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RI Petit, Leon/B-5255-2008; OI Petit, Leon/0000-0001-6489-9922 NR 55 TC 17 Z9 18 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD APR 25 PY 2007 VL 19 IS 16 AR 165207 DI 10.1088/0953-8984/19/16/165207 PG 12 WC Physics, Condensed Matter SC Physics GA 168VL UT WOS:000246552000008 ER PT J AU Lee, Y Lee, HH Lee, DR Shin, TJ Choi, JY Kao, CC AF Lee, Yongjae Lee, Hyun Hwi Lee, Dong Ryeol Shin, Tae Joo Choi, Jae-Young Kao, Chi-Chang TI Cation-dependent compression behavior in low-silica zeolite-X SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID RAY-POWDER DIFFRACTION; ION-EXCHANGE; PRESSURE AB Under hydrostatic pressure, low-silica zeolite-X exhibits a range of compression behavior depending on its cation distribution as well as the pressure transmitting medium. This pressure response appears to be a complex phenomenon involving the interplay between selective overhydration, cation relocation, as well as the intrinsic framework distortion, and indicates that the apparent compressibility of LSX can be tailored via cation exchange and the choice of pressure medium. C1 Yonsei Univ, Dept Earth Syst Sci, Seoul 120749, South Korea. POSTECH, Pohang Accelerator Lab, Pohang 790784, South Korea. Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Lee, Y (reprint author), Yonsei Univ, Dept Earth Syst Sci, Seoul 120749, South Korea. EM yongjaelee@yonsei.ac.kr RI Lee, Yongjae/K-6566-2016; Shin, Tae Joo/R-7434-2016 OI Shin, Tae Joo/0000-0002-1438-3298 NR 10 TC 7 Z9 7 U1 1 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 25 PY 2007 VL 129 IS 16 BP 4888 EP + DI 10.1021/ja0710961 PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 158HQ UT WOS:000245782800016 PM 17402740 ER PT J AU Watson, MP Overman, LE Bergman, RG AF Watson, Mary P. Overman, Larry E. Bergman, Robert G. TI Kinetic and computational analysis of the palladium(II)-catalyzed asymmetric allylic trichloroacetimidate rearrangement: Development of a model for enantioselectivity SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID AZA-CLAISEN REARRANGEMENT; CYCLOPALLADATED FERROCENYL AMINES; COBALT OXAZOLINE PALLADACYCLES; HETEROCYCLIC-COMPOUNDS SERIES; EFFECTIVE CORE POTENTIALS; MOLECULAR CALCULATIONS; BIOCHEMICAL PATHWAYS; CRYSTAL-STRUCTURE; AMIDE-IMIDATE; COMPLEXES AB The asymmetric rearrangement of allylic trichloroacetimidates catalyzed by palladium(II) complexes of the COP family is a powerful method for the preparation of enantioenriched chiral allylic amines from prochiral allylic alcohols. A detailed kinetic analysis of this reaction was performed to elucidate the rate- and enantiodetermining step of this important reaction. The results of these studies support a cyclization-induced rearrangement mechanism and prompted DFT studies (B3LYP/LACVP**+) of C-N bond formation, believed to be the enantiodetermining step of this catalytic cycle. On the basis of these calculations, a model for enantioinduction was developed, in which the planar chirality of the catalyst controls the enantioselectivity. These studies should allow the rational design of more enantioselective catalysts. C1 Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Overman, LE (reprint author), Univ Calif Irvine, Dept Chem, 1102 Nat Sci 2, Irvine, CA 92697 USA. EM leoverma@uci.edu OI Overman, Larry/0000-0001-9462-0195 NR 56 TC 95 Z9 95 U1 3 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 25 PY 2007 VL 129 IS 16 BP 5031 EP 5044 DI 10.1021/ja0676962 PG 14 WC Chemistry, Multidisciplinary SC Chemistry GA 158HQ UT WOS:000245782800041 PM 17402733 ER PT J AU Diener, MD Alford, JM Kennel, SJ Mirzadeh, S AF Diener, Michael D. Alford, John M. Kennel, Stephen J. Mirzadeh, Saed TI Pb-212@C-60 and its water-soluble derivatives: Synthesis, stability, and suitability for radioimmunotherapy SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ALPHA-EMITTING NUCLIDES; IN-VIVO EVALUATION; CANCER-THERAPY; CLINICAL USE/; METALLOFULLERENES; FULLERENE; GENERATOR; ANTIBODY; RADIONUCLIDES; DOSIMETRY AB Fullerenes could potentially play a valuable role in radioimmunotherapy by more stably encapsulating radionuclides, especially where conventional chelation chemistry is inadequate due to the physical and/or chemical properties of the radionuclide. One of the therapeutically useful radionuclides that requires improved containment in vivo is Pb-212 (tau(1/2) = 10.6 h), the beta-emitting parent to alpha-emitting Bi-212 (tau(1/2) = 60.6 min). Myelotoxicity resulting from the accumulation of Pb-212 in the bone marrow has limited the use of this radionuclide despite its favorable decay characteristics. In this work, Pb-212@C-60 and its malonic ester derivatives were prepared for the first time by allowing the Pb-212 to recoil into C-60 following alpha-decay from its parent, 0.15-s Po-216, generated in situ from the decay of Ra-224 (tau(1/2) = 15 days). Repeated washing of the organic phase containing the Pb-212@C-60 malonic esters with challenge solutions containing cold Pb2+ ions demonstrated that some of the Pb-212 could not be exchanged and was apparently inside of the fullerenes. Malonic esters of endohedral alpha-emitting Bi-213 (tau(1/2) = 45 min) fullerenes were prepared by an analogous procedure. Following acidification of the esters, a preliminary biodistribution study in mice was performed with the untargeted water-soluble radiofullerenes. It was found that Pb-212 did not accumulate in bone after being administered as an endohedral fullerene, in contrast to results with polyhydroxylated radiofullerenes and conventional polyaminocarboxylate chelators for Pb-212. The results indicate that Pb-212 is held more tightly in the fullerene than in other methods and suggest that fullerenes may have an important role in the targeted delivery of Pb-212. C1 TDA Res Inc, Wheat Ridge, CO 80033 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Diener, MD (reprint author), TDA Res Inc, 12345 West 52nd Ave, Wheat Ridge, CO 80033 USA. EM mikee@tda.com FU NCI NIH HHS [R43 CA96356] NR 41 TC 34 Z9 35 U1 3 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 25 PY 2007 VL 129 IS 16 BP 5131 EP 5138 DI 10.1021/ja068639b PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 158HQ UT WOS:000245782800052 PM 17394315 ER PT J AU Schelter, EJ Yang, P Scott, BL Da Re, RE Jantunen, KC Martin, RL Hay, PJ Morris, DE Kiplinger, JL AF Schelter, Eric J. Yang, Ping Scott, Brian L. Da Re, Ryan E. Jantunen, Kimberly C. Martin, Richard L. Hay, P. Jeffrey Morris, David E. Kiplinger, Jaqueline L. TI Systematic studies of early actinide complexes: Thorium(IV) fluoroketimides SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID DENSITY-FUNCTIONAL THEORY; ZIRCONIUM THIOLATE COMPLEXES; X-RAY STRUCTURE; ELECTRONIC-STRUCTURE; EXCITED-STATES; EXCITATION-ENERGIES; INTERMOLECULAR HYDROAMINATION; ORGANOACTINIDE COMPLEXES; PORPHYRIN COMPLEXES; CRYSTAL-STRUCTURES AB Reaction of (C5Me5)(2)Th(CH3)(2) with 2 equiv of NC-Ar-F gives the corresponding fluorinated thorium(IV) bis(ketimide) complexes (C5Me5)(2)Th[-NC(CH3)(Ar-F)](2) (where Ar-F = 3-F-C6H4 (4), 4-F-C6H4 (5), 2-F-C6H4 (6), 3,5-F-2-C6H3 (7), 3,4,5-F-3-C6H2 (8), 2,6-F-2-C6H3 (9), 2,4,6-F-3-C6H2 (10), and C6F5 (11)). The complexes have been characterized by a combination of single-crystal X-ray diffraction, cyclic voltammetry and NMR, and UV-visible absorption and low-temperature luminescence spectroscopies. Density functional theory (DFT) and time-dependent DFT (TD-DFT) results are reported for complexes 5, 11, and (C5Me5)(2)Th[-NC(Ph)(2)](2) (1) for comparison with experimental data and to guide in the interpretation of the spectroscopic results. The most significant structural perturbation imparted by the fluorine substitution in these complexes is a rotation of the fluorophenyl group (Ar-F) out of the plane defined by the NC(C-Me)(C-ipso) fragment in complexes 9-11 when the Ar-F group possesses two ortho fluorine atoms. Excellent agreement is obtained between the optimized ground state DFT calculated structures and crystal structures for 11, which displays the distortion, as well as 5, which does not. In complexes 9-11, the out-of-plane rotation results in large interplanar angles (phi) between the planes formed by ketimide atoms NC(C-Me)(C-ipso) and the ketimide aryl groups in the range phi = 49.1-88.8 degrees, while in complexes 5, 7, and 8, phi = 5.7-34.9 degrees. The large distortions in 9-11 are a consequence of an unfavorable steric interaction between one of the two ortho fluorine atoms and the methyl group [-NC(CH3)] on the ketimide ligand. Excellent agreement is also observed between the experimental electronic spectroscopic data and the TD-DFT predictions that the two lowest lying singlet states are principally of nonbonding nitrogen p orbital to antibonding CN pi* orbital (p(N)->pi*(CN) or n pi*) character, giving rise to moderately intense transitions in the mid-visible spectral region that are separated in energy by less than 0.1 eV. Low-temperature (77 K) luminescence from both singlet and triplet excited states are also observed for these complexes. Emission lifetime data at 77 K for the triplet states are in the range 50-400 mu s. These emission spectral data also exhibit vibronic structure indicative of a small Franck-Condon distortion in the ketimide M-NC(R-1)(R-2) linkage. Consistent with this vibronic structure, resonance enhanced Raman vibrational scattering is also observed for (C5Me5)(2)Th[-NC(Ph)(CH2Ph)](2) (2) when exciting into the visible excited states. These systems represent rare examples of Th(IV) complexes that engender luminescence and resonance Raman spectral signatures. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Hay, PJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM kiplinger@lanl.gov RI Yang, Ping/E-5355-2011; Schelter, Eric/E-2962-2013; Morris, David/A-8577-2012; Kiplinger, Jaqueline/B-9158-2011; Scott, Brian/D-8995-2017; OI Kiplinger, Jaqueline/0000-0003-0512-7062; Scott, Brian/0000-0003-0468-5396; Yang, Ping/0000-0003-4726-2860 NR 54 TC 30 Z9 30 U1 2 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 25 PY 2007 VL 129 IS 16 BP 5139 EP 5152 DI 10.1021/ja0686458 PG 14 WC Chemistry, Multidisciplinary SC Chemistry GA 158HQ UT WOS:000245782800053 PM 17394316 ER PT J AU Molins, R Rouzou, I Hou, P AF Molins, Regine Rouzou, Isabelle Hou, Peggy TI A TEM study of sulfur distribution in oxidized Ni40Al and its effect on oxide growth and adherence SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE NiAl; sulfur; oxidation; adherence ID HIGH-TEMPERATURE OXIDATION; ALUMINA SCALE GROWTH; GRAIN-BOUNDARIES; PORE FORMATION; TBC SYSTEM; SEGREGATION; ADHESION; AL2O3; IMPURITY; ENVIRONMENTS AB During oxidation at 1100 degrees C of a normal purity and a S-doped Ni-40at%Al alloys, the sulfur distribution in the alloy, in the scale and at the scale/alloy interface was studied, as well as its influence on scale growth. On the S-doped NiAl, sulfur was found incorporated in the growing alumina scale in the form of NiS tiny precipitates as well as segregated at the alumina/alloy interface. This showed that the oxide/alloy interface is not an unlimited sink for S and that excess sulfur can pass through the interface and precipitate into the growing scale. Kinetics results showed no effect of sulfur on scale development, except a significant decrease in alumina adhesion associated to enhanced pore formation for the S-doped alloy. (c) 2006 Elsevier B.V. All rights reserved. C1 ENSMP, Ctr Mat, UMR CNRS 7633, F-91003 Evry, France. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Molins, R (reprint author), ENSMP, Ctr Mat, UMR CNRS 7633, BP 87, F-91003 Evry, France. EM regine.molins@ensmp.fr NR 30 TC 17 Z9 18 U1 1 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD APR 25 PY 2007 VL 454 BP 80 EP 88 DI 10.1016/j.msea.2006.11.015 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 159WO UT WOS:000245898500012 ER PT J AU Long, X Khanna, SK Allard, LF AF Long, Xin Khanna, Sanjeev K. Allard, Lawrence F. TI Effect of fatigue loading and residual stress on microscopic deformation mechanisms in a spot welded joint SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE spot welds; residual stress; fatigue; dislocation structures ID WELDING PROCESS; STRENGTH; ALUMINUM AB The microstructure evolution in as welded and post-heated residual stress relived spot welded steel sheets during fatigue testing has been studied. The relationship between microstructure evolution and residual stress during fatigue loading has been considered. It has been found that under high fatigue load, dislocation density in spot nugget edge is much higher than that in nugget center area, which indicates significant plastic deformation occurred at the edge of spot nugget during fatigue testing. Under low fatigue load, dislocation density is quite low in both the edge and center area of spot nugget. The effect of post-heating is that more dislocations could be generated during fatigue testing for both high and low loading conditions. Post-heating results in lower strength of spot welded joint while it releases the residual stress in it, which reduces the fatigue life of the spot welded sheet. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Missouri, Dept Mech & Aerosp Engn, Columbia, MO 65211 USA. Oak Ridge Natl Lab, High Temp Mat Lab, Microanal Microstruct Grp, Oak Ridge, TN 37831 USA. RP Khanna, SK (reprint author), Univ Missouri, Dept Mech & Aerosp Engn, Columbia, MO 65211 USA. EM khannas@missouri.edu NR 19 TC 11 Z9 12 U1 1 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD APR 25 PY 2007 VL 454 BP 398 EP 406 DI 10.1016/j.msea.2006.11.062 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 159WO UT WOS:000245898500055 ER PT J AU Au, M AF Au, Ming TI High temperature electrochemical charging of hydrogen and its application in hydrogen embrittlement research SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE hydrogen; embrittlement; materials; electrochemical charging; fractography ID STAINLESS-STEEL AB A high temperature electrochemical charging technique was developed for effective introduction of hydrogen or tritium into the metallic materials to a high level in a short period of time. The samples of the steels and alloys, as the cathode, were charged in an electrochemical cell consists of Pt anode and molten salt electrolyte. After 3, 6 and 12 h charging, the 304 stainless steel absorbed 25, 45 and 60 ppm of hydrogen, respectively. Correspondingly, the mechanical strength lost 10, 16 and 23%. The plasticity was also reduced to 20, 23 and 38%. The fractography showed the hydrogen embrittlement effect on the fractures. The electrochemical hydrogen charging technique was successfully used for introducing tritium, an isotope of hydrogen, into the super alloys for visualization of hydrogen trapped in the microstructure of the materials. It is found that the hydrogen is trapped at the grain boundaries, in inclusions and carbides. The deformed and twisted grain boundaries trap most hydrogen under stress. (c) 2006 Elsevier B.V. All rights reserved. C1 Savannah River Natl Lab, Aiken, SC 29808 USA. RP Au, M (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM ming.au@srnl.doe.gov NR 9 TC 6 Z9 6 U1 1 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD APR 25 PY 2007 VL 454 BP 564 EP 569 DI 10.1016/j.msea.2006.11.086 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 159WO UT WOS:000245898500079 ER PT J AU Punnoose, A Reddy, KM Thurber, A Hays, J Engelhard, MH AF Punnoose, Alex Reddy, K. M. Thurber, Aaron Hays, Jason Engelhard, Mark H. TI Novel magnetic hydrogen sensing: a case study using antiferromagnetic haematite nanoparticles SO NANOTECHNOLOGY LA English DT Article ID SEMICONDUCTOR GAS SENSORS; SNO2-BASED SENSORS; CARBON NANOTUBES AB Hydrogen sensing is a critical component of safety to address widespread public perceptions of the hazards of production, storage, transportation and use of hydrogen in proposed future automobiles and in various other applications. A nanoscale magnetic hydrogen sensor is proposed based on the experimental observation of systematically varying the saturation magnetization and remanence of nanoscale antiferromagnetic haematite with hydrogen flow. The saturation magnetization and remanence of the nanoscale haematite sample showed an increase of one to two orders of magnitude in the presence of flowing hydrogen gas at concentrations in the 1-10% range and at 575 K, suggesting that a practical magnetic hydrogen sensor could be developed using this material and the novel magnetic sensing method. Thermogravimetric analysis of the haematite sample shows significant mass loss when hydrogen gas is introduced. X-ray diffraction and x-ray photoelectron spectroscopy studies ruled out any impurity phase formation as a result of gas-sample interaction. This work thus facilitates the use of the magnetic properties of an antiferromagnetic material as gas sensing parameters, thus exploring the concept of 'magnetic gas sensing'. C1 Boise State Univ, Dept Phys, Boise, ID 83725 USA. Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA. RP Punnoose, A (reprint author), Boise State Univ, Dept Phys, Boise, ID 83725 USA. EM apunnoos@boisestate.edu RI Engelhard, Mark/F-1317-2010; OI Engelhard, Mark/0000-0002-5543-0812 NR 16 TC 10 Z9 10 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD APR 25 PY 2007 VL 18 IS 16 AR 165502 DI 10.1088/0957-4484/18/16/165502 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 151DJ UT WOS:000245268800005 ER PT J AU Kataoka, J Reeves, JN Iwasawa, K Markowitz, AG Mushotzky, RF Arimoto, M Takahashi, T Tsubuku, Y Ushio, M Watanabe, S Gallo, LC Madejski, GM Terashima, Y Isobe, N Tashiro, MS Kohmura, T AF Kataoka, Jun Reeves, James N. Iwasawa, Kazushi Markowitz, Alex G. Mushotzky, Richard F. Arimoto, Makoto Takahashi, Tadayuki Tsubuku, Yoshihiro Ushio, Masayoshi Watanabe, Shin Gallo, Luigi C. Madejski, Greg M. Terashima, Yuichi Isobe, Naoki Tashiro, Makoto S. Kohmura, Takayoshi TI Probing the disk-jet connection of the radio galaxy 3C 120 observed with Suzaku SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE galaxies : active; galaxies : individual (3C 120); galaxies : Seyfert; X-rays : galaxies ID ACTIVE GALACTIC NUCLEI; RAY-TIMING-EXPLORER; HIGH-ENERGY EMISSION; BRIGHT QUASAR SURVEY; LINE REGION SIZES; X-RAY; XMM-NEWTON; BLACK-HOLE; SEYFERT-GALAXIES; BOARD SUZAKU AB We report on deep (40 ks x 4) observations of the bright broad line radio galaxy 3C 120 using Suzaku. The observations were spaced one week apart, and sampled a range of continuum fluxes. An excellent broadband spectrum was obtained over two decades of frequency (0.6 to 50 keV) within each 40 ks exposure. We clearly resolved the iron K emission-line complex, finding that it consists of a narrow K alpha core (sigma similar or equal to 110 eV or an EW of 60 eV), a 6.9 keV line, and an underlying broad iron line. Our confirmation of the broad line contrasts with the XMM-Newton observation in 2003, where the broad line was not required. The most natural interpretation of the broadline is iron Kline emission from a face-on accretion disk that is truncated at similar to 10 r(g). Above 10 keV, a relatively weak Compton hump was detected (reflection fraction of R similar or equal to 0.6), superposed on the primary X-ray continuum of Gamma similar or equal to 1.75. Thanks to the good photon statistics and low background of the Suzaku data, we clearly confirm the spectral evolution of 3C 120, whereby the variability amplitude decreases with increasing energy. More strikingly, we discovered that the variability is caused by a steep power-law component of Gamma similar or equal to 2.7, possibly related to non-thermal jet emission. We discuss our findings in the context of similarities and differences between radio-loud/quiet objects. C1 Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. Max Planck Inst Extraterr Phys, MPE, Garching, Germany. JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. Ehime Univ, Dept Phys, Matsuyama, Ehime 7908577, Japan. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. Saitama Univ, Dept Phys, Sakura, Saitama 3388570, Japan. Kogakuin Univ, Dept Phys, Hachioji, Tokyo 1920015, Japan. RP Kataoka, J (reprint author), Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. EM kataoka@hp.phys.titech.ac.jp RI Tashiro, Makoto/J-4562-2012; XRAY, SUZAKU/A-1808-2009 NR 66 TC 50 Z9 50 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD APR 25 PY 2007 VL 59 IS 2 BP 279 EP 297 DI 10.1093/pasj/59.2.279 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 166TT UT WOS:000246404000003 ER PT J AU Goobes, R Goobes, G Shaw, WJ Drobny, GP Campbell, CT Stayton, PS AF Goobes, Rivka Goobes, Gil Shaw, Wendy J. Drobny, Gary P. Campbell, Charles T. Stayton, Patrick S. TI Thermodynamic roles of basic amino acids in statherin recognition of hydroxyapatite SO BIOCHEMISTRY LA English DT Article ID CALCIUM-PHOSPHATE PRECIPITATION; HUMAN SALIVARY STATHERIN; HUMAN-PAROTID SALIVA; SOLID-STATE NMR; MAGIC-ANGLE; PEPTIDE; CRYSTALS; CONFORMATION; INHIBITION; ADSORPTION AB Salivary statherin is a highly acidic, 43 amino acid residue protein that functions as an inhibitor of primary and secondary crystallization of the biomineral hydroxyapatite. The acidic domain at the N-terminus was previously shown to be important in the binding of statherin to hydroxyapatite surfaces. This acidic segment is followed by a basic segment whose role is unclear. In this study, the role of the basic amino acids in the hydroxyapatite adsorption thermodynamics has been determined using isothermal titration calorimetry and equilibrium adsorption isotherm analysis. Single point mutations of the basic side chains to alanine lowered the binding affinity to the surface but did not perturb the maximal surface coverage and the adsorption enthalpy. The structural and dynamic properties of the single point mutants as characterized by solid-state NMR techniques were not altered either. Simultaneous replacement of all four basic amino acids with alanine lowered the adsorption equilibrium constant by 5-fold and the maximal surface coverage by nearly 2-fold. The initial exothermic phase of adsorption exhibited by native statherin is preserved in this mutant, along with the alpha-helical structure and the dynamic properties of the N-terminal domain. These results help to refine the two binding site model of statherin adsorption proposed earlier in our study of wild-type statherin (Goobes, R., Goobes, G., Campbell, C.T., and Stayton, P.S. (2006) Biochemistry 45, 5576-5586). The basic charges function to reduce protein-protein charge repulsion on the HAP surface, and in their absence, there is a considerable decrease in statherin packing density on the surface at binding saturation. C1 Univ Washington, Dept Bioengn, Seattle, WA 98195 USA. Univ Washington, Dept Chem, Seattle, WA 98195 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Stayton, PS (reprint author), Univ Washington, Dept Bioengn, Seattle, WA 98195 USA. EM stayton@u.washington.edu FU NIDCR NIH HHS [DE12554] NR 34 TC 39 Z9 39 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD APR 24 PY 2007 VL 46 IS 16 BP 4725 EP 4733 DI 10.1021/bi602345a PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 157QS UT WOS:000245735900005 PM 17391007 ER PT J AU Pandey, D Zemlyanov, DY Bevan, K Reifenberger, RG Dirk, SM Howell, SW Wheeler, DR AF Pandey, Deepak Zemlyanov, Dmitry Y. Bevan, Kirk Reifenberger, Ronald G. Dirk, Shawn M. Howell, Steve W. Wheeler, D. R. TI UHV STM I(V) and XPS studies of aryl diazonium molecules assembled on Si(111) SO LANGMUIR LA English DT Article ID FLAT H-SI(111) SURFACES; SINGLE-MOLECULE; CHARGE-TRANSPORT; SILICON; SALTS; SI; ELECTRONICS; MICROSCOPY; JUNCTIONS; SI(100) AB Molecular layers formed from 4-trifluoromethylbenzenediazonium tetrafluoroborate and 4-Methylbenzenediazonium tetrafluoroborate have been assembled on H-passivated Si(111) and studied by UHV STM and XPS. STM imaging shows well-developed Si(111) step edges and terraces both on Si(111):H and Si(111) substrates covered with a molecular layer. STM I(V) data acquired at different tip-substrate separations reveals a factor of similar to 10 enhancement in current for positive bias voltage when current flows through the 4-trifluoromethyl molecule when compared to the 4-methyl variant. The observed current enhancement in I(V) can be understood by comparing the projected density of states of the two molecule-Si systems calculated using a density functional theory local density approximation after geometry optimization was performed via the conjugate gradient method. XPS data independently confirm that H-passivated Si(111) remains oxygen free for short exposures to ambient conditions and provide evidence that the molecules chemically react with the silicon surface. C1 Purdue Univ, Dept Phys, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Pandey, D (reprint author), Purdue Univ, Dept Phys, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. EM dpandey@purdue.edu NR 42 TC 14 Z9 14 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD APR 24 PY 2007 VL 23 IS 9 BP 4700 EP 4708 DI 10.1021/la063235i PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 157QX UT WOS:000245736400003 PM 17391051 ER PT J AU Jensen, MP Yaita, T Chiarizia, R AF Jensen, Mark P. Yaita, Tsuyoshi Chiarizia, Renato TI Reverse-micelle formation in the partitioning of trivalent f-element cations by biphasic systems containing a tetraalkyldiglycolamide SO LANGMUIR LA English DT Article ID LIQUID-LIQUID-EXTRACTION; STICKY SPHERES MODEL; 3RD PHASE-FORMATION; N-DODECANE SYSTEM; X-RAY-SCATTERING; MOLECULAR-MECHANICS; NITRIC-ACID; SOLVENT-EXTRACTION; SUBSTITUTED MALONAMIDES; ATTRACTIVE INTERACTIONS AB The conditions for reverse-micelle formation were studied for solutions of tetra-n-octyldiglycolamide (TODGA) in alkane diluents equilibrated with aqueous solutions of nitric or hydrochloric acids in the presence and absence of Nd3+. Small-angle neutron scattering, vapor-pressure osmometry, and tensiometry are all consistent with the partial formation of TODGA dimers at the lowest acidities, transitioning to a polydisperse mixture containing TODGA monomers, dimers, and small reverse-micelles of TODGA tetramers at aqueous nitric acid acidities of 0.7 M or higher in the absence of Nd. Application of the Baxter model to the samples containing 0.005-0.015 M Nd reveals the persistence of tetrameric TODGA reverse-micelles with significant interparticle attraction between the polar cores of the micelles that increases with increasing organic phase concentrations of acid or Nd. Our experimental findings suggest that the peculiar behavior of TODGA with respect to the extraction of trivalent lanthanide and actinide cations arises from the affinity of these metal cations for the preformed TODGA reverse-micelle tetramers. C1 Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. Japan Atom Energy Agcy, Synchrotron Radiat Res Ctr, Actinide Coordinat Chem Grp, Hyogo 6795148, Japan. RP Jensen, MP (reprint author), Argonne Natl Lab, Div Chem, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mjensen@anl.gov RI Jensen, Mark/G-9131-2012 OI Jensen, Mark/0000-0003-4494-6693 NR 71 TC 82 Z9 83 U1 5 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD APR 24 PY 2007 VL 23 IS 9 BP 4765 EP 4774 DI 10.1021/la0631926 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 157QX UT WOS:000245736400016 PM 17391052 ER PT J AU McLauchlin, ML Yang, DQ Aella, P Garcia, AA Picraux, ST Hayes, MA AF McLauchlin, Melissa L. Yang, Dongqing Aella, P. Garcia, Antonio A. Picraux, S. T. Hayes, Mark A. TI Evaporative properties and pinning strength of laser-ablated, hydrophilic sites on lotus-leaf-like, nanostructured surfaces SO LANGMUIR LA English DT Article ID ULTRAHYDROPHOBIC SURFACES; SUPERHYDROPHOBIC SURFACES; WATER; CONTACT; RESISTANCE; ROUGHNESS; REDUCTION; ANGLES AB Wetting, evaporative, and pinning strength properties of hydrophilic sites on superhydrophobic, nanostructured surfaces were examined. Understanding these properties is important for surface characterization and designing features in self-cleaning, lotus-leaf-like surfaces. Laser-ablated, hydrophilic spots between 250 mu m and 2 mm in diameter were prepared on silicon nanowire (NW) superhydrophobic surfaces. For larger circumference pinning sites, initial contact angle measurements resemble the contact angle of the surface within the pinning site: 65-69 degrees. As the drop volume is increased, the contact angles approach the contact angle of the NW surface without pinning sites: 171-176 degrees. The behavior of water droplets on the pinning sites is governed by how much of the water droplet is being influenced by the superhydrophobic NW surfaces versus the hydrophilic areas. During the evaporation of sinapic acid solution, drops are pinned by the spots except for the smaller circumference sites. Pinning strengths of the hydrophilic sites are a linear function of the pinning spot circumference. Protein samples prepared and deposited on the pinning sites for analysis by matrix-assisted laser desorption ionization indicate an improvement in sensitivity from that of a standard plate analysis by a factor of 5. C1 Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. Arizona State Univ, Dept Chem & Mat Engn, Tempe, AZ 85287 USA. Arizona State Univ, Sci & Engn Mat Grad Program, Tempe, AZ 85287 USA. Arizona State Univ, Harrington Dept Bioengn, Tempe, AZ 85287 USA. Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Hayes, MA (reprint author), Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. EM mhayes@asu.edu NR 27 TC 25 Z9 25 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD APR 24 PY 2007 VL 23 IS 9 BP 4871 EP 4877 DI 10.1021/la062638f PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 157QX UT WOS:000245736400029 PM 17381139 ER PT J AU Vlcek, L Zhang, Z Machesky, ML Fenter, P Rosenqvist, J Wesolowski, DJ Anovitz, LM Predota, M Cummings, PT AF Vlcek, Lukas Zhang, Zhan Machesky, Mike L. Fenter, Paul Rosenqvist, Jorgen Wesolowski, David J. Anovitz, Larry M. Predota, Milan Cummings, Peter T. TI Electric double layer at metal oxide surfaces: Static properties of the cassiterite - Water interface SO LANGMUIR LA English DT Article ID FORCE-FIELD PARAMETERS; RUTILE 110 SURFACE; MOLECULAR-DYNAMICS; AQUEOUS-SOLUTION; ADSORPTION; MODEL; PROTONATION; CRYSTALS; SYSTEMS; TIO2 AB The structure of water at the (110) surface of cassiterite (alpha-SnO2) at ambient conditions was studied by means of molecular dynamics simulations and X-ray crystal truncation rod experiments and interpreted with the help of the revised MUSIC model of surface protonation. The interactions of the metal oxide in the simulations were described by a recently developed classical force field based on the SPC/E model of water. Two extreme cases of completely hydroxylated and nonhydroxylated surfaces were considered along with a mixed surface with 50% dissociation. To study the dependence of the surface properties on pH, neutral and negatively charged variants of the surfaces were constructed. Axial and lateral density distributions of water for different types of surfaces were compared to each other and to experimental axial density distributions found by X-ray experiments. Although significant differences were found between the structures of the studied interfaces, the axial distances between Sn and O atoms are very similar and therefore could not be clearly distinguished by the diffraction technique. The explanation of structures observed in the density distributions was provided by a detailed analysis of hydrogen bonding in the interfacial region. It revealed qualitatively different hydrating patterns formed at neutral hydroxylated and nonhydroxylated surfaces and suggested a preference for the dissociative adsorption of water. At negatively charged surfaces, however, the situation can be reversed by the electric field stabilizing a hydrogen bond network similar to that found at the neutral nonhydroxylated surface. Comparison with previously studied rutile (alpha-TiO2) surfaces provided insight into the differences between the hydration of these two metal oxides, and an important role was ascribed to their different lattice parameters. A link to macroscopic properties was provided by the revised MUSIC surface protonation model. Explicit use of the Sn-O bond lengths based on ab initio calculations and H-bond configurations as inputs led to the prediction of a pH of zero net-proton induced surface charge (pH(pzc)) that agrees very well with those determined experimentally (about 4.4 at 298 K). C1 Vanderbilt Univ, Dept Chem Engn, Nashville, TN 37235 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Illinois State Water Survey, Champaign, IL 61820 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Univ S Bohema, Dept Med Phys & Biophys, Ceske Budejovice 37004, Czech Republic. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Vlcek, L (reprint author), Vanderbilt Univ, Dept Chem Engn, Nashville, TN 37235 USA. EM lukas.vlcek@vanderbilt.edu RI Zhang, Zhan/A-9830-2008; Predota, Milan/A-2256-2009; Cummings, Peter/B-8762-2013; Vlcek, Lukas/N-7090-2013; Anovitz, Lawrence/P-3144-2016 OI Zhang, Zhan/0000-0002-7618-6134; Predota, Milan/0000-0003-3902-0992; Cummings, Peter/0000-0002-9766-2216; Vlcek, Lukas/0000-0003-4782-7702; Anovitz, Lawrence/0000-0002-2609-8750 NR 48 TC 34 Z9 34 U1 5 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD APR 24 PY 2007 VL 23 IS 9 BP 4925 EP 4937 DI 10.1021/la063306d PG 13 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 157QX UT WOS:000245736400036 PM 17381142 ER PT J AU Li, ZY Tong, WM Stickle, WF Neiman, DL Williams, RS Hunter, LL Talin, AA Li, D Brueck, SRJ AF Li, Zhiyong Tong, William M. Stickle, William F. Neiman, David L. Williams, R. Stanley Hunter, Luke L. Talin, A. Alec Li, D. Brueck, S. R. J. TI Plasma-induced formation of ag nanodots for ultra-high-enhancement surface-enhanced raman scattering substrates SO LANGMUIR LA English DT Article ID SPECTROSCOPY; LITHOGRAPHY; MOLECULES AB We report here plasma-induced formation of Ag nanostructures for surface-enhanced Raman scattering (SERS) applications. An array of uniform Ag patterned structures of 150 nm diameter was first fabricated on a silicon substrate with imprint lithography; then the substrate was further treated with an oxygen plasma to fracture the patterned structures into clusters of smaller, interconnected, closely packed Ag nanoparticles (20-60 nm) and redeposited Ag nanodots (similar to 10 nm) between the clusters. The substrate thus formed had a uniform ultrahigh SERS enhancement factor (10(10)) over the entire substrate for 4-mercaptophenol molecules. By comparison, Au patterned structures fabricated with the same method did not undergo such a morphological change after the plasma treatment and showed no enhancement of Raman scattering. C1 Hewlett Packard Labs, Quantum Sci Res, Palo Alto, CA 94304 USA. Hewlett Packard Corp, Adv Mat Proc Lab, Corvallis, OR 97330 USA. Hewlett Packard Corp, Adv Diagnost Lab, Corvallis, OR 97330 USA. Sandia Natl Labs, Livermore, CA 94550 USA. Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87106 USA. RP Li, ZY (reprint author), Hewlett Packard Labs, Quantum Sci Res, 1501 Page Mill Rd, Palo Alto, CA 94304 USA. EM zhiyong.li@hp.com RI Tong, William/D-2564-2010; Williams, R. Stanley/A-8281-2009; OI Williams, R. Stanley/0000-0003-0213-4259; Brueck, Steven/0000-0001-8754-5633 NR 18 TC 26 Z9 26 U1 2 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD APR 24 PY 2007 VL 23 IS 9 BP 5135 EP 5138 DI 10.1021/la063688n PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 157QX UT WOS:000245736400067 PM 17385901 ER PT J AU Steiner, SA Baumann, TF Kong, J Satcher, JH Dresselhaus, MS AF Steiner, Stephen A., III Baumann, Theodore F. Kong, Jing Satcher, Joe H., Jr. Dresselhaus, Mildred S. TI Iron-doped carbon aerogels: Novel porous substrates for direct growth of carbon nanotubes SO LANGMUIR LA English DT Article ID SURFACE CHARACTERISTICS; ORGANIC AEROGELS; NANOSTRUCTURES; CATALYST; SILICA; OXIDE AB We present the synthesis and characterization of Fe-doped carbon aerogels (CAs) and demonstrate the ability to grow carbon nanotubes directly on monoliths of these materials to afford novel carbon aerogel-carbon nanotube composites. Preparation of the Fe-doped CAs begins with the sol-gel polymerization of the potassium salt of 2,4-dihydroxybenzoic acid with formaldehyde, affording K(+)-doped gels that can then be converted to Fe(2+)- or Fe(3+)-doped gels through an ion exchange process, dried with supercritical CO(2), and subsequently carbonized under an inert atmosphere. Analysis of the Fe-doped CAs by TEM, XRD, and XPS revealed that the doped iron species are reduced during carbonization to form metallic iron and iron carbide nanoparticles. The sizes and chemical composition of the reduced Fe species were related to pyrolysis temperature as well as the type of iron salt used in the ion exchange process. Raman spectroscopy and XRD analysis further reveal that, despite the presence of the Fe species, the CA framework is not significantly graphitized during pyrolysis. The Fe-doped CAs were subsequently placed in a thermal CVD reactor and exposed to a mixture of CH(4) (1000 sccm), H(2) (500 sccm), and C(2)H(4) (20 sccm) at temperatures ranging from 600 to 800 degrees C for 10 min, resulting in direct growth of carbon nanotubes on the aerogel monoliths. Carbon nanotubes grown by this method appear to be multiwalled (similar to 25 nm in diameter and up to 4 mu m long) and grow through a tip-growth mechanism that pushes catalytic iron particles out of the aerogel framework. The highest yield of CNTs was grown on Fe-doped CAs pyrolyzed at 800 degrees C treated at CVD temperatures of 700 degrees C. C1 Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA 94551 USA. MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. MIT, Dept Phys, Cambridge, MA 02139 USA. RP Baumann, TF (reprint author), Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA 94551 USA. EM baumann2@llnl.gov NR 34 TC 33 Z9 35 U1 4 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD APR 24 PY 2007 VL 23 IS 9 BP 5161 EP 5166 DI 10.1021/la063643m PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 157QX UT WOS:000245736400072 PM 17381146 ER PT J AU Brown, EN Dattelbaum, DM Brown, DW Rae, PJ Clausen, B AF Brown, E. N. Dattelbaum, D. M. Brown, D. W. Rae, P. J. Clausen, B. TI A new strain path to inducing phase transitions in semi-crystalline polymers SO POLYMER LA English DT Article DE neutron diffraction; phase transition; polytetrafluoroethylene ID POWDER DIFFRACTION DATA; POLYTETRAFLUOROETHYLENE PTFE; CRYSTAL-STRUCTURE; POLY(TETRAFLUOROETHYLENE); TENSILE; DEFORMATION; TEMPERATURE; EVOLUTION; FRACTURE AB A novel application of in situ neutron diffraction under applied uniaxial strain is presented; measuring the crystalline domain evolution in a semi-crystalline polymer under bulk deformation. PTFE is shown to respond to uniaxial deformation by undergoing a crystalline phase transition that is previously believed to occur only at very high hydrostatic pressure. Discovery of this phase transition under applied uniaxial strain fundamentally changes our understanding of the deformation mechanisms in semi-crystalline polymers and how they need to be modeled. Under compression parallel to the basal plane normal (i.e., parallel to the molecular axis) the modulus is similar to 1000 x bulk dominated by intra-polymer chain compression, providing experimental validation of theoretical predictions. Deformation parallel to the pyramidal plane normal exhibits both axial and transverse strains of the opposite sign as the applied load, suggesting that the crystalline lattice is accommodating deformation by shearing along the prismatic planes. Published by Elsevier Ltd. C1 Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Dynam & Energet Mat Div, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Los Alamos Neutron Scattering Ctr, LANSCE LC, Los Alamos, NM 87545 USA. RP Brown, EN (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, MST-8,MS G-755, Los Alamos, NM 87545 USA. EM en_brown@lanl.gov RI Clausen, Bjorn/B-3618-2015; OI Clausen, Bjorn/0000-0003-3906-846X; Brown, Eric/0000-0002-6812-7820 NR 27 TC 25 Z9 25 U1 1 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 J9 POLYMER JI Polymer PD APR 24 PY 2007 VL 48 IS 9 BP 2531 EP 2536 DI 10.1016/j.polymer.2007.03.031 PG 6 WC Polymer Science SC Polymer Science GA 165TS UT WOS:000246329300012 ER PT J AU Kubas, GJ AF Kubas, Gregory J. TI Dihydrogen complexes as prototypes for the coordination chemistry of saturated molecules SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Review ID TRANSITION-METAL-COMPLEXES; INELASTIC-NEUTRON-SCATTERING; BASE-CATALYZED HYDROGENATION; SPIN COUPLING-CONSTANT; SIGMA-BOND METATHESIS; RAY CRYSTAL-STRUCTURE; DOT-CENTER-DOT; H-H BOND; X-RAY; ACTIVE-SITE AB The binding of a dihydrogen molecule (HA to a transition metal center in an organometallic complex was a major discovery because it changed the way chemists think about the reactivity of molecules with chemically "inert" strong bonds such as H-H and C-H. Before the seminal finding of side-on bonded H-2 in W(CO)(3)(PR3)(2)(H-2), it was generally believed that H-2 could not bind to another atom in stable fashion and would split into two separate H atoms to form a metal dihydride before undergoing chemical reaction. Metal-bound saturated molecules such as H-2, silanes, and alkanes (or-complexes) have a chemistry of their own, with surprisingly varied structures, bonding, and dynamics. H-2 complexes are of increased relevance for H-2 production and storage in the hydrogen economy of the future. C1 Los Alamos Natl Lab, Chem Div, Los Alamos, NM 87545 USA. RP Kubas, GJ (reprint author), Los Alamos Natl Lab, Chem Div, Los Alamos, NM 87545 USA. EM kubas@lanl.gov NR 144 TC 87 Z9 87 U1 1 U2 15 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 24 PY 2007 VL 104 IS 17 BP 6901 EP 6907 DI 10.1073/pnas.0609707104 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 161OK UT WOS:000246024700007 PM 17442752 ER PT J AU Wilson, AD Shoemaker, RK Miedaner, A Muckerman, JT DuBois, DL DuBois, MR AF Wilson, Aaron D. Shoemaker, R. K. Miedaner, A. Muckerman, J. T. DuBois, Daniel L. DuBois, M. Rakowski TI Nature of hydrogen interactions with Ni(II) complexes containing cyclic phosphine ligands with pendant nitrogen bases SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE catalysis; hydrogen oxidation; hydrogen production ID FE-ONLY HYDROGENASE; ACTIVE-SITE; ANGSTROM RESOLUTION; CRYSTAL-STRUCTURE; NIFE HYDROGENASE; BRIDGING LIGAND; EVOLUTION; MODELS; COORDINATION; REDUCTION AB Studies of the role of proton relays in molecular catalysts for the electrocatalytic production and oxidation of H-2 have been carried out. The electrochemical production of hydrogen from protonated DMF solutions catalyzed by [Ni((P2N2Ph)-N-Ph)(2)(CH3CN)](BF4)(2), 3a (where (P2N2Ph)-N-Ph is 1,3,5,7-tetraphenyl-1,5-diaza-3,7-diphosphacyclooctane), permits a limiting value of the H-2 production rate to be determined. The turnover frequency of 350 s(-1) establishes that the rate of H-2 production for the mononuclear nickel catalyst 3a is comparable to those observed for Ni-Fe hydrogenase enzymes. In the electrochemical oxidation of hydrogen catalyzed by [Ni((P2N2Bz)-N-Cy)(2)](BF4)(2), 3b (where Cy is cyclohexyl and Bz is benzyl), the initial step is the reversible addition of hydrogen to 3b (K-eq = 190 atm(-1) at 25 degrees C). The hydrogen addition product exists as three nearly isoenergetic isomers 4A-4C, which have been identified by a combination of one- and two-dimensional H-1, P-31, and N-15 NMR spectroscopies as Ni(O) complexes with a protonated amine in each cyclic ligand. The nature of the isomers, together with calculations, suggests a mode of hydrogen activation that involves a symmetrical interaction of a nickel dihydrogen ligand with two amine bases in the diphosphine ligands. Single deprotonation of 4 by an external base results in a rearrangement to [HNi(P(2)(Cy)N(2)Bz)(2)](BF4), 5, and this reaction is reversed by the addition of a proton to the nickel hydride complex. The small energy differences associated with significantly different distributions in electron density and protons within these molecules may contribute to their high catalytic activity. C1 Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. Natl Renewable Energy Lab, Golden, CO 80401 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Wilson, AD (reprint author), Univ Colorado, Dept Chem & Biochem, 215 UCB, Boulder, CO 80309 USA. EM dubois@colorado.edu RI Wilson, Aaron/C-4364-2008; Muckerman, James/D-8752-2013; Shoemaker, Richard/M-7409-2013 OI Wilson, Aaron/0000-0001-5865-6537; Shoemaker, Richard/0000-0002-0805-1449 NR 32 TC 213 Z9 213 U1 3 U2 63 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 24 PY 2007 VL 104 IS 17 BP 6951 EP 6956 DI 10.1073/pnas.0608928104 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 161OK UT WOS:000246024700015 PM 17360385 ER PT J AU Cobar, EA Khaliullin, RZ Bergman, RG Head-Gordon, M AF Cobar, Erika A. Khaliullin, Rustam Z. Bergman, Robert G. Head-Gordon, Martin TI Theoretical study of the rhenium-alkane interaction in transition metal-alkane sigma-complexes SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE binding energy; C-H activation; DFT calculations; manganese ID PLESSET CORRELATION-ENERGY; DENSITY-FUNCTIONAL THEORY; H BOND ACTIVATION; REDUCTIVE ELIMINATION; POLARIZATION FUNCTIONS; ORGANOMETALLIC ALKANE; OXIDATIVE ADDITION; NMR-SPECTROSCOPY; PROGRAM PACKAGE; LOW-TEMPERATURE AB Metal-alkane binding energies have been calculated for [CpRe(CO)(2)](alkane) and [(CO)(2)M(C(5)H(4))C C(C(5)H(4))M(CO)(2)](alkane), where M = Re or Mn. Calculated binding energies were found to increase with the number of metal-alkane interaction sites. In all cases examined, the manganese-alkane binding energies were predicted to be significantly lower than those for the analogous rhenium-alkane complexes. The metal (Mn or Re)-alkane interaction was predicted to be primarily one of charge transfer, both from the alkane to the metal complex (70-80% of total charge transfer) and from the metal complex to the alkane (20-30% of the total charge transfer). C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. NHLBI, Lab Computat Biol, Computat Biophys Sect, NIH, Bethesda, MD 20892 USA. Lawrence Berkeley Natl Lab, Chim Sci Div, Berkeley, CA 94720 USA. RP Bergman, RG (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM rbergman@berkeley.edu RI Khaliullin, Rustam/B-2672-2009 OI Khaliullin, Rustam/0000-0002-9073-6753 FU Intramural NIH HHS NR 63 TC 41 Z9 41 U1 5 U2 15 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 24 PY 2007 VL 104 IS 17 BP 6963 EP 6968 DI 10.1073/pnas.0610295104 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 161OK UT WOS:000246024700017 PM 17442751 ER PT J AU Bettencourt, LMA Lobo, J Helbing, D Kuhnert, C West, GB AF Bettencourt, Luis M. A. Lobo, Jose Helbing, Dirk Kuehnert, Christian West, Geoffrey B. TI Growth, innovation, scaling, and the pace of life in cities SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE population; sustainability; urban studies; increasing returns; economics of scale ID SUSTAINABILITY TRANSITION; INCREASING RETURNS; POPULATION-GROWTH; GENERAL-MODEL; URBANIZATION; ENVIRONMENT; SCIENCE; CLIMATE; TRENDS; SIZE AB Humanity has just crossed a major landmark in its history with the majority of people now living in cities. Cities have long been known to be society's predominant engine of innovation and wealth creation, yet they are also its main source of crime, pollution, and disease. The inexorable trend toward urbanization worldwide presents an urgent challenge for developing a predictive, quantitative theory of urban organization and sustainable development. Here we present empirical evidence indicating that the processes relating urbanization to economic development and knowledge creation are very general, being shared by all cities belonging to the same urban system and sustained across different nations and times. Many diverse properties of cities from patent production and personal income to electrical cable length are shown to be power law functions of population size with scaling exponents, beta, that fall into distinct universality classes. Quantities reflecting wealth creation and innovation have beta approximate to 1.2 > 1 (increasing returns), whereas those accounting for infrastructure display beta approximate to 0.8 < 1 (economies of scale). We predict that the pace of social life in the city increases with population size, in quantitative agreement with data, and we discuss how cities are similar to, and differ from, biological organisms, for which beta < 1. Finally, we explore possible consequences of these scaling relations by deriving growth equations, which quantify the dramatic difference between growth fueled by innovation versus that driven by economies of scale. This difference suggests that, as population grows, major innovation cycles must be generated at a continually accelerating rate to sustain growth and avoid stagnation or collapse. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Arizona State Univ, Global Inst Sustainabil, Tempe, AZ 85287 USA. Tech Univ Dresden, Inst Transport & Econ, D-01062 Dresden, Germany. Santa Fe Inst, Santa Fe, NM 87501 USA. RP Bettencourt, LMA (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM lmbett@lanl.gov RI Helbing, Dirk/C-6114-2008 NR 51 TC 484 Z9 493 U1 39 U2 280 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 24 PY 2007 VL 104 IS 17 BP 7301 EP 7306 DI 10.1073/pnas.0610172104 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 161OK UT WOS:000246024700074 PM 17438298 ER PT J AU Bastea, M Reisman, DB AF Bastea, Marina Reisman, D. B. TI Near-equilibrium polymorphic phase transformations in praseodymium under dynamic compression SO APPLIED PHYSICS LETTERS LA English DT Article ID HIGH-PRESSURE PHASE; CRYSTAL-STRUCTURE; INTERFEROMETER AB The authors report the first experimental observation of sequential, multiple polymorphic phase transformations occurring in praseodymium dynamically compressed using a ramp wave. The experiments also display the signatures of reverse transformations occurring upon pressure release and reveal the presence of small hysteresis loops. The results are in very good agreement with equilibrium hydrodynamic calculations performed using a thermodynamically consistent, multiphase equation of state for praseodymium, suggesting a near-equilibrium transformation behavior. (c) 2007 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Bastea, M (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. EM bastea1@llnl.gov NR 24 TC 2 Z9 2 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 23 PY 2007 VL 90 IS 17 AR 171921 DI 10.1063/1.2732831 PG 3 WC Physics, Applied SC Physics GA 169BV UT WOS:000246568600046 ER PT J AU Fleming, RM Seager, CH Lang, DV Bielejec, E Campbell, JM AF Fleming, R. M. Seager, C. H. Lang, D. V. Bielejec, E. Campbell, J. M. TI Defect-driven gain bistability in neutron damaged, silicon bipolar transistors SO APPLIED PHYSICS LETTERS LA English DT Article ID LEVEL TRANSIENT SPECTROSCOPY; IRRADIATED SILICON; GENERATION; DIVACANCY; OXYGEN; PAIR AB Using deep level transient spectroscopy, the authors have measured the defect spectrum in the collector of a n-p-n bipolar transistor following fast neutron irradiation as well as the gain on the same device. They show that a slow change observed in both the gain and deep level traps in the n-type collector at 300 K are bistable. The transistor gain and the defects can be returned to the postirradiation condition by forward bias at room temperature, i.e., by operating the transistor (gain) or injection through the base-collector diode (defect spectrum). (c) 2007 American Institute of Physics. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Fleming, RM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rmflemi@sandia.gov RI Fleming, Robert/B-1248-2008 NR 29 TC 25 Z9 25 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 23 PY 2007 VL 90 IS 17 AR 172105 DI 10.1063/1.2731516 PG 3 WC Physics, Applied SC Physics GA 169BV UT WOS:000246568600060 ER PT J AU Hau-Riege, SP London, RA Bionta, RM McKernan, MA Baker, SL Krzywinski, J Sobierajski, R Nietubyc, R Pelka, JB Jurek, M Juha, L Chalupsky, J Cihelka, J Hajkova, V Velyhan, A Krasa, J Kuba, J Tiedtke, K Toleikis, S Tschentscher, T Wabnitz, H Bergh, M Caleman, C Sokolowski-Tinten, K Stojanovic, N Zastrau, U AF Hau-Riege, S. P. London, R. A. Bionta, R. M. McKernan, M. A. Baker, S. L. Krzywinski, J. Sobierajski, R. Nietubyc, R. Pelka, J. B. Jurek, M. Juha, L. Chalupsky, J. Cihelka, J. Hajkova, V. Velyhan, A. Krasa, J. Kuba, J. Tiedtke, K. Toleikis, S. Tschentscher, Th. Wabnitz, H. Bergh, M. Caleman, C. Sokolowski-Tinten, K. Stojanovic, N. Zastrau, U. TI Damage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength SO APPLIED PHYSICS LETTERS LA English DT Article ID X-RAY OPTICS; COHERENT-LIGHT SOURCE; MATTER AB Samples of B4C, amorphous C, chemical-vapor-deposition-diamond C, Si, and SiC were exposed to single 25 fs long pulses of 32.5 nm free-electron-laser radiation at fluences of up to 2.2 J/cm(2). The samples were chosen as candidate materials for x-ray free-electron-laser optics. It was found that the threshold for surface damage is on the order of the fluence required for thermal melting. For larger fluences, the crater depths correspond to temperatures on the order of the critical temperature, suggesting that the craters are formed by two-phase vaporization. (c) 2007 American Institute Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland. Acad Sci Czech Republ, Inst Phys, Prague 18221 8, Czech Republic. Czech Tech Univ, Prague 16636, Czech Republic. DESY, HASYLAB, D-22603 Hamburg, Germany. Uppsala Univ, Biomed Ctr, Dept Cell & Mol Biol, SE-75124 Uppsala, Sweden. Univ Duisburg Essen, Inst Expt Phys, D-47048 Duisburg, Germany. Univ Jena, Inst Opt & Quantenelekt, D-07793 Jena, Germany. RP Hau-Riege, SP (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM hauriege1@llnl.gov RI Sobierajski, Ryszard/E-7619-2012; Stojanovic, Nikola/H-6986-2013; Hajkova, Vera/G-9391-2014; Chalupsky, Jaromir/H-2079-2014; Krasa, Josef/C-1442-2014; Sokolowski-Tinten, Klaus/A-5415-2015; Pelka, Jerzy/S-8587-2016; OI Krasa, Josef/0000-0002-3888-8370; Pelka, Jerzy/0000-0002-1863-8219; Zastrau, Ulf/0000-0002-3575-4449 NR 18 TC 53 Z9 53 U1 0 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 23 PY 2007 VL 90 IS 17 AR 173128 DI 10.1063/1.2734366 PG 3 WC Physics, Applied SC Physics GA 169BV UT WOS:000246568600119 ER PT J AU Koley, G Qazi, M Lakshmanan, L Thundat, T AF Koley, G. Qazi, M. Lakshmanan, L. Thundat, T. TI Gas sensing using electrostatic force potentiometry SO APPLIED PHYSICS LETTERS LA English DT Article ID DIODES AB A highly sensitive potentiometric technique generally applicable for detection of gases utilizing adsorption-induced changes in surface work function is demonstrated. This technique is applied to sense hydrogen based on work function change of a Pt thin film. The surface work function changes of Pt upon exposure to pure and 1000 ppm hydrogen were found to be similar to 900 and similar to 270 mV, respectively. These work function changes are much higher than corresponding changes in the Schottky barrier height in Pt-semiconductor based amperometric sensor devices for similar hydrogen concentration. Using this technique, detection down to 8 ppm hydrogen concentration is demonstrated. (c) 2007 American Institute of Physics. C1 Univ S Carolina, Dept Elect Engn, Columbia, SC 29208 USA. Univ S Carolina, USC NanoCtr, Columbia, SC 29208 USA. Oak Ridge Natl Lab, Div Biosci, Oak Ridge, TN 37831 USA. RP Koley, G (reprint author), Univ S Carolina, Dept Elect Engn, Columbia, SC 29208 USA. EM koley@engr.sc.edu NR 15 TC 17 Z9 17 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 23 PY 2007 VL 90 IS 17 AR 173105 DI 10.1063/1.2731686 PG 3 WC Physics, Applied SC Physics GA 169BV UT WOS:000246568600096 ER PT J AU Murray, CE Sankarapandian, M Polvino, SM Noyan, IC Lai, B Cai, Z AF Murray, Conal E. Sankarapandian, M. Polvino, S. M. Noyan, I. C. Lai, B. Cai, Z. TI Submicron mapping of strained silicon-on-insulator features induced SO APPLIED PHYSICS LETTERS LA English DT Article ID SUBSTRATE; FIELDS; FILMS AB Real-space maps of strain within silicon-on-insulator (SOI) features induced by adjacent, embedded shallow-trench-isolation (STI) SiO2 regions were obtained using x-ray microbeam diffraction. The quantitative strain mapping indicated that the SOI strain was largest at the SOI/STI interface and decreased as a function of distance from this interface. An out-of-plane residual strain of approximately -31 mu epsilon was observed in the blanket regions of the SOI. A comparison of the depth-averaged strain distributions to the strain profiles calculated from an Eshelby inclusion model indicated an equivalent eigenstrain of -0.55% in the STI regions acting on the SOI features. (c) 2007 American Institute of Physics. C1 IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA. Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Murray, CE (reprint author), IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA. EM conal@us.ibm.com NR 14 TC 9 Z9 9 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 23 PY 2007 VL 90 IS 17 AR 171919 DI 10.1063/1.2732180 PG 3 WC Physics, Applied SC Physics GA 169BV UT WOS:000246568600044 ER PT J AU Parikh, A Yarbrough, W Mason, M Sridhar, S Chidambaram, PR Cai, Z AF Parikh, A. Yarbrough, W. Mason, M. Sridhar, S. Chidambaram, P. R. Cai, Z. TI Characterization of structure and morphology of an advanced p-channel field effect transistor under uniaxial stress by synchrotron x-ray diffraction SO APPLIED PHYSICS LETTERS LA English DT Article AB Direct measurement of strain in an individual leading-edge p-channel field effect transistor embedded with SiGe was carried out using a synchrotron x-ray source. Diffraction space maps of these scans from two nonparallel reflecting planes, (004) and (115), detected the presence of strain in the channel. Detailed analysis showed that a maximum strain occurred at the top with gradual decay towards the substrate. Strain in the channel is relieved by formation of tilt boundary at the Si-SiGe interface. The lattice parameters in two directions are derived from measured data and the strain is calculated under the plane strain condition. (c) 2007 American Institute of Physics. C1 Texas Instruments Inc, Technol & Mfg Grp, Dallas, TX 75243 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Parikh, A (reprint author), Texas Instruments Inc, Technol & Mfg Grp, 13121 TI Blvd, Dallas, TX 75243 USA. EM ashesh@ti.com NR 6 TC 11 Z9 11 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 23 PY 2007 VL 90 IS 17 AR 172117 DI 10.1063/1.2734480 PG 3 WC Physics, Applied SC Physics GA 169BV UT WOS:000246568600072 ER PT J AU Wang, LQ Exarhos, GJ Windisch, CF Yao, CH Pederson, LR Zhou, XD AF Wang, Li-Qiong Exarhos, Gregory J. Windisch, Charles F., Jr. Yao, Chunhua Pederson, Larry R. Zhou, Xiao-Dong TI Probing hydrogen in ZnO nanorods using solid-state H-1 nuclear magnetic resonance SO APPLIED PHYSICS LETTERS LA English DT Article ID NANOSTRUCTURES; GROWTH; NANOWIRES AB A low-temperature reflux method was developed to synthesize large quantities of well-dispersed freestanding ZnO nanorods, which enabled the direct observation and characterization of hydrogen by solid-state H-1 magic angle spinning nuclear magnetic resonance (NMR) spectroscopy. In contrast to nano/micrometer particles of ZnO, a surprisingly sharp H-1 NMR resonance was maintained in ZnO nanorods that were heated to 500 degrees C, suggesting the existence of unusually stable hydrogen. Quantitative H-1 NMR measurements indicate that about 0.1% on a molar basis of these hydrogen species resides in the lattice of ZnO nanorods. This work has demonstrated that H-1 NMR is a powerful technique for probing hydrogen in ZnO nanorods. (c) 2007 American Institute of Physics. C1 Pacific NW Natl Lab, Fundamental Sci Directorate, Richland, WA 99354 USA. Brown Univ, Dept Chem, Providence, RI 02912 USA. Pacific NW Natl Lab, Energy Sci & Technol Directorate, Richland, WA 99354 USA. RP Wang, LQ (reprint author), Pacific NW Natl Lab, Fundamental Sci Directorate, Richland, WA 99354 USA. EM lq.wang@pnl.gov; xiaodong.zhou@pnl.gov NR 17 TC 14 Z9 14 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 23 PY 2007 VL 90 IS 17 AR 173115 DI 10.1063/1.2731688 PG 3 WC Physics, Applied SC Physics GA 169BV UT WOS:000246568600106 ER PT J AU Salvadori, A Gray, LJ AF Salvadori, A. Gray, L. J. TI Analytical integrations and SIFs computation in 2D fracture mechanics SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE fracture mechanics; stress intensity factors; integral equations; boundary elements ID BOUNDARY-ELEMENT METHOD; INTENSITY FACTOR COMPUTATIONS; PRINCIPAL VALUE INTEGRALS; HYPERSINGULAR INTEGRALS; NUMERICAL EVALUATION; SOMIGLIANA IDENTITY; CURVED ELEMENTS; 3D BEM; FORMULATION; ELASTICITY AB Analytical integrations, in the framework of linear elastic problems modelled by means of boundary integral equations, have been considered in a previous publication (Int. J. Numer Methods Eng. 2002; 53(7):1695-1719): the present note aims at extending the subject to linear elastic fracture mechanics. In such a context, special shape functions have been recently proposed (SIAM J. Appl. Math. 1998; 58: 428-455) in order to increase accuracy in stress intensity factors approximation: the closed form solution for 'integrals' that arise from the boundary element method is a goal of the present work. Exploiting the analytical integrations, asymptotical analysis around the crack tip are made possible, with the purpose of formulating a coherent and accurate correlation between approximated stress intensity factors and crack opening displacements over the crack tip straight special elements. Copyright (c) 2006 John Wiley & Sons, Ltd. C1 Univ Brescia, Dipartimento Ingn Civile, I-25123 Brescia, Italy. Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Salvadori, A (reprint author), Univ Brescia, Dipartimento Ingn Civile, Via Branze 38, I-25123 Brescia, Italy. EM alberto.salvadori@ing.unibs.it RI Salvadori, Alberto/C-7225-2008 OI Salvadori, Alberto/0000-0002-4875-7059 NR 53 TC 18 Z9 18 U1 0 U2 1 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0029-5981 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD APR 23 PY 2007 VL 70 IS 4 BP 445 EP 495 DI 10.1002/nme.1888 PG 51 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 159BZ UT WOS:000245841700004 ER PT J AU Egbert, JD Bullock, RM Heinekey, DM AF Egbert, Jonathan D. Bullock, R. Morris Heinekey, D. Michael TI Cationic dihydrogen/dihydride complexes of osmium: Structure and dynamics SO ORGANOMETALLICS LA English DT Article ID TRANSITION-METAL HYDRIDES; DIHYDRIDE COMPLEXES; COORDINATED DIHYDROGEN; RUTHENIUM; TEMPERATURE; CHEMISTRY; IRIDIUM; OS AB Reaction of Cp*Os(CO)(2)Cl with [Et3Si][BAr4F] under hydrogen gas affords the cationic hydrogen complex [Cp*Os(CO)(2)(H-2)][BAr4F] (1) (Cp* = C5Me5; Ar-F = C6F5). When this reaction is carried out with HD gas, complex 1-d(1) results, with J(HD) = 24.5 Hz. When solutions of complex 1 are monitored by H-1 NMR spectroscopy over several days, the gradual formation of a trans dihydride species is observed. Similarly, reaction of CpOs(dppm)Br with Na[BArF*(4)] (Ar-F* = 3,5-(CF3)(2)C6H3) under hydrogen affords the cationic dihydride complex [CpOs(dppm)H-2][BArF*(4)] (2). At 295 K, complex 2 exists as a 10:1 mixture of cis and trans isomers. The H-1 NMR spectrum of the cis form in the hydride region exhibits a triplet with J(HP) = 6.5 Hz, due to rapid exchange of the hydrogen atoms. At low temperature, static spectra of the HH'PP' spin system can be obtained, revealing quantum mechanical exchange coupling between the two hydride ligands. The observed J(HH') is temperature dependent, varying from 133 Hz at 141 K to 176 Hz at 198 K. This is the first report of detectable exchange coupling between pairs of chemically equivalent hydrogen atoms. C1 Univ Washington, Dept Chem, Seattle, WA 98195 USA. Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. RP Heinekey, DM (reprint author), Univ Washington, Dept Chem, Box 351700, Seattle, WA 98195 USA. EM heinekey@chem.washington.edu RI Bullock, R. Morris/L-6802-2016 OI Bullock, R. Morris/0000-0001-6306-4851 NR 25 TC 14 Z9 14 U1 3 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD APR 23 PY 2007 VL 26 IS 9 BP 2291 EP 2295 DI 10.1021/om0700718 PG 5 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 157AE UT WOS:000245690200022 ER PT J AU Walter, MD Berg, DJ Andersen, RA AF Walter, Marc D. Berg, David J. Andersen, Richard A. TI Coordination of 1,4-diazabutadiene ligands to decamethylytterbocene: Additional examples of spin coupling in ytterbocene complexes SO ORGANOMETALLICS LA English DT Article ID CONFORMATIONAL-ANALYSIS; LANTHANIDE COMPLEXES; GLYOXAL DERIVATIVES; RADICAL COMPLEXES; NMR-SPECTROSCOPY; METAL-COMPLEXES; PRIMARY AMINES; CHEMISTRY; YTTERBIUM; 2,2'-BIPYRIDYL AB The paramagnetic 1:1 coordination complexes of (C5Me5)(2)Yb with a series of diazabutadiene ligands, RNC(R')C(R')NR, where R = CMe3, CHMe2, adamantyl, p-tolyl, p-anisyl, mesityl when R' = H and R = p-anisyl when R' = Me, have been prepared. The complexes are paramagnetic, but their magnetic moments are less than expected for the two uncoupled spin carriers, (C5Me5)(2)Yb-III(4f(13)) and the diazabutadiene radical anions (S = (1)/(2)), which implies exchange coupling between the spins. The variable-temperature H-1 NMR spectra show that rotation about the R-N bond is hindered and these barriers are estimated. The barriers are largely determined by steric effects, but electronic effects are not unimportant. C1 Univ Calif Berkeley, Dept Chem, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Andersen, RA (reprint author), Univ Calif Berkeley, Dept Chem, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM raandersen@lbl.gov RI Walter, Marc/E-4479-2012 NR 53 TC 39 Z9 39 U1 1 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD APR 23 PY 2007 VL 26 IS 9 BP 2296 EP 2307 DI 10.1021/om0610142 PG 12 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 157AE UT WOS:000245690200023 ER PT J AU Noe, F Horenko, I Schutte, C Smith, JC AF Noe, Frank Horenko, Illia Schuette, Christof Smith, Jeremy C. TI Hierarchical analysis of conformational dynamics in biomolecules: Transition networks of metastable states SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID PROTEIN-FOLDING KINETICS; MOLECULAR-DYNAMICS; ENERGY LANDSCAPES; HAIRPIN PEPTIDE; BETA-HAIRPIN; SIMULATIONS; MODELS; SURFACES; COMPLEX; SYSTEMS AB Molecular dynamics simulation generates large quantities of data that must be interpreted using physically meaningful analysis. A common approach is to describe the system dynamics in terms of transitions between coarse partitions of conformational space. In contrast to previous work that partitions the space according to geometric proximity, the authors examine here clustering based on kinetics, merging configurational microstates together so as to identify long-lived, i.e., dynamically metastable, states. As test systems microsecond molecular dynamics simulations of the polyalanines Ala(8) and Ala(12) are analyzed. Both systems clearly exhibit metastability, with some kinetically distinct metastable states being geometrically very similar. Using the backbone torsion rotamer pattern to define the microstates, a definition is obtained of metastable states whose lifetimes considerably exceed the memory associated with interstate dynamics, thus allowing the kinetics to be described by a Markov model. This model is shown to be valid by comparison of its predictions with the kinetics obtained directly from the molecular dynamics simulations. In contrast, clustering based on the hydrogen-bonding pattern fails to identify long-lived metastable states or a reliable Markov model. Finally, an approach is proposed to generate a hierarchical model of networks, each having a different number of metastable states. The model hierarchy yields a qualitative understanding of the multiple time and length scales in the dynamics of biomolecules. (c) 2007 American Institute of Physics. C1 Heidelberg Univ, IWR, Computat Mol Biophys Grp, Interdisciplinary Ctr Sci Comp, D-69120 Heidelberg, Germany. Free Univ Berlin, Sci Comp Grp, D-14195 Berlin, Germany. Univ Tennessee, Ctr Biophys Mol, Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Noe, F (reprint author), Heidelberg Univ, IWR, Computat Mol Biophys Grp, Interdisciplinary Ctr Sci Comp, Neuenheimer Feld 368, D-69120 Heidelberg, Germany. RI smith, jeremy/B-7287-2012 OI smith, jeremy/0000-0002-2978-3227 NR 50 TC 207 Z9 208 U1 4 U2 38 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 21 PY 2007 VL 126 IS 15 AR 155102 DI 10.1063/1.2714539 PG 17 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 159MU UT WOS:000245870900060 PM 17461666 ER PT J AU Anders, A AF Anders, Andre TI Metal plasmas for the fabrication of nanostructures SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Review ID ARC CATHODE SPOTS; PHYSICAL VAPOR-DEPOSITION; PULSED-LASER DEPOSITION; FILTERED VACUUM-ARC; DIAMOND-LIKE CARBON; HIGH-ASPECT-RATIO; MAGNETIC STORAGE TECHNOLOGY; IMMERSION ION-IMPLANTATION; CHARGE-STATE DISTRIBUTIONS; PLATINUM DIOXIDE FILMS AB A review is provided covering metal plasma production, the energetic condensation of metal plasmas, and the formation of nanostructures using such plasmas. Plasma production techniques include various approaches to ionizing metal vapour in a high-current discharge. Of special importance are different forms of ionized physical vapour deposition, namely magnetron sputtering with ionization of sputtered atoms in radio frequency discharges, metal self-sputtering, and high power impulse magnetron sputtering, filtered cathodic arcs and pulsed laser ablation. The discussion of energetic condensation focuses on the control of the kinetic energy by biasing. It also includes considerations of the potential energy and the surface and sub-surface processes occurring during ion subplantation and implantation. In the final section on nanostructures, two different approaches are discussed. In the top-down approach, the primary nanostructures are lithographically produced and metal plasma is used to conformally coat or completely fill trenches and vias. Additionally, multilayers with nanosize periods (nanolaminates) can be produced. In the bottom-up approach, thermodynamic forces are used to fabricate self-organized nanocomposites and nanoporous materials by decomposition and dealloying. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Anders, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RI Anders, Andre/B-8580-2009 OI Anders, Andre/0000-0002-5313-6505 NR 139 TC 46 Z9 46 U1 6 U2 55 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 EI 1361-6463 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD APR 21 PY 2007 VL 40 IS 8 BP 2272 EP 2284 DI 10.1088/0022-3727/40/8/S06 PG 13 WC Physics, Applied SC Physics GA 168VM UT WOS:000246552100006 ER PT J AU Gerke, BF Newman, JA Faber, SM Cooper, MC Croton, DJ Davis, M Willmer, CNA Yan, RB Coil, AL Guhathakurta, P Koo, DC Weiner, BJ AF Gerke, Brian F. Newman, Jeffrey A. Faber, S. M. Cooper, Michael C. Croton, Darren J. Davis, Marc Willmer, Christopher N. A. Yan, Renbin Coil, Alison L. Guhathakurta, Puragra Koo, David C. Weiner, Benjamin J. TI The DEEP2 galaxy redshift survey: the evolution of the blue fraction in groups and the field SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Review DE galaxies : clusters : general; galaxies : evolution; galaxies : high-redshift ID MORPHOLOGY-DENSITY RELATION; DIGITAL-SKY-SURVEY; COLOR-MAGNITUDE RELATION; HUBBLE-SPACE-TELESCOPE; SIMILAR-TO 1; LUMINOSITY FUNCTION; RED-SEQUENCE; STAR-FORMATION; CLUSTER GALAXIES; BLACK-HOLES AB We explore the behaviour of the blue galaxy fraction over the redshift range 0.75 <= z <= 1.3 in the DEEP2 Survey, both for field galaxies and for galaxies in groups. The primary aim is to determine the role that groups play in driving the evolution of galaxy colour at high z. In pursuing this aim, it is essential to define a galaxy sample that does not suffer from redshift-dependent selection effects in colour-magnitude space. We develop four such samples for this study: at all redshifts considered, each one is complete in colour-magnitude space, and the selection also accounts for evolution in the galaxy luminosity function. These samples will also be useful for future evolutionary studies in DEEP2. The colour segregation observed between local group and field samples is already in place at z similar to 1: DEEP2 groups have a significantly lower blue fraction than the field. At fixed z, there is also a correlation between blue fraction and galaxy magnitude, such that brighter galaxies are more likely to be red, both in groups and in the field. In addition, there is a negative correlation between blue fraction and group richness. In terms of evolution, the blue fraction in groups and the field remains roughly constant from z = 0.75 to 1, but beyond this redshift the blue fraction in groups rises rapidly with z, and the group and field blue fractions become indistinguishable at z similar to 1.3. Careful tests indicate that this effect does not arise from known systematic or selection effects. To further ensure the robustness of this result, we build on previous mock DEEP2 catalogues to develop mock catalogues that reproduce the colour-overdensity relation observed in DEEP2 and use these to test our methods. The convergence between the group and field blue fractions at z similar to 1.3 implies that DEEP2 galaxy groups only became efficient at quenching star formation at z similar to 2; this result is broadly consistent with other recent observations and with current models of galaxy evolution and hierarchical structure growth. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Inst Nucl & Particle Astrophys, Berkeley, CA 94720 USA. Univ Calif Santa Cruz, Univ Calif Observ, Lick Observ, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Gerke, BF (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM bgerke@astro.berkeley.edu NR 111 TC 108 Z9 109 U1 0 U2 3 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR 21 PY 2007 VL 376 IS 4 BP 1425 EP 1444 DI 10.1111/j.1365-2966.2007.11374.x PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 156UP UT WOS:000245675700001 ER PT J AU Cooper, MC Newman, JA Coil, AL Croton, DJ Gerke, BF Yan, RB Davis, M Faber, SM Guhathakurta, P Koo, DC Weiner, BJ Willmer, CNA AF Cooper, Michael C. Newman, Jeffrey A. Coil, Alison L. Croton, Darren J. Gerke, Brian F. Yan, Renbin Davis, Marc Faber, S. M. Guhathakurta, Puragra Koo, David C. Weiner, Benjamin J. Willmer, Christopher N. A. TI The DEEP2 galaxy redshift survey: evolution of the colour-density relation at 0.4 < z < 1.35 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies : evolution; galaxies : fundamental parameters; galaxies : high-redshift; galaxies : statistics; large-scale structure of Universe ID DIGITAL SKY SURVEY; HUBBLE-SPACE-TELESCOPE; K-SELECTED GALAXIES; DARK-MATTER HALOES; LUMINOSITY FUNCTION; MAGNITUDE RELATION; KECK SPECTROSCOPY; DISTANT CLUSTERS; COMBO-17 SURVEY; STAR-FORMATION AB Using a sample of 19 464 galaxies drawn from the DEEP2 Galaxy Redshift Survey, we study the relationship between galaxy colour and environment at 0.4 < z < 1.35. We find that the fraction of galaxies on the red sequence depends strongly on local environment out to z > 1, being larger in regions of greater galaxy density. At all epochs probed, we also find a small population of red, morphologically early-type galaxies residing in regions of low measured overdensity. The observed correlations between the red fraction and local overdensity are highly significant, with the trend at z > 1 detected at a greater than 5 sigma level. Over the entire redshift regime studied, we find that the colour-density relation evolves continuously, with red galaxies more strongly favouring overdense regions at low z relative to their red-sequence counterparts at high redshift. At z greater than or similar to 1.3, the red fraction only weakly correlates with overdensity, implying that any colour dependence to the clustering of similar to L* galaxies at that epoch must be small. Our findings add weight to existing evidence that the build-up of galaxies on the red sequence has occurred preferentially in overdense environments (i.e. galaxy groups) at z less than or similar to 1.5. Furthermore, we identify the epoch (z similar to 2) at which typical similar to L* galaxies began quenching and moved on to the red sequence in significant number. The strength of the observed evolutionary trends at 0 < z < 1.35 suggests that the correlations observed locally, such as the morphology-density and colour-density relations, are the result of environment-driven mechanisms (i.e. 'nurture') and do not appear to have been imprinted (by 'nature') upon the galaxy population during their epoch of formation. C1 Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Santa Cruz, Univ Calif Observ, Lick Observ, Santa Cruz, CA 95064 USA. Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Cooper, MC (reprint author), Univ Calif Berkeley, Dept Astron, Mail Code 3411, Berkeley, CA 94720 USA. EM cooper@astro.berkeley.edu; janewman@lbl.gov; acoil@as.arizona.edu; darren@astro.berkeley.edu; bgerke@astro.berkeley.edu; renbin@astro.berkeley.edu; marc@astro.berkeley.edu; faber@ucolick.org; raja@ucolick.org; koo@ucolick.org; bjw@as.arizona.edu; cnaw@as.arizona.edu NR 90 TC 136 Z9 137 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR 21 PY 2007 VL 376 IS 4 BP 1445 EP 1459 DI 10.1111/j.1365-2966.2007.11534.x PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 156UP UT WOS:000245675700002 ER PT J AU Padmanabhan, N White, M Eisenstein, DJ AF Padmanabhan, Nikhil White, Martin Eisenstein, Daniel J. TI A robust estimator of the small-scale galaxy correlation function SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods : statistical; cosmology : observations; large-scale structure of Universe ID REDSHIFT SURVEY AB We present a new estimator, omega, of the small-scale galaxy correlation function that is robust against the effects of redshift-space distortions and large-scale structures. The estimator is a weighted integral of the redshift space or angular correlation function and is a convolution of the real-space correlation function with a localized filter. This allows a direct comparison with theory, without modelling redshift-space distortions and the large-scale correlation function. This has a number of advantages over the more traditional w(p) estimator, including (i) an insensitivity to large-scale structures and the details of the truncation of the line-of-sight integral, (ii) a well-localized kernel in xi(r) and (iii) being unbinned. We discuss how this estimator would be used in practice, applying it to a sample of mock galaxies selected from the Millennium simulation. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. RP Padmanabhan, N (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM NPadmanabhan@lbl.gov RI Padmanabhan, Nikhil/A-2094-2012; White, Martin/I-3880-2015 OI White, Martin/0000-0001-9912-5070 NR 9 TC 23 Z9 24 U1 0 U2 0 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR 21 PY 2007 VL 376 IS 4 BP 1702 EP 1706 DI 10.1111/j.1365-2966.2007.11554.x PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 156UP UT WOS:000245675700020 ER PT J AU Kodama, K Saoulidou, N Tzanakos, G Baller, B Lundberg, B Rameika, R Song, JS Yoon, CS Chung, SH Aoki, S Hara, T Erickson, C Heller, K Schwienhorst, R Sielafff, J Trammell, J Hoshino, K Kawada, J Komatsu, M Miyanishi, M Nakamura, M Nakano, T Narita, K Niwa, K Nonaka, N Okada, K Sato, O Toshito, T Miyamoto, S Takahashi, S Park, BD Furukawa, T Paolone, V Kafka, T AF Kodama, K. Saoulidou, N. Tzanakos, G. Baller, B. Lundberg, B. Rameika, R. Song, J. S. Yoon, C. S. Chung, S. H. Aoki, S. Hara, T. Erickson, C. Heller, K. Schwienhorst, R. Sielafff, J. Trammell, J. Hoshino, K. Kawada, J. Komatsu, M. Miyanishi, M. Nakamura, M. Nakano, T. Narita, K. Niwa, K. Nonaka, N. Okada, K. Sato, O. Toshito, T. Miyamoto, S. Takahashi, S. Park, B. D. Furukawa, T. Paolone, V. Kafka, T. TI Momentum measurement of secondary particle by multiple coulomb scattering with emulsion cloud chamber in DONuT experiment SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE nuclear emulsion; momentum measurement ID TAU-NEUTRINO INTERACTIONS AB We present a method of momentum measurement of charged particles using emulsion data from the DONuT experiment, and report results from the momentum analysis of secondary particles from neutrino interactions. In 578 neutrino interactions, 2338 secondary particles were analyzed and 83.2% of attempted particles were measured by multiple coulomb scattering. (c) 2007 Elsevier B.V. All rights reserved. C1 Nagoya Univ, Nagoya, Aichi 4648602, Japan. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Tufts Univ, Medford, MA 02155 USA. Univ Minnesota, Minneapolis, MN 55455 USA. Kobe Univ, Kobe, Hyogo 657, Japan. Gyeongsang Univ, Chinju, South Korea. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Athens, GR-10679 Athens, Greece. Aichi Univ Educ, Kariya, Aichi 448, Japan. RP Park, BD (reprint author), Nagoya Univ, Nagoya, Aichi 4648602, Japan. EM park@flab.phys.nagoya-u.ac.jp RI Aoki, Shigeki/L-6044-2015 NR 11 TC 9 Z9 9 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 21 PY 2007 VL 574 IS 1 BP 192 EP 198 DI 10.1016/j.nima.2007.01.162 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 163KS UT WOS:000246159200026 ER PT J AU Tinker, JL Norberg, P Weinberg, DH Warren, MS AF Tinker, Jeremy L. Norberg, Peder Weinberg, David H. Warren, Michael S. TI On the luminosity dependence of the galaxy pairwise velocity dispersion SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology : theory; galaxies : halos; large-scale structure of universe ID LARGE-SCALE STRUCTURE; HALO OCCUPATION DISTRIBUTION; DARK-MATTER HALOES; DIGITAL SKY SURVEY; REDSHIFT-SPACE DISTORTIONS; PECULIAR VELOCITIES; POWER SPECTRUM; MASS FUNCTION; COSMOLOGICAL PARAMETERS; BIAS AB We make predictions for the pairwise velocity dispersion (PVD) of galaxies with models that are constrained to match the projected correlation function and luminosity function of galaxies in the Two Degree Field Galaxy Redshift Survey (2dFGRS). We use these data to constrain the halo occupation distribution (HOD) of 2dFGRS galaxies, then calculate the PVD by populating the halos of a large-volume, high-resolution N-body simulation. We examine the luminosity and scale dependence of the predicted PVD. At small and large scales, r < 1 and r greater than or similar to 3 h(-1) Mpc, we find that the PVD decreases with increasing galaxy luminosity. This result is mostly driven by the fraction of satellite galaxies f(sat), which is well constrained by the correlation function. We find f(sat) similar to 25% for galaxies fainter than L(*), while for brighter galaxies the satellite fraction rapidly declines, creating the decrease in the PVD with luminosity. Recent measurements of the PVD in Fourier space using the "dispersion model'' have reported a strong decline in the PVD with increasing luminosity at k = 1 Mpc(-1) h. We test this method with our HOD models, finding a luminosity dependence in k-space that is stronger than that in configuration space at that scale. The luminosity dependence of the HOD results in Fourier space are consistent with those measured at k = 1 Mpc(-1) h; thus, the recent measurements of the PVD are fully explainable in the context of halo occupation models. The normalization of the PVD is lower than that predicted by our fiducial model, and reproducing it requires a lower value of Omega(m) (similar to 0.2 instead of 0.3), a lower value of sigma(8) (similar to 0.7 instead of 0.9), or a significant bias between the velocity dispersion of galaxies and dark matter in massive halos. C1 Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. Univ Edinburgh, Inst Astron, Edinburgh, Midlothian, Scotland. Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. Los Alamos Natl Lab, Los Alamos, NM USA. RP Tinker, JL (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. OI Warren, Michael/0000-0002-1218-7904 NR 77 TC 44 Z9 44 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2007 VL 659 IS 2 BP 877 EP 889 DI 10.1086/511967 PN 1 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 158ES UT WOS:000245774700002 ER PT J AU Muzzin, A Yee, HKC Hall, PB Ellingson, E Lin, H AF Muzzin, Adam Yee, H. K. C. Hall, Patrick B. Ellingson, E. Lin, H. TI Near-infrared properties of moderate-redshift galaxy clusters: Luminosity functions and density profiles SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark matter; galaxies : clusters : general; galaxies : fundamental parameters; large-scale structure of universe ID COLOR-MAGNITUDE RELATION; STELLAR MASS FUNCTIONS; DIGITAL SKY SURVEY; S-BAND LUMINOSITY; SURVEY CATALOGS; K-BAND; ENVIRONMENTAL DEPENDENCE; STAR-FORMATION; FUNDAMENTAL-PLANE; DISTANT CLUSTERS AB We present K-band imaging for 15 of the CNOC1 clusters. The extensive spectroscopic data set available for these clusters allows us to determine the cluster K-band luminosity function and density profile without the need for statistical background subtraction. The luminosity density and number density profiles can be described by NFW models with concentration parameters of c(l) 4.28 +/- 0.70 and c(g) 4.13 +/- 0.57, respectively. Comparing these to the dynamical mass analysis of the same clusters shows that they are similar to the cluster dark matter profile. The luminosity functions show that the evolution of K* over the redshift range 0.2 < z < 0.5 is consistent with a scenario in which the majority of stars in cluster galaxies form at high redshift (z(f) > 1: 5) and evolve passively thereafter. The best fit for the faint-end slope of the luminosity function is alpha = - 0.84 +/- 0.08, which indicates that it does not evolve between z = 0 and 0.3. Using principal component analysis of the spectra, we classify cluster galaxies as either starforming/ recently star-forming (EM+BAL) or non-star-forming ( ELL) and compute their respective luminosity functions. The faint-end slope of the ELL luminosity function is much shallower than for the EM+BAL galaxies at z = 0.3 and suggests that the number of faint ELL galaxies in clusters decreases by a factor of similar to 3 from z = 0 to 0.3. The redshift evolution of K* for both EM+BAL and ELL types is consistent with a passively evolving stellar population formed at high redshift. Passive evolution in both classes demonstrates that the bulk of the stellar population in all bright cluster galaxies is formed at high redshift, and subsequent transformations in morphology/color/spectral type have little effect on the total stellar mass. C1 Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Muzzin, A (reprint author), Univ Toronto, Dept Astron & Astrophys, 100 Coll St, Toronto, ON, Canada. EM adam.muzzin@utoronto.ca; hyee@astro.utoronto.ca; phall@yorku.ca; erica.ellingson@colorado.edu; hlin@fnal.gov NR 95 TC 26 Z9 26 U1 0 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2007 VL 659 IS 2 BP 1106 EP 1124 DI 10.1086/511669 PN 1 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 158ES UT WOS:000245774700019 ER PT J AU Fryer, CL Young, PA AF Fryer, Christopher L. Young, Patrick A. TI Late-time convection in the collapse of a 23M(circle dot) star SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays : bursts; nuclear reactions, nucleosynthesis, abundances; supernovae : general ID SUPERNOVA EXPLOSION MECHANISM; ACCRETION SHOCK INSTABILITY; NEUTRINO TRANSPORT; STABILITY ANALYSIS; STELLAR COLLAPSE; MASSIVE STARS; 3 DIMENSIONS; CORE; HYDRODYNAMICS; KICKS AB The results of a three-dimensional SNSPH simulation of the core collapse of a 23 M-circle dot star are presented. This simulation did not launch an explosion until over 600 ms after collapse, allowing an ideal opportunity to study the evolution and structure of the convection below the accretion shock to late times. This late-time convection allows us to study several of the recent claims in the literature about the role of convection: is it dominated by an l = 1 mode driven by vortical-acoustic ( or other) instability, does it produce strong neutron star kicks, and, finally, is it the key to a new explosion mechanism? The convective region buffets the neutron star, imparting a 150-200 km s(-1) kick. Because the l = 1 mode does not dominate the convection, the neutron star does not achieve large (> 450 km s(-1)) velocities. Finally, the neutron star in this simulation moves but does not develop strong oscillations, the energy source for a recently proposed supernova engine. We discuss the implications these results have for supernovae, hypernovae (and gamma-ray bursts), and stellar-mass black holes. C1 Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. LANL, Div Theoret, Los Alamos, NM 87545 USA. Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. RP Fryer, CL (reprint author), Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. NR 54 TC 39 Z9 39 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2007 VL 659 IS 2 BP 1438 EP 1448 DI 10.1086/513003 PN 1 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 158ES UT WOS:000245774700043 ER PT J AU Baltz, EA Taylor, JE Wai, LL AF Baltz, Edward A. Taylor, James E. Wai, Lawrence L. TI Can astrophysical gamma-ray sources mimic dark matter annihilation in galactic satellites? SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark matter; elementary particles; Galaxy : halo; gamma rays : theory ID MILKY-WAY HALO; CLUSTER HALOES; SUBSTRUCTURE; GALAXY; TELESCOPE; EVOLUTION; GLAST; EMISSION; PULSARS; SPACE AB The nature of the cosmic dark matter is unknown. The most compelling hypothesis is that dark matter consists of weakly interacting massive particles (WIMPs) in the 100 GeV mass range. Such particles would annihilate in the Galactic halo, producing high-energy gamma rays that might be detectable in gamma-ray telescopes such as the Gamma-Ray Large Area Space Telescope (GLAST). We investigate the ability of GLAST to distinguish between WIMP annihilation sources and astrophysical sources. Focusing on the Galactic satellite halos predicted by the cold dark matter model, we find that the WIMP gamma-ray spectrum is nearly unique; separation of the brightest WIMP sources from known source classes can be done in a convincing way by including spectral and spatial information. Candidate WIMP sources can be further studied with imaging atmospheric Cerenkov telescopes. Finally, Large Hadron Collider data might have a crucial impact on the study of Galactic dark matter. C1 Stanford Linear Accelerator Ctr, KIPAC, Menlo Pk, CA 94025 USA. Univ Waterloo, Dept Phys & Astron, Waterloo, ON NL2 3G1, Canada. RP Baltz, EA (reprint author), Stanford Linear Accelerator Ctr, KIPAC, Menlo Pk, CA 94025 USA. NR 44 TC 35 Z9 35 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2007 VL 659 IS 2 BP L125 EP L128 DI 10.1086/517882 PN 2 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 158EV UT WOS:000245775000011 ER PT J AU Ryu, W Kim, D Lim, HB Houk, RS AF Ryu, WonKyung Kim, DongHoon Lim, H. B. Houk, R. S. TI Polymer (polydimethylsiloxane (pdms)) microchip plasma with electrothermal vaporization for the determination of metal ions in aqueous solution SO BULLETIN OF THE KOREAN CHEMICAL SOCIETY LA English DT Article DE microchip plasma; electrothermal vaporization; atomic emission; plasma spectroscopy ID INDUCTIVELY-COUPLED PLASMA; ATOMIC EMISSION-SPECTROMETRY; SAMPLE INTRODUCTION; ELEMENTAL ANALYSIS; MASS-SPECTROMETRY; ICP-AES; DETECTOR; CHIP; MICROPLASMAS; DISCHARGE AB We previously reported a 27.12 MHz inductively coupled plasma source at atmospheric pressure for atomic emission spectrometry based on polymer microchip plasma technology. For the PDMS polymer microchip plasma, molecular emission was observed, but no metallic detection was done. In this experiment, a lab-made electrothermal vaporizer (ETV) with tantalum coil was connected to the microchip plasma for aqueous sample introduction to detect metal ions. The electrode geometry of this microchip plasma was redesigned for better stability and easy monitoring of emission. The plasma was operated at an rf power of 30-70 W using argon gas at 300 mL/min. Gas kinetic temperatures between 800-3200 K were obtained by measuring OH emission band. Limits of detection of about 20 ng/mL, 96.1 ng/mL, and 1.01 mu g/mL were obtained for alkali metals, Zn, and Pb, respectively, when 10 mu L samples in 0.1% nitric acid were injected into the ETV. C1 Dankook Univ, Dept Chem, NSBT, Seoul 140714, South Korea. Iowa State Univ Sci & Technol, Ames Lab, Dept Chem, Ames, IA 50011 USA. RP Lim, HB (reprint author), Dankook Univ, Dept Chem, NSBT, Seoul 140714, South Korea. EM plasma@dankook.ac.kr NR 20 TC 8 Z9 8 U1 1 U2 3 PU KOREAN CHEMICAL SOC PI SEOUL PA 635-4 YEOGSAM-DONG, KANGNAM-GU, SEOUL 135-703, SOUTH KOREA SN 0253-2964 J9 B KOR CHEM SOC JI Bull. Korean Chem. Soc. PD APR 20 PY 2007 VL 28 IS 4 BP 553 EP 556 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 171RR UT WOS:000246753600009 ER PT J AU Chen, GH Balasubramanian, K AF Chen, Guang-hui Balasubramanian, Krishnan TI Electronic states and stability of GeC2N radical SO CHEMICAL PHYSICS LETTERS LA English DT Article ID RHOMBOIDAL SIC3; INTERSTELLAR; MOLECULE; ISOMERS; ENERGY AB Electronic states of the GeC2N radical are explored at various theoretical levels including complete active space multi-configuration self-consistent field followed by complete active space perturbation computations. Ten minimal energy isomers and 10 interconversion transition states are found. The thermodynamically most stable isomer is a linear form GeCCN 1 which is qualitatively described as a resonance hybrid of vertical bar Ge=C=C=N vertical bar, vertical bar Ge=C.-C N vertical bar, and vertical bar Ge=C=C=N vertical bar. forms, with the second one contributing to a greater extent suggestive of a radical adduct between Ge=C and C =. The second low-lying linear isomer GeCNC 2 (21.9 kcal/mol) has resonating structures vertical bar Ge=C.-N=C vertical bar, vertical bar Ge=C=N C vertical bar, and vertical bar Ge=C=N-C vertical bar. (c) 2007 Elsevier B.V. All rights reserved. C1 Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. Calif State Univ Hayward, Dept Math & Comp Sci, Hayward, CA USA. Univ Calif Berkeley, Glenn T Seaborg Ctr, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Balasubramanian, K (reprint author), Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, POB 808,L-268, Livermore, CA 94550 USA. EM balu@llnl.gov NR 23 TC 3 Z9 4 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD APR 20 PY 2007 VL 438 IS 4-6 BP 162 EP 168 DI 10.1016/j.cplett.2007.02.077 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 162AZ UT WOS:000246060000003 ER PT J AU Kalyuzhnyi, YV Vlachy, V Cummings, PT AF Kalyuzhnyi, Yu. V. Vlachy, V. Cummings, P. T. TI Modeling solution of flexible polyelectrolyte in explicit solvent SO CHEMICAL PHYSICS LETTERS LA English DT Article ID MEAN-SPHERICAL APPROXIMATION; DIRECTIONAL ATTRACTIVE FORCES; INTEGRAL-EQUATION THEORY; PERCUS-YEVICK APPROXIMATION; THERMODYNAMIC PROPERTIES; PRIMITIVE MODEL; ASYMMETRIC ELECTROLYTES; ASSOCIATING FLUIDS; MOLECULAR-DYNAMICS; CHAIN MOLECULES AB Mixture of flexible polyions with 120 monomer units, equivalent number of oppositely charged counterions and solvent molecules, represented by hard spheres with four square-well off-center sites, was studied by an extension of the product-reactant Ornstein Zernike theory. Polyions were represented as freely jointed chains of charged hard spheres, and all the species were embedded in continuous dielectric. The calculations were performed varying the concentration of monomer units and strength of interaction between various species. The model is able to mimic rich experimental behavior of polyelectrolyte solutions. (c) 2007 Elsevier B.V. All rights reserved. C1 Inst Condensed Matter Phys, UA-79011 Lvov, Ukraine. Univ Ljubljana, Fac Chem & Chem Technol, SI-1000 Ljubljana, Slovenia. Vanderbilt Univ, Dept Chem Engn, Nashville, TN 37235 USA. Oak Ridge Natl Lab, Nanomat Theory Inst, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. RP Kalyuzhnyi, YV (reprint author), Inst Condensed Matter Phys, Svientsitskoho 1, UA-79011 Lvov, Ukraine. EM yukal@icmp.lviv.ua RI Cummings, Peter/B-8762-2013 OI Cummings, Peter/0000-0002-9766-2216 NR 36 TC 13 Z9 13 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD APR 20 PY 2007 VL 438 IS 4-6 BP 238 EP 243 DI 10.1016/j.cplett.2007.03.028 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 162AZ UT WOS:000246060000017 ER PT J AU Stjerndahl, M Bryngelsson, H Gustafsson, T Vaughey, JT Thackeray, MM Edstrom, K AF Stjerndahl, M. Bryngelsson, H. Gustafsson, T. Vaughey, J. T. Thackeray, M. M. Edstrom, K. TI Surface chemistry of intermetallic AlSb-anodes for Li-ion batteries SO ELECTROCHIMICA ACTA LA English DT Article DE SEI; AlSb; intermetallic; anode; Li-ion battery ID X-RAY-DIFFRACTION; SOLID-ELECTROLYTE INTERPHASE; ALLOYED SN-FE(-C) POWDERS; PHOTOELECTRON-SPECTROSCOPY; LITHIUM BATTERIES; STRUCTURAL TRANSFORMATIONS; MOSSBAUER-SPECTROSCOPY; INFRARED-SPECTROSCOPY; COMPOSITE ELECTRODES; ALKYL CARBONATES AB The solid electrolyte interphase (SEI) layer on AlSb electrodes has been studied in Li/AlSb cells containing a LiPF(6) EC/DEC electrolyte using X-ray photoelectron spectroscopy (XPS). Data were collected before SEI-formation, during formation, and after formation at 0.01 V versus Li(0)/Li(+), and at full delithiation in cycled cells at 1.20V. The thickness of the SEI layer increases during lithiation and decreases during delithiation. This dynamic behaviour occurs continuously on cycling the cells. The growth of the SEI layer can be attributed predominantly to the deposition of carbonaceous species below 0.50 V versus Li(0)/Li(+); these species disappear almost completely during delithiation. The extra surface-layer formation is a consequence of the additional charge that is needed to lithiate the remaining Sb component of the micrometer-sized AlSb particles at low potentials as seen by synchrotron-based X-ray diffraction. Aluminium is not reactive to lithium alloying in this electrolyte. Relatively small amounts of LiF were detected in the AlSb SEI layers compared to that commonly found in the SEI layers on graphite electrodes. (c) 2007 Elsevier Ltd. All rights reserved. C1 Uppsala Univ, Angstrom Lab, Dept Chem Mat, SE-75121 Uppsala, Sweden. Argonne Natl Lab, Div Chem Technol, Elektrochem Technol Program, Argonne, IL 60439 USA. RP Edstrom, K (reprint author), Uppsala Univ, Angstrom Lab, Dept Chem Mat, Box 538, SE-75121 Uppsala, Sweden. EM kristina.edstrom@mkem.uu.se OI Vaughey, John/0000-0002-2556-6129; Edstroem, Kristina/0000-0003-4440-2952 NR 49 TC 53 Z9 53 U1 5 U2 40 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD APR 20 PY 2007 VL 52 IS 15 BP 4947 EP 4955 DI 10.1016/j.electacta.2007.01.064 PG 9 WC Electrochemistry SC Electrochemistry GA 163LD UT WOS:000246160300012 ER PT J AU Hurth, T AF Hurth, Tobias TI Status of standard model calculations of b -> s transitions SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Review DE rare B-meson decays ID RARE B-DECAYS; DILEPTON INVARIANT MASS; PHOTON ENERGY-SPECTRUM; CP VIOLATION; NONPERTURBATIVE CORRECTIONS; DIPOLE OPERATORS; NNLO CALCULATION; ISOSPIN ANALYSIS; 2-LOOP RESULT; MESON DECAYS AB We report the recent progress in Standard Model calculations of b -> s transitions. We discuss the first NNLL prediction of the (B) over bar -> X-s gamma branching ratio, including important additional subtleties due to nonperturbative corrections and logarithmically- enhanced cut effects, and also the recent results on the inclusive mode (B) over bar -> X(s)l(+)l(-). Moreover, new results on the corresponding exclusive modes are reviewed. Finally, we comment on the present status of the so-called B -> K pi puzzle in hadronic b -> s transitions. C1 [Hurth, Tobias] CERN, Dept Phys, Theory Unit, CH-1211 Geneva 23, Switzerland. [Hurth, Tobias] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Hurth, T (reprint author), CERN, Dept Phys, Theory Unit, CH-1211 Geneva 23, Switzerland. EM tobias.hurth@cern.ch NR 107 TC 17 Z9 17 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X EI 1793-656X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD APR 20 PY 2007 VL 22 IS 10 BP 1781 EP 1795 DI 10.1142/S0217751X07036476 PG 15 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 242GJ UT WOS:000251712200001 ER PT J AU Pittman, JV Weinstock, EM Oglesby, RJ Sayres, DS Smith, JB Anderson, JG Cooper, OR Wofsy, SC Xueref, I Gerbig, C Daube, BC Richard, EC Ridley, BA Weinheimer, AJ Loewenstein, M Jost, HJ Lopez, JP Mahoney, MJ Thompson, TL Hargrove, WW Hoffman, FM AF Pittman, Jasna V. Weinstock, Elliot M. Oglesby, Robert J. Sayres, David S. Smith, Jessica B. Anderson, James G. Cooper, Owen R. Wofsy, Steven C. Xueref, Irene Gerbig, Cristoph Daube, Bruce C. Richard, Erik C. Ridley, Brian A. Weinheimer, Andrew J. Loewenstein, Max Jost, Hans-Jurg Lopez, Jimena P. Mahoney, Michael J. Thompson, Thomas L. Hargrove, William W. Hoffman, Forrest M. TI Transport in the subtropical lowermost stratosphere during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID IN-SITU OBSERVATIONS; UPPER TROPOSPHERE; REACTIVE NITROGEN; WATER-VAPOR; SEASONAL CYCLE; UV-ABSORPTION; NEW-MEXICO; TROPOPAUSE; OZONE; EXCHANGE AB [ 1] We use in situ measurements of water vapor (H2O), ozone (O-3), carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), and total reactive nitrogen (NOy) obtained during the CRYSTAL-FACE campaign in July 2002 to study summertime transport in the subtropical lowermost stratosphere. We use an objective methodology to distinguish the latitudinal origin of the sampled air masses despite the influence of convection, and we calculate backward trajectories to elucidate their recent geographical history. The methodology consists of exploring the statistical behavior of the data by performing multivariate clustering and agglomerative hierarchical clustering calculations and projecting cluster groups onto principal component space to identify air masses of like composition and hence presumed origin. The statistically derived cluster groups are then examined in physical space using tracer-tracer correlation plots. Interpretation of the principal component analysis suggests that the variability in the data is accounted for primarily by the mean age of air in the stratosphere, followed by the age of the convective influence, and last by the extent of convective influence, potentially related to the latitude of convective injection (Dessler and Sherwood, 2004). We find that high-latitude stratospheric air is the dominant source region during the beginning of the campaign while tropical air is the dominant source region during the rest of the campaign. Influence of convection from both local and nonlocal events is frequently observed. The identification of air mass origin is confirmed with backward trajectories, and the behavior of the trajectories is associated with the North American monsoon circulation. C1 Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. Bay Area Environm Res Inst, Sonoma, CA 95476 USA. CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. Univ Nebraska, Dept Geosci, Lincoln, NE 68588 USA. NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80305 USA. RP Pittman, JV (reprint author), NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35805 USA. EM jasna.pittman@nasa.gov RI Cooper, Owen/H-4875-2013; Gerbig, Christoph/L-3532-2013; Hoffman, Forrest/B-8667-2012; Manager, CSD Publications/B-2789-2015 OI Gerbig, Christoph/0000-0002-1112-8603; Hoffman, Forrest/0000-0001-5802-4134; NR 53 TC 5 Z9 5 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 20 PY 2007 VL 112 IS D8 AR D08304 DI 10.1029/2006JD007851 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 160OI UT WOS:000245951800010 ER PT J AU Pagel, C Gary, SP de Koning, CA Skoug, RM AF Pagel, Christina Gary, S. Peter de Koning, Curt A. Skoug, Ruth M. TI Scattering of suprathermal electrons in the solar wind: ACE observations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID HELIOS PLASMA-EXPERIMENT; HEAT-FLUX; ULYSSES OBSERVATIONS; FIREHOSE INSTABILITY; MAGNETIC FLUCTUATIONS; DISSIPATION RANGE; WHISTLER WAVES; PITCH-ANGLE; DISTRIBUTIONS; CONSTRAINTS AB [ 1] Suprathermal electrons in the solar wind have a strahl component with anisotropic velocity distributions which are directed along the background magnetic field away from the Sun. Analyses of strahl distributions from 73.3 eV to 987 eV as measured during the year 2004 by the SWEPAM plasma instrument on the ACE spacecraft are reported here. This manuscript describes 29 events which correspond to times of strahl pitch-angle distributions which are broader than those observed at earlier or later times and enhanced magnetic field fluctuations at frequencies less than or similar to 3 Hz. Although most previously reported observations at energies up to a few hundred eV show that strahl pitch-angle widths decrease with increasing energy, during the 29 events reported here, this width increased on average as strahl energy increased. This manuscript also develops the hypothesis that this characteristic is due to electron scattering by broadband whistler fluctuations. C1 Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. Los Alamos Natl Lab, Grp ISR1, Los Alamos, NM 87545 USA. RP Pagel, C (reprint author), UCL, Clin Operat Res Unit, 4 Taviton St, London WC1H 0BT, England. EM cpagel@ucl.ac.uk; pgary@lanl.gov NR 54 TC 22 Z9 22 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 20 PY 2007 VL 112 IS A4 AR A04103 DI 10.1029/2006JA011967 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 160PC UT WOS:000245953800003 ER PT J AU Reichhardt, CJO Bassler, KE AF Reichhardt, C. J. Olson Bassler, Kevin E. TI Canalization and symmetry in Boolean models for genetic regulatory networks SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article ID ESCHERICHIA-COLI; COMPLEX-SYSTEMS; STABILITY; EVOLUTION; DYNAMICS; NUMBER; NOISE AB Canalization of genetic regulatory networks has been argued to be favoured by evolutionary processes due to the stability that it can confer to phenotype expression. We explore whether a significant amount of canalization and partial canalization can arise in purely random networks in the absence of evolutionary pressures. We use a mapping of the Boolean functions in the Kauffman N-K model for genetic regulatory networks onto a k-dimensional Ising hypercube (where k = K) to show that the functions can be divided into different classes strictly due to geometrical constraints. The classes can be counted and their properties determined using results from group theory and isomer chemistry. We demonstrate that partially canalizing functions completely dominate all possible Boolean functions, particularly for higher k. This indicates that partial canalization is extremely common, even in randomly chosen networks, and has implications for how much information can be obtained in experiments on native state genetic regulatory networks. C1 Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. Univ Houston, Dept Phys, Houston, TX 77204 USA. Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. RP Reichhardt, CJO (reprint author), Los Alamos Natl Lab, Theoret Div, POB 1663, Los Alamos, NM 87545 USA. EM cjrx@lanl.gov OI Reichhardt, Cynthia/0000-0002-3487-5089 NR 48 TC 7 Z9 7 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD APR 20 PY 2007 VL 40 IS 16 BP 4339 EP 4350 DI 10.1088/1751-8113/40/16/006 PG 12 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 162EX UT WOS:000246070700009 ER PT J AU Coker, EN Steen, WA Miller, JT Kropf, AJ Miller, JE AF Coker, Eric N. Steen, William A. Miller, Jeffrey T. Kropf, A. Jeremy Miller, James E. TI Nanostructured Pt/C electrocatalysts with high platinum dispersions through zeolite-templating SO MICROPOROUS AND MESOPOROUS MATERIALS LA English DT Article DE platinum cluster; oxygen reduction; fuel cell catalyst; Pt/C; porous carbon ID AREA MICROPOROUS CARBON; OXYGEN REDUCTION; PARTICLE-SIZE; TETRAAMMINE IMPREGNATION; CATALYTIC-ACTIVITY; METAL-CLUSTERS; GAS-PHASE; ADSORPTION; SILICA; NANOPARTICLES AB A method for the preparation of size-controlled Pt clusters on nanostructured carbon is described. The carbon possesses tunable micro and mesoporosity, and forms an integrated matrix around the size-controlled Pt clusters. The process involves stabilization of Pt clusters in a zeolite host, pore-filling of the host with a carbon precursor, pyrolysis and removal of the host. The properties of the catalysts vary over a wide range depending on the precise synthesis conditions. On one end of the spectrum, Pt clusters as small as 1.3 mn (average), with narrow size distribution in intimate contact with a predominantly microporous carbon network are obtained; on the other end, Pt clusters of average size 1.7 mn were obtained within a hybrid microporous/mesoporous carbon matrix. Low-angle X-ray diffraction shows periodic nanostructuring (d similar to 1.4 nm) for Pt/C with Pt loadings <= 17 wt.%, which is confirmed by TEM imaging. Electrochemical evaluation showed these catalysts to have high electro-active surface areas, and to be at least as active as a commercial Pt/C in the reduction of oxygen. (c) 2006 Elsevier Inc. All rights reserved. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. BP Res Ctr, Naperville, IL 60563 USA. Argonne Natl Lab, Argonne, IL 60430 USA. RP Coker, EN (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM encoker@sandia.gov RI Miller, James/C-1128-2011; ID, MRCAT/G-7586-2011 OI Miller, James/0000-0001-6811-6948; NR 41 TC 15 Z9 16 U1 0 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-1811 J9 MICROPOR MESOPOR MAT JI Microporous Mesoporous Mat. PD APR 20 PY 2007 VL 101 IS 3 BP 440 EP 444 DI 10.1016/j.micromeso.2006.12.022 PG 5 WC Chemistry, Applied; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 161MY UT WOS:000246020800014 ER PT J AU Yokoyama, Y Kido, Y Tada, R Minami, I Finkel, RC Matsuzaki, H AF Yokoyama, Yusuke Kido, Yoshiki Tada, Ryuji Minami, Ikue Finkel, Robert C. Matsuzaki, Hiroyuki TI Japan Sea oxygen isotope stratigraphy and global sea-level changes for the last 50,000 years recorded in sediment cores from the Oki Ridge SO PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY LA English DT Article DE sea-level; Japan Sea; Marginal Sea; oxygen isotopes; deglaciation ID PLANKTONIC-FORAMINIFERA; GLACIAL MAXIMUM; NORTHWESTERN PACIFIC; LATE PLEISTOCENE; CORAL TERRACES; SURFACE-WATER; ICE-AGE; 36 KYR; ALKENONE; CLIMATE AB We obtained twenty AMS (Accelerator Mass Spectrometry) radiocarbon dates, 2 tephra layer chronologies, and a planktonic foraminiferal delta O-18 stratigraphy for the last 50,000 years from Japan Sea cores from the Oki Ridge. In this paper we report AMS C-14 results that allow us to reconstruct a high-resolution chronology of the cores and discuss millennial scale climate changes recorded in Japan Sea sediments. The sedimentation rate for the site increased dramatically from the glacial stage to the Holocene as a result of significant hydrological changes associated with deglaciation and global sea-level rise. A lighter delta O-18 anomaly for the planktonic foraminifers was found during the LGM (Last Glacial Maximum). This shift corresponds to a freshening of the Japan Sea surface waters, and is mainly due to a global sea-level drop rather than anomalously warm SSTs (sea-surface temperatures) as previously reported. Our record combined with the global sea-level data suggests that the LGM started about 30 kyr ago and that the salinity of the Japan Sea became fresher than at present. The SSTs during MIS (Marine Oxygen Isotope Stage) 3 were relatively stable and global sea-level was not lower than ca. -80 in. The surface water of the Japan Sea attained "normal" saline levels following the Younger Dryas cold event and reached the present-day delta O-18 values 7 kyr ago. (C) 2007 Elsevier B.V All rights reserved. C1 Univ Tokyo, Dept Earth & Planetary Sci, Tokyo 1130033, Japan. Japan Agcy Marine Earth Sci & Technol, Inst Res Earth Evolut, Livermore, CA USA. Ctr Accelerator Mass Spectrometry, Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Tokyo, Dept Nucl Engn & Management, Tokyo, Japan. RP Yokoyama, Y (reprint author), Univ Tokyo, Dept Earth & Planetary Sci, 7-3-1 Hongo, Tokyo 1130033, Japan. EM yokoyama@eps.s.u-tokyo.ac.jp RI Yokoyama, Yusuke/N-9623-2013 NR 61 TC 54 Z9 66 U1 0 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0031-0182 J9 PALAEOGEOGR PALAEOCL JI Paleogeogr. Paleoclimatol. Paleoecol. PD APR 20 PY 2007 VL 247 IS 1-2 BP 5 EP 17 DI 10.1016/j.palaeo.2006.11.018 PG 13 WC Geography, Physical; Geosciences, Multidisciplinary; Paleontology SC Physical Geography; Geology; Paleontology GA 162KN UT WOS:000246086100003 ER PT J AU Abulencia, A Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arguin, JF Arisawa, T Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Budroni, S Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carillo, S Carlsmith, D Carosi, R Carron, S Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciljak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenaro, CC Cuevas, J Culbertson, R Cully, JC Cyr, D DaRonco, S Datta, M D'Auria, S Davies, T D'Onofrio, M Dagenhart, D de Barbaro, P De Cecco, S Deisher, A De Lentdeckerc, G Dell'Orso, M Delli Paoli, F Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR DiTuro, P Dorr, C Donati, S Donega, M Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Garberson, F Garfinkel, AF Gay, C Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, A Gibson, K Gimmell, JL Ginsburg, C Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Griffiths, M Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ishizawa, Y Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jensen, H Jeon, EJ Jindariani, S Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kovalev, A Kraan, AC Kraus, J Kravchenko, I Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Manca, G Margaroli, F Marginean, R Marino, C Marino, CP Martin, A Martin, M Martin, V Martiez, M Maruyama, T Mastrandrea, P Masubuchi, T Matsunaga, H Mattson, ME Mazini, R Mazzanti, P McCarthy, K McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyamoto, A Moed, S Moggi, N Mohr, B Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Nachtman, J Nagano, A Naganoma, J Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nigmanov, T Nodulman, L Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Papadimitriou, V Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ranjan, N Rappoccio, S Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Ruiz, A Russ, J Rusu, V Saarikko, H Sabik, S Safonov, A Sakumoto, WK Salamanna, G Salto, O Saltzberg, D Sanchez, C Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojma, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Sjolin, J Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Staveris-Polykalas, A St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suzuki, T Taffard, A Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tsuchiya, R Tsuno, S Turini, N Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vallecorsa, S Vanguri, R van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Veramendi, G Veszpremi, V Vidal, R Vila, I Vilar, R Vine, T Vollrath, I Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, J Wagner, W Wallny, R Wang, SM Warburton, A Waschke, S Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zhou, J Zucchelli, S AF Abulencia, A. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Ambrose, D. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arguin, J.-F. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Bedeschi, F. Behari, S. Belforte, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Budroni, S. Burkett, K. Busetto, G. Bussey, P. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carillo, S. Carlsmith, D. Carosi, R. Carron, S. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciljak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenaro, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Cyr, D. DaRonco, S. Datta, M. D'Auria, S. Davies, T. D'Onofrio, M. Dagenhart, D. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdeckerc, G. Dell'Orso, M. Delli Paoli, F. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. DiTuro, P. Doerr, C. Donati, S. Donega, M. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Foland, A. Forrester, S. Foster, G. W. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garberson, F. Garfinkel, A. F. Gay, C. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, A. Gibson, K. Gimmell, J. L. Ginsburg, C. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Griffiths, M. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B.-Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S.-C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ishizawa, Y. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jensen, H. Jeon, E. J. Jindariani, S. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kovalev, A. Kraan, A. C. Kraus, J. Kravchenko, I. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Loverre, P. Lu, R.-S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Manca, G. Margaroli, F. Marginean, R. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Maruyama, T. Mastrandrea, P. Masubuchi, T. Matsunaga, H. Mattson, M. E. Mazini, R. Mazzanti, P. McCarthy, K. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyamoto, A. Moed, S. Moggi, N. Mohr, B. Moore, R. Morello, M. Fernandez, P. Movilla Mulmenstadt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Nachtman, J. Nagano, A. Naganoma, J. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nigmanov, T. Nodulman, L. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Papadimitriou, V. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ranjan, N. Rappoccio, S. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Sabik, S. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Saltzberg, D. Sanchez, C. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojma, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Sjolin, J. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. St. Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Takikawa, K. Tanaka, M. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tsuchiya, R. Tsuno, S. Turini, N. Ukegawa, F. Unverhau, T. Uozumi, S. Usynin, D. Vallecorsa, S. Vanguri, R. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Veramendi, G. Veszpremi, V. Vidal, R. Vila, I. Vilar, R. Vine, T. Vollrath, I. Volobouev, I. Volpi, G. Wurthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, J. Wagner, W. Wallny, R. Wang, S. M. Warburton, A. Waschke, S. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zhou, J. Zucchelli, S. TI Observation of WZ production SO PHYSICAL REVIEW LETTERS LA English DT Article ID Z-GAMMA PRODUCTION; HADRON COLLIDERS; BOSON SECTOR; CDF AB We report the first observation of the associated production of a W boson and a Z boson. This result is based on 1.1 fb(-1) of integrated luminosity from p (p) over bar collisions at root s=1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We observe 16 WZ candidates passing our event selection with an expected background of 2.7 +/- 0.4 events. A fit to the missing transverse energy distribution indicates an excess of events compared to the background expectation corresponding to a significance equivalent to 6 standard deviations. The measured cross section is sigma(p (p) over bar -> WZ)=5.0(-1.6)(+1.8) pb, consistent with the standard model expectation. C1 Univ Illinois, Urbana, IL 61801 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. Baylor Univ, Waco, TX 76798 USA. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Comenius Univ, Bratislava 84248, Slovakia. Inst Expt Phys, Kosice 04001, Slovakia. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva 4, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Inst Theoret & Expt Phys, Moscow 117259, Russia. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Paris 06, LPNHE, IN2P3, CNRS,UMR 7585, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl, Siena, Italy. Scuola Normale Super Pisa, I-56127 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Abulencia, A (reprint author), Univ Illinois, Urbana, IL 61801 USA. RI Lysak, Roman/H-2995-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Introzzi, Gianluca/K-2497-2015; Muelmenstaedt, Johannes/K-2432-2015; Gorelov, Igor/J-9010-2015; Ruiz, Alberto/E-4473-2011; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Grinstein, Sebastian/N-3988-2014; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Lazzizzera, Ignazio/E-9678-2015; Chiarelli, Giorgio/E-8953-2012; OI Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Muelmenstaedt, Johannes/0000-0003-1105-6678; Gorelov, Igor/0000-0001-5570-0133; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Azzi, Patrizia/0000-0002-3129-828X; Latino, Giuseppe/0000-0002-4098-3502; Group, Robert/0000-0002-4097-5254; iori, maurizio/0000-0002-6349-0380; Grinstein, Sebastian/0000-0002-6460-8694; Lancaster, Mark/0000-0002-8872-7292; Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; MARTINEZ, MARIO/0000-0002-3135-945X; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Lazzizzera, Ignazio/0000-0001-5092-7531; Lami, Stefano/0000-0001-9492-0147; Chiarelli, Giorgio/0000-0001-9851-4816; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Margaroli, Fabrizio/0000-0002-3869-0153; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Gallinaro, Michele/0000-0003-1261-2277; Salamanna, Giuseppe/0000-0002-0861-0052; Torre, Stefano/0000-0002-7565-0118; Turini, Nicola/0000-0002-9395-5230; Osterberg, Kenneth/0000-0003-4807-0414; Goldstein, Joel/0000-0003-1591-6014 NR 19 TC 29 Z9 29 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 20 PY 2007 VL 98 IS 16 AR 161801 DI 10.1103/PhysRevLett.98.161801 PG 7 WC Physics, Multidisciplinary SC Physics GA 159MW UT WOS:000245871200018 ER PT J AU Adare, A Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Al-Bataineh, H Alexander, J Al-Jamel, A Aoki, K Aphecetche, L Armendariz, R Aronson, SH Asai, J Atomssa, ET Averbeck, R Awes, TC Azmoun, B Babintsev, V Baksay, G Baksay, L Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Bathe, S Batsouli, S Baublis, V Bauer, F Bazilevsky, A Belikov, S Bennett, R Berdnikov, Y Bickley, AA Bjorndal, MT Boissevain, JG Borel, H Boyle, K Brooks, ML Brown, DS Bucher, D Buesching, H Bumazhnov, V Bunce, G Burward-Hoy, JM Butsyk, S Campbell, S Chai, JS Chang, BS Charvet, JL Chernichenko, S Chiba, J Chi, CY Chiu, M Choi, IJ Chujo, T Chung, P Churyn, A Cianciolo, V Cleven, CR Cobigo, Y Cole, BA Comets, MP Constantin, P Csanad, M Csorgo, T Dahms, T Das, K David, G Deaton, MB Dehmelt, K Delagrange, H Denisov, A d'Enterria, D Deshpande, A Desmond, EJ Dietzsch, O Dion, A Donadelli, M Drachenberg, JL Drapier, O Drees, A Dubey, AK Durum, A Dzhordzhadze, V Efremenko, YV Egdemir, J Ellinghaus, F Emam, WS Enokizono, A En'yo, H Espagnon, B Esumi, S Eyser, KO Fields, DE Finger, M Finger, M Fleuret, F Fokin, SL Forestier, B Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fujiwara, K Fukao, Y Fung, SY Fusayasu, T Gadrat, S Garishvili, I Gastineau, F Germain, M Glenn, A Gong, H Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Gustafsson, HA Hachiya, T Henni, AH Haegemann, C Haggerty, JS Hagiwara, MN Hamagaki, H Han, R Harada, H Hartouni, EP Haruna, K Harvey, M Haslum, E Hasuko, K Hayano, R Heffner, M Hemmick, TK Hester, T Heuser, JM He, X Hiejima, H Hill, JC Hobbs, R Hohlmann, M Holmes, M Holzmann, W Homma, K Hong, B Horaguchi, T Hornback, D Hur, MG Ichihara, T Imai, K Inaba, M Inoue, Y Isenhower, D Isenhower, L Ishihara, M Isobe, T Issah, M Isupov, A Jacak, BV Jia, J Jin, J Jinnouchi, O Johnson, BM Joo, KS Jouan, D Kajihara, F Kametani, S Kamihara, N Kamin, J Kaneta, M Kang, JH Kano, H Kanou, H Kawagishi, T Kawall, D Kazantsev, AV Kelly, S Khanzadeev, A Kikuchi, J Kim, DH Kim, DJ Kim, E Kim, YS Kinney, E Kiss, A Kistenev, E Kiyomichi, A Klay, J Klein-Boesing, C Kochenda, L Kochetkov, V Komkov, B Konno, M Kotchetkov, D Kozlov, A Kral, A Kravitz, A Kroon, PJ Kubart, J Kunde, GJ Kurihara, N Kurita, K Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lai, YS Lajoie, JG Lebedev, A Le Bornec, Y Leckey, S Lee, DM Lee, MK Lee, T Leitch, MJ Leite, MAL Lenzi, B Lim, H Liska, T Litvinenko, A Liu, MX Li, X Li, XH Love, B Lynch, D Maguire, CF Makdisi, YI Malakhov, A Malik, MD Manko, VI Mao, Y Masek, L Masui, H Matathias, F McCain, MC McCumber, M McGaughey, PL Miake, Y Mikes, P Miki, K Miller, TE Milov, A Mioduszewski, S Mishra, GC Mishra, M Mitchell, JT Mitrovski, M Morreale, A Morrison, DP Moss, JM Moukhanova, TV Mukhopadhyay, D Murata, J Nagamiya, S Nagata, Y Nagle, JL Naglis, M Nakagawa, I Nakamiya, Y Nakamura, T Nakano, K Newby, J Nguyen, M Norman, BE Nyanin, AS Nystrand, J O'Brien, E Oda, SX Ogilvie, CA Ohnishi, H Ojha, ID Okada, H Okada, K Oka, M Omiwade, OO Oskarsson, A Otterlund, I Ouchida, M Ozawa, K Pak, R Pal, D Palounek, APT Pantuev, V Papavassiliou, V Park, J Park, WJ Pate, SF Pei, H Peng, JC Pereira, H Peresedov, V Peressounko, DY Pinkenburg, C Pisani, RP Purschke, ML Purwar, AK Qu, H Rak, J Rakotozafindrabe, A Ravinovich, I Read, KF Rembeczki, S Reuter, M Reygers, K Riabov, V Riabov, Y Roche, G Romana, A Rosati, M Rosendahl, SSE Rosnet, P Rukoyatkin, P Rykov, VL Ryu, SS Sahlmueller, B Saito, N Sakaguchi, T Sakai, S Sakata, H Samsonov, V Sato, HD Sato, S Sawada, S Seele, J Seidl, R Semenov, V Seto, R Sharma, D Shea, TK Shein, I Shevel, A Shibata, TA Shigaki, K Shimomura, M Shohjoh, T Shoji, K Sickles, A Silva, CL Silvermyr, D Silvestre, C Sim, KS Singh, CP Singh, V Skutnik, S Slunecka, M Smith, WC Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Suire, C Sullivan, JP Sziklai, J Tabaru, T Takagi, S Takagui, EM Taketani, A Tanaka, KH Tanaka, Y Tanida, K Tannenbaum, MJ Taranenko, A Tarjan, P Thomas, TL Togawa, M Toia, A Tojo, J Tomasek, L Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Tuli, SK Tydesjo, H Tyurin, N Vale, C Valle, H van Hecke, HW Velkovska, J Vertesi, R Vinogradov, AA Virius, M Vrba, V Vznuzdaev, E Wagner, M Walker, D Wang, XR Watanabe, Y Wessels, J White, SN Willis, N Winter, D Woody, CL Wysocki, M Xie, W Yamaguchi, YL Yanovich, A Yasin, Z Ying, J Yokkaichi, S Young, GR Younus, I Yushmanov, IE Zajc, WA Zaudtke, O Zhang, C Zhou, S Zimanyi, J Zolin, L AF Adare, A. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Al-Bataineh, H. Alexander, J. Al-Jamel, A. Aoki, K. Aphecetche, L. Armendariz, R. Aronson, S. H. Asai, J. Atomssa, E. T. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Baksay, G. Baksay, L. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Bathe, S. Batsouli, S. Baublis, V. Bauer, F. Bazilevsky, A. Belikov, S. Bennett, R. Berdnikov, Y. Bickley, A. A. Bjorndal, M. T. Boissevain, J. G. Borel, H. Boyle, K. Brooks, M. L. Brown, D. S. Bucher, D. Buesching, H. Bumazhnov, V. Bunce, G. Burward-Hoy, J. M. Butsyk, S. Campbell, S. Chai, J.-S. Chang, B. S. Charvet, J.-L. Chernichenko, S. Chiba, J. Chi, C. Y. Chiu, M. Choi, I. J. Chujo, T. Chung, P. Churyn, A. Cianciolo, V. Cleven, C. R. Cobigo, Y. Cole, B. A. Comets, M. P. Constantin, P. Csanad, M. Csorgo, T. Dahms, T. Das, K. David, G. Deaton, M. B. Dehmelt, K. Delagrange, H. Denisov, A. d'Enterria, D. Deshpande, A. Desmond, E. J. Dietzsch, O. Dion, A. Donadelli, M. Drachenberg, J. L. Drapier, O. Drees, A. Dubey, A. K. Durum, A. Dzhordzhadze, V. Efremenko, Y. V. Egdemir, J. Ellinghaus, F. Emam, W. S. Enokizono, A. En'yo, H. Espagnon, B. Esumi, S. Eyser, K. O. Fields, D. E. Finger, M. Finger, M., Jr. Fleuret, F. Fokin, S. L. Forestier, B. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fujiwara, K. Fukao, Y. Fung, S.-Y. Fusayasu, T. Gadrat, S. Garishvili, I. Gastineau, F. Germain, M. Glenn, A. Gong, H. Gonin, M. Gosset, J. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Gustafsson, H.-A. Hachiya, T. Henni, A. Hadj Haegemann, C. Haggerty, J. S. Hagiwara, M. N. Hamagaki, H. Han, R. Harada, H. Hartouni, E. P. Haruna, K. Harvey, M. Haslum, E. Hasuko, K. Hayano, R. Heffner, M. Hemmick, T. K. Hester, T. Heuser, J. M. He, X. Hiejima, H. Hill, J. C. Hobbs, R. Hohlmann, M. Holmes, M. Holzmann, W. Homma, K. Hong, B. Horaguchi, T. Hornback, D. Hur, M. G. Ichihara, T. Imai, K. Inaba, M. Inoue, Y. Isenhower, D. Isenhower, L. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Jacak, B. V. Jia, J. Jin, J. Jinnouchi, O. Johnson, B. M. Joo, K. S. Jouan, D. Kajihara, F. Kametani, S. Kamihara, N. Kamin, J. Kaneta, M. Kang, J. H. Kano, H. Kanou, H. Kawagishi, T. Kawall, D. Kazantsev, A. V. Kelly, S. Khanzadeev, A. Kikuchi, J. Kim, D. H. Kim, D. J. Kim, E. Kim, Y.-S. Kinney, E. Kiss, A. Kistenev, E. Kiyomichi, A. Klay, J. Klein-Boesing, C. Kochenda, L. Kochetkov, V. Komkov, B. Konno, M. Kotchetkov, D. Kozlov, A. Kral, A. Kravitz, A. Kroon, P. J. Kubart, J. Kunde, G. J. Kurihara, N. Kurita, K. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lai, Y.-S. Lajoie, J. G. Lebedev, A. Le Bornec, Y. Leckey, S. Lee, D. M. Lee, M. K. Lee, T. Leitch, M. J. Leite, M. A. L. Lenzi, B. Lim, H. Liska, T. Litvinenko, A. Liu, M. X. Li, X. Li, X. H. Love, B. Lynch, D. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Malik, M. D. Manko, V. I. Mao, Y. Masek, L. Masui, H. Matathias, F. McCain, M. C. McCumber, M. McGaughey, P. L. Miake, Y. Mikes, P. Miki, K. Miller, T. E. Milov, A. Mioduszewski, S. Mishra, G. C. Mishra, M. Mitchell, J. T. Mitrovski, M. Morreale, A. Morrison, D. P. Moss, J. M. Moukhanova, T. V. Mukhopadhyay, D. Murata, J. Nagamiya, S. Nagata, Y. Nagle, J. L. Naglis, M. Nakagawa, I. Nakamiya, Y. Nakamura, T. Nakano, K. Newby, J. Nguyen, M. Norman, B. E. Nyanin, A. S. Nystrand, J. O'Brien, E. Oda, S. X. Ogilvie, C. A. Ohnishi, H. Ojha, I. D. Okada, H. Okada, K. Oka, M. Omiwade, O. O. Oskarsson, A. Otterlund, I. Ouchida, M. Ozawa, K. Pak, R. Pal, D. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Park, W. J. Pate, S. F. Pei, H. Peng, J.-C. Pereira, H. Peresedov, V. Peressounko, D. Yu. Pinkenburg, C. Pisani, R. P. Purschke, M. L. Purwar, A. K. Qu, H. Rak, J. Rakotozafindrabe, A. Ravinovich, I. Read, K. F. Rembeczki, S. Reuter, M. Reygers, K. Riabov, V. Riabov, Y. Roche, G. Romana, A. Rosati, M. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Rykov, V. L. Ryu, S. S. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, S. Sakata, H. Samsonov, V. Sato, H. D. Sato, S. Sawada, S. Seele, J. Seidl, R. Semenov, V. Seto, R. Sharma, D. Shea, T. K. Shein, I. Shevel, A. Shibata, T.-A. Shigaki, K. Shimomura, M. Shohjoh, T. Shoji, K. Sickles, A. Silva, C. L. Silvermyr, D. Silvestre, C. Sim, K. S. Singh, C. P. Singh, V. Skutnik, S. Slunecka, M. Smith, W. C. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Suire, C. Sullivan, J. P. Sziklai, J. Tabaru, T. Takagi, S. Takagui, E. M. Taketani, A. Tanaka, K. H. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Taranenko, A. Tarjan, P. Thomas, T. L. Togawa, M. Toia, A. Tojo, J. Tomasek, L. Torii, H. Towell, R. S. Tram, V-N. Tserruya, I. Tsuchimoto, Y. Tuli, S. K. Tydesjo, H. Tyurin, N. Vale, C. Valle, H. van Hecke, H. W. Velkovska, J. Vertesi, R. Vinogradov, A. A. Virius, M. Vrba, V. Vznuzdaev, E. Wagner, M. Walker, D. Wang, X. R. Watanabe, Y. Wessels, J. White, S. N. Willis, N. Winter, D. Woody, C. L. Wysocki, M. Xie, W. Yamaguchi, Y. L. Yanovich, A. Yasin, Z. Ying, J. Yokkaichi, S. Young, G. R. Younus, I. Yushmanov, I. E. Zajc, W. A. Zaudtke, O. Zhang, C. Zhou, S. Zimanyi, J. Zolin, L. TI Scaling properties of azimuthal anisotropy in Au plus Au and Cu plus Cu collisions at root s(NN)=200 GeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUARK-GLUON PLASMA; COLOR GLASS CONDENSATE; HEAVY-ION COLLISIONS; ELLIPTIC FLOW; COLLABORATION; PERSPECTIVE; ENERGY; MATTER; QCD AB Differential measurements of elliptic flow (v(2)) for Au+Au and Cu+Cu collisions at root s(NN)=200 GeV are used to test and validate predictions from perfect fluid hydrodynamics for scaling of v(2) with eccentricity, system size, and transverse kinetic energy (KET). For KET equivalent to m(T)-m up to similar to 1 GeV the scaling is compatible with hydrodynamic expansion of a thermalized fluid. For large values of KET mesons and baryons scale separately. Quark number scaling reveals a universal scaling of v(2) for both mesons and baryons over the full KET range for Au+Au. For Au+Au and Cu+Cu the scaling is more pronounced in terms of KET, rather than transverse momentum. C1 Univ Colorado, Boulder, CO 80309 USA. Abilene Christian Univ, Abilene, TX 79699 USA. Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. Brookhaven Natl Lab, Upton, NY 11973 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Charles Univ Prague, CR-11636 Prague, Czech Republic. CIAE, Beijing, Peoples R China. Univ Tokyo, Ctr Nucl Study, Grad Sch Sci, Bunkyo Ku, Tokyo 1130033, Japan. Columbia Univ, New York, NY 10027 USA. Nevis Labs, Irvington, NY 10533 USA. Czech Tech Univ, Prague 16636 6, Czech Republic. CEA Saclay, Dapnia, F-91191 Gif Sur Yvette, France. Debrecen Univ, H-4010 Debrecen, Hungary. Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. Florida Inst Technol, Melbourne, FL 32901 USA. Florida State Univ, Tallahassee, FL 32306 USA. Georgia State Univ, Atlanta, GA 30303 USA. Hiroshima Univ, Higashihiroshima 7398526, Japan. State Res Ctr Russian Federat, IHEP Protvino, Inst High Energy Phys, Protvino 142281, Russia. Univ Illinois, Urbana, IL 61801 USA. Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. Iowa State Univ, Ames, IA 50011 USA. Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. KAERI, Cyclotron Applicat Lab, Seoul, South Korea. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. Hungarian Acad Sci, KFKI Res Inst Particle & Nucl Phys, MTA, RMKI, Budapest, Hungary. Korea Univ, Seoul 136701, South Korea. Russian Res Ctr Kurchatov Inst, Moscow, Russia. Kyoto Univ, Kyoto 6068502, Japan. Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, F-91128 Palaiseau, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Clermont Ferrand, LPC, CNRS, IN2P3, F-63177 Clermont Ferrand, France. Lund Univ, Dept Phys, SE-22100 Lund, Sweden. Univ Munster, Inst Kernphys, D-48149 Munster, Germany. Myongji Univ, Yongin 449728, Kyonggido, South Korea. Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. Univ New Mexico, Albuquerque, NM 87131 USA. New Mexico State Univ, Las Cruces, NM 88003 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Paris 11, IPN Orsay, CNRS, IN2P3, F-91406 Orsay, France. Peking Univ, Beijing 100871, Peoples R China. PNPI, Gatchina 188300, Leningrad, Russia. RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. Rikkyo Univ, Dept Phys, Tokyo 1718501, Japan. St Petersburg State Polytech Univ, St Petersburg, Russia. Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. Seoul Natl Univ, Syst Elect Lab, Seoul, South Korea. SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Univ Nantes, SUBATECH, Ecole Mines, CNRS,IN2P3, F-44307 Nantes, France. Univ Tennessee, Knoxville, TN 37996 USA. Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. Vanderbilt Univ, Nashville, TN 37235 USA. Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. Weizmann Inst Sci, IL-76100 Rehovot, Israel. Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Adare, A (reprint author), Univ Colorado, Boulder, CO 80309 USA. RI Semenov, Vitaliy/E-9584-2017; Tomasek, Lukas/G-6370-2014; Dahms, Torsten/A-8453-2015; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017; Csanad, Mate/D-5960-2012; YANG, BOGEUM/I-8251-2012; Csorgo, Tamas/I-4183-2012; seto, richard/G-8467-2011 OI Tomasek, Lukas/0000-0002-5224-1936; Dahms, Torsten/0000-0003-4274-5476; Hayano, Ryugo/0000-0002-1214-7806; Sorensen, Soren /0000-0002-5595-5643; Taketani, Atsushi/0000-0002-4776-2315; NR 42 TC 228 Z9 234 U1 5 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 20 PY 2007 VL 98 IS 16 AR 162301 DI 10.1103/PhysRevLett.98.162301 PG 6 WC Physics, Multidisciplinary SC Physics GA 159MW UT WOS:000245871200019 PM 17501413 ER PT J AU Bern, Z Carrasco, JJ Dixon, LJ Johansson, H Kosower, DA Roiban, R AF Bern, Z. Carrasco, J. J. Dixon, L. J. Johansson, H. Kosower, D. A. Roiban, R. TI Cancellations beyond finiteness in N=8 supergravity at three loops SO PHYSICAL REVIEW LETTERS LA English DT Article ID SUPER-YANG-MILLS; GAUGE-THEORY; ULTRAVIOLET DIVERGENCES; TREE AMPLITUDES; UNITARITY; RENORMALIZABILITY; COUNTERTERMS; GRAVITY AB We construct the three-loop four-point amplitude of N=8 supergravity using the unitarity method. The amplitude is ultraviolet finite in four dimensions. Novel cancellations, not predicted by traditional superspace power-counting arguments, render its degree of divergence in D dimensions no worse than that of N=4 super-Yang-Mills theory-a finite theory in four dimensions. Similar cancellations can be identified at all loop orders in certain unitarity cuts, suggesting that N=8 supergravity may be a perturbatively finite theory of quantum gravity. C1 Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. CEA Saclay, Serv Phys Theor, F-91191 Gif Sur Yvette, France. Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. Penn State Univ, Dept Phys, University Pk, PA 16802 USA. RP Bern, Z (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. OI Carrasco, John Joseph/0000-0002-4499-8488 NR 35 TC 176 Z9 176 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 20 PY 2007 VL 98 IS 16 AR 161303 DI 10.1103/PhysRevLett.98.161303 PG 4 WC Physics, Multidisciplinary SC Physics GA 159MW UT WOS:000245871200016 PM 17501410 ER PT J AU Dytrych, T Sviratcheva, KD Bahri, C Draayer, JP Vary, JP AF Dytrych, Tomas Sviratcheva, Kristina D. Bahri, Chairul Draayer, Jerry P. Vary, James P. TI Evidence for symplectic symmetry in ab initio no-core shell model results for light nuclei SO PHYSICAL REVIEW LETTERS LA English DT Article ID C-12; EXCITATIONS; SCATTERING AB Clear evidence for symplectic symmetry in low-lying states of C-12 and O-16 is reported. Eigenstates of C-12 and O-16, determined within the framework of the no-core shell model using the J-matrix inverse scattering potential with A <= 16 (JISP16) nucleon-nucleon (NN) realistic interaction, typically project at the 85%-90% level onto a few of the most deformed symplectic basis states that span only a small fraction of the full model space. The results are nearly independent of whether the bare or renormalized effective interactions are used in the analysis. The outcome confirms Elliott's SU(3) model which underpins the symplectic scheme, and above all, points to the relevance of a symplectic no-core shell model that can reproduce experimental B(E2) values without effective charges as well as deformed spatial modes associated with clustering phenomena in nuclei. C1 Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Dytrych, T (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. NR 29 TC 55 Z9 55 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 20 PY 2007 VL 98 IS 16 AR 162503 DI 10.1103/PhysRevLett.98.162503 PG 4 WC Physics, Multidisciplinary SC Physics GA 159MW UT WOS:000245871200022 PM 17501416 ER PT J AU Garcia, DR Gweon, GH Zhou, SY Graf, J Jozwiak, CM Jung, MH Kwon, YS Lanzara, A AF Garcia, D. R. Gweon, G.-H. Zhou, S. Y. Graf, J. Jozwiak, C. M. Jung, M. H. Kwon, Y. S. Lanzara, A. TI Revealing charge density wave formation in the LaTe2 system by angle resolved photoemission spectroscopy SO PHYSICAL REVIEW LETTERS LA English DT Article ID CRYSTAL-STRUCTURE; FERMI-SURFACE; SUPERCONDUCTIVITY AB We present the first direct study of charge density wave (CDW) formation in quasi-2D single layer LaTe2 using high-resolution angle resolved photoemission spectroscopy and low energy electron diffraction. CDW formation is driven by Fermi surface (FS) nesting, however, characterized by a surprisingly smaller gap (approximate to 50 meV) than seen in the double layer RTe2 compounds, extending over the entire FS. This establishes LaTe2 as the first reported semiconducting 2D CDW system where the CDW phase is FS nesting driven. In addition, the layer dependence of this phase in the tellurides and the possible transition from a stripe to a checkerboard phase is discussed. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. KBSI, Natl Res Lab Mat Sci, Taejon 305333, South Korea. Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. RP Garcia, DR (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM alanzara@lbl.gov RI Zhou, Shuyun/A-5750-2009 NR 28 TC 9 Z9 9 U1 0 U2 23 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 20 PY 2007 VL 98 IS 16 AR 166403 DI 10.1103/PhysRevLett.98.166403 PG 4 WC Physics, Multidisciplinary SC Physics GA 159MW UT WOS:000245871200045 PM 17501439 ER PT J AU Garlea, VO Zheludev, A Masuda, T Manaka, H Regnault, LP Ressouche, E Grenier, B Chung, JH Qiu, Y Habicht, K Kiefer, K Boehm, M AF Garlea, V. O. Zheludev, A. Masuda, T. Manaka, H. Regnault, L.-P. Ressouche, E. Grenier, B. Chung, J.-H. Qiu, Y. Habicht, K. Kiefer, K. Boehm, M. TI Excitations from a Bose-Einstein condensate of magnons in coupled spin ladders SO PHYSICAL REVIEW LETTERS LA English DT Article ID FIELD; (CH3)(2)CHNH3CUCL3; ANTIFERROMAGNETS; TLCUCL3; STATE AB The weakly coupled quasi-one-dimensional spin ladder compound (CH3)(2)CHNH3CuCl3 is studied by neutron scattering in magnetic fields exceeding the critical field of Bose-Einstein condensation of magnons. Commensurate long-range order and the associated Goldstone mode are detected and found to be similar to those in reference to spin-dimer materials. However, for the upper two massive magnon branches, the observed behavior is totally different, culminating in a drastic collapse of excitation bandwidth beyond the transition point. C1 Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. Yokohama City Univ, Int Grad Sch Arts & Sci, Kanazawa Ku, Yokohama, Kanagawa 2360027, Japan. Kagoshima Univ, Grad Sch Sci & Engn, Kagoshima 8900065, Japan. CEA, DRFMC, SPSMS, MDN, F-38054 Grenoble 9, France. Natl Inst Stand & Technol, NCNR, Gaithersburg, MD 20899 USA. Hahn Meitner Inst Berlin GmbH, BENSC, D-14109 Berlin, Germany. Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. RP Chung, JH (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, POB 2008, Oak Ridge, TN 37831 USA. RI Kiefer, Klaus/J-3544-2013; Garlea, Vasile/A-4994-2016; Habicht, Klaus/K-3636-2013 OI Kiefer, Klaus/0000-0002-5178-0495; Garlea, Vasile/0000-0002-5322-7271; Habicht, Klaus/0000-0002-9915-7221 NR 25 TC 46 Z9 46 U1 0 U2 12 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 20 PY 2007 VL 98 IS 16 AR 167202 DI 10.1103/PhysRevLett.98.167202 PG 4 WC Physics, Multidisciplinary SC Physics GA 159MW UT WOS:000245871200062 PM 17501456 ER PT J AU Li, Q Gray, KE Zheng, H Claus, H Rosenkranz, S Ancona, SN Osborn, R Mitchell, JF Chen, Y Lynn, JW AF Li, Qing'An Gray, K. E. Zheng, H. Claus, H. Rosenkranz, S. Ancona, S. Nyborg Osborn, R. Mitchell, J. F. Chen, Y. Lynn, J. W. TI Reentrant orbital order and the true ground state of LaSr2Mn2O7 SO PHYSICAL REVIEW LETTERS LA English DT Article ID CHARGE; SPIN; MAGNETORESISTANCE; INTERPLAY AB Contrary to conventional wisdom, our purified La2-2xSr1+2xMn2O7 crystals exhibit CE-type orbital and charge order as the low-temperature ground state for a hole doping level h = 0.5. For small deviations from h = 0.5, the high-temperature CE phase is replaced at low temperatures by an A-type antiferromagnet without coexistence. Larger deviations result in a lack of CE order at any temperature. Thus, small inhomogeneities in cation or oxygen composition could explain why others commonly see this reentrance with coexistence. C1 Chinese Acad Sci, Beijing 100080, Peoples R China. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Gray, KE (reprint author), Chinese Acad Sci, Beijing 100080, Peoples R China. EM KenGray@anl.gov RI Osborn, Raymond/E-8676-2011; Rosenkranz, Stephan/E-4672-2011; Li, Qingan/L-3778-2013 OI Osborn, Raymond/0000-0001-9565-3140; Rosenkranz, Stephan/0000-0002-5659-0383; NR 20 TC 23 Z9 23 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 20 PY 2007 VL 98 IS 16 AR 167201 DI 10.1103/PhysRevLett.98.167201 PG 4 WC Physics, Multidisciplinary SC Physics GA 159MW UT WOS:000245871200061 PM 17501455 ER PT J AU Valla, T Kidd, TE Yin, WG Gu, GD Johnson, PD Pan, ZH Fedorov, AV AF Valla, T. Kidd, T. E. Yin, W.-G. Gu, G. D. Johnson, P. D. Pan, Z.-H. Fedorov, A. V. TI High-energy kink observed in the electron dispersion of high-temperature cuprate superconductors SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUANTUM ANTIFERROMAGNET; BI2SR2CACU2O8+DELTA; EXCITATIONS; STATE AB Photoemission studies show the presence of a high-energy anomaly in the observed band dispersion for two families of cuprate superconductors, Bi2Sr2CaCu2O8+delta and La2-xBaxCuO4. The anomaly, which occurs at a binding energy of approximately 340 meV, is found to be anisotropic and relatively weakly doping dependent. Scattering from short range or nearest neighbor spin excitations is found to supply an adequate description of the observed phenomena. C1 Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. Univ No Iowa, Dept Phys, Cedar Falls, IA 50614 USA. Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Valla, T (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM valla@bnl.gov RI Gu, Genda/D-5410-2013; Yin, Weiguo/A-9671-2014 OI Gu, Genda/0000-0002-9886-3255; Yin, Weiguo/0000-0002-4965-5329 NR 25 TC 89 Z9 90 U1 1 U2 13 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 20 PY 2007 VL 98 IS 16 AR 167003 DI 10.1103/PhysRevLett.98.167003 PG 4 WC Physics, Multidisciplinary SC Physics GA 159MW UT WOS:000245871200059 PM 17501453 ER PT J AU Gedik, N Yang, DS Logvenov, G Bozovic, I Zewail, AH AF Gedik, Nuh Yang, Ding-Shyue Logvenov, Gennady Bozovic, Ivan Zewail, Ahmed H. TI Nonequilibrium phase transitions in cuprates observed by ultrafast electron crystallography SO SCIENCE LA English DT Article ID SINGLE-CRYSTAL; DIFFRACTION; MICROSCOPY; CHEMISTRY; ENERGY; OXIDES; STATE AB Nonequilibrium phase transitions, which are defined by the formation of macroscopic transient domains, are optically dark and cannot be observed through conventional temperature- or pressure-change studies. We have directly determined the structural dynamics of such a nonequilibrium phase transition in a cuprate superconductor. Ultrafast electron crystallography with the use of a tilted optical geometry technique afforded the necessary atomic-scale spatial and temporal resolutions. The observed transient behavior displays a notable "structural isosbestic" point and a threshold effect for the dependence of c-axis expansion (Delta c) on fluence ( F), with Delta c/F = 0.02 angstrom/(millijoule per square centimeter). This threshold for photon doping occurs at similar to 0.12 photons per copper site, which is unexpectedly close to the density ( per site) of chemically doped carriers needed to induce superconductivity. C1 CALTECH, Phys Biol Ctr Ultrafast Sci & Technol, Pasadena, CA 91125 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Zewail, AH (reprint author), CALTECH, Phys Biol Ctr Ultrafast Sci & Technol, Pasadena, CA 91125 USA. EM zewail@caltech.edu RI Yang, Ding-Shyue/A-8648-2010; OI Yang, Ding-Shyue/0000-0003-2713-9128; gaber, sarah/0000-0002-5995-7291 NR 35 TC 133 Z9 134 U1 11 U2 65 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD APR 20 PY 2007 VL 316 IS 5823 BP 425 EP 429 DI 10.1126/science.1138834 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 158RY UT WOS:000245813400050 PM 17446397 ER PT J AU Yamamoto, Y Brady, MP Lu, ZP Maziasz, PJ Liu, CT Pint, BA More, KL Meyer, HM Payzant, EA AF Yamamoto, Y. Brady, M. P. Lu, Z. P. Maziasz, P. J. Liu, C. T. Pint, B. A. More, K. L. Meyer, H. M. Payzant, E. A. TI Creep-resistant, Al2O3-forming austenitic stainless steels SO SCIENCE LA English DT Article ID COAL POWER-PLANTS; WATER-VAPOR; OXIDATION; ALLOYS; PERFORMANCE; MECHANISM; COATINGS AB A family of inexpensive, Al2O3-forming, high-creep strength austenitic stainless steels has been developed. The alloys are based on Fe-20Ni-14Cr-2.5Al weight percent, with strengthening achieved through nanodispersions of NbC. These alloys offer the potential to substantially increase the operating temperatures of structural components and can be used under the aggressive oxidizing conditions encountered in energy-conversion systems. Protective Al2O3 scale formation was achieved with smaller amounts of aluminum in austenitic alloys than previously used, provided that the titanium and vanadium alloying additions frequently used for strengthening were eliminated. The smaller amounts of aluminum permitted stabilization of the austenitic matrix structure and made it possible to obtain excellent creep resistance. Creep-rupture lifetime exceeding 2000 hours at 750 degrees C and 100 megapascals in air, and resistance to oxidation in air with 10% water vapor at 650 degrees and 800 degrees C, were demonstrated. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Yamamoto, Y (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM bradymp@ornl.gov RI Brady, Michael/A-8122-2008; Payzant, Edward/B-5449-2009; Pint, Bruce/A-8435-2008; Lu, Zhao-Ping/A-2718-2009; More, Karren/A-8097-2016; OI Brady, Michael/0000-0003-1338-4747; Payzant, Edward/0000-0002-3447-2060; Pint, Bruce/0000-0002-9165-3335; More, Karren/0000-0001-5223-9097; Maziasz, Philip/0000-0001-8207-334X NR 26 TC 128 Z9 148 U1 17 U2 117 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD APR 20 PY 2007 VL 316 IS 5823 BP 433 EP 436 DI 10.1126/science.1137711 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 158RY UT WOS:000245813400052 PM 17446398 ER PT J AU Viehland, LA Danailov, DM Goeringer, DE AF Viehland, Larry A. Danailov, Daniel M. Goeringer, Douglas E. TI Moment theory of ion-neutral reactions in traps and similar devices SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID GAS-PHASE REACTIONS; MOLECULE REACTIONS; INTERNAL ENERGY; GASEOUS-IONS; MOTION; FIELDS; E2 AB Recent moment theories of ion motion in traps and similar devices are extended to mixtures of neutral gases in which one or more components can undergo infrequent reaction with the ion of interest. Expressions are developed for the position and time dependence of the ion-neutral reaction rate coefficient in such circumstances. These expressions are incorporated into the sets of coupled differential equations that govern the average ion velocity and kinetic and internal energies. This provides a consistent description of the ion transport and reaction coefficients. C1 Chatham Coll, Sci Div, Pittsburgh, PA 15232 USA. Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA. RP Viehland, LA (reprint author), Chatham Coll, Sci Div, Pittsburgh, PA 15232 USA. EM viehland@chatham.edu NR 30 TC 2 Z9 2 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 19 PY 2007 VL 111 IS 15 BP 2820 EP 2829 DI 10.1021/jp066096m PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 156FY UT WOS:000245634700003 PM 17388395 ER PT J AU Zhu, X Bleicher, M Huang, SL Schweda, K Stocker, H Xu, N Zhuang, P AF Zhu, X. Bleicher, M. Huang, S. L. Schweda, K. Stoecker, H. Xu, N. Zhuang, P. TI D(D)over-bar correlations as a sensitive probe for thermalization in high energy nuclear collisions SO PHYSICS LETTERS B LA English DT Article ID HEAVY-ION COLLISIONS; QUARK-GLUON PLASMA; CHARM; COLLABORATION; HADRONIZATION; PHYSICS; STAR; QCD AB We propose to measure azimuthal correlations of heavy-flavor hadrons to address the status of thermalization at the partonic stage of light quarks and gluons in high-energy nuclear collisions. In particular, we show that hadronic interactions at the late stage cannot significantly disturb the initial back-to-back azimuthal correlations of D (D) over bar pairs. Thus, a decrease or the complete absence of these initial correlations does indicate frequent interactions of heavy-flavor quarks and also light partons in the partonic stage, which are essential for the early thermalization of light partons. (c) 2007 Elsevier B.V. All rights reserved. C1 Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany. FIAS, D-60438 Frankfurt, Germany. Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. RP Zhu, X (reprint author), Goethe Univ Frankfurt, Inst Theoret Phys, Max von Laue Str 1, D-60438 Frankfurt, Germany. EM zhu@fias.uni-frankfurt.de RI Bleicher, Marcus/A-2758-2010; Stoecker, Horst/D-6173-2013; Stoecker, Horst/F-8382-2012 OI Stoecker, Horst/0000-0002-3282-3664; Stoecker, Horst/0000-0002-3282-3664 NR 29 TC 23 Z9 24 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD APR 19 PY 2007 VL 647 IS 5-6 BP 366 EP 370 DI 10.1016/j.physletb.2007.01.072 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 165VA UT WOS:000246332800009 ER PT J AU Malmon, DV Reneau, SL Katzman, D Lavine, A Lyman, J AF Malmon, Daniel V. Reneau, Steven L. Katzman, Danny Lavine, Alexis Lyman, Jared TI Suspended sediment transport in an ephemeral stream following wildfire SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE LA English DT Article ID YELLOWSTONE-NATIONAL-PARK; FLASH FLOODS; FOREST-FIRE; TRANSMISSION LOSSES; POSTFIRE RUNOFF; FLOW DYNAMICS; EROSION; DESERT; DISCHARGE; RAINFALL AB [ 1] We examine the impacts of a stand-clearing wildfire on the characteristics and magnitude of suspended sediment transport in ephemeral streams draining the burn area. We report the results of a monitoring program that includes 2 years of data prior to the Cerro Grande fire in New Mexico, and 3 years of postfire data. Suspended sediment concentration (SSC) increased by about 2 orders of magnitude following the fire, and the proportion of silt and clay increased from 50% to 80%. For a given flow event, SSC is highest at the flood bore and decreases monotonically with time, a pattern evident in every flood sampled both before and after the fire. We propose that the accumulation of flow and wash load at the flow front is an inherent characteristic of ephemeral stream flows, due to amplified momentum losses at the flood bore. We present a new model for computing suspended sediment transport in ephemeral streams ( in the presence or absence of wildfire) by relating SSC to the time following the arrival of the flood bore, rather than to instantaneous discharge. Using this model and a rainfall history, we estimate that in the 3 years following the fire, floods transported in suspension a mass equivalent to about 3 mm of landscape lowering across the burn area, 20% of this following a single rainstorm. We test the model by computing fine sediment delivery to a small reservoir in an adjacent watershed, where we have a detailed record of postfire sedimentation based on repeat surveys. Systematic discrepancies between modeled and measured sedimentation rates in the reservoir suggest rapid reductions in suspended sediment delivery in the first several years after the fire. C1 US Geol Survey, Western Earth Surface Proc Team, Menlo Pk, CA 94025 USA. Los Alamos Natl Lab, Environm Geol & Spatial Anal Grp, Los Alamos, NM 87545 USA. RP Malmon, DV (reprint author), US Geol Survey, Western Earth Surface Proc Team, 345 Middlefield Rd,MS 973, Menlo Pk, CA 94025 USA. NR 86 TC 25 Z9 25 U1 0 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-EARTH JI J. Geophys. Res.-Earth Surf. PD APR 18 PY 2007 VL 112 IS F2 AR F02006 DI 10.1029/2005JF000459 PG 16 WC Geosciences, Multidisciplinary SC Geology GA 160OP UT WOS:000245952500001 ER PT J AU Zhang, JC Liemohn, MW De Zeeuw, DL Borovsky, JE Ridley, AJ Toth, G Sazykin, S Thomsen, MF Kozyra, JU Gombosi, TI Wolf, RA AF Zhang, Jichun Liemohn, Michael W. De Zeeuw, Darren L. Borovsky, Joseph E. Ridley, Aaron J. Toth, Gabor Sazykin, Stanislav Thomsen, Michelle F. Kozyra, Janet U. Gombosi, Tamas I. Wolf, Richard A. TI Understanding storm-time ring current development through data-model comparisons of a moderate storm SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID INTERPLANETARY MAGNETIC-FIELD; TRANSPOLAR POTENTIAL SATURATION; MAGNETOSPHERIC PLASMA ANALYZER; HIGH-LATITUDE IONOSPHERE; NEAR-EARTH MAGNETOTAIL; GEOSYNCHRONOUS ORBIT; SOLAR-WIND; GEOMAGNETIC STORMS; ALIGNED CURRENTS; ELECTRIC-FIELD AB [1] With three components, global magnetosphere (GM), inner magnetosphere (IM), and ionospheric electrodynamics (IE), in the Space Weather Modeling Framework (SWMF), the moderate storm on 19 May 2002 is globally simulated over a 24-hour period that includes the sudden storm commencement (SSC), initial phase, and main phase of the storm. Simulation results are validated by comparison with in situ observations from Geotail, GOES 8, GOES 10, Polar, LANL MPA, and the Sym-H and Dst indices. It is shown that the SWMF is reaching a sophistication level for allowing quantitative comparison with the observations. Major storm characteristics at the SSC, in the initial phase, and in the main phase are successfully reproduced. The simulated plasma parameters exhibit obvious dawn-dusk asymmetries or symmetries in the ring current region: higher density near the dawn and higher temperature in the afternoon and premidnight sectors; the pressure is highest on the nightside and exhibits a near dawn-dusk symmetry. In addition, it is found in this global modeling that the upstream solar wind/ IMF conditions control the storm activity and an important plasma source of the ring current is in the solar wind. However, the ionospheric outflow can also affect the ring current development, especially in the main phase. Activity in the high-latitude ionosphere is also produced reasonably well. However, the modeled cross polar cap potential drop (CPCP) in the Southern Hemisphere is almost always significantly larger than that in the Northern Hemisphere during the May storm. C1 Univ Michigan, Ctr Space Environm Modeling, Ann Arbor, MI 48109 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. RP Zhang, JC (reprint author), Rice Univ, Dept Phys & Astron, MS-108,6100 S Main St, Houston, TX 77005 USA. EM jichunz@rice.edu RI Liemohn, Michael/H-8703-2012; Gombosi, Tamas/G-4238-2011; Toth, Gabor/B-7977-2013; De Zeeuw, Darren/F-3667-2011; Zhang, Jichun/A-6648-2009; Sazykin, Stanislav/C-3775-2008 OI Liemohn, Michael/0000-0002-7039-2631; Gombosi, Tamas/0000-0001-9360-4951; Toth, Gabor/0000-0002-5654-9823; Sazykin, Stanislav/0000-0002-9401-4248 NR 93 TC 36 Z9 37 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 18 PY 2007 VL 112 IS A4 AR A04208 DI 10.1029/2006JA011846 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 160PB UT WOS:000245953700001 ER PT J AU Gateshki, M Niederberger, M Deshpande, AS Ren, Y Petkov, V AF Gateshki, Milen Niederberger, Markus Deshpande, Atul S. Ren, Yang Petkov, Valeri TI Atomic-scale structure of nanocrystalline CeO2-ZrO2 oxides by total x-ray diffraction and pair distribution function analysis SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID ZRO2-CEO2 SOLID-SOLUTIONS; AMORPHOUS MATERIALS; LOCAL-STRUCTURE; PHASE-BOUNDARY; MIXED OXIDES; CUBIC PHASE; SPACE; REFINEMENT; SCATTERING; DISORDER AB Total x- ray diffraction and atomic pair distribution function analysis have been used to determine the atomic ordering in nanocrystalline (similar to 1.5 nm in size) CeO2 - ZrO2 prepared by a sol - gel route. Experimental data show that the oxides are a structurally and chemically inhomogeneous mixture of nanoscale domains with cubic- type and monoclinic- type atomic ordering, predominantly occupied by Ce and Zr atomic species, respectively. The study is another demonstration of the great potential of non- traditional crystallography in studying the structure of nanocrystalline materials. C1 Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. Max Planck Inst Colloids & Interfaces, D-14424 Potsdam, Germany. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Gateshki, M (reprint author), Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. EM petkov@phy.cmich.edu RI Niederberger, Markus/A-6144-2008; Deshpande, Atul/B-2993-2008 OI Niederberger, Markus/0000-0001-6058-1183; NR 30 TC 9 Z9 9 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD APR 18 PY 2007 VL 19 IS 15 AR 156205 DI 10.1088/0953-8984/19/15/156205 PG 12 WC Physics, Condensed Matter SC Physics GA 156SQ UT WOS:000245670400011 ER PT J AU Sannita, WG Peachey, NS Strettoi, E Ball, SL Belli, F Bidoli, V Carozzo, S Casolino, M Di Fino, L Picozza, P Pignatelli, V Rinaldi, A Saturno, M Schardt, D Vazquez, M Zaconte, V Narici, L AF Sannita, Walter G. Peachey, Neal S. Strettoi, Enrica Ball, Sherry L. Belli, Francesco Bidoli, Vittorio Carozzo, Simone Casolino, Marco Di Fino, Luca Picozza, Piergiorgio Pignatelli, Vincenzo Rinaldi, Adele Saturno, Moreno Schardt, Dieter Vazquez, Marcelo Zaconte, Veronica Narici, Livio TI Electrophysiological responses of the mouse retina to C-12 ions SO NEUROSCIENCE LETTERS LA English DT Article DE ionizing radiation; electroretinogram (ERG); visual evoked potential (VEP); immunohistochemistry; wild-type mouse; phosphenes ID LIGHT-FLASHES; VISUAL PHENOMENA; SPACE TRAVEL; ASTRONAUTS; MICE; ELECTRORETINOGRAM; DEGENERATION; RADIATION AB Phosphenes ("light flashes") have been reported by most astronauts on space missions and by healthy subjects whose eyes were exposed to ionizing radiation in early experiments in particle accelerators. The conditions of occurrence suggested retinal effects of heavy ions. To develop an in vivo animal model, we irradiated the eyes of anesthetized wild-type mice with repeated bursts of C-12 ions delivered under controlled conditions in accelerator. C-12 ions evoked electrophysiological retinal mass responses and activated the visual system as indicated by responses recorded from the visual cortex. No retinal immunohistological damage was detected. Mice proved a suitable animal model to study radiation-induced phosphenes in vivo and our findings are consistent with an origin of phosphenes in radiation activating the retina. (c) 2007 Elsevier Ireland Ltd. All rights reserved. C1 Ist Nazl Fis Nucl, Rome, Italy. Univ Genoa, Dept Motor Sci, Genoa, Italy. SUNY Stony Brook, Dept Psychiat, Stony Brook, NY 11794 USA. Cleveland Clin Fdn, VA Med Ctr, Cleveland, OH 44195 USA. Cleveland Clin Fdn, Cole Eye Inst, Cleveland, OH 44195 USA. CNR, Neurosci Inst, I-56100 Pisa, Italy. Univ Tor Vergata, Dept Phys, Rome, Italy. GSI Biophys, Darmstadt, Germany. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Sannita, WG (reprint author), Ist Nazl Fis Nucl, Roma2, Rome, Italy. EM wgs@dism.unige.it RI Peachey, Neal/G-5533-2010; Schardt, Dieter/M-1517-2014; OI Schardt, Dieter/0000-0001-7851-5993; Ball, Sherry/0000-0002-2362-9499; casolino, marco/0000-0001-6067-5104; Picozza, Piergiorgio/0000-0002-7986-3321 FU NEI NIH HHS [R24 EY15638] NR 20 TC 11 Z9 11 U1 0 U2 0 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0304-3940 J9 NEUROSCI LETT JI Neurosci. Lett. PD APR 18 PY 2007 VL 416 IS 3 BP 231 EP 235 DI 10.1016/j.neulet.2006.12.062 PG 5 WC Neurosciences SC Neurosciences & Neurology GA 165PU UT WOS:000246318500005 PM 17376593 ER PT J AU Boschek, CB Squier, TC Bigelow, DJ AF Boschek, Curt B. Squier, Thomas C. Bigelow, Diana J. TI Disruption of interdomain interactions via partial calcium occupancy of calmodulin SO BIOCHEMISTRY LA English DT Article ID LIGHT-CHAIN KINASE; MEMBRANE CA-ATPASE; OXIDATIVELY MODIFIED CALMODULIN; OPPOSING GLOBULAR DOMAINS; N-DOMAIN; FLUORESCENCE SPECTROSCOPY; VERTEBRATE CALMODULIN/; MOLECULAR RECOGNITION; CONFORMATIONAL-CHANGE; BINDING AB Binding of calcium to CaM exposes clefts in both N- and C-domains to promote their cooperative association with a diverse array of target proteins, functioning to relay the calcium signal regulating cellular metabolism. To clarify relationships between the calcium-dependent activation of individual domains and interdomain structural transitions associated with productive binding to target proteins, we have utilized three engineered CaM mutants that were covalently labeled with N-(1-pyrene) maleimide at introduced cysteines in the C- and N-domains, i.e., T110C (Py-C-CaM), T34C (Py-N-CaM), and T34C/T110C (Py-2-CaM). These sites were designed to detect known conformers of CaM such that upon association with classical CaM-binding sequences, the pyrenes in Py-2-CaM are brought close together, resulting in excimer formation. Complementary measurements of calcium-dependent enhancements of monomer fluorescence of Py-C-CaM and Py-N-CaM permit a determination of the calcium-dependent activation of individual domains and indicate the sequential calcium occupancy of the C- and N-terminal domains, with full saturation at 7.0 and 300 mu M calcium, respectively. Substantial amounts of excimer formation are observed for apo-CaM prior to peptide association, indicating that interdomain interactions occur in solution. Calcium binding results in a large and highly cooperative reduction in the level of excimer formation; its calcium dependence coincides with the occupancy of C-terminal sites. These results indicate that interdomain interactions between the opposing domains of CaM occur in solution and that the occupancy of C-terminal calcium binding sites is necessary for the structural coupling between the opposing domains associated with the stabilization of the interdomain linker to enhance target protein binding. C1 Pacific NW Natl Lab, Cell Biol & Biochem Grp, Biol Sci Div, Richland, WA 99352 USA. RP Bigelow, DJ (reprint author), Pacific NW Natl Lab, Cell Biol & Biochem Grp, Biol Sci Div, 790 6th St,Mail Stop P7-53, Richland, WA 99352 USA. EM diana.bigelow@pnl.gov FU NIA NIH HHS [AG18013, AG12993] NR 67 TC 13 Z9 13 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD APR 17 PY 2007 VL 46 IS 15 BP 4580 EP 4588 DI 10.1021/bi6025402 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 155AH UT WOS:000245549400013 PM 17378588 ER PT J AU Nguyen, NT Howe, B Hash, JR Liebrecht, N Zschack, P Johnson, DC AF Nguyen, Ngoc T. Howe, Brandon Hash, Juliana R. Liebrecht, Nicholas Zschack, Paul Johnson, David C. TI Synthesis of a family of {[(VSe2)(n)](1.06)(TaSe2)(m)}(z) compounds SO CHEMISTRY OF MATERIALS LA English DT Article ID TRANSITION-METAL DICHALCOGENIDES; PULSED-LASER DEPOSITION; CHARGE-DENSITY WAVES; X-RAY-DIFFRACTION; EPITAXIAL-GROWTH; THIN-FILMS; SUPERLATTICES; CRYSTALS; TEMPERATURE AB The first sixteen members of the {[(VSe2)(n)](1.06)(TaSe2)(m)}(z) family of compounds where n and m were varied from 1 to 4 were synthesized by annealing preconfigured reactants. The factor of 1.06 originates from the ab-plane lattice mismatch of VSe2 and TaSe2, reflecting the non-epitaxial structural relationship between the components. Each individual compound was addressed by sequentially depositing n layers of alternating elemental V and Se followed by m layers of alternating elemental Ta and Se in which the thickness of each pair of elemental layers was calibrated to yield a single-crystalline layer of the metal diselenide on annealing at low temperature for a short time. The structural changes during the transformation from initial reactant to crystalline superstructure are followed using X-ray diffraction. The structure of these nanoscale superstructures consist of an integral number of VSe2 and TaSe2 layers with minimal cation mixing between the layers. Electrical measurements show that all of the members of this family are metallic. C1 Univ Oregon, Inst Mat Sci, Eugene, OR 97403 USA. Univ Oregon, Dept Chem, Eugene, OR 97403 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Johnson, DC (reprint author), Univ Oregon, Inst Mat Sci, Eugene, OR 97403 USA. EM Davej@uoregon.edu NR 42 TC 9 Z9 9 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD APR 17 PY 2007 VL 19 IS 8 BP 1923 EP 1930 DI 10.1021/cm062509k PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 155AI UT WOS:000245549500010 ER PT J AU Boyle, TJ Hernandez-Sanchez, BA Baros, CM Brewer, LN Rodriguez, MA AF Boyle, Timothy J. Hernandez-Sanchez, Bernadette A. Baros, Christina M. Brewer, Luke N. Rodriguez, Mark A. TI Influencing the morphology and phase of calcium ceramic nanoparticles based on the calcium alkoxide precursors' characteristics SO CHEMISTRY OF MATERIALS LA English DT Article ID RING-OPENING POLYMERIZATION; RAY CRYSTAL-STRUCTURES; THIN-FILMS; COMPLEXES; VATERITE; BARIUM; ARYLOXIDES; LIGANDS; FAMILY; GROWTH AB Select members of a series of structurally characterized calcium aryloxides (Ca(OAr)(2)) were found to influence the morphologies and phases of the final calcium ceramic nanomaterials produced, independent of the process route investigated. The Ca(OAr)(2) were synthesized using an amide alcohol exchange route between [Ca(mu-NR2)(NR2)](2) (R = Si(CH3)(3)) and the appropriate aryl alcohol [H-OAr = H-OC6H4(R)-2 where R = CH(CH3)(2) (H-oPP), C(CH3)(3) (H-oBP); H-OC6H3(R)(2)-2,6 where R = CH3 (H-DMP), CH(CH3)(2) (H-DIP), and C(CH3)(3) (H-DBP)] along with triphenyl silanol (H-TPS = OSi(C6H5)(3)], in toluene (tol) or tetrahydrofuran (THF). The resulting products were isolated as H+[(mu(3)-O)Ca-2(mu-oPP)(2)(oPP)(THF)(3)](2)center dot THF](-) (1), Ca(oBP)(2)(THF)(4) (2), H+[(mu(3)-O)Ca-2(mu-DMP)(2)(DMP)(THF)(3)](2)(-) (3), {2[Ca(DIP)(2)(THF)(3)]center dot Ca(DIP)(2)(THF)(4)}center dot THF (4a), [Ca(mu-DIP)(DIP)(THF)(2)](2) (4b), Ca(DBP)(2)(THF)(3) (5), [Ca(mu-DBP)(DBP)](2) (6), and Ca(TPS)(2)(THF)(4) (7). The coordination of the Ca atoms ranged from trigonal planar to octahedral, forming mono-, di-, and tetranuclear species based on the steric bulk of the ligand and coordination of Lewis basic THF. Solution NMR indicated that these compounds retain their structure in solution, except for 5, which was found to be disrupted to form a monomer. Vaterite or portlandite nanomaterials were isolated from 3 or 4a, respectively, independent of the processing route (solvothermal or solution precipitation). The morphology variations were interpreted based on the "precursor structure argument", and the phase variation was attributed to the "precursor's decomposition pathway". Full details of the synthesis and characterization of 1-7 as well as the nanomaterials generated therefrom are discussed. C1 Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. RP Boyle, TJ (reprint author), Sandia Natl Labs, Adv Mat Lab, 1001 Univ Blvd SE, Albuquerque, NM 87106 USA. EM tjboyle@Sandia.gov NR 50 TC 22 Z9 22 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD APR 17 PY 2007 VL 19 IS 8 BP 2016 EP 2026 DI 10.1021/cm0700091 PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 155AI UT WOS:000245549500022 ER PT J AU Sun, Y Zhang, LH Zhou, HW Zhu, YM Sutter, E Ji, Y Rafailovich, MH Sokolov, JC AF Sun, Yuan Zhang, Lihua Zhou, Hongwen Zhu, Yimei Sutter, Eli Ji, Yuan Rafailovich, Miriam H. Sokolov, Jonathan C. TI Seedless and templateless synthesis of rectangular palladium nanoparticles SO CHEMISTRY OF MATERIALS LA English DT Article ID ENHANCED RAMAN-SCATTERING; WET CHEMICAL SYNTHESIS; GOLD NANORODS; ASPECT-RATIO; AQUEOUS-SOLUTION; SURFACE; SHAPE; TRANSITION; SIZE; PARTICLES AB Highly crystalline rectangular palladium nanoparticles have been successfully synthesized via the reduction of K2PdCl4 by ascorbic acid in the presence of a surfactant, cetyltrimethylammonium bromide, under room temperature and trisodium citrate is a key factor for high yield of nanocubes and nanorods. The average length and aspect ratio of the nanorods can be tuned by varying the concentration of trisodium citrate. These rectangular nanoparticles were stable for months as colloids. However, after exposure to air for about 100 days, the dry nanoparticles on TEM grids were oxidized to form shells of 1.6-3.8 nm thick covering the nanoparticle surfaces. C1 SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. RP Rafailovich, MH (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. EM mrafailovich@notes.cc.sunysb.edu RI Ji, Yuan/A-6180-2010; Sun, Yuan/B-2250-2010; Zhang, Lihua/F-4502-2014 NR 40 TC 76 Z9 77 U1 3 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD APR 17 PY 2007 VL 19 IS 8 BP 2065 EP 2070 DI 10.1021/cm0623209 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 155AI UT WOS:000245549500027 ER PT J AU Larroux, C Fahey, B Degnan, SM Adamski, M Rokhsar, DS Degnan, BM AF Larroux, Claire Fahey, Bryony Degnan, Sandie M. Adamski, Marcin Rokhsar, Daniel S. Degnan, Bernard M. TI The NK homeobox gene cluster predates the origin of Hox genes SO CURRENT BIOLOGY LA English DT Article ID ANTP-CLASS; SEA-ANEMONE; EVOLUTION; SPONGE; MULTICELLULARITY; DIVERSIFICATION; EXPRESSION; DEMOSPONGE; PHYLOGENY; AMPHIOXUS AB Hox and other Antennapedia (ANTP)-like homeobox gene subclasses-ParaHox, EHGbox, and NK-likecontribute to key developmental events in bilaterians [1-4]. Evidence of physical clustering of ANTP genes in multiple animal genomes [4-9] suggests that all four subclasses arose via sequential cis-duplication events. Here, we show that Hox genes'origin occurred after the divergence of sponge and eumetazoan lineages and occurred concomitantly with a major evolutionary transition in animal body-plan complexity. By using whole genome information from the demosponge Amphimedon queenslandica, we provide the first conclusive evidence that the earliest metazoans possessed multiple NK-like genes but no Hox, ParaHox, or EHGbox genes. Six of the eight NK-like genes present in the Amphimedon genome are clustered within 71 kb in an order akin to bilaterian NK clusters. We infer that the NK cluster in the last common ancestor to sponges, cnidarians, and bilaterians consisted of at least five genes. It appears that the ProtoHox gene originated from within this ancestral cluster after the divergence of sponge and eumetazoan lineages. The maintenance of the NK cluster in sponges and bilaterians for greater than 550 million years is likely to reflect regulatory constraints inherent to the organization of this ancient cluster. C1 Univ Queensland, Sch Integrat Biol, Brisbane, Qld 4072, Australia. DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. Univ Calif Berkeley, Ctr Integrat Genom, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Degnan, BM (reprint author), Univ Queensland, Sch Integrat Biol, Brisbane, Qld 4072, Australia. EM b.degnan@uq.edu.au OI Degnan, Sandie/0000-0001-8003-0426 NR 29 TC 90 Z9 91 U1 3 U2 5 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0960-9822 J9 CURR BIOL JI Curr. Biol. PD APR 17 PY 2007 VL 17 IS 8 BP 706 EP 710 DI 10.1016/j.cub.2007.03.008 PG 5 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 159KG UT WOS:000245864000027 PM 17379523 ER PT J AU de Koning, CA Gosling, JT Skoug, RM Steinberg, JT AF de Koning, C. A. Gosling, J. T. Skoug, R. M. Steinberg, J. T. TI Energy dependence of electron pitch angle distribution widths in solar bursts SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID VELOCITY DISTRIBUTION-FUNCTIONS; HELIOS PLASMA-EXPERIMENT; WIND SPACECRAFT; DISSIPATION RANGE; STRAHL; RADIO; WAVES; DYNAMICS; EVENTS AB [1] Solar activity regularly produces suprathermal electron bursts at energies below 1.4 keV. At 1 AU, these bursts have been detected at energies as low as 73 eV. The characteristics of such bursts vary considerably from event to event due in part to the physical processes involved in their propagation to Earth. In 2002, Advanced Composition Explorer/ Solar Wind Electron Proton Alpha Monitor (ACE/SWEPAM) observed 101 solar electron bursts at energies below 1.4 keV, 40 of which exhibited broader pitch angle distributions than the preburst strahl. In general, the width of the pitch angle distribution from 73 to 1370 eV is a function of energy. In similar to 65% of the events the pitch angle distribution width increased with energy during the burst, in similar to 10% of the events it decreased with energy, and similar to 25% of the cases demonstrated no clear energy dependence. The delay time between the onset of the burst and the onset of pitch angle distribution broadening also showed energy dependence. At 987 eV broadening almost always occurred after onset of the burst; however, at energies less than 519 eV broadening of the pitch angle distribution sometimes preceded the burst onset. Although energy dispersion was observed in the burst onset times, several events revealed nearly simultaneous broadening over an extended range of energies, in one case from 197 to 1370 eV. Broadening of the pitch angle distribution function during solar electron bursts almost certainly results from wave-particle scattering. Scattering, in turn, should depend on solar wind plasma and magnetic field conditions. Nevertheless, we were not able to find any general statistical correlations between ACE plasma and magnetic field parameters and the burst pitch angle distribution width. Because ACE measurements are inherently local, whereas scattering can occur anywhere between the Sun and Earth, we also examined five bursts that we infer underwent relatively local scattering. These bursts exhibited maximum pitch angle distribution widths greater than 75 degrees. Even these special cases failed to manifest any correlation with local plasma or magnetic field measurements. C1 NOAA, Space Environm Ctr, Boulder, CO 80305 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. RP de Koning, CA (reprint author), NOAA, Space Environm Ctr, Mail Code W-NP9,325 Broadway, Boulder, CO 80305 USA. EM curt.a.dekoning@noaa.gov NR 27 TC 8 Z9 8 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 17 PY 2007 VL 112 IS A4 AR A04101 DI 10.1029/2006JA011971 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 160PA UT WOS:000245953600001 ER PT J AU Park, HW Sohn, H Law, KH Farrar, CR AF Park, Hyun Woo Sohn, Hoon Law, Kincho H. Farrar, Charles R. TI Time reversal active sensing for health monitoring of a composite plate SO JOURNAL OF SOUND AND VIBRATION LA English DT Article ID LAMB WAVES AB The applicability of a time reversal concept in modern acoustics to structural health monitoring was investigated. The time reversal method has been adapted to guided-wave propagation to improve the detectability of local defects in composite plate structures. Specifically, a wavelet-based signal processing technique has been developed to enhance the time reversibility of Lamb wave in thin composite plates. The validity of the proposed method is demonstrated through experimental studies in which input signals exerted at piezoelectric (PZT) patches on a quasi-isotropic composite plate are successfully reconstructed by using the time reversal method. The ultimate goal of this study is to develop a reference-free damage diagnosis technique based on the time reversal process so that defects can be identified without relying on any past baseline data. (c) 2006 Elsevier Ltd. All rights reserved. C1 Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA. Seoul Natl Univ, Korea Bridge Design & Engn Res Ctr, Seoul 151, South Korea. Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. Los Alamos Natl Lab, Engn Sci & Applicat Div, Los Alamos, NM 87545 USA. RP Sohn, H (reprint author), Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA. EM hsohn@cmu.edu RI Sohn, Hoon/A-9406-2008; Farrar, Charles/C-6954-2012; OI Farrar, Charles/0000-0001-6533-6996 NR 25 TC 140 Z9 152 U1 3 U2 27 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-460X J9 J SOUND VIB JI J. Sound Vibr. PD APR 17 PY 2007 VL 302 IS 1-2 BP 50 EP 66 DI 10.1016/j.jsv.2006.10.044 PG 17 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA 142KV UT WOS:000244649400004 ER PT J AU Hald, OH Stinis, P AF Hald, Ole H. Stinis, Panagiotis TI Optimal prediction and the rate of decay for solutions of the Euler equations in two and three dimensions SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE dimensional reduction; finite time singularity ID ISOTROPIC TURBULENCE; MODEL AB The "t-model" for dimensional reduction is applied to the estimation of the rate of decay of solutions of the Burgers equation and of the Euler equations in two and three space dimensions. The model was first derived in a statistical mechanics context, but here we analyze it purely as a numerical tool and prove its convergence. In the Burgers case, the model captures the rate of decay exactly, as was previously shown. For the Euler equations in two space dimensions, the model preserves energy as it should. In three dimensions, we find a power law decay in time and observe a temporal intermittency. C1 Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Hald, OH (reprint author), Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA. EM hald@math.berkeley.edu NR 26 TC 14 Z9 15 U1 0 U2 2 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 17 PY 2007 VL 104 IS 16 BP 6527 EP 6532 DI 10.1073/pnas.0700084104 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 159ME UT WOS:000245869200009 PM 17428921 ER PT J AU Bala, G Caldeira, K Wickett, M Phillips, TJ Lobell, DB Delire, C Mirin, A AF Bala, G. Caldeira, K. Wickett, M. Phillips, T. J. Lobell, D. B. Delire, C. Mirin, A. TI Combined climate and carbon-cycle effects of large-scale deforestation SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE afforestation; albedo change; climate change; global warming; climate policy ID LAND-COVER CHANGE; GLOBAL CLIMATE; AMAZONIAN DEFORESTATION; TROPICAL DEFORESTATION; REGIONAL CLIMATE; COUPLED CLIMATE; DESERT WORLD; GREEN PLANET; VEGETATION; MODEL AB The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO2 to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These simulations were performed by using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, because the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. Although these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate. C1 Carnegie Inst Washington, Dept Global Ecol, Stanford, CA 94305 USA. Univ Montpellier 2, F-34095 Montpellier 5, France. RP Bala, G (reprint author), Lawrence Livermore Natl Lab, Energy & Environm Directorate, Livermore, CA 94550 USA. EM bala@lfnl.gov RI Caldeira, Ken/E-7914-2011 NR 34 TC 359 Z9 370 U1 36 U2 179 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 17 PY 2007 VL 104 IS 16 BP 6550 EP 6555 DI 10.1073/pnas.0608998104 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 159ME UT WOS:000245869200013 PM 17420463 ER PT J AU Sornette, D Davis, AB Ide, K Vixie, KR Pisarenko, V Kamm, JR AF Sornette, D. Davis, A. B. Ide, K. Vixie, K. R. Pisarenko, V. Kamm, J. R. TI Algorithm for model validation: Theory and applications SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article ID ISOLATION PILOT-PLANT; PERFORMANCE ASSESSMENT; VERIFICATION; UNCERTAINTY; SCIENCE AB Validation is often defined as the process of determining the degree to which a model is an accurate representation of the real world from the perspective of its intended uses. Validation is crucial as industries and governments depend increasingly on predictions by computer models to justify their decisions. We propose to formulate the validation of a given model as an iterative construction process that mimics the often implicit process occurring in the minds of scientists. We offer a formal representation of the progressive build-up of trust in the model. Thus, we replace static claims on the impossibility of validating a given model by a dynamic process of constructive approximation. This approach is better adapted to the fuzzy, coarse-grained nature of validation. Our procedure factors in the degree of redundancy versus novelty of the experiments used for validation as well as the degree to which the model predicts the observations. We illustrate the methodology first with the maturation of quantum mechanics as the arguably best established physics theory and then with several concrete examples drawn from some of our primary scientific interests: a cellular automaton model for earthquakes, a multifractal random walk model for financial time series, an anomalous diffusion model for solar radiation transport in the cloudy atmosphere, and a computational fluid dynamics code for the Richtmyer-Meshkov instability. C1 Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. Univ Nice, UMR 6622, CNRS, Phys Mat Condensee Lab, F-06108 Nice 2, France. Los Alamos Natl Lab, Space & Remote Sensing Grp ISR2, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Math Modeling & Anal Grp T7, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Appl Sci & Methods Dev Grp X1, Los Alamos, NM 87545 USA. Russian Acad Sci, Int Inst Earthquake Predict Theory & Math Geophys, Moscow 113556, Russia. RP Sornette, D (reprint author), ETH, Dept Management Technol & Econ, CH-8032 Zurich, Switzerland. EM dsornette@ethz.ch RI Ide, Kayo/F-8443-2010 NR 46 TC 27 Z9 28 U1 2 U2 14 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 17 PY 2007 VL 104 IS 16 BP 6562 EP 6567 DI 10.1073/pnas.0611677104 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 159ME UT WOS:000245869200015 PM 17420476 ER PT J AU Prozorov, T Mallapragada, SK Narasimhan, B Wang, LJ Palo, P Nilsen-Hamilton, M Williams, TJ Bazylinski, DA Prozorov, R Canfield, PC AF Prozorov, Tanya Mallapragada, Surya K. Narasimhan, Balaji Wang, Lijun Palo, Pierre Nilsen-Hamilton, Marit Williams, Timothy J. Bazylinski, Dennis A. Prozorov, Ruslan Canfield, Paul C. TI Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID MAGNETOTACTIC BACTERIA; BIOMAGNETIC NANOPARTICLE; MAGNETOSOMES; PARTICLES; BIOMEDICINE; RELAXATION AB Magnetite nanocrystals are synthesized in the presence of a recombinant Mms6 protein thought to be involved in the biomineralization of bacterial magnetite magnetosomes, the mammalian iron-storage protein, ferritin, and two proteins not known to bind iron, lipocalin (Lcn2) and bovine serum albumin (BSA). To mimic the conditions at which magnetite nanocrystals are formed in magnetotactic bacteria, magnetite synthesis is performed in a polymeric gel to slow down the diffusion rates of the reagents. Recombinant Mms6 facilitates formation of ca. 30 run single-domain,. uniform magnetite nanocrystals in solution, as verified by using transmission electron microscopy analysis and magnetization measurements. The nanocrystals formed in the presence of ferritin, Lcn2, and BSA, do not exhibit the uniform sizes and shapes observed for those produced in the presence of Mms6. Mms6-derived magnetite nanoparticles show the largest magnetization values above the blocking temperature, as well as the largest magnetic susceptibility compared to those of the nanomaterials synthesized with other proteins. The latter is indicative of a substantial effective magnetic moment per particle, which is consistent with the presence of magnetite with a well-defined crystalline structure. The combination of electron microscopy analysis and magnetic measurements confirms our hypothesis that Mms6 promotes the shape-selective formation of uniform superparamagnetic nanocrystals. This provides a unique bioinspired route for synthesis of uniform magnetite nanocrystals. C1 Iowa State Univ, Dept Biol & Chem Engn, Ames, IA 50011 USA. Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Mallapragada, SK (reprint author), Iowa State Univ, Dept Biol & Chem Engn, Ames, IA 50011 USA. EM suryakm@iastate.edu; nbalaji@iastate.edu RI Prozorov, Ruslan/A-2487-2008; Mallapragada, Surya/F-9375-2012; Narasimhan, Balaji/A-5487-2008; Canfield, Paul/H-2698-2014 OI Prozorov, Ruslan/0000-0002-8088-6096; Narasimhan, Balaji/0000-0002-7955-5353; NR 42 TC 99 Z9 101 U1 5 U2 60 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD APR 16 PY 2007 VL 17 IS 6 BP 951 EP 957 DI 10.1002/adfm.200600448 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 166XL UT WOS:000246414100014 ER PT J AU Bartelt, AF Comin, A Feng, J Nasiatka, JR Eimuller, T Ludescher, B Schutz, G Padmore, HA Young, AT Scholl, A AF Bartelt, A. F. Comin, A. Feng, J. Nasiatka, J. R. Eimueller, T. Ludescher, B. Schuetz, G. Padmore, H. A. Young, A. T. Scholl, A. TI Element-specific spin and orbital momentum dynamics of Fe/Gd multilayers SO APPLIED PHYSICS LETTERS LA English DT Article ID MAGNETIZATION DYNAMICS; NICKEL; PHOTOEMISSION AB The role of orbital magnetism in the laser-induced demagnetization of Fe/Gd multilayers was investigated using time-resolved x-ray magnetic circular dichroism at 2 ps time resolution given by an x-ray streak camera. An ultrafast transfer of angular momentum from the spin via the orbital momentum to the lattice was observed which was characterized by rapidly thermalizing spin and orbital momenta. Strong interlayer exchange coupling between Fe and Gd led to a simultaneous demagnetization of both layers. C1 Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Ruhr Univ Bochum, Inst Expt Phys 4, D-44780 Bochum, Germany. Max Planck Inst Met Res, D-70569 Stuttgart, Germany. RP Bartelt, AF (reprint author), Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM afbartelt@lbl.gov; a_scholl@lbl.gov RI Comin, Alberto/A-3002-2011; Scholl, Andreas/K-4876-2012 OI Comin, Alberto/0000-0001-8744-3944; NR 17 TC 26 Z9 28 U1 0 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 16 PY 2007 VL 90 IS 16 AR 162503 DI 10.1063/1.2724911 PG 3 WC Physics, Applied SC Physics GA 159MP UT WOS:000245870400072 ER PT J AU DelRio, FW Dunn, ML Phinney, LM Bourdon, CJ De Boer, MP AF DelRio, Frank W. Dunn, Martin L. Phinney, Leslie M. Bourdon, Chris J. de Boer, Maarten P. TI Rough surface adhesion in the presence of capillary condensation SO APPLIED PHYSICS LETTERS LA English DT Article ID CONTACT; NANOPARTICLES; FORCES; FILMS AB Capillary condensation of water can have a significant effect on rough surface adhesion. To explore this phenomenon between micromachined surfaces, the authors perform microcantilever experiments as a function of surface roughness and relative humidity (RH). Below a threshold RH, the adhesion is mainly due to van der Waals forces across extensive noncontacting areas. Above the threshold RH, the adhesion jumps due to capillary condensation and increases towards the upper limit of Gamma = 144 mJ/m(2). A detailed model based on the measured surface topography qualitatively agrees with the experimental data only when the topographic correlations between the upper and lower surfaces are considered. (C) 2007 American Institute of Physics. C1 Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. Sandia Natl Labs, Microscale Sci & Technol Dept, Albuquerque, NM 87185 USA. Sandia Natl Labs, MEMS Core Technol Dept, Albuquerque, NM 87185 USA. RP DelRio, FW (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM fwdelrio@berkeley.edu RI de Boer, Maarten/C-1525-2013; OI de Boer, Maarten/0000-0003-1574-9324; DUNN, MARTIN/0000-0002-4531-9176 NR 28 TC 39 Z9 40 U1 1 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 16 PY 2007 VL 90 IS 16 AR 163104 DI 10.1063/1.2723658 PG 3 WC Physics, Applied SC Physics GA 159MP UT WOS:000245870400096 ER PT J AU Jones, RE Li, SX Haller, EE van Genuchten, HCM Yu, KM Ager, JW Liliental-Weber, Z Walukiewicz, W Lu, H Schaff, WJ AF Jones, R. E. Li, S. X. Haller, E. E. van Genuchten, H. C. M. Yu, K. M. Ager, J. W., III Liliental-Weber, Z. Walukiewicz, W. Lu, H. Schaff, W. J. TI High electron mobility InN SO APPLIED PHYSICS LETTERS LA English DT Article ID SEMICONDUCTORS AB Irradiation of InN films with 2 MeV He+ ions followed by thermal annealing below 500 degrees C creates films with high electron concentrations and mobilities, as well as strong photoluminescence. Calculations show that electron mobility in irradiated samples is limited by triply charged donor defects. Subsequent thermal annealing removes a fraction of the defects, decreasing the electron concentration. There is a large increase in electron mobility upon annealing; the mobilities approach those of the as-grown films, which have 10 to 100 times smaller electron concentrations. Spatial ordering of the triply charged defects is suggested to cause the unusual increase in electron mobility. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Cornell Univ, Dept Elect Engn & Comp Sci, Ithaca, NY 14853 USA. RP Jones, RE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM W_Walukiewicz@lbl.gov RI Liliental-Weber, Zuzanna/H-8006-2012; Yu, Kin Man/J-1399-2012; OI Yu, Kin Man/0000-0003-1350-9642; Ager, Joel/0000-0001-9334-9751 NR 9 TC 22 Z9 22 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 16 PY 2007 VL 90 IS 16 AR 162103 DI 10.1063/1.2722693 PG 3 WC Physics, Applied SC Physics GA 159MP UT WOS:000245870400057 ER PT J AU Sharp, ID Xu, Q Yuan, CW Beeman, JW Ager, JW Chrzan, DC Haller, EE AF Sharp, I. D. Xu, Q. Yuan, C. W. Beeman, J. W. Ager, J. W., III Chrzan, D. C. Haller, E. E. TI Kinetics of visible light photo-oxidation of Ge nanocrystals: Theory and in situ measurement SO APPLIED PHYSICS LETTERS LA English DT Article ID OXIDATION; SILICON AB Photo-oxidation of Ge nanocrystals illuminated with visible laser light under ambient conditions was investigated. The photo-oxidation kinetics were monitored by in situ measurement of the crystalline Ge volume fraction by Raman spectroscopy. The effects of laser power and energy on the extent of oxidation were measured using both in situ and ex situ Raman scattering techniques. A mechanistic model in which the tunneling of photoexcited carriers to the oxide surface for electron activated molecular oxygen dissociation is proposed. This quantitative model describes all experimental photo-oxidation observations using physical parameters. (c) 2007 American Institute of Physics. C1 Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Sharp, ID (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM eehaller@lbl.gov RI Sharp, Ian/I-6163-2015; OI Sharp, Ian/0000-0001-5238-7487; Ager, Joel/0000-0001-9334-9751 NR 11 TC 2 Z9 2 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 16 PY 2007 VL 90 IS 16 AR 163118 DI 10.1063/1.2724923 PG 3 WC Physics, Applied SC Physics GA 159MP UT WOS:000245870400110 ER PT J AU Wang, ZG Zu, XT Gao, F Weber, WJ Crocombette, JP AF Wang, Zhiguo Zu, Xiaotao Gao, Fei Weber, William J. Crocombette, Jean-Paul TI Atomistic simulation of the size and orientation dependences of thermal conductivity in GaN nanowires SO APPLIED PHYSICS LETTERS LA English DT Article ID NONEQUILIBRIUM MOLECULAR-DYNAMICS; LATTICE; NANOBELTS; DIOXIDE; ARRAYS AB The thermal conductivity of GaN nanowires has been determined computationally by applying nonequilibrium atomistic simulation methods using the Stillinger-Weber [Phys. Rev. B 31, 5262 (1985)] potentials. The simulation results show that the thermal conductivity of the GaN nanowires is smaller than that of a bulk crystal and increases with increasing diameter. Surface scattering of phonons and the high surface to volume ratios of the nanowires are primarily responsible for the reduced thermal conductivity and its size dependence behavior. The thermal conductivity is also found to decrease with increasing temperature and exhibits a dependence on axial orientation of the nanowires. C1 Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. Pacific NW Natl Lab, Richland, WA 99352 USA. CEA Saclay, DEN DMN SRMP, F-91991 Gif Sur Yvette, France. RP Wang, ZG (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM zgwang_dr@yahoo.com; xiaotaozu@yahoo.com; fei.gao@pnl.gov RI Weber, William/A-4177-2008; Crocombette, Jean-Paul/E-7681-2012; Gao, Fei/H-3045-2012; Wang, Zhiguo/B-7132-2009 OI Weber, William/0000-0002-9017-7365; Crocombette, Jean-Paul/0000-0001-9543-3973; NR 33 TC 30 Z9 30 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 16 PY 2007 VL 90 IS 16 AR 161923 DI 10.1063/1.2730747 PG 3 WC Physics, Applied SC Physics GA 159MP UT WOS:000245870400054 ER PT J AU Yakes, M Chen, J Hupalo, M Tringides, MC AF Yakes, M. Chen, J. Hupalo, M. Tringides, M. C. TI Unusual thermal stability of quantum size effect Pb islands grown on Si(111)-In(4x1) SO APPLIED PHYSICS LETTERS LA English DT Article AB Pb islands grown on the anisotropic Si(111)-In(4x1) were studied using scanning tunneling microscopy and spot profile analysis-low energy electron diffraction. Anisotropic wire shapes with a uniform island height of four layers due to quantum size effects are observed as well as a preferred width of 6.6 nm. Unlike islands grown on clean and Pb covered Si(111), Pb islands grown on the Si(111)-In(4x1) reconstructed surface maintain a height of four layers to room temperature. The increased temperature stability enhances the potential use of the grown structures for technological applications. (c) 2007 American Institute of Physics. C1 Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Yakes, M (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM tringides@ameslab.gov RI Yakes, Michael/E-5510-2011 NR 15 TC 3 Z9 3 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 16 PY 2007 VL 90 IS 16 AR 163117 DI 10.1063/1.2724910 PG 3 WC Physics, Applied SC Physics GA 159MP UT WOS:000245870400109 ER PT J AU Zhang, JZ Zhao, YS Xu, HW Li, BS Weidner, DJ Navrotsky, A AF Zhang, Jianzhong Zhao, Yusheng Xu, Hongwu Li, Baosheng Weidner, Donald J. Navrotsky, Alexandra TI Elastic properties of yttrium-doped BaCeO3 perovskite SO APPLIED PHYSICS LETTERS LA English DT Article ID COMPARATIVE COMPRESSIBILITIES; SILICATE PEROVSKITE; ALUMINUM; MANTLE; SUBSTITUTION; MECHANISM; EQUATION; CRYSTAL; PROTON; STATE AB Based on ambient ultrasonic measurements and x-ray diffraction under hydrostatic compression, the authors report here a comparative study of elasticity on oxygen-deficient perovskite, BaCe1-xYxO3-0.5x, with x=0.00 and 0.15. The results show that the presence of 2.5% oxygen vacancy has no measurable effect on the elastic bulk modulus. The shear modulus, however, decreases by approximately 5% in BaCe0.85Y0.15O2.925 perovskite. The differences between Y3+-doped cerate and Al3+-doped silicate suggest that the effect of oxygen vacancy on the elastic properties could be system dependent and may also be sensitive to distribution of oxygen vacancies within structures of the parent compounds. (c) 2007 American Institute of Physics. C1 Los Alamos Natl Lab, LANSCE Div, Los Alamos, NM 87545 USA. SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Zhang, JZ (reprint author), Los Alamos Natl Lab, LANSCE Div, POB 1663, Los Alamos, NM 87545 USA. EM jzhang@lanl.gov RI Lujan Center, LANL/G-4896-2012; Li, Baosheng/C-1813-2013; OI Xu, Hongwu/0000-0002-0793-6923; Zhang, Jianzhong/0000-0001-5508-1782 NR 22 TC 12 Z9 12 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 16 PY 2007 VL 90 IS 16 AR 161903 DI 10.1063/1.2723679 PG 3 WC Physics, Applied SC Physics GA 159MP UT WOS:000245870400034 ER PT J AU Zhang, WM Wang, YG Li, J Xue, JM Ji, H Ouyang, Q Xu, J Zhang, Y AF Zhang, W. M. Wang, Y. G. Li, J. Xue, J. M. Ji, H. Ouyang, Q. Xu, J. Zhang, Y. TI Controllable shrinking and shaping of silicon nitride nanopores under electron irradiation SO APPLIED PHYSICS LETTERS LA English DT Article ID SOLID-STATE NANOPORE; FABRICATION; ION; NANOSTRUCTURES; DEFORMATION; MOLECULES; DNA; NM AB Modification of silicon nitride nanopores under electron beam (e-beam) irradiation was investigated using a scanning electron microscope (SEM). Under e-beam irradiation, all pores with diameters ranging from 40 to 200 nm undergo shrinkage, and the shrinkage rate increases with the rate of energy deposition. By using the selected-area scanning tool in the SEM, the silicon nitride nanopores can be selectively reshaped based on localized e-beam irradiation, with a characteristic dimension smaller than 10 nm. A selected-area shaping technique was proposed to controllably shrink and shape the nanopores to a special structure. (C) 2007 American Institute of Physics. C1 Peking Univ, Key Lab Heavy Ion Phys, MOE, Beijing 100871, Peoples R China. Peking Univ, Ctr Microfluid & Nanotechnol, Beijing 100871, Peoples R China. Peking Univ, Electron Microscope Lab, Beijing 100871, Peoples R China. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, YG (reprint author), Peking Univ, Key Lab Heavy Ion Phys, MOE, Beijing 100871, Peoples R China. EM ygwang@pku.edu.cn RI JI, Hang/B-5490-2009 NR 25 TC 19 Z9 20 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 16 PY 2007 VL 90 IS 16 AR 163102 DI 10.1063/1.2723680 PG 3 WC Physics, Applied SC Physics GA 159MP UT WOS:000245870400094 ER PT J AU Beane, SR Orginos, K Savage, MJ AF Beane, Silas R. Orginos, Kostas Savage, Martin J. TI Strong-isospin violation in the neutron-proton mass difference from fully-dynamical lattice QCD and PQQCD SO NUCLEAR PHYSICS B LA English DT Article ID CHIRAL PERTURBATION-THEORY; BARYONS; BREAKING; PHYSICS; SCALE AB We determine the strong-isospin violating component of the neutron-proton mass difference from fully-dynamical lattice QCD and partially-quenched QCD calculations of the nucleon mass, constrained by partially-quenched chiral perturbation theory at one-loop level. The lattice calculations were performed with domain-wall valence quarks on MILC lattices with rooted staggered sea-quarks at a lattice spacing of b = 0.125 fm, lattice spatial size of L = 2.5 fm and pion masses ranging from m(pi) similar to 290 MeV to similar to 350 Mev. At the physical value of the pion mass, we predict M-n - M-p vertical bar(d-u) = 2.26 +/- 0.57 +/- 0.42 +/- 0.10 MeV where the first error is statistical, the second error is due to the uncertainty in the ratio of light-quark masses, eta = m(u)/m(d), determined by MILC [C. Aubin, et al., MILC Collaboration, Phys. Rev. D 70 (2004) 114501, hep-lat/0407028], and the third error is an estimate of the systematic due to chiral extrapolation. (c) 2007 Published by Elsevier B.V. C1 Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. Jefferson Lab, Newport News, VA 23606 USA. Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Beane, SR (reprint author), Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. EM silas@physics.unh.edu NR 43 TC 67 Z9 69 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 EI 1873-1562 J9 NUCL PHYS B JI Nucl. Phys. B PD APR 16 PY 2007 VL 768 IS 1-2 BP 38 EP 50 DI 10.1016/j.nuclphysb.2006.12.023 PG 13 WC Physics, Particles & Fields SC Physics GA 158BD UT WOS:000245765000003 ER PT J AU Heebner, JE Bond, TC Kallman, JS AF Heebner, J. E. Bond, T. C. Kallman, J. S. TI Generalized formulation for performance degradations due to bending and edge scattering loss in microdisk resonators SO OPTICS EXPRESS LA English DT Article ID WAVE-GUIDES; RAYLEIGH-SCATTERING; SILICON MICRODISKS; RING AB We present a generalized formulation for the treatment of both bending (whispering gallery) loss and scattering loss due to edge roughness in microdisk resonators. The results are applicable to microrings and related geometries. For thin disks with radii greater than the bend-loss limit, we find that the finesse limited by the scattering losses induced by edge roughness is independent of radii. While a strong lateral refractive index contrast is necessary to prevent bending losses, unless the radii are of the order of a few microns, lateral air-cladding is detrimental and only enhances scattering losses. The generalized formulation provides a framework for selecting the refractive index contrast that optimizes the finesse at a given radius. (c) 2007 Optical Society of America. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Heebner, JE (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM heebner1@llnl.gov RI Heebner, John/C-2411-2009 NR 13 TC 24 Z9 24 U1 0 U2 2 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD APR 16 PY 2007 VL 15 IS 8 BP 4452 EP 4473 DI 10.1364/OE.15.004452 PG 22 WC Optics SC Optics GA 158HN UT WOS:000245782500008 PM 19532693 ER PT J AU Kim, KY Glownia, JH Taylor, AJ Rodriguez, G AF Kim, K. Y. Glownia, J. H. Taylor, A. J. Rodriguez, G. TI Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields SO OPTICS EXPRESS LA English DT Article ID PULSES; IONIZATION; PHASE; SPECTROSCOPY; GENERATION; CURRENTS; WAVE AB A transient photocurrent model is developed to explain coherent terahertz emission from air irradiated by a symmetry-broken laser field composed of the fundamental and its second harmonic laser pulses. When the total laser field is asymmetric across individual optical cycles, a non-vanishing electron current surge can arise during optical field ionization of air, emitting a terahertz electromagnetic pulse. Terahertz power scalability is also investigated, and with optical pump energy of tens of millijoules per pulse, peak terahertz field strengths in excess of 150 kV/cm are routinely produced. (c) 2007 Optical Society of America. C1 Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Kim, KY (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM kykim@lanl.gov RI Rodriguez, George/G-7571-2012 OI Rodriguez, George/0000-0002-6044-9462 NR 20 TC 284 Z9 297 U1 4 U2 50 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD APR 16 PY 2007 VL 15 IS 8 BP 4577 EP 4584 DI 10.1364/OE.15.004577 PG 8 WC Optics SC Optics GA 158HN UT WOS:000245782500018 PM 19532704 ER PT J AU Liu, X Trebino, R Smith, AV AF Liu, Xuan Trebino, Rick Smith, Arlee V. TI Numerical simulations of ultrasimple ultrashort-laser-pulse measurement SO OPTICS EXPRESS LA English DT Article ID GRENOUILLE; DEVICE AB We numerically simulate the performance of the ultrasimple frequency-resolved-optical-gating ( FROG) technique, GRENOUILLE, for measuring ultrashort laser pulses. While simple in practice, GRENOUILLE has many theoretical subtleties because it involves the second-harmonic generation of relatively tightly focused and broadband pulses. In addition, these processes occur in a thick crystal, in which the phase-matching bandwidth is deliberately made narrow compared to the pulse bandwidth. In these simulations, we include all sum-frequency-generation processes, both collinear and noncollinear. We also include dispersion using the Sellmeier equation for the crystal BBO. Working in the frequency domain, we compute the GRENOUILLE trace for practical-and impractical examples and show that accurate measurements are easily obtained for properly designed devices. (c) 2007 Optical Society of America C1 Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Liu, X (reprint author), Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. EM xuan.liu@mail.gatech.edu NR 7 TC 1 Z9 2 U1 1 U2 9 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD APR 16 PY 2007 VL 15 IS 8 BP 4585 EP 4596 DI 10.1364/OE.15.004585 PG 12 WC Optics SC Optics GA 158HN UT WOS:000245782500019 PM 19532705 ER PT J AU Feve, JP Schrader, PE Farrow, RL Kliner, DAV AF Feve, Jean-Philippe Schrader, Paul E. Farrow, Roger L. Kliner, Dahv A. V. TI Four-wave mixing in nanosecond pulsed fiber amplifiers SO OPTICS EXPRESS LA English DT Article ID PARAMETRIC FREQUENCY-CONVERSION; SINGLE-MODE OPERATION; PEAK-POWER; BIREFRINGENT FIBERS; OPTICAL-FIBERS; DOPED FIBER; RAMAN AMPLIFICATION; HIGH-ENERGY; GENERATION; SUPERCONTINUUM AB We present an experimental and theoretical analysis of four-wave mixing in nanosecond pulsed amplifiers based on double-clad ytterbium-doped fibers. This process leads to saturation of the amplified pulse energy at 1064 nm and to distortion of the spectral and temporal profiles. These behaviours are well described by a simple model considering both Raman and four-wave-mixing contributions. The role of seed laser polarization in birefringent fibers is also presented. These results point out the critical parameters and possible tradeoffs for optimization. (c) 2007 Optical Society of America C1 Teem Photon, F-38246 Meylan, France. Sandia Natl Labs, Livermore, CA 94551 USA. RP Feve, JP (reprint author), JDSU Laser Prod Grp, 430 N McCarthy Blvd, Milpitas, CA 95035 USA. EM jean-philippe.feve@jdsu.com; farrow@sandia.gov NR 33 TC 17 Z9 17 U1 0 U2 9 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD APR 16 PY 2007 VL 15 IS 8 BP 4647 EP 4662 DI 10.1364/OE.15.004647 PG 16 WC Optics SC Optics GA 158HN UT WOS:000245782500024 PM 19532710 ER PT J AU Baker, KL Moallem, MM AF Baker, K. L. Moallem, M. M. TI Iteratively weighted centroiding for Shack-Hartmann wave-front sensors SO OPTICS EXPRESS LA English DT Article ID ADAPTIVE OPTICS; DEMODULATION; REGISTRATION; DENSITY AB Several techniques have been used with Shack-Hartmann wave-front sensors to determine the local wave-front gradient across each lenslet. In this article we introduce an iterative weighted technique which is specifically targeted for open-loop applications such as aberrometers and metrology. In this article the iterative centroiding technique is compared to existing techniques such as center-of-mass with thresholding, weighted center-of-gravity, matched filter and cross-correlation. Under conditions of low signal-to-noise ratio, the iterative weighted centroiding algorithm is demonstrated to produce a lower variance in the reconstructed phase than existing techniques. The iteratively weighted algorithm was also compared in closed-loop and demonstrated to have the lowest error variance along with the weighted center-of-gravity, however, the iteratively weighted algorithm removes the bulk of the aberration in roughly half the iterations than the weighted center-of-gravity algorithm. This iterative weighted algorithm is also well suited to applications such as guiding on telescopes. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. KM Optix, Fremont, CA USA. RP Baker, KL (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM Baker7@llnl.gov; MmoallemOD@yahoo.com NR 24 TC 44 Z9 52 U1 0 U2 5 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD APR 16 PY 2007 VL 15 IS 8 BP 5147 EP 5159 DI 10.1364/OE.15.005147 PG 13 WC Optics SC Optics GA 158HN UT WOS:000245782500078 PM 19532765 ER PT J AU Kocharian, AN Fernando, GW Wang, T Palandage, K Davenport, JW AF Kocharian, A. N. Fernando, G. W. Wang, T. Palandage, K. Davenport, J. W. TI Exact thermodynamics of pairing and charge-spin separation crossovers in small Hubbard nanoclusters SO PHYSICS LETTERS A LA English DT Article DE charge-spin separation; Mott-Hubbard gap; pairing; crossover; spin pseudogap ID HIGH-TEMPERATURE SUPERCONDUCTORS; CUPRATE SUPERCONDUCTORS; PHASE-DIAGRAM; MODEL; FERROMAGNETISM; TRANSITION; BAND; REEXAMINATION; EXISTENCE; ABSENCE AB The exact numerical diagonalization and thermodynamics in an ensemble of small Hubbard clusters in the ground state and finite temperatures reveal intriguing insights into the nascent charge and spin pairings, Bose condensation and ferromagnetism in nanoclusters. The phase diagram off half filling strongly suggests the existence of quantum critical points and subsequent transitions from electron pairing into unsaturated and saturated ferromagnetic Mott-Hubbard like insulators, driven by electron repulsion. Rigorous criteria for the existence of quantum critical points and crossover temperatures are formulated. The phase diagram for 2 x 4-site clusters illustrates how these features are scaled with cluster size. The phase separation and electron pairing, monitored by a magnetic field and electron doping, surprisingly resemble phase diagrams in the family of doped high-T-c cuprates. (c) 2007 Elsevier B.V. All rights reserved. C1 Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA. Santa Monica Coll, Santa Monica, CA 90405 USA. Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. IFS, Kandy, Sri Lanka. Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. RP Kocharian, AN (reprint author), Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA. EM armen.n.kocharian@csun.edu NR 47 TC 14 Z9 14 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 J9 PHYS LETT A JI Phys. Lett. A PD APR 16 PY 2007 VL 364 IS 1 BP 57 EP 65 DI 10.1016/j.physleta.2006.12.076 PG 9 WC Physics, Multidisciplinary SC Physics GA 160SH UT WOS:000245962100010 ER PT J AU Gritti, F Guiochon, G AF Gritti, Fabrice Guiochon, Georges TI Application of the general height equivalent to a theoretical plate equation to size exclusion chromatography. Study of the mass transfer of high-molecular-mass compounds in liquid chromatography SO ANALYTICAL CHEMISTRY LA English DT Article ID DIFFUSION COEFFICIENTS; PARTICLES AB The mass transfer of nonretained, high-molecular-weight polystyrene standards in a chromatographic column packed with 4-mu m-diameter silica particles for SEC (average pore size 80 angstrom) and eluted with tetrahydrofuran was investigated. The HETPs of nine polystyrene standards (MW 560, 760, 1780, 3680, 6400, 13 200, 19 300, 31 600, and 90 000) and of ethylbenzene were measured by the method of moments. These HETPs were accounted for by a general HETP equation previously derived for the mass transfer of low-molecular-weight compounds in RPLC (Gritti, F.; Guiochon, G. Anal. Chem.2006, 78, 5329.). The best fit between the experimental and the theoretical HETPs allowed the estimation of the internal restricted diffusion coefficients of the polymers. The internal diffusion coefficients of the polystyrene standards were also measured, using the peak parking method. Both methods give comparable results and show that the restriction diffusion coefficient gamma K-p(D) decreases linearly with increasing logarithm of the polymer mass, from 0.56 for Log MW = 2.0 to 0 for Log MW = 4.8. Interestingly, the C term or limit slope of the high-velocity branch of the HETP curve passes through a maximum (highest mass-transfer resistance) for a polymer mass of 10 kDa. This maximum is well accounted for by the theoretical expression of the trans-particle mass-transfer contribution. C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Guiochon, G (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM guiochon@utk.edu NR 16 TC 24 Z9 24 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD APR 15 PY 2007 VL 79 IS 8 BP 3188 EP 3198 DI 10.1021/ac0623742 PG 11 WC Chemistry, Analytical SC Chemistry GA 156RW UT WOS:000245667900021 PM 17352457 ER PT J AU Ramana, CV Atuchin, VV Kesler, VG Kochubey, VA Pokrovsky, LD Shutthanandan, V Becker, U Ewing, RC AF Ramana, C. V. Atuchin, V. V. Kesler, V. G. Kochubey, V. A. Pokrovsky, L. D. Shutthanandan, V. Becker, U. Ewing, R. C. TI Growth and surface characterization of sputter-deposited molybdenum oxide thin films SO APPLIED SURFACE SCIENCE LA English DT Article DE MoO3 thin films; sputter deposition; substrate temperature; oxygen pressure; growth; microstructure ID RAY PHOTOELECTRON-SPECTROSCOPY; ELECTRONIC-STRUCTURE; MOO3 FILMS; SOL-GEL; CARBON; ROUTE; XPS AB Molybdenum oxide thin films were produced by magnetron sputtering using a molybdenum (Mo) target. The sputtering was performed in a reactive atmosphere of an argon-oxygen gas mixture under varying conditions of substrate temperature (T-s) and oxygen partial pressure (pO(2)). The effect of T-s and pO(2) on the growth and microstructure of molybdenum oxide films was examined in detail using reflection high-energy electron diffraction (RHEED), Rutherford backscattering spectrometry (RBS), energy-dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) measurements. The analyses indicate that the effect of T-s and pO(2) on the microstructure and phase of the grown molybdenum oxide thin films is remarkable. RHEED and RBS results indicate that the films grown at 445 degrees C under 62.3% O-2 pressure were stoichiometric and polycrystalline MoO3. Films grown at lower pO(2) were non-stoichiometric MoOx films with the presence of secondary phase. The microstructure of the grown Mo oxide films is discussed and conditions were optimized to produce phase pure, stoichiometric, and highly textured polycrystalline MoO3 films. (C) 2006 Elsevier B.V. All rights reserved. C1 Univ Michigan, Dept Geol Sci, Nanosci & Surface Chem Lab, Ann Arbor, MI 48109 USA. Russian Acad Sci, SB, Inst Semicond Phys, Lab Opt Mat & Struct, Novosibirsk 630090, Russia. Russian Acad Sci, SB, Inst Semicond Phys, Ctr Tech, Novosibirsk 630090, Russia. Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Ramana, CV (reprint author), Univ Michigan, Dept Geol Sci, Nanosci & Surface Chem Lab, 1006 CC Little Bldg, Ann Arbor, MI 48109 USA. EM ramanacv@umich.edu RI Becker, Udo/F-7339-2011 OI Becker, Udo/0000-0002-1550-0484 NR 33 TC 64 Z9 69 U1 4 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD APR 15 PY 2007 VL 253 IS 12 BP 5368 EP 5374 DI 10.1016/j.apsusc.2006.12.012 PG 7 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 162MW UT WOS:000246092900031 ER PT J AU Icopini, GA Boukhalfa, H Neu, MP AF Icopini, Gary A. Boukhalfa, Hakim Neu, Mary P. TI Biological reduction of Np(V) and Np(V) citrate by metal-reducing bacteria SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID DISSIMILATORY REDUCTION; DEINOCOCCUS-RADIODURANS; ELECTRON-TRANSFER; NEPTUNIUM(V); FE(III); IRON; BIOREMEDIATION; MICROORGANISMS; TOXICITY; ACTINIDE AB Oxidized actinide species are often more mobile than reduced forms. Bioremediation strategies have been developed to exploit this chemistry and stabilize actinides in subsurface environments. We investigated the ability of metal-reducing bacteria Gecibacter metalfireducens and Shewanella oneidensis to enzymatically reduce Np(V) and Np(V) citrate, as well as the toxicity of Np(V) to these organisms. A toxic effect was observed for both bacteria at concentrations of AO mM Np(V) citrate. Below 2.0 mM Np(V) citrate, no toxic effect was observed and both Fe(III) and Np(V) were reduced. Cell suspensions of S. oneidensiswere ableto enzymatically reduce unchelated Np(V) to insoluble Np(IV)((s)), but cell suspensions of G. metalfireducens were unable to reduce Np(V). The addition of citrate enhanced the Np(V) reduction rate by S. oneidensisand enabled Np(V) reduction by 6. metallireducens. The reduced form of neptunium remained soluble, presumably as a polycitrate complex. Growth was not observed for either organism when Np(V) or Np(V) citrate was provided as the sole terminal electron acceptor, Our results show that bacteria can enzymatically reduce Np(V) and Np(V) citrate, but that the immobilization of Np(IV) may be dependent on the abundance of complexing ligands. C1 Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Neu, MP (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM mneu@lanl.gov NR 30 TC 25 Z9 25 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD APR 15 PY 2007 VL 41 IS 8 BP 2764 EP 2769 DI 10.1021/es0618550 PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 159UK UT WOS:000245892900025 PM 17533836 ER PT J AU Allen, BP Sharitz, RR Goebel, PC AF Allen, Bruce P. Sharitz, Rebecca R. Goebel, P. Charles TI Are lianas increasing in importance in temperate floodplain forests in the southeastern United States? SO FOREST ECOLOGY AND MANAGEMENT LA English DT Article; Proceedings Paper CT 90th Annual Meeting of the Ecological-Society-of-America/9th International Congress of Ecology CY AUG, 2005 CL Montreal, CANADA SP Ecol Soc Amer DE lianas; disturbance; old-growth; forest development patterns ID SOUTH-CAROLINA; BOTTOMLAND; HURRICANE; DYNAMICS; PATTERNS; DAMAGE AB Floodplain forests of the southeastern United States are species rich, often with a dense and diverse liana community. Long-term trends in the density and distribution of lianas may indicate shifts in the composition of plant functional types in these forests. Liana communities in non-fragmented forests in Panama and across the Neotropics have increased in size and density over the last two decades of the 20th century. Are similar changes occurring in temperate forests? Evidence from long-term studies of liana communities in two floodplain forests in South Carolina support the findings from tropical forests. In second-growth forests of the Savannah River system, data from five 1-ha plots established in 1979 and monitored for 22 years indicate a steady increase in liana size and density. Likewise, in old-growth floodplain forests of the Congaree National Park, liana density has increased over 12 years in six 1-ha plots after Hurricane Hugo disturbed the forests in 1989. The increase in liana density and size in these floodplain forests of the southeastern United States is of sufficient magnitude to suggest that lianas are likely influencing stand dynamics in these forests. Consequently, we argue that lianas should be included in models of temperate bottomland forest development of the southeastern United States. (c) 2007 Elsevier B.V. All rights reserved. C1 Ohio State Univ, Sch Environm & Nat Resources, Columbus, OH 43210 USA. Savannah River Ecol Lab, Aiken, SC 29802 USA. Ohio State Univ, Sch Environm & Nat Resources, Ohio Agr Res & Dev Ctr, Wooster, OH USA. RP Allen, BP (reprint author), 8192 Lakespring Dr, W Chester, OH 45069 USA. EM allen.851@osu.edu RI Goebel, Patrick/B-3657-2012 NR 31 TC 39 Z9 42 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-1127 J9 FOREST ECOL MANAG JI For. Ecol. Manage. PD APR 15 PY 2007 VL 242 IS 1 BP 17 EP 23 DI 10.1016/j.foreco.2007.01.027 PG 7 WC Forestry SC Forestry GA 156WV UT WOS:000245681500003 ER PT J AU Catalano, JG Zhang, Z Park, CY Fenter, P Bedzyk, MJ AF Catalano, Jeffrey G. Zhang, Zhan Park, Changyong Fenter, Paul Bedzyk, Michael J. TI Bridging arsenate surface complexes on the hematite (012) surface SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; ACID-MINE DRAINAGE; CHROMATE RETENTION MECHANISMS; STANDING WAVE ANALYSIS; ADVANCED PHOTON SOURCE; OXIDE-WATER INTERFACE; ALUMINUM-OXIDE; IRON OXYHYDROXIDES; EXAFS SPECTROSCOPY; AQUEOUS-SOLUTION AB The fate of the oxoanion arsenate in diverse systems is strongly affected by its adsorption on the surfaces of iron (oxyhydr)oxide minerals. Predicting this behavior in the environment requires an understanding of the mechanisms of arsenate adsorption. In this study, the binding site and adsorption geometry of arsenate on the hematite (0 12) surface is investigated. The structure and termination of the hematite (0 1 2)-water interface were determined by high resolution X-ray reflectivity, revealing that two distinct terminations exist in a roughly 3:1 proportion. The occurrence of multiple terminations appears to be a result of sample preparation, and is not intrinsic to the hematite (0 12) surface. X-ray standing wave (XSW) measurements were used to determine the registry of adsorbed arsenate to the hematite structure, and thus the binding site and geometry of the resulting surface complex. Arsenate forms a bridging bidentate complex on two adjacent singly coordinated oxygen groups on each of the two distinct terminations present at the hematite surface. Although this geometry is consistent with that seen in past studies, the derived As-Fe distances are longer, the result of the topology of the FeO6 octahedra on the (0 12) surface. As EXAFS-derived As-Fe distances are often used to determine the adsorption mechanism in environmental samples (e.g., mine tailings, contaminated sediments), this demonstrates the importance of considering the possible sorbent surface structures and arrangements of adsorbates when interpreting such data. As multiple functional groups are present and multiple binding geometries are possible on the hematite (0 12) surface, the XSW data suggest that formation of bridging bidentate surface complexes on singly coordinated oxygen sites is the preferred adsorption mechanism on this and most other hematite surfaces (provided those surfaces contain adjacent singly coordinated oxygen groups). These measurements also constrain the likely reaction stoichiometry, with only the protonation state of the surface complex undetermined. Although bridging bidentate inner-sphere surface complexes comprised the majority of the adsorbed arsenate present on the hematite (0 12) surface, there is an additional population of sorbed arsenate species that could not be characterized by the XSW measurements. These species are likely more disordered, and thus more weakly bound, than the bridging bidentate complexes, and may play a role in determining the fate, transport, and bioavailability of arsenate in the environment. Finally, the possibility of obtaining species-specific XSW measurements by tuning the incident beam energy to specific features in a XANES spectrum is described. (c) 2007 Published by Elsevier Ltd. C1 Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Northwestern Univ, Evanston, IL 60208 USA. RP Catalano, JG (reprint author), Argonne Natl Lab, Div Chem, 9700 S Cass Ave, Argonne, IL 60439 USA. EM catalano@anl.gov RI Zhang, Zhan/A-9830-2008; Bedzyk, Michael/B-7503-2009; Catalano, Jeffrey/A-8322-2013; Bedzyk, Michael/K-6903-2013; Park, Changyong/A-8544-2008 OI Zhang, Zhan/0000-0002-7618-6134; Catalano, Jeffrey/0000-0001-9311-977X; Park, Changyong/0000-0002-3363-5788 NR 87 TC 69 Z9 70 U1 2 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD APR 15 PY 2007 VL 71 IS 8 BP 1883 EP 1897 DI 10.1016/j.gca.2007.01.015 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 159JA UT WOS:000245860500001 ER PT J AU Boyanov, MI O'Loughlin, EJ Roden, EE Fein, JB Kemner, KM AF Boyanov, Maxim I. O'Loughlin, Edward J. Roden, Eric E. Fein, Jeremy B. Kemner, Kenneth M. TI Adsorption of Fe(II) and U(VI) to carboxyl-functionalized microspheres: The influence of speciation on uranyl reduction studied by titration and XAFS SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID GOETHITE ALPHA-FEOOH; CHROMIUM(VI) REDUCTION; SPECTROSCOPIC EVIDENCE; MAGNETITE FORMATION; BACILLUS-SUBTILIS; SURFACE CATALYSIS; ANOXIC CONDITIONS; ELECTRON-TRANSFER; CRYSTAL-STRUCTURE; MINERAL SURFACES AB The chemical reduction of U(VI) by Fe(II) is a potentially important pathway for immobilization of uranium in subsurface environments. Although the presence of surfaces has been shown to catalyze the reaction between Fe(II) and U(VI) aqueous species, the mechanism(s) responsible for the enhanced reactivity remain ambiguous. To gain further insight into the U-Fe redox process at a complexing, non-conducting surface that is relevant to common organic phases in the environment, we studied suspensions containing combinations of 0.1 mM U(VI), 1.0 mM Fe(II), and 4.2 g/L carboxyl-functionalized polystyrene microspheres. Acid-base titrations were used to monitor protolytic reactions, and Fe K-edge and U L-edge X-ray absorption fine structure spectroscopy was used to determine the valence and atomic environment of the adsorbed Fe and U species. In the Fe + surface carboxyl system, a transition from monomeric to oligomeric Fe(II) surface species was observed between pH 7.5 and pH 8.4. In the U + surface carboxyl system, the U(VI) cation was adsorbed as a mononuclear uranyl-carboxyl complex at both pH 7.5 and 8.4. In the ternary U + Fe + surface carboxyl system, U(VI) was not reduced by the solvated or adsorbed Fe(II) at pH 7.5 over a 4-month period, whereas complete and rapid reduction to U(IV) nanoparticles occurred at pH 8.4. The U(IV) product reoxidized rapidly upon exposure to air, but it was stable over a 4-month period under anoxic conditions. Fe atoms were found in the local environment of the reduced U(IV) atoms at a distance of 3.56 angstrom. The U(IV)-Fe coordination is consistent with an inner-sphere electron transfer mechanism between the redox centers and involvement of Fe(II) atoms in both steps of the reduction from U(VI) to U(IV). The inability of Fe(II) to reduce U(VI) in solution and at pH 7.5 in the U + Fe + carboxyl system is explained by the formation of a transient, "dead-end" U(V)-Fe(III) complex that blocks the U(V) disproportionation pathway after the first electron transfer. The increased reactivity at pH 8.4 relative to pH 7.5 is explained by the reaction of U(VI) with an Fe(II) oligomer, whereby the bonds between Fe atoms facilitate the transfer of a second electron to the hypothetical U(V)-Fe(III) intermediate. We discuss how this mechanism may explain the commonly observed higher efficiency of uranyl reduction by adsorbed or structural Fe(11) relative to aqueous Fe(II). (c) 2007 Elsevier Ltd. All rights reserved. C1 Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. Univ Notre Dame, Dept Civil Engn & Geol Sci, Notre Dame, IN 46556 USA. Univ Wisconsin, Dept Geol & Geophys, Madison, WI 53706 USA. RP Boyanov, MI (reprint author), Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mboyanov@nd.edu RI O'Loughlin, Edward/C-9565-2013; ID, MRCAT/G-7586-2011 OI O'Loughlin, Edward/0000-0003-1607-9529; NR 63 TC 59 Z9 60 U1 8 U2 48 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD APR 15 PY 2007 VL 71 IS 8 BP 1898 EP 1912 DI 10.1016/j.gca.2007.01.025 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 159JA UT WOS:000245860500002 ER PT J AU Manceau, A Kersten, M Marcus, MA Geoffroy, N Granina, L AF Manceau, Alain Kersten, Michael Marcus, Matthew A. Geoffroy, Nicolas Granina, Liba TI Ba and Ni speciation in a nodule of binary Mn oxide phase composition from Lake Baikal SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID X-RAY-FLUORESCENCE; HIGH-TEMPERATURE DECOMPOSITION; MARINE MANGANESE NODULES; NA-RICH BIRNESSITE; HEXAGONAL BIRNESSITE; NATURAL SPECIATION; HYDROTHERMAL VENTS; FERROMANGANESE NODULES; CHEMICAL-COMPOSITION; EXAFS SPECTROSCOPY AB The partitioning and incorporation mechanism of Ni and Ba in a ferromanganese nodule from Lake Baikal were characterized by X-ray microfluorescence, microdiffraction, and absorption spectroscopy. Fe is speciated as goethite, and Mn as romanechite (psilomelane) and 10 angstrom-vernadite (turbostratic buserite) with minor 7 angstrom-vernadite (turbostratic birnessite). Barium is associated with romanechite and Ni with vernadite in distinct and irregularly distributed layers, and each type of Mn oxide is separated from the other type by goethite. The binary Mn oxide banding pattern is interpreted by a two-mode accretionary model, in which the variation in Ba flux induced by hydrothermal water pulses determines whether a tectomanganate (romanechite) or phyllomanganate (vernadite) is formed during the ferromanganese nodule accretion. Consistent with the dependence of Ni sorption on pH and the circumneutral pH of the lake water, nickel is mainly substituted isomorphically for Mn in the manganese layer, and is not sorbed at vacant Mn layer sites in the interlayer. (c) 2007 Elsevier Ltd. All rights reserved. C1 Univ Grenoble 1, LGIT, Environm Geochem Grp, F-38041 Grenoble 9, France. CNRS, F-38041 Grenoble, France. Univ Mainz, Geosci Inst, D-55099 Mainz, Germany. Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. Russian Acad Sci, Limnol Inst, Irkutsk 664033, Russia. RP Manceau, A (reprint author), Univ Grenoble 1, LGIT, Environm Geochem Grp, BP 53, F-38041 Grenoble 9, France. EM Alain.Manceau@obs.ujf-grenoble.fr RI Kersten, Michael/A-1437-2010; Beamline, FAME/G-9313-2012 OI Kersten, Michael/0000-0002-6385-7031; NR 72 TC 35 Z9 37 U1 1 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD APR 15 PY 2007 VL 71 IS 8 BP 1967 EP 1981 DI 10.1016/j.gca.2007.02.007 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 159JA UT WOS:000245860500007 ER PT J AU Fu, Q Lollar, BS Horita, J Lacrampe-Couloume, G Seyfried, WE AF Fu, Qi Lollar, Barbara Sherwood Horita, Juske Lacrampe-Couloume, Georges Seyfried, William E., Jr. TI Abiotic formation of hydrocarbons under hydrothermal conditions: Constraints from chemical and isotope data SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID MID-ATLANTIC RIDGE; MOLAL THERMODYNAMIC PROPERTIES; GASEOUS HYDROCARBONS; ULTRAMAFIC ROCKS; VENT FLUIDS; SUBSURFACE BIOSPHERE; WITWATERSRAND BASIN; ABIOGENIC METHANE; ORGANIC-COMPOUNDS; MIDOCEAN RIDGES AB To understand reaction pathways and isotope systematics during mineral-catalyzed abiotic synthesis of hydrocarbons under hydrothermal conditions, experiments involving magnetite and CO2 and H-2-bearing aqueous fluids were conducted at 400 degrees C and 500 bars. A robust technique for sample storage and transfer from experimental apparatus to stable isotope mass spectrometer provides a methodology for integration of both carbon and hydrogen isotope characterization of reactants and products generated during abiogenic synthesis experiments. Experiments were performed with and without pretreatment of magnetite to remove background carbon associated with the mineral catalyst. Prior to experiments, the abundance and carbon isotope composition of all carbon-bearing components were determined. Time-series samples of the fluid from all experiments indicated significant concentrations of dissolved CO and C-1-C-3 hydrocarbons and relatively large changes in dissolved CO2 and H-2 concentrations, consistent with formation of additional hydrocarbon components beyond C-3. The existence of relatively high dissolved alkanes in the experiment involving non-pretreated magnetite in particular, suggests a complex catalytic process, likely involving reinforcing effects of mineral-derived carbon with newly synthesized hydrocarbons at the magnetite surface. Similar reactions may be important mechanisms for carbon reduction in chemically complex natural hydrothermal systems. In spite of evidence supporting abiotic hydrocarbon formation in all experiments, an "isotopic reversal" trend was not observed for C-13 values of dissolved alkanes with increasing carbon number. This may relate to the specific mechanism of carbon reduction and hydrocarbon chain growth under hydrothermal conditions at elevated temperatures and pressures. Over time, significant C-13 depletion in CH4 suggests either depolymerization reactions occurring in addition to synthesis, or reactions between the C-1-C-3 hydrocarbons and carbon species absorbed on mineral surfaces and in solution. (c) 2007 Elsevier Ltd. All rights reserved. C1 Univ Minnesota, Dept Geol & Geophys, Minneapolis, MN 55455 USA. Univ Toronto, Stable Isotope Lab, Toronto, ON M5S 3B1, Canada. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Fu, Q (reprint author), Univ Minnesota, Dept Geol & Geophys, Minneapolis, MN 55455 USA. EM fuxx0033@umn.edu NR 73 TC 81 Z9 87 U1 5 U2 37 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD APR 15 PY 2007 VL 71 IS 8 BP 1982 EP 1998 DI 10.1016/j.gca.2007.01.022 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 159JA UT WOS:000245860500008 ER PT J AU Ahn, KS Kang, MS Lee, JW Kang, YS AF Ahn, Kwang-Soon Kang, Moon-Sung Lee, Ji-Won Kang, Yong Soo TI Effects of a surfactant-templated nanoporous TiO(2) interlayer on dye-sensitized solar cells SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PERFORMANCE; FILMS; RECOMBINATION; ELECTROLYTES; ELECTRODES; NETWORKS; LIGHT AB A 320 nm thick surfactant-templated nanoporous (STN) TiO(2) layer prepared from block copolymer P123 [poly(ethylene oxide)(20)-poly(propylene oxide)(70)-poly(ethylene oxide)(20)] was used as an interlayer between a 21 mu m thick mesoporous TiO(2) layer and a transparent conducting oxide. The thin STN TiO(2) interlayer had well-dispersed nanoporous features, which made it possible to adsorb dye molecules in the interlayer. In addition, it provided an enhanced electron lifetime, resulting in a reduced recombination rate and an increased diffusion length. The dye-sensitized solar cell with the thin STN interlayer resulted in a significantly increased overall energy conversion efficiency from 7.11% to 9.22% with an improvement of all parameters (short-circuit current, open circuit voltage, and fill factor). C1 Samsung SDI Co, Energy Lab, Corp R&D Ctr, Yongin 449577, Gyeonggi Do, South Korea. Samsung Adv Inst Technol, Energy & Environm Lab, Gyeonggi Do 446712, South Korea. Hanyang Univ, Dept Chem Engn, Seoul 133791, South Korea. RP Ahn, KS (reprint author), Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. EM kwang-soon_ahn@nrel.gov NR 19 TC 45 Z9 45 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2007 VL 101 IS 8 AR 084312 DI 10.1063/1.2721976 PG 5 WC Physics, Applied SC Physics GA 162FM UT WOS:000246072200136 ER PT J AU Akasheh, F Zbib, HM Hirth, JP Hoagland, RG Misra, A AF Akasheh, F. Zbib, H. M. Hirth, J. P. Hoagland, R. G. Misra, A. TI Dislocation dynamics analysis of dislocation intersections in nanoscale metallic multilayered composites SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID STRAINED EPITAXIAL LAYER; MISFIT DISLOCATIONS; THIN-FILMS; STABILITY; DEFORMATION; RELAXATION; ENERGETICS; STRENGTH; BEHAVIOR; HARDNESS AB In this work, dislocation dynamics (DD) analysis is used to investigate the strength of nanoscale metallic multilayered composites. Several possible interactions between threading (glide) dislocations and intersecting interfacial dislocations are considered and found to lead to strength predictions in better agreement with experimental trends and significantly higher than the predictions of the simplified confined layer plasticity model based on Orowan bowing of single dislocation in a rigid channel. The strongest interaction occurs when threading and intersecting interfacial dislocations have collinear Burgers' vector and involves an annihilation reaction at their crossing points followed by the resumption of threading with a new dislocation configuration. The other possible dislocation intersections involve the formation of junctions, which are found to be more complex than simple models suggest. When the layer interfaces are modeled as impenetrable walls, as in existing analytical and some dislocation dynamics (DD) models, the predicted strengthening effect is weaker than that predicted by DD with more physical boundary conditions at the interfaces. C1 Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Akasheh, F (reprint author), Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. EM fakasheh@mail.wsu.edu RI Misra, Amit/H-1087-2012; Hoagland, Richard/G-9821-2012 NR 38 TC 45 Z9 45 U1 1 U2 35 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2007 VL 101 IS 8 AR 084314 DI 10.1063/1.2721093 PG 10 WC Physics, Applied SC Physics GA 162FM UT WOS:000246072200138 ER PT J AU Colvin, JD Reed, BW Jankowski, AF Kumar, M Paisley, DL Swift, DC Tierney, TE Frank, AM AF Colvin, Jeffrey D. Reed, Bryan W. Jankowski, Alan F. Kumar, Mukul Paisley, Dennis L. Swift, Damian C. Tierney, Thomas E. Frank, Alan M. TI Microstructure morphology of shock-induced melt and rapid resolidification in bismuth SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PHASE-TRANSITIONS; BORON-NITRIDE; SOLIDIFICATION; CARBON; PRESSURE AB With the growing importance of nanotechnology, there is increased emphasis on rapid solidification processing to produce materials microstructures with a finer length scale. However, few studies have focused on the question of how a material restructures itself on the microstructural scale when it refreezes at very high cooling rates. Here we report on the development of microstructures in pure bismuth metal as it is subjected to rapid shock-driven melting and subsequent resolidification (on release of pressure), where the estimated effective undercooling rates are on the order of 10(10) K/s, orders of magnitude faster than any achieved before in bulk material. Microscopic examination of the recovered material indicates that the melting transformation was far from homogeneous, and substantial morphological changes are observed compared to the starting microstructure. (c) 2007 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Colvin, JD (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. EM colvin5@llnl.gov RI Reed, Bryan/C-6442-2013 NR 39 TC 9 Z9 10 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2007 VL 101 IS 8 AR 084906 DI 10.1063/1.2714647 PG 10 WC Physics, Applied SC Physics GA 162FM UT WOS:000246072200157 ER PT J AU Crooker, SA Furis, M Lou, X Crowell, PA Smith, DL Adelmann, C Palmstrom, CJ AF Crooker, S. A. Furis, M. Lou, X. Crowell, P. A. Smith, D. L. Adelmann, C. Palmstrom, C. J. TI Optical and electrical spin injection and spin transport in hybrid Fe/GaAs devices SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT 28th International Conference on the Physics of Semiconductors (ICPS-28) CY JUL 24-28, 2006 CL Vienna, AUSTRIA SP Austrian Res Ctr, Infineon, Austrian Fed Minist Educ, Sci & Culture, FFG, Austrian Nano Initiat, Vienna Convent Bur, ICPS 27, Marabun Res, Raith, Int Union Pure & Appl Phys, NMA Networking, Austrian Soc Micro & Nanoelect, Austrian Airlines, Inst Phys, Austriamicrosystems, Agilent Technologies, NIST, LOT ORIEL, Panasonic, ONR Off Naval Res, Volkswagen, USAF Off Sci Res, European Off Aerosp Res & Dev, USAF Res Lab, Darpa AB We discuss methods for imaging the nonequilibrium spin polarization of electrons in Fe/GaAs spin transport devices. Both optically and electrically injected spin distributions are studied by scanning magneto-optical Kerr rotation microscopy. Related methods are used to demonstrate electrical spin detection of optically injected spin-polarized currents. Dynamical properties of spin transport are inferred from studies based on the Hanle effect, and the influence of strain on spin transport data in these devices is discussed. C1 Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. RP Crooker, SA (reprint author), Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. EM crooker@lanl.gov RI Adelmann, Christoph/C-1507-2014; Furis, Madalina/F-8090-2015 OI Adelmann, Christoph/0000-0002-4831-3159; Furis, Madalina/0000-0001-9007-5492 NR 15 TC 13 Z9 13 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2007 VL 101 IS 8 AR 081716 DI 10.1063/1.2722785 PG 5 WC Physics, Applied SC Physics GA 162FM UT WOS:000246072200019 ER PT J AU Du, XH Huang, JC Liu, CT Lu, ZP AF Du, X. H. Huang, J. C. Liu, C. T. Lu, Z. P. TI New criterion of glass forming ability for bulk metallic glasses SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID AL-NI-CU; SUPERHEATED MELTS; THERMAL-STABILITY; AMORPHOUS-ALLOYS; COOLING RATE; PARAMETERS; FRAGILITY; LIQUIDS; SYSTEMS AB It has been confirmed that glass-forming ability (GFA) is related to not only liquid phase stability but also the crystallization resistance. In this study, it was found the liquidus temperature T(l) and supercooled liquid region T(x)-T(g) could reflect the stability of glass-forming liquids at the equilibrium and undercooled state, respectively, while the onset crystallization temperature T(x) could indicate the crystallization resistance during glass formation. Thus, a modified gamma parameter, defined as gamma(m)=(2T(x)-T(g))/T(l), has been established. This parameter shows an excellent correlation with the GFA of bulk metallic glasses, with the statistical correlation factor of R(2)=0.931. (c) 2007 American Institute of Physics. C1 Natl Sun Yat Sen Univ, Ctr Nanosci & Nanotechnol, Inst Mat Sci & Engn, Kaohsiung 804, Taiwan. Shenyang Inst Aeronaut Engn, Dept Mat Engn, Shenyang 110034, Peoples R China. Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Huang, JC (reprint author), Natl Sun Yat Sen Univ, Ctr Nanosci & Nanotechnol, Inst Mat Sci & Engn, Kaohsiung 804, Taiwan. EM jacobc@mail.nsysu.edu.tw RI Lu, Zhao-Ping/A-2718-2009; Huang, J. /C-4276-2013 NR 31 TC 79 Z9 85 U1 0 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2007 VL 101 IS 8 AR 086108 DI 10.1063/1.2718286 PG 3 WC Physics, Applied SC Physics GA 162FM UT WOS:000246072200176 ER PT J AU Levitas, VI Asay, BW Son, SF Pantoya, M AF Levitas, Valery I. Asay, Blaine W. Son, Steven F. Pantoya, Michelle TI Mechanochemical mechanism for fast reaction of metastable intermolecular composites based on dispersion of liquid metal SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ALUMINUM POWDERS; HIGH-TEMPERATURE; COMBUSTION; OXIDATION; NANOPARTICLES; IGNITION; THERMITES; PRESSURE; BEHAVIOR; DENSITY AB An unexpected mechanism for fast reaction of Al nanoparticles covered by a thin oxide shell during fast heating is proposed and justified theoretically and experimentally. For nanoparticles, the melting of Al occurs before the oxide fracture. The volume change due to melting induces pressures of 1-2 GPa and causes dynamic spallation of the shell. The unbalanced pressure between the Al core and the exposed surface creates an unloading wave with high tensile pressures resulting in dispersion of atomic scale liquid Al clusters. These clusters fly at high velocity and their reaction is not limited by diffusion (this is the opposite of traditional mechanisms for micron particles and for nanoparticles at slow heating). Physical parameters controlling the melt dispersion mechanism are found by our analysis. In addition to an explanation of the extremely short reaction time, the following correspondence between our theory and experiments are obtained: (a) For the particle radius below some critical value, the flame propagation rate and the ignition time delay are independent of the radius; (b) damage of the oxide shell suppresses the melt dispersion mechanism and promotes the traditional diffusive oxidation mechanism; (c) nanoflakes react more like micron size (rather than nanosize) spherical particles. The reasons why the melt dispersion mechanism cannot operate for the micron particles or slow heating of nanoparticles are determined. Methods to promote the melt dispersion mechanism, to expand it to micron particles, and to improve efficiency of energetic metastable intermolecular composites are formulated. In particular, the following could promote the melt dispersion mechanism in micron particles: (a) Increasing the temperature at which the initial oxide shell is formed; (b) creating initial porosity in the Al; (c) mixing of the Al with a material with a low (even negative) thermal expansion coefficient or with a phase transformation accompanied by a volume reduction; (d) alloying the Al to decrease the cavitation pressure; (e) mixing nano- and micron particles; and (f) introducing gasifying or explosive inclusions in any fuel and oxidizer. A similar mechanism is expected for nitridation and fluorination of Al and may also be tailored for Ti and Mg fuel. (c) 2007 American Institute of Physics. C1 Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. RP Levitas, VI (reprint author), Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA. EM valery.levitas@ttu.edu OI Son, Steven/0000-0001-7498-2922 NR 39 TC 81 Z9 82 U1 3 U2 39 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2007 VL 101 IS 8 AR 083524 DI 10.1063/1.2720182 PG 20 WC Physics, Applied SC Physics GA 162FM UT WOS:000246072200078 ER PT J AU Rose, V Franchy, R AF Rose, V. Franchy, R. TI Thermal stability of Co-core-CoO-shell nanoparticles on an ultrathin theta-Al(2)O(3) film support SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID EXCHANGE BIAS; COAL(100) AB The effect of annealing temperature on a system of Co-core-CoO-shell nanoparticles on theta-Al(2)O(3)/CoAl(100) has been investigated using a combination of Auger electron spectroscopy, high-resolution electron energy loss spectroscopy, low-energy electron diffraction, and scanning tunneling microscopy. Results show that thermal treatment leads to a decomposition of the CoO-shell above 450 K, and thus it is strongly diminished with respect to the bulk value. Between 550 and 1050 K the Co particles coalescence and diffuse through the oxide into the substrate. Due to defect recovery, the thermal stability of the thin aluminum oxide film remained unchanged compared to as-grown theta-Al(2)O(3). (c) 2007 American Institute of Physics. C1 Argonne Natl Lab, Ctr Nanoscale Mat & Adv Photon Source, Argonne, IL 60439 USA. Inst Surfaces & Interfaces, Res Ctr Julich, ISG 3, D-52425 Julich, Germany. RP Rose, V (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat & Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vrose@anl.gov RI Rose, Volker/B-1103-2008 OI Rose, Volker/0000-0002-9027-1052 NR 19 TC 2 Z9 2 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2007 VL 101 IS 8 AR 086104 DI 10.1063/1.2717127 PG 3 WC Physics, Applied SC Physics GA 162FM UT WOS:000246072200172 ER PT J AU Setchell, RE Anderson, MU Montgomery, ST AF Setchell, R. E. Anderson, M. U. Montgomery, S. T. TI Compositional effects on the shock-compression response of alumina-filled epoxy SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID WAVE PROPAGATION; FUSED-SILICA; SAPPHIRE; MIXTURES; INDEX; RESIN AB Alumina-filled epoxies are composites having constituents with highly dissimilar mechanical properties, resulting in complex behavior during shock compression and release. A previous study examined the shock properties of a particular composition in some detail. In the current study, the effects of compositional variations on shock properties were examined. Planar-impact experiments producing states of nearly equal strain were conducted to investigate the effects of changes in the size and shape of alumina particles, and in the total volume fraction of alumina. Laser interferometry and wave timing were used to obtain transmitted wave profiles, Hugoniot states, and release wave velocities. In addition, wave profiles and velocities were obtained in "thin-pulse" experiments that examined the combined effects of compression and release properties in different compositions. Changes in the size and shape of alumina particles were found to have little effect except in the viscous spreading of wave profiles during shock compression. Increasing the volume fraction of alumina resulted in steadily increasing Hugoniot states, wave rise times, and release wave velocities. An important observation was that differences between release wave and shock wave velocities increased significantly as the alumina loading was increased. Consequences of this effect were evident in the thin-pulse experiments, which showed that increased alumina loading resulted in stronger wave attenuation. (c) 2007 American Institute of Physics. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Setchell, RE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 13 TC 13 Z9 13 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2007 VL 101 IS 8 AR 083527 DI 10.1063/1.2719012 PG 8 WC Physics, Applied SC Physics GA 162FM UT WOS:000246072200081 ER PT J AU Simonetti, F Huang, L Duric, N AF Simonetti, F. Huang, L. Duric, N. TI On the spatial sampling of wave fields with circular ring apertures SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SYSTEM AB This paper investigates the sampling criterion needed to image objects within a circular ring array. The array consists of transducer elements deployed along a circular aperture at regular angular intervals. Each transducer excites waves which propagate towards the center of the array and detects outgoing fields traveling towards it. It is shown that while with conventional linear apertures the sampling criterion is dictated by the wavelength of the probing wave only, in the case of a circular aperture the sampling depends on the size of the object relative to the wavelength and its position with respect to the aperture. (c) 2007 American Institute of Physics. C1 Univ London Imperial Coll Sci Technol & Med, Dept Mech Engn, London SW7 2AZ, England. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Wayne State Univ, Karmanos Canc Inst, Detroit, MI 48201 USA. RP Simonetti, F (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Mech Engn, London SW7 2AZ, England. EM f.simonetti@imperial.ac.uk OI Simonetti, Francesco/0000-0001-8772-0323 NR 7 TC 21 Z9 22 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2007 VL 101 IS 8 AR 083103 DI 10.1063/1.2717086 PG 6 WC Physics, Applied SC Physics GA 162FM UT WOS:000246072200033 ER PT J AU Smith, DL Ruden, PP AF Smith, D. L. Ruden, P. P. TI Device modeling of light-emitting ambipolar organic semiconductor field-effect transistors SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID THIN-FILM TRANSISTORS; EMISSION; MOBILITY AB Recent experiments have demonstrated ambipolar channel conduction and light emission in conjugated polymer field-effect transistors (FETs). The devices have source/drain contacts fabricated using metals with different work functions. Negative charge carriers are injected from a low work-function metal contact and positive charge carriers from a high work-function contact. In the ambipolar mode of operation, the gate potential lies between the potentials of the electron and hole injecting contacts, so that electrons dominate the channel conductance near the electron injecting contact and holes dominate channel conductance near the hole injecting contact. The injected charge carriers propagate along the FET channel and recombine in regions where both types of carriers are present. The location and intensity of maximum recombination and light emission is controlled by the voltages applied to the transistor terminals. In this paper a device model for ambipolar organic field-effect transistors based on the gradual channel approximation is presented. The model includes the effect of charge carrier trapping through density dependent mobilities. The resulting nonlinear differential equation for the channel potential is solved numerically. The results of the device model are in good agreement with the published experimental data. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Minnesota, Minneapolis, MN 55455 USA. RP Smith, DL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM dsmith@lanl.gov NR 18 TC 7 Z9 7 U1 4 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2007 VL 101 IS 8 AR 084503 DI 10.1063/1.2715490 PG 6 WC Physics, Applied SC Physics GA 162FM UT WOS:000246072200142 ER PT J AU Thewalt, MLW Yang, A Steger, M Karaiskaj, D Cardona, M Riemann, H Abrosimov, NV Gusev, AV Bulanov, AD Kovalev, ID Kaliteevskii, AK Godisov, ON Becker, P Pohl, HJ Haller, EE Ager, JW Itoh, KM AF Thewalt, M. L. W. Yang, A. Steger, M. Karaiskaj, D. Cardona, M. Riemann, H. Abrosimov, N. V. Gusev, A. V. Bulanov, A. D. Kovalev, I. D. Kaliteevskii, A. K. Godisov, O. N. Becker, P. Pohl, H. J. Haller, E. E. Ager, J. W., III Itoh, K. M. TI Direct observation of the donor nuclear spin in a near-gap bound exciton transition: P-31 in highly enriched Si-28 SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT 28th International Conference on the Physics of Semiconductors (ICPS-28) CY JUL 24-28, 2006 CL Vienna, AUSTRIA SP Austrian Res Ctr, Infineon, Austrian Fed Minist Educ, Sci & Culture, FFG, Austrian Nano Initiat, Vienna Convent Bur, ICPS 27, Marabun Res, Raith, Int Union Pure & Appl Phys, NMA Networking, Austrian Soc Micro & Nanoelect, Austrian Airlines, Inst Phys, Austriamicrosystems, Agilent Technologies, NIST, LOT ORIEL, Panasonic, ONR Off Naval Res, Volkswagen, USAF Off Sci Res, European Off Aerosp Res & Dev, USAF Res Lab, Darpa ID QUANTUM COMPUTER; SILICON; SEMICONDUCTORS AB We report on ultrahigh resolution studies of the bound exciton states associated with the shallow acceptor B and the shallow donor P in highly enriched Si-28 using a tuneable single frequency laser to perform photoluminescence excitation spectroscopy. The linewidths and fine structure of the transitions, which were too narrow to be resolved previously using an available photoluminescence apparatus, are now fully revealed. The P bound exciton transition shows a complicated additional structure, which the Zeeman spectroscopy demonstrates to be a result of the splitting of the donor ground state by the hyperfine interaction between the spin of the donor electron and that of the P-31 nucleus. The P-31 nuclear spin populations can thus be determined, and hopefully modified, by optical means. The predominant Auger recombination channel of these bound excitons is used to observe the same resolved hyperfine transitions in the photocurrent spectrum. This demonstrates that donors in specific electronic and nuclear spin configurations can be selectively photoionized. Possible applications of these results to quantum computing and quantum information systems are discussed.(c) 2007 American Institute of Physics. C1 Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. Inst Crystal Growth, D-12489 Berlin, Germany. RAS, Inst Chem Highly Pure Subst, Nizhnii Novgorod, Russia. Sci & Tech Ctr Centrotech ECP, St Petersburg, Russia. Phys Tekn Bundesanstalt, D-38116 Braunschweig, Germany. VITCON Projectconsult GmbH, D-07743 Jena, Germany. Univ Calif Berkeley, Berkeley, CA 94720 USA. LBNL, Berkeley, CA 94720 USA. Keio Univ, Dept Appl Phys, Yokohama, Kanagawa 223, Japan. JST, CREST, Yokohama, Kanagawa 223, Japan. RP Thewalt, MLW (reprint author), Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. EM thewalt@sfu.ca RI Thewalt, Michael/B-3534-2008; Itoh, Kohei/C-5738-2014; OI Thewalt, Michael/0000-0002-5806-0618; Ager, Joel/0000-0001-9334-9751 NR 15 TC 24 Z9 24 U1 0 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2007 VL 101 IS 8 AR 081724 DI 10.1063/1.2723181 PG 5 WC Physics, Applied SC Physics GA 162FM UT WOS:000246072200027 ER PT J AU Viccaro, PJ AF Viccaro, P. James TI Preface to special topic: Plenary and invited papers from the 28th International Conference on the Physics of Semiconductors, Vienna, Austria, 2006 SO JOURNAL OF APPLIED PHYSICS LA English DT Editorial Material C1 Argonne Natl Lab, Journal Appl Phys, Editorial Off, Argonne, IL 60439 USA. RP Viccaro, PJ (reprint author), Argonne Natl Lab, Journal Appl Phys, Editorial Off, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2007 VL 101 IS 8 AR 081501 DI 10.1063/1.2732073 PG 1 WC Physics, Applied SC Physics GA 162FM UT WOS:000246072200001 ER PT J AU Macdonald, JR Tuncer, E AF Macdonald, J. Ross Tuncer, Enis TI Deconvolution of immittance data: Some old and new methods SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY LA English DT Article DE deconvolution; inversion; distributions of relaxation times and activation energies; least-squares methods; regularization; Monte Carlo inversion; electrode effects ID IMPEDANCE SPECTROSCOPY; MEASUREMENT MODELS; UNDERLYING DISTRIBUTIONS; ELECTRICAL-RELAXATION; IONIC CONDUCTORS; SPECTRA; DISPERSION; INVERSION; GLASSES AB The background and history of various deconvolution approaches are briefly summarized; different methods are compared; and available computational resources are described. These underutilized data analysis methods are valuable in both electrochemistry and immittance spectroscopy areas, and freely available computer programs are cited that provide an automatic test of the appropriateness of Kronig-Kramers transforms, a powerful non-linear-least-squares inversion method, and a new Monte Carlo inversion method. The important distinction, usually ignored, between discrete-point distributions and continuous ones is emphasized, and both recent parametric and non-parametric deconvolution/inversion procedures for frequency-response data are discussed and compared. Information missing in a recent parametric measurement-model deconvolution approach is pointed out and remedied, and its priority evaluated. Comparisons are presented between the standard parametric least squares inversion method and a new non-parametric Monte Carlo one that allows complicated composite distributions of relaxation times (DRT) to be accurately estimated without the uncertainty present with regularization methods. Also, detailed Monte Carlo DRT estimates for the supercooled liquid 0.4Ca(NO3)(2)center dot 0.6KNO(3) (CKN) at 350 K are compared with appropriate frequency-response-model fit results. These composite models were derived from stretched-exponential Kohlrausch temporal response with the inclusion of either of two different series electrode-polarization functions. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. Oak Ridge Natl Lab, Grp Appl Supercond, Div Fus Energy, Oak Ridge, TN 37831 USA. RP Macdonald, JR (reprint author), Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. EM macd@email.unc.edu; tuncere@ornl.gov OI Tuncer, Enis/0000-0002-9324-4324 NR 30 TC 16 Z9 16 U1 0 U2 12 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1572-6657 EI 1873-2569 J9 J ELECTROANAL CHEM JI J. Electroanal. Chem. PD APR 15 PY 2007 VL 602 IS 2 BP 255 EP 262 DI 10.1016/j.jelechem.2007.01.006 PG 8 WC Chemistry, Analytical; Electrochemistry SC Chemistry; Electrochemistry GA 162KA UT WOS:000246084700014 ER PT J AU Markowitz, M Perelson, AS AF Markowitz, Martin Perelson, Alan S. TI HIV-1 viral dynamics studies in the setting of clinical trials - A window of opportunity SO JOURNAL OF INFECTIOUS DISEASES LA English DT Editorial Material ID INFECTED PATIENTS; INITIAL TREATMENT; IN-VIVO; ENFUVIRTIDE; EFAVIRENZ; REGIMENS; THERAPY; NAIVE C1 Rockefeller Univ, Aaron Diamond AIDS Res Ctr, New York, NY 10016 USA. Los Alamos Natl Lab, Los Alamos, NM USA. RP Markowitz, M (reprint author), Rockefeller Univ, Aaron Diamond AIDS Res Ctr, 455 1st Ave,7th Fl, New York, NY 10016 USA. EM mmarkowitz@adarc.org NR 12 TC 5 Z9 5 U1 0 U2 1 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0022-1899 J9 J INFECT DIS JI J. Infect. Dis. PD APR 15 PY 2007 VL 195 IS 8 BP 1087 EP 1088 DI 10.1086/512621 PG 2 WC Immunology; Infectious Diseases; Microbiology SC Immunology; Infectious Diseases; Microbiology GA 153AW UT WOS:000245405100003 PM 17357043 ER PT J AU Murty, KL Mansur, LK Simonen, EP Bajaj, R AF Murty, Korukonda L. Mansur, Louis K. Simonen, Edward P. Bajaj, Ram TI Proceedings of the Symposium on Radiation Effects, Deformation and Phase Transformations in Metals and Ceramics, Organized in Honor of Prof. Monroe S. Wechsler - TMS Annual Meeting, San Antonio, Texas, USA 12-16 March 2006 - Preface SO JOURNAL OF NUCLEAR MATERIALS LA English DT Editorial Material C1 N Carolina State Univ, Raleigh, NC 27695 USA. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. Bechtel Bettis Inc, W Mifflin, PA 15122 USA. RP Murty, KL (reprint author), N Carolina State Univ, Raleigh, NC 27695 USA. EM murty@ncsu.edu; mansurlk@ornl.gov; ed.simonen@pnl.gov; bajajr@bettis.gov NR 0 TC 0 Z9 0 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 15 PY 2007 VL 361 IS 2-3 BP VII EP IX DI 10.1016/j.jnucmat.2006.12.002 PG 3 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 161XD UT WOS:000246049300001 ER PT J AU Deo, CS Okuniewski, MA Srivilliputhur, SG Maloy, SA Baskes, MI James, MR Stubbins, JF AF Deo, Chaitanya S. Okuniewski, Maria A. Srivilliputhur, Srinivasan G. Maloy, Stuart A. Baskes, Michael I. James, Michael R. Stubbins, James F. TI Helium bubble nucleation in bcc iron studied by kinetic Monte Carlo simulations SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT Symposium on Radiation Effects, Deformation and Phase Transformations in Metals and Ceramics held at the 2006 TMS Annual Meeting CY MAR 12-16, 2006 CL San Antonio, TX SP Minerals Met & Mat Soc ID HIGH-ENERGY PROTON; VACANCY CLUSTERS; RADIATION-DAMAGE; NEUTRON-SPECTRA; PURE METALS; IRRADIATION; GROWTH; ALLOYS; ACCUMULATION; CASCADES AB Fast reactors and other advanced nuclear systems are increasingly considering the use of ferritic and ferritic-martensitic steels for cladding and structural applications. For these materials applications, radiation damage and relatively large amounts of helium generated during the irradiation damage process are recognized to be major issues with materials durability and performance. In these cases, irradiation damage alone is significant; however the added effect of helium on the accumulation of defects and defect clusters can dramatically imact the effect of the resulting microstructure on physical and mechanical properties. Using a kinetic Monte Carlo method we study embryonic bubble nucleation under irradiation damage conditions and helium generation. Migration of helium, vacancies, self interstitial atoms and their clusters is included in the kinetic Monte Carlo model. We estimate embryonic bubble density, interstitial cluster density and embryonic bubble size as a function of the helium content and displacements per atom. Bubble density and size increases with increasing helium content; there is a slight increase in interstitial cluster density as well. (c) 2007 Published by Elsevier B.V. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. RP Deo, CS (reprint author), Los Alamos Natl Lab, POB 1663,MS G755, Los Alamos, NM 87545 USA. EM cdeo@lanl.gov RI Maloy, Stuart/A-8672-2009 OI Maloy, Stuart/0000-0001-8037-1319 NR 34 TC 23 Z9 23 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 15 PY 2007 VL 361 IS 2-3 BP 141 EP 148 DI 10.1016/j.jnucmat.2006.12.018 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 161XD UT WOS:000246049300004 ER PT J AU Golubov, SI Stoller, RE Zinkle, SJ Ovcharenko, AM AF Golubov, S. I. Stoller, R. E. Zinkle, S. J. Ovcharenko, A. M. TI Kinetics of coarsening of helium bubbles during implantation and post-implantation annealing SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT Symposium on Radiation Effects, Deformation and Phase Transformations in Metals and Ceramics held at the 2006 TMS Annual Meeting CY MAR 12-16, 2006 CL San Antonio, TX SP Minerals Met & Mat Soc ID GAS-BUBBLES; IRRADIATED METALS; VOID NUCLEATION; CASCADE DAMAGE; GROWTH; COALESCENCE; DIFFUSION; GENERATION; MIGRATION; EVOLUTION AB To understand the effects of He on irradiated metals requires modeling of helium-vacancy cluster evolution. A new method of solving the two-dimensional master equation (ME) describing He-vacancy cluster evolution has been applied to calculate helium bubble evolution in a stainless steel irradiated with alpha particles near room temperature and annealed in the temperature range of 600-900 degrees C. For the first time, the evolution of the helium bubble size distribution function was precisely calculated in 2-D phase space and good agreement with experimental results was obtained. The results indicate that Brownian motion of bubbles via surface vacancy diffusion provides a reasonable explanation for bubble evolution during annealing, most bubbles are found to be near the equilibrium state during the evolution at temperatures of 700 degrees C and higher, lack of vacancies at temperatures lower than 700 degrees C prevents bubble growth, and use of a non-ideal He equation of state (EOS) increases the bubble density and size relative to the case when the ideal EOS is used. (c) 2006 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Univ Tennessee, Ctr Mat Proc, Knoxville, TN 37996 USA. ARIAM, Obninsk 249038, Kaluga Region, Russia. RP Stoller, RE (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM rkn@ornl.gov RI Stoller, Roger/H-4454-2011; OI Zinkle, Steven/0000-0003-2890-6915 NR 41 TC 30 Z9 31 U1 1 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 15 PY 2007 VL 361 IS 2-3 BP 149 EP 159 DI 10.1016/j.jnucmat.2006.12.032 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 161XD UT WOS:000246049300005 ER PT J AU Allen, TR Tan, L Was, GS Kenik, EA AF Allen, T. R. Tan, L. Was, G. S. Kenik, E. A. TI Thermal and radiation-induced segregation in model Ni-base alloys SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT Symposium on Radiation Effects, Deformation and Phase Transformations in Metals and Ceramics held at the 2006 TMS Annual Meeting CY MAR 12-16, 2006 CL San Antonio, TX SP Minerals Met & Mat Soc ID FE; DIFFUSION; SYSTEM AB Since Generation IV nuclear energy systems will operate at higher temperatures than current light water reactors, Ni-base alloys are receiving attention as candidate core materials. One aspect of the radiation response of Ni-base alloys to radiation that is not well understood is grain boundary segregation. In this work, three alloys, specifically Ni-18Cr, Ni-18Cr-9Fe, and Ni-18Cr-0.08P were given a series of thermal treatments and quenching to understand the development of thermal non-equilibrium segregation (TNES). Additionally, they were irradiated using 3.2 MeV protons at temperatures from 200 to 500 degrees C to doses up to 1 dpa. Grain boundary segregation was measured with Auger Electron Spectroscopy and Scanning Transmission Electron Microscopy with Energy Dispersive Spectroscopy. Chromium enrichment due to TNES could be caused by interactions between Ni and Cr or by interactions with impurity elements such as B, C, or N. Under irradiation, the addition of iron to Ni-18Cr reduced the grain boundary chromium depletion, while the addition of phosphorous increased the grain boundary chromium depletion. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Wisconsin, Madison, WI 53706 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Allen, TR (reprint author), Univ Wisconsin, Madison, WI 53706 USA. EM allen@engr.wisc.edu RI Tan, Lizhen/A-7886-2009; OI Tan, Lizhen/0000-0002-3418-2450; Allen, Todd/0000-0002-2372-7259 NR 22 TC 13 Z9 14 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 15 PY 2007 VL 361 IS 2-3 BP 174 EP 183 DI 10.1016/j.jnucmat.2006.12.004 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 161XD UT WOS:000246049300007 ER PT J AU Li, MM Zinkle, SJ AF Li, Meimei Zinkle, S. J. TI Fracture mechanism maps in unirradiated and irradiated metals and alloys SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT Symposium on Radiation Effects, Deformation and Phase Transformations in Metals and Ceramics held at the 2006 TMS Annual Meeting CY MAR 12-16, 2006 CL San Antonio, TX SP Minerals Met & Mat Soc ID HIGH-TEMPERATURE EMBRITTLEMENT; AUSTENITIC STAINLESS-STEELS; MATERIALS DESIGN-DATA; DUCTILE FRACTURE; PLASTIC INSTABILITY; DEFORMATION; VANADIUM; HELIUM; STRESS; GROWTH AB This paper presents a methodology for computing a fracture mechanism map in two-dimensional space of tensile stress and temperature using physically-based constitutive equations. Four principal fracture mechanisms were considered: cleavage fracture, low temperature ductile fracture, transgranular creep fracture, and intergranular creep fracture. The methodology was applied to calculate fracture mechanism maps for several selected reactor materials, CuCrZr, 316 type stainless steel, F82H ferritic-martensitic steel, V4Cr4Ti and Mo. The calculated fracture maps are in good agreement with empirical maps obtained from experimental observations. The fracture mechanism maps of unirradiated metals and alloys were modified to include radiation hardening effects on cleavage fracture and high temperature helium embrittlement. Future refinement of fracture mechanism maps is discussed. (c) 2007 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Li, MM (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008,MS 6138, Oak Ridge, TN 37831 USA. EM lim1@ornl.gov OI Zinkle, Steven/0000-0003-2890-6915 NR 80 TC 11 Z9 11 U1 3 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 15 PY 2007 VL 361 IS 2-3 BP 192 EP 205 DI 10.1016/j.jnucmat.2006.12.017 PG 14 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 161XD UT WOS:000246049300009 ER PT J AU Jiao, Z Busby, JT Was, GS AF Jiao, Z. Busby, J. T. Was, G. S. TI Deformation microstructure of proton-irradiated stainless steels SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT Symposium on Radiation Effects, Deformation and Phase Transformations in Metals and Ceramics held at the 2006 TMS Annual Meeting CY MAR 12-16, 2006 CL San Antonio, TX SP Minerals Met & Mat Soc ID ALLOYS AB The deformation microstructure of proton-irradiated stainless steels may play a key role in explaining their irradiation-assisted stress corrosion cracking (IASCC) susceptibility. In the present study, three model alloys (UHP-304, 304 + Si, 304 + Cr + Ni) with different stacking fault energies (SFEs) were irradiated with 3.2 MeV protons at 360 degrees C to 1.0 and 5.5 dpa and then strained in 288 degrees C Ar atmosphere. The deformation microstructure of the strained samples was investigated using scanning electron microscopy and transmission electron microscopy. The results showed that the slip lines interacted with grain boundaries by grain-to-grain transmission, grain boundary sliding or deformation ledge formation at grain boundaries. Expanded channels, which were formed at locations where dislocation channels intersected the grain boundaries or other channels, were found predominately in the low SFE alloys UHP-304 and 304 + Si. The steps and shear strain at grain boundaries caused by channel expansion may increase the IASCC susceptibility in low SFE stainless steels by producing strain concentrations and inducing cracks in the oxide film. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Jiao, Z (reprint author), Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. EM zjiao@umich.edu NR 30 TC 43 Z9 43 U1 2 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 15 PY 2007 VL 361 IS 2-3 BP 218 EP 227 DI 10.1016/j.jnucmat.2006.12.012 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 161XD UT WOS:000246049300011 ER PT J AU Byun, TS AF Byun, T. S. TI Dose dependence of true stress parameters in irradiated bcc, fcc, and hcp metals SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT Symposium on Radiation Effects, Deformation and Phase Transformations in Metals and Ceramics held at the 2006 TMS Annual Meeting CY MAR 12-16, 2006 CL San Antonio, TX SP Minerals Met & Mat Soc ID AUSTENITIC STAINLESS-STEELS; LOW-TEMPERATURE IRRADIATION; TARGET CONTAINER MATERIALS; FAST-NEUTRON IRRADIATION; TENSILE PROPERTIES; POLYCRYSTALLINE METALS; PLASTIC INSTABILITY; MECHANICAL-PROPERTIES; HARDENING BEHAVIOR; DEFORMATION AB The dose dependence of true stress parameters has been investigated for nuclear structural materials: A533B pressure vessel steels, modified 9Cr-1Mo and 9Cr-2WVTa ferritic martensitic steels, 316 and 316LN stainless steels, and Zircaloy-4. After irradiation to significant doses, these alloys show radiation-induced strengthening and often experience prompt necking at yield followed by large necking deformation. In the present work, the critical true stresses for deformation and fracture events, such as yield stress (YS), plastic instability stress (PIS), and true fracture stress (FS), were obtained from uniaxial tensile tests or calculated using a linear strain-hardening model for necking deformation. At low dose levels where no significant embrittlement was detected, the true fracture stress was nearly independent of dose. The plastic instability stress was also independent of dose before the critical dose-to-prompt-necking at yield was reached. A few bcc alloys such Kas ferritic martensitic steels experienced significant embrittlement at doses above similar to 1 dpa; and the true fracture stress decreased with dose. The materials fractured before yield at or above 10 dpa. (c) 2006 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Byun, TS (reprint author), Oak Ridge Natl Lab, POB 2008,MS-6151, Oak Ridge, TN 37831 USA. EM byunts@ornl.gov NR 32 TC 11 Z9 12 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 15 PY 2007 VL 361 IS 2-3 BP 239 EP 247 DI 10.1016/j.jnucmat.2006.12.014 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 161XD UT WOS:000246049300013 ER PT J AU Miller, MK Russell, KF Sokolov, MA Nanstad, RK AF Miller, M. K. Russell, K. F. Sokolov, M. A. Nanstad, R. K. TI APT characterization of irradiated high nickel RPV steels SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT Symposium on Radiation Effects, Deformation and Phase Transformations in Metals and Ceramics held at the 2006 TMS Annual Meeting CY MAR 12-16, 2006 CL San Antonio, TX SP Minerals Met & Mat Soc ID PRESSURE-VESSEL STEELS; MICROSTRUCTURAL CHARACTERIZATION; NEUTRON-IRRADIATION; EMBRITTLEMENT; BEHAVIOR; CU AB Samples of the welds from the Midland and Palisades reactors in the unirradiated condition and after neutron irradiation to a high fluence of up to 3.4 x 10(23) m(-2) (E > 1 MeV) have been characterized with the Oak Ridge National Laboratory's local electrode atom probe. High number densities, similar to 5 and similar to 7 x 10(23) m(-3), respectively, of similar to 2-nm-diameter copper-, nickel-, manganese- and silicon-enriched precipitates were observed after neutron irradiation. These copper-enriched precipitates were observed both in the matrix of the steel and also preferentially located along the dislocations. No appreciable differences were observed in the sizes or the compositions of the precipitates in the matrix and on the dislocations. The, average interparticle distance along the dislocations was 11 +/- 3 nm. Phosphorus segregation was also evident along the dislocations in both welds. No other nanoscale intragranular phases were observed in these neutron irradiated welds. (c) 2006 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Microscopy Grp, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Nucl Mat Sci & Technol Grp, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Miller, MK (reprint author), Oak Ridge Natl Lab, Microscopy Grp, Div Mat Sci & Technol, POB 2008,Bldg 4500S,MS 6136, Oak Ridge, TN 37831 USA. EM millermk@ornl.gov NR 26 TC 28 Z9 34 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 15 PY 2007 VL 361 IS 2-3 BP 248 EP 261 DI 10.1016/j.jnucmat.2006.12.015 PG 14 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 161XD UT WOS:000246049300014 ER PT J AU Lu, W Wechsler, MS AF Lu, W. Wechsler, M. S. TI The radiation damage database: Section on helium cross section SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT Symposium on Radiation Effects, Deformation and Phase Transformations in Metals and Ceramics held at the 2006 TMS Annual Meeting CY MAR 12-16, 2006 CL San Antonio, TX SP Minerals Met & Mat Soc ID INTRANUCLEAR-CASCADE CALCULATION; PROTON-INDUCED REACTIONS; HIGH-ENERGY PROTONS; FRAGMENT PRODUCTION; NUCLEUS INTERACTIONS; PURE METALS; INTERMEDIATE; SIMULATION; ISOTOPES; SPECTRA AB A radiation damage database with emphasis on spallation interactions is described. Currently, the database contains damage energy, displacement, helium, and hydrogen cross sections for 23 elemental targets irradiated by proton and neutron projectiles up to 3.2 GeV. In this paper, the focus is on proton-induced helium cross sections, but it is shown that for high energies (above about 500 MeV) proton- and neutron-induced helium cross sections are almost equal. The cross section calculations were run on the Cascade-Exciton Model code (no options) and also on the Bertini code with three nuclear level-density models and multistage pre-equilibrium model on and off. Calculation and experimental results are compared. For various targets, we tried to determine which code and options give best agreement with experiment. In some cases, such determinations are uncertain, partly because of limited and conflicting experimental information and partly perhaps because of the need for modifications in the codes. (c) 2006 Elsevier B.V. All rights reserved. C1 N Carolina State Univ, Dept Nucl Engn, Raleigh, NC 27695 USA. RP Lu, W (reprint author), Oak Ridge Natl Lab, Spallation Neutron Source Project, Bldg 8600,MS 6460, Oak Ridge, TN 37831 USA. EM luw2@ornl.gov NR 42 TC 6 Z9 6 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 15 PY 2007 VL 361 IS 2-3 BP 282 EP 288 DI 10.1016/j.jnucmat.2006.12.005 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 161XD UT WOS:000246049300017 ER PT J AU Cai, M Langford, SC Dickinson, JT Xiong, G Droubay, TC Joly, AG Beck, KM Hess, WP AF Cai, M. Langford, S. C. Dickinson, J. T. Xiong, Gang Droubay, T. C. Joly, A. G. Beck, K. M. Hess, W. P. TI An in situ study of the martensitic transformation in shape memory alloys using photoemission electron microscopy SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT Symposium on Radiation Effects, Deformation and Phase Transformations in Metals and Ceramics held at the 2006 TMS Annual Meeting CY MAR 12-16, 2006 CL San Antonio, TX SP Minerals Met & Mat Soc ID X-RAY-DIFFRACTION; THIN-FILMS; MEMS APPLICATIONS; WORK FUNCTION; MORPHOLOGY; METALS; DSC AB Thermally-induced martensitic phase transformations in polycrystalline CuZnAl and thin-film NiTiCu shape memory alloys were probed using photoemission electron microscopy (PEEM). Ultra-violet photoelectron spectroscopy shows a reversible change in the apparent work function during transformation, presumably due to the contrasting surface electronic structures of the martensite and austenite phases. In situ PEEM images provide information on the spatial distribution of these phases and the evolution of the surface microstructure during transformation. PEEM offers considerable potential for improving our understanding of martensitic transformations in shape memory alloys in real time. (c) 2006 Elsevier B.V. All rights reserved. C1 Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Dickinson, JT (reprint author), Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA. EM jtd@wsu.edu RI Droubay, Tim/D-5395-2016 OI Droubay, Tim/0000-0002-8821-0322 NR 31 TC 4 Z9 4 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 15 PY 2007 VL 361 IS 2-3 BP 306 EP 312 DI 10.1016/j.jnucmat.2006.12.008 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 161XD UT WOS:000246049300020 ER PT J AU Son, JT Cairns, EJ AF Son, J. T. Cairns, E. J. TI Characterization of LiCoO2 coated Li1.05Ni0.35Co0.25Mn0.4O2 cathode material for lithium secondary cells SO JOURNAL OF POWER SOURCES LA English DT Article DE cathode material; Li1.05Ni0.35Co0.25Mn0.4O2; sol-gel coating; LiCoO2; lithium ion battery ID COBALT DISSOLUTION; BATTERIES; IMPROVEMENT AB In this study, nano-crystalline LiCoO2 was coated onto the surface of Li1.05Ni0.35Co0.25Mn0.4O2 powders via sol-gel method. The influence of the coating on the electrochemical behavior of Li1.05Ni0.35Co0.25Mn0.4O2 is discussed. The surface morphology was characterized by transmission electron microscopy (TEM). Nano-crystallized LiCoO2 was clearly observed on the surfaces of Li1.05M0.35Co0.25Mn0.4O2. The phase and structural changes of the cathode materials before and after coating were revealed by X-ray diffraction spectroscopy (XRD). It was found that LiCoO2 coated Li1.05Ni0.35Co0.25Mn0.4O2 cathode material exhibited distinct surface morphology and lattice constants. Cyclic voltarnmetry (2.8-4.6 V versus Li/Li+) shows that the characteristic voltage transitions on cycling exhibited by the uncoated material are suppressed by the 7 wt.% LiCoO2 coating. This behavior implies that LiCoO2 inhibits structural change of Li1.05M0.35Co0.25Mn0.4O2 or reaction with the electrolyte on cycling. In addition, the LiCoO2 coating on Li1.05M0.35Co0.25Mn0.4O2 significantly improves the rate capability over the range 0.1-4.0C. Comparative data for the coated and uncoated materials are presented and discussed. (c) 2007 Published by Elsevier B.V. C1 Univ Calif Berkeley, Environm Energy Technol Div, EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Cairns, EJ (reprint author), Univ Calif Berkeley, Environm Energy Technol Div, EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM ejcairns@lbl.gov RI Cairns, Elton/E-8873-2012 OI Cairns, Elton/0000-0002-1179-7591 NR 14 TC 25 Z9 25 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD APR 15 PY 2007 VL 166 IS 2 BP 343 EP 347 DI 10.1016/j.jpowsour.2006.12.069 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 161WZ UT WOS:000246048900007 ER PT J AU Kalscheuer, T Commer, M Helwig, SL Hordt, A Tezkan, B AF Kalscheuer, T. Commer, M. Helwig, S. L. Hoerdt, A. Tezkan, B. TI Electromagnetic evidence for an ancient avalanche caldera rim on the south flank of Mount Merapi, Indonesia SO JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH LA English DT Article DE TEM; Merapi; forward modelling; resistivity structure ID CENTRAL JAVA; ELECTRICAL-CONDUCTIVITY; GEOPHYSICAL DATA; GROUNDED SOURCE; VOLCANO; INVERSION AB Long-Offset Transient Electromagnetic (LOTEM) data and VIBROTEM data from the south flank of Mount Merapi on Java island, Indonesia, are interpreted with one-dimensional (ID) inversions as well as two-dimensional (21)) forward modelling. One-dimensional joint inversions of several components of the electromagnetic field with Occam's method reduce the number of equivalent models, which were derived from inversions of single components and fit the data to a similar misfit. The ID results, together with results from other geophysical measurements, serve as the basic model for further 2D forward modelling. The final model depicts a layering that follows the topography of the strato-volcano. In the depth range of 500 in to 1000 in, the resistivity of the layers decreases rapidly downwards into a good conductor with resistivities below 10 ohm m. The deepest layer has a resistivity of 0.4 ohm m which is quantitatively explained with a combination of saline fluids and hydrothermally altered minerals. Furthermore, the final model supports a hypothesis from the interpretation of central-loop TEM (Transient Electromagnetic) data that there is a fault structure below the southern flank, approximately 7.3 km south of the summit. To the north of the fault, the top of the good conductor is lowered from a depth of 500 in to 1000 m. We propose that the fault structure coincides with an ancient avalanche caldera rim. (C) 2007 Elsevier BY. All rights reserved. C1 Uppsala Univ, Dept Earth Sci, S-75236 Uppsala, Sweden. Univ Cologne, Inst Geophys & Meteorol, D-50923 Cologne, Germany. Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. Univ Cologne, Inst Geophys & Meteorol, D-50923 Cologne, Germany. Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany. RP Kalscheuer, T (reprint author), Uppsala Univ, Dept Earth Sci, Villavagen 16, S-75236 Uppsala, Sweden. EM Thomas.Kalscheuer@geo.uu.se RI Helwig, Stefan/C-8023-2011; Commer, Michael/G-3350-2015; OI Commer, Michael/0000-0003-0015-9217; Kalscheuer, Thomas/0000-0003-3819-8182 NR 44 TC 9 Z9 10 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0273 J9 J VOLCANOL GEOTH RES JI J. Volcanol. Geotherm. Res. PD APR 15 PY 2007 VL 162 IS 1-2 BP 81 EP 97 DI 10.1016/j.jvolgeores.2006.12.014 PG 17 WC Geosciences, Multidisciplinary SC Geology GA 164NA UT WOS:000246239600005 ER PT J AU Chaparadza, A Rananavare, SB Shutthanandan, V AF Chaparadza, Allen Rananavare, Shankar B. Shutthanandan, Vaithiyalingam TI Synthesis and characterization of lithium-doped tin dioxide nanocrystalline powders SO MATERIALS CHEMISTRY AND PHYSICS LA English DT Article DE sol-gel growth; nuclear reaction analysis (NRA); Debye-Scherrer powder method ID OXIDE; NANOPARTICLES; SNO2-SB; PARTICLES; NANOWIRES; ROUTE; SIZE AB In order to develop a better understanding of Li-doping in SnO2 nanoparticles, a gel-sol method of synthesis is employed to systematically examine the influence of reaction and growth conditions such as pH, dopant concentration, and calcinations temperature. The extent of Li doping in nanoparticles is characterized using nuclear reaction analysis (NRA) and the nanostructure with high-resolution electron transmission microscopy (HR-TEM) and X-ray diffraction (XRD) techniques. The NRA reports that the lithium incorporation only takes place at alkaline pH (> 8). The XRD and TEM results indicate that the crystallite size exhibits a maximum at a pH of 8 increasing (decreasing) with calcinations temperature (dopant concentration), while preserving the casserite crystal structure (tetragonal rutile) under these reaction conditions. A preliminary analysis suggests a nanoscopic phase separation of lithium poor crystalline core and lithium rich amorphous shell may occur with increased dopant concentration. (c) 2006 Elsevier B.V. All rights reserved. C1 Portland State Univ, Dept Chem, Portland, OR 97207 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Chaparadza, A (reprint author), Portland State Univ, Dept Chem, POB 751, Portland, OR 97207 USA. EM allc@pdx.edu RI Rananavare, Shankar/A-8698-2009 OI Rananavare, Shankar/0000-0003-2564-4673 NR 29 TC 14 Z9 15 U1 0 U2 9 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0254-0584 EI 1879-3312 J9 MATER CHEM PHYS JI Mater. Chem. Phys. PD APR 15 PY 2007 VL 102 IS 2-3 BP 176 EP 180 DI 10.1016/j.matchemphys.2006.11.022 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA 153ZT UT WOS:000245477300011 ER PT J AU Park, SH Sato, Y Kim, JK Lee, YS AF Park, Sang-Ho Sato, Yuichi Kim, Jae-Kook Lee, Yun-Sung TI Powder property and electrochemical characterization of Li2MnO3 material SO MATERIALS CHEMISTRY AND PHYSICS LA English DT Article DE Li2MnO3; phase transformation; electrochemical properties; cathode materials ID LAYERED LIMNO2; STRUCTURAL-CHARACTERIZATION; BATTERIES; ELECTRODE; OXIDES AB Li2MnO3 materials were synthesized at various calcination temperatures by the conventional solid state reaction. The Li2MnO3 powders were characterized by means of XRD, SEM, and TEM analyses. The particle properties of the Li2MnO3 powders, such as their surface morphology and oxygen content, as well as their electrochemical behaviors varied according to the calcinations temperatures. The discharge capacities of the Li/Li2MnO3 cells decreased with increasing calcination temperatures. The resulting Li2MnO3 material was mainly composed of Li2MnO3, sub-LiMnO2, and sub-LiMn2O4 phases. The unexpected reversible discharge capacity of Li/LiNnO(3) cell fabricated in this study originated from the phase transformation between layered LiMnO2 and cubic LiMn2O4 phases in this material. (c) 2006 Elsevier B.V. All rights reserved. C1 Chonnam Natl Univ, Fac Appl Chem Engn, Kwangju 500757, South Korea. Chonnam Natl Univ, Dept Mat Sci & Engn, Kwangju 500757, South Korea. Kanagawa Univ, Dept Appl Chem, Yokohama, Kanagawa 2218686, Japan. Argonne Natl Lab, Argonne, IL 60439 USA. RP Lee, YS (reprint author), Chonnam Natl Univ, Fac Appl Chem Engn, 300 Yongbong Dong, Kwangju 500757, South Korea. EM leeys@chonnam.ac.kr NR 14 TC 64 Z9 68 U1 4 U2 57 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0254-0584 J9 MATER CHEM PHYS JI Mater. Chem. Phys. PD APR 15 PY 2007 VL 102 IS 2-3 BP 225 EP 230 DI 10.1016/j.matchemphys.2006.12.008 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA 153ZT UT WOS:000245477300019 ER EF