FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Neilson, RH Klaehn, JR AF Neilson, Robert H. Klaehn, John R. TI Some new mixed-substituent phosphazenes derived from N-silylphosphoranimines SO JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS LA English DT Article DE phosphazene; phosphoranimine; N-silyl; trimer; polymer ID LIVING CATIONIC POLYMERIZATION; PHOSPHORANIMINES; POLY(ALKYL/ARYLPHOSPHAZENES); POLY(DICHLOROPHOSPHAZENE); POLYPHOSPHAZENES AB A series of mixed-substituent P-alkyl-N-silylphosphoranimines, Me3SiN=P(R)XY (R = n-Pr, n-Bu, i-Pr; X, Y = Br, OCH2CF3, OPh), were studied as possible precursors to cyclic and/or polymeric phosphazenes. Three synthetic methods were investigated: sealed-ampule thermolysis, dynamic-vacuum thermolysis, and reactions with CF3CH2OH. While the results varied with the specific precursor and reaction conditions employed, these synthetic methods afforded a variety of new non-geminally substituted cyclic trimers, [N=P(R)X](3) (R = n-Pr, n-Bu, i-Pr; X = Br, OCH2CF3, OPh), one new polymer, [N=P(n-Pr)OPh] (n) , and a simple route to a known polymer, [N=P(Ph)OCH2CF3] (n) . The trimers were generally obtained as mixtures of cis and trans isomers although, in one case, [N=P(i-Pr)OPh](3), the pure trans isomer was isolated and structurally characterized by X-ray diffraction. C1 Texas Christian Univ, Dept Chem, Ft Worth, TX 76129 USA. Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Neilson, RH (reprint author), Texas Christian Univ, Dept Chem, Ft Worth, TX 76129 USA. EM R.Neilson@tcu.edu RI Klaehn, John/C-6011-2017 OI Klaehn, John/0000-0002-7077-4509 NR 24 TC 2 Z9 3 U1 0 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1574-1443 J9 J INORG ORGANOMET P JI J. Inorg. Organomet. Polym. Mater. PD DEC PY 2006 VL 16 IS 4 BP 319 EP 326 DI 10.1007/s10904-006-9067-2 PG 8 WC Polymer Science SC Polymer Science GA 140DN UT WOS:000244484100007 ER PT J AU Denisov, S Mokhov, NV Striganov, SI Kostin, MA Tropin, IS AF Denisov, S. Mokhov, N. V. Striganov, S. I. Kostin, M. A. Tropin, I. S. TI Machine-related backgrounds in the SiD detector at ILC SO JOURNAL OF INSTRUMENTATION LA English DT Article DE instrumentation for particle accelerators and storage rings; high energy (linear accelerators synchrotrons); detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc); large detector systems for particle and astroparticle physics AB With a multi- stage collimation system and magnetic iron spoilers in the tunnel, the background particle fluxes on the ILC detector can be substantially reduced. At the same time, beam- halo interactions with collimators and protective masks in the beam delivery system create fluxes of muons and other secondary particles which can still exceed the tolerable levels for some of the ILC sub- detectors. Results of modeling of such backgrounds in comparison to those from the e(+) e(-) interactions are presented in this paper for the SiD detector. C1 [Denisov, S.; Mokhov, N. V.; Striganov, S. I.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Kostin, M. A.] Michigan State Univ, NSCL, E Lansing, MI 48824 USA. [Tropin, I. S.] Tomsk Polytech Univ, Tomsk 634034, Russia. RP Denisov, S (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM strigano@fnal.gov NR 17 TC 0 Z9 0 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD DEC PY 2006 VL 1 AR P12003 DI 10.1088/1748-0221/1/12/P12003 PG 17 WC Instruments & Instrumentation SC Instruments & Instrumentation GA V44AM UT WOS:000202975600001 ER PT J AU Shang, HM Wang, Y Milbrath, B Bliss, M Cao, GZ AF Shang, Huamei Wang, Ying Milbrath, Brian Bliss, Mary Cao, Guozhong TI Doping effects in nanostructured cadmium tungstate scintillation films SO JOURNAL OF LUMINESCENCE LA English DT Article DE cadmium tungstate; scintillator; sol-gel processing; doping; photoluminescence ID CDWO4 SINGLE-CRYSTALS; LUMINESCENCE; IONS; SUBSTITUTION; DEFECTS; OXIDE; EPR AB This paper reports experimental study on the development of cadmium tungstate scintillator material in the form of nanocrystal films through controlled sol-gel processing and pre-designed doping. We chose cadmium tungstate as a base material for doping and nanostructure development due to its excellent inherent photoluminescence (PL) property, and chemical and thermal stability including non-hydroscopicity. Experimental results revealed that doping with Li+, B3+ and Bi3+ resulted in appreciably reduced grain size and increased density leading to enhanced optical transmittance. Further analyses indicated that PL output changed significantly with the introduction of dopants. The relationships between doping, microstructure, and PL were discussed. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Cao, GZ (reprint author), Univ Washington, Dept Mat Sci & Engn, 302M Roberts Hall, Seattle, WA 98195 USA. EM gzcao@u.washington.edu RI Cao, Guozhong/E-4799-2011; Bliss, Mary/G-2240-2012; Wang, Ying/J-3286-2012 OI Bliss, Mary/0000-0002-7565-4813; NR 33 TC 12 Z9 13 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-2313 J9 J LUMIN JI J. Lumines. PD DEC PY 2006 VL 121 IS 2 SI SI BP 527 EP 534 DI 10.1016/j.jlumin.2005.12.048 PG 8 WC Optics SC Optics GA 115RJ UT WOS:000242751200067 ER PT J AU Martin, JE Shea-Rohwer, LE AF Martin, James E. Shea-Rohwer, Lauren E. TI Lifetime determination of materials that exhibit a stretched exponential luminescent decay SO JOURNAL OF LUMINESCENCE LA English DT Article DE CdS nanoparticles; quantum dots; stretched exponential; luminescent lifetimes; phase-shift; ZnS : Cu, Al; coumarin 500; coumarin 460; lifetime distribution ID BROAD-BAND LUMINESCENCES; CDS NANOPARTICLES; SPECTRAL PROPERTIES; ZNS PHOSPHORS; RELAXATION; MECHANISM; MODEL; TIME AB We report frequency- and time-domain luminescent lifetime measurements for materials that exhibit a broad spectrum of lifetimes, specifically, those for which the observed decay dynamics can be described by a stretched exponential function. The spectrum of lifetimes of such materials can be characterized by an average lifetime, and in principle this average can be extracted from either time- or frequency-domain measurements. In practice, this requires some care, because the extent to which the various states are excited depends on how long their lifetime is relative to the excitation pulse width or period. For the complex luminescent materials ZnS:Cu,Al and CdS quantum dots we compare the average lifetime obtained from frequency-domain data and from time-domain data under both pulsed laser excitation and steady-state, dc excitation. The agreement between the average measured lifetimes is good, but not perfect, showing that quoted average lifetimes for complex materials can be dependent on the measurement technique. Finally, a spectrum of lifetimes is given that gives rise to stretched exponential relaxation and this spectrum is used to compute frequency-domain data for a stretched exponential material. (c) 2006 Elsevier B.V. All rights reserved. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Shea-Rohwer, LE (reprint author), Sandia Natl Labs, POB 5800,MS-1421, Albuquerque, NM 87185 USA. EM leshea@sandia.gov NR 22 TC 14 Z9 14 U1 0 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-2313 J9 J LUMIN JI J. Lumines. PD DEC PY 2006 VL 121 IS 2 SI SI BP 573 EP 587 DI 10.1016/j.jlumin.2005.12.043 PG 15 WC Optics SC Optics GA 115RJ UT WOS:000242751200073 ER PT J AU Anandakathir, R Canteenwala, T Wang, HL Chiang, LY AF Anandakathir, Robinson Canteenwala, Taizoon Wang, Hsing-Ling Chiang, Long Y. TI Synthesis and characterization of hexadecaaniline-rafted comb-like poly(maleic acid-alt-1-octadecene) SO JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY LA English DT Article DE hexadecaaniline; tetraaniline; conductive comb-like polymer; poly(maleic anhydride-alt-1-octadecene) ID POLYMER ELECTROCHEMICAL DEVICES; POLYANILINE FILMS; IONIC LIQUIDS; ACTUATORS; DEFORMATION; POLY(O-METHOXYANILINE) AB Highly soluble hexadecaaniline (A(16))-grafted polyolefin derivatives poly(maleic acid-hexadecaanilinamide-alt-1-octadecene) (PMAO-A(16)) in a comb-like configuration with alternate linear hexadecane and A(16) side-chains were synthesized and characterized. The structure of PMAO-A(16) was substantiated by infrared and UV-Vis spectra showing high intensity of characteristic absorption peaks corresponding to a high degree of A(16) attachments. Covalent grafting of hexadecaanilines onto the polymer backbone of PMAO was confirmed by the detection of a new amide [-(C=O)-NH-] absorption band appearing at 1661 cm(-1) accompanied with the full disappearance of anhydride carbonyl absorptions. Based on the comparison between TGA profiles of PMAO-A(16) and hexadecaaniline, a 12.5% wt loss at 365-6008 degrees C was accounted for full elimination of aliphatic side-chains that matches approximately with the weight percentage of total hexadecane arms (12.7%). The data revealed a nearly quantitative yield of A(16) grafting on anhydride subunits leading to complete conversion of PMAO into PMAO-A(16). Furthermore, preliminary H-1-NMR study of PMAO-A(16) indicated its capability to undergo molecular self-assembly in DMSO where A(16)s were dispersed in the solvent phase with hexadecane side-chains located in a phase-separated domain. C1 Univ Massachusetts, Dept Chem, Lowell, MA 01854 USA. Los Alamos Natl Lab, Div Chem, Phys Chem & Spectroscopy Grp, Los Alamos, NM USA. RP Chiang, LY (reprint author), Univ Massachusetts, Dept Chem, Lowell, MA 01854 USA. EM long_chiang@uml.edu NR 18 TC 1 Z9 1 U1 6 U2 18 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1060-1325 J9 J MACROMOL SCI A JI J. Macromol. Sci. Part A-Pure Appl. Chem. PD DEC PY 2006 VL 43 IS 12 BP 1945 EP 1954 DI 10.1080/10916460600997603 PG 10 WC Polymer Science SC Polymer Science GA 115XO UT WOS:000242767300005 ER PT J AU Harel, E Cho, H AF Harel, Elad Cho, Herman TI A general numerical analysis of time-domain NQR experiments SO JOURNAL OF MAGNETIC RESONANCE LA English DT Article DE time-domain nuclear quadrupole resonance; time-dependent perturbation theory; Liouville equation ID NUCLEAR-QUADRUPOLE RESONANCE; MAGNETIC-RESONANCE; POWDER SAMPLE; SPIN I=1; SPECTROSCOPY; FIELD; PERFORMANCE; ASYMMETRY; OPERATORS; INTEGER AB We. introduce a general numerical approach for solving the Liouville equation of an isolated quadrupolar nuclide that can be used to analyze the unitary dynamics of time-domain NQR experiments. A numerical treatment is necessitated by the dimensionality of the Liouville spaced, which precludes analytical, closed form solutions for I > 3/2. Accurate simulations of experimental nutation curves, forbidden transition intensities, powder and single crystal spectra, and off-resonance irradiation dynamics can be computed with this method. We also examine the validity of perturbative approximations where the signal intensity of a transition is proportional to the transition moment between the eigenstates of the system, thus providing a simple basis for determining selection rules. Our method allows us to calculate spectra for all values of the asymmetry parameter, eta, and sample orientations relative to the coil axis. We conclude by demonstrating the methodology for calculating the response of the quadrupole system to amplitude- and frequency-modulated pulses. (c) 2006 Elsevier Inc. All rights reserved. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Pacific NW Natl Lab, Fundamental Sci Directorate, Richland, WA 99352 USA. RP Harel, E (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM elharcl@berkeley.edu NR 23 TC 4 Z9 4 U1 3 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1090-7807 J9 J MAGN RESON JI J. Magn. Reson. PD DEC PY 2006 VL 183 IS 2 BP 308 EP 314 DI 10.1016/j.jmr.2006.06.033 PG 7 WC Biochemical Research Methods; Physics, Atomic, Molecular & Chemical; Spectroscopy SC Biochemistry & Molecular Biology; Physics; Spectroscopy GA 111CH UT WOS:000242428100016 PM 16996760 ER PT J AU Srajer, G Lewis, LH Bader, SD Epstein, AJ Fadley, CS Fullerton, EE Hoffmann, A Kortright, JB Krishnan, KM Majetich, SA Rahman, TS Ross, CA Salamon, MB Schuller, IK Schulthess, TC Sun, JZ AF Srajer, G. Lewis, L. H. Bader, S. D. Epstein, A. J. Fadley, C. S. Fullerton, E. E. Hoffmann, A. Kortright, J. B. Krishnan, Kannan M. Majetich, S. A. Rahman, T. S. Ross, C. A. Salamon, M. B. Schuller, I. K. Schulthess, T. C. Sun, J. Z. TI Advances in nanomagnetism via X-ray techniques SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Review DE magnetism; nanomagnetism; nanomagnetism and X-rays; confined magnetism; cluster magnetism; phase-separated magnetic systems ID MAGNETIC CIRCULAR-DICHROISM; SYNCHROTRON-RADIATION; RECORDING MEDIA; NEUTRON-SCATTERING; SPIN-TRANSFER; FERROMAGNETIC NANORINGS; ABSORPTION SPECTROSCOPY; ELECTRONIC-STRUCTURE; TRANSPORT-PROPERTIES; COBALT NANOCRYSTALS AB This report examines the current status and the future directions of the field of nanomagnetism and assesses the ability of hard X-ray synchrotron facilities to provide new capabilities for making advances in this field. The report first identifies major research challenges that lie ahead in three broadly defined subfields of nanomagnetism: confined systems, clusters and complex oxides. It then examines the relevant experimental capabilities that are currently available at hard X-ray synchrotron light sources, using the Advanced Photon Source (APS) at Argonne as an example. Finally, recommendations are made for future development in X-ray facilities that will enhance the study of nanomagnetism, including new experimental directions, modifications that would enable in situ sample preparation, and measurements at high magnetic fields and/or low temperatures. In particular, in situ sample preparation is of high priority in many experiments, especially those in the area of surface magnetism. (c) 2006 Published by Elsevier B.V. C1 Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Hitachi Global Storage Technol, San Jose Res Ctr, San Jose, CA 95120 USA. Univ Washington, Dept Mat Sci, Seattle, WA 98195 USA. Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. Kansas State Univ, Dept Phys, Manhattan, KS 66506 USA. MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. Univ Illinois, Dept Phys, Urbana, IL 61801 USA. Univ Calif San Diego, Phys Dept 0319, La Jolla, CA 92093 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. IBM Corp, Yorktown Hts, NY 10598 USA. RP Srajer, G (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM srajerg@aps.anl.gov RI Hoffmann, Axel/A-8152-2009; MSD, Nanomag/F-6438-2012; Bader, Samuel/A-2995-2013; Fullerton, Eric/H-8445-2013; Sun, Jonathan/C-2773-2009; Majetich, Sara/B-1022-2015 OI Hoffmann, Axel/0000-0002-1808-2767; Fullerton, Eric/0000-0002-4725-9509; Majetich, Sara/0000-0003-0848-9317 NR 258 TC 58 Z9 60 U1 3 U2 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 EI 1873-4766 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD DEC PY 2006 VL 307 IS 1 BP 1 EP 31 DI 10.1016/j.jmmm.2006.06.033 PG 31 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 093CM UT WOS:000241144900001 ER PT J AU Gnatchenko, SL Merenkov, DN Bludov, AN Pishko, VV Shakhayeva, YA Baran, M Szymczak, R Novosad, VA AF Gnatchenko, S. L. Merenkov, D. N. Bludov, A. N. Pishko, V. V. Shakhayeva, Yu. A. Baran, M. Szymczak, R. Novosad, V. A. TI Asymmetrically shaped hysteresis loop in exchange-biased FeNi/FeMn film SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE exchange bias; asymmetrically hysteresis loop; exchange anisotropy; ferro/antiferromagnetic bilayer ID POLYCRYSTALLINE F/AF BILAYERS; MAGNETIZATION REVERSAL; SYSTEMS AB The magnetization reversal of the bilayer polycrystalline FeNi(50 angstrom)/FeMn(50 angstrom) film sputtered in a magnetic field has been studied by magnetic and magneto-optical techniques. The external magnetic fields were applied along the easy or hard magnetization axis of the ferromagnetic permalloy layer. The asymmetry of hysteresis loop has been found. Appreciable asymmetry and the exchange bias were observed only in the field applied along the easy axis. The specific features of magnetization reversal were explained within the phenomenological model that involves high-order exchange anisotropy and misalignment of the easy axes of the anti ferromagnetic and ferromagnetic layers. It has been shown that the film can exist in one of three equilibrium magnetic states in the field applied along the easy axis. The transitions between these states occur as first-order phase transitions. The observed hysteresis loop asymmetry is related to the existence of the metastable state. (c) 2006 Elsevier B.V. All rights reserved. C1 Natl Acad Sci Ukraine, B Verkin Inst Low Temp Phys & Engn, UA-61103 Kharkov, Ukraine. Polish Acad Sci, Inst Phys, PL-02688 Warsaw, Poland. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Merenkov, DN (reprint author), Natl Acad Sci Ukraine, B Verkin Inst Low Temp Phys & Engn, Lenin Ave 47, UA-61103 Kharkov, Ukraine. EM merenkov@ilt.kharkov.ua RI Novosad, Valentyn/C-2018-2014; Novosad, V /J-4843-2015 NR 24 TC 12 Z9 12 U1 0 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD DEC PY 2006 VL 307 IS 2 BP 263 EP 267 DI 10.1016/j.jmmm.2006.04.011 PG 5 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 095PY UT WOS:000241321200017 ER PT J AU Hudis, J Hu, R Broholm, CL Mitrovic, VF Petrovic, C AF Hudis, J. Hu, R. Broholm, C. L. Mitrovic, V. F. Petrovic, C. TI Magnetic and transport properties of RCoIn5 (R = Pr, Nd) and RCoGa5 (R = Tb-Tm) SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE crystal growth; magnetic anisotropy ID HEAVY-FERMION SUPERCONDUCTIVITY; SINGLE-CRYSTALS; TEMPERATURE; UPT3; ANTIFERROMAGNET; SUSCEPTIBILITY; FERROMAGNETISM; COEXISTENCE; GROWTH; FIELD AB We report on magnetic and transport properties of single crystals of the light rare earth containing series of compounds RCoIn5 (R = Pr, Nd) and heavy rare earth containing series RCoGa5 (R = Tb-Tm). All the compounds crystallize in the tetragonal HoCoGa5 crystal structure and are very good metals with small defect scattering at low temperatures. NdCoIn5 and members of the RCoGa5 series with large de Gennes factors order antiferromagnetically. (c) 2006 Elsevier B.V. All rights reserved. C1 Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. Brown Univ, Dept Phys, Providence, RI 02912 USA. RP Petrovic, C (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. EM petrovic@bnl.gov RI Petrovic, Cedomir/A-8789-2009; Broholm, Collin/E-8228-2011; Hu, Rongwei/E-7128-2012 OI Petrovic, Cedomir/0000-0001-6063-1881; Broholm, Collin/0000-0002-1569-9892; NR 30 TC 20 Z9 20 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD DEC PY 2006 VL 307 IS 2 BP 301 EP 307 DI 10.1016/j.jmmm.2006.04.023 PG 7 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 095PY UT WOS:000241321200023 ER PT J AU Klepeis, JE AF Klepeis, John E. TI Introduction to first-principles electronic structure methods: Application to actinide materials SO JOURNAL OF MATERIALS RESEARCH LA English DT Review AB This paper provides an introduction for non-experts to first-principles electronic structure methods that are widely used in condensed-matter physics. Particular emphasis is placed on giving the appropriate background information needed to better appreciate the use of these methods to study. actinide and other materials. Specifically, the underlying theory is described in sufficient detail to enable an understanding of the relative strengths and weaknesses of the methods. In addition, the meaning of commonly used terminology is explained, including density functional theory (DFT), local density approximation (LDA), and generalized gradient approximation (GGA), as well as linear muffin-tin orbital (LMTO), linear augmented plane wave (LAPW), and pseudopotential methods. Methodologies that extend the basic theory to address specific limitations are also briefly discussed. Finally, a few illustrative applications are presented, including quantum molecular dynamics (QMD) simulations and studies of surfaces, impurities, and defects. The paper concludes by addressing the current controversy regarding magnetic calculations for actinide materials. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Klepeis, JE (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM klepeis1@llnl.gov NR 15 TC 4 Z9 4 U1 2 U2 8 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 EI 2044-5326 J9 J MATER RES JI J. Mater. Res. PD DEC PY 2006 VL 21 IS 12 BP 2979 EP 2985 DI 10.1557/JMR.2006.0371 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 115VX UT WOS:000242763000003 ER PT J AU Adams, DP Rodriguez, MA Tigges, CP Kotula, PG AF Adams, D. P. Rodriguez, M. A. Tigges, C. P. Kotula, P. G. TI Self-propagating, high-temperature combustion synthesis of rhombohedral AlPt thin films SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID CRYSTAL-STRUCTURE; PT-AL; EXOTHERMIC REACTIONS; MULTILAYER FOILS; PHASE-FORMATION; ALLOYS; SYSTEM; AL/NI; ALUMINIUM; DIFFUSION AB Sputter-deposited, Al/Pt multilayer thin films of various designs exhibited rapid, self-propagating, high-temperature reactions. With reactant layers maintained at similar to 21 degrees C prior to ignition and films adhered to oxide-passivated silicon substrates, the propagation speeds varied from approximately 20 to 90 m/s depending on bilayer dimension and total film thickness. Contrary to current Al-Pt equilibrium phase diagrams, all multilayers reacted in air and in vacuum transformed into rhombohedral AlPt having a space group R-3(148). Rietveld refinement of AlPt powder (generated from thin film samples) yielded trigonal/hexagonal unit cell lattice parameters of a = 15.634(3) angstrom and c = 5.308(1) angstrom; the number of formula units = 39. Rhombohedral AlPt was stable to 550 degrees C with transformation to a cubic FeSi-type structure occurring above this temperature. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Adams, DP (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dpadams@sandia.gov RI Kotula, Paul/A-7657-2011 OI Kotula, Paul/0000-0002-7521-2759 NR 50 TC 38 Z9 39 U1 1 U2 10 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 EI 2044-5326 J9 J MATER RES JI J. Mater. Res. PD DEC PY 2006 VL 21 IS 12 BP 3168 EP 3179 DI 10.1557/JMR.2006.0387 PG 12 WC Materials Science, Multidisciplinary SC Materials Science GA 115VX UT WOS:000242763000024 ER PT J AU Lu, ZP Liu, CT Wang, XZ AF Lu, Z. P. Liu, C. T. Wang, X. Z. TI Minor additions of Sn in a bulk glass-forming Fe-based system SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID METALLIC GLASSES; ALLOYING ADDITIONS; AMORPHOUS-ALLOYS; ABILITY AB Minor additions of Sn in the bulk glass-forming Fe61-xSnxY2Zr8Co5Cr2Mo7B15 (x = 0% to 2%) system were studied in detail. It was found that combinations of Y and Sn can scavenge oxygen out of the undercooled liquids to form innocuous oxides, thus stabilizing the liquids. Besides this beneficial scavenging effect, Sn additions in the present Fe-based alloys also showed complex alloying effects on glass formation, which can be divided into three stages. At stage I (x <= 0.5%), the microalloyed compositions associate with the same eutectic as that of the base alloy. The glass-forming ability (GFA) of the resulting alloys is determined primarily by their liquidus temperature and similar to that of the base alloy. At stage II (0.85% < x <= 1.15%), glass-matrix composite structures start to form because the alloy compositions are adjusted into a new "deeper" eutectic system. At stage III (x > 1.15%), however, alloy compositions shift to another new eutectic system, and the GFA is dramatically decreased due to the strong formation of primary phase alpha-Fe. Homogeneous glass-matrix composites with a diameter of 7 mm in the alloy containing 1.0-1.15% Sn were successfully produced. C1 Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37830 USA. Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Lu, ZP (reprint author), Oak Ridge Natl Lab, Div Met & Ceram, POB 2008, Oak Ridge, TN 37830 USA. EM luzp@ornl.gov RI Lu, Zhao-Ping/A-2718-2009 NR 17 TC 2 Z9 2 U1 1 U2 7 PU MATERIALS RESEARCH SOCIETY PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD DEC PY 2006 VL 21 IS 12 BP 3180 EP 3186 DI 10.1557/JMR.2006.0388 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 115VX UT WOS:000242763000025 ER PT J AU Chen, ZY Huang, LM He, JQ Zhu, YM O'Brien, S AF Chen, Zhuoying Huang, Limin He, Jiaqing Zhu, Yimei O'Brien, Stephen TI New nonhydrolytic route to synthesize crystalline BaTiO3 nanocrystals with surface capping ligands SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID ROOM-TEMPERATURE SYNTHESIS; PULSED-LASER DEPOSITION; TITANATE THIN-FILMS; BARIUM-TITANATE; DIELECTRIC-PROPERTIES; QUANTUM DOTS; NANOPARTICLES; PRECIPITATION; SRTIO3; OXIDE AB A new nonhydrolytic route for the preparation of well-crystallized size-tunable barium titanate (BaTiO3) nanocrystals capped with surface ligands is reported. Our approach involves: (i) synthesizing a "pseudo" bimetallic precursor, and (ii) combining the as-synthesized bimetallic precursor with a mixture of oleylamine with different surface coordinating ligands at 320 degrees C for crystallization and crystal growth. Different alcohols in the precursor synthesis and different carboxylic acids were used to study, the effect of size and morphological control over the nanocrystals. Nanocrystals of barium titanate with diameters of 6-10 nm (capped with decanoic acid), 3-5 nm (capped with oleic acid), 10-20 nm (a nanoparticle and nanorod mixture capped with oleyl alcohol), and 2-3 nm (capped with oleyl alcohol) were synthesized, and can be easily dispersed into nonpolar solvents such as hexane or toluene. Techniques including x-ray diffraction, transmission electron microscopy, selected area electron diffraction, and high-resolution electron microscopy confirm the crystallinity and morphology of these as-synthesized nanocrystals. C1 Columbia Univ, Dept Appl Phys & Appl Math, MRSEC, New York, NY 10027 USA. Columbia Univ, Dept Appl Phys & Appl Math, Columbia Nanoctr NSEC, New York, NY 10027 USA. Brookhaven Natl Lab, Dept Mat Sci, Upton, NY 11973 USA. RP O'Brien, S (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, MRSEC, New York, NY 10027 USA. EM so188@columbia.edu RI He, Jiaqing/A-2245-2010; O'Brien, Stephen/D-7682-2013; Huang, Limin/J-6211-2014; Chen, Zhuoying/N-5201-2015 OI Chen, Zhuoying/0000-0002-2535-5962 NR 58 TC 9 Z9 9 U1 0 U2 29 PU MATERIALS RESEARCH SOCIETY PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD DEC PY 2006 VL 21 IS 12 BP 3187 EP 3195 DI 10.1557/JMR.2006.0389 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA 115VX UT WOS:000242763000026 ER PT J AU Gremillard, L Saiz, E Radmilovic, VR Tomsia, AP AF Gremillard, Laurent Saiz, Eduardo Radmilovic, Velimir R. Tomsia, Antoni P. TI Role of titanium on the reactive spreading of lead-free solders on alumina SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID GRAIN-BOUNDARY; OXIDE FILMS; WETTABILITY; SURFACE; ALLOYS; SILVER; DIFFUSION; KINETICS; TIN; ADSORPTION AB The wetting of Sn3Ag-based alloys on Al2O3 has been studied using the sessile-drop configuration. Small additions of Ti decrease the contact angle of Sn3Ag alloys on alumina from 115 degrees to 23 degrees. Adsorption of Ti-species at the solid-liquid interface prior to reaction is the driving force for the observed decrease in contact angle, and the spreading kinetics is controlled by the kinetics of Ti dissolution into the molten alloy. The addition of Ti increases the transport rates at the solid-liquid interface, resulting in the formation of triple-line ridges that pin the liquid front and promote a wide variability in the final contact angles. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Inst Natl Sci Appl, Dept Mat Sci, CNRS, GEMPPM INSA,UMR 5510, F-69621 Villeurbanne, France. Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Gremillard, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM laurent.gremillard@insa-lyon.fr OI Gremillard, Laurent/0000-0001-7258-6483 NR 48 TC 18 Z9 18 U1 2 U2 16 PU MATERIALS RESEARCH SOCIETY PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD DEC PY 2006 VL 21 IS 12 BP 3222 EP 3233 DI 10.1557/JMR.2006.0393 PG 12 WC Materials Science, Multidisciplinary SC Materials Science GA 115VX UT WOS:000242763000031 ER PT J AU Tang, M Carter, WC Cannon, RM AF Tang, Ming Carter, W. Craig Cannon, Rowland M. TI Grain boundary order-disorder transitions SO JOURNAL OF MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT Brandon Symposium on Advanced Materials and Characterization held at the 2006 TMS Annual Meeting CY MAR 12-16, 2006 CL San Antonio, TX SP Minerals, Met & Mat Soc ID LATTICE-GAS MODEL; MOLECULAR-DYNAMICS; MELTING TRANSITION; TILT BOUNDARIES; TRANSFORMATION; ALUMINUM AB The conditions for grain boundary (GB) structural transitions are determined from a diffuse interface model that incorporates structural disorder and crystallographic orientation. A graphical construction and numerical calculations illustrate the existence of a first-order GB order-disorder transition below the bulk melting point. When thermodynamic conditions permit their existence, disordered GB structures tend to be stable at higher temperatures and are perfectly wet by liquid at the melting point, while ordered grain boundaries are meta-stable against preferential melting. We calculate GB phase diagrams which are analogous to those for liquid-vapor phase transitions. C1 MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Tang, M (reprint author), MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM mingtang@mit.edu RI Carter, W/K-2406-2012 NR 29 TC 41 Z9 42 U1 0 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD DEC PY 2006 VL 41 IS 23 BP 7691 EP 7695 DI 10.1007/s10853-006-0608-4 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA 116TL UT WOS:000242825100005 ER PT J AU De Hosson, JTM Soer, WA Minor, AM Shan, ZW Stach, EA Asif, SAS Warren, OL AF De Hosson, Jeff T. M. Soer, Wouter A. Minor, Andrew M. Shan, Zhiwei Stach, Eric A. Asif, S. A. Syed Warren, Oden L. TI In situ TEM nanoindentation and dislocation-grain boundary interactions: a tribute to David Brandon SO JOURNAL OF MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT Brandon Symposium on Advanced Materials and Characterization held at the 2006 TMS Annual Meeting CY MAR 12-16, 2006 CL San Antonio, TX SP Minerals, Met & Mat Soc ID TRANSMISSION ELECTRON-MICROSCOPY; NUCLEAR MAGNETIC-RESONANCE; SOLUTE SEGREGATION; HIGH-RESOLUTION; THIN-FILMS; AL; DEFORMATION; ALLOYS; ALUMINUM; MG AB As a tribute to the scientific work of Professor David Brandon, this paper delineates the possibilities of utilizing in situ transmission electron microscopy to unravel dislocation-grain boundary interactions. In particular, we have focused on the deformation characteristics of Al-Mg films. To this end, in situ nanoindentation experiments have been conducted in TEM on ultrafine-grained Al and Al-Mg films with varying Mg contents. The observed propagation of dislocations is markedly different between Al and Al-Mg films, i.e. the presence of solute Mg results in solute drag, evidenced by a jerky-type dislocation motion with a mean jump distance that compares well to earlier theoretical and experimental results. It is proposed that this solute drag accounts for the difference between the load-controlled indentation responses of Al and Al-Mg alloys. In contrast to Al-Mg alloys, several yield excursions are observed during initial indentation of pure Al, which are commonly attributed to the collective motion of dislocations nucleated under the indenter. Displacement-controlled indentation does not result in a qualitative difference between Al and Al-Mg, which can be explained by the specific feedback characteristics providing a more sensitive detection of plastic instabilities and allowing the natural process of load relaxation to occur. The in situ indentation measurements confirm grain boundary motion as an important deformation mechanism in ultrafine-grained Al when it is subjected to a highly inhomogeneous stress field as produced by a Berkovich indenter. It is found that solute Mg effectively pins high-angle grain boundaries during such deformation. The mobility of low-angle boundaries is not affected by the presence of Mg. C1 Univ Groningen, Ctr Mat Sci, Dept Appl Phys, NL-9747 AG Groningen, Netherlands. Univ Groningen, Netherlands Inst Met Res, NL-9747 AG Groningen, Netherlands. Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. Purdue Univ, Sch Mat Engn, W Lafayette, IN 47906 USA. Hysitron Inc, Minneapolis, MN 55344 USA. RP De Hosson, JTM (reprint author), Univ Groningen, Ctr Mat Sci, Dept Appl Phys, Nijenborgh 4, NL-9747 AG Groningen, Netherlands. EM j.t.m.de.hosson@rug.nl RI Stach, Eric/D-8545-2011; De Hosson, Jeff/C-2169-2013; Shan, Zhiwei/B-8799-2014 OI Stach, Eric/0000-0002-3366-2153; NR 52 TC 58 Z9 58 U1 1 U2 49 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD DEC PY 2006 VL 41 IS 23 BP 7704 EP 7719 DI 10.1007/s10853-006-0472-2 PG 16 WC Materials Science, Multidisciplinary SC Materials Science GA 116TL UT WOS:000242825100007 ER PT J AU Miller, MK AF Miller, M. K. TI Atom probe tomography characterization of solute segregation to dislocations and interfaces SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID SPECIMENS; DEFECTS; LINE AB The level and extent of solute segregation to individual dislocations and interfaces may be visualized and quantified by atom probe tomography. The large volume of analysis and high data acquisition rate of the local electrode atom probe (LEAP (R)) enables the solute distribution in the region of and along the core of dislocations to be estimated. Solute segregation at precipitate-matrix interfaces of precipitates as small as 2-nm diameter may be quantified. Examples are presented of solute segregation to dislocations and clustering/precipitation in a neutron irradiated Fe-Ni-P model alloy and the neutron irradiated beltline weld from the Midland reactor. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Microscopy Grp, Oak Ridge, TN 37831 USA. RP Miller, MK (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Microscopy Grp, Bldg 4500S,MS 6136,POB 2008, Oak Ridge, TN 37831 USA. EM millermk@ornl.gov NR 21 TC 22 Z9 23 U1 0 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD DEC PY 2006 VL 41 IS 23 BP 7808 EP 7813 DI 10.1007/s10853-006-0518-5 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA 116TL UT WOS:000242825100018 ER PT J AU Srinivasan, SG Baskes, MI Wagner, GJ AF Srinivasan, S. G. Baskes, M. I. Wagner, G. J. TI Spallation of single crystal nickel by void nucleation at shock induced grain junctions SO JOURNAL OF MATERIALS SCIENCE LA English DT Article AB Molecular dynamics (MD) simulations of spallation in single crystal nickel were performed for a range of system sizes and impact velocities. The initial compressive wave leaves a rich microstructure in its wake. The subsequent tensile waves create multiple grains and grain junctions between regions of differing crystal orientation. These grain junctions serve as void nucleation sites when the reflected tensile waves interact, leading to ductile failure. In this way, the mechanism for failure in an initially single-crystalline sample is similar to that seen experimentally in high-purity, poly-crystalline metals, in which grain boundaries are sites for void nucleation. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Sandia Natl Labs, Livermore, CA 94551 USA. RP Srinivasan, SG (reprint author), Los Alamos Natl Lab, MS G755,MST 8 Grp, Los Alamos, NM 87545 USA. EM sgsrini@lanl.gov RI Wagner, Gregory/I-4377-2015 NR 7 TC 8 Z9 8 U1 2 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD DEC PY 2006 VL 41 IS 23 BP 7838 EP 7842 DI 10.1007/s10853-006-0691-6 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA 116TL UT WOS:000242825100022 ER PT J AU Lin, HT Kirkland, TP Wereszczak, AA Andrews, MJ AF Lin, H. T. Kirkland, T. P. Wereszczak, A. A. Andrews, M. J. TI Strength retention of silicon nitride after long-term oil immersion exposure SO JOURNAL OF MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT 2nd International Conference on Electrophoretic Deposition - Fundamentals and Applications CY JUN, 2005 CL Barga, ITALY AB Two commercial grade silicon nitride ceramics (Honeywell GS44 and Kyocera SN235) were exposed to an oil ash to evaluate the long-term corrosion/oxidation resistance in a simulated diesel engine environment. The exposure condition was at 850 degrees C for 1000 h in air. Subsequently, the exposed specimens were tested in flexure for strength degradation at room temperature and 850 degrees C at stressing rates of 30 MPa/s and 0.003 MPa/s in air, respectively. A similar set of specimens not exposed to the oil ash was also tested in flexure for purpose of comparison. Little change in strength was measured after 1000 h exposure in the oil ash environment. Also, the values of Weibull modulus obtained for all of the exposed silicon nitride materials were similar to those with the unexposed specimens whose strength were obtained under the same conditions. However, both exposed and unexposed GS44 specimens exhibited a low fatigue exponent, suggesting a susceptibility to slow crack growth at test temperature. In addition, detailed SEM/EDAX analyses indicated that no oil ash elements (e.g., Zn, Ca, P, Na, and S) were detected beneath a thin layer in the surface; thus, there were no changes in the chemistry of the secondary phase(s) within the bulk. These elements were detected only in a region about 1-3 mu m below the exposed surface, but no apparent changes in microstructure observed. Results of mechanical properties and microstructural characterizations indicated that these candidate silicon nitride materials exhibited excellent corrosion/oxidation resistance in the simulated diesel engine environment and, based on their excellent mechanical strengths, would be ideal candidates for diesel engine exhaust valve applications. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Caterpillar Inc, Ctr Technol, Peoria, IL 61656 USA. RP Lin, HT (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM linh@ornl.gov RI Wereszczak, Andrew/I-7310-2016 OI Wereszczak, Andrew/0000-0002-8344-092X NR 8 TC 1 Z9 1 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD DEC PY 2006 VL 41 IS 24 BP 8313 EP 8319 DI 10.1007/s10853-006-1015-6 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 112FI UT WOS:000242510700037 ER PT J AU Callister, SJ Nicora, CD Zeng, XH Roh, JH Dominguez, MA Tavano, CL Monroe, ME Kaplan, S Donohue, TJ Smith, RD Lipton, MS AF Callister, Stephen J. Nicora, Carrie D. Zeng, Xiaohua Roh, Jung Hyeob Dominguez, Miguel A. Tavano, Christine L. Monroe, Matthew E. Kaplan, Samuel Donohue, Timothy J. Smith, Richard D. Lipton, Mary S. TI Comparison of aerobic and photosynthetic Rhodobacter sphaeroides 2.4.1 proteomes SO JOURNAL OF MICROBIOLOGICAL METHODS LA English DT Article DE Rhodobacter sphaeroides; comparative proteomics; photosynthesis; Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) ID TANDEM MASS-SPECTROMETRY; ACCURATE MASS; RHODOPSEUDOMONAS-CAPSULATA; BACTERIAL CHEMOTAXIS; NITROGEN-FIXATION; TIME INFORMATION; PURPLE BACTERIA; MESSENGER-RNA; TAG STRATEGY; PROTEIN AB The analysis of proteomes from aerobic and photosynthetic Rhodobacter sphaeroides 2.4.1 cell cultures by liquid chromatography-mass spectrometry yielded approximately 6,500 high confidence peptides representing 1,675 gene products (39% of the predicted proteins). The identified proteins corresponded primarily to open reading frames (ORFs) contained within the two chromosomal elements of this bacterium, but a significant number were also observed from ORFs associated with 5 naturally occurring plasmids. Using the accurate mass and time (AMT) tag approach, comparative studies showed that a number of proteins were uniquely detected within the photosynthetic cell culture. The estimated abundances of proteins observed in both aerobic respiratory and photosynthetic grown cultures were compared to provide insights into bioenergetic models for both modes of growth. Additional emphasis was placed on gene products annotated as hypothetical to gain information as to their potential roles within these two growth conditions. Where possible, transcriptome and proteome data for R. sphaeroides obtained under the same culture conditions were also compared. (c) 2006 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. Univ Texas, Hlth Sci Ctr, Dept Microbiol & Mol Genet, Houston, TX 77030 USA. Univ Wisconsin, Dept Genet, Madison, WI 53706 USA. Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. RP Lipton, MS (reprint author), Pacific NW Natl Lab, Mail Stop K8-98, Richland, WA 99352 USA. EM mary.lipton@pnl.gov RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Donohue, Timothy/0000-0001-8738-2467 FU NIGMS NIH HHS [GM15590, R01 GM015590, R01 GM075273, R01 GM075273-01A1, R01 GM075273-02] NR 48 TC 25 Z9 27 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-7012 J9 J MICROBIOL METH JI J. Microbiol. Methods PD DEC PY 2006 VL 67 IS 3 BP 424 EP 436 DI 10.1016/j.mimet.2006.04.021 PG 13 WC Biochemical Research Methods; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA 108PR UT WOS:000242252200004 PM 16828186 ER PT J AU Norbeck, AD Callister, SJ Monroe, ME Jaitly, N Elias, DA Lipton, MS Smith, RD AF Norbeck, Angela D. Callister, Stephen J. Monroe, Matthew E. Jaitly, Navdeep Elias, Dwayne A. Lipton, Mary S. Smith, Richard D. TI Proteomic approaches to bacterial differentiation SO JOURNAL OF MICROBIOLOGICAL METHODS LA English DT Article DE AMT tag; bacterial communities; species detection; unique identifiers ID SHEWANELLA-ONEIDENSIS MR-1; IONIZATION MASS-SPECTROMETRY; HUMAN BLOOD-PLASMA; MICROORGANISM IDENTIFICATION; PROTEIN IDENTIFICATION; ACCURATE MASS; AMINO-ACID; INTACT MICROORGANISMS; MS; CHROMATOGRAPHY AB Mass spectrometry-based proteomics has been used extensively to explore the proteomes of various organisms, and this technology is now being applied to the characterization of bacterial species. Predominantly, two methods emerge as leaders in this application. Intact protein profiling creates fingerprints of bacterial species which can be used for differentiation and tracking over time. Peptide-centric approaches, analyzed after enzymatic digestion, enable high-throughput proteome characterization in addition to species determination from the identification of peptides distinctive to a species. Highlighted herein is an application of a peptide-centric approach to the identification and quantitation of species-specific peptide identifiers using an in silico exploration and an experimental mass spectrometry-based method. The application to microbial communities is addressed with an in silico analysis of an artificial complex community of 25 microorganisms. (c) 2006 Elsevier B.V All rights reserved. C1 Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,MSIN K8-98, Richland, WA 99352 USA. EM rds@pnl.gov RI Elias, Dwayne/B-5190-2011; Smith, Richard/J-3664-2012 OI Elias, Dwayne/0000-0002-4469-6391; Smith, Richard/0000-0002-2381-2349 NR 56 TC 15 Z9 16 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-7012 J9 J MICROBIOL METH JI J. Microbiol. Methods PD DEC PY 2006 VL 67 IS 3 BP 473 EP 486 DI 10.1016/j.mimet.2006.04.024 PG 14 WC Biochemical Research Methods; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA 108PR UT WOS:000242252200009 PM 16919344 ER PT J AU Le Puil, M Biggerstaff, JP Weidow, BL Price, JR Naser, SA White, DC Alberte, RS AF Le Puil, M. Biggerstaff, J. P. Weidow, B. L. Price, J. R. Naser, S. A. White, D. C. Alberte, R. S. TI A novel fluorescence imaging technique combining deconvolution microscopy and spectral analysis for quantitative detection of opportunistic pathogens SO JOURNAL OF MICROBIOLOGICAL METHODS LA English DT Article DE deconvolution; spectral imaging; confocal microscopy; pathogens; FISH ID OLIGONUCLEOTIDE PROBES; CLOSTRIDIUM-DIFFICILE; FLOW-CYTOMETRY; BACTERIA; DISEASE; CELLS; PARATUBERCULOSIS; IDENTIFICATION; HYBRIDIZATION; MICROBIOLOGY AB A novel fluorescence imaging technique based on deconvolution microscopy and spectral analysis is presented here as an alternative to confocal laser scanning microscopy. It allowed rapid, specific and simultaneous identification of five major opportunistic pathogens, relevant for public health, in suspension and provided quantitative results. (c) 2006 Elsevier B.V. All rights reserved. C1 Florida Gulf Coast Univ, Ft Myers, FL 33965 USA. Univ Tennessee, Knoxville, TN USA. Oak Ridge Natl Lab, Oak Ridge, TN USA. Univ Cent Florida, Orlando, FL 32816 USA. RP Le Puil, M (reprint author), Florida Gulf Coast Univ, 10501 FGCU Blvd S, Ft Myers, FL 33965 USA. EM mlepuil@fgcu.edu NR 31 TC 11 Z9 11 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-7012 J9 J MICROBIOL METH JI J. Microbiol. Methods PD DEC PY 2006 VL 67 IS 3 BP 597 EP 602 DI 10.1016/j.mimet.2006.05.019 PG 6 WC Biochemical Research Methods; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA 108PR UT WOS:000242252200022 PM 16887225 ER PT J AU Czaplewski, DA Dyck, CW Sumali, H Massad, JE Kuppers, JD Reines, I Cowan, WD Tigges, CP AF Czaplewski, David A. Dyck, Christopher W. Sumali, Hartono Massad, Jordan E. Kuppers, Jaron D. Reines, Isak Cowan, William D. Tigges, Christopher P. TI A soft-landing waveform for actuation of a single-pole single-throw ohmic RF MEMS switch SO JOURNAL OF MICROELECTROMECHANICAL SYSTEMS LA English DT Article ID MICROELECTROMECHANICAL SYSTEMS; SURFACE; CONTACTS; SILICON; DEVICES AB A soft-landing actuation waveform was designed to reduce the bounce of a single-pole single-throw (SPST) ohmic radio frequency (RF) microelectromechanical systems (MEMS) switch during actuation. The waveform consisted of an actuation voltage pulse, a coast time, and a hold voltage. The actuation voltage pulse had a short duration relative to the transition time of the switch and imparted the kinetic energy necessary to close the switch. After the actuation pulse was stopped, damping and restoring forces slowed the switch to near-zero velocity as it approached the closed position. This is referred to as the coast time. The hold voltage was applied upon reaching closure to keep the switch from opening. An ideal waveform would close the switch with near zero impact velocity. The switch dynamics resulting from an ideal waveform were modeled using finite element methods and measured using laser Doppler vibrometry. The ideal waveform closed the switch with an impact velocity of less than 3 cm/s without rebound. Variations in the soft-landing waveform closed the switch with impact velocities of 12.5 cm/s with rebound amplitudes ranging from 75 to 150 nm compared to impact velocities of 22.5 cm/s and rebound amplitudes of 150 to 200 nm for a step waveform. The ideal waveform closed the switch faster than a simple step voltage actuation because there was no rebound and it reduced the impact force imparted on the contacting surfaces upon closure. C1 Sandia Natl Labs, MEMS Devices & Reliabil Phys, Albuquerque, NM 87185 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Czaplewski, DA (reprint author), Sandia Natl Labs, MEMS Devices & Reliabil Phys, POB 5800, Albuquerque, NM 87185 USA. EM daczapl@sandia.gov NR 20 TC 47 Z9 47 U1 1 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1057-7157 EI 1941-0158 J9 J MICROELECTROMECH S JI J. Microelectromech. Syst. PD DEC PY 2006 VL 15 IS 6 BP 1586 EP 1594 DI 10.1109/JMEMS.2006.883576 PG 9 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA 118ZZ UT WOS:000242983300019 ER PT J AU Kim, Y Hall, GE Sears, TJ AF Kim, Yangsoo Hall, Gregory E. Sears, Trevor J. TI Observation of the c(1)A(1) (0,10,0) state of CH2 by optical-optical double resonance SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE double resonance spectroscopy; optical spectroscopy; electronic spectroscopy; radical; transient species ID MAGNETIC-ROTATION SPECTROSCOPY; ORBITAL ANGULAR-MOMENTUM; SINGLET METHYLENE; VIBRATIONAL RESONANCES; VISIBLE ABSORPTION; ELECTRONIC STATES; SPECTRUM; (CH2)-C-1; (3)A(2) AB We report the observation of levels in the (c) over tilde (l)A(1) (0, 10, 0) state of CH2, via optical-optical double resonance spectroscopy. Direct transitions between the lowest ((a) over tilde) singlet state and the (c) over tilde state are allowed by symmetry, but weak because they correspond to a two electron excitation in the single configuration approximation to the electronic wavefunction. The observed transitions involve sequential single photon absorptions at visible and near infrared wavelengths using (b) over tilde state intermediate levels. Recent ab initio results (S.N. Yurchenko et al., J. Mol. Spectrosc. 208 (2001), 136) predicted the positions of some of the levels which are confirmed by the present results. The new spectra provide accurate energies for rotational levels in the v(2)(linear) = 10, l = 0 level of the (c) over tilde state. (c) 2006 Elsevier Inc. All rights reserved. C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Sears, TJ (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM sears@bnl.gov RI Hall, Gregory/D-4883-2013; Sears, Trevor/B-5990-2013 OI Hall, Gregory/0000-0002-8534-9783; Sears, Trevor/0000-0002-5559-0154 NR 19 TC 10 Z9 10 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD DEC PY 2006 VL 240 IS 2 BP 269 EP 271 DI 10.1016/j.jms.2006.10.008 PG 3 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 116XZ UT WOS:000242838400015 ER PT J AU Fontana, SM Dadmun, MD Lowndes, DH AF Fontana, S. M. Dadmun, M. D. Lowndes, D. H. TI Growth of vertically aligned carbon nanofibers from nickel nanodot arrays produced from diblock copolymer thin film templates SO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY LA English DT Article DE carbon nanofibers; nickel nanodots; growth ID BLOCK-COPOLYMERS; NANOTUBE; POLYMERIZATION; ORIENTATION; THICKNESS; SURFACES; BRUSHES; ROUTE; DOT AB Diblock copolymers of polystyrene and poly(methyl methacrylate) are utilized in a thin film to create a nanoscale template, which is used to deposit a nanoscale array of nickel nanodots. Systematic experiments show that this process must be optimized to successfully transfer the order of the diblock copolymer template to the resultant nickel nanodot array. It is found that the amount of nickel deposited dramatically impacts the fidelity of the final nanodot array, with a thickness ratio for copolymer:metal of 8:1 found to be optimal. The results also indicate that the method by which the surface is neutralized for the diblock domain alignment impacts the amount of nickel nanodots that remain on the surface after template removal. Finally, the nanoscale array of nickel nanodots is utilized to successfully grow vertically aligned carbon nanofibers from 18 nm and 40 nm diameter nickel dots. C1 Univ Tennessee, Dept Chem, Knoxville, TN 37966 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Dadmun, MD (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37966 USA. OI Dadmun, Mark/0000-0003-4304-6087 NR 41 TC 1 Z9 1 U1 0 U2 2 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1533-4880 J9 J NANOSCI NANOTECHNO JI J. Nanosci. Nanotechnol. PD DEC PY 2006 VL 6 IS 12 BP 3756 EP 3762 DI 10.1166/jnn.2006.607 PG 7 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 113MD UT WOS:000242601100013 PM 17256326 ER PT J AU Kim, DS Dutton, BC Hrma, PR Pilon, L AF Kim, Dong-Sang Dutton, Bryan C. Hrma, Pavel R. Pilon, Laurent TI Effect of furnace atmosphere on E-glass foaming SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE glass melting; bubbles ID SODIUM-SULFATE DECOMPOSITION; MELTS; BEHAVIOR; MASS AB The effect of furnace atmosphere on E-glass foaming has been studied with the specific goal of understanding the impact of increased water content on foaming in oxy-fired furnaces. E-glass foams were generated in a fused-quartz crucible located in a quartz window furnace equipped with video recording. The present study showed that humidity in the furnace atmosphere destabilizes foam, while other gases have little effect on foam stability. These findings do not contradict the generally accepted 'dilution model', suggesting that foaming is more severe in oxy-fired furnaces than in air-fired furnaces because the higher concentration of water in the furnace atmosphere ultimately enhances sulfate decomposition resulting in stronger foaming. The failure to reproduce this effect in laboratory experiments may be attributed to water incorporation into the glass melt occurring during ablation melting in industrial furnaces. (c) 2006 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Adv Proc & Applicat Grp, Richland, WA 99352 USA. Univ Calif Los Angeles, Mech & Aerosp Engn Dept, Los Angeles, CA 90095 USA. RP Kim, DS (reprint author), Pacific NW Natl Lab, Adv Proc & Applicat Grp, 902 Battelle Blvd,MSIN K6-24, Richland, WA 99352 USA. EM dong-sang.kim@pnl.gov RI Pilon, Laurent/B-3497-2008 OI Pilon, Laurent/0000-0001-9459-8207 NR 21 TC 7 Z9 7 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD DEC 1 PY 2006 VL 352 IS 50-51 BP 5287 EP 5295 DI 10.1016/j.jnoncrysol.2006.08.035 PG 9 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 112YW UT WOS:000242565100007 ER PT J AU Kim, YS Hayes, SL Hofman, GL Yacout, AM AF Kim, Yeon Soo Hayes, S. L. Hofman, G. L. Yacout, A. M. TI Modeling of constituent redistribution in U-Pu-Zr metallic fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID THERMAL-GRADIENT; ALLOYS; TEMPERATURE; IRRADIATION AB A computer model was developed to analyze constituent redistribution in U-Pu-Zr metallic nuclear fuels. Diffusion and thermochemical properties were parametrically determined to fit the postirradiation data from a fuel test performed in the Experimental Breeder Reactor II (EBR-II). The computer model was used to estimate redistribution profiles of fuels proposed for the conceptual designs of small modular fast reactors. The model results showed that the level of redistribution of the fuel constituents of the designs was similar to the measured data from EBR-II. (c) 2006 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, RERTR, Argonne, IL 60439 USA. Idaho Natl Engn Lab, Idaho Falls, ID 83415 USA. RP Kim, YS (reprint author), Argonne Natl Lab, RERTR, 9700 S Cass Ave, Argonne, IL 60439 USA. EM yskim@anl.gov RI Hayes, Steven/D-8373-2017 OI Hayes, Steven/0000-0002-7583-2069 NR 16 TC 22 Z9 22 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC 1 PY 2006 VL 359 IS 1-2 BP 17 EP 28 DI 10.1016/j.jnucmat.2006.07.013 PG 12 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 109OD UT WOS:000242317000003 ER PT J AU Porollo, SI Dvoriashin, AM Konobeev, YV Ivanov, AA Shulepin, SV Garner, FA AF Porollo, S. I. Dvoriashin, A. M. Konobeev, Yu. V. Ivanov, A. A. Shulepin, S. V. Garner, F. A. TI Microstructure and mechanical properties of austenitic stainless steel 12X18H9T after neutron irradiation in the pressure vessel of BR-10 fast reactor at very low dose rates SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID TEMPERATURE; EVOLUTION; CREEP AB Results are presented for void swelling, microstructure and mechanical properties of Russian 12X18H9T (0.12C-18Cr-9Ni-Ti) austenitic stainless steel irradiated as a pressure vessel structural material of the BR-10 fast reactor at similar to 350 degrees C to only 0.64 dpa, produced by many years of exposure at the very low displacement rate of only 1.9 x 10(-9) dpa/s. In agreement with a number of other recent studies it appears that lower dpa rates have a pronounced effect on the microstructure and resultant mechanical properties. In general, lower dpa rates lead to the onset of swelling at much lower doses compared to comparable irradiations conducted at higher dpa rates. (c) 2006 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Mat Resources Dept, Richland, WA 99354 USA. Inst Phys & Power Engn, Obninsk 249033, Kaluga Region, Russia. RP Garner, FA (reprint author), Pacific NW Natl Lab, Mat Resources Dept, 902 Battelle Blvd,MS P8-15, Richland, WA 99354 USA. EM frank.garner@pnl.gov NR 25 TC 10 Z9 11 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC 1 PY 2006 VL 359 IS 1-2 BP 41 EP 49 DI 10.1016/j.jnucmat.2006.07.015 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 109OD UT WOS:000242317000005 ER PT J AU Wall, JS Kennel, SJ Paulus, M Gregor, J Richey, T Avenell, J Yap, J Townsend, D Weiss, DT Solomon, A AF Wall, Jonathan S. Kennel, Stephen J. Paulus, Mike Gregor, Jens Richey, Tina Avenell, James Yap, Jeffrey Townsend, David Weiss, Deborah T. Solomon, Alan TI Radioimaging of light chain amyloid with a fibril-reactive monoclonal antibody SO JOURNAL OF NUCLEAR MEDICINE LA English DT Article DE amyloid; immunoimaging; small-animal SPECT/CT; small-animal PET/CT ID RAY COMPUTED-TOMOGRAPHY; P COMPONENT; PET; RESOLUTION; I-124; SCINTIGRAPHY; MICE; RECONSTRUCTION; QUANTITATION; DEPOSITS AB Currently, there are no available means in the United States to document objectively the location and extent of amyloid deposits in patients with systemic forms of amyloidosis. To address this limitation, we have developed a novel diagnostic strategy, namely, the use of a radiolabeled fibril-reactive murine monoclonal antibody (mAb) as an amyloid-specific imaging agent. The goal of this study was to determine the pharmacokinetics, biodistribution, and ability of this reagent to target the type of amyloid that is formed from immunoglobulin light chains, that is, AL. Methods: Subcutaneous tumors (amyloidomas) were induced in BALB/c mice by injection of human AL fibrils. The IgG1 mAb designated 11-1F4 and an isotype-matched control antibody were radioiodinated, and the pharmacokinetics and localization of these reagents were determined from blood and tissue samples. Amyloidoma-bearing animals that received I-125 or I-124-labeled antibodies were imaged by whole-body small-animal SPECT/CT or small-animal PET/CT technology, respectively. Results: Radioiodinated mAb 11-1F4 retained immunoreactivity, as evidenced by its subnanomolar affinity for light chains immobilized on 96-well microtiter plates and for beads conjugated with a light chain-related peptide. Additionally, after intravenous administration, the labeled reagents had the expected biologic half-life of murine lgG1, with monoexponential whole-body clearance kinetics. In the amyloicloma mouse model, I-125-11-1F4 was predominately localized in the tumors, as demonstrated in biodistribution and autoradiographic analyses. The mean uptake of this reagent, that is, the percentage injected dose per gram of tissue, 72 h after injection was significantly higher for amyloid than for skeletal muscle, spleen, kidney, heart, liver, or other tissue samples. Notably, the accumulation within the amyloidomas of I-125- or I-124-11-1F4 was readily visible in the fused small-animal SPECT/CT or small-animal PET/CT images, respectively. Conclusion: Our studies demonstrate the amyloid-imaging capability of a radiolabeled fibril-reactive mAb and provide the basis for a clinical trial designed to determine its diagnostic potential in patients with AL amyloidosis and other systemic amyloidoses. C1 Univ Tennessee, Grad Sch Med, Dept Med, Human Immunol & Canc Program, Knoxville, TN 37920 USA. Oak Ridge Natl Lab, Engn Sci & Technol Grp, Oak Ridge, TN USA. Univ Tennessee, Dept Comp Sci, Knoxville, TN 37996 USA. Univ Tennessee, Grad Sch Med, Canc Imaging & Tracer Dev Res Program, Knoxville, TN 37996 USA. RP Wall, JS (reprint author), Univ Tennessee, Grad Sch Med, Dept Med, Human Immunol & Canc Program, 1924 Alcoa Hwy, Knoxville, TN 37920 USA. EM jwall@mc.utmck.edu FU NCI NIH HHS [R01 CA010056, CA-10056]; NIBIB NIH HHS [EB00789, R01 EB000789] NR 30 TC 17 Z9 17 U1 0 U2 3 PU SOC NUCLEAR MEDICINE INC PI RESTON PA 1850 SAMUEL MORSE DR, RESTON, VA 20190-5316 USA SN 0161-5505 J9 J NUCL MED JI J. Nucl. Med. PD DEC PY 2006 VL 47 IS 12 BP 2016 EP 2024 PG 9 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 112YK UT WOS:000242563900043 PM 17138745 ER PT J AU Kim, YS Hofman, GL Ryu, HJ Hayes, SL AF Kim, Yeon Soo Hofman, G. L. Ryu, Ho Jin Hayes, S. L. TI Irradiation-enhanced interdiffusion in the diffusion zone of U-Mo dispersion fuel in Al SO JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION LA English DT Article; Proceedings Paper CT Symposium on Multicomponent-Multiphase Diffusion held at the TMS 135th Annual Meeting and Exhibition CY MAR, 2006 CL San Antonio, TX SP TMS DE fission damage; interaction layer growth correlation; irradiation-enhanced interdiffusion; RERTR nuclear fuel; U-Mo dispersion in Al ID RADIATION; GLASSES; ION AB Uranium-molybdenum (U-Mo) alloy fuel particles dispersed in an aluminum (Al) matrix, designated as U-Mo/Al dispersion fuel, is in the development stage in the worldwide RERTR (Reduced Enrichment for Research and Test Reactors) program. The main issue in developing U-Mo/Al dispersion fuel is the diffusion reaction occurring at the interface between the fuel particles and matrix. To accurately analyze fuel performance, a model to predict the diffusion kinetics is necessary. For this purpose, the authors developed a diffusion layer growth rate correlation for out-of-pile annealing tests and a similar correlation for in-reactor tests. The correlation for in-reactor tests is considerably different from that of out-of-pile tests because it contains factors that amplify diffusion kinetics by fission damage in the diffusion reaction zone. This irradiation enhancement was formulated by a combination of the fission rate in the fuel and fission fragment damage distribution in the diffusion reaction zone. Using a computer code, fission damage factors were obtained as a function of diffusion reaction layer thickness and composition. The model correlation was established and fitted to the in-reactor data. As a result of this data fitting, the interaction layer growth rate is found to be proportional to the square root of the fission fragment damage rate and to have a temperature dependence characterized by the effective activation energy of 46 to 76 kJ/mole, which is smaller by a factor of 4 to 7 than that of out-of-pile tests. C1 Argonne Natl Lab, Argonne, IL 60439 USA. Korea Atom Energy Res Inst, Taejon 305353, South Korea. Idaho Natl Engn Lab, Idaho Falls, ID 83415 USA. RP Kim, YS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM yskim@anl.gov RI RYU, HO JIN/J-2764-2013; Hayes, Steven/D-8373-2017 OI RYU, HO JIN/0000-0002-3387-7381; Hayes, Steven/0000-0002-7583-2069 NR 16 TC 16 Z9 16 U1 0 U2 3 PU ASM INTERNATIONAL PI MATERIALS PARK PA SUBSCRIPTIONS SPECIALIST CUSTOMER SERVICE, MATERIALS PARK, OH 44073-0002 USA SN 1547-7037 J9 J PHASE EQUILIB DIFF JI J. Phase Equilib. Diffus. PD DEC PY 2006 VL 27 IS 6 BP 614 EP 621 DI 10.1361/154770306X153639 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 111RF UT WOS:000242471200009 ER PT J AU Ryu, HJ Park, JM Kim, CK Kim, YS Hofman, GL AF Ryu, Ho Jin Park, Jong Man Kim, Chang Kyu Kim, Yeon Soo Hofman, Gerard L. TI Diffusion reaction behaviors of U-Mo/Al dispersion fuel SO JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION LA English DT Article; Proceedings Paper CT Symposium on Multicomponent-Multiphase Diffusion held at the TMS 135th Annual Meeting and Exhibition CY MAR, 2006 CL San Antonio, TX SP TMS DE annealing tests; diffusion reaction; dispersion fuel; irradiation tests; reaction kinetics; reaction layer ID GROWTH; HEAT AB The uranium (U)-molybdenum (Mo)/aluminum (Al) dispersion fuel that is currently under development for high-performance research reactors has shown complicated diffusion reaction behavior between the U-Mo particles and the Al matrix. Diffusion reactions in U-Mo/Al dispersion fuels were characterized by out-of-pile annealing tests and in-pile irradiation tests in the HANARO research reactor. The effect of the addition of a third element such as silicon (Si), Al, or zirconium (Zr) to U-Mo fuel, and the addition of Si to the Al matrix on the diffusion reaction were also investigated. The growth rate and activation energy for the reaction phases of U-Mo/ Al dispersion fuels were obtained. The effect of alloying a small amount of a third element in U-Mo and of Si in the Al matrix on diffusion reaction kinetics was negligible in annealing tests conducted at similar to 550 degrees C. gamma phase stability in the U-Mo alloy was enhanced by the addition of 0.1 to 0.2 wt.% Si. The Si accumulated in the interdiffusion layer of U-Mo/Al-Si dispersion fuel annealed at similar to 550 degrees C, whereas Zr migration to the interdiffusion layer of U-Mo-Zr/Al was negligible. C1 Korea Atom Energy Res Inst, Nucl Fuel Fabricat Lab, Taejon 305353, South Korea. Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Ryu, HJ (reprint author), Korea Atom Energy Res Inst, Nucl Fuel Fabricat Lab, 150 Deokjin Dong, Taejon 305353, South Korea. EM hjryu@anl.gov RI RYU, HO JIN/J-2764-2013 OI RYU, HO JIN/0000-0002-3387-7381 NR 21 TC 20 Z9 22 U1 1 U2 5 PU ASM INTERNATIONAL PI MATERIALS PARK PA SUBSCRIPTIONS SPECIALIST CUSTOMER SERVICE, MATERIALS PARK, OH 44073-0002 USA SN 1547-7037 J9 J PHASE EQUILIB DIFF JI J. Phase Equilib. Diffus. PD DEC PY 2006 VL 27 IS 6 BP 651 EP 658 DI 10.1361/154770306X153693 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 111RF UT WOS:000242471200014 ER PT J AU Garimella, N Brady, MP Sohn, Y AF Garimella, Narayana Brady, M. P. Sohn, Yongho TI Interdiffusion in gamma (face-centered cubic) Ni-Cr-X (X = Al, Si, Ge, or Pd) alloys at 900 degrees C SO JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION LA English DT Article; Proceedings Paper CT Symposium on Multicomponent-Multiphase Diffusion held at the TMS 135th Annual Meeting and Exhibition CY MAR, 2006 CL San Antonio, TX SP TMS DE Boltzmann/Matano analysis; diffusion couples; diffusivity coefficient; experimental study; interdiffusion; multicomponent diffusion; ternary system ID TEMPERATURE CORROSION PROCESSES; OXIDATION BEHAVIOR; DIFFUSION COUPLES; STAINLESS-STEEL; BASE ALLOYS; COEFFICIENTS; MECHANISMS; ELEMENTS; SILICON; SCALES AB Interdiffusion in nickel (Ni)-chromium (Cr) (face-centered cubic gamma phase) alloys with small additions of aluminum (Al), silicon (Si), germanium (Ge), or palladium (Pd) was investigated using solid-to-solid diffusion couples. Ni-Cr-X alloys having compositions of Ni-22at.%Cr, Ni-21at.%Cr-6.2at.%Al, Ni-22at.%Cr-4.0at.%Si, Ni-22at.%Cr-1.6at.%Ge, and Ni-22at.%Cr-1.6at. % Pd were manufactured by arc casting. The diffusion couples were assembled in an Invar steel jig, encapsulated in Ar after several hydrogen purges, and annealed at 900 degrees C in a three-zone tube furnace for 168 h. Experimental concentration profiles were determined from polished cross sections of these couples by using electron probe microanalysis with pure element standards. Interdiffusion fluxes of individual components were calculated directly from the experimental concentration profiles, and the moments of interdiffusion fluxes were examined to determine the average ternary interdiffusion coefficients. The effects of ternary alloying additions on the diffusional behavior of Ni-Cr-X alloys are presented in the light of the diffusional interactions and the formation of a protective Cr2O3 scale. C1 Univ Cent Florida, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Orlando, FL 32816 USA. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA. RP Sohn, Y (reprint author), Univ Cent Florida, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. EM ysohn@mail.ucf.edu RI Brady, Michael/A-8122-2008; Sohn, Yongho/A-8517-2010 OI Brady, Michael/0000-0003-1338-4747; Sohn, Yongho/0000-0003-3723-4743 NR 34 TC 11 Z9 11 U1 3 U2 15 PU ASM INTERNATIONAL PI MATERIALS PARK PA SUBSCRIPTIONS SPECIALIST CUSTOMER SERVICE, MATERIALS PARK, OH 44073-0002 USA SN 1547-7037 J9 J PHASE EQUILIB DIFF JI J. Phase Equilib. Diffus. PD DEC PY 2006 VL 27 IS 6 BP 665 EP 670 DI 10.1361/154770306X153710 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 111RF UT WOS:000242471200016 ER PT J AU Chauhan, A Anwar, M Montero, K White, H Si, W AF Chauhan, A. Anwar, M. Montero, K. White, H. Si, W. TI Internal carburization and carbide precipitation in Fe-Ni-Cr alloy tubing retired from ethylene pyrolysis service SO JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION LA English DT Article; Proceedings Paper CT Symposium on Multicomponent-Multiphase Diffusion held at the TMS 135th Annual Meeting and Exhibition CY MAR, 2006 CL San Antonio, TX SP TMS DE CALPHAD; multicomponent diffusion; x-ray analysis ID HIGH-TEMPERATURE ALLOYS; COKE DEPOSITION; CRACKING TUBES; THERMAL-CRACKING; STEAM-CRACKING; OXIDE SCALES; CARBON; BEHAVIOR; DIFFUSION; OXIDATION AB The events leading to the failure of an alloy grade HP Nb ethylene pyrolysis heater tubing were examined. X-ray maps indicated that a complex oxide coating, which inhibits carbon (C) diffusion, forms on the process side of the tubing during service. Phase equilibria studies predict that even without process C diffusion, metal carbides will precipitate out of the face centered cubic (FCC_A1) matrix. It was estimated that a 6 mm thick tube operating at 1100 degrees C would completely carburize in two years if the protective coating is damaged. C1 SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP White, H (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. EM hwhite@notes.cc.sunysb.edu NR 46 TC 11 Z9 14 U1 1 U2 7 PU ASM INTERNATIONAL PI MATERIALS PARK PA SUBSCRIPTIONS SPECIALIST CUSTOMER SERVICE, MATERIALS PARK, OH 44073-0002 USA SN 1547-7037 J9 J PHASE EQUILIB DIFF JI J. Phase Equilib. Diffus. PD DEC PY 2006 VL 27 IS 6 BP 684 EP 690 DI 10.1361/154770306X153747 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 111RF UT WOS:000242471200019 ER PT J AU Armesto, N Cacciari, M Dainese, A Salgado, CA Wiedemann, UA AF Armesto, N. Cacciari, M. Dainese, A. Salgado, C. A. Wiedemann, U. A. TI Heavy quarks as a test of medium-induced energy loss at RHIC and at the LHC SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strangeness in Quark Matter CY MAR 26-31, 2006 CL Univ Calif Los Angeles, Los Angeles, CA HO Univ Calif Los Angeles ID NUCLEUS-NUCLEUS COLLISIONS; GLUON PLASMA; QCD; COLLABORATION; PERSPECTIVE; MATTER AB We present our recent studies of the medium-induced radiative energy loss of heavy quarks and its experimental signatures in heavy ion collisions. In particular, we discuss the ratio of nuclear modification factors of high-p(T) heavy-flavoured mesons to light-flavoured hadrons (heavy-to-light ratio). Depending on the transverse momentum of the heavy quark, this ratio turns out to be sensitive either to the mass-dependence or to the colour charge dependence expected for radiative parton energy loss. Based on this observation, we show how the simultaneous analysis of D and B mesons at the LHC in the region 10 < p(T) < 20 GeV allows one to disentangle the dependence of parton energy loss on parton identity. We then discuss to what extent high-p(T) electron spectra, expected to be dominated by heavy quark decay contributions, can give access to the microscopic mechanism underlying parton energy loss. C1 Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. Univ Santiago de Compostela, IGFAE, Santiago De Compostela, Spain. Univ Paris 06, LPTHE, F-75252 Paris 05, France. Univ Padua, I-35100 Padua, Italy. Ist Nazl Fis Nucl, I-35100 Padua, Italy. CERN, Dept Phys, Theory Div, CH-1211 Geneva 23, Switzerland. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. RP Armesto, N (reprint author), Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. RI Salgado, Carlos A./G-2168-2015; Armesto, Nestor/C-4341-2017 OI Salgado, Carlos A./0000-0003-4586-2758; Armesto, Nestor/0000-0003-0940-0783 NR 25 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD DEC PY 2006 VL 32 IS 12 SI SI BP S421 EP S427 DI 10.1088/0954-3899/32/12/S51 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 112CV UT WOS:000242503700052 ER PT J AU Blyth, SL AF Blyth, S-L CA STAR Collaboration TI phi-meson production in heavy-ion collisions at RHIC SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strangeness in Quark matter CY MAR 26-31, 2006 CL Univ Calif Los Angeles, Los Angeles, CA HO Univ Calif Los Angeles AB We present the first elliptic flow, nu(2), measurement for the phi-meson in Au+Au collisions at root S-NN = 200 GeV. At low p(T) (< 2 GeV/c), the upsilon(2) is consistent with mass ordering expected from hydrodynamics, while at higher p(T) (> 4 GeV/c), it follows the same trend as K-S(0) nu(2) and a parametrization for number of quarks = 2. The nuclear modification factor, R-CP, has also been measured and it follows the same trend as K-S(0) rather than Lambda which confirms the baryon/meson-type dependence of R-CP at RHIC. A model based on the recombination of thermal s quarks describes the central phi-meson p(T) spectrum as well as the baryon/meson ratio of Omega/phi up to pT similar to 4 GeV/c. C1 Lawrence Berkeley Lab, Relativist Nuc Collis Grp, Berkeley, CA 94720 USA. RP Blyth, SL (reprint author), Lawrence Berkeley Lab, Relativist Nuc Collis Grp, 1 Cyclotron Rd,MS70R319, Berkeley, CA 94720 USA. EM slblyth@lbl.gov NR 12 TC 10 Z9 10 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD DEC PY 2006 VL 32 IS 12 SI SI BP S461 EP S464 DI 10.1088/0954-3899/32/12/S56 PG 4 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 112CV UT WOS:000242503700057 ER PT J AU Csernai, LP Kapusta, JI McLerran, LD AF Csernai, Laszlo P. Kapusta, Joseph I. McLerran, Larry D. TI Properties of the quantum fluid at RHIC SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strangeness in Quark matter CY MAR 26-31, 2006 CL Univ Calif Los Angeles, Los Angeles, CA HO Univ Calif Los Angeles ID HYDRODYNAMICS; FLOW AB Collective flow in collisions between large nuclei at RHIC is a dominant process in single-particle transverse momentum distributions and in azimuthal correlations. Thus, viscosity must be large enough to prevent strong turbulent flow but not too strong as to dissipate all collective motion into random thermal excitation. It is shown that the transition from hadrons to quarks and gluons has behaviour similar to classical fluids near their phase transitions in the ratio of shear viscosity to entropy density. C1 Univ Bergen, Dept Phys, Theoret & Energy Phys Unit, N-5007 Bergen, Norway. Hungarian Acad Sci, KFKI, Res Inst Part & Nucl Phys, H-1525 Budapest, Hungary. Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. Brookhaven Natl Lab, Nucl Theory Grp, Upton, NY 11793 USA. RP Csernai, LP (reprint author), Univ Bergen, Dept Phys, Theoret & Energy Phys Unit, Allegt 55, N-5007 Bergen, Norway. NR 19 TC 3 Z9 3 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD DEC PY 2006 VL 32 IS 12 SI SI BP S115 EP S121 DI 10.1088/0954-3899/32/12/S14 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 112CV UT WOS:000242503700015 ER PT J AU Gonzalez, JE AF Gonzalez, J. E. CA STAR Collaboration TI J/Psi measurements in Au+Au and p+p collisions at root(NN)-N-s=200 GeV SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strangeness in Quark matter CY MAR 26-31, 2006 CL Univ Calif Los Angeles, Los Angeles, CA HO Univ Calif Los Angeles ID HEAVY-ION COLLISIONS; QUARK-GLUON PLASMA AB In a system of deconfined quarks and gluons heavy quarkonium states are expected to be the subject of dissociation via static mechanisms such as colour screening or dynamic mechanisms such as gluon scatterings. This leads to a suppression of hidden charm states, such as J/psi. On the other hand, statistical hadronization models predict an enhanced production of hidden charm states for sufficiently high charm densities. We present first preliminary STAR results on J/psi. production via the reconstruction of electron-positron decay pairs in p + p and Au + Au collisions at root s(NN) = 200 GeV. The implications of our measurements to models that predict copious J/psi. production via statistical hadronization are discussed. C1 Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Gonzalez, JE (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. NR 10 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD DEC PY 2006 VL 32 IS 12 SI SI BP S521 EP S524 DI 10.1088/0954-3899/21/12/S68 PG 4 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 112CV UT WOS:000242503700069 ER PT J AU Lappi, T AF Lappi, T. TI Chemical composition of the decaying glasma SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strangeness in Quark matter CY MAR 26-31, 2006 CL Univ Calif Los Angeles, Los Angeles, CA HO Univ Calif Los Angeles ID HEAVY-ION COLLISIONS; ENERGY NUCLEAR COLLISIONS; PARITY VIOLATION; HOT QCD; RADIATION AB The initial stage of a relativistic heavy-ion collision can be described by a classical colour field configuration known as the glasma. The production of quark pairs from this background field is then computed nonperturbatively by numerically solving the Dirac equation in the classical background. The result seems to point towards an early chemical equilibration of the plasma. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Lappi, T (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM tvv@quark.phy.bnl.gov NR 27 TC 8 Z9 8 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD DEC PY 2006 VL 32 IS 12 SI SI BP S179 EP S185 DI 10.1088/0954-3899/32/12/S23 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 112CV UT WOS:000242503700024 ER PT J AU Lee, JH AF Lee, J. H. CA BRAHMS Collaboration TI Recent results from BRAHMS in the context of longitudinal dynamics at RHIC SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strangeness in Quark Matter CY MAR 26-31, 2006 CL Univ Calif Los Angeles, Los Angeles, CA HO Univ Calif Los Angeles ID NUCLEUS-NUCLEUS COLLISIONS; HYDRODYNAMICAL MODEL AB The BRAHMS Collaboration has measured identified charged hadron production as a function of rapidity for Au+Au and Cu+Cu collisions at energies of root s(NN) = 200 and 62.4 GeV at RHIC. Selected recent results are presented with emphasis on longitudinal dynamics of particle production. The rapidity dependence of particle production imposes stringent additional constraints on theoretical models describing dynamics of hadronic/partonic matter created by high-energy heavy-ion collisions. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Lee, JH (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM jhlee@bnl.gov NR 31 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD DEC PY 2006 VL 32 IS 12 SI SI BP S61 EP S68 DI 10.1088/0954-3899/32/12/S07 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 112CV UT WOS:000242503700008 ER PT J AU Leitch, MJ AF Leitch, M. J. TI Quarkonia production at RHIC SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strangeness in Quark Matter CY MAR 26-31, 2006 CL Univ Calif Los Angeles, Los Angeles, CA HO Univ Calif Los Angeles ID GLUON DISTRIBUTION-FUNCTIONS; J/PSI SUPPRESSION; LARGE NUCLEI; COLLISIONS; POLARIZATION; DEPENDENCE; DECAYS AB Quarkonia (J/Psi, Psi ', gamma) production provides a sensitive probe of gluon distributions and their modification in nuclei, and is a leading probe of the hot-dense (deconfined) matter created in high-energy collisions of heavy ions. I will discuss our current understanding of the modification of gluon distributions in nuclei and other cold-nuclear-matter effects in the context of recent p-p and p(d)-A quarkonia measurements. Then I will review the latest results for nucleus-nucleus collisions from RHIC, and together with the baseline results from d-A and p-p collisions, discuss several alternative explanations for the observed suppressions and future prospects for distinguishing these different pictures. C1 Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Leitch, MJ (reprint author), Los Alamos Natl Lab, P-25 MS H846, Los Alamos, NM 87544 USA. EM leitch@lanl.gov NR 35 TC 3 Z9 3 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD DEC PY 2006 VL 32 IS 12 SI SI BP S391 EP S399 DI 10.1088/0954-3899/32/12/S48 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 112CV UT WOS:000242503700049 ER PT J AU Mocsy, A Petreczky, P AF Mocsy, Agnes Petreczky, Peter TI S-wave quarkonia in potential models SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strangeness in Quark matter CY MAR 26-31, 2006 CL Univ Calif Los Angeles, Los Angeles, CA HO Univ Calif Los Angeles ID HEAVY QUARKONIA; GLUON PLASMA AB We discuss S-wave quarkonia correlators and the spectral function using the Wong potential and show that these do not agree with the lattice results. C1 Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Mocsy, A (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. NR 13 TC 6 Z9 6 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD DEC PY 2006 VL 32 IS 12 SI SI BP S515 EP S519 DI 10.1088/0954-3899/32/12/S67 PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 112CV UT WOS:000242503700068 ER PT J AU Morrison, DP AF Morrison, David P. CA PHENIX Collaboration TI Recent results from PHENIX SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strangeness in Quark matter CY MAR 26-31, 2006 CL Univ Calif Los Angeles, Los Angeles, CA HO Univ Calif Los Angeles ID COLLISIONS AB The PHENIX experiment at the BNL Relativistic Heavy Ion Collider reports recent results on the nuclear modification factor, R-AA, the mid-rapidity baryon to meson ratio and the scaling properties of v(2) based on data from Au+Au, Cu+Cu, d+Au and p+p at a variety of colliding energies. The wide variety of new results support and extend previous results and continue to point to the utility of a fundamentally partonic picture as a way to explain the observations. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Morrison, DP (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM morrison@bnl.gov NR 12 TC 1 Z9 1 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD DEC PY 2006 VL 32 IS 12 SI SI BP S35 EP S41 DI 10.1088/0954-3899/32/12/S04 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 112CV UT WOS:000242503700005 ER PT J AU Oldenburg, M AF Oldenburg, M. CA STAR Collaboration TI Centrality dependence of azimuthal anisotropy of strange hadrons in 200 GeV Au+Au collisions SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strangeness in Quark matter CY MAR 26-31, 2006 CL Univ Calif Los Angeles, Los Angeles, CA HO Univ Calif Los Angeles ID FLOW AB Measurements of azimuthal anisotropy for strange and multi-strange hadrons are presented for the first time in their centrality dependence. The high statistics results of v(2)(p(T)) allow for a more detailed comparison to hydrodynamical model calculations. Number-of-constituent-quark scaling was tested for different centrality classes separately. Higher order anisotropies like v(4)(p(T)) are measured for multi-strange hadrons. While we observe agreement between measured data and models, a deeper understanding and refinement of the models seem to be necessary in order to fully understand the details of the data. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Oldenburg, M (reprint author), CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland. NR 9 TC 7 Z9 7 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD DEC PY 2006 VL 32 IS 12 SI SI BP S563 EP S566 DI 10.1088/0954-3899/32/12/S77 PG 4 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 112CV UT WOS:000242503700078 ER PT J AU Petreczky, P AF Petreczky, Peter TI Quarkonia correlators and spectral functions from lattice QCD SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strangeness in Quark matter CY MAR 26-31, 2006 CL Univ Calif Los Angeles, Los Angeles, CA HO Univ Calif Los Angeles ID HEAVY QUARKONIA; GLUON PLASMA AB I discuss recent progress in calculating quarkonia correlators and spectral functions on the lattice in relation with the problem of quarkonia dissolution at high temperatures and heavy quark transport in quark-gluon plasma. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. RP Petreczky, P (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 25 TC 3 Z9 3 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD DEC PY 2006 VL 32 IS 12 SI SI BP S293 EP S300 DI 10.1088/0954-3899/32/12/S36 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 112CV UT WOS:000242503700037 ER PT J AU Rajagopal, K Sharma, R AF Rajagopal, K. Sharma, R. TI The crystallography of strange quark matter SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strangeness in Quark matter CY MAR 26-31, 2006 CL Univ Calif Los Angeles, Los Angeles, CA HO Univ Calif Los Angeles ID SYMMETRY-BREAKING; QCD; PHASE; DENSITY AB Cold three-flavour quark matter at large ( but not asymptotically large) densities may exist as a crystalline colour superconductor. We explore this possibility by calculating the gap parameter Delta and free energy Omega(Delta) for possible crystal structures within a Ginzburg - Landau approximation, evaluating Omega(Delta) to order Delta(6). We develop a qualitative understanding of what makes a crystal structure stable and find two structures with particularly large values of Delta and the condensation energy, within a factor of 2 of those for the CFL phase known to characterize QCD at asymptotically large densities. The robustness of these phases results in their being favoured over wide ranges of density and though it also implies that the Ginzburg - Landau approximation is not quantitatively reliable, previous work suggests that it can be trusted for qualitative comparisons between crystal structures. We close with a look ahead at the calculations that remain to be done in order to make contact with observed pulsar glitches and neutron star cooling. C1 MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Rajagopal, K (reprint author), MIT, Ctr Theoret Phys, 77 Massachusetts Ave, Cambridge, MA 02139 USA. NR 22 TC 12 Z9 12 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD DEC PY 2006 VL 32 IS 12 SI SI BP S483 EP S490 DI 10.1088/0954-3899/32/12/S61 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 112CV UT WOS:000242503700062 ER PT J AU Reddy, S AF Reddy, Sanjay TI Strange crusts on strange stars SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strangeness in Quark Matter CY MAR 26-31, 2006 CL Univ Calif Los Angeles, Los Angeles, CA HO Univ Calif Los Angeles ID 1ST-ORDER PHASE-TRANSITIONS; QUARK MATTER; DENSITY; CHARGE AB We re-examine the surface composition of strange stars. It is widely accepted that they are characterized by an enormous density gradient (10(26) g cm(-4)) and large electric fields at surface. By investigating the possibility of realizing a heterogeneous crust, comprised of nuggets of strange quark matter embedded in a uniform electron background, we find that the strange star surface has a much reduced density gradient and negligible electric field. We discuss the role of Debye screening in estimating the critical surface which will disfavour the nugget phase. We comment on how our findings will impact various proposed observable signatures for strange stars. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Reddy, S (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. EM reddy@lanl.gov NR 22 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD DEC PY 2006 VL 32 IS 12 SI SI BP S267 EP S274 DI 10.1088/0954-3899/32/12/S33 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 112CV UT WOS:000242503700034 ER PT J AU Sorensen, P AF Sorensen, Paul TI Evidence from identified particles for active quark and gluon degrees of freedom SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strangeness in Quark matter CY MAR 26-31, 2006 CL Univ Calif Los Angeles, Los Angeles, CA HO Univ Calif Los Angeles ID BARYON NUMBER; COLLISIONS; COLLABORATION; PERSPECTIVE; PLASMA; PHENIX; MATTER; AU AB Measurements of intermediate p(T) (1.5 < p(T) < 5.0 GeV/c) identified particle distributions in heavy-ion collisions at SPS and RHIC energies display striking dependences on the number of constituent quarks in the corresponding hadron. One finds that elliptic flow at intermediate p(T) follows a constituent quark scaling law as predicted by models of hadron formation through coalescence. In addition, baryon production is also found to increase with event multiplicity much faster than meson production. The rate of increase is similar for all baryons and seemingly independent of mass. This indicates that the number of constituent quarks determines the multiplicity dependence of identified hadron production at intermediate p(T). We review these measurements and interpret the experimental findings. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Sorensen, P (reprint author), Brookhaven Natl Lab, POB 5000, Upton, NY 11973 USA. EM prsorensen@bnl.gov OI Sorensen, Paul/0000-0001-5056-9391 NR 45 TC 5 Z9 5 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD DEC PY 2006 VL 32 IS 12 SI SI BP S135 EP S141 DI 10.1088/0954-3899/32/12/S17 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 112CV UT WOS:000242503700018 ER PT J AU Veres, GI Back, BB Baker, MD Ballintijn, M Barton, DS Betts, RR Bickley, AA Bindel, R Busza, W Carroll, A Chai, Z Decowski, MP Garcia, E Gburek, T George, N Gulbrandsen, K Halliwell, C Hamblen, J Hauer, M Henderson, C Hofman, DJ Hollis, RS Holynski, R Holzman, B Iordanova, A Johnson, E Kane, JL Khan, N Kulinich, P Kuo, CM Lin, WT Manly, S Mignerey, AC Nouicer, R Olszewski, A Pak, R Reed, C Roland, C Roland, G Sagerer, J Seals, H Sedykh, I Smith, CE Stankiewicz, MA Steinberg, P Stephans, GSF Sukhanov, A Tonjes, MB Trzupek, A Vale, C van Nieuwenhuizen, GJ Vaurynovich, SS Verdier, R Wenger, E Wolfs, FLH Wosiek, B Wozniak, K Wyslouch, B AF Veres, Gabor I. Back, B. B. Baker, M. D. Ballintijn, M. Barton, D. S. Betts, R. R. Bickley, A. A. Bindel, R. Busza, W. Carroll, A. Chai, Z. Decowski, M. P. Garcia, E. Gburek, T. George, N. Gulbrandsen, K. Halliwell, C. Hamblen, J. Hauer, M. Henderson, C. Hofman, D. J. Hollis, R. S. Holynski, R. Holzman, B. Iordanova, A. Johnson, E. Kane, J. L. Khan, N. Kulinich, P. Kuo, C. M. Lin, W. T. Manly, S. Mignerey, A. C. Nouicer, R. Olszewski, A. Pak, R. Reed, C. Roland, C. Roland, G. Sagerer, J. Seals, H. Sedykh, I. Smith, C. E. Stankiewicz, M. A. Steinberg, P. Stephans, G. S. F. Sukhanov, A. Tonjes, M. B. Trzupek, A. Vale, C. van Nieuwenhuizen, G. J. Vaurynovich, S. S. Verdier, R. Wenger, E. Wolfs, F. L. H. Wosiek, B. Wozniak, K. Wyslouch, B. CA PHOBOS Collaboration TI Strangeness measurements with the PHOBOS experiment SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strangeness in Quark matter CY MAR 26-31, 2006 CL Univ Calif Los Angeles, Los Angeles, CA HO Univ Calif Los Angeles ID COLLISIONS AB Recent results on identified particle production from the PHOBOS experiment at the relativistic heavy-ion collider (RHIC) are summarized. Transverse momentum spectra of pions, kaons, protons and antiprotons from Au+Au collisions at root s(NN) = 62.4 GeV are presented close to mid-rapidity. Baryons have been found to have substantially harder transverse momentum spectra than mesons. The p/pi(+) ratio reaches unity at high p(T), which fits into a smooth trend together with measurements at lower and higher collision energies. At very low transverse momenta no significant excess of particle yield was found, compared to extrapolations from higher p(T). The net proton yield at mid-rapidity appears to be proportional to the number of participant nucleons in Au+Au collisions. The PHOBOS acceptance and mass resolution for the phi meson at low p(T) were studied in detail. C1 MIT, Cambridge, MA 02139 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Univ Illinois, Chicago, IL 60607 USA. Univ Maryland, College Pk, MD 20742 USA. PAN, Inst Nucl Phys, Krakow, Poland. Univ Rochester, Rochester, NY 14627 USA. Natl Cent Univ, Chungli 32054, Taiwan. RP Veres, GI (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM vg@ludens.elte.hu RI Decowski, Patrick/A-4341-2011; Mignerey, Alice/D-6623-2011; OI Holzman, Burt/0000-0001-5235-6314 NR 12 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD DEC PY 2006 VL 32 IS 12 SI SI BP S69 EP S76 DI 10.1088/0954-3899/12/S08 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 112CV UT WOS:000242503700009 ER PT J AU Vitev, I AF Vitev, Ivan TI Recent pQCD calculations of heavy quark production SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strangeness in Quark matter CY MAR 26-31, 2006 CL Univ Calif Los Angeles, Los Angeles, CA HO Univ Calif Los Angeles ID NUCLEUS COLLISIONS; ENERGY-LOSS; PROTON AB We summarize the results of a recent study of heavy quark production and attenuation in cold nuclear matter. In p+p collisions we investigate the relative contribution of partonic sub-processes to D meson production and D mesontriggered inclusive di-hadrons to lowest order in perturbative QCD. While gluon fusion dominates the creation of large angle D (D) over bar pairs, charm on light parton scattering determines the yield of single inclusive D mesons. The distinctly different non-perturbative fragmentation of c quarks into D mesons versus the fragmentation of quarks and gluons into light hadrons results in a strong transverse momentum dependence of anticharm content of the away-side charm-triggered jet. In p+A reactions we calculate and resum the coherent nuclear-enhanced power corrections from the final-state partonic scattering in the medium. We find that single and double inclusive open charm production can be suppressed as much as the yield of neutral pions from dynamical high-twist shadowing. Effects of energy loss in p+A collisions are also investigated in the incoherent Bertsch-Gunion limit and may lead to significantly weaker transverse momentum dependence of the nuclear attenuation. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Vitev, I (reprint author), Los Alamos Natl Lab, Div Theoret, Mail Stop H846, Los Alamos, NM 87545 USA. EM ivitev@lanl.gov NR 13 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD DEC PY 2006 VL 32 IS 12 SI SI BP S317 EP S324 DI 10.1088/0954-3899/32/12/S39 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 112CV UT WOS:000242503700040 ER PT J AU Wong, CY AF Wong, Cheuk-Yin TI Heavy quarkonia and quark drip lines in quark-gluon plasma SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strangeness in Quark Matter CY MAR 26-31, 2006 CL Univ Calif Los Angeles, Los Angeles, CA HO Univ Calif Los Angeles ID QCD PHASE-TRANSITION; FINITE-TEMPERATURE; SPECTRAL FUNCTIONS; DYNAMICAL MODEL; BOUND-STATES; FREEZE-OUT; DISSOCIATION; SUPERCONDUCTIVITY; ANALOGY; MASSES AB Using the potential model and thermodynamical quantities obtained in lattice gauge calculations, we determine the spontaneous dissociation temperatures of colour-singlet quarkonia and the 'quark drip lines' which separate the region of bound quarkonium states from the unbound region. The dissociation temperatures of J/Psi and chi(b) in quenched QCD are found to be 1.62T(c) and 1.18T(c) respectively, in good agreement with spectral function analyses. The dissociation temperature of J/Psi in full QCD with two flavours is found to be 1.42T(c). For possible bound quarkonium states with light quarks, the characteristics of the quark drip lines severely limit the stable region close to the phase transition temperature. Bound colour-singlet quarkonia with light quarks may exist very near the phase transition temperature if their effective quark mass is of the order of 300-400 MeV. C1 Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Wong, CY (reprint author), Oak Ridge Natl Lab, Div Phys, POB 2008, Oak Ridge, TN 37831 USA. EM wongc@ornl.gov OI Wong, Cheuk-Yin/0000-0001-8223-0659 NR 57 TC 4 Z9 4 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD DEC PY 2006 VL 32 IS 12 SI SI BP S301 EP S307 DI 10.1088/0954-3899/32/12/S37 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 112CV UT WOS:000242503700038 ER PT J AU Xu, N AF Xu, Nu TI Partonic EoS in high-energy nuclear collisions at RHIC SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strangeness in Quark matter CY MAR 26-31, 2006 CL Univ Calif Los Angeles, Los Angeles, CA HO Univ Calif Los Angeles ID HEAVY-ION COLLISIONS; HADRON FREEZE-OUT; FINITE-TEMPERATURE; LATTICE QCD; SEARCH; STAR AB We discuss the recent results on equation of state for partonic matter created at RHIC. Issues of partonic collectivity for multi-strange hadrons and J/psi from Au+Au collisions at root s(NN) = 200 GeV are the focus of this paper. C1 Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Xu, N (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. NR 33 TC 4 Z9 4 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD DEC PY 2006 VL 32 IS 12 SI SI BP S123 EP S126 DI 10.1088/0954-3899/32/12/S15 PG 4 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 112CV UT WOS:000242503700016 ER PT J AU Xu, Z Chen, Y Kleinfelder, S Koohi, A Li, S Huang, H Tai, A Kushpil, V Sumbera, M Colledani, C Dulinski, W Himmi, A Hu, C Shabetai, A Szelezniak, M Valin, I Winter, M Miller, M Surrow, B Van Nieuwenhuizen, G Greiner, L Lu, Y Matis, HS Oldenburg, M Ritter, HG Retiere, F Rose, A Ruan, L Schweda, K Sichtermann, E Thomas, JH Wieman, H Xu, N Zhang, Y Kotov, I AF Xu, Z. Chen, Y. Kleinfelder, S. Koohi, A. Li, S. Huang, H. Tai, A. Kushpil, V. Sumbera, M. Colledani, C. Dulinski, W. Himmi, A. Hu, C. Shabetai, A. Szelezniak, M. Valin, I. Winter, M. Miller, M. Surrow, B. Van Nieuwenhuizen, G. Greiner, L. Lu, Y. Matis, H. S. Oldenburg, M. Ritter, H. G. Retiere, F. Rose, A. Ruan, L. Schweda, K. Sichtermann, E. Thomas, J. H. Wieman, H. Xu, N. Zhang, Y. Kotov, I. TI Measurement of charm flow with the STAR heavy flavour tracker SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strangeness in Quark matter CY MAR 26-31, 2006 CL Univ Calif Los Angeles, Los Angeles, CA HO Univ Calif Los Angeles AB In order to understand the partonic EOS of matter created at RHIC, one needs to study both the collectivity of the produced matter and the degree of thermalization. Anisotropic flow measurements have already demonstrated the development of partonic collectivity at RHIC (Ackermann K et al 2001 Phys. Rev. Lett. 86 402), and now it is necessary to address the issue of quark thermalization. Since the masses of the heavy flavour quarks are larger than the possible excitations of the system created in the collision, their collective motion could be used to indicate the degree of thermalization of the light flavour quarks (u, d, s). The Heavy Flavour Tracker (HFT), a tracking upgrade of the STAR experiment, is being designed to provide an unambiguous measurement of charm quark flow through the direct reconstruction of the D-0. The current design of our detector uses a novel CMOS-based sensor, allowing for a low mass and high resolution detector element. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. Univ Calif Irvine, Irvine, CA USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Acad Sci Czech Republ, Inst Nucl Phys, CZ-25068 Rez, Prague, Czech Republic. Inst Rech Subatom, Strasbourg, France. MIT, Cambridge, MA 02139 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Ohio State Univ, Columbus, OH 43210 USA. RP Xu, Z (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM aarose@lbl.gov RI Sumbera, Michal/O-7497-2014; OI Sumbera, Michal/0000-0002-0639-7323; Thomas, James/0000-0002-6256-4536 NR 5 TC 6 Z9 6 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD DEC PY 2006 VL 32 IS 12 SI SI BP S571 EP S574 DI 10.1088/0954-3899/32/12/S79 PG 4 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 112CV UT WOS:000242503700080 ER PT J AU Xu, ZB AF Xu, Zhangbu TI Overview of charm production at RHIC SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strangeness in Quark Matter CY MAR 26-31, 2006 CL Univ Calif Los Angeles, Los Angeles, CA HO Univ Calif Los Angeles ID HEAVY-ION COLLISIONS; QUARK-GLUON PLASMA; PARTICLE IDENTIFICATION; HADRON SPECTRA; COLLABORATION; PERSPECTIVE; SUPPRESSION; PHYSICS AB In this presentation, I discuss (a) the charm total cross-section and its comparisons to measurements at other beam energies and pQCD calculations; (b) the semileptonic decay of charm hadrons and the sensitivity of non-photonic leptons to charm quark collective flow and freeze-out; (c) semileptonic decayed electron spectrum at high transverse momentum, its comparison to FONLL in p+p and d+Au collisions and heavy-quark energy loss in Au+Au collisions. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Xu, ZB (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM xzb@bnl.gov NR 50 TC 5 Z9 5 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD DEC PY 2006 VL 32 IS 12 SI SI BP S309 EP S316 DI 10.1088/0954-3899/32/12/S38 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 112CV UT WOS:000242503700039 ER PT J AU Zhang, HB AF Zhang, Haibin CA STAR Collaboration TI Heavy flavour production at STAR SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strangeness in Quark matter CY MAR 26-31, 2006 CL Univ Calif Los Angeles, Los Angeles, CA HO Univ Calif Los Angeles ID OPEN CHARM; COLLISIONS AB We present measurements on D-0 meson production via direct reconstruction of its hadronic decay channel D-0 -> K pi in minimum bias d+Au and Au+Au collisions at root s(NN) = 200 GeV with p(T) up to similar to 3 GeV/c. Non-photonic electron spectra from the charm semi-leptonic decays are analysed from the same data set as well as in p+p collision at vs = 200 GeV using the STAR time-of-flight (TOF) and Barrel EMC (BEMC) detectors, respectively. Results of the charm-decayed single muon ( prompt muon) spectra are also presented at low pT in Au+Au collisions measured by the TOF detector. The charm production total cross-section per nucleon-nucleon collision is measured to be 1.26 +/- 0.09 (stat.) +/- 0.23 (sys.) mb in minimum bias Au+Au collisions, which is consistent with the N-bin scaling compared to 1.4 +/- 0.2 +/- 0.4 mb in minimum bias d+Au collisions, and supports the idea that charm quarks should be produced mostly via parton fusion at an early stage in relativistic heavy-ion collisions. A blast-wave model fit to the low p(T) (< 2 GeV/c) nonphotonic electrons, prompt muons and D-0 spectra shows that charm hadrons may kinetically freeze out earlier than light hadrons with a smaller collective velocity. The nuclear modification factors (R-AA) of the non-photonic electrons in central Au+Au collisions are significantly below unity at p(T) > similar to 2 GeV/c, which indicates a significant amount of energy loss for heavy quarks in Au+Au collisions. The charm transverse momentum distribution must have been modified by the hot and dense matter created in central Au+Au collisions at the Relativistic Heavy-Ion Collider. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Zhang, HB (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM haibin@bnl.gov NR 21 TC 4 Z9 4 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD DEC PY 2006 VL 32 IS 12 SI SI BP S29 EP S34 DI 10.1088/0954-3899/32/12/S03 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 112CV UT WOS:000242503700004 ER PT J AU Zhang, YF AF Zhang, Yifei CA STAR Collaboration TI Open charm production in root(NN)-N-s=200 GeVAu+Au collisions SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Strangeness in Quark Matter CY MAR 26-31, 2006 CL Univ Calif Los Angeles, Los Angeles, CA HO Univ Calif Los Angeles AB We report on the measurement of D meson production from the analysis of their hadronic (D-0 -> K pi) and semileptonic (D -> mu + X, D -> e + X) decays in root s(NN) = 200 GeV Au+Au collisions. The transverse momentum (p(T)) spectra and the nuclear modification factors for D-0 and for electron/muon(2) from charm semileptonic decays will be presented. The differential cross section d sigma/dy is found to be consistent with the number of binary scaling. The blast-wave fit suggests that the charm hadron freeze out earlier than other light flavour hadrons. C1 Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Zhang, YF (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. EM yfzhang@lbl.gov NR 20 TC 17 Z9 18 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD DEC PY 2006 VL 32 IS 12 SI SI BP S529 EP S532 DI 10.1088/0954-3899/32/12/S70 PG 4 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 112CV UT WOS:000242503700071 ER PT J AU Barish, K Huang, HZ Kapusta, J Odyniec, G Rafelski, J Whitten, CA AF Barish, Kenneth Huang, Huan Zhong Kapusta, Joseph Odyniec, Grazyna Rafelski, Johann Whitten, Charles A., Jr. TI Special issue: SQM 2006 - International Conference on Strangeness in Quark Matter (University of California Los Angeles, 26-31 March 2006) - Preface SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Editorial Material C1 Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Minnesota, Minneapolis, MN 55455 USA. Lawrence Berkeley Natl Lab, Berkeley, CA USA. Univ Arizona, Tucson, AZ 85721 USA. RP Barish, K (reprint author), Univ Calif Riverside, Riverside, CA 92521 USA. RI Rafelski, Johann/E-4678-2013 NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD DEC PY 2006 VL 32 IS 12 SI SI PG 1 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 112CV UT WOS:000242503700001 ER PT J AU Sotnikov, V Ivanov, VV Cowan, TE Leboeuf, JN Oliver, BV Coverdale, C Jones, B Deeney, C Mehlhorn, TA LePell, PD Hellinger, P Travnicek, P AF Sotnikov, V. Ivanov, V. V. Cowan, T. E. Leboeuf, J. N. Oliver, B. V. Coverdale, C. Jones, B. Deeney, C. Mehlhorn, T. A. LePell, P. D. Hellinger, P. Travnicek, P. TI Hybrid simulation of z-pinches in support of wire array implosion experiments at the Nevada Terawatt Facility SO JOURNAL OF PLASMA PHYSICS LA English DT Article; Proceedings Paper CT 19th International Conference on Numerical Simulation of Plasmas/7th Asia Pacific Plasma Theory Conference CY JUL 12-15, 2005 CL Nara, JAPAN SP Natl Inst Fus Sci, Japan Soc Promot Sci ID GLOBAL MAGNETOHYDRODYNAMIC INSTABILITIES AB Three-dimensional hybrid simulation of a plasma current-carrying column reveal two different regimes of sausage and kink instability development. In the first regime, with small Hall parameter, development of instabilities leads to the appearance of large-scale axial perturbations and eventually to bending of the plasma column. In the second regime, with a four-times-larger Hall parameter, small-scale perturbations dominate and no bending of the plasma column is observed. Simulation results are compared with laser probing experimental data, obtained during wire array implosions on the Zebra pulse power generator at the Nevada Terawatt Facility. C1 UNR, Dept Phys, Reno, NV 89557 USA. Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA. ATK MRC, Albuquerque, NM 87110 USA. Sandia Natl Labs, Albuquerque, NM 87123 USA. Ktech Corp Inc, Albuquerque, NM 87123 USA. IAP, Prague 4, Czech Republic. RP Sotnikov, V (reprint author), UNR, Dept Phys, Reno, NV 89557 USA. RI Hellinger, Petr/F-5267-2014; Travnicek, Pavel/G-8608-2014; Cowan, Thomas/A-8713-2011 OI Hellinger, Petr/0000-0002-5608-0834; Cowan, Thomas/0000-0002-5845-000X NR 6 TC 0 Z9 0 U1 0 U2 1 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-3778 J9 J PLASMA PHYS JI J. Plasma Phys. PD DEC PY 2006 VL 72 BP 1113 EP 1116 DI 10.1017/S0022377806005757 PN 6 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 128QO UT WOS:000243673400077 ER PT J AU Ichiguchi, K Carreras, BA AF Ichiguchi, Katsuji Carreras, Benjamin A. TI Multi-scale approach to the solution of nonlinear MHD evolution of heliotron plasma SO JOURNAL OF PLASMA PHYSICS LA English DT Article; Proceedings Paper CT 19th International Conference on Numerical Simulation of Plasmas/7th Asia Pacific Plasma Theory Conference CY JUL 12-15, 2005 CL Nara, JAPAN SP Natl Inst Fus Sci, Japan Soc Promot Sci ID LHD PLASMAS AB A multi-scale nonlinear magnetohydrodynamic (MHD) evolution scheme is developed for the numerical analysis of a heliotron plasma as beta increases. In this scheme, the fast time scale dynamics is given by the nonlinear MHD code based on the reduced MHD equations and the slow dynamics is carried out with three-dimensional static equilibrium code. The time evolution is calculated relatively with a linear interpolation technique for the equilibrium quantities. This scheme is applied to the analysis of the Large Helical Device plasma. Self-organization of the pressure profile induced by the interchange mode is obtained. C1 Natl Inst Fus Sci, Toki 5095292, Japan. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Ichiguchi, K (reprint author), Natl Inst Fus Sci, Toki 5095292, Japan. NR 3 TC 3 Z9 3 U1 0 U2 1 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-3778 EI 1469-7807 J9 J PLASMA PHYS JI J. Plasma Phys. PD DEC PY 2006 VL 72 BP 1117 EP 1121 DI 10.1017/S0022377806005769 PN 6 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 128QO UT WOS:000243673400078 ER PT J AU Hole, MJ Hudson, SR Dewar, RL AF Hole, M. J. Hudson, S. R. Dewar, R. L. TI Stepped pressure profile equilibria in cylindrical plasmas via partial Taylor relaxation SO JOURNAL OF PLASMA PHYSICS LA English DT Article; Proceedings Paper CT 19th International Conference on Numerical Simulation of Plasmas/7th Asia Pacific Plasma Theory Conference CY JUL 12-15, 2005 CL Nara, JAPAN SP Natl Inst Fus Sci, Japan Soc Promot Sci ID VACUUM SYSTEMS; TRANSPORT AB We develop a multiple interface variational model, comprising multiple Taylor-relaxed plasma regions separated by ideal magnetohydrodynamic (MHD) barriers. A principal motivation is the development of a mathematically rigorous ideal MHD model to describe intrinsically three-dimensional equilibria, with non-zero internal pressure. A second application is the description of transport barriers as constrained minimum energy states. As a first example, we calculate the plasma solution in a periodic cylinder. generalizing the analysis of the treatment of Kaiser and Uecker (2004 Q. J. Mech. Appl. Math. 57, 1-17), who treated the single interface in cylindrical geometry. Expressions for the equilibrium field are generated, and equilibrium states computed. Unlike other Taylor relaxed equilibria, for the equilibria investigated here, only the plasma core necessarily has reverse magnetic shear. We show the existence of tokamak-like equilibria, with increasing safety factor and steeped-pressure profiles. C1 Australian Natl Univ, Res Sch Phys Sci & Engn, Canberra, ACT 0200, Australia. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Hole, MJ (reprint author), Australian Natl Univ, Res Sch Phys Sci & Engn, Canberra, ACT 0200, Australia. RI Dewar, Robert/B-1300-2008; Hudson, Stuart/H-7186-2013 OI Dewar, Robert/0000-0002-9518-7087; Hudson, Stuart/0000-0003-1530-2733 NR 9 TC 16 Z9 16 U1 0 U2 2 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-3778 J9 J PLASMA PHYS JI J. Plasma Phys. PD DEC PY 2006 VL 72 BP 1167 EP 1171 DI 10.1017/S0022377806005861 PN 6 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 128QO UT WOS:000243673400088 ER PT J AU Isobe, M Spong, DA Shimizu, A Toi, K Matsushita, H Nagaoka, K Nishiura, M Matsuoka, K Okamura, S Murakami, S AF Isobe, M. Spong, D. A. Shimizu, A. Toi, K. Matsushita, H. Nagaoka, K. Nishiura, M. Matsuoka, K. Okamura, S. Murakami, S. TI Simulational study on losses of neutral beam-injected energetic ions via collisional ripple transport in the low aspect ratio helical system CHS SO JOURNAL OF PLASMA PHYSICS LA English DT Article; Proceedings Paper CT 19th International Conference on Numerical Simulation of Plasmas/7th Asia Pacific Plasma Theory Conference CY JUL 12-15, 2005 CL Nara, JAPAN SP Natl Inst Fus Sci, Japan Soc Promot Sci AB Confinement and loss properties of tangentially co-injected beam ions have been studied for a standard configuration of the Compact Helical System (R-ax/B-t = 0.921 m/1.9 T) by use of the global particle simulation code DELTA5D. Both ripple transport and collisions with a background plasma are taken into account. It has appeared that partially thermalized, pitch-angle scattered beam ions are dominantly lost at the small major radius side. It has also been shown that the negative potential can enhance beam ions losses. C1 Natl Inst Fus Sci, Toki 5095292, Japan. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Grad Univ Adv Studies, Toki 5095292, Japan. Kyoto Univ, Kyoto 6068501, Japan. RP Isobe, M (reprint author), Natl Inst Fus Sci, Toki 5095292, Japan. RI Spong, Donald/C-6887-2012; Murakami, Sadayoshi/A-2191-2016 OI Spong, Donald/0000-0003-2370-1873; Murakami, Sadayoshi/0000-0002-2526-7137 NR 6 TC 0 Z9 0 U1 0 U2 1 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-3778 J9 J PLASMA PHYS JI J. Plasma Phys. PD DEC PY 2006 VL 72 BP 1189 EP 1192 DI 10.1017/S0022377806005903 PN 6 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 128QO UT WOS:000243673400092 ER PT J AU Takayama, A Pigarov, AY Rasheninnikov, SIK Tomita, Y Ishiguro, S Rognlien, TD AF Takayama, A. Pigarov, A. Yu. Rasheninnikov, S. I. K. Tomita, Y. Ishiguro, S. Rognlien, T. D. TI Edge plasma simulations for a stellarator system with the two-dimensional transport code UEDGE SO JOURNAL OF PLASMA PHYSICS LA English DT Article; Proceedings Paper CT 19th International Conference on Numerical Simulation of Plasmas/7th Asia Pacific Plasma Theory Conference CY JUL 12-15, 2005 CL Nara, JAPAN SP Natl Inst Fus Sci, Japan Soc Promot Sci AB A new and simple approach for stellarator edge modeling is presented. This is based on averaging of edge plasma parameters and introducing effective two-dimensional flux Surfaces which allow LIS to use the UEDGE transport code, widely used for tokamak edge plasma modeling. This approach is applied to edge modeling of the Large Helical Device (LHD). It should be noted that our model is based on a two-dimensional configuration which is called the stellarator-equivalent tokamak (SET), while a stellarator system is inherently three-dimensional. Numerical simulations show that a bump of ion density in the private flux region just inside the separatrix appears, and flow reversal or a vortex structure of the ion flow is observed. Detailed analyses are necessary for validating this approach. C1 Natl Inst Fus Sci, Toki 5095292, Japan. Univ Calif San Diego, La Jolla, CA 92093 USA. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Takayama, A (reprint author), Natl Inst Fus Sci, Oroshi Cho 322-6, Toki 5095292, Japan. RI Ishiguro, Seiji/F-4376-2014 NR 7 TC 0 Z9 0 U1 0 U2 1 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-3778 J9 J PLASMA PHYS JI J. Plasma Phys. PD DEC PY 2006 VL 72 BP 1229 EP 1232 DI 10.1017/S002237780600599X PN 6 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 128QO UT WOS:000243673400101 ER PT J AU Strozzi, DJ Shoucri, MM Bers, A Williams, EA Langdon, AB AF Strozzi, D. J. Shoucri, M. M. Bers, A. Williams, E. A. Langdon, A. B. TI Vlasov simulations of trapping and inhomogeneity in Raman scattering SO JOURNAL OF PLASMA PHYSICS LA English DT Article; Proceedings Paper CT 19th International Conference on Numerical Simulation of Plasmas/7th Asia Pacific Plasma Theory Conference CY JUL 12-15, 2005 CL Nara, JAPAN SP Natl Inst Fus Sci, Japan Soc Promot Sci ID CODE AB We study stimulated Raman Scattering (SRS) in laser-fusion plasmas with the Eulerian Vlasov code ELVIS. Backward SRS occurs in sub-picosecond bursts and far exceeds linear theory. Forward SRS and re-scatter of backward SRS are also observed. The plasma wave frequency downshifts from the linear dispersion curve, and the electron distribution flattens. This is consistent with trapping and reduces Landau damping. There is sonic acoustic (omega proportional to k) activity and possibly stimulated electron acoustic Scatter. Kinetic ions do not affect SRS for early times but suppress it later on. SRS from inhomogeneous plasmas exhibits a kinetic enhancement for long density scale lengths. More scattering results when the pump propagates towards a higher as opposed to towards a lower density. C1 MIT, Cambridge, MA 02139 USA. Inst Rech Hydro Quebec, Varennes, PQ J3X 1S1, Canada. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Strozzi, DJ (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM dstrozzi@llnl.gov OI Strozzi, David/0000-0001-8814-3791 NR 8 TC 8 Z9 8 U1 0 U2 3 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-3778 J9 J PLASMA PHYS JI J. Plasma Phys. PD DEC PY 2006 VL 72 BP 1299 EP 1302 DI 10.1017/S0022377806005599 PN 6 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 128QO UT WOS:000243673400116 ER PT J AU Metz, TO Jacobs, JM Gritsenko, MA Fontes, G Qian, WJ Camp, DG Poitout, V Smith, RD AF Metz, Thomas O. Jacobs, Jon M. Gritsenko, Marina A. Fontes, Ghislaine Qian, Wei-Jun Camp, David G., III Poitout, Vincent Smith, Richard D. TI Characterization of the human pancreatic islet proteome by two-dimensional LC/MS/MS SO JOURNAL OF PROTEOME RESEARCH LA English DT Article ID TANDEM MASS-SPECTROMETRY; STIMULATED-INSULIN-SECRETION; TIME TAG APPROACH; PLUS O-2 METHOD; ACCURATE MASS; LIQUID-CHROMATOGRAPHY; GEL-ELECTROPHORESIS; RAT ISLETS; BETA-CELLS; EXPRESSION AB The pancreatic beta-cell plays a central role in the maintenance of glucose homeostasis and in the pathogenesis of both type 1 and type 2 diabetes mellitus. Elucidation of the insulin secretory defects observed in diabetes first requires a better understanding of the complex mechanisms regulating insulin secretion, which are only partly understood. While there have been reports detailing proteomic analyses of islet cell lines or isolated rodent islets, the information gained is not always applicable to humans. Therefore, definition of the human islet proteome could contribute to a better understanding of islet biology and lead to more effective treatment strategies. We have applied a two-dimensional LC-MS/MS-based analysis to the characterization of the human islet proteome, resulting in the confident identification of 29 021 different tryptic peptides covering 3365 proteins (>= 2 unique peptide identifications per protein). As expected, the three major islet hormones (insulin, glucagon, and somatostatin) were detected, as well as various beta-cell enriched secretory products, ion channels, and transcription factors. In addition, significant proteome coverage of metabolic enzymes and cellular pathways was observed, including the integrin signaling cascade and the MAP kinase, NF-kappa beta, and JAK/STAT pathways. The resulting peptide reference library provides a resource for future higher throughput and quantitative studies of islet biology. C1 Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. Pacif NW Res Inst, Seattle, WA USA. RP Smith, RD (reprint author), POB 999, Richland, WA 99352 USA. EM rds@pnl.gov RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Metz, Tom/0000-0001-6049-3968; Poitout, Vincent/0000-0002-6555-5053 FU NCRR NIH HHS [P41 RR018522, P41 RR018522-04, RR18522]; NIDDK NIH HHS [R21 DK070146] NR 33 TC 35 Z9 36 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD DEC 1 PY 2006 VL 5 IS 12 BP 3345 EP 3354 DI 10.1021/pr060322n PG 10 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 111CE UT WOS:000242427800013 PM 17137336 ER PT J AU Silver, GL AF Silver, G. L. TI Intrinsic predominance region diagram for plutonium SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article AB A predominance-region diagram for aqueous plutonium can be prepared by plotting the equilibrium fractions of tetra- and hexavalent plutonium. An example illustrates how the triple points can be used to estimate hydrolysis constants. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Silver, GL (reprint author), Los Alamos Natl Lab, POB 1663,MS E517, Los Alamos, NM 87545 USA. EM gsilver@lanl.gov NR 6 TC 5 Z9 5 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD DEC PY 2006 VL 270 IS 3 BP 705 EP 708 DI 10.1007/s10967-006-0450-9 PG 4 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 107CL UT WOS:000242148200029 ER PT J AU Gschneidner, KA Pecharsky, VK AF Gschneidner, Karl A., Jr. Pecharsky, Vitalij K. TI Rare earths and magnetic refrigeration SO JOURNAL OF RARE EARTHS LA English DT Article DE magnetic refrigeration; magnetocaloric effect; gadolinium; Gd-5(Si1-xGex)(4); La(Fe13-xSix)H-y; Nd2Fe14B permanent magnets; active magnetic regenerator cycle; rare earths ID HEAT-CAPACITY; MAGNETOCALORIC MATERIALS; TRANSITION; GD-5(SI2GE2); ALLOYS AB Magnetic refrigeration is a revolutionary, efficient, environmentally friendly cooling technology, which is on the threshold of commercialization. The magnetic rare earth materials are utilized as the magnetic refrigerants in most cooling devices, and for many cooling application the Nd2Fe14B permanent magnets are employed as the source of the magnetic field. The status of the near room temperature magnetic cooling was reviewed. C1 Iowa State Univ, Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Gschneidner, KA (reprint author), Iowa State Univ, Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. EM cagey@ameslab.gov NR 24 TC 34 Z9 35 U1 4 U2 22 PU METALLURGICAL INDUSTRY PRESS PI BEIJING PA 2 XINJIEKOUWAI DAJIE, BEIJING 100088, PEOPLES R CHINA SN 1002-0721 J9 J RARE EARTH JI J. Rare Earths PD DEC PY 2006 VL 24 IS 6 BP 641 EP 647 DI 10.1016/S1002-0721(07)60001-5 PG 7 WC Chemistry, Applied SC Chemistry GA 123TV UT WOS:000243319700001 ER PT J AU Assefa, Z Ling, J Haire, RG Albrecht-Schmitt, TE Sykora, RE AF Assefa, Zerihun Ling, Jie Haire, Richard G. Albrecht-Schmitt, Thomas E. Sykora, Richard E. TI Syntheses, structures, and vibrational spectroscopy of the two-dimensional iodates Ln(IO3)(3) and Ln(IO3)(3)(H2O) (Ln=Yb, Lu) SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE lutetium iodate; ytterbium iodate; hydrothermal; single-crystal X-ray diffraction; Raman spectroscopy; layered compounds; structure determination ID TRANSITION-METAL IODATES; SINGLE-CRYSTAL RAMAN; RARE-EARTH IODATES; HYDROTHERMAL SYNTHESIS; HOST LATTICES; PERIODATES; PLUTONIUM; SR(CLO3)2; COMPOUND; SPECTRA AB The reaction of Lu3+ or Yb3+ and (HIO6)-I-5 in aqueous media at 180 degrees C leads to the formation of Yb(IO3)(3)(H2O) or LU(IO3)(3)(H2O), respectively, while the reaction of Yb metal with H5IO6 under similar reaction conditions gives rise to the anhydrous iodate, Yb(IO3)(3). Under supercritical conditions Lu3+ reacts with HIO3 and KIO4 to yield the isostructural Lu(IO3)(3). The structures have been determined by single-crystal X-ray diffraction. Crystallographic data are (MoK alpha, lambda = 0.71073 angstrom): Yb(IO3)(3), monoclinic, space group P2(1)/n, a = 8.6664(9) angstrom, b = 5.9904(6) angstrom, c = 14.8826(15) angstrom, beta = 96.931(2)degrees, V = 766.99(13), Z = 4, R(F) = 4.23% for 114 parameters with 1880 reflections with I > 2 sigma(I); LU(IO3)(3), monoclinic, space group P2(1)/n, a = 8.6410(9), b = 5.9961(6), c = 14.8782(16) angstrom, beta = 97.028(2)degrees, V = 765.08(14), Z = 4, R(F) = 2.65% for 119 parameters with 1756 reflections with I > 2 sigma(I); Yb(IO3)(3)(H2O), monoclinic, space group C2/c, a = 27.2476(15): b = 5.6296(3), c = 12.0157(7) angstrom, beta = 98.636(1)degrees, V = 1822.2(2), Z = 8, R(F) = 1.51% for 128 parameters with 2250 reflections with I > 2 sigma(I); LU(IO3)(3)(H2O), monoclinic, space group C2/c, a = 27.258(4), b = 5.6251(7), c = 12.0006(16) angstrom, beta = 98.704(2)degrees, V = 1818.8(4) Z = 8, R(F) = 1.98% for 128 parameters with 2242 reflections with I > 2 sigma(I). The f elements in all of the compounds are found in seven-coordinate environments and bridged with monodentate, bidentate, or tridentate iodate anions. Both Lu(IO3)(3)(H2O) and Yb(IO3)(3)(H2O) display distinctively different vibrational profiles from their respective anhydrous analogs. Hence, the Raman profile can be used as a complementary diagnostic tool to discern the different structural motifs of the compounds. (c) 2006 Elsevier Inc. All rights reserved. C1 Univ S Alabama, Dept Chem, Mobile, AL 36688 USA. N Carolina Agr & Tech State Univ, Dept Chem, Greensboro, NC 27411 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Auburn Univ, Dept Chem & Biochem, Auburn, AL 36849 USA. RP Sykora, RE (reprint author), Univ S Alabama, Dept Chem, 307 Univ Blvd, Mobile, AL 36688 USA. EM zassefa@ncat.edu; rsykora@jaguar1.usouthal.edu RI Ling, Jie/A-4136-2011 NR 35 TC 16 Z9 16 U1 1 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD DEC PY 2006 VL 179 IS 12 BP 3653 EP 3663 DI 10.1016/j.jssc.2006.07.042 PG 11 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 116FI UT WOS:000242787500008 ER PT J AU Ngo, N Kalachnikova, K Assefa, Z Haire, RG Sykora, RE AF Ngo, Nhan Kalachnikova, Katrina Assefa, Zerihun Haire, Richard G. Sykora, Richard E. TI Synthesis and structure of In(IO3)(3) and vibrational spectroscopy of M(IO3)(3) (M = Al, Ga, In) SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE indium iodate; aluminum iodate; gallium iodate; hydrothermal; single crystal X-ray diffraction; Raman spectroscopy; layered compound; structure determination ID TRANSITION-METAL IODATES; NONLINEAR OPTIC SURVEY; SINGLE-CRYSTAL RAMAN; HYDROTHERMAL SYNTHESIS; ALUMINUM IODATE; NLO PROPERTIES; X-RAY; SPECTRA; AL(IO3)3.2HIO3.6H2O; RB AB The reaction of Al, Ga, or In metals and H5IO6 in aqueous media at 180 degrees C leads to the formation of Al(IO3)(3), Ga(IO3)(3), or In(IO3)(3), respectively. Single-crystal X-ray diffraction experiments have shown In(IO3)(3) contains the Te4O9-type structure, while both AI(IO3)(3) and Ga(IO3)(3) are known to exhibit the polar Fe(IO3)(3)-type structure. Crystallographic data for In(IO3)(3), trigonal, space group R (3) over bar, a = 9.7482(4) angstrom, c = 14.1374(6) angstrom, V = 1163.45(8) Z = 6, R(F) = 1.38% for 41 parameters with 644 reflections with I > 2 sigma(I). All three iodate structures contain group 13 metal cations in a distorted octahedral coordination environment. M(IO3)(3) (M = At, Ga) contain a three-dimensional network formed by the bridging of Al3+ or Ga3+ cations by iodate anions. With In(IO3)(3), iodate anions bridge In3+ cations in two-dimensional layers. Both materials contain distorted octahedral holes in their structures formed by terminal oxygen atoms from the iodate anions. The Raman spectra have been collected for these metal iodates; In(IO3)(3) was found to display a distinctively different vibrational profile than Al(IO3)(3) or Ga(IO3)(3). Hence, the Raman profile can be used as a rapid diagnostic tool to discern between the different structural motifs. (c) 2006 Elsevier Inc. All rights reserved. C1 Univ S Alabama, Dept Chem, Mobile, AL 36688 USA. N Carolina Agr & Tech State Univ, Dept Chem, Greensboro, NC 27411 USA. Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA. RP Sykora, RE (reprint author), Univ S Alabama, Dept Chem, Room,The Chem Bldg,307 Univ Blvd, Mobile, AL 36688 USA. EM rsykora@jaguar1.usouthal.edu NR 46 TC 19 Z9 19 U1 1 U2 14 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD DEC PY 2006 VL 179 IS 12 BP 3824 EP 3830 DI 10.1016/j.jssc.2006.08.026 PG 7 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 116FI UT WOS:000242787500030 ER PT J AU Velazquez-Rivera, M Palmer, DA Kettler, RM AF Velazquez-Rivera, Mariano Palmer, Donald A. Kettler, Richard M. TI Isopiestic measurement of the osmotic coefficients of aqueous {xH(2)SO(4) plus (1-x)Fe-2(SO4)(3)} solutions at 298.15 and 323.15 K SO JOURNAL OF SOLUTION CHEMISTRY LA English DT Article DE osmotic coefficients; isopiestic; iron(III) sulfate; water activity; sulfuric acid; acid-rock drainage ID SODIUM-CHLORIDE SOLUTIONS; THERMODYNAMIC PROPERTIES; SULFURIC-ACID; VOLUMETRIC PROPERTIES; ELECTROLYTES; SYSTEM; WATER; TEMPERATURE; MIXTURES; MODEL AB This study measures the osmotic coefficients of {xH(2)SO(4) + (1-x)Fe-2(SO4)(3)}(aq) solutions at 298.15 and 323.15 K that have ionic strengths as great as 19.3 mol.kg(-1), using the isopiestic method. Experiments utilized both aqueous NaCl and H2SO4 as reference solutions. Equilibrium values of the osmotic coefficient obtained using the two different reference solutions were in satisfactory internal agreement. The solutions follow generally the Zdanovskii empirical linear relationship and yield values of a(w) for the Fe-2(SO4)(3)-H2O binary system at 298.15 K that are in good agreement with recent work and are consistent with other M-2(SO4)(3)-H2O binary systems. C1 Univ Nebraska, Dept Geosci, Lincoln, NE 68588 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Kettler, RM (reprint author), Univ Nebraska, Dept Geosci, Lincoln, NE 68588 USA. NR 32 TC 6 Z9 6 U1 0 U2 2 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0095-9782 J9 J SOLUTION CHEM JI J. Solut. Chem. PD DEC PY 2006 VL 35 IS 12 BP 1699 EP 1730 DI 10.1007/s10953-006-9091-4 PG 32 WC Chemistry, Physical SC Chemistry GA 117DW UT WOS:000242853900008 ER PT J AU Lee, HY Kardar, M AF Lee, Ha Youn Kardar, Mehran TI Patterns and symmetries in the visual cortex and in natural images SO JOURNAL OF STATISTICAL PHYSICS LA English DT Article DE visual cortex; orientational preference map; pinwheel structure; joint rotational symmetry; transversality; information optimization ID PRIMATE STRIATE CORTEX; FUNCTIONAL ARCHITECTURE; SIMPLE CELLS; ORIENTATION; CONNECTIONS; STATISTICS; SCENES; MAPS; RESPONSES; FILTERS AB As borders between different entities, lines are an important element of natural images. Indeed, the neurons of the mammalian visual cortex are tuned to respond best to lines of a given orientation. This preferred orientation varies continuously across most of the cortex, but also has vortex-like singularities known as pinwheels. In attempting to describe such patterns of orientation preference, we are led to consider underlying rotation symmetries: Oriented segments in natural images tend to be collinear; neurons are more likely to be connected if their preferred orientations are aligned to their topographic separation. These are indications of a reduced symmetry requiring joint rotations of both orientation preference and the underlying topography. This is verified by direct statistical tests in both natural images and in cortical maps. Using the statistics of natural scenes we construct filters that are best suited to extracting information from such images, and find qualitative similarities to mammalian vision. C1 Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. MIT, Dept Phys, Cambridge, MA 02139 USA. RP Lee, HY (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys Grp, MS-K710, Los Alamos, NM 87545 USA. EM hayoun@lanl.gov OI Kardar, Mehran/0000-0002-1112-5912 NR 39 TC 5 Z9 5 U1 0 U2 0 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-4715 J9 J STAT PHYS JI J. Stat. Phys. PD DEC PY 2006 VL 125 IS 5-6 BP 1247 EP 1270 DI 10.1007/s10955-006-9107-x PG 24 WC Physics, Mathematical SC Physics GA 117OL UT WOS:000242882500014 ER PT J AU Zhu, YH Frey, HC AF Zhu, Yunhua Frey, H. Christopher TI Uncertainty analysis of integrated gasification combined cycle systems based on frame 7H versus 7F gas turbines SO JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION LA English DT Article ID ENVIRONMENTAL-CONTROL; SENSITIVITY ANALYSIS; POWER-SYSTEMS; COAL AB Integrated gasification combined cycle (IGCC) technology is a promising alternative for clean generation of power and coproduction of chemicals from coal and other feedstocks. Advanced concepts for IGCC systems that incorporate state-of-the-art gas turbine systems, however, are not commercially demonstrated. Therefore, there is uncertainty regarding the future commercial-scale performance, emissions, and cost of such technologies. The Frame 7F gas turbine represents current state-of-practice, whereas the Frame 7H is the most recently introduced advanced commercial gas turbine. The objective of this study was to evaluate the risks and potential payoffs of IGCC technology based on different gas turbine combined cycle designs. Models of entrained-flow gasifier-based IGCC systems with Frame 7F (IGCC-7F) and 7H gas turbine combined cycles (IGCC-7H) were developed in ASPEN Plus. An uncertainty analysis was conducted. Gasifier carbon conversion and project cost uncertainty are identified as the most important uncertain inputs with respect to system performance and cost. The uncertainties in the difference of the efficiencies and costs for the two systems are characterized. Despite uncertainty, the IGCC-7H system is robustly preferred to the IGCC-7F system. Advances in gas turbine design will improve the performance, emissions, and cost of IGCC systems. The implications of this study for decision-making regarding technology selection, research planning, and plant operation are discussed. C1 N Carolina State Univ, Dept Civil Construct & Environm Engn, Raleigh, NC 27695 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Frey, HC (reprint author), N Carolina State Univ, Dept Civil Construct & Environm Engn, Raleigh, NC 27695 USA. EM frey@enos.ncsu.edu OI Frey, Henry/0000-0001-9450-0804 NR 38 TC 6 Z9 6 U1 0 U2 8 PU AIR & WASTE MANAGEMENT ASSOC PI PITTSBURGH PA ONE GATEWAY CENTER, THIRD FL, PITTSBURGH, PA 15222 USA SN 1047-3289 J9 J AIR WASTE MANAGE JI J. Air Waste Manage. Assoc. PD DEC PY 2006 VL 56 IS 12 BP 1649 EP 1661 PG 13 WC Engineering, Environmental; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 115VS UT WOS:000242762500003 PM 17195484 ER PT J AU Lewis, JA Smay, JE Stuecker, J Cesarano, J AF Lewis, Jennifer A. Smay, James E. Stuecker, John Cesarano, Joseph, III TI Direct ink writing of three-dimensional ceramic structures SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID SOLID FREEFORM FABRICATION; PERIODIC STRUCTURES; FUSED DEPOSITION; COLLOIDAL INKS; COMPOSITES; SUSPENSIONS; COMPONENTS; SCAFFOLDS; PROTOTYPES; CRYSTALS AB The ability to pattern ceramic materials in three dimensions (3D) is critical for structural, functional, and biomedical applications. One facile approach is direct ink writing (DIW), in which 3D structures are built layer-by-layer through the deposition of colloidal- or polymer-based inks. This approach allows one to design and rapidly fabricate ceramic materials in complex 3D shapes without the need for expensive tooling, dies, or lithographic masks. In this feature article, we present both droplet- and filament-based DIW techniques. We focus on the various ink designs and their corresponding rheological behavior, ink deposition mechanics, potential shapes and the toolpaths required, and representative examples of 3D ceramic structures assembled by each technique. The opportunities and challenges associated with DIW are also highlighted. C1 Univ Illinois, Dept Mat Sci & Engn, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. Oklahoma State Univ, Dept Chem Engn, Stillwater, OK 74078 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lewis, JA (reprint author), Univ Illinois, Dept Mat Sci & Engn, Frederick Seitz Mat Res Lab, 1304 W Green St, Urbana, IL 61801 USA. EM jalewis@uiuc.edu NR 72 TC 149 Z9 152 U1 13 U2 114 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD DEC PY 2006 VL 89 IS 12 BP 3599 EP 3609 DI 10.1111/j.1551-2916.2006.01382.x PG 11 WC Materials Science, Ceramics SC Materials Science GA 108HY UT WOS:000242232100001 ER PT J AU Cross, T Raj, R AF Cross, Tsali Raj, Rishi TI Mechanical and tribological behavior of polymer-derived ceramics constituted from SiCxOyNz SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID SILICON OXYCARBIDE GLASSES; AMORPHOUS-CARBON FILMS; OXYNITRIDE GLASSES; THERMAL-BEHAVIOR; WEAR; FRICTION; CARBIDE; NANODOMAINS; VISCOSITY; PRECURSOR AB Polymer-derived ceramics (PDCs) are a new class of ceramics that are obtained from direct pyrolysis of densely crosslinked polymers. In this article, we report the mechanical and tribological properties of silicon-based PDCs. The density, the elastic modulus, the hardness, and the fracture toughness of silicon oxycarbonitride ceramics are related to their tribological (friction and wear) behavior. The mechanical properties show a strong relationship with the oxygen/nitrogen ratio in the ceramic, which was varied by annealing the specimens in nitrogen at high temperatures and pressure. The properties are enhanced by a higher nitrogen-to-oxygen ratio. In dry environments, the tribological behavior is divided into two regimes: a low-friction regime with a coefficient of friction, mu, of about 0.2, and a high-friction regime with mu similar to 0.7. The transition occurs at a critical value of contact stress. This transition stress appears to be related to the onset of fracture of the ceramic, and moves to a higher value with higher modulus and hardness of the ceramic. The transition stress is successfully analyzed in terms of the influence of the elastic modulus on the fracture stress. The analysis leads to the suggestion of a residual tensile stress in the surface of the specimens of approximately 1 GPa equivalent of the contact stress. In a humid environment, the transition stress apparently moves beyond the experimentally accessible regime. In this environment, the coefficient of friction remains unchanged at mu similar to 0.2. Two hypotheses, one related to the effect of humidity on the work of fracture, and the other to the formation of a hydrated film on the surface of silicon nitride, the counterface in the tribological experiments, are proposed for this behavior. C1 Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. Sandia Natl Labs, Mat Sci & Proc Sci Ctr, Albuquerque, NM 87185 USA. RP Raj, R (reprint author), Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. EM rishi.raj@colorado.edu OI RAJ, RISHI/0000-0001-8556-9797 NR 49 TC 25 Z9 25 U1 2 U2 9 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD DEC PY 2006 VL 89 IS 12 BP 3706 EP 3714 DI 10.1111/j.1551-2916.2006.01291.x PG 9 WC Materials Science, Ceramics SC Materials Science GA 108HY UT WOS:000242232100018 ER PT J AU Andrejczuk, M Grabowski, WW Malinowski, SP Smolarkiewicz, PK AF Andrejczuk, Miroslaw Grabowski, Wojciech W. Malinowski, Szymon P. Smolarkiewicz, Piotr K. TI Numerical simulation of cloud-clear air interfacial mixing: Effects on cloud microphysics SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID DROPLET SIZE DISTRIBUTIONS; LARGE-EDDY SIMULATIONS; STRATOCUMULUS CLOUDS; CUMULUS ENTRAINMENT; SIMPLE-MODEL; SPECTRA; EVOLUTION; TURBULENCE; POLLUTION; ALBEDO AB This paper extends the previously published numerical study of Andrejczuk et al. on microscale cloud-clear air mixing. Herein, the primary interest is on microphysical transformations. First. a convergence study is performed-with well-resolved direct numerical simulation of the interfacial mixing in the limit-to optimize the design of a large series of simulations with varying physical parameters. The principal result is that all conclusions drawn from earlier low-resolution (Delta x = 10(-2) m) simulations are corroborated by the high-resolution (Delta x = 0.25 X 10(-2) m) calculations. including the development of turbulent kinetic energy (TKE) and the evolution of microphysical properties. This justifies the use of low resolution in a large set of sensitivity simulations, where microphysical transformations are investigated in response to variations of the initial volume fraction of cloudy air, TKE input, liquid water mixing ratio in cloudy filaments, relative humidity (RH) of clear air, and Size Of Cloud droplets. The simulations demonstrate that regardless of the initial conditions the evolutions of the number of cloud droplets and the mean volume radius follow a universal path dictated by the TKE input. RH of clear air filaments, and the mean size of cloud droplets. The resulting evolution path only weakly depends on the progress of the homogenization. This is an important conclusion because it implies that a relatively simple rule can be developed for representing the droplet-spectrum evolution in cloud models that apply parameterized microphysics. For the low-TKE input, when most of the TKE is generated by droplet evaporation during mixing and homogenization, an inhomogeneous scenario is observed with approximately equal changes in the dimensionless droplet number and mean volume radius cubed. Consistent with elementary scale analysis, higher-TKE inputs, higher RH of cloud-free filaments, and larger cloud droplets enhance the homogeneity of mixing. These results are discussed in the context of observations of entrainment and mixing in natural clouds. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Natl Ctr Atmospher Res, Boulder, CO 80307 USA. Warsaw Univ, Inst Geophys, Warsaw, Poland. RP Andrejczuk, M (reprint author), Los Alamos Natl Lab, MS D401, Los Alamos, NM 87545 USA. EM miroslaw@lanl.gov RI Malinowski, Szymon/A-5237-2010 OI Malinowski, Szymon/0000-0003-4987-7017 NR 39 TC 43 Z9 43 U1 0 U2 10 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD DEC PY 2006 VL 63 IS 12 BP 3204 EP 3225 DI 10.1175/JAS3813.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 121CN UT WOS:000243135800007 ER PT J AU Shi, SP Zitney, SE Shahnam, M Syamlal, M Rogers, WA AF Shi, S. -P. Zitney, S. E. Shahnam, M. Syamlal, M. Rogers, W. A. TI Modelling coal gasification with CFD and discrete phase method SO JOURNAL OF THE ENERGY INSTITUTE LA English DT Article; Proceedings Paper CT 4th International Conference on Computational Heat and Mass Transfer (ICCHMT 2005) CY MAY 17-20, 2005 CL Paris, FRANCE DE CFD; DPM; coal gasification; chemical reaction; kinetics ID CONVERSION SUBMODELS; DESIGN APPLICATIONS; ELEVATED PRESSURES AB In the present paper the authors describe a computational fluid dynamics model of a two-stage, oxygen blown, entrained flow, coal slurry gasifier for use in advanced power plant simulations. The discrete phase method is used to simulate the coal slurry flow. The physical and chemical processing of coal slurry gasification is implemented by calculating the discrete phase trajectory using a Lagrangian formulation. The particle tracking is coupled with specific physical processes, in which the coal particles sequentially undergo moisture release, vaporisation, devolatilisation, char oxidation and char gasification. Using specified plant boundary conditions, the gasification model predicts a synthesis gas composition that is very close to the values calculated by a restricted equilibrium reactor model tuned to represent typical experimental data. The char conversions are 100 and 86% for the first stage and second stage respectively. C1 Fluent Inc, Morgantown, WV 26505 USA. US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Shi, SP (reprint author), Fluent Inc, 3647 Collins Ferry Rd,Suite A, Morgantown, WV 26505 USA. EM ssp@fluent.com NR 17 TC 41 Z9 42 U1 2 U2 23 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 1743-9671 J9 J ENERGY INST JI J. Energy Inst. PD DEC PY 2006 VL 79 IS 4 BP 217 EP 221 DI 10.1179/174602206X148865 PG 5 WC Energy & Fuels SC Energy & Fuels GA 117BZ UT WOS:000242849000006 ER PT J AU Park, SK Park, J Lee, S Ahn, SH Hong, SJ Kim, TJ Lee, KS Begel, M Andeen, T Schellman, H Stein, J Yacoob, S Gallas, E Sirotenko, V Hauptman, J Snow, G AF Park, Sung Keun Park, Jaewon Lee, Sehwook Ahn, Sung Hwan Hong, Seong Jong Kim, Tae Jeong Lee, Kyong Sei Begel, Michael Andeen, Tim Schellman, Heidi Stein, Jason Yacoob, Sahal Gallas, Elizabeth Sirotenko, Vladimir Hauptman, John Snow, Gregory TI Online system for normalizing data acquired by the fermilab DO experiment SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article DE D0; fermilab; tevatron; luminosity DAQ; online DAQ ID DETECTOR AB The DO experiment uses a dedicated data acquisition system to collect, archive, monitor, and distribute the information necessary to normalize triggered data for physics analyses. This system has been in place since the beginning of Run 2 of the Fermilab Tevatron collider in 2001 and provides real-time feedback on the instantaneous and triggered luminosities in the DO and Tevatron control rooms, as well as the status reports needed for smooth operation of the experiment. This paper describes the architecture and the implementation of this system. C1 Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. Univ Rochester, Rochester, NY 14627 USA. Northwestern Univ, Evanston, IL 60208 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Nebraska, Lincoln, NE 68588 USA. RP Park, SK (reprint author), Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. EM hongseongj@gachon.ac.kr; begel@fnal.gov OI Stein, Jason/0000-0003-4829-0513 NR 14 TC 1 Z9 1 U1 0 U2 1 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD DEC PY 2006 VL 49 IS 6 BP 2247 EP 2252 PG 6 WC Physics, Multidisciplinary SC Physics GA 118BH UT WOS:000242916500006 ER PT J AU Bae, YS Cho, MH Namkung, W Bernabei, S Ellis, R Wilson, J Hosea, J Park, H AF Bae, Young S. Cho, Moo H. Namkung, Won Bernabei, S. Ellis, R. Wilson, J. Hosea, J. Park, H. TI Launcher study for KSTAR 5 GHz LHCD system SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article; Proceedings Paper CT 5th General Scientific Assembly of Asia-Plasma-and-Fusion-Association CY AUG 19-31, 2005 CL Cheju Isl, SOUTH KOREA SP Asia Plasma & Fus Assoc DE KSTAR; lower-hybrd; launcher ID WAVEGUIDE ARRAY; TOKAMAK; PLASMA; EDGE AB A 5 GHz Lower Hybrid Current Drive (LHCD) system with 2 MW is under development for the steady-state operations of the KSTAR. The present design of fully active waveguide launcher gives very good spectral directivity of more than 90 % for the phase shift of 90 degrees and a wider N-parallel to range of 1.4 to 3.6 with a width Delta N-parallel to = 0.54. For the steady-state operations of the KSTAR, a Glidcop/SS sandwiched grill is proposed with consideration of heat and disruption loads. A PAM (Passive-Active Multi-junction)-type launcher is also studied for the possibility of use for the KSTAR. The PAM-type launcher provided good coupling properties even at lower edge densities in FTU 8 GHz PAM launcher tests. However, it gives a lower current drive efficiency compared with the conventional grill because of reduced directivities. The Passive/Active grill has 30 % less directivity than the Fully Active grill from the characteristic studies on the directivity and coupling. On the other hand, it gives a good coupling property with weak dependence on the phase shift between adjacent waveguides. C1 Natl Fus Res Ctr, KSTAR Operat Div, Taejon 305333, South Korea. Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Bae, YS (reprint author), Natl Fus Res Ctr, KSTAR Operat Div, Taejon 305333, South Korea. EM ysbae@nfrc.re.kr NR 19 TC 2 Z9 2 U1 0 U2 0 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD DEC PY 2006 VL 49 SU 1 BP S314 EP S319 PG 6 WC Physics, Multidisciplinary SC Physics GA 122AO UT WOS:000243198300068 ER PT J AU Kim, SK Park, SE Cho, YC Cho, CR Jeong, SY AF Kim, Sung-Kyu Park, Sang Eon Cho, Yong Chan Cho, Chae Ryong Jeong, Se-Young TI Growth and magnetic properties of Ge1-xMnx single crystals SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article; Proceedings Paper CT 15th Symposium on Dielectric and Advanced Matter Physics/7th Workshop on High Dielectric and Ferroelectric Device and Materials CY FEB 12-14, 2006 CL Muju, SOUTH KOREA DE semiconductor; Ge; Mn; single crystal; ferromagnetic ID DOPED GE; CR; FERROMAGNETISM; SEMICONDUCTOR AB Group IV ferromagnetic semiconductor, Ge1-xMnx large size crystals were grown by the Czochralski method in an Ar ambient. The magnetic atom, Mn, was systematically doped into Ge crystal from x = 0 to x = 0.176 and these compositions precisely were obtained by glow discharge spectroscopy. The increase of Mn concentration brought a new Ge8Mn11 phase in Ge matrix. The magnetizations increase greatly reach a maximum value at x = 0.113. The formation of Ge8Mn11 phase is responsible for a ferromagn etic phase between 150 K and 281 K. Especially, in the ferromagnetic phase, the maximum remanent magnetization at x = 0.113 was 0.483 emu/g, which is larger than other results. This feature can be used for some spin devices, because of a large magnetic moment in a low magnetic field. C1 Pusan Natl Univ, PCDAMP, Pusan 609735, South Korea. MCLab Co Ltd, Miryang 627706, South Korea. Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. Pusan Natl Univ, Fraunhofer IGB Inst, Dept Nano Fus Technol, Miryang 627706, South Korea. Pusan Natl Univ, Fraunhofer IGB Inst, Joint Res Ctr, Miryang 627706, South Korea. RP Kim, SK (reprint author), Pusan Natl Univ, PCDAMP, Pusan 609735, South Korea. EM syjeong@pusan.ac.kr NR 13 TC 4 Z9 4 U1 0 U2 0 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD DEC PY 2006 VL 49 SU 2 BP S518 EP S522 PG 5 WC Physics, Multidisciplinary SC Physics GA 122AQ UT WOS:000243198500018 ER PT J AU Ticos, CM Bulinski, M Andrei, R Pascu, ML AF Ticos, Catalin M. Bulinski, Mircea Andrei, Relu Pascu, Mihai L. TI Power dropout control by optical phase modulation in a chaotic semiconductor laser SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS LA English DT Article ID EXTERNAL-CAVITY; PLASMA DISCHARGE; SYNCHRONIZATION; FEEDBACK; DYNAMICS; SUBJECT AB The effect of periodic phase modulation of light on a chaotic external-cavity semiconductor laser working in a regime of low-frequency fluctuations (LFFs) is studied numerically. It is observed that the phase modulation changes the time period between consecutive dropouts in the emitted laser intensity. A new variable Phi(L) is defined as the phase of the laser's LFFs, which increases in time with 2 pi after each power dropout event. The phase Phi(PM) of the periodic phase modulator is unfolded on the real axis and increases linearly at a rate given by the modulating frequency. It is shown that the phase difference between the laser and the modulator Delta Phi(t) = m Phi(L)(t) - n Phi(PM)(t), where m and n are integers, remains constant in time, leading to phase-synchronized states, for specific values of the modulating frequency and amplitude. (c) 2006 Optical Society of America. C1 Los Alamos Natl Lab, Plasma Phys Grp P24, Los Alamos, NM 87545 USA. Univ Bucharest, Dept Opt Spect Plasmas & Lasers, RO-077125 Bucharest, Romania. Natl Inst Lasers Plasmas & Radiat Phys, RO-077125 Bucharest, Romania. RP Ticos, CM (reprint author), Los Alamos Natl Lab, Plasma Phys Grp P24, POB 1663, Los Alamos, NM 87545 USA. EM cticos@lanl.gov RI Ticos, Catalin/F-1677-2011; Pascu, Mihail Lucian/C-4495-2011 OI Pascu, Mihail Lucian/0000-0003-1151-9345 NR 30 TC 3 Z9 3 U1 0 U2 2 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0740-3224 J9 J OPT SOC AM B JI J. Opt. Soc. Am. B-Opt. Phys. PD DEC PY 2006 VL 23 IS 12 BP 2486 EP 2493 DI 10.1364/JOSAB.23.002486 PG 8 WC Optics SC Optics GA 114ES UT WOS:000242650100004 ER PT J AU Li, H Khor, KA Cheang, P AF Li, H. Khor, Khiam Aik Cheang, P. TI Effect of steam treatment during plasma spraying on the microstructure of hydroxyapatite splats and coatings SO JOURNAL OF THERMAL SPRAY TECHNOLOGY LA English DT Article; Proceedings Paper CT International Thermal Spray Conference (ITSC 2006) CY MAY, 2006 CL Seattle, WA DE crystallinity; hydroxyapatite; plasma spray; steam treatment ID CALCIUM-PHOSPHATE COATINGS; X-RAY-DIFFRACTION; IN-VITRO BEHAVIOR; AMORPHOUS PHASE; DISSOLUTION; HA AB The major problems with plasma sprayed hydroxyapatite (HA) coatings for hard tissue replacement are severe HA decomposition and insufficient mechanical properties of the coatings. Loss of crystalline HA after the high-temperature spraying is due mainly to the loss of OH- in terms of water. The current study used steam to treat HA droplets and coatings during both in-flight and flattening stages during plasma spraying. The microstructure of the HA coatings and splats was characterized using scanning electron microscope, Raman spectroscopy, Fourier transform IR spectroscopy, and x-ray diffraction. Results showed that a significant increase in crystallinity of the HA coating was achieved through the steam treatment (e.g., from 58 to 79%). In addition, the effects were dependent on particle sizes of the HA feedstock, more increase in crystallinity of the coatings made from smaller powders was revealed. The Raman spectroscopy analyses on the individual splats and coatings indicate that the mechanism involves entrapping of water molecules by the individual HA droplets upon their impingement. It further suggests that the HA decomposition has already taken place before the impingement of the droplets on precoating or substrate. The improvement in crystallinity and phases, for example, from tricalcium phosphate and amorphous calcium phosphate to HA, was achieved by reversing the HA decomposition through providing extra OH-. Furthermore, the steam treatment during the spraying also accounts for remarkably increased adhesion strength from 9.09 to 23.13 MPa. The in vitro testing through immersing the HA coatings in simulated body fluid gives further evidence that the economic and simple steam treatment is promising in improving HA coating structure. C1 [Khor, Khiam Aik] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore. [Khor, Khiam Aik] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 639798, Singapore. RP Li, H (reprint author), Brookhaven Natl Lab, Dept Biol, Bldg 463,50 Bell Ave, Upton, NY 11973 USA. EM HLI1@bnl.gov RI Khor, Khiam Aik (Michael)/B-6929-2009; Khor, Khiam Aik/G-2827-2010; OI KHOR, Khiam/0000-0003-1954-8423 NR 27 TC 7 Z9 7 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1059-9630 EI 1544-1016 J9 J THERM SPRAY TECHN JI J. Therm. Spray Technol. PD DEC PY 2006 VL 15 IS 4 BP 610 EP 616 DI 10.1361/105996306X146938 PG 7 WC Materials Science, Coatings & Films SC Materials Science GA 118ZC UT WOS:000242981000028 ER PT J AU Chi, W Sampath, S Wang, H AF Chi, W. Sampath, S. Wang, H. TI Ambient and high-temperature thermal conductivity of thermal sprayed coatings SO JOURNAL OF THERMAL SPRAY TECHNOLOGY LA English DT Article; Proceedings Paper CT 2006 International Thermal Spray Conference (ITSC 2006) CY MAY, 2006 CL Seattle, WA DE porosity of coatings; thermal barrier coatings; thermal properties ID YTTRIA-STABILIZED ZIRCONIA; IN-FLIGHT CHARACTERISTICS; BARRIER COATINGS; PROPERTY CORRELATIONS; CERAMIC COATINGS; PROCESS MAPS; PLASMA; MICROSTRUCTURE; MOLYBDENUM; POROSITY AB Aside from its importance as a design parameter for thermal barrier coatings, measuring thermal conductivity of thermal sprayed coatings itself provides a unique method to critically characterize the nature, quantity, and anisotropy of the defect morphologies in these splat-based coatings. In this paper, the authors present a systematic assessment of thermal conductivity of wide range using the flash diffusivity technique. For the case of plasma sprayed yttria-stabilized zirconia (YSZ), coatings obtained from wide-ranging initial powder morphologies as well as those fabricated under different particle states were characterized. Both in-plane and through-thickness properties were obtained. Other material systems that were considered include: metallic alloys and semiconductors of interests. Issues such as reproducibility and reliability in measurements were also considered and assessed. Finally, work in collaboration with the Oak Ridge National Laboratory (ORNL) for alternate approaches to characterization of thermal conductivity as well as high-temperature measurements was performed. C1 SUNY Stony Brook, Ctr Thermal Spray Res, Stony Brook, NY 11794 USA. Oak Ridge Natl Lab, High Temp Mat Lab, Oak Ridge, TN 37831 USA. RP Chi, W (reprint author), SUNY Stony Brook, Ctr Thermal Spray Res, Stony Brook, NY 11794 USA. EM wchi@ic.sunysb.edu RI Wang, Hsin/A-1942-2013 OI Wang, Hsin/0000-0003-2426-9867 NR 27 TC 30 Z9 32 U1 1 U2 7 PU ASM INTERNATIONAL PI MATERIALS PARK PA SUBSCRIPTIONS SPECIALIST CUSTOMER SERVICE, MATERIALS PARK, OH 44073-0002 USA SN 1059-9630 J9 J THERM SPRAY TECHN JI J. Therm. Spray Technol. PD DEC PY 2006 VL 15 IS 4 BP 773 EP 778 DI 10.1361/105996306X146730 PG 6 WC Materials Science, Coatings & Films SC Materials Science GA 118ZC UT WOS:000242981000052 ER PT J AU Hollis, K Bartram, B Withers, J Storm, R Massarello, J AF Hollis, K. Bartram, B. Withers, J. Storm, R. Massarello, J. TI Plasma transferred arc deposition of beryllium SO JOURNAL OF THERMAL SPRAY TECHNOLOGY LA English DT Article; Proceedings Paper CT 2006 International Thermal Spray Conference (ITSC 2006) CY MAY, 2006 CL Seattle, WA DE beryllium (Be); plasma transferred arc; structural material; tensile strength; wetting AB The exceptional properties of beryllium (Be), including low density and high elastic modulus, make it the material of choice in many defense and aerospace applications. However, health hazards associated with Be material handling limit the applications that are suited for its use. Innovative solutions that enable continued use of Be in critical applications while addressing worker health concerns are highly desirable. Plasma transferred arc solid free-form fabrication is being evaluated as a Be fabrication technique for civilian and military space-based components. Initial experiments producing Be deposits are reported here. Deposit shape, microstructure, and mechanical properties are reported. C1 Los Alamos Natl Lab, Los Angeles, CA USA. MER Corp, Tucson, AZ USA. USAF, Res Lab, Albuquerque, NM USA. RP Hollis, K (reprint author), Los Alamos Natl Lab, Los Angeles, CA USA. EM kjhollis@lanl.gov NR 10 TC 1 Z9 1 U1 1 U2 4 PU ASM INTERNATIONAL PI MATERIALS PARK PA SUBSCRIPTIONS SPECIALIST CUSTOMER SERVICE, MATERIALS PARK, OH 44073-0002 USA SN 1059-9630 J9 J THERM SPRAY TECHN JI J. Therm. Spray Technol. PD DEC PY 2006 VL 15 IS 4 BP 785 EP 789 DI 10.1361/10599306X146820 PG 5 WC Materials Science, Coatings & Films SC Materials Science GA 118ZC UT WOS:000242981000054 ER PT J AU Driskell, JD Kwarta, KM Lipert, RJ Vorwald, A Neill, JD Ridpath, JF Porter, MD AF Driskell, Jeremy D. Kwarta, Karen M. Lipert, Robert J. Vorwald, Ann Neill, John D. Ridpath, Julia F. Porter, Marc D. TI Control of antigen mass transfer via capture substrate rotation: An absolute method for the determination of viral pathogen concentration and reduction of heterogeneous immunoassay incubation times SO JOURNAL OF VIROLOGICAL METHODS LA English DT Article DE immunoassay; induced flux; PPV; atomic force microscopy ID ENHANCED RAMAN-SCATTERING; SCANNING PROBE MICROSCOPY; ATOMIC-FORCE MICROSCOPY; ELECTRON-MICROSCOPY; ANTIBODY-BINDING; DISK ELECTRODE; FLOW SYSTEM; DIFFUSION; SURFACE; GOLD AB Immunosorbent assays are commonly employed as diagnostic tests in human healthcare, veterinary medicine and bioterrorism prevention. These assays, however, often require long incubation times, limiting sample throughput. As an approach to overcome this weakness, this paper examines the use of rotating capture substrates to increase the flux of antigen to the surface, thereby reducing the incubation time. To assess the capability of this approach, porcine parvovirus (PPV) was selectively extracted from solution by systematically varying the rotation rate of a gold substrate modified with a layer of anti-PPV monoclonal antibodies. The captured PPV were then directly imaged and quantified by atomic force microscopy. The benefits of substrate rotation are demonstrated by comparing an assay performed under stagnant conditions to one carried out with substrate rotation at 800 rpm, both for 10 min incubations at 25 degrees C. The use of rotation lowered the limit of detection to 3.4 x 10(4) TCID50/ML (similar to 80 fM) from 3.2 x 10(5) TCID50/mL (similar to 800 fM) under stagnant conditions. Results are also presented that show this strategy can be used: (1) to determine antigen concentrations without standards and (2) to establish the numerical relationship between quantal concentration units (e.g., 50% tissue culture infective dose (TCID50)) and quantitative concentration units (e.g., viruses/mL) The potential to broadly apply this technique to heterogeneous immunoassays is also briefly discussed. (c) 2006 Elsevier B.V. All rights reserved. C1 Iowa State Univ, Inst Combinatorial Discovery, Dept Chem, Ames Lab,USDOE, Ames, IA 50011 USA. Iowa State Univ, Inst Combinatorial Discovery, Dept Chem & Biol Engn, Ames Lab,USDOE, Ames, IA 50011 USA. USDA, Natl Anim Dis Ctr, Virus & Prion Dis Livestock Unit, Ames, IA 50010 USA. RP Porter, MD (reprint author), Arizona State Univ, Ctr Combinatorial Chem, Biodesign Inst, 1001 S McAllister,Mail Code 6401, Tempe, AZ 85287 USA. EM marc.porter@asu.edu RI Lipert, Robert/A-8571-2009; OI Driskell, Jeremy/0000-0001-5082-898X NR 52 TC 8 Z9 8 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0166-0934 J9 J VIROL METHODS JI J. Virol. Methods PD DEC PY 2006 VL 138 IS 1-2 BP 160 EP 169 DI 10.1016/j.jviromet.2006.08.011 PG 10 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Virology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Virology GA 105TP UT WOS:000242055500021 PM 17034870 ER PT J AU Li, M Salazar-Gonzalez, JF Derdeyn, CA Morris, L Williamson, C Robinson, JE Decker, JM Li, YY Salazar, MG Polonis, VR Mlisana, K Karim, SA Hong, KX Greene, KM Bilska, M Zhou, JT Allen, S Chomba, E Mulenga, J Vwalika, C Gao, F Zhang, M Korber, BTM Hunter, E Hahn, BH Montefiori, DC AF Li, Ming Salazar-Gonzalez, Jesus F. Derdeyn, Cynthia A. Morris, Lynn Williamson, Carolyn Robinson, James E. Decker, Julie M. Li, Yingying Salazar, Maria G. Polonis, Victoria R. Mlisana, Koleka Karim, Salim Abdool Hong, Kunxuc Greene, Kelli M. Bilska, Miroslawa Zhou, Jintao Allen, Susan Chomba, Elwyn Mulenga, Joseph Vwalika, Cheswa Gao, Feng Zhang, Ming Korber, Bette T. M. Hunter, Eric Hahn, Beatrice H. Montefiori, David C. TI Genetic and neutralization properties of subtype C human immunodeficiency virus type 1 molecular env clones from acute and early heterosexually acquired infections in southern Africa SO JOURNAL OF VIROLOGY LA English DT Article ID HUMAN MONOCLONAL-ANTIBODY; GP120 ENVELOPE GLYCOPROTEIN; HIV TYPE-1; RECEPTOR-BINDING; DISEASE PROGRESSION; CLADE-C; V3 LOOP; CORECEPTOR; TRANSMISSION; EPITOPES AB A standard panel of subtype C human immunodeficiency virus type 1 (HIV-1) Env-pseudotyped viruses was created by cloning, sequencing, and characterizing functional gp160 genes from 18 acute and early heterosexually acquired infections in South Africa and Zambia. In general, the gp120 region of these clones was shorter (most evident in V1 and V4) and less glycosylated compared to newly transmitted subtype B viruses, and it was underglycosylated but no different in length compared to chronic subtype C viruses. The gp120s also exhibited low amino acid sequence variability (12%) in V3 and high variability (39%) immediately downstream of V3, a feature shared with newly transmitted subtype B viruses and chronic viruses of both subtypes. When tested as Env-pseudotyped viruses in a luciferase reporter gene assay, all clones possessed an R5 phenotype and resembled primary isolates in their sensitivity to neutralization by HIV-1-positive plasmas. Results obtained with a multisubtype plasma panel suggested partial subtype preference in the neutralizing antibody response to infection. The clones were typical of subtype C in that all were resistant to 2G12 (associated with loss of N-glycosylation at position 295) and most were resistant to 2F5, but all were sensitive to 4E10 and many were sensitive to immunoglobulin G1b12. Finally, conserved neutralization epitopes in the CD4-induced coreceptor binding domain of gp120 were poorly accessible and were difficult to induce and stabilize with soluble CD4 on Env-pseudotyped viruses. These results illustrate key genetic and antigenic properties of subtype C HIV-1 that might impact the design and testing of candidate vaccines. A subset of these gp160 clones are suitable for use as reference reagents to facilitate standardized assessments of vaccine-elicited neutralizing antibody responses. C1 Duke Univ, Med Ctr, Dept Surg, Lab AIDS Vaccine Res & Dev, Durham, NC 27710 USA. Duke Univ, Med Ctr, Dept Med, Durham, NC 27710 USA. Univ Alabama, Dept Med, Birmingham, AL 35294 USA. Emory Univ, Dept Pathol & Lab Med, Atlanta, GA 30329 USA. Natl Inst Communicable Dis, Johannesburg, South Africa. Univ Cape Town, Inst Infect Dis & Mol Med, ZA-7925 Cape Town, South Africa. Tulane Univ, Med Ctr, Dept Pediat, New Orleans, LA 70112 USA. Walter Reed Army Inst Res, Rockville, MD 20850 USA. Univ KwaZulu Natal, CAPRISA, Durban, South Africa. Natl Ctr AIDS, Div Virol & Immunol, Beijing, Peoples R China. Emory Univ, Dept Global Hlth, Atlanta, GA 30322 USA. Univ Teaching Hosp, Lusaka, Zambia. Zambia Natl Blood Transfus Serv, Lusaka, Zambia. Zambia Emory HIV Res Program, Lusaka, Zambia. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Montefiori, DC (reprint author), Duke Univ, Med Ctr, Dept Surg, Lab AIDS Vaccine Res & Dev, POB 2926, Durham, NC 27710 USA. EM monte@acpub.duke.edu RI Abdool Karim, Salim Safurdeen/N-5947-2013; OI Abdool Karim, Salim Safurdeen/0000-0002-4986-2133; , Carolyn/0000-0003-0125-1226; , Lynn/0000-0003-3961-7828; Mlisana, Koleka/0000-0002-8436-3268; Korber, Bette/0000-0002-2026-5757 FU NIAID NIH HHS [AI 51794, AI 055386, AI 27767, AI 30034, AI 41530, AI 46705, AI 51231, AI 54497, AI 64060, N01AI30034, N01AI85338, P30 AI027767, R01 AI051231, R01 AI064060, R21 AI055386, R37 AI051231, U01 AI041530, U19 AI051794] NR 94 TC 250 Z9 256 U1 0 U2 2 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD DEC PY 2006 VL 80 IS 23 BP 11776 EP 11790 DI 10.1128/JVI.01730-06 PG 15 WC Virology SC Virology GA 108ED UT WOS:000242222200034 PM 16971434 ER PT J AU Nobile, A Nikroo, A Cook, RC Cooley, JC Alexander, DJ Hackenberg, RE Necker, CT Dickerson, RM Kilkenny, JL Bernat, TP Chen, KC Xu, H Stephens, RB Huang, H Haan, SW Forsman, AC Atherton, LJ Letts, SA Bono, MJ Wilson, DC AF Nobile, A. Nikroo, A. Cook, R. C. Cooley, J. C. Alexander, D. J. Hackenberg, R. E. Necker, C. T. Dickerson, R. M. Kilkenny, J. L. Bernat, T. P. Chen, K. C. Xu, H. Stephens, R. B. Huang, H. Haan, S. W. Forsman, A. C. Atherton, L. J. Letts, S. A. Bono, M. J. Wilson, D. C. TI Status of the development of ignition capsules in the US effort to achieve thermonuclear ignition on the national ignition facility SO LASER AND PARTICLE BEAMS LA English DT Article DE beryllium; capsule specifications; glow discharge polymer; ignition capsule ID LASER TARGETS; FABRICATION; FUSION; PROGRESS; COPPER; ENERGY; OMEGA AB An important component of the U.S. effort to achieve thermonuclear ignition in 2010 on the National Ignition Facility is the development of high quality 2 mm diameter spherical capsules to function as the ablator and contain the cryogenic DT fuel. Three ignition capsule designs have been developed, and detailel fabrication specifications for each design have been established and placed under change control. A research program, with activities coordinated mainly between Lawrence Livermore, General Atomics and Los Alamos is underway to demonstrate fabrication of capsules meeting specifications. The point design for ignition campaigns beginning in 2010 is a Cu-doped Be capsule that has a radial gradient in Cu dopant level in the capsule wall. This capsule is being produced by sputter deposition of Be and Cu onto either a hollow glow discharge polymer (GDP) spherical mandrel or a solid spherical mandrel, followed by removal of the mandrel and polishing of the capsule. A key goal in the U.S. is to demonstrate fabrication of this capsule by the end of 2006. Two other ignition capsule designs are also being developed as contingencies to the point design. One contingency design is a GDP capsule that has a radial Ge dopant level in its wall. This capsule is produced by co-deposition of Ge and GDP onto a PAMS mandrel followed by thermal removal of the mandrel. The second contingency design is a uniform Cu-doped Be capsule that is fabricated from high purity fine grain Be0.3at.%Cu alloy using a precision machining route followed by polishing. Ignition targets to be fielded in 20 10 will be filled with DT fuel through a small fill hole. Laser drilling capability has been developed and used to drill approximately 5 mu m diameter holes through capsule walls for DT filling. Characterization methods necessary for characterizing capsules are being developed. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Gen Atom Co, San Diego, CA USA. Lawrence Livermore Natl Lab, Livermore, CA USA. RP Nobile, A (reprint author), Los Alamos Natl Lab, MS C927, Los Alamos, NM 87545 USA. EM anobile@lanl.gov RI Cooley, Jason/E-4163-2013; OI Hackenberg, Robert/0000-0002-0380-5723; Stephens, Richard/0000-0002-7034-6141 NR 18 TC 21 Z9 21 U1 0 U2 3 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0263-0346 J9 LASER PART BEAMS JI Laser Part. Beams PD DEC PY 2006 VL 24 IS 4 BP 567 EP 578 DI 10.1017/S0263034606060757 PG 12 WC Physics, Applied SC Physics GA 108UT UT WOS:000242265400013 ER PT J AU Anderson, RR Farinelli, W Laubach, H Manstein, D Yaroslavsky, AN Gubeli, J Jordan, K Neil, GR Shinn, M Chandler, W Williams, GP Benson, SV Douglas, DR Dylla, HF AF Anderson, R. Rox Farinelli, William Laubach, Hans Manstein, Dieter Yaroslavsky, Anna N. Gubeli, Joseph, III Jordan, Kevin Neil, George R. Shinn, Michelle Chandler, Walter Williams, Gwyn P. Benson, Steven V. Douglas, David R. Dylla, H. F. TI Selective photothermolysis of lipid-rich tissues: A free electron laser study SO LASERS IN SURGERY AND MEDICINE LA English DT Article DE dermis; fat; tissue optics ID RADIATION; SKIN AB Background and Objectives: In theory, infrared vibrational bands could be used for selective photothermolysis of lipid-rich tissues such as fat, sebaceous glands, or atherosclerotic plaques. Study Design/Materials and Methods: Absorption spectra of human fat were measured, identifying promising bands near 1,210 and 1,720 nm. Photothermal excitation of porcine fat and dermis were measured with a 3.5-5 mu m thermal camera during exposure to the free electron laser (FEL) at Jefferson National Laboratory. Thermal damage to full-thickness samples exposed at similar to 1,210 nm through a cold contact window, was assessed by nitrobluetetrazolium chloride staining in situ and by light microscopy. Results: Photothermal excitation of fat was twice that of dermis, at lipid absorption bands (1,210, 1,720 nm). At 1,210 nm, a subcutaneous fat layer several mm thick was damaged by FEL exposure, without apparent injury to overlying skin. Conclusion: Selective photothermal targeting of fatty tissues is feasible using infrared lipid absorption bands. Potential clinical applications are suggested by this FEL study. C1 Harvard Univ, Sch Med, Wellman Ctr Photomed, Boston, MA 02115 USA. Thomas Jefferson Natl Accelerator Facil, Newport News, VA USA. RP Anderson, RR (reprint author), Massachusetts Gen Hosp, Wellman Ctr Photomed, BHX 630, Boston, MA 02114 USA. EM RRAnderson@partners.org NR 20 TC 114 Z9 118 U1 1 U2 9 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0196-8092 J9 LASER SURG MED JI Lasers Surg. Med. PD DEC PY 2006 VL 38 IS 10 BP 913 EP 919 DI 10.1002/lsm.20393 PG 7 WC Dermatology; Surgery SC Dermatology; Surgery GA 122VC UT WOS:000243254200005 PM 17163478 ER PT J AU Trimm, M AF Trimm, Marvin TI ASNT: Welcome to our world SO MATERIALS EVALUATION LA English DT Editorial Material C1 Savannah River Natl Lab, Aiken, SC 29801 USA. RP Trimm, M (reprint author), Savannah River Natl Lab, 730-A Room 102, Aiken, SC 29801 USA. EM marvin.trimm@srnk.doe.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC NONDESTRUCTIVE TEST PI COLUMBUS PA 1711 ARLINGATE LANE PO BOX 28518, COLUMBUS, OH 43228-0518 USA SN 0025-5327 J9 MATER EVAL JI Mater. Eval. PD DEC PY 2006 VL 64 IS 12 BP 1127 EP 1128 PG 2 WC Materials Science, Characterization & Testing SC Materials Science GA 112KB UT WOS:000242523500001 ER PT J AU Jiang, WH Fan, GJ Choo, H Liaw, PK AF Jiang, W. H. Fan, G. J. Choo, H. Liaw, P. K. TI Ductility of a Zr-based bulk-metallic glass with different specimen's geometries SO MATERIALS LETTERS LA English DT Article DE metallic glasses; ductility; compression tests; shear band; geometry ID SHEAR BANDS; MECHANICAL-PROPERTIES; AMORPHOUS-ALLOYS; FATIGUE BEHAVIOR; DEFORMATION; EVOLUTION; PRESSURE; STRENGTH; FRACTURE; FLOW AB The ductility of a Zr52.5Cu17.9Ni14.6Al10Ti5 bulk-metallic glass with different specimen's geometries in quasistatic compression experiments was investigated. The length (0 to diameter (d) ratio, l/d, of specimens significantly affects the demonstration of the ductility. The specimens with the l/d larger than 0.75 exhibit a poor ductility, while those with the l/d equal to and smaller than 0.75 show an excellent ductility. The maximum elongation before the failure was observed to be up to about 80%. This difference in ductility is a result of the geometrical constraints. The present study demonstrates that the bulk-metallic glass has the outstanding intrinsic ductility. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37830 USA. RP Jiang, WH (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM wjiang5@utk.edu RI Choo, Hahn/A-5494-2009 OI Choo, Hahn/0000-0002-8006-8907 NR 28 TC 51 Z9 55 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-577X J9 MATER LETT JI Mater. Lett. PD DEC PY 2006 VL 60 IS 29-30 BP 3537 EP 3540 DI 10.1016/j.matlet.2006.03.047 PG 4 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 111QN UT WOS:000242469000023 ER PT J AU Puzyrev, Y Faulkner, JS AF Puzyrev, Yevgeniy Faulkner, J. S. TI Atomic displacements in alloys SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT 4th International Alloy Conference (IAC-4) CY JUN 26-JUL 01, 2005 CL Kos, GREECE ID METALLIC ALLOYS; AU; AG; CU; ELECTRON; ACCURATE; NI AB The atoms in an alloy move away from their ideal lattice sites because of thermal vibrations and the static displacements that are due to the difference in atomic sizes. These vibrations and displacements are simulated using molecular dynamics and potentials obtained from the embedded atom method. The thermal vibrations of pure copper are shown. The static displacements for copper-gold, copper-palladium, and copper-aluminum are calculated and displayed. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Xray Res & Applicat Grp, Oak Ridge, TN 37831 USA. Florida Atlantic Univ, Dept Phys, Ctr Biol & Mat Phys, Boca Raton, FL 33431 USA. RP Puzyrev, Y (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Xray Res & Applicat Grp, Oak Ridge, TN 37831 USA. EM puzyrevys@ornl.gov; faulkner@fau.edu NR 16 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD DEC PY 2006 VL 37A IS 12 BP 3387 EP 3390 DI 10.1007/s11661-006-1030-x PG 4 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 117XZ UT WOS:000242907900003 ER PT J AU Ivashchenko, VI Turchi, PEA Gonis, A Ivashchenko, LA Skrynskii, PL AF Ivashchenko, V. I. Turchi, P. E. A. Gonis, A. Ivashchenko, L. A. Skrynskii, P. L. TI Electronic origin of elastic properties of titanium carbonitride alloys SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT 4th International Alloy Conference (IAC-4) CY JUN 26-JUL 01, 2005 CL Kos, GREECE ID ENERGY; TIN; COATINGS; TICXN1-X; HARDNESS AB We have carried out numerical ab initio calculations of the elastic constants for several cubic ordered structures modeling titanium carbonitride (TiCxN1-x) alloys. The calculations were performed using the full-potential linear augmented plane-wave method (FPLAPW) to calculate the total energy as functions of volume and strain, after which the data were fit to the traditional Murnaghan equation of state and to a polynomial function of strain to determine the formation energy; the bulk modulus; and the elastic constants C-11, C-12, and C-44. The predicted equilibrium lattice parameters are slightly higher than those found experimentally (on average by 0.2 pct). The computed formation energy indicates that the alloys are stable in the entire range of the carbon concentration x and the maximum stability is obtained for 0.5 <= x <= 0.75. The computed bulk modulus, the shear modulus G, and the Young's modulus E are within approximately 2, 1, and 2 pct of the experimentally measured characteristics, respectively. The maximum deviation is observed for TiC and TiN. The moduli G, E, and Poisson's ratio reach a maximum value at approximately the middle of the concentration range, which is due to the fact that the shear modulus C-44 shows a maximum value for a valence electron concentration (VEC) in the range of 8.25 to 8.5. The other shear modulus (C-11 - C-12)/2 does not exhibit any maximum overall concentration range and instead has a flat dependence in the range mentioned previously. Such a concentration behavior of the elastic constants is related to specific changes in the band structure of TiCxN1-x alloys caused by the orthorhombic and monoclinic strains that determine the shear moduli (C-11 - C-12)/2 and C-44, respectively. C1 NAS Ukraine, Inst Mat Sci Problems, UA-03142 Kiev, Ukraine. Univ Calif Lawrence Livermore Natl Lab L353, Livermore, CA 94551 USA. RP Ivashchenko, VI (reprint author), NAS Ukraine, Inst Mat Sci Problems, UA-03142 Kiev, Ukraine. EM ivash@rnaterials.kiev.ua NR 25 TC 11 Z9 11 U1 0 U2 3 PU MINERALS METALS MATERIALS SOC PI WARRENDALE PA 184 THORN HILL RD, WARRENDALE, PA 15086 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD DEC PY 2006 VL 37A IS 12 BP 3391 EP 3396 DI 10.1007/s11661-006-1031-9 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 117XZ UT WOS:000242907900004 ER PT J AU Masuda-Jindo, K Van Hung, V Turchi, PEA AF Masuda-Jindo, K. Van Hung, Vu Turchi, P. E. A. TI Thermodynamic properties and phase diagram by the statistical moment and cluster variation methods: Application to pure metals and Ta-W alloys SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT 4th International Alloy Conference (IAC-4) CY JUN 26-JUL 01, 2005 CL Kos, GREECE ID TRANSITION-METALS; ELASTIC-MODULI; TEMPERATURE; TANTALUM; ENERGY; FCC AB The thermodynamic quantities of metals and alloys are studied using the moment method in the quantum statistical mechanics, going beyond the quasi-harmonic (QH) approximations. Including the power moments of the atomic displacements up to the fourth order, the free energies and the related thermodynamic quantities are derived explicitly in closed analytic fors. The configurational entropy term is taken into account by coupling the moment expansion scheme with the cluster variation method (CVM). The energetics of the binary (TaW) alloys are treated within the framework of the first-principles tight-binding linear muffin-tin orbital (TB-LMTO) method coupled to the coherent potential approximation (CPA) and generalized perturbation method (GPM). The equilibrium phase diagrams are calculated for the refractory Ta-W bee alloys. C1 Tokyo Inst Technol, Dept Mat Sci & Engn, Yokohama, Kanagawa 2268503, Japan. Hanoi Natl Pedagog Univ, Dept Phys, Hanoi, Vietnam. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Masuda-Jindo, K (reprint author), Tokyo Inst Technol, Dept Mat Sci & Engn, Yokohama, Kanagawa 2268503, Japan. EM kmjindo@issp.u-tokyo.ac.jp NR 25 TC 3 Z9 3 U1 1 U2 8 PU MINERALS METALS MATERIALS SOC PI WARRENDALE PA 184 THORN HILL RD, WARRENDALE, PA 15086 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD DEC PY 2006 VL 37A IS 12 BP 3403 EP 3409 DI 10.1007/s11661-006-1033-7 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 117XZ UT WOS:000242907900006 ER PT J AU Leventouri, T Melechko, AV Sorge, KD Klein, KL Fowlkes, JD Rack, PD Anderson, IM Thompson, JR McKnight, TE Simpson, ML AF Leventouri, T. Melechko, A. V. Sorge, K. D. Klein, K. L. Fowlkes, J. D. Rack, P. D. Anderson, I. M. Thompson, J. R. McKnight, T. E. Simpson, M. L. TI Magnetic alloys in nanoscale biomaterials SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT 4th International Alloy Conference (IAC-4) CY JUN 26-JUL 01, 2005 CL Kos, GREECE ID ALIGNED CARBON NANOFIBERS AB Fe-Co composition gradient and Fe-Pt multilayer alloy films were tested as catalysts for growing vertically aligned carbon nanofibers (VACNFs) by plasma-enhanced chemical vapor deposition (PECVD). The Fe-Co film yielded nanofibers with alloy tips in a wide compositional range varying from 8.15 pct Fe at the Co-rich end to 46.29 pct Fe in the middle of the wafer as determined by energy-dispersive X-ray analysis. Two Fe-Co cubic phases (SG Pm3m, Pm3m) were identified by preliminary X-ray diffraction (XRD) measurements. Magnetic measurements showed a substantially greater hysteresis loop area and coercivity in Fe-Co catalyst nanoparticles as compared to the as-deposited Fe-Co film. The Fe-Pt film did not break into FePt alloy nanoparticles under the applied processing parameters and thus the utility of FePt as a VACNF catalyst has been inconclusive. C1 Florida Atlantic Univ, Dept Phys, Boca Raton, FL 33431 USA. Florida Atlantic Univ, Ctr Biol & Mat Phys, Boca Raton, FL 33431 USA. Oak Ridge Natl Lab, Mol Scale Engn & Nanoscale Technol Res Grp, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Microscopy Microanal Microstruct Met & Ceram Div, Oak Ridge, TN USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA. RP Leventouri, T (reprint author), Florida Atlantic Univ, Dept Phys, Boca Raton, FL 33431 USA. EM leventou@fau.edu RI Melechko, Anatoli/B-8820-2008; Simpson, Michael/A-8410-2011; McKnight, Tim/H-3087-2011; OI Simpson, Michael/0000-0002-3933-3457; McKnight, Tim/0000-0003-4326-9117; Rack, Philip/0000-0002-9964-3254 NR 7 TC 1 Z9 1 U1 0 U2 2 PU MINERALS METALS MATERIALS SOC PI WARRENDALE PA 184 THORN HILL RD, WARRENDALE, PA 15086 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD DEC PY 2006 VL 37A IS 12 BP 3423 EP 3427 DI 10.1007/s11661-006-1036-4 PG 5 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 117XZ UT WOS:000242907900009 ER PT J AU Tao, KX Brown, DW Vogel, SC Choo, H AF Tao, Kaixiang Brown, Donald W. Vogel, Sven C. Choo, Hahn TI Texture evolution during strain-induced martensitic phase transformation in 304L stainless steel at a cryogenic temperature SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID MAGNESIUM ALLOY; DIFFRACTOMETER; HIPPO AB The strain-induced martensitic phase transformation during quasi-static uniaxial compression testing of a 304L stainless steel was investigated at 300 and 203 K using time-of-flight neutron diffraction to study the evolution of transformation texture. A number of specimens were precompressed to different strain levels at 300 and 203 K and the texture was investigated. At 203 K, the newly formed martensites are bee and hcp phases and the texture analysis shows that the martensites are highly textured due to the grain-orientation-dependent phase transformation. The bee 1100) planes are mostly oriented with their plane-normal parallel to the loading direction at the beginning of the phase transformation and this texture is weakened during the subsequent compressive deformation. In the case of fee to hcp transformation, it is less dependent on the grain orientation, although the fee grains with I I I I] plane-normal at an angle close to 40 deg to the loading direction transform easier and the 100011 plane-normal of the newly formed hcp phase tends to rotate toward the loading direction during the texture evolution. The final texture of bee and hcp martensites is the result of the interaction between deformation texture and transformation texture. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Los Alamos Natl Lab, LANSCE LC, Los Alamos, NM 87545 USA. RP Tao, KX (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM hchoo@utk.edu RI Lujan Center, LANL/G-4896-2012; Choo, Hahn/A-5494-2009; OI Choo, Hahn/0000-0002-8006-8907; Vogel, Sven C./0000-0003-2049-0361 NR 16 TC 10 Z9 10 U1 1 U2 6 PU MINERALS METALS MATERIALS SOC PI WARRENDALE PA 184 THORN HILL RD, WARRENDALE, PA 15086 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD DEC PY 2006 VL 37A IS 12 BP 3469 EP 3475 DI 10.1007/s11661-006-1042-6 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 117XZ UT WOS:000242907900015 ER PT J AU Fonda, RW Bingert, JF AF Fonda, R. W. Bingert, J. F. TI Precipitation and grain refinement in a 2195 Al friction stir weld SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID ALUMINUM-COPPER ALLOYS; HEAT-AFFECTED ZONE; MICROSTRUCTURAL EVOLUTION; HOT DEFORMATION; MECHANICAL-BEHAVIOR; LARGE STRAINS; ZR ALLOYS; LI ALLOY; X-RAYS; AL AB The microstructure across a friction stir weld in aluminum alloy 2195 was analyzed to reveal the precipitation processes, grain evolution mechanisms, and crystallographic texture within that weld. The complex microhardness variations across the weld are explained by the observed precipitation sequence, in which the original precipitates coarsen and dissolve during welding, and are then replaced by different precipitates, which form during cooling. The grain development from the thermomechanically affected zone (TMAZ) into the weld nugget reveals that subgrains form within the TMAZ grains and develop increasing boundary misorientations through continuous dynamic recrystallization by subgrain rotation to eventually form the refined grains observed within the weld nugget. Within the weld nugget, a {112} < 110 > texture is observed, corresponding to a high strain/high temperature shear strain component. C1 USN, Res Lab, Washington, DC 20375 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Fonda, RW (reprint author), USN, Res Lab, Washington, DC 20375 USA. EM richard.fonda@nrl.navy.mil NR 79 TC 49 Z9 53 U1 7 U2 21 PU MINERALS METALS MATERIALS SOC PI WARRENDALE PA 184 THORN HILL RD, WARRENDALE, PA 15086 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD DEC PY 2006 VL 37A IS 12 BP 3593 EP 3604 DI 10.1007/s11661-006-1054-2 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 117XZ UT WOS:000242907900027 ER PT J AU Blom, DA Allard, LF Mishina, S O'Keefe, MA AF Blom, Douglas A. Allard, Lawrence F. Mishina, Satoshi O'Keefe, Michael A. TI Early results from an aberration-corrected JEOL 2200FS STEM/TEM at Oak Ridge National Laboratory SO MICROSCOPY AND MICROANALYSIS LA English DT Article; Proceedings Paper CT 10th Meeting on Frontiers of Electron Microscopy in Materials Science CY SEP 25-30, 2005 CL Maastricht, NETHERLANDS DE aberration-corrected scanning transmission electron microscopy; high-angle annular dark-field imaging; single atom imaging; atomic resolution ID RESOLUTION; INSTRUMENT; ATOMS AB The resolution-limiting aberrations of round electromagnetic lenses can now be successfully overcome via the use of multipole element "aberration correctors." The installation and performance of a hexapole-based corrector (CEOS GmbH) integrated on the probe-forming side of a JEOL 2200FS FEG STEM/TEM is described. For the resolution of the microscope not to be severely compromised by its environment, a new, specially designed building at Oak Ridge National Laboratory has been built. The Advanced Microscopy Laboratory was designed with the goal of providing a suitable location for aberration-corrected electron microscopes. Construction methods and performance of the building are discussed in the context of the performance of the microscope. Initial performance of the microscope on relevant specimens and modifications made to eliminate resolution-limiting conditions are also discussed. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. JEOL USA, Peabody, MA 01960 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Blom, DA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM blomda@ornl.gov NR 13 TC 21 Z9 21 U1 0 U2 8 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 J9 MICROSC MICROANAL JI Microsc. microanal. PD DEC PY 2006 VL 12 IS 6 BP 483 EP 491 DI 10.1017/S1431927606060570 PG 9 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA 111TR UT WOS:000242478200007 PM 19830940 ER PT J AU Erni, R Freitag, B Hartel, P Muller, H Tiemeijer, P van der Stam, M Stekelenburg, M Hubert, D Specht, P Garibay-Febles, V AF Erni, Rolf Freitag, Bert Hartel, Peter Mueller, Heiko Tiemeijer, Peter van der Stam, Michiel Stekelenburg, Mike Hubert, Dominique Specht, Petra Garibay-Febles, Vincente TI Atomic scale analysis of planar defects in polycrystalline diamond SO MICROSCOPY AND MICROANALYSIS LA English DT Article; Proceedings Paper CT 10th Meeting on Frontiers of Electron Microscopy in Materials Science CY SEP 25-30, 2005 CL Maastricht, NETHERLANDS DE polycrystalline diamond; aberration-corrected microscopy; HR-TEM; HR-STEM; planar defects ID 90-DEGREES PARTIAL DISLOCATION AB Planar defects in a polycrystalline diamond film were studied by high-resolution transmission electron microscopy (HRTEM) and high-resolution scanning transmission electron microscopy (STEM). In both modes, sub-Angstrom resolution was achieved by making use of two aberration-corrected systems; a TEM and a STEM C-s-corrected microscope, each operated at 300 W For the first time, diamond in < 110 > zone-axis orientation was imaged in STEM mode at a resolution that allows for resolving the atomic dumbbells of carbon at a projected interatomic distance of 89 pm. Twin boundaries that show approximately the Sigma 3 CSL structure reveal at sub-Angstrom resolution imperfections; that is, local distortions, which break the symmetry of the ideal 13 type twin boundary, are likely present. In addition to these imperfect twin boundaries, voids on the atomic level were observed. it is proposed that both local distortions and small voids enhance the mechanical toughness of the film by locally increasing the critical stress intensity factor. C1 FEI Electron Opt, NL-5600 KA Eindhoven, Netherlands. CEOS GmbH, D-69126 Heidelberg, Germany. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA. Inst Mexicano Petr, Programma Ingn Mol, Mexico City 07730, DF, Mexico. RP Erni, R (reprint author), FEI Electron Opt, POB 80066, NL-5600 KA Eindhoven, Netherlands. EM rolf.erni@ua.ac.be RI Erni, Rolf/P-7435-2014 OI Erni, Rolf/0000-0003-2391-5943 NR 9 TC 7 Z9 7 U1 2 U2 15 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 J9 MICROSC MICROANAL JI Microsc. microanal. PD DEC PY 2006 VL 12 IS 6 BP 492 EP 497 DI 10.1017/S1431927606060594 PG 6 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA 111TR UT WOS:000242478200008 PM 19830941 ER PT J AU Kotula, PG Keenan, MR AF Kotula, Paul G. Keenan, Michael R. TI Application of multivariate statistical analysis to STEM X-ray spectral images: Interfacial analysis in microelectronics SO MICROSCOPY AND MICROANALYSIS LA English DT Article; Proceedings Paper CT 10th Meeting on Frontiers of Electron Microscopy in Materials Science CY SEP 25-30, 2005 CL Maastricht, NETHERLANDS DE STEM; X-ray microanalysis; spectral imaging; multivariate statistical analysis; multivariate curve resolution; subpixel spectral deconvolution ID EDX SPECTRA; SEGREGATION AB Multivariate statistical analysis methods have been applied to scanning transmission electron microscopy (STEM) energy-dispersive X-ray spectral images. The particular application of the multivariate curve resolution (MCR) technique provides a high spectral contrast view of the raw spectral image. The power of this approach is demonstrated with a microelectronics failure analysis. Specifically, an unexpected component describing a chemical contaminant was found, as well as a component consistent with a foil thickness change associated with the focused ion beam specimen preparation process. The MCR solution is compared with a conventional analysis of the same spectral image data set. C1 Sandia Natl Labs, Mat Characterizat Dept, Albuquerque, NM 87185 USA. RP Kotula, PG (reprint author), Sandia Natl Labs, Mat Characterizat Dept, POB 5800,MS 0886, Albuquerque, NM 87185 USA. EM pgkotul@sandia.gov RI Kotula, Paul/A-7657-2011 OI Kotula, Paul/0000-0002-7521-2759 NR 19 TC 34 Z9 34 U1 0 U2 6 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 J9 MICROSC MICROANAL JI Microsc. microanal. PD DEC PY 2006 VL 12 IS 6 BP 538 EP 544 DI 10.1017/S1431927606060636 PG 7 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA 111TR UT WOS:000242478200013 PM 19830946 ER PT J AU Fleisch, MC Maxwell, CA Kuper, CK Brown, ET Barcellos-Hoff, MH Costes, SV AF Fleisch, Markus C. Maxwell, Christopher A. Kuper, Claudia K. Brown, Erika T. Barcellos-Hoff, Mary Helen Costes, Sylvain V. TI Intensity-based signal separation algorithm for accurate quantification of clustered centrosomes in tissue sections SO MICROSCOPY RESEARCH AND TECHNIQUE LA English DT Article DE centrosome; quantification; microscopy; segmentation; immunofluorescence; p53 ID CHROMOSOMAL INSTABILITY; BREAST-CANCER; AMPLIFICATION; P53; CELLS; ABNORMALITIES AB Centrosomes are small organelles that organize the mitotic spindle during cell division and are also involved in cell shape and polarity. Within epithelial tumors, such as breast cancer, and some hematological tumors, centrosome abnormalities (CAs) are common, occur early in disease etiology, and correlate with chromosomal instability and disease stage. In situ quantification of CA by optical microscopy is hampered by overlap and clustering of these organelles, which appear as focal structures. CA has been frequently associated with Tp53 status in premalignant lesions and tumors. Here the authors described an approach to accurately quantify centrosome frequencies in tissue sections and tumors, independently of background or noise levels. Applying simple optical rules in nondeconvolved conventional 3D images of stained tissue sections, the authors showed that they could evaluate more accurately and rapidly centrosome frequencies than with traditional investigator-based visual analysis or threshold-based techniques. The resulting population-based frequency of centrosomes per nucleus could then be used to approximate the proportion of cells with CA in that same population. This was done by taking into account baseline centrosome amplification and proliferation rates measured in the tissue. Using this technique, the authors showed that 20-30% of cells have amplified centrosomes in Tp53 null mammary tumors. C1 Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Costes, SV (reprint author), Lawrence Berkeley Lab, Div Life Sci, 1 Cyclotron Rd,MS 977-225A, Berkeley, CA 94720 USA. EM sveostes@lbl.gov RI Maxwell, Christopher/B-3044-2011; Costes, Sylvain/D-2522-2013; Fleisch, Markus/E-4134-2014 OI Maxwell, Christopher/0000-0002-0860-4031; Costes, Sylvain/0000-0002-8542-2389; Fleisch, Markus/0000-0002-8966-4721 NR 18 TC 6 Z9 6 U1 0 U2 5 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1059-910X J9 MICROSC RES TECHNIQ JI Microsc. Res. Tech. PD DEC PY 2006 VL 69 IS 12 BP 964 EP 972 DI 10.1002/jemt.20372 PG 9 WC Anatomy & Morphology; Biology; Microscopy SC Anatomy & Morphology; Life Sciences & Biomedicine - Other Topics; Microscopy GA 114GL UT WOS:000242654600003 PM 16941664 ER PT J AU Gao, YF AF Gao, Y. F. TI An implicit finite element method for simulating inhomogeneous deformation and shear bands of amorphous alloys based on the free-volume model SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article ID BULK-METALLIC GLASSES; RATE DEPENDENCE; ENHANCED PLASTICITY; MATRIX COMPOSITES; DUCTILE; NANOINDENTATION; LOCALIZATION; MECHANISM; FLOW AB Inhomogeneous deformation of amorphous alloys is caused by the initiation, multiplication and interaction of shear bands (i.e. narrow bands with large plastic deformation). Based on the free-volume model under the generalized multiaxial stress state, this work develops a finite element scheme to model the individual processes of shear bands that contribute to the macroscopic plasticity behaviour. In this model, the stress-driven increase in the free volume reduces the viscosity and thus leads to the strain localization in the shear band. Using the small-strain and rate-dependent plasticity framework, the plastic strain is assumed to be proportional to the deviatoric stress, and the flow stress is a function of the free volume, while the temporal change in the free volume is also coupled with the stress state. Nonlinear equations from the incremental finite element formulation are solved by the Newton-Raphson method, in which the corresponding material tangent is obtained by simultaneously and implicitly integrating the plastic flow equation and the evolution equation of the free-volume field. This micromechanical model allows us to study the interaction between individual shear bands and between the shear bands and the background stress fields. To illustrate its capabilities, the method is used to solve representative boundary value problems. C1 Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Gao, YF (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM ygao7@utk.edu RI Gao, Yanfei/F-9034-2010 OI Gao, Yanfei/0000-0003-2082-857X NR 25 TC 51 Z9 54 U1 3 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD DEC PY 2006 VL 14 IS 8 BP 1329 EP 1345 DI 10.1088/0965-0393/14/8/004 PG 17 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 128CU UT WOS:000243635500004 ER PT J AU Karimi, M Roarty, T Kaplan, T AF Karimi, Majid Roarty, Tom Kaplan, Theodore TI Molecular dynamics simulations of crack propagation in Ni with defects SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article ID EMBEDDED-ATOM-METHOD; BRITTLE-FRACTURE; METALS; COPPER; CRYSTALS; IMPURITIES; POTENTIALS; SILICON AB A series of molecular dynamics simulations using the embedded atom method is conducted to investigate crack propagation under mode I loading in a Ni single crystal with and without defects. The crack system (0 0 1) [10 0] in a slab of 160 000 atoms was studied. Defects consisting of lines of vacancies were introduced near the crack tip. Critical loads and strain energy distributions around the crack tip are obtained. Our results indicate that the critical strain necessary for crack propagation is dependent on the defect configuration and can either increase or decrease relative to the defect-free system. C1 Indiana Univ Penn, Dept Phys, Indiana, PA 15705 USA. Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Karimi, M (reprint author), Indiana Univ Penn, Dept Phys, Indiana, PA 15705 USA. NR 31 TC 23 Z9 24 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD DEC PY 2006 VL 14 IS 8 BP 1409 EP 1420 DI 10.1088/0965-0393/14/8/008 PG 12 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 128CU UT WOS:000243635500008 ER PT J AU Zuo, QH Harstad, EN Addessio, FL Greeff, CW AF Zuo, Q. H. Harstad, E. N. Addessio, F. L. Greeff, C. W. TI A model for plastic deformation and phase transformations of zirconium under high-rate loading SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article ID MULTISURFACE PLASTICITY; ZR; EQUATION; STATE; TI AB A constitutive model which considers both plastic deformation and solid-solid phase transformations has been developed for zirconium under high-rate loading. Within the multiphase mixture regime, a lower-bound (Ruess) or uniform-stress assumption is used. It also is assumed that coexisting phases are in thermal equilibrium. The plastic deformation of the mixture is given by the contributions of individual phases. Each phase has a separate plastic yield surface, which evolves (strain-hardening) according to the plastic strain accumulated in the phase. A novel, fully implicit numerical algorithm for the plastic response of multiphase materials with separate yield surfaces is developed. The model is validated using data for plate impact experiments on a zirconium target. Simulations also are provided to demonstrate the ability of the model to capture the relevant aspects of the high-strain-rate deformation of a zirconium plate loaded with explosives. The numerical results indicate that the phase histories of the material under a general, three-dimensional (3D) stress state can be very complicated and cannot be anticipated without a detailed 3D calculation including the effects of phase transformations. The results presented here may have an important implication in designing systems involving zirconium for high-rate applications. C1 Univ Alabama, Dept Mech & Aerosp Engn, Huntsville, AL 35899 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Zuo, QH (reprint author), Univ Alabama, Dept Mech & Aerosp Engn, Huntsville, AL 35899 USA. EM zuo@eng.utah.edu RI Greeff, Carl/N-3267-2013; OI Greeff, Carl/0000-0003-0529-0441 NR 24 TC 3 Z9 3 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD DEC PY 2006 VL 14 IS 8 BP 1465 EP 1484 DI 10.1088/0965-0393/14/8/012 PG 20 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 128CU UT WOS:000243635500012 ER PT J AU Kehoe, JW Velappan, N Walbolt, M Rasmussen, J King, D Lou, JL Knopp, K Pavlik, P Marks, JD Bertozzi, CR Bradbury, ARM AF Kehoe, John W. Velappan, Nileena Walbolt, Monica Rasmussen, Jytte King, Dave Lou, Jianlong Knopp, Kristeene Pavlik, Peter Marks, James D. Bertozzi, Carolyn R. Bradbury, Andrew R. M. TI Using phage display to select antibodies recognizing post-translational modifications independently of sequence context SO MOLECULAR & CELLULAR PROTEOMICS LA English DT Article ID TYROSINE O-SULFATION; SINGLE-CHAIN ANTIBODIES; HIGH-AFFINITY BINDING; MASS-SPECTROMETRY; P-SELECTIN; AMINO-TERMINUS; MONOCLONAL-ANTIBODY; TYROSYLPROTEIN SULFOTRANSFERASE; PHOSPHORYLATED PROTEINS; PHOSPHATASE CONJUGATE AB Many cellular activities are controlled by post-translational modifications, the study of which is hampered by the lack of specific reagents due in large part to their ubiquitous and non-immunogenic nature. Although antibodies against specifically modified sequences are relatively easy to obtain, it is extremely difficult to derive reagents recognizing post-translational modifications independently of the sequence context surrounding the modification. In this study, we examined the possibility of selecting such antibodies from large phage antibody libraries using sulfotyrosine as a test case. Sulfotyrosine is a post-translational modification important in many extracellular protein-protein interactions, including human immunodeficiency virus infection. After screening almost 8000 selected clones, we were able to isolate a single specific single chain Fv using two different selection strategies, one of which included elution with tyrosine sulfate. This antibody was able to recognize sulfotyrosine independently of its sequence context in test peptides and a number of different natural proteins. Antibody reactivity was lost by antigen treatment with sulfatase or preincubation with soluble tyrosine sulfate, indicating its specificity. The isolation of this antibody signals the potential of phage antibody libraries in the derivation of reagents specific for post-translational modifications, although the extensive screening required indicates that such antibodies are extremely rare. C1 Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Howard Hughes Med Inst, Mass Spectrometry Lab, Berkeley, CA 94720 USA. Univ Calif San Francisco, San Francisco Gen Hosp, Dept Anesthesia & Pharmaceut Chem, San Francisco, CA 94110 USA. RP Bertozzi, CR (reprint author), Los Alamos Natl Lab, Biosci Div, TA-43,HRL-1,MS M888, Los Alamos, NM 87545 USA. EM bertozzi@cchem.berkeley.edu; amb@lanl.gov OI Velappan, Nileena/0000-0002-4488-9126; Bradbury, Andrew/0000-0002-5567-8172 FU NCI NIH HHS [U54 CA90788]; NIGMS NIH HHS [GM59907] NR 87 TC 33 Z9 37 U1 0 U2 7 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 1535-9476 J9 MOL CELL PROTEOMICS JI Mol. Cell. Proteomics PD DEC PY 2006 VL 5 IS 12 BP 2350 EP 2363 DI 10.1074/mcp.M600314-MCP200 PG 14 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 117DD UT WOS:000242852000012 PM 16971384 ER PT J AU Krampis, K Tyler, BM Boore, JL AF Krampis, Konstantinos Tyler, Brett M. Boore, Jeffrey L. TI Extensive variation in nuclear mitochondrial DNA content between the genomes of Phytophthora sojae and Phytophthora ramorum SO MOLECULAR PLANT-MICROBE INTERACTIONS LA English DT Article DE diversification of NUMTs; mitochondria; speciation ID ANGIOSPERM EVOLUTION; ORGANELLE DNA; GENE CONTENT; PSEUDOGENES; NUMTS; INSERTIONS; RATES; DUPLICATIONS; ORGANIZATION; MIGRATION AB Fragments of mitochondrial DNA (mtDNA) transferred to the nuclear genome are called nuclear mitochondrial DNAs (NUMTs). We report here a comparison of NUMT content between genomes from two species of the same genus. Analysis of the genomes of Phytophthora sojae and R ramorum revealed large differences in the NUMT content of the two genomes: 16.27 x 10(-3) and 2.28 x 10(-3)% of each genome, respectively. Substantial differences also exist between the two species in the sizes of the NUMTs found in each genome, with ranges of 20 to 405 bp for P sojae and 19 to 137 bp for R ramorum. Furthermore, in P sojae, fragments from the mitochondrial genes rns, rnl, cox], and nad (various subunits) are found most frequently, whereas P ramorum NUMTs most often originate from the cox3, rps14, nad4, and nad5 genes. The large differences in the presumptive mtDNA insertions suggest that the insertions occurred subsequent to the divergence of the two species, and this is supported by sequence comparisons among the NUMTs and the mtDNA sequences of the two species. R sojae mtDNA sequences inserted in the nuclear genome appear to have been altered as a result of insertions, deletions, inversions, and translocations and provide insights into active mechanisms of sequence divergence in this plant pathogen. No clear examples were found of NUMTs forming functional nuclear genes or of NUMTs inserted into exons or introns of any nuclear gene. C1 Virginia Polytech Inst & State Univ, Virginia Bioinformat Inst, Blacksburg, VA 24061 USA. Lawrence Berkeley Natl Lab, Evolutionary Genom Dept, Dept Energy, Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Krampis, K (reprint author), Virginia Polytech Inst & State Univ, Virginia Bioinformat Inst, Blacksburg, VA 24061 USA. EM agbiotec@vt.edu NR 39 TC 8 Z9 8 U1 0 U2 3 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0894-0282 J9 MOL PLANT MICROBE IN JI Mol. Plant-Microbe Interact. PD DEC PY 2006 VL 19 IS 12 BP 1329 EP 1336 DI 10.1094/MPMI-19-1329 PG 8 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Plant Sciences SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Plant Sciences GA 106YE UT WOS:000242137100005 PM 17153917 ER PT J AU Lamour, KH Finley, L Hurtado-Gonzales, O Gobena, D Tierney, M Meijer, HJG AF Lamour, Kurt H. Finley, Ledare Hurtado-Gonzales, Oscar Gobena, Daniel Tierney, Melinda Meijer, Harold J. G. TI Targeted gene mutation in Phytophthora spp. SO MOLECULAR PLANT-MICROBE INTERACTIONS LA English DT Article DE knockout; SNP ID PHOSPHOLIPASE-D ACTIVITY; PARASITICA VAR.-NICOTIANAE; PLANT FUNCTIONAL GENOMICS; FLUORESCENT PROTEIN GFP; INDUCED POINT MUTATIONS; ZOOSPORE MOTILITY; REVERSE GENETICS; INFESTANS; EXPRESSION; OOMYCETE AB The genus Phytophthora belongs to the oomycetes and is composed of plant pathogens. Currently, there are no strategies to mutate specific genes for members of this genus. Whole genome sequences are available or being prepared for Phytophthora sojae, R ramorum, P infestans, and P capsici and the development of molecular biological techniques for functional genomics is encouraged. This article describes the adaptation of the reverse-genetic strategy of targeting induced local lesions in genomes (TILLING) to isolate gene-specific mutants in Phytophthora spp. A genomic library of 2,400 ethylnitrosourea (ENU) mutants of P sojae was created and screened for induced point mutations in the genes encoding a necrosis-inducing protein (PsojNIP) and a Phytophthora-specific phospholipase D (PsPXTM-PLD). Mutations were detected in single individuals and included silent, missense, and nonsense changes. Homozygous mutant isolates carrying a potentially deleterious missense mutation in PsojNIP and a premature stop codon in PsPXTM-PLD were identified. No phenotypic effect has yet been found for the homozygous mutant of PsojNIP. For those of PsPXTM-PLD, a reduction in growth rate and an appressed mycelial growth was observed. This demonstrates the feasibility of target-selected gene disruption for Phytophthora spp. and adds an important tool for functional genomic investigation. C1 Univ Tennessee, Dept Entomol & Plant Pathol, Knoxville, TN 37996 USA. Wageningen Univ, Phytopathol Lab, Plant Sci Grp, NL-6709 PD Wageningen, Netherlands. Univ Tennessee, Oak Ridge, TN 37830 USA. Oak Ridge Natl Lab, Genome Sci & Technol Grad Program, Oak Ridge, TN 37830 USA. RP Lamour, KH (reprint author), Univ Tennessee, Dept Entomol & Plant Pathol, Rm 205 Ellington Plant Sci,2431 Joe Johnson Dr, Knoxville, TN 37996 USA. EM klamour@utk.edu RI Meijer, Harold/G-5703-2012 NR 46 TC 19 Z9 23 U1 0 U2 5 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0894-0282 J9 MOL PLANT MICROBE IN JI Mol. Plant-Microbe Interact. PD DEC PY 2006 VL 19 IS 12 BP 1359 EP 1367 DI 10.1094/MPMI-19-1359 PG 9 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Plant Sciences SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Plant Sciences GA 106YE UT WOS:000242137100008 PM 17153920 ER PT J AU Pincus, R Hemler, R Klein, SA AF Pincus, Robert Hemler, Richard Klein, Stephen A. TI Using stochastically generated subcolumns to represent cloud structure in a large-scale model SO MONTHLY WEATHER REVIEW LA English DT Article ID RADIATIVE-TRANSFER; ECMWF MODEL; CIRCULATION MODELS; OVERLAP STATISTICS; RADAR DATA; PARAMETERIZATION; ISCCP; VARIABILITY; VALIDATION; CLIMATE AB A new method for representing subgrid-scale cloud structure in which each model column is decomposed into a set of subcolumns has been introduced into the Geophysical Fluid Dynamics Laboratory's global atmospheric model AM2. Each subcolumn in the decomposition is homogeneous, but the ensemble reproduces the initial profiles of cloud properties including cloud fraction, internal variability (if any) in cloud condensate, and arbitrary overlap assumptions that describe vertical correlations. These subcolumns are used in radiation and diagnostic calculations and have allowed the introduction of more realistic overlap assumptions. This paper describes the impact of these new methods for representing cloud structure in instantaneous calculations and long-term integrations. Shortwave radiation computed using subcolumns and the random overlap assumption differs in the global annual average by more than 4 W m(-2) from the operational radiation scheme in instantaneous calculations; much of this difference is counteracted by a change in the overlap assumption to one in which overlap varies continuously with the separation distance between layers. Internal variability in cloud condensate, diagnosed from the mean condensate amount and cloud fraction, has about the same effect on radiative fluxes as does the ad hoc tuning accounting for this effect in the operational radiation scheme. Long simulations with the new model configuration show little difference from the operational model configuration, while statistical tests indicate that the model does not respond systematically to the sampling noise introduced by the approximate radiative transfer techniques introduced to work with the subcolumns. C1 CIRES, Climate Diagnost Ctr, Boulder, CO 80305 USA. NOAA, Earth Syst Res Lab, Boulder, CO USA. NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. Lawrence Livermore Natl Lab, Div Atmospher Sci, Livermore, CA USA. RP Pincus, R (reprint author), CIRES, Climate Diagnost Ctr, 325 Broadway R-CDC1, Boulder, CO 80305 USA. EM robert.pincus@colorado.edu RI Pincus, Robert/B-1723-2013; Klein, Stephen/H-4337-2016 OI Pincus, Robert/0000-0002-0016-3470; Klein, Stephen/0000-0002-5476-858X NR 28 TC 37 Z9 42 U1 1 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD DEC PY 2006 VL 134 IS 12 BP 3644 EP 3656 DI 10.1175/MWR3257.1 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 118AB UT WOS:000242913300007 ER PT J AU Hinz, JM Nham, PB Yamada, NA Tebbs, RS Salazar, EP Hinz, AK Mohrenweiser, HW Jones, IM Thompson, LH AF Hinz, John M. Nham, Peter B. Yamada, N. Alice Tebbs, Robert S. Salazar, Edmund P. Hinz, Angela K. Mohrenweiser, Harvey W. Jones, Irene M. Thompson, Larry H. TI Four human FANCG polymorphic variants show normal biological function in hamster CHO cells SO MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS LA English DT Article DE Fanconi anemia; polymorphisms; mitomycin C sensitivity; FANCD2 monoubiquitination; CHO cells ID DNA-REPAIR GENES; AFFECT PROTEIN FUNCTION; HOMOLOGOUS RECOMBINATION; ANEMIA PROTEINS; BREAST-CANCER; MUTATIONS; BRCA2; PATHWAY; RISK; SUSCEPTIBILITY AB Fanconi anemia (FA) is a rare cancer predisposition disease caused by mutations in at least 12 genes encoding proteins that cooperate to maintain genomic integrity. Variants of FA genes, including FANCG, have been identified in human population screening, but their potential reduction in protein function and role in cancer susceptibility is unclear. To test for possible dysfunction, we constructed plasmids containing four FANCG polymorphisms found in the human population and introduced them in the Fancg-deficient (fancg) KO40 line derived from AA8 hamster CHO cells. Expression of wild-type human FANCG provided fancg cells with complete phenotypic correction as assessed by resistance to the DNA crosslinking agent mitomycin C (MMC), thus providing a sensitive test for detecting the degree of complementation activity for the FANCG variants. We found that all four variants conferred levels of mitomycin C resistance as well as restoration of monoubiquitination of Fancd2, a key indicator of a functional FA protein pathway, similar to those observed in wild-type transfectants. Under the same conditions, the L71P amino acid substitution mutant, identified in an FA patient, gave no complementation. Using this novel system for determining FANCG functionality, we detect no decrement in function of the human FANCG polymorphic variants examined. (c) 2006 Elsevier B.V. All rights reserved. C1 Lawrence Livermore Natl Lab, Biosci Directorate, Livermore, CA 94551 USA. Univ Calif Irvine, Div Epidemiol, Irvine, CA 92697 USA. RP Hinz, JM (reprint author), Lawrence Livermore Natl Lab, Biosci Directorate, POB 808, Livermore, CA 94551 USA. EM hinz4@llnl.gov FU NCI NIH HHS [CA89405] NR 41 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0027-5107 J9 MUTAT RES-FUND MOL M JI Mutat. Res.-Fundam. Mol. Mech. Mutagen. PD DEC 1 PY 2006 VL 602 IS 1-2 BP 34 EP 42 DI 10.1016/j.mrfmmm.2006.07.008 PG 9 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA 112XX UT WOS:000242562400005 PM 17010390 ER PT J AU Jakobsson, E Aluru, N Baylev, H Brinker, J Feller, S Humayun, M Lavan, DA Klimeck, G Leung, K McLennan, M Plimpton, S Ravaioli, U Rempe, S Roux, B Saraniti, M Scott, HL Zhu, X AF Jakobsson, E. Aluru, N. Baylev, H. Brinker, J. Feller, S. Humayun, M. LaVan, D. A. Klimeck, G. Leung, K. McLennan, M. Plimpton, S. Ravaioli, U. Rempe, S. Roux, B. Saraniti, M. Scott, H. L. Zhu, X. TI National center for the design of biomimetic nanoconductors SO NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE LA English DT Meeting Abstract C1 Univ Illinois, Urbana, IL 61801 USA. Univ Oxford, Oxford OX1 2JD, England. Univ New Mexico, Albuquerque, NM 87131 USA. Wabash Coll, Crawfordsville, IN 47933 USA. Univ So Calif, Los Angeles, CA 90089 USA. Yale Univ, New Haven, CT 06520 USA. Sandia Natl Labs, Livermore, CA 94550 USA. Univ Chicago, Chicago, IL 60637 USA. IIT, Chicago, IL 60616 USA. RI Klimeck, Gerhard/A-1414-2012 OI Klimeck, Gerhard/0000-0001-7128-773X NR 0 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1549-9634 EI 1549-9642 J9 NANOMED-NANOTECHNOL JI Nanomed.-Nanotechnol. Biol. Med. PD DEC PY 2006 VL 2 IS 4 BP 289 EP 290 DI 10.1016/j.nano.2006.10.070 PG 2 WC Nanoscience & Nanotechnology; Medicine, Research & Experimental SC Science & Technology - Other Topics; Research & Experimental Medicine GA 120VR UT WOS:000243115000072 ER PT J AU Renipe, SB Varma, S Leung, K Lorenz, C AF Renipe, S. B. Varma, S. Leung, K. Lorenz, C. TI Determinants of selectivity in ion transporters SO NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE LA English DT Meeting Abstract C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Iowa State Univ, Ames Lab, Ames, IA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1549-9634 EI 1549-9642 J9 NANOMED-NANOTECHNOL JI Nanomed.-Nanotechnol. Biol. Med. PD DEC PY 2006 VL 2 IS 4 BP 309 EP 309 DI 10.1016/j.nano.2006.10.126 PG 1 WC Nanoscience & Nanotechnology; Medicine, Research & Experimental SC Science & Technology - Other Topics; Research & Experimental Medicine GA 120VR UT WOS:000243115000124 ER PT J AU Chang, MCY Keasling, JD AF Chang, Michelle C. Y. Keasling, Jay D. TI Production of isoprenoid pharmaceuticals by engineered microbes SO NATURE CHEMICAL BIOLOGY LA English DT Article ID ALCALIGENES-EUTROPHUS H16; ESCHERICHIA-COLI; TAXOL BIOSYNTHESIS; MOLECULAR-CLONING; ARTEMISIA-ANNUA; FUNCTIONAL EXPRESSION; SACCHAROMYCES-CEREVISIAE; HETEROLOGOUS EXPRESSION; ISOPENTENYL DIPHOSPHATE; LYCOPENE PRODUCTION AB Throughout human history, natural products have been the foundation for the discovery and development of therapeutics used to treat diseases ranging from cardiovascular disease to cancer. Their chemical diversity and complexity have provided structural scaffolds for small-molecule drugs and have consistently served as inspiration for medicinal design. However, the chemical complexity of natural products also presents one of the main roadblocks for production of these pharmaceuticals on an industrial scale. Chemical synthesis of natural products is often difficult and expensive, and isolation from their natural sources is also typically low yielding. Synthetic biology and metabolic engineering offer an alternative approach that is becoming more accessible as the tools for engineering microbes are further developed. By reconstructing heterologous metabolic pathways in genetically tractable host organisms, complex natural products can be produced from inexpensive sugar starting materials through large-scale fermentation processes. In this Perspective, we discuss ongoing research aimed toward the production of terpenoid natural products in genetically engineered Escherichia coli and Saccharomyces cerevisiae. C1 Univ Calif Berkeley, Calif Inst Quantitat Biomed Res, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Chang, MCY (reprint author), Univ Calif Berkeley, Calif Inst Quantitat Biomed Res, Berkeley, CA 94720 USA. EM keasling@berkeley.edu RI Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 NR 95 TC 175 Z9 193 U1 12 U2 77 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK STREET, 9TH FLOOR, NEW YORK, NY 10013-1917 USA SN 1552-4450 J9 NAT CHEM BIOL JI Nat. Chem. Biol. PD DEC PY 2006 VL 2 IS 12 BP 674 EP 681 DI 10.1038/nchembio836 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 107KC UT WOS:000242168800011 PM 17108985 ER PT J AU Sun, YG Choi, WM Jiang, HQ Huang, YGY Rogers, JA AF Sun, Yugang Choi, Won Mook Jiang, Hanqing Huang, Yonggang Y. Rogers, John A. TI Controlled buckling of semiconductor nanoribbons for stretchable electronics SO NATURE NANOTECHNOLOGY LA English DT Article ID HIGH-PERFORMANCE ELECTRONICS; FIELD-EFFECT TRANSISTORS; SOFT LITHOGRAPHY; LARGE-AREA; NANOWIRES; GROWTH; FABRICATION; NANOBELTS; SILICON; POLY(DIMETHYLSILOXANE) AB Control over the composition, shape, spatial location and/or geometrical configuration of semiconductor nanostructures is important for nearly all applications of these materials. Here we report a mechanical strategy for creating certain classes of three-dimensional shapes in nanoribbons that would be difficult to generate in other ways. This approach involves the combined use of lithographically patterned surface chemistry to provide spatial control over adhesion sites, and elastic deformations of a supporting substrate to induce well-controlled local displacements. We show that precisely engineered buckling geometries can be created in nanoribbons of GaAs and Si in this manner and that these configurations can be described quantitatively with analytical models of the mechanics. As one application example, we show that some of these structures provide a route to electronics (and optoelectronics) with extremely high levels of stretchability (up to similar to 100%), compressibility (up to similar to 25%) and bendability (with curvature radius down to similar to 5 mm). C1 Univ Illinois, Beckman Inst, Dept Mat Sci & Engn, Urbana, IL 61801 USA. Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. Univ Illinois, Dept Mech & Ind Engn, Urbana, IL 61801 USA. RP Sun, YG (reprint author), Univ Illinois, Beckman Inst, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA. EM ygsun@anl.gov; jrogers@uiuc.edu RI Jiang, Hanqing/B-1810-2008; Sun, Yugang /A-3683-2010; Huang, Yonggang/B-6998-2009; Rogers, John /L-2798-2016 OI Jiang, Hanqing/0000-0002-1947-4420; Sun, Yugang /0000-0001-6351-6977; NR 35 TC 379 Z9 385 U1 34 U2 226 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD DEC PY 2006 VL 1 IS 3 BP 201 EP 207 DI 10.1038/nnano.2006.131 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 131WP UT WOS:000243902800016 PM 18654187 ER PT J AU Clarke, J Larbalestier, DC AF Clarke, John Larbalestier, David C. TI Wired for the future SO NATURE PHYSICS LA English DT Editorial Material ID HIGH-T-C; ELECTRIC-POWER APPLICATIONS; SUPERCONDUCTING MATERIALS; SYSTEM AB As we celebrate the 20th anniversary of high-temperature superconductors, much of their heralded potential is still to be realized. But a growing number of successful applications suggests that they will deliver on their promise. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Florida State Univ, Natl High Magnet Field Lab, Ctr Appl Superconduct, Tallahassee, FL 32310 USA. Florida State Univ, Dept Mech Engn, Tallahassee, FL 32310 USA. RP Clarke, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM jclarke@berkeley.edu; larbalestier@asc.magnet.fsu.edu RI Larbalestier, David/B-2277-2008 OI Larbalestier, David/0000-0001-7098-7208 NR 13 TC 3 Z9 3 U1 0 U2 5 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD DEC PY 2006 VL 2 IS 12 BP 794 EP 796 DI 10.1038/nphys472 PG 3 WC Physics, Multidisciplinary SC Physics GA 111TP UT WOS:000242478000006 ER PT J AU Kirz, J AF Kirz, Janos TI Free-electron lasers - FLASH microscopy SO NATURE PHYSICS LA English DT News Item ID X-RAY CRYSTALLOGRAPHY AB An ultrafast diffractive imaging technique that reconstructs an object's structure from a single short X-ray pulse is an important step towards the superlative spatial and temporal resolution promised by next-generation free-electron lasers. C1 SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Kirz, J (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. EM jkirz@lbl.gov NR 9 TC 15 Z9 15 U1 0 U2 1 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD DEC PY 2006 VL 2 IS 12 BP 799 EP 800 DI 10.1038/nphys474 PG 2 WC Physics, Multidisciplinary SC Physics GA 111TP UT WOS:000242478000009 ER PT J AU Chapman, HN Barty, A Bogan, MJ Boutet, S Frank, M Hau-Riege, SP Marchesini, S Woods, BW Bajt, S Benner, H London, RA Plonjes, E Kuhlmann, M Treusch, R Dusterer, S Tschentscher, T Schneider, JR Spiller, E Moller, T Bostedt, C Hoener, M Shapiro, DA Hodgson, KO Van der Spoel, D Burmeister, F Bergh, M Caleman, C Huldt, G Seibert, MM Maia, FRNC Lee, RW Szoke, A Timneanu, N Hajdu, J AF Chapman, Henry N. Barty, Anton Bogan, Michael J. Boutet, Sebastien Frank, Matthias Hau-Riege, Stefan P. Marchesini, Stefano Woods, Bruce W. Bajt, Sasa Benner, Henry London, Richard A. Ploenjes, Elke Kuhlmann, Marion Treusch, Rolf Duesterer, Stefan Tschentscher, Thomas Schneider, Jochen R. Spiller, Eberhard Moeller, Thomas Bostedt, Christoph Hoener, Matthias Shapiro, David A. Hodgson, Keith O. Van der Spoel, David Burmeister, Florian Bergh, Magnus Caleman, Carl Huldt, Goesta Seibert, M. Marvin Maia, Filipe R. N. C. Lee, Richard W. Szoeke, Abraham Timneanu, Nicusor Hajdu, Janos TI Femtosecond diffractive imaging with a soft-X-ray free-electron laser SO NATURE PHYSICS LA English DT Article ID HIGH-RESOLUTION; MICROSCOPY; CRYSTALLOGRAPHY; ALGORITHMS; SCATTERING; PULSES AB Theory predicts(1-4) that, with an ultrashort and extremely bright coherent X-ray pulse, a single diffraction pattern may be recorded from a large macromolecule, a virus or a cell before the sample explodes and turns into a plasma. Here we report the first experimental demonstration of this principle using the FLASH soft-X-ray free-electron laser. An intense 25 fs, 4 x 10(13) W cm(-2) pulse, containing 10(12) photons at 32 nm wavelength, produced a coherent diffraction pattern from a nanostructured non-periodic object, before destroying it at 60,000 K. A novel X-ray camera assured single-photon detection sensitivity by filtering out parasitic scattering and plasma radiation. The reconstructed image, obtained directly from the coherent pattern by phase retrieval through oversampling(5-9), shows no measurable damage, and is reconstructed at the diffraction-limited resolution. A three-dimensional data set may be assembled from such images when copies of a reproducible sample are exposed to the beam one by one(10). C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Calif Davis, Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA. Stanford Univ, Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94305 USA. Uppsala Univ, Dept Cell & Mol Biol, Lab Mol Biophys, SE-75124 Uppsala, Sweden. DESY, D-22607 Hamburg, Germany. Spiller X Ray Opt, Livermore, CA 94550 USA. Tech Univ Berlin, Inst Opt & Atomare Phys, D-10623 Berlin, Germany. RP Chapman, HN (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM henry.chapman@llnl.gov; janos.hajdu@xray.bmc.uu.se RI van der Spoel, David/A-5471-2008; Marchesini, Stefano/A-6795-2009; Chapman, Henry/G-2153-2010; Bajt, Sasa/G-2228-2010; Frank, Matthias/O-9055-2014; Treusch, Rolf/C-3935-2015; Timneanu, Nicusor/C-7691-2012; Bogan, Mike/I-6962-2012; Rocha Neves Couto Maia, Filipe/C-3146-2014; Barty, Anton/K-5137-2014; OI van der Spoel, David/0000-0002-7659-8526; Chapman, Henry/0000-0002-4655-1743; Timneanu, Nicusor/0000-0001-7328-0400; Bogan, Mike/0000-0001-9318-3333; Rocha Neves Couto Maia, Filipe/0000-0002-2141-438X; Barty, Anton/0000-0003-4751-2727; Treusch, Rolf/0000-0001-8479-8862 NR 27 TC 570 Z9 574 U1 24 U2 164 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD DEC PY 2006 VL 2 IS 12 BP 839 EP 843 DI 10.1038/nphys461 PG 5 WC Physics, Multidisciplinary SC Physics GA 111TP UT WOS:000242478000021 ER PT J AU Gunter, KK Aschner, M Miller, LM Eliseev, R Salter, J Anderson, K Gunter, TE AF Gunter, Karlene K. Aschner, Michael Miller, Lisa M. Eliseev, Roman Salter, Jason Anderson, Katie Gunter, Thomas E. TI Determining the oxidation states of manganese in NT2 cells and cultured astrocytes SO NEUROBIOLOGY OF AGING LA English DT Article DE Mn oxidation states; Mn toxicity; XANES spectroscopy; NT2 cells; astrocytes ID BLOOD-BRAIN-BARRIER; RAY ABSORPTION-EDGE; OXYGEN-EVOLVING COMPLEX; PHOTOSYNTHETIC APPARATUS; MAGNETIC-RESONANCE; MITOCHONDRIA; TRANSPORT; SPECTROSCOPY; ION; CA2 AB Excessive brain manganese (Mn) can produce a syndrome called "manganism", which correlates with loss of striatal dopamine and cell death in the striatum and globus pallidus. The prevalent hypothesis for the cause of this syndrome has been oxidation of cell components by the strong oxidizing agent, Mn(3+), either formed by oxidation of intracellular Mn(2+) or transported into the cell as Mn3+. We have recently used X-ray absorption near edge structure spectroscopy (XANES) to determine the oxidation states of manganese complexes in brain and liver mitochondria and in nerve growth factor (NGF)-induced and non-induced PC 12 cells. No evidence was found for stabilization or accumulation of Mn(3+) complexes because of oxidation of Mn(2+) by reactive oxygen species in these tissues. Here we extend these studies of manganese oxidation state to cells of brain origin, human neuroteratocarcinoma (NT2) cells and primary cultures of rat astrocytes. Again we find no evidence for stabilization or accumulation of any Mn(3+) complex derived from oxidation of Mn(2+) under a range of conditions. (c) 2005 Elsevier Inc. All rights reserved. C1 Univ Rochester, Sch Med & Dent, Dept Biochem & Biophys, Rochester, NY 14642 USA. Wake Forest Univ, Sch Med, Dept Physiol & Pharmacol, Winston Salem, NC 27157 USA. Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Gunter, TE (reprint author), Univ Rochester, Sch Med & Dent, Dept Biochem & Biophys, 575 Elmwood Ave, Rochester, NY 14642 USA. EM karlene_gunter@urmc.rochester.edu; michael.aschner@vanderbilt.edu; lmiller@bnl.gov; roman_eliseev@urmc.rochester.edu; jason_salter@urmc.rochester.edu; thomas_gunter@urmc.rochester.edu FU NIEHS NIH HHS [R01 ES10041] NR 46 TC 16 Z9 16 U1 0 U2 3 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0197-4580 J9 NEUROBIOL AGING JI Neurobiol. Aging PD DEC PY 2006 VL 27 IS 12 BP 1816 EP 1826 DI 10.1016/j.neurobiolaging.2005.10.003 PG 11 WC Geriatrics & Gerontology; Neurosciences SC Geriatrics & Gerontology; Neurosciences & Neurology GA 101LH UT WOS:000241741800010 PM 16290323 ER PT J AU Chesler, E AF Chesler, Elissa TI Rapid compilation of neurobiological networks from base-pair to behavior SO NEUROPSYCHOPHARMACOLOGY LA English DT Meeting Abstract CT 45th Annual Meeting of the American-College-of-Neuropsychopharmacolgy CY DEC 03-07, 2006 CL Hollywood, FL SP Amer Coll Neuropsychopharmacol C1 Oak Ridge Natl Lab, Oak Ridge, TN USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0893-133X J9 NEUROPSYCHOPHARMACOL JI Neuropsychopharmacology PD DEC PY 2006 VL 31 SU 1 BP S56 EP S56 PG 1 WC Neurosciences; Pharmacology & Pharmacy; Psychiatry SC Neurosciences & Neurology; Pharmacology & Pharmacy; Psychiatry GA 108BS UT WOS:000242215900168 ER PT J AU Goldstein, RZ Alia-Klein, N Tomasi, D Rajaram, S Henn, F Volkow, ND AF Goldstein, Rita Z. Alia-Klein, Nelly Tomasi, Dardo Rajaram, Suparna Henn, Fritz Volkow, Nora D. TI Testing the I-RISA (Impaired Response Inhibition and Salience Attribution) model in cocaine addiction using a newly developed drug stroop task for fMRI SO NEUROPSYCHOPHARMACOLOGY LA English DT Meeting Abstract CT 45th Annual Meeting of the American-College-of-Neuropsychopharmacolgy CY DEC 03-07, 2006 CL Hollywood, FL SP Amer Coll Neuropsychopharmacol C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RI Tomasi, Dardo/J-2127-2015 NR 0 TC 0 Z9 0 U1 0 U2 3 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0893-133X J9 NEUROPSYCHOPHARMACOL JI Neuropsychopharmacology PD DEC PY 2006 VL 31 SU 1 BP S202 EP S203 PG 2 WC Neurosciences; Pharmacology & Pharmacy; Psychiatry SC Neurosciences & Neurology; Pharmacology & Pharmacy; Psychiatry GA 108BS UT WOS:000242215900540 ER PT J AU Henn, FA Trost, H AF Henn, Fritz A. Trost, Hieke TI Genetically determined psychopathology across diagnostic categories: Evidence and implications SO NEUROPSYCHOPHARMACOLOGY LA English DT Meeting Abstract CT 45th Annual Meeting of the American-College-of-Neuropsychopharmacolgy CY DEC 03-07, 2006 CL Hollywood, FL SP Amer Coll Neuropsychopharmacol C1 Brookhaven Natl Lab, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0893-133X J9 NEUROPSYCHOPHARMACOL JI Neuropsychopharmacology PD DEC PY 2006 VL 31 SU 1 BP S20 EP S20 PG 1 WC Neurosciences; Pharmacology & Pharmacy; Psychiatry SC Neurosciences & Neurology; Pharmacology & Pharmacy; Psychiatry GA 108BS UT WOS:000242215900062 ER PT J AU Schiffer, WK Lee, DE Carrion, J Ferrieri, R Fowler, JS Dewey, SL AF Schiffer, Wynne K. Lee, Dianne E. Carrion, Joseph Ferrieri, Rich Fowler, Joanna S. Dewey, Stephen L. TI Neuroimaging in animal models of inhalant abuse SO NEUROPSYCHOPHARMACOLOGY LA English DT Meeting Abstract CT 45th Annual Meeting of the American-College-of-Neuropsychopharmacolgy CY DEC 03-07, 2006 CL Hollywood, FL SP Amer Coll Neuropsychopharmacol C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0893-133X J9 NEUROPSYCHOPHARMACOL JI Neuropsychopharmacology PD DEC PY 2006 VL 31 SU 1 BP S62 EP S62 PG 1 WC Neurosciences; Pharmacology & Pharmacy; Psychiatry SC Neurosciences & Neurology; Pharmacology & Pharmacy; Psychiatry GA 108BS UT WOS:000242215900185 ER PT J AU Wang, GJ Volkow, ND Telang, F Jayne, M Ma, Y Wong, C Thanos, P Geliebter, A Fowler, JS AF Wang, Gene-Jack Volkow, Nora D. Telang, Frank Jayne, Millard Ma, Yeming Wong, Christopher Thanos, Panayotis Geliebter, Allan Fowler, Joanna S. TI Cognitive inhibition suppresses brain metabolic response to food presemtation SO NEUROPSYCHOPHARMACOLOGY LA English DT Meeting Abstract CT 45th Annual Meeting of the American-College-of-Neuropsychopharmacolgy CY DEC 03-07, 2006 CL Hollywood, FL SP Amer Coll Neuropsychopharmacol C1 Brookhaven Natl Lab, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0893-133X J9 NEUROPSYCHOPHARMACOL JI Neuropsychopharmacology PD DEC PY 2006 VL 31 SU 1 BP S88 EP S88 PG 1 WC Neurosciences; Pharmacology & Pharmacy; Psychiatry SC Neurosciences & Neurology; Pharmacology & Pharmacy; Psychiatry GA 108BS UT WOS:000242215900251 ER PT J AU Jones, WC Ade, PAR Bock, JJ Bond, JR Borrill, J Boscaleri, A Cabella, P Contaldi, CR Crill, BP de Bernardis, P De Gasperis, G de Oliveira-Costa, A De Troia, G Di Stefano, G Hivon, E Jaffe, AH Kisner, TS Lange, AE MacTavish, CJ Masi, S Mauskopf, PD Melchiorri, A Montroy, TE Natoli, P Netterfield, CB Pascale, E Piacentini, F Pogosyan, D Polenta, G Prunet, S Ricciardi, S Romeo, G Ruhl, JE Santini, P Tegmark, M Veneziani, M Vittorio, N AF Jones, W. C. Ade, P. A. R. Bock, J. J. Bond, J. R. Borrill, J. Boscaleri, A. Cabella, P. Contaldi, C. R. Crill, B. P. de Bernardis, P. De Gasperis, G. de Oliveira-Costa, A. De Troia, G. Di Stefano, G. Hivon, E. Jaffe, A. H. Kisner, T. S. Lange, A. E. MacTavish, C. J. Masi, S. Mauskopf, P. D. Melchiorri, A. Montroy, T. E. Natoli, P. Netterfield, C. B. Pascale, E. Piacentini, F. Pogosyan, D. Polenta, G. Prunet, S. Ricciardi, S. Romeo, G. Ruhl, J. E. Santini, P. Tegmark, M. Veneziani, M. Vittorio, N. TI Observations of the temperature and polarization anisotropies with BOOMERANG 2003 SO NEW ASTRONOMY REVIEWS LA English DT Article; Proceedings Paper CT Workshop on Fundamental Physics with Cosmic Microwave Background Radiation CY MAR 23-25, 2006 CL Arnold & Nable Beckman Ctr, Natl Acad Sci & Engn, Irvine, CA HO Arnold & Nable Beckman Ctr, Natl Acad Sci & Engn DE cosmology; observations; cosmic microwave background; polarization ID ANGULAR POWER SPECTRUM; MICROWAVE; FLIGHT; MAPS AB The BOOMERANG experiment completed its final long duration balloon (LDB) flight over Antarctica in January 2003. The focal plane was upgraded to accommodate four sets of 145 GHz polarization sensitive bolometers (PSBs), identical to those to be flown on the Planck HFI instrument. Approximately, 195 hours of science observations were obtained during this flight, including 75 hours distributed over 1.84% of the sky and an additional 120 hours concentrated on a region covering 0.22% of the sky. We derive the angular power spectra of the cosmic microwave background (emu) temperature and polarization anisotropies from these data. The temperature anisotropies are detected with high signal to noise on angular scales ranging from several degrees to similar to 10 arcminutes. The curl-free (EE) component is detected at similar to 4.8 sigma, and a two-sigma upper limit on the curl (BB) component of 8.6 mu K-2 is obtained on scales corresponding to similar to 0.5 degrees. Both the temperature and polarization anisotropies are found to be consistent with a concordance Lambda CDM cosmology that is seeded by adiabatic density perturbations. In addition to the CMB observations, BOOMERANG03 surveyed a similar to 300 square degree region centered on the Galactic plane. These observations represent the first light for polarization sensitive bolometers, which are currently operational in two South-Pole based polarimeters, as well as Planck HFI, at frequencies ranging from 100 to 350 GHz (3 mm to 850 pm). (c) 2006 Elsevier B.V. All rights reserved. C1 CALTECH, Dept Phys, Pasadena, CA 91125 USA. Univ Cardiff Wales, Sch Phys & Astron, Cardiff, Wales. CALTECH, Jet Prop Lab, Pasadena, CA USA. Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 1A1, Canada. LBNL, Computat Res Div, Berkeley, CA USA. Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. CNR, IFAC, Florence, Italy. Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. Univ London Imperial Coll Sci & Technol, Theoret Phys Grp, London, England. CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. MIT, Dept Phys, Cambridge, MA 02139 USA. Inst Nazl Geofis & Vulcanol, Rome, Italy. Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. Univ Toronto, Dept Phys, Toronto, ON, Canada. Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. Ist Nazl Fis Nucl, Sez Roma 2, Rome, Italy. Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. Univ Alberta, Dept Phys, Edmonton, AB, Canada. Inst Astrophys, F-75014 Paris, France. RP Jones, WC (reprint author), CALTECH, Dept Phys, Pasadena, CA 91125 USA. EM wcj@astro.caltech.edu RI Jaffe, Andrew/D-3526-2009; de Gasperis, Giancarlo/C-8534-2012; OI Piacentini, Francesco/0000-0002-5444-9327; Hivon, Eric/0000-0003-1880-2733; de Gasperis, Giancarlo/0000-0003-2899-2171; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; ROMEO, Giovanni/0000-0002-5535-7803; Polenta, Gianluca/0000-0003-4067-9196; Ricciardi, Sara/0000-0002-3807-4043; Santini, Paola/0000-0002-9334-8705 NR 14 TC 6 Z9 6 U1 2 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1387-6473 J9 NEW ASTRON REV JI New Astron. Rev. PD DEC PY 2006 VL 50 IS 11-12 BP 945 EP 950 DI 10.1016/j.newar.2006.09.014 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 122PW UT WOS:000243239900018 ER PT J AU Dobbs, M Halverson, NW Ade, PAR Basu, K Beelen, A Bertoldi, F Cohalan, C Cho, HM Gusten, R Holzapfel, WL Kermish, Z Kneissl, R Kovacs, A Kreysa, E Lanting, TM Lee, AT Lueker, M Mehl, J Menten, KM Muders, D Nord, M Plagge, T Richards, PL Schilke, P Schwan, D Spieler, H Weiss, A White, M AF Dobbs, M. Halverson, N. W. Ade, P. A. R. Basu, K. Beelen, A. Bertoldi, F. Cohalan, C. Cho, H. M. Guesten, R. Holzapfel, W. L. Kermish, Z. Kneissl, R. Kovacs, A. Kreysa, E. Lanting, T. M. Lee, A. T. Lueker, M. Mehl, J. Menten, K. M. Muders, D. Nord, M. Plagge, T. Richards, P. L. Schilke, P. Schwan, D. Spieler, H. Weiss, A. White, M. TI APEX-SZ first light and instrument status SO NEW ASTRONOMY REVIEWS LA English DT Article; Proceedings Paper CT Workshop on Fundamental Physics with Cosmic Microwave Background Radiation CY MAR 23-25, 2006 CL Arnold & Nable Beckman Ctr, Natl Acad Sci & Engn, Irvine, CA HO Arnold & Nable Beckman Ctr, Natl Acad Sci & Engn DE cosmology; observations; galaxies; clusters ID FLUCTUATIONS; TELESCOPE AB The APEX-sz instrument is designed for the discovery and study of galaxy clusters at mm-wavelengths using the Sunyaev Zel'dovich effect. The receiver consists of 320 superconducting transition edge sensor (TES) bolometers cooled to 250 mK with the combination of a three stage He sorption fridge and mechanical pulse tube cooler. The detectors are instrumented with a frequency domain multiplexing readout system. The receiver is mounted on the 12 m APEX telescope located at 5100 m on the Atacama plateau in Chile. For the first light engineering deployment of December 2005, the receiver was configured with a 55 element wedge of the bolometers and operating in the 150 GHz atmospheric window. During the engineering run we achieved significant milestones in our instrumentation development efforts, including celestial observations with a monolithically fabricated TES bolometer array cooled with a mechanical cooler and successful implementation of a SQUID-based MHz AC-biased readout. These technology demonstrations point the way toward future large TES bolometer array instruments. Here we describe the results of this deployment and future plans for the APEX-sz instrument. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Colorado, Boulder, CO 80309 USA. Univ Bonn, Argelander Inst Astron, D-5300 Bonn, Germany. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Cardiff Wales, Cardiff, Wales. Lawrence Berkeley Natl Lab, Berkeley, CA USA. Max Planck Inst Radioastron, D-5300 Bonn, Germany. McGill Univ, Montreal, PQ, Canada. RP Halverson, NW (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM Nils.Halverson@Colorado.edu RI Holzapfel, William/I-4836-2015; White, Martin/I-3880-2015; Kovacs, Attila/C-1171-2010 OI White, Martin/0000-0001-9912-5070; Kovacs, Attila/0000-0001-8991-9088 NR 16 TC 43 Z9 43 U1 0 U2 1 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1387-6473 J9 NEW ASTRON REV JI New Astron. Rev. PD DEC PY 2006 VL 50 IS 11-12 BP 960 EP 968 DI 10.1016/j.newar.2006.09.029 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 122PW UT WOS:000243239900020 ER PT J AU Timbie, PT Tucker, GS Ade, PAR Ali, S Bierman, E Bunn, EF Calderon, C Gault, AC Hyland, PO Keating, BG Kim, J Korotkov, A Malu, SS Mauskopf, P Murphy, JA O'Sullivan, C Piccirillo, L Wandelt, BD AF Timbie, P. T. Tucker, G. S. Ade, P. A. R. Ali, S. Bierman, E. Bunn, E. F. Calderon, C. Gault, A. C. Hyland, P. O. Keating, B. G. Kim, J. Korotkov, A. Malu, S. S. Mauskopf, P. Murphy, J. A. O'Sullivan, C. Piccirillo, L. Wandelt, B. D. TI The Einstein polarization interferometer for cosmology (EPIC) and the millimeter-wave bolometric interferometer (MBI) SO NEW ASTRONOMY REVIEWS LA English DT Article; Proceedings Paper CT Workshop on Fundamental Physics with Cosmic Microwave Background Radiation CY MAR 23-25, 2006 CL Arnold & Nable Beckman Ctr, Natl Acad Sci & Engn, Irvine, CA HO Arnold & Nable Beckman Ctr, Natl Acad Sci & Engn DE Einstein inflation probe; cosmic microwave background; polarization; interferometry ID ANGULAR SCALE INTERFEROMETER; MICROWAVE BACKGROUND OBSERVATIONS; INSTRUMENTAL POLARIZATION; SUNYAEV-ZELDOVICH; POWER SPECTRUM; ANISOTROPY; LIMITS; TELESCOPE; RADIATION; IMAGER AB We provide an overview of a mission concept study underway for the Einstein Inflation Probe (EIP). Our study investigates the advantages and tradeoffs of using an interferometer (EPIC) for the mission. We also report on the status of the millimeter-wave bolometric interferometer (MBI), a ground-based pathfinder optimized for degree-scale CMB polarization measurements at 90 GHz. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. Brown Univ, Dept Phys, Providence, RI 02912 USA. Univ Cardiff Wales, Dept Phys & Astron, Cardiff CF24 3YB, Wales. LLNL, Adv Detector Grp, Livermore, CA 94550 USA. Univ Calif San Diego, Dept Phys & Astron, La Jolla, CA 92093 USA. Univ Richmond, Dept Phys, Richmond, VA 23173 USA. Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. Univ Illinois, Dept Astron, Urbana, IL 61801 USA. Univ Illinois, Dept Phys, Urbana, IL 61801 USA. RP Timbie, PT (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. EM pttimbie@wisc.edu OI WANDELT, Benjamin/0000-0002-5854-8269 NR 41 TC 17 Z9 17 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1387-6473 J9 NEW ASTRON REV JI New Astron. Rev. PD DEC PY 2006 VL 50 IS 11-12 BP 999 EP 1008 DI 10.1016/j.newar.2006.09.031 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 122PW UT WOS:000243239900025 ER PT J AU Melchiorri, A Dodelson, S Serra, P Slosar, A AF Melchiorri, Alessandro Dodelson, Scott Serra, Paolo Slosar, Anze TI New constraints on neutrino masses from cosmology SO NEW ASTRONOMY REVIEWS LA English DT Article; Proceedings Paper CT Workshop on Fundamental Physics with Cosmic Microwave Background Radiation CY MAR 23-25, 2006 CL Arnold & Nable Beckman Ctr, Natl Acad Sci & Engn, Irvine, CA HO Arnold & Nable Beckman Ctr, Natl Acad Sci & Engn DE cosmology; theory; cosmic microwave background; neutrinos ID DIGITAL SKY SURVEY; GRAN-SASSO 1990-2003; DOUBLE-BETA DECAY; LY-ALPHA FOREST; POWER-SPECTRUM; OSCILLATIONS; GALAXIES; PHYSICS; GE-76 AB By combining data from cosmic microwave background (CMB) experiments (including the recent WMAP third year results), large scale structure (LSS) and Lyman-alpha forest observations, we derive upper limits on the sum of neutrino masses of Sigma m(v) < 0.17 eV at 95% c.l. We then constrain the hypothesis of a fourth, sterile, massive neutrino. For the third massless +1 massive neutrino case we bound the mass of the sterile neutrino to m(s) < 0.26 eV at 95% c.l. These results exclude at high significance the sterile neutrino hypothesis as an explanation of the LSND anomaly. We then generalize the analysis to account for active neutrino masses which tightens the limit to m(s) < 0.23 eV and the possibility that the sterile abundance is not thermal. In the latter case, the constraints in the (mass, density) plane are non-trivial. For a mass of > 1 eV or < 0.05 eV the cosmological energy density in sterile neutrinos is always constrained to be omega(nu) < 0.003 at 95% c.l. However, for a sterile neutrino mass of similar to 0.25 eV, omega(nu) can be as large as 0.01. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. Univ Roma La Sapienza, Sez INFN, I-00185 Rome, Italy. Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. RP Melchiorri, A (reprint author), Univ Roma La Sapienza, Dept Phys, Ple Aldo Moro 5, I-00185 Rome, Italy. EM alessandro.melchiorri@roma1.infn.it RI Serra, Paolo/G-9678-2014; OI Serra, Paolo/0000-0002-7609-3931; Melchiorri, Alessandro/0000-0001-5326-6003 NR 40 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1387-6473 EI 1872-9630 J9 NEW ASTRON REV JI New Astron. Rev. PD DEC PY 2006 VL 50 IS 11-12 BP 1020 EP 1024 DI 10.1016/j.newar.2006.09.020 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 122PW UT WOS:000243239900028 ER PT J AU Chadwick, MB Oblozinsky, P Herman, M Greene, NM McKnight, RD Smith, DL Young, PG MacFarlane, RE Hale, GM Frankle, SC Kahler, AC Kawano, T Little, RC Madland, DG Moller, P Mosteller, RD Page, PR Talou, P Trellue, H White, MC Wilson, WB Arcilla, R Dunford, CL Mughabghab, SF Pritychenko, B Rochman, D Sonzogni, AA Lubitz, CR Trumbull, TH Weinman, JP Brown, DA Cullen, DE Heinrichs, DP McNabb, DP Derrien, H Dunn, ME Larson, NM Leal, LC Carlson, AD Block, RC Briggs, JB Cheng, ET Huria, HC Zerkle, ML Kozier, KS Courcelle, A Pronyaev, V van der Marck, SC AF Chadwick, M. B. Oblozinsky, P. Herman, M. Greene, N. M. McKnight, R. D. Smith, D. L. Young, P. G. MacFarlane, R. E. Hale, G. M. Frankle, S. C. Kahler, A. C. Kawano, T. Little, R. C. Madland, D. G. Moller, P. Mosteller, R. D. Page, P. R. Talou, P. Trellue, H. White, M. C. Wilson, W. B. Arcilla, R. Dunford, C. L. Mughabghab, S. F. Pritychenko, B. Rochman, D. Sonzogni, A. A. Lubitz, C. R. Trumbull, T. H. Weinman, J. P. Brown, D. A. Cullen, D. E. Heinrichs, D. P. McNabb, D. P. Derrien, H. Dunn, M. E. Larson, N. M. Leal, L. C. Carlson, A. D. Block, R. C. Briggs, J. B. Cheng, E. T. Huria, H. C. Zerkle, M. L. Kozier, K. S. Courcelle, A. Pronyaev, V. van der Marck, S. C. TI ENDF/B-VII.0: Next generation evaluated nuclear data library for nuclear science and technology SO NUCLEAR DATA SHEETS LA English DT Review ID PHOTONEUTRON CROSS-SECTIONS; DELAYED NEUTRON FRACTION; CONTINUUM ANGULAR-DISTRIBUTIONS; PRECOMPOUND DECAY MODEL; EMISSION PROBABILITIES; PHOTONUCLEAR PHYSICS; RADIATION TRANSPORT; MULTISTEP-COMPOUND; STATISTICAL-MODEL; ENERGY-DEPENDENCE AB We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VIL0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes, based on experimental data and theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th; Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, Li-6, B-10, An and for U-235,U-238 fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC): (3) Improved thermal neutron scattering:, (4) An extensive set of neutron cross sections on fission products developed through a WPEG collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron-and proton-induced evaluations up to 150 MeV: (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra:, (9) New radioactive decay data:, (10) New methods for uncertainties and covariances, together with covariance evaluations for some sample cases; and (11) New actinide fission energy deposition. The paper provides an overview of this library; consisting of 14 sublibraries in the same ENDF-6 format as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The Ion-standing underprediction of low enriched uranium thermal assemblies is removed; (b) The U-238 and Pb-208 0 U and Ph reflector biases in fast systems are largely removed; (c) ENDF/B-VI.8 good agreement for simulations of thermal high-enriched uranium assemblies is preserved; (d) The underprediction of fast criticality of U-233,U-235 and Pu-239 assemblies is removed; and (e) The intermediate spectrum critical assemblies are predicted more accurately. We anticipate that the new library will play an important role in nuclear technology applications, including transport simulations supporting national security, nonproliferation, advanced reactor and fuel cycle concepts, criticality safety, fusion, medicine, space applications, nuclear astrophysics, and nuclear physics facility design. The ENDF/B-VII.0 library is archived at the National Nuclear Data Center, BNL, and can be retrieved from www.nndc.bnl.gov. C1 Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Knolls Atom Power Lab, Schenectady, NY 12301 USA. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. Rensselaer Polytech Inst, Gaerttner LINAC Lab, Troy, NY 12180 USA. Idaho Natl Lab, Idaho Falls, ID 83415 USA. TSI Res Corp, Solana Beach, CA 92067 USA. Westinghouse Elect Corp, Monroeville, PA 15146 USA. Bettis Atom Power Lab, W Mifflin, PA 15122 USA. Atom Energy Canada Ltd, Chalk River, ON K0J 1J0, Canada. CEN Cadarache, F-13108 St Paul Les Durance, France. Inst Phys & Power Engn, Obninsk 249020, Russia. Nucl Res & Consultancy Grp, NL-1755 ZG Petten, Netherlands. RP Oblozinsky, P (reprint author), Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. EM oblozinsky@bnl.gov RI Page, Philip/L-1885-2015; OI Page, Philip/0000-0002-2201-6703; Rochman, Dimitri/0000-0002-5089-7034; White, Morgan/0000-0003-3876-421X; Moller, Peter/0000-0002-5848-3565 NR 294 TC 1060 Z9 1089 U1 31 U2 138 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD DEC PY 2006 VL 107 IS 12 BP 2931 EP 3059 DI 10.1016/j.nds.2006.11.001 PG 129 WC Physics, Nuclear SC Physics GA 122QE UT WOS:000243240700001 ER PT J AU Granetz, R Whyte, DG Izzo, VA Biewer, T Reinke, ML Terry, J Bader, A Bakhtiari, M Jernigan, T Wurden, G AF Granetz, R. Whyte, D. G. Izzo, V. A. Biewer, T. Reinke, M. L. Terry, J. Bader, A. Bakhtiari, M. Jernigan, T. Wurden, G. TI Gas jet disruption mitigation studies on Alcator C-Mod SO NUCLEAR FUSION LA English DT Article ID DIII-D; IMPURITY AB Damaging effects of disruptions are a major concern for Alcator C-Mod, ITER and future tokamak reactors. High-pressure noble gas jet injection is a mitigation technique which potentially satisfies the operational requirements of fast response time and reliability, while still being benign to subsequent discharges. Disruption mitigation experiments using an optimized gas jet injection system are being carried out on Alcator C-Mod to study the physics of gas jet penetration into high pressure plasmas, as well as the ability of the gas jet impurities to convert plasma energy into radiation on timescales consistent with C-Mod's fast quench times, and to reduce halo currents given C-Mod's high-current density. The dependence of impurity penetration and effectiveness on noble gas species (He, Ne, Ar, Kr) is also being studied. It is found that the high-pressure neutral gas jet does not penetrate deeply into the C-Mod plasma, and yet prompt core thermal quenches are observed on all gas jet shots. 3D MHD modelling of the disruption physics with NIMROD shows that edge cooling of the plasma triggers fast growing tearing modes which rapidly produce a stochastic region in the core of the plasma and loss of thermal energy. This may explain the apparent effectiveness of the gas jet in C-Mod despite its limited penetration. The higher-Z gases (Ne, Ar, Kr) also proved effective at reducing halo currents and decreasing thermal deposition to the divertor surfaces. In addition, noble gas jet injection proved to be benign for plasma operation with C-Mod's metal (Mo) wall, actually improving the reliability of the startup in the following discharge. C1 MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. Univ Wisconsin, Dept Emergency Phys, Madison, WI 53706 USA. Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Granetz, R (reprint author), MIT, Plasma Sci & Fus Ctr, 175 Albany St, Cambridge, MA 02139 USA. EM granetz@mit.edu RI Wurden, Glen/A-1921-2017 OI Wurden, Glen/0000-0003-2991-1484 NR 12 TC 37 Z9 37 U1 0 U2 2 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD DEC PY 2006 VL 46 IS 12 BP 1001 EP 1008 DI 10.1088/0029-5515/46/12/003 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 123MZ UT WOS:000243301300003 ER PT J AU Snipes, JA Gorelenkov, NN Sears, JA AF Snipes, J. A. Gorelenkov, N. N. Sears, J. A. TI A comparison of measured and calculated toroidal Alfven eigenmode damping rates in Alcator C-Mod SO NUCLEAR FUSION LA English DT Article ID TOKAMAK PLASMAS; DRIVEN; STABILITY; EXCITATION; JET; PARTICLES; WAVES; TFTR AB Measured damping rates of stable toroidal Alfven eigenmodes (TAEs) have been compared with damping rates calculated with the NOVA-K code for a number of experimental conditions on Alcator C-Mod to test the NOVA-K damping model. Very low amplitude ((B) over tilde B-theta(theta) similar to 10(-7) at the wall) stable TAEs are excited in Ohmic plasmas with a pair of active MHD antennas inside C-Mod. By sweeping the excited frequency of the antennas through the expected TAE frequency, the frequency width of a mode resonance can be measured with poloidal field pick-up coils on outboard limiters to determine the damping rate of that mode. The calculated equilibrium and main plasma parameters at the time of the resonance are input into the NOVA-K code to then calculate the expected damping rate for the measured toroidal mode number and compare with the experimental value. The calculations include continuum damping, Landau damping on both the electrons and the background and impurity ions and collisional damping on the electrons. Comparisons have been made for inner wall limited and diverted cases over a range of ITER-relevant moderate toroidal mode numbers (4 <= vertical bar n vertical bar <= 9). Good agreement between the experiment and theoretical calculations can be obtained with reasonable q profiles for the plasma conditions in which perturbative NOVA models are applicable, but the results are found to depend very sensitively on the assumed q profile. C1 MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Snipes, JA (reprint author), MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. EM snipes@psfc.mit.edu NR 33 TC 12 Z9 12 U1 0 U2 2 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD DEC PY 2006 VL 46 IS 12 BP 1036 EP 1046 DI 10.1088/0029-5515/46/12/006 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 123MZ UT WOS:000243301300006 ER PT J AU Kopp, S Bishai, M Dierckxsens, M Diwan, M Erwin, AR Harris, DA Indurthy, D Keisler, R Kostin, M Lang, M MacDonald, J Marchionni, A Mendoza, S Morfin, J Naples, D Northacker, D Pavlovic, Z Phelps, L Ping, H Proga, M Vellissaris, C Viren, B Zwaska, R AF Kopp, S. Bishai, M. Dierckxsens, M. Diwan, M. Erwin, A. R. Harris, D. A. Indurthy, D. Keisler, R. Kostin, M. Lang, M. MacDonald, J. Marchionni, A. Mendoza, S. Morfin, J. Naples, D. Northacker, D. Pavlovic, Z. Phelps, L. Ping, H. Proga, M. Vellissaris, C. Viren, B. Zwaska, R. TI Secondary beam monitors for the NuMI facility at FNAL SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE neutrino beam; neutrino; pion; muon detectors; ionization chambers; particle sources and targets; beam characteristics ID IONIZATION CHAMBERS; NEUTRINO AB The Neutrinos at the Main Injector (NuMI) facility is a conventional neutrino beam which produces muon neutrinos by focusing a beam of mesons into a long evacuated decay volume. We have built four arrays of ionization chambers to monitor the position and intensity of the hadron and muon beams associated with neutrino production at locations downstream of the decay volume. This article describes the chambers' construction, calibration, and commissioning in the beam. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Texas, Dept Phys, Austin, TX 78712 USA. Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. Univ Pittsburgh, Dept Phys, Pittsburgh, PA 15260 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Brookhaven Natl Lab, Long Isl City, NY USA. RP Kopp, S (reprint author), Univ Texas, Dept Phys, Austin, TX 78712 USA. EM kopp@mail.bep.utexas.edu OI Marchionni, Alberto/0000-0003-3039-9537 NR 29 TC 9 Z9 9 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 1 PY 2006 VL 568 IS 2 BP 503 EP 519 DI 10.1016/j.nima.2006.07.062 PG 17 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 116SP UT WOS:000242822900003 ER PT J AU Zwaska, R Bishai, M Childress, S Drake, G Escobar, C Gouffon, P Harris, DA Hylen, J Indurthy, D Koizumi, G Kopp, S Lucas, P Marchionni, A Para, A Pavlovic, Z Smart, W Talaga, R Viren, B AF Zwaska, R. Bishai, M. Childress, S. Drake, G. Escobar, C. Gouffon, P. Harris, D. A. Hylen, J. Indurthy, D. Koizumi, G. Kopp, S. Lucas, P. Marchionni, A. Para, A. Pavlovic, Z. Smart, W. Talaga, R. Viren, B. TI Beam-based alignment of the NuMI target station components at FNAL SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE neutrino detectors; particle sources and targets; beam focusing and bending magnets; beam monitors AB The Neutrinos at the Main Injector (NuMI) facility is a conventional horn-focused neutrino beam which produces muon neutrinos from a beam of mesons directed into a long evacuated decay volume. The relative alignment of the primary proton beam, target, and focusing horns affects the neutrino energy spectrum delivered to experiments. This paper describes a check of the alignment of these components using the proton beam. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Texas, Dept Phys, Austin, TX 78712 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Brookhaven Natl Lab, Long Isl City, NY USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. Univ Estadual Campinas, Sao Paulo, Brazil. RP Kopp, S (reprint author), Univ Texas, Dept Phys, Austin, TX 78712 USA. EM kopp@mail.hep.utexas.edu RI Gouffon, Philippe/I-4549-2012; Inst. of Physics, Gleb Wataghin/A-9780-2017; OI Gouffon, Philippe/0000-0001-7511-4115; Marchionni, Alberto/0000-0003-3039-9537 NR 19 TC 9 Z9 9 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 1 PY 2006 VL 568 IS 2 BP 548 EP 560 DI 10.1016/j.nima.2006.08.031 PG 13 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 116SP UT WOS:000242822900008 ER PT J AU Aharrouche, M Colas, J Di Ciaccio, L El Kacimi, M Gaumer, O Gouanere, M Goujdami, D Lafaye, R Laplace, S Le Maner, C Neukermans, L Perrodo, P Poggioli, L Prieur, D Przysieznlak, H Sauvage, G Tarrade, F Wingerter-Seez, I Zitoun, R Lanni, F Ma, H Rajagopalan, S Rescia, S Takai, H Belymam, A Benchekroun, D Hakimi, M Hoummada, A Barberio, E Gao, YS Lu, L Stroynowski, R Aleksa, M Hansen, JB Carli, T Efthymiopoulos, I Fassnacht, P Follin, F Gianotti, F Hervas, L Lampl, W Collot, J Hostachy, JY Ledroit-Guillon, F Martin, P Ohlsson-Malek, F Saboumazrag, S Leltchouk, M Parsons, JA Seman, M Simion, S Banfi, D Carminati, L Cavalli, D Costa, G Delmastro, M Fanti, M Mandelli, L Mazzanti, M Tartarelli, GF Bourdarios, C Fayard, L Fournier, D Graziani, G Hassani, S Iconomidou-Fayard, L Kado, M Lechowski, M Lelas, M Parrour, G Puzo, P Rousseau, D Sacco, R Serin, L Unal, G Zerwas, D Camard, A Lacour, D Laforge, B Nikolic-Audit, I Schwemling, P Ghazlane, H El Moursli, RC Fakhr-Eddine, AI Boonekamp, M Kerschen, N Mansoulie, B Meyer, P Schwindling, J Lund-Jensen, B Tayalati, Y AF Aharrouche, M. Colas, J. Di Ciaccio, L. El Kacimi, M. Gaumer, O. Gouanere, M. Goujdami, D. Lafaye, R. Laplace, S. Le Maner, C. Neukermans, L. Perrodo, P. Poggioli, L. Prieur, D. Przysieznlak, H. Sauvage, G. Tarrade, F. Wingerter-Seez, I. Zitoun, R. Lanni, F. Ma, H. Rajagopalan, S. Rescia, S. Takai, H. Belymam, A. Benchekroun, D. Hakimi, M. Hoummada, A. Barberio, E. Gao, Y. S. Lu, L. Stroynowski, R. Aleksa, M. Hansen, J. B. Carli, T. Efthymiopoulos, I. Fassnacht, P. Follin, F. Gianotti, F. Hervas, L. Lampl, W. Collot, J. Hostachy, J. Y. Ledroit-Guillon, F. Martin, P. Ohlsson-Malek, F. Saboumazrag, S. Leltchouk, M. Parsons, J. A. Seman, M. Simion, S. Banfi, D. Carminati, L. Cavalli, D. Costa, G. Delmastro, M. Fanti, M. Mandelli, L. Mazzanti, M. Tartarelli, G. F. Bourdarios, C. Fayard, L. Fournier, D. Graziani, G. Hassani, S. Iconomidou-Fayard, L. Kado, M. Lechowski, M. Lelas, M. Parrour, G. Puzo, P. Rousseau, D. Sacco, R. Serin, L. Unal, G. Zerwas, D. Camard, A. Lacour, D. Laforge, B. Nikolic-Audit, I. Schwemling, Ph. Ghazlane, H. El Moursli, R. C. Fakhr-Eddine, A. I. Boonekamp, M. Kerschen, N. Mansoulie, B. Meyer, P. Schwindling, J. Lund-Jensen, B. Tayalati, Y. TI Energy linearity and resolution of the ATLAS electromagnetic barrel calorimeter in an electron test-beam SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE calorimeters; particle physics AB A module of the ATLAS electromagnetic barrel liquid argon calorimeter was exposed to the CERN electron test-beam at the H8 beam line upgraded for precision momentum measurement. The available energies of the electron beam ranged from 10 to 245 GeV. The electron beam impinged at one point corresponding to a pseudo-rapidity of eta = 0.687 and an azimuthal angle of phi = 0.28 in the ATLAS coordinate system. A detailed study of several effects biasing the electron energy measurement allowed an energy reconstruction procedure to be developed that ensures a good linearity and a good resolution. Use is made of detailed Monte Carlo simulations based on GEANT4 which describe the longitudinal and transverse shower profiles as well as the energy distributions. For electron energies between 15 and 180 GeV the deviation of the measured incident electron energy over the beam energy is within 0.1%. The systematic uncertainty of the measurement is about 0.1% at low energies and negligible at high energies. The energy resolution is found to be about 10%. root E for the sampling term and about 0.2% for the local constant term. (c) 2006 Elsevier B.V. All rights reserved. C1 CERN, European Lab Particle Phys, CH-1211 Geneva 23, Switzerland. CNRS, LAPP, IN2P3, F-74941 Annecy Le Vieux, France. Brookhaven Natl Lab, Upton, NY 11973 USA. Fac Sci Ain Chock, Casablanca, Morocco. So Methodist Univ, Dallas, TX 75275 USA. Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, F-38026 Grenoble, France. Columbia Univ, Nevis Labs, Irvington, NY 10533 USA. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Paris 11, Lab Accelerateur Lineaire, CNRS, IN2P3, F-91898 Orsay, France. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Mohammed 5, Fac Sci, Rabat, Morocco. Ctr Natl Energie Sci & Tech Nucl, Rabat, Morocco. CEA Saclay, DAPNIA, Serv Phys Particules, F-91191 Gif Sur Yvette, France. Royal Inst Technol, Stockholm, Sweden. RP Carli, T (reprint author), CERN, European Lab Particle Phys, CH-1211 Geneva 23, Switzerland. EM Tancredi.Carli@cern.ch RI Rescia, Sergio/D-8604-2011; Takai, Helio/C-3301-2012; Delmastro, Marco/I-5599-2012; Tartarelli, Giuseppe Francesco/A-5629-2016 OI Rescia, Sergio/0000-0003-2411-8903; Takai, Helio/0000-0001-9253-8307; Delmastro, Marco/0000-0003-2992-3805; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X NR 23 TC 36 Z9 36 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 1 PY 2006 VL 568 IS 2 BP 601 EP 623 DI 10.1016/j.nima.2006.07.053 PG 23 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 116SP UT WOS:000242822900013 ER PT J AU Abdesselam, A Akimoto, T Allport, PP Alonso, J Anderson, B Andricek, L Anghinolfi, F Apsimon, RJ Barbier, G Barr, AJ Batchelor, LE Bates, RL Batley, JR Beck, GA Bell, PJ Belymam, A Bernabeu, J Bethke, S Bizzell, JP Bohm, J Brenner, R Brodbeck, TJ Broklova, Z Broz, J De Renstrom, PB Buttar, CM Butterworth, JM Carpentieri, C Carter, AA Carter, JR Charlton, DG Cheplakov, A Chesi, E Chilingarov, A Chouridou, S Chu, ML Cindro, V Ciocio, A Civera, JV Clark, A Coe, P Colijn, AP Cornelissen, T Cosgrove, DP Costa, MJ Dabrowski, W Dalmau, J Danielsen, KM Dawson, I Demirkoz, B Dervan, P Dolezal, Z Donega, M D'Onofrio, M Dorholt, O Dowell, JD Drasal, Z Duerdoth, IP Dwuznik, M Eckert, S Ekelof, T Eklund, L Escobar, C Fadeyev, V Feld, L Ferrari, P Ferrere, D Fiorini, L Fortin, R Foster, JM Fox, H Fraser, TJ Freestone, J French, R Fuster, J Gadomski, S Gallop, BJ Garcia, C Garcia-Navarro, JE Gibson, MD Gibson, S Gilchriese, MGD Godlewski, J Gonzalez-Sevilla, S Goodrick, MJ Gorisek, A Gornicki, E Greenall, A Grigson, C Grillo, AA Grosse-Knetter, J Haber, C Hara, K Hartjes, FG Hauff, D Hawes, BM Haywood, SJ Hessey, NP Hicheur, A Hill, JC Hollins, TI Holt, R Howell, DF Hughes, G Huse, T Ibbotson, M Ikegami, Y Issever, C Jackson, JN Jakobs, K Jarron, P Johansen, LG Jones, TJ Jones, TW de Jong, P Joos, D Jovanovic, P Kachiguine, S Kaplon, J Kato, Y Ketterer, C Kobayashi, H Kodys, P Koffeman, E Kohout, Z Kohriki, T Kondo, T Koperny, S Kramberger, G Kubik, P Kudlaty, J Kuwano, T Lacasta, C LaMarra, D Lane, JB Lee, SC Lester, CG Limper, M Lindsay, S Llatas, MC Loebinger, FK Lozano, M Ludwig, I Ludwig, J Lutz, G Lys, J Maassen, M Macina, D Macpherson, A MacWaters, C McMahon, SJ McMahon, TJ Magrath, CA Malecki, P Mandic, I Mangin-Brinet, M Marti-Garcia, S Martinez-Mckinney, GFM Matheson, JMC Matson, RM Meinhardt, J Mikulec, B Mikuz, M Minagawa, M Mistry, J Mitsou, V Modesto, P Moed, S Mohn, B Moorhead, G Morin, J Morris, J Morrissey, M Moser, HG Muijs, AJM Murray, WJ Nagai, K Nakamura, K Nakamura, Y Nakano, I Nichols, A Nicholson, R Nickerson, RB Nisius, R O'Shea, V Oye, OK Palmer, MJ Parker, MA Parzefall, U Pater, JR Peeters, SJM Pellegrini, G Pernegger, H Perrin, E Phillips, A Phillips, PW Poltorak, K Pospisil, S Postranecky, M Pritchard, T Rafi, JM Ratoff, PN Reznicek, P Richter, RH Robinson, D Roe, S Rosenbaum, F Rudge, A Runge, K Sadrozinski, HFW Sandaker, H Saxon, DH Schieck, J Sedlak, K Seiden, A Sengoku, H Sfyrla, A Shimma, S Smith, KM Smith, NA Snow, SW Solar, M Solberg, A Sopko, B Sospedra, L Spencer, E Stanecka, E Stapnes, S Stastny, J Stodulski, M Stugu, B Szczygiel, R Tanaka, R Tappern, G Taylor, G Teng, PK Terada, S Thompson, RJ Titov, M Toczek, B Tovey, DR Tricoli, A Turala, M Turner, PR Tyndel, M Ullan, M Unno, Y Van der Kraaij, E van Vulpens, I Viehhauser, G Villani, EG Vorobel, V Vos, M Wallny, R Warren, MRM Wastie, RL Weber, M Weidberg, AR Weilhammer, P Wells, PS Wilder, M Wilhelm, I Wilson, JA Wolter, M AF Abdesselam, A. Akimoto, T. Allport, P. P. Alonso, J. Anderson, B. Andricek, L. Anghinolfi, F. Apsimon, R. J. Barbier, G. Barr, A. J. Batchelor, L. E. Bates, R. L. Batley, J. R. Beck, G. A. Bell, P. J. Belymam, A. Bernabeu, J. Bethke, S. Bizzell, J. P. Bohm, J. Brenner, R. Brodbeck, T. J. Broklova, Z. Broz, J. De Renstrom, P. Bruckman Buttar, C. M. Butterworth, J. M. Carpentieri, C. Carter, A. A. Carter, J. R. Charlton, D. G. Cheplakov, A. Chesi, E. Chilingarov, A. Chouridou, S. Chu, M. L. Cindro, V. Ciocio, A. Civera, J. V. Clark, A. Coe, P. Colijn, A-P. Cornelissen, T. Cosgrove, D. P. Costa, M. J. Dabrowski, W. Dalmau, J. Danielsen, K. M. Dawson, I. Demirkoz, B. Dervan, P. Dolezal, Z. Donega, M. D'Onofrio, M. Dorholt, O. Dowell, J. D. Drasal, Z. Duerdoth, I. P. Dwuznik, M. Eckert, S. Ekelof, T. Eklund, L. Escobar, C. Fadeyev, V. Feld, L. Ferrari, P. Ferrere, D. Fiorini, L. Fortin, R. Foster, J. M. Fox, H. Fraser, T. J. Freestone, J. French, R. Fuster, J. Gadomski, S. Gallop, B. J. Garcia, C. Garcia-Navarro, J. E. Gibson, M. D. Gibson, S. Gilchriese, M. G. D. Godlewski, J. Gonzalez-Sevilla, S. Goodrick, M. J. Gorisek, A. Gornicki, E. Greenall, A. Grigson, C. Grillo, A. A. Grosse-Knetter, J. Haber, C. Hara, K. Hartjes, F. G. Hauff, D. Hawes, B. M. Haywood, S. J. Hessey, N. P. Hicheur, A. Hill, J. C. Hollins, T. I. Holt, R. Howell, D. F. Hughes, G. Huse, T. Ibbotson, M. Ikegami, Y. Issever, C. Jackson, J. N. Jakobs, K. Jarron, P. Johansen, L. G. Jones, T. J. Jones, T. W. de Jong, P. Joos, D. Jovanovic, P. Kachiguine, S. Kaplon, J. Kato, Y. Ketterer, C. Kobayashi, H. Kodys, P. Koffeman, E. Kohout, Z. Kohriki, T. Kondo, T. Koperny, S. Kramberger, G. Kubik, P. Kudlaty, J. Kuwano, T. Lacasta, C. LaMarra, D. Lane, J. B. Lee, S. -C. Lester, C. G. Limper, M. Lindsay, S. Llatas, M. C. Loebinger, F. K. Lozano, M. Ludwig, I. Ludwig, J. Lutz, G. Lys, J. Maassen, M. Macina, D. Macpherson, A. MacWaters, C. McMahon, S. J. McMahon, T. J. Magrath, C. A. Malecki, P. Mandic, I. Mangin-Brinet, M. Marti-Garcia, S. Martinez-Mckinney, G. F. M. Matheson, J. M. C. Matson, R. M. Meinhardt, J. Mikulec, B. Mikuz, M. Minagawa, M. Mistry, J. Mitsou, V. Modesto, P. Moed, S. Mohn, B. Moorhead, G. Morin, J. Morris, J. Morrissey, M. Moser, H-G. Muijs, A. J. M. Murray, W. J. Nagai, K. Nakamura, K. Nakamura, Y. Nakano, I. Nichols, A. Nicholson, R. Nickerson, R. B. Nisius, R. O'Shea, V. Oye, O. K. Palmer, M. J. Parker, M. A. Parzefall, U. Pater, J. R. Peeters, S. J. M. Pellegrini, G. Pernegger, H. Perrin, E. Phillips, A. Phillips, P. W. Poltorak, K. Pospisil, S. Postranecky, M. Pritchard, T. Rafi, J. M. Ratoff, P. N. Reznicek, P. Richter, R. H. Robinson, D. Roe, S. Rosenbaum, F. Rudge, A. Runge, K. Sadrozinski, H. F. W. Sandaker, H. Saxon, D. H. Schieck, J. Sedlak, K. Seiden, A. Sengoku, H. Sfyrla, A. Shimma, S. Smith, K. M. Smith, N. A. Snow, S. W. Solar, M. Solberg, A. Sopko, B. Sospedra, L. Spencer, E. Stanecka, E. Stapnes, S. Stastny, J. Stodulski, M. Stugu, B. Szczygiel, R. Tanaka, R. Tappern, G. Taylor, G. Teng, P. K. Terada, S. Thompson, R. J. Titov, M. Toczek, B. Tovey, D. R. Tricoli, A. Turala, M. Turner, P. R. Tyndel, M. Ullan, M. Unno, Y. Van der Kraaij, E. van Vulpens, I. Viehhauser, G. Villani, E. G. Vorobel, V. Vos, M. Wallny, R. Warren, M. R. M. Wastie, R. L. Weber, M. Weidberg, A. R. Weilhammer, P. Wells, P. S. Wilder, M. Wilhelm, I. Wilson, J. A. Wolter, M. TI The barrel modules of the ATLAS semiconductor tracker SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE ATLAS; SCT; silicon; microstrip; barrel; module; LHC ID SCT; DETECTORS; DESIGN AB This paper describes the silicon microstrip modules in the barrel section of the SemiConductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The module requirements, components and assembly techniques are given, as well as first results of the module performance on the fully assembled barrels that make up the detector being installed in the ATLAS experiment. (c) 2006 Elsevier B.V. All rights reserved. C1 CSIC, CNM, IMB, Barcelona, Spain. Univ Bergen, Dept Phys & Technol, N-5007 Bergen, Norway. Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. CERN, European Lab Particle Phys, CH-1211 Geneva 23, Switzerland. Inst Nucl Phys PAN, Krakow, Poland. AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. Univ Freiburg, Fak Phys, D-7800 Freiburg, Germany. CERN, DPNC, CH-1211 Geneva 4, Switzerland. Univ Glasgow, Dept Phys & Astron, Glasgow, Lanark, Scotland. Univ Ljubljana, Dept Phys, Ljubljana 61000, Slovenia. Univ Ljubljana, Jozef Stefan Inst, Ljubljana, Slovenia. High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. Univ Lancaster, Dept Phys & Astron, Lancaster, England. Lawrence Berkeley Natl Lab, Berkeley, CA USA. Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. Univ Melbourne, Parkville, Vic 3052, Australia. Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst Phys, D-80805 Munich, Germany. NIKHEF H, NL-1009 DB Amsterdam, Netherlands. Okayama Univ, Grad Sch Sci & Technol, Okayama 7008530, Japan. Dept Phys, N-0316 Oslo, Norway. Univ Oxford, Dept Phys, Oxford OX1 3RH, England. Charles Univ Prague, Fac Math & Phys, CZ-18000 Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. Czech Tech Univ, CZ-16636 Prague 6, Czech Republic. Queen Mary Univ London, Dept Phys, London E1 4NS, England. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. Acad Sinica, Inst Phys, Taipei, Taiwan. Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. UCL, Dept Phys & Astron, London WC1E 6BT, England. Uppsala Univ, Dept Nucl & Particle Phys, SE-75121 Uppsala, Sweden. Univ Valencia, CSIC, IFIC, Inst Fis Corpuscular, Valencia, Spain. RP Carter, JR (reprint author), CSIC, CNM, IMB, Barcelona, Spain. EM jrc1@hep.phy.cam.ac.uk RI Garcia, Jose /H-6339-2015; Ullan, Miguel/P-7392-2015; Lozano, Manuel/C-3445-2011; Demirkoz, Bilge/C-8179-2014; O'Shea, Val/G-1279-2010; Pellegrini, Giulio/F-4921-2011; Stastny, jan/H-2973-2014; CARPENTIERI, CARMELA/E-2137-2015; Moorhead, Gareth/B-6634-2009; Mitsou, Vasiliki/D-1967-2009; Szczygiel, Robert/B-5662-2011; Buttar, Craig/D-3706-2011; Marti-Garcia, Salvador/F-3085-2011; Wolter, Marcin/A-7412-2012; Eklund, Lars/C-7709-2012; Rafi, Joan Marc/D-5500-2012; Dawson, Ian/K-6090-2013; Bernabeu, Jose/H-6708-2015 OI Lozano, Manuel/0000-0001-5826-5544; Vos, Marcel/0000-0001-8474-5357; Lacasta, Carlos/0000-0002-2623-6252; O'Shea, Val/0000-0001-7183-1205; Pellegrini, Giulio/0000-0002-1606-3546; CARPENTIERI, CARMELA/0000-0002-2994-0317; Moorhead, Gareth/0000-0002-9299-9549; Mitsou, Vasiliki/0000-0002-1533-8886; Rafi, Joan Marc/0000-0003-4581-9477; Bernabeu, Jose/0000-0002-0296-9988 NR 33 TC 58 Z9 58 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 1 PY 2006 VL 568 IS 2 BP 642 EP 671 DI 10.1016/j.nima.2006.08.036 PG 30 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 116SP UT WOS:000242822900016 ER PT J AU Neal, JS Boatner, LA Giles, NC Halliburton, LE Derenzo, SE Bourret-Courchesne, ED AF Neal, J. S. Boatner, L. A. Giles, N. C. Halliburton, L. E. Derenzo, S. E. Bourret-Courchesne, E. D. TI Comparative investigation of the performance of ZnO-based scintillators for use as alpha-particle detectors SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE scintillators; semiconductors; near-band-edge emission ID TEMPERATURE-DEPENDENCE; NEUTRON GENERATOR; PHOTOLUMINESCENCE; LUMINESCENCE; GA; SYSTEM; CDS AB As part of a comprehensive investigation of the scintillation properties of zinc-oxide-based scintillators, four samples of gallium-doped zinc oxide (ZnO) powders-have been characterized by means of X-ray excitation, a-particle excitation, and temperature-dependent photolurninescence (PL). The ultimate goals of these studies are, first, to understand the scintillation mechanisms that are operative in various members of the ZnO family of scintillators, and, subsequently, to use this knowledge in order to improve the radiation-detection performance of ZnO. These samples have been considered for use in an alpha-detector for installation in a deuterium-tritium (D-T) neutron generator. All of the samples demonstrated principal decay time components on the order of 1 ns. PL measurements of the four powder samples did not unequivocally support any of the discussed models. Excitonic and shallow acceptor models, however, share a common starting point for future investigations. The Lawrence Berkeley National Laboratory (LBNL) 3518 sample was found to be the most promising candidate, in terms of fast light output, for replacing the Nuclear Enterprises Technology sample for use in a ZnO:Ga-based a-particle detector. While the nature of the luminescence center(s) or the energy transfer mechanisms actually responsible for scintillation are not yet clearly understood, ZnO:Ga remains a highly desirable candidate scintillator for use in an a-detector for installation in a D-T neutron generator and extended investigations of the fundamental mechanisms and scintillation parameters that are operative in ZnO:Ga scintillators are continuing. (c) 2006 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Neal, JS (reprint author), Oak Ridge Natl Lab, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. EM nealjs1@ornl.gov RI Boatner, Lynn/I-6428-2013; Neal, John/R-8203-2016 OI Boatner, Lynn/0000-0002-0235-7594; Neal, John/0000-0001-8337-5235 NR 20 TC 28 Z9 30 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 1 PY 2006 VL 568 IS 2 BP 803 EP 809 DI 10.1016/j.nima.2006.09.041 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 116SP UT WOS:000242822900035 ER PT J AU Bertou, X Allison, PS Bonifazi, C Bauleo, P Grunfeld, CM Aglietta, M Arneodo, F Barnhill, D Beatty, JJ Busca, NG Creusot, A Dornic, D Etchegoyen, A Filevitch, A Ghia, PL Lhenry-Yvon, I Medina, MC Moreno, E Nitz, D Ohnuki, T Ranchon, S Salazar, H Suomijarvi, T Supanitsky, D Tripathi, A Urban, M Villasenor, L AF Bertou, X. Allison, P. S. Bonifazi, C. Bauleo, P. Grunfeld, C. M. Aglietta, M. Arneodo, F. Barnhill, D. Beatty, J. J. Busca, N. G. Creusot, A. Dornic, D. Etchegoyen, A. Filevitch, A. Ghia, P. L. Lhenry-Yvon, I. Medina, M. C. Moreno, E. Nitz, D. Ohnuki, T. Ranchon, S. Salazar, H. Suomijarvi, T. Supanitsky, D. Tripathi, A. Urban, M. Villasenor, L. TI Calibration of the surface array of the Pierre Auger Observatory SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE ultra high-energy cosmic rays; water Cherenkov detectors; calibration; atmospheric muons ID CHERENKOV DETECTOR AB The Pierre Auger Observatory is designed to study cosmic rays of the highest energies (> 10(19) eV). The ground array of the Observatory will consist of 1600 water Cherenkov detectors deployed over 3000km(2). The remoteness and large number of detectors require a robust, automatic self-calibration procedure. It relies on the measurement of the average charge collected by a photomultiplier tube from the Cherenkov light produced by a vertical and central through-going muon, determined to 5-10% at the detector via a novel rate-based technique and to 3% precision through analysis of histograms of the charge distribution. The parameters needed for the calibration are measured every minute, allowing for an accurate determination of the signals recorded from extensive air showers produced by primary cosmic rays. The method also enables stable and uniform triggering conditions to be achieved. (c) 2006 Elsevier B.V. All rights reserved. C1 Ohio State Univ, Dept Phys, Columbus, OH 43201 USA. CNEA, San Carlos De Bariloche, Rio Negro, Argentina. CNRS, IN2P3, CBPF, Rio De Janeiro, Brazil. Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. Natl Univ La Plata, Fac Ciencias Exactas, Dept Fis, RA-1900 La Plata, Argentina. Consejo Nacl Invest Cient & Tecn, IFLP, RA-1900 La Plata, Argentina. Ist Fis Spazio Interplanetario, INAF, Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, Assergi, Italy. Univ Calif Los Angeles, Los Angeles, CA USA. Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. Univ Paris 11, Inst Phys Nucl Orsay, F-91406 Orsay, France. CNRS, IN2P3, F-91406 Orsay, France. Comis Nacl Energia Atom, Lab Tandar, RA-1650 Buenos Aires, DF, Argentina. BUAP, Puebla 72500, Puebla, Mexico. Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. Univ Michoacana, Morelia, Michoacan, Mexico. RP Allison, PS (reprint author), Ohio State Univ, Dept Phys, 191 W Woodruff Ave, Columbus, OH 43201 USA. EM barawn@auger.org.ar RI Arneodo, Francesco/B-8076-2013; Arneodo, Francesco/E-5061-2015; Beatty, James/D-9310-2011; OI Arneodo, Francesco/0000-0002-1061-0510; Arneodo, Francesco/0000-0002-1061-0510; Beatty, James/0000-0003-0481-4952; Aglietta, Marco/0000-0001-8354-5388 NR 9 TC 36 Z9 36 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 1 PY 2006 VL 568 IS 2 BP 839 EP 846 DI 10.1016/j.nima.2006.07.066 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 116SP UT WOS:000242822900039 ER PT J AU Czarski, T Koprek, W Pozniak, KT Romaniuk, RS Simrock, S Brandt, A Chase, B Carcagno, R Cancelo, G Koeth, TW AF Czarski, Tomasz Koprek, Waldemar Pozniak, Krzysztof T. Romaniuk, Ryszard S. Simrock, Stefan Brandt, Alexander Chase, Brian Carcagno, Ruben Cancelo, Gustavo Koeth, Timothy W. TI Superconducting cavity driving with FPGA controller SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE TESLA cavity control; CHECHIA driving; FPGA; system identification; LLRF control ID CONTROL-SYSTEM DEVELOPMENT AB A digital control of superconducting cavities for a linear accelerator is presented. FPGA-based controller, supported by Matlab system, was applied. Electrical model of a resonator was used for design of a control system. Calibration of the signal path is considered. Identification of cavity parameters has been carried out for adaptive control algorithm. Feed-forward and feedback modes were applied in operating the cavities. Required performance has been achieved; i.e. driving on resonance during filling and field stabilization during flattop time, while keeping reasonable level of the power consumption. Representative results of the experiments are presented for different levels of the cavity field gradient. (c) 2006 Elsevier B.V. All rights reserved. C1 Warsaw Univ Technol, ELHEP Lab, ISE, Warsaw, Poland. DESY, D-2000 Hamburg, Germany. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Rutgers State Univ, Piscataway, NJ 08855 USA. RP Romaniuk, RS (reprint author), Warsaw Univ Technol, ELHEP Lab, ISE, Warsaw, Poland. EM rrom@ise.pw.edu.pl RI Romaniuk, Ryszard/B-9140-2011; OI Romaniuk, Ryszard/0000-0002-5710-4041; Simrock, Stefan/0000-0002-1116-5316 NR 5 TC 41 Z9 41 U1 2 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 1 PY 2006 VL 568 IS 2 BP 854 EP 862 DI 10.1016/j.nima.2006.07.063 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 116SP UT WOS:000242822900041 ER PT J AU Marrone, S Berthomieux, E Becvar, F Cano-Ott, D Colonna, N Domingo-Pardo, C Gunsing, F Haight, RC Heil, M Kappeler, F Krticka, M Mastinu, P Mengoni, A Milazzo, PM O'Donnell, J Plag, R Schillebeeckx, P Tagliente, G Tain, JL Terlizzi, R Ullmann, JL AF Marrone, S. Berthomieux, E. Becvar, F. Cano-Ott, D. Colonna, N. Domingo-Pardo, C. Gunsing, F. Haight, R. C. Heil, M. Kaeppeler, F. Krticka, M. Mastinu, P. Mengoni, A. Milazzo, P. M. O'Donnell, J. Plag, R. Schillebeeckx, P. Tagliente, G. Tain, J. L. Terlizzi, R. Ullmann, J. L. TI Pulse shape analysis of signals from BaF2 and CeF3 scintillators for neutron capture experiments SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE flash-ADC; pulse shape discrimination; inorganic scintillators; neutron capture ID RANGE ENERGY MEASUREMENTS; DIGITAL-SAMPLING SYSTEMS; DYNAMIC-RANGE; LIQUID SCINTILLATORS; HIGH-RESOLUTION; N-TOF; SPECTROSCOPY; DETECTOR AB The scope of this work is to study the characteristics of BaF2 and CeF3 signals using fast digitizers, which allow the sampling of the signal at very high frequencies and the application of the fitting method for analysis of the recorded pulses. By this procedure particle identification and the reconstruction of pile-up events can be improved, while maintaining the energy and time-of-flight resolution as compared to traditional methods. The reliability of the technique and problems connected with data acquisition are discussed with respect to accurate measurements of neutron capture cross-sections. (c) 2006 Elsevier B.V. All rights reserved. C1 Dipartimento Fis, Bari, Italy. Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. CEA Saclay, F-91191 Gif Sur Yvette, France. Charles Univ, Prague, Czech Republic. CIEMAT, E-28040 Madrid, Spain. Univ Valencia, Ist Fis Corpuscolar, CSIC, Valencia, Spain. Los Alamos Natl Lab, Los Alamos, NM USA. Forschungszentrum Karlsruhe, Inst Kernphys, D-76021 Karlsruhe, Germany. Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. IAEA, A-1400 Vienna, Austria. CERN, Geneva, Switzerland. Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. IRMM, CEC, JRC, Geel, Belgium. RP Marrone, S (reprint author), Dipartimento Fis, Bari, Italy. EM stefano.marrone@ba.infn.it RI Tain, Jose L./K-2492-2014; Cano Ott, Daniel/K-4945-2014; Mengoni, Alberto/I-1497-2012; OI Cano Ott, Daniel/0000-0002-9568-7508; Mengoni, Alberto/0000-0002-2537-0038; Domingo-Pardo, Cesar/0000-0002-2915-5466 NR 23 TC 8 Z9 9 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 1 PY 2006 VL 568 IS 2 BP 904 EP 911 DI 10.1016/j.nima.2006.08.064 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 116SP UT WOS:000242822900047 ER PT J AU Thongbai, C Wiedemann, H AF Thongbai, C. Wiedemann, H. TI Review and analysis of autocorrelation electron bunch length measurements SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Review DE bunch length; femtosecond; coherent transition radiation; coherent diffraction radiation; electron bunches ID COHERENT DIFFRACTION RADIATION; PULSES; PHASE AB Sub-picosecond electron pulses become increasingly important for the development of next generation light sources to study chemical and biological processes. Such processes occur on picosecond or sub-picosecond time scales and the ability to observe such reactions in real time is of great scientific interest. These and other research opportunities fuel large scale efforts toward the generation of femtosecond electron pulses. A critical part in this endeavor is the ability to measure and correctly analyze femtosecond pulses which is beyond the capabilities of even the most advanced streak cameras leaving a spectroscopic method as the presently most efficient way to measure such short pulses. This method is based on an autocorrelation technique performed in a Michelson interferometer. The technique, however, suffers from limited suitable optical materials available for the far infrared spectral regime. In this work the effects of such limitations and other problem areas have been investigated and their impact on femtosecond pulse measurements is discussed in detail both qualitatively and quantitatively. Furthermore, this technique can also be applied to nondestructive coherent diffraction radiation which displays its own limitations and problems as will be discussed. (c) 2006 Elsevier B.V. All rights reserved. C1 Chiang Mai Univ, Dept Phys, Chiang Mai 50200, Thailand. SLAC, SSRL, Menlo Pk, CA USA. RP Thongbai, C (reprint author), Chiang Mai Univ, Dept Phys, Chiang Mai 50200, Thailand. EM chlada@chiangmai.ac.th NR 21 TC 2 Z9 2 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD DEC 1 PY 2006 VL 568 IS 2 BP 923 EP 932 DI 10.1016/j.nima.2006.08.081 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 116SP UT WOS:000242822900050 ER PT J AU Park, RJ Kim, SB Suh, KY Rempe, JL Cheung, FB AF Park, R. J. Kim, S. B. Suh, K. Y. Rempe, J. L. Cheung, F. B. TI Detailed analysis of late-phase core-melt progression evaluation of in-vessel corium retention SO NUCLEAR TECHNOLOGY LA English DT Article DE severe accident; in-vessel corium retention; melt progression AB Detailed analyses of a late-phase melt progression in the advanced power reactor (APR)1400 were completed to identify the melt and the thermal-hydraulic states of the in-vessel materials in the reactor vessel lower plenum at the time of reactor vessel failure to evaluate the candidate strategies for an in-vessel corium retention (IVR). Initiating events considered included high-pressure transients of a total loss of feed water (LOFW) and a station blackout (SBO) and low-pressure transients of a 0.0009-m(2) small, 0..0093-m(2) medium, and 0.0465-m(2) large-break loss-of-coolant accident (LOCA) without safety injection. Best-estimate simulations for these low-probability events with conservative accident progression assumptions that lead to reactor vessel failure were performed by using the SCDAP/RELAP5/MOD3.3 computer code. The SCDAP/RELAP5/MOD3.3 results have shown that the pressurizer surge, line failed before the reactor vessel failure, which results in a rapid decrease of the in-vessel pressure and a delay of the reactor vessel failure time of similar to 40 min in the high-pressure sequences of the total LOFW and the SBO transients. In all the sequences, similar to 80 to 90% of the core material was melted and relocated to the lower plenum of the reactor vessel at the time of reactor vessel failure. The maximum value of the volumetric heat source in the corium pool was estimated as 1.9 to 3.7 MW/m(3). The corium temperature was similar to 2800 to 3400 K at the time of reactor vessel failure. The highest volumetric heat source sequence is predicted for the 0.0465-m(2) large-break LOCA without safety injection in the APR1400, because this sequence leads to an early reactor vessel failure. C1 Korea Atom Energy Res Inst, Taejon 305353, South Korea. Seoul Natl Univ, Seoul 151744, South Korea. Idaho Natl Engn Lab, Idaho Falls, ID 83415 USA. Penn State Univ, University Pk, PA 16802 USA. RP Park, RJ (reprint author), Korea Atom Energy Res Inst, 150 Dukjin Dong, Taejon 305353, South Korea. EM rjpark@kaeri.re.kr NR 17 TC 3 Z9 3 U1 1 U2 5 PU AMER NUCLEAR SOCIETY PI LA GRANGE PK PA 555 N KENSINGTON AVENUE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD DEC PY 2006 VL 156 IS 3 BP 270 EP 281 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 110AF UT WOS:000242350000003 ER PT J AU Rempe, JL Knudson, DL Condie, KG Wilkins, SC AF Rempe, J. L. Knudson, D. L. Condie, K. G. Wilkins, S. Curtis TI Thermocouples for high-temperature in-pile testing SO NUCLEAR TECHNOLOGY LA English DT Article DE high-temperature thermocouples; in-pile testing; high-temperature measurements AB Traditional methods for measuring in-pile temperatures degrade above 1100 degrees C. Hence, the Idaho National Laboratory (INL) initiated a project to explore the use of specialized thermocouples for high temperature in-pile applications. Efforts to develop, fabricate, and evaluate specialized high-temperature thermocouples for in-pile applications suggest that several material combinations are viable. Tests show that several low-neutron cross-section candidate materials resist material interactions and remain ductile at high temperatures. In addition, results indicate that the candidate thermoelements have a thermoelectric response that is single-valued and repeatable with acceptable resolution. The selection of the thermocouple materials depends on desired peak temperature and accuracy requirements. For applications at or above 1600 degrees C, tests indicate that thermocouples having doped molybdenum and Nb-1%Zr thermoelement wires, HfO2 insulation, and a Nb-1%Zr sheath could be used. INL has worked to optimize this thermocouple's stability. With appropriate heat treatment and fabrication approaches, results indicate that thermal cycling effects on this thermocouple's calibration is minimized. INL initiated a series of high-temperature (1200 to 1800 degrees C) long-duration (up to 6 months) tests to assess the long-term stability of these thermocouples. Initial results indicate that the INL-developed thermocouple's thermoelectric response is very stable. Typically, <20 degrees C drift was observed in a 4000-h test at 1200 degrees C. In comparison, commercially available types K and N thermocouples included in these 1200 degrees C tests experienced drifts up to 110 degrees C. C1 Idaho Natl Engn Lab, Idaho Falls, ID 83415 USA. RP Rempe, JL (reprint author), Idaho Natl Engn Lab, POB 1625,MS 3840, Idaho Falls, ID 83415 USA. EM Joy.Rempe@inl.gov OI Rempe, Joy/0000-0001-5527-3549 NR 15 TC 8 Z9 8 U1 0 U2 1 PU AMER NUCLEAR SOCIETY PI LA GRANGE PK PA 555 N KENSINGTON AVENUE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD DEC PY 2006 VL 156 IS 3 BP 320 EP 331 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 110AF UT WOS:000242350000007 ER PT J AU Chasteen, L Ayriss, J Pavlik, P Bradbury, ARM AF Chasteen, L. Ayriss, J. Pavlik, P. Bradbury, A. R. M. TI Eliminating helper phage from phage display SO NUCLEIC ACIDS RESEARCH LA English DT Article ID PROTEIN-PROTEIN INTERACTIONS; SINGLE-CHAIN FV; C-TERMINAL DOMAIN; FILAMENTOUS PHAGE; AFFINITY MATURATION; ANTIBODY LIBRARIES; ESCHERICHIA-COLI; IN-VIVO; MONOCLONAL-ANTIBODY; ADSORPTION PROTEIN AB Phage display technology involves the display of proteins or peptides, as coat protein fusions, on the surface of a phage or phagemid particles. Using standard technology, helper phage are essential for the replication and assembly of phagemid particles, during library production and biopanning. We have eliminated the need to add helper phage by using 'bacterial packaging cell lines' that provide the same functions. These cell lines contain M13-based helper plasmids that express phage packaging proteins which assemble phagemid particles as efficiently as helper phage, but without helper phage contamination. This results in genetically pure phagemid particle preparations. Furthermore, by using constructs differing in the form of gene 3 that they contain, we have shown that the display, from a single library, can be modulated between monovalent (phagemid-like) and multivalent display (phage-like) without any further engineering. These packaging cells eliminate the use of helper phage from phagemid-based selection protocols; reducing the amount of technical preparation, facilitating automation, optimizing selections by matching display levels to diversity, and effectively using the packaged phagemid particles as means to transfer genetic information at an efficiency approaching 100%. C1 Los Alamos Natl Lab, B Div, Los Alamos, NM 87545 USA. RP Bradbury, ARM (reprint author), Los Alamos Natl Lab, B Div, MS M888, Los Alamos, NM 87545 USA. EM amb@lanl.gov OI Bradbury, Andrew/0000-0002-5567-8172 NR 68 TC 26 Z9 30 U1 2 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD DEC PY 2006 VL 34 IS 21 AR e145 DI 10.1093/nar/gkl772 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 115EE UT WOS:000242716800003 PM 17088290 ER PT J AU Nakagawa, YE Yoshida, A Sugita, S Tanaka, K Ishikawa, N Tamagawa, T Suzuki, M Shirasaki, Y Kawai, N Matsuoka, M Atteia, JL Pelangeon, A Vanderspek, R Crew, GB Villasenor, JS Butler, N Doty, J Ricker, GR Pizzichini, G Donaghy, TQ Lamb, DQ Graziani, C Jernigan, JG Sakamoto, T Olive, JF Boer, M Fenimore, EE Galassi, M Woosley, SE Yamauchi, M Takagishi, K Hatsukade, I AF Nakagawa, Y. E. Yoshida, A. Sugita, S. Tanaka, K. Ishikawa, N. Tamagawa, T. Suzuki, M. Shirasaki, Y. Kawai, N. Matsuoka, M. Atteia, J.-L. Pelangeon, A. Vanderspek, R. Crew, G. B. Villasenor, J. S. Butler, N. Doty, J. Ricker, G. R. Pizzichini, G. Donaghy, T. Q. Lamb, D. Q. Graziani, C. Jernigan, J. G. Sakamoto, T. Olive, J.-F. Boer, M. Fenimore, E. E. Galassi, M. Woosley, S. E. Yamauchi, M. Takagishi, K. Hatsukade, I. TI Observation of GRB 051022 detected by HETE-2 SO NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS LA English DT Article; Proceedings Paper CT Workshop on Swift and GRBs - Unveiling the Relativistic University CY JUN 05-09, 2006 CL Venice, ITALY ID SPECTRA AB An "optically dark" burst GRB051022 was detected by HETE-2. The detections of candidate X-ray and radio afterglows were reported, whereas no optical afterglow was found in spite of quick follow-up observations. The optical spectroscopic observations of the host galaxy revealed the redshift z = 0.8. Using the data derived by HETE-2 observation of the prompt emission, we found the constant absorption N-H = 8.8(+3.1) x 10(22) cm(-2) and the visual extinction A(v) = 49(-16)(+17) mag in the host galaxy. C1 Aoyama Gakuin Univ, Dept Math & Phys, Kanagawa, Japan. Inst Phys & Chem Res, Saitama, Japan. Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. Natl Astron Observ, Tokyo 181, Japan. JAXA, Tsukuba Space Ctr, Ibaraki, Japan. Observ Midi Pyrenees, LAT, F-31400 Toulouse, France. MIT, Ctr Space Res, Cambridge, MA 02139 USA. Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. INAF IASF Bologna, Bologna, Italy. Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. Observ Midi Pyrenees, CESR, F-31400 Toulouse, France. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. Miyazaki Univ, Fac Engn, Miyazaki 88921, Japan. RP Nakagawa, YE (reprint author), Aoyama Gakuin Univ, Dept Math & Phys, Kanagawa, Japan. NR 8 TC 0 Z9 0 U1 0 U2 0 PU SOC ITALIANA FISICA PI BOLOGNA PA VIA SARAGOZZA, 12, I-40123 BOLOGNA, ITALY SN 1594-9982 J9 NUOVO CIMENTO B JI Nouvo Cimento Soc. Ital. Fis. B-Gen. Phys. Relativ. Astron. Math. Phys. Methods PD DEC PY 2006 VL 121 IS 12 BP 1535 EP 1537 DI 10.1393/ncb/i2007-10315-9 PG 3 WC Physics, Multidisciplinary SC Physics GA 225VS UT WOS:000250546900045 ER PT J AU Suzuki, M Arimoto, M Ishikawa, N Kobayashi, A Kotoku, J Maetou, M Nakagawa, Y Sakamoto, T Sato, R Shimokawabe, T Shirasaki, Y Sugita, S Tamagawa, T Tanaka, K Kawai, N Yoshida, A Matsuoka, M Butler, N Crew, GB Vanderspek, R Graziani, C Donaghy, TQ Doty, J Fenimore, EE Galassi, M AF Suzuki, M. Arimoto, M. Ishikawa, N. Kobayashi, A. Kotoku, J. Maetou, M. Nakagawa, Y. Sakamoto, T. Sato, R. Shimokawabe, T. Shirasaki, Y. Sugita, S. Tamagawa, T. Tanaka, K. Kawai, N. Yoshida, A. Matsuoka, M. Butler, N. Crew, G. B. Vanderspek, R. Graziani, C. Donaghy, T. Q. Doty, J. Fenimore, E. E. Galassi, M. CA Hete Science Team TI X-ray bursts observed by HETE-2 SO NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS LA English DT Article; Proceedings Paper CT Workshop on Swift and GRBs - Unveiling the Relativistic University CY JUN 05-09, 2006 CL Venice, ITALY AB The High Energy Transient Explorer II (HETE-2) observed more than 500 X-Ray Bursts (XRBs) since its launch. Most of them are from similar to 20 known X-ray sources. We investigated the observation coverage for each source and studied the frequency of the bursts from each source from 2001 to 2005. C1 Tokyo Inst Technol, Dept Phys, Tokyo, Japan. MIT, Kavli Inst, Cambridge, MA 02139 USA. Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. Noqsi Aerosp Ltd, Pine, CO USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Aoyama Gakuin Univ, Dept Math & Phys, Tokyo 150, Japan. NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. NR 1 TC 2 Z9 2 U1 0 U2 1 PU SOC ITALIANA FISICA PI BOLOGNA PA VIA SARAGOZZA, 12, I-40123 BOLOGNA, ITALY SN 1594-9982 J9 NUOVO CIMENTO B JI Nouvo Cimento Soc. Ital. Fis. B-Gen. Phys. Relativ. Astron. Math. Phys. Methods PD DEC PY 2006 VL 121 IS 12 BP 1593 EP 1594 DI 10.1393/neb/i2007-10306-x PG 2 WC Physics, Multidisciplinary SC Physics GA 225VS UT WOS:000250546900064 ER PT J AU Barnier, B Madec, G Penduff, T Molines, JM Treguier, AM Le Sommer, J Beckmann, A Biastoch, A Boning, C Dengg, J Derval, C Durand, E Gulev, S Remy, E Talandier, C Theetten, S Maltrud, M McClean, J De Cuevas, B AF Barnier, Bernard Madec, Gurvan Penduff, Thierry Molines, Jean-Marc Treguier, Anne-Marie Le Sommer, Julien Beckmann, Aike Biastoch, Arne Boening, Claus Dengg, Joachim Derval, Corine Durand, Edmee Gulev, Sergei Remy, Elizabeth Talandier, Claude Theetten, Sebastien Maltrud, Mathew McClean, Julie De Cuevas, Beverly TI Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution SO OCEAN DYNAMICS LA English DT Article DE global ocean; eddy-permitting ocean model; momentum advection scheme; partial step topography; eddy/topography interactions ID GEOPOTENTIAL-COORDINATE MODELS; INTERMEDIATE-DEPTH CIRCULATION; SHALLOW-WATER EQUATIONS; GENERAL-CIRCULATION; SOUTH-ATLANTIC; NORTH-ATLANTIC; FREE-SURFACE; TOPOGRAPHY; REPRESENTATION; SIMULATION AB Series of sensitivity tests were performed with a z-coordinate, global eddy-permitting (1/4 degrees) ocean/sea-ice model (the ORCA-R025 model configuration developed for the DRAKKAR project) to carefully evaluate the impact of recent state-of-the-art numerical schemes on model solutions. The combination of an energy-enstrophy conserving (EEN) scheme for momentum advection with a partial step (PS) representation of the bottom topography yields significant improvements in the mean circulation. Well known biases in the representation of western boundary currents, such as in the Atlantic the detachment of the Gulf Stream, the path of the North Atlantic Current, the location of the Confluence, and the strength of the Zapiola Eddy in the south Atlantic, are partly corrected. Similar improvements are found in the Pacific, Indian, and Southern Oceans, and characteristics of the mean flow are generally much closer to observations. Comparisons with other state-of-the-art models show that the ORCA-R025 configuration generally performs better at similar resolution. In addition, the model solution is often comparable to solutions obtained at 1/6 or 1/10 degrees resolution in some aspects concerning mean flow patterns and distribution of eddy kinetic energy. Although the reasons for these improvements are not analyzed in detail in this paper, evidence is shown that the combination of EEN with PS reduces numerical noise near the bottom, which is likely to affect current-topography interactions in a systematic way. We conclude that significant corrections of the mean biases presently seen in general circulation model solutions at eddy-permitting resolution can still be expected from the development of numerical methods, which represent an alternative to increasing resolution. C1 Lab Ecoulements Geophys & Ind, Grenoble, France. Lab Ocean Dynam & Climatol, Paris, France. IFREMER, Ctr Brest, Lab Phys Oceans, Plouzane, France. Univ Helsinki, Dept Phys Sci, Div Geophys, Helsinki, Finland. Univ Kiel, IfM GEOMAR, Leibniz Inst Meereswissensch, Kiel, Germany. MERCATOR Ocean, Toulouse, France. Russian Acad Sci, PP Shirshov Oceanol Inst, Moscow, Russia. Los Alamos Natl Lab, Fluid Dynam Grp, Los Alamos, NM USA. UCSD, Scripps Inst Oceanog, La Jolla, CA USA. Natl Oceanog Ctr, Southampton, Hants, England. RP Barnier, B (reprint author), Lab Ecoulements Geophys & Ind, Grenoble, France. EM bernard.barnier@hmg.inpg.fr RI Treguier, Anne Marie/B-7497-2009; madec, gurvan/E-7825-2010; Theetten, Sebastien/G-2027-2010; Boening, Claus/B-1686-2012; Le Sommer, Julien/B-9869-2013; Gulev, Sergey/A-4994-2014; Biastoch, Arne/B-5219-2014; Barnier, Bernard/F-2400-2016 OI Treguier, Anne Marie/0000-0003-4569-845X; madec, gurvan/0000-0002-6447-4198; Theetten, Sebastien/0000-0003-3823-2328; Boening, Claus/0000-0002-6251-5777; Le Sommer, Julien/0000-0002-6882-2938; Biastoch, Arne/0000-0003-3946-4390; Barnier, Bernard/0000-0002-7539-2542 NR 68 TC 320 Z9 322 U1 1 U2 32 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1616-7341 J9 OCEAN DYNAM JI Ocean Dyn. PD DEC PY 2006 VL 56 IS 5-6 BP 543 EP 567 DI 10.1007/s10236-006-0082-1 PG 25 WC Oceanography SC Oceanography GA 121XI UT WOS:000243189900014 ER PT J AU Woodruff, SD Ayyalasomayajula, NR Hornak, LA AF Woodruff, Steven D. Ayyalasomayajula, Narasimha Rao Hornak, Lawrence A. TI Design and characterization of a diode-pumped Nd : YAG retroreflecting slab laser SO OPTICAL ENGINEERING LA English DT Article DE retroreflection; diode laser; neodymium laser; retroreflecting; diode pumped; slab laser ID INDUCED BREAKDOWN SPECTROSCOPY AB We describe the design and lasing characteristics of a miniaturized, chip-scale Nd:YAG slab laser. The Nd:YAG laser slab utilizes a retroreflecting corner to achieve a 17-cm optical path length with slab geometry of 10 x 12 x 2 mm. The laser is constructed, tested, and shown to successfully lase at 1064 nm under edge pumping with an AlGaAs diode laser at 808 nm. The slab laser is operated in a pulsed-pump excitation mode and shown to support a TEM10 single output mode. The fluence achievable from the edge pumping of this initial cavity geometry results in a 6.0% experimentally measured lasing efficiency. (c) 2006 Society of Photo-Optical Instrumentation Engineers. C1 Natl Energy Technol Lab, Morgantown, WV 26507 USA. W Virginia Univ, Morgantown, WV 26505 USA. W Virginia Univ, Lane Dept Comp Sci & Engn, Morgantown, WV 26506 USA. RP Woodruff, SD (reprint author), Natl Energy Technol Lab, 3610 Collins Ferry Rd,POB 880, Morgantown, WV 26507 USA. EM steven.woodruff@netl.doe.gov NR 14 TC 1 Z9 1 U1 0 U2 1 PU SPIE-INT SOCIETY OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 J9 OPT ENG JI Opt. Eng. PD DEC PY 2006 VL 45 IS 12 AR 124203 DI 10.1117/1.2403133 PG 5 WC Optics SC Optics GA 134DY UT WOS:000244064300017 ER PT J AU Farrow, RL Kliner, DAV Hadley, GR Smith, AV AF Farrow, Roger L. Kliner, Dahv A. V. Hadley, G. Ronald Smith, Arlee V. TI Peak-power limits on fiber amplifiers imposed by self-focusing SO OPTICS LETTERS LA English DT Article ID INDEX OPTICAL-FIBER; PHASE MODULATION AB We have numerically investigated the behavior of the fundamental mode of a step-index, multimode (MM) fiber as the optical power approaches the self-focusing limit (P-crit). The analysis includes the effects of gain and bending (applicable to coiled fiber amplifiers). We find power-dependent, stationary solutions that propagate essentially without change at beam powers approaching P-crit in straight and bent fibers. We show that in a MM fiber amplifier seeded with its fundamental eigenmode at powers << P-crit, the transverse spatial profile adiabatically evolves through a continuum of stationary solutions as the beam is amplified toward P-crit. (c) 2006 Optical Society of America. C1 Sandia Natl Labs, Livermore, CA 94551 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Farrow, RL (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. NR 14 TC 36 Z9 37 U1 0 U2 8 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD DEC 1 PY 2006 VL 31 IS 23 BP 3423 EP 3425 DI 10.1364/OL.31.003423 PG 3 WC Optics SC Optics GA 106LR UT WOS:000242102500007 PM 17099737 ER PT J AU Fatoohi, R Kardys, K Koshy, S Sivaramakrishnan, S Vetter, JS AF Fatoohi, Rod Kardys, Ken Koshy, Sumy Sivaramakrishnan, Soundarya Vetter, Jeffrey S. TI Performance evaluation of high-speed interconnects using dense communication patterns SO PARALLEL COMPUTING LA English DT Article; Proceedings Paper CT International Workshop on Performance Evaluation of Networks for Parallel, Cluster and Grid Computing Systems CY JUN 14, 2005-JUN 17, 2006 CL Oslo, NORWAY DE performance evaluation; pair-wise communication; interconnect architecture; micro-benchmarks AB We study the performance of high-speed interconnects using a set of communication micro-benchmarks. The goal is to identify certain limiting factors and bottlenecks with these interconnects. Our micro-benchmarks are based on dense communication patterns with different communicating partners and varying degrees of these partners. We tested our microbenchmarks on five platforms: an IBM system of 68-node 16-way Power3, interconnected by a SP switch2; another IBM system of 264-node 4-way Power PC 604e, interconnected by an SP switch; a Compaq cluster of 128-node 4-way ES40/EV67 processor, interconnected by an Quadrics interconnect; an Intel cluster of 16-node dual-CPU Xeon, interconnected by an Quadrics interconnect; and a cluster of 22-node Sun Ultra Sparc, interconnected by an Ethernet network. Our results show many limitations of these networks including the memory contention within a node as the number of communicating processors increased and the limitations of the network interface for communication between multiple processors of different nodes. (c) 2006 Published by Elsevier B.V. C1 San Jose State Univ, San Jose, CA 95192 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Fatoohi, R (reprint author), San Jose State Univ, San Jose, CA 95192 USA. EM rfatoohi@sjsu.edu NR 10 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 J9 PARALLEL COMPUT JI Parallel Comput. PD DEC PY 2006 VL 32 IS 11-12 BP 794 EP 807 DI 10.1016/j.parco.2006.09.007 PG 14 WC Computer Science, Theory & Methods SC Computer Science GA 121TW UT WOS:000243180900003 ER PT J AU Florando, JN Rhee, M Arsenlis, A Leblanc, MM Lassila, DH AF Florando, J. N. Rhee, M. Arsenlis, A. Leblanc, M. M. Lassila, D. H. TI Calculation of the slip system activity in deformed zinc single crystals using digital 3-D image correlation data SO PHILOSOPHICAL MAGAZINE LETTERS LA English DT Article ID SECONDARY SLIP; STRESS AB A 3-D image correlation system, which measures the full-field displacements in three dimensions, has been used to experimentally determine the full deformation gradient matrix for two zinc single crystals. Based on the image correlation data, slip system activity for the two crystals has been calculated. The results of the calculation show that, for one crystal, only the primary slip system is active, which is consistent with traditional theory. The other crystal, however, shows appreciable deformation on slip systems other than the primary. An analysis was conducted verifying the experimental observation that the net result from slip on the secondary slip systems is approximately one third the magnitude and directly orthogonal to the primary system. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Florando, JN (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM florando1@llnl.gov NR 13 TC 9 Z9 9 U1 0 U2 3 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0950-0839 J9 PHIL MAG LETT JI Philos. Mag. Lett. PD DEC PY 2006 VL 86 IS 12 BP 795 EP 805 DI 10.1080/09500830601047695 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 119PU UT WOS:000243025400005 ER PT J AU Lopez, E Carmi, S Havlin, S Buldyrev, SV Stanley, HE AF Lopez, Eduardo Carmi, Shai Havlin, Shlomo Buldyrev, Sergey V. Stanley, H. Eugene TI Anomalous electrical and frictionless flow conductance in complex networks SO PHYSICA D-NONLINEAR PHENOMENA LA English DT Article DE complex networks; transport; diffusion; conductance; scaling ID MAXIMUM FLOW; INTERNET; GRAPHS AB We study transport properties such as electrical and frictionless flow conductance on scale-free and Erdos-Renyi networks. We consider the conductance G between two arbitrarily chosen nodes where each link has the same unit resistance. Our theoretical analysis for scale-free networks predicts a broad range of values of G, with a power-law tail distribution Phi(SF)(G) similar to G(-gG), where gG = 2 lambda - 1, where lambda is the decay exponent for the scale-free network degree distribution. We confirm our predictions by simulations of scale-free networks solving the Kirchhoff equations for the conductance between a pair of nodes. The power-law tail in Phi(SF)(G) leads to large values of G, thereby significantly improving the transport in scale-free networks, compared to Erdos-Renyi networks where the tail of the conductivity distribution decays exponentially. Based on a simple physical 'transport backbone' picture we suggest that the conductances of scale-free and Erdos-Renyi networks can be approximated by ck(A)k(B)/(k(A) + k(B)) for any pair of nodes A and B with degrees k(A) and k(B). Thus, a single quantity c, which depends on the average degree (k) over bar of the network, characterizes transport on both scale-free and Erdes-Renyi networks. We determine that c tends to 1 for increasing (k) over bar, and it is larger for scale-free networks. We compare the electrical results with a model for frictionless transport, where conductance is defined as the number of link-independent paths between A and B, and find that a similar picture holds. The effects of distance on the value of conductance are considered for both models, and some differences emerge. Finally, we use a recent data set for the AS (autonomous system) level of the Internet and confirm that our results are valid in this real-world example. Published by Elsevier B.V. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Bar Ilan Univ, Minerva Ctr, IL-52100 Ramat Gan, Israel. Bar Ilan Univ, Dept Phys, IL-52100 Ramat Gan, Israel. Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA. Yeshiva Univ, Dept Phys, New York, NY 10033 USA. RP Lopez, E (reprint author), Los Alamos Natl Lab, Div Theoret, Mail Stop B258, Los Alamos, NM 87545 USA. EM edlopez@bu.edu RI Carmi, Shai/F-4817-2010; Buldyrev, Sergey/I-3933-2015 OI Carmi, Shai/0000-0002-0188-2610; NR 32 TC 9 Z9 9 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2789 EI 1872-8022 J9 PHYSICA D JI Physica D PD DEC PY 2006 VL 224 IS 1-2 BP 69 EP 76 DI 10.1016/j.physd.2006.09.031 PG 8 WC Mathematics, Applied; Physics, Multidisciplinary; Physics, Mathematical SC Mathematics; Physics GA 118WK UT WOS:000242974000009 ER PT J AU Tyryshkin, AM Lyon, SA Schenkel, T Bokor, J Chu, J Jantsch, W Schaffler, F Truitt, JL Coppersmith, SN Eriksson, MA AF Tyryshkin, A. M. Lyon, S. A. Schenkel, T. Bokor, J. Chu, J. Jantsch, W. Schaeffler, F. Truitt, J. L. Coppersmith, S. N. Eriksson, M. A. TI Electron spin coherence in Si SO PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES LA English DT Article; Proceedings Paper CT 14th International Winterschool on New Developments in Solid State Physics CY FEB 13-17, 2006 CL Mauterndorf, AUSTRIA DE spin resonance; spin relaxation; spin coherence; quantum computing ID SI/SIGE QUANTUM-WELLS; RESONANCE EXPERIMENTS; LATTICE RELAXATION; ESR INVESTIGATIONS; SHALLOW DONORS; DOPED SILICON; COMPUTATION; DECAY; FIELD; DOTS AB We discuss pulsed electron spin resonance measurements of electrons in Si and determine the spin coherence from the decay of the spin echo signals. Tightly bound donor electrons in isotopically enriched (28)Si are found to have exceptionally long spin coherence. Placing the donors near a surface or interface is found to decrease the spin coherence time, but it is still in the range of milliseconds. Unbound two-dimensional electrons have shorter coherence times of a few microseconds, though still long compared to the Zeeman frequency or the typical time to manipulate a spin with microwave pulses. Longer spin coherence is expected in two-dimensional systems patterned into quantum dots, but relatively small dots will be required. Data from dots with a lithographic size of 400 nm do not yet show longer spin coherence. (c) 2006 Elsevier B.V. All rights reserved. C1 Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. IBM Corp, Thomas J Watson Res Ctr, Div Res, Yorktown Hts, NY 10598 USA. Johannes Kepler Univ Linz, Inst Halbleiter & Festkorperphys, A-4040 Linz, Austria. Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. RP Lyon, SA (reprint author), Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. EM lyon@princeton.edu RI Tyryshkin, Alexei/A-5219-2008; Bokor, Jeffrey/A-2683-2011; Schaffler, Friedrich/C-7026-2017 OI Schaffler, Friedrich/0000-0002-7093-2554 NR 45 TC 22 Z9 22 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1386-9477 J9 PHYSICA E JI Physica E PD DEC PY 2006 VL 35 IS 2 BP 257 EP 263 DI 10.1016/j.physe.2006.08.021 PG 7 WC Nanoscience & Nanotechnology; Physics, Condensed Matter SC Science & Technology - Other Topics; Physics GA 121UH UT WOS:000243182000009 ER PT J AU Csathy, GA Xia, JS Pan, W Vicente, CL Adams, ED Sullivan, NS Stormer, HL Tsui, DC Pfeiffer, LN West, KW AF Csathy, G. A. Xia, J. S. Pan, W. Vicente, C. L. Adams, E. D. Sullivan, N. S. Stormer, H. L. Tsui, D. C. Pfeiffer, L. N. West, K. W. TI Exotic electronic phases in the second Landau level SO PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES LA English DT Article; Proceedings Paper CT 14th International Winterschool on New Developments in Solid State Physics CY FEB 13-17, 2006 CL Mauterndorf, AUSTRIA DE magnetotransport; electronic solids; electron-electron correlations ID QUANTUM HALL STATES; WEAK MAGNETIC-FIELD; GROUND-STATE; FILLING FACTORS; WIGNER CRYSTAL; HE-3 FILMS; EXCHANGE; LIQUID; BEHAVIOR; SYSTEM AB Recent experiments have shown that two-dimensional electron systems with an externally applied magnetic field are an extremely rich ground for many-body physics. In particular, when only two of the Landau levels (LL) are filled an intricate magnetoresistance is found. This result stems from an interesting competition of electronic phases such as fractional quantum Hall liquids, reentrant integer Hall states, and unique quantized states at even denominator LL filling factors. We present a brief review of the transport properties of these electronic phases and discuss in detail the effects of an added in-plane magnetic field. (c) 2006 Elsevier B.V. All rights reserved. C1 Princeton Univ, Princeton, NJ 08544 USA. Univ Florida, Gainesville, FL 32611 USA. Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Columbia Univ, New York, NY 10027 USA. Lucent Technol, Bell Labs, Murray Hill, NJ 07974 USA. RP Csathy, GA (reprint author), Purdue Univ, W Lafayette, IN 47907 USA. EM gcsathy@purdue.edu NR 52 TC 0 Z9 0 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1386-9477 J9 PHYSICA E JI Physica E PD DEC PY 2006 VL 35 IS 2 BP 309 EP 314 DI 10.1016/j.physe.2006.08.026 PG 6 WC Nanoscience & Nanotechnology; Physics, Condensed Matter SC Science & Technology - Other Topics; Physics GA 121UH UT WOS:000243182000016 ER PT J AU Phok, S Bhattacharya, RN AF Phok, Sovannary Bhattacharya, Raghu N. TI Effect of samarium doping on electrodeposited CeO2 thin film SO PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; PULSED-LASER DEPOSITION; BUFFER LAYERS; OXIDE-FILMS; SURFACE-MORPHOLOGY; CERIA FILMS; GROWTH; YBCO; CONDUCTIVITY; SI(111) AB Samarium-doped cerium oxide (CeO2: Sm) and undoped cerium oxide (CeO2) thin films were fabricated by electrodeposition on biaxially textured Ni-3% W substrates. The electrodeposited layers were annealed for several hours at temperatures ranging from 9 10 to 980 degrees C. The resulting crystalline films were investigated by XRD and SEM. The CeO2 crystallite size was correlated to the formation of microcrack in CeO2 and CeO2: Sm using the Scherrer equation of XRD analysis. Crack-free films with an average grain size of about 28 nm were obtained for both Ce0.92SM0.08O2-delta and Ce0.8Sm0.2O2-delta films. Sm doping strongly affects the crystallite size, crystal structure, texture, and crack formation in ceria films. The lattice parameter a increases and crystallite size is reduced with increased Sm doping. All electrodeposited films are highly biaxially textured. When compared to Ni-based substrates, improvements in the out-of-plane and in-plane texture in ceria- and Sm-doped ceria films were achieved. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. C1 Natl Renewable Energy Lab, Golden, CO 80104 USA. RP Phok, S (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80104 USA. EM sovannary_phok@nrel.gov NR 38 TC 15 Z9 16 U1 3 U2 20 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0031-8965 J9 PHYS STATUS SOLIDI A JI Phys. Status Solidi A-Appl. Mat. PD DEC PY 2006 VL 203 IS 15 BP 3734 EP 3742 DI 10.1002/pssa.200622247 PG 9 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 122GO UT WOS:000243213900016 ER PT J AU Lee, SJ Lo, CCH Yu, ACC Fan, M AF Lee, S. J. Lo, C. C. H. Yu, A. C. C. Fan, M. TI Spectroscopic ellipsometry study of FePt nanoparticle films SO PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE LA English DT Article AB The optical properties of a FePt nanoparticle film were investigated using spectroscopic ellipsometry. The FePt nanoparticle film of thickness about 15 nm was prepared by deposition of FePt nanoparticles directly on a Si substrate. The nanoparticle film was annealed at 600 degrees C in vacuum for two hours before the measurements. The optical properties of the FePt nanoparticle film showed distinctively different spectra from those obtained from the bulk and thin film FePt samples, in particular in the low photon energy range (below 3.5 eV) where the nanoparticle film exhibited a relatively flat refractive index and a substantially lower extinction coefficient than the bulk and epitaxial thin film samples. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. C1 Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Sony Corp, Sendai Technol Ctr, Miyagi 9850842, Japan. Georgia Inst Technol, Sch Mat Sci & Technol, Atlanta, GA 30332 USA. RP Lee, SJ (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM sjlee@ameslab.gov NR 8 TC 3 Z9 3 U1 0 U2 2 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0031-8965 J9 PHYS STATUS SOLIDI A JI Phys. Status Solidi A-Appl. Mat. PD DEC PY 2006 VL 203 IS 15 BP 3801 EP 3804 DI 10.1002/pssa.200521480 PG 4 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 122GO UT WOS:000243213900026 ER PT J AU Hill, DH Arena, DA Bartynski, RA Wu, P Saraf, G Lu, Y Wielunski, L Gateau, R Dvorak, J Moodenbaugh, A Yeo, YK AF Hill, D. H. Arena, D. A. Bartynski, R. A. Wu, P. Saraf, G. Lu, Y. Wielunski, L. Gateau, R. Dvorak, J. Moodenbaugh, A. Yeo, Yung Kee TI Room temperature ferromagnetism in Mn ion implanted epitaxial ZnO films SO PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE LA English DT Article ID DOPED ZNO; MAGNETIC-PROPERTIES; THIN-FILMS; CRYSTALS; BULK; SEMICONDUCTORS; SPINTRONICS; STABILITY; ORIGIN; OXIDE AB Epitaxial ZnO films of similar to 450 nm thicknesses were grown by MOCVD on r-sapphire and doped by implantation of 200 keV Mn ions to a dose of 5 x 10(16) ions/cm(2). The structural, chemical, and magnetic properties of the films were investigated with X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), X-ray absorption spectroscopy (XAS) and SQUID magnetometry. XRD and RBS show both Mn-doped ZnO and pure ZnO epitaxial layers in the as-implanted film, which is ferromagnetic at 5 K but nonmagnetic at room temperature. For the as-implanted materials, only Mn2+ ions are observed with XAS. Post-implantation annealing partially recovers the lattice damage and redistributes Mn into the entire ZnO film; in addition, Mn2+ ions are converted to a mixture of Mn3+ and Mn4+, and ferromagnetism is now observed above 300 K. Our results show that ion implantation is a viable route for achieving room temperature ferromagnetism in epitaxial ZnO films. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. C1 Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. Rutgers State Univ, Surface Modificat Lab, Piscataway, NJ 08854 USA. Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. Rutgers State Univ, Dept Elect & Comp Engn, Piscataway, NJ 08854 USA. Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. Brookhaven Natl Lab, Dept Mat Sci, Upton, NY 11973 USA. USAF, Inst Technol, Wright Patterson AFB, OH 45433 USA. RP Bartynski, RA (reprint author), Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. EM bart@physics.rutgers.edu OI Moodenbaugh, Arnold/0000-0002-3415-6762 NR 34 TC 5 Z9 5 U1 0 U2 5 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0031-8965 J9 PHYS STATUS SOLIDI A JI Phys. Status Solidi A-Appl. Mat. PD DEC PY 2006 VL 203 IS 15 BP 3836 EP 3843 DI 10.1002/pssa.200622134 PG 8 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 122GO UT WOS:000243213900031 ER PT J AU Dunford, RW Kanter, EP Krassig, B Southworth, SH Young, L Mokler, PH Stohlker, T Cheng, S Kochur, AG Petrov, ID AF Dunford, R. W. Kanter, E. P. Kraessig, B. Southworth, S. H. Young, L. Mokler, P. H. Stoehlker, Th. Cheng, S. Kochur, A. G. Petrov, I. D. TI Coster-Kronig transition probability f(23) in gold atoms SO PHYSICAL REVIEW A LA English DT Article ID FLUORESCENCE YIELDS; L-SUBSHELLS; L-SHELLS; AUGER; ELEMENTS; RATES; PHOTOIONIZATION; DECAY; PB AB We have investigated the Coster-Kronig transition probability f(23) in gold atoms (nuclear charge Z=79) using the L x-ray versus K x-ray coincidence method. K vacancies were created using synchrotron radiation and the cascade decays were measured using germanium x-ray detectors. We find f(23)=0.112 +/- 0.004 which is somewhat lower than the recent coincidence measurement of Santra which yielded f(23)=0.119 +/- 0.003. Our result is smaller than the values calculated by McGuire (f(23)=0.132) and Puri (f(23)=0.129) but agrees with our own single-configuration Pauli-Fock calculation, which gives f(23)=0.114, as well as the global set of prior experimental data. C1 Argonne Natl Lab, Argonne, IL 60439 USA. Univ Giessen, Inst Atom & Mol Phys, D-35392 Giessen, Germany. GSI Darmstadt, D-64291 Darmstadt, Germany. Univ Toledo, Dept Phys, Toledo, OH 43606 USA. Rostov State Univ Transport Commun, Rostov Na Donu 344038, Russia. RP Dunford, RW (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 25 TC 4 Z9 4 U1 1 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD DEC PY 2006 VL 74 IS 6 AR 062502 DI 10.1103/PhysRevA.74.062502 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 121OK UT WOS:000243166700053 ER PT J AU Lu, M Alna'washi, G Habibi, M Gharaibeh, MF Phaneuf, RA Kilcoyne, ALD Levenson, E Schlachter, AS Cisneros, C Hinojosa, G AF Lu, M. Alna'washi, G. Habibi, M. Gharaibeh, M. F. Phaneuf, R. A. Kilcoyne, A. L. D. Levenson, E. Schlachter, A. S. Cisneros, C. Hinojosa, G. TI Photoionization and electron-impact ionization of Kr3+ SO PHYSICAL REVIEW A LA English DT Article ID FUSION TEST REACTOR; HIGH-RESOLUTION; KRYPTON; IONS; PLASMAS; RESONANCES; SPECTRA; ARGON AB Absolute photoionization cross sections for Kr3+ were measured in the energy range 39.05-143.2 eV for single ionization and 120.6-137.7 eV for double ionization. For comparison, an electron-impact single-ionization measurement was made in the energy range 43.1-179.1 eV and normalized to previously published absolute measurements. The Flexible Atomic Code and Cowan atomic structure codes were used to calculate energy levels, excitation energies and oscillator strengths for 3d -> np, 3d -> nf, and 4s -> np autoionizing transitions from the ground and metastable states. From the single-photoionization measurements, ionization thresholds of the P-2(3/2)o, D-2(5/2)o metastable states and S-4(3/2)o ground state were measured to be 46.62 +/- 0.02, 48.59 +/- 0.01, and 50.70 +/- 0.02 eV, nearly 2 eV lower than National Institute of Standards and Technology tabulated values. Within the experimental uncertainty, oscillator strengths determined from the photoionization measurements are in agreement with both calculations. Excitation-autoionization and resonant-excitation double-autoionization features are evident in the electron-impact ionization cross section. C1 Univ Nevada, Dept Phys, Reno, NV 89557 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca 62131, Morelos, Mexico. RP Lu, M (reprint author), Univ Nevada, Dept Phys, MS 220, Reno, NV 89557 USA. RI Kilcoyne, David/I-1465-2013 NR 25 TC 9 Z9 9 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD DEC PY 2006 VL 74 IS 6 AR 062701 DI 10.1103/PhysRevA.74.062701 PG 10 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 121OK UT WOS:000243166700069 ER PT J AU Mihaila, B Crooker, SA Blagoev, KB Rickel, DG Littlewood, PB Smith, DL AF Mihaila, Bogdan Crooker, Scott A. Blagoev, Krastan B. Rickel, Dwight G. Littlewood, Peter B. Smith, Darryl L. TI Spin noise spectroscopy to probe quantum states of ultracold fermionic atom gases SO PHYSICAL REVIEW A LA English DT Article ID BOSE-EINSTEIN CONDENSATION AB We theoretically demonstrate that optical measurements of electron spin noise can be a spectroscopic probe of the entangled quantum states of ultracold fermionic atom gases and unambiguously reveal the detailed nature of the underlying interatomic correlations. Different models of the effective interatomic interactions predict entirely new sets of resonances in the spin noise spectrum. Once the correct effective interatomic interaction model is identified, the detailed noise line shapes of the spin noise can be used to constrain this model. We estimate the magnitude of spin noise signals expected in ultracold fermionic atom gases via noise measurements in classical alkali vapors, which demonstrate the feasibility of this approach. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. RP Mihaila, B (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. RI Cavendish, TCM/C-9489-2009; Littlewood, Peter/B-7746-2008; Mihaila, Bogdan/D-8795-2013 OI Mihaila, Bogdan/0000-0002-1489-8814 NR 25 TC 12 Z9 12 U1 0 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD DEC PY 2006 VL 74 IS 6 AR 063608 DI 10.1103/PhysRevA.74.063608 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 121OK UT WOS:000243166700119 ER PT J AU Pustelny, S Kimball, DFJ Rochester, SM Yashchuk, VV Budker, D AF Pustelny, S. Kimball, D. F. Jackson Rochester, S. M. Yashchuk, V. V. Budker, D. TI Influence of magnetic-field inhomogeneity on nonlinear magneto-optical resonances SO PHYSICAL REVIEW A LA English DT Article ID POLARIZED HE-3 GAS; TRANSVERSE RELAXATION; LASER; LINESHAPES; ATOMS; MAGNETOMETER AB We develop an analytic theory for the harmonic generation of symmetric diatomic molecular ions beyond the two-level model, emphasizing the influence of the charge-resonance (CR) states that are strongly coupled to electromagnetic fields for the case of large internuclear distances. Taking into account the continuum states that are ignored in the two-level model and become important for the intense laser case, our model is capable of producing the spectrum for the whole range of harmonic orders that consists of a molecular plateau due to the CR transition and an atomiclike plateau for long-wavelength excitation. Our analytic results are in good agreement with the numerical results from directly solving the Schrodinger equation. Our theory also identifies the crucial role of the CR states in the fine structure of the harmonic spectrum and shows that harmonic generation in molecular systems can be effectively controlled by adjusting the internuclear distance. C1 Jagiellonian Univ, Cent Badan Magnetooptycznych, M Smoluchowski Inst Phys, PL-30059 Krakow, Poland. Calif State Univ Hayward, Dept Phys, Hayward, CA 94542 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Pustelny, S (reprint author), Jagiellonian Univ, Cent Badan Magnetooptycznych, M Smoluchowski Inst Phys, Reymonta 4, PL-30059 Krakow, Poland. RI Budker, Dmitry/F-7580-2016 OI Budker, Dmitry/0000-0002-7356-4814 NR 26 TC 26 Z9 26 U1 3 U2 11 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD DEC PY 2006 VL 74 IS 6 AR 063406 DI 10.1103/PhysRevA.74.063406 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 121OK UT WOS:000243166700096 ER PT J AU Pustelny, S Gawlik, W Rochester, SM Kimball, DFJ Yashchuk, VV Budker, D AF Pustelny, S. Gawlik, W. Rochester, S. M. Kimball, D. F. Jackson Yashchuk, V. V. Budker, D. TI Nonlinear magneto-optical rotation with modulated light in tilted magnetic fields SO PHYSICAL REVIEW A LA English DT Article ID ATOMIC MAGNETOMETER; VAPOR; LASER AB Larmor precession of laser-polarized atoms contained in antirelaxation-coated cells, detected via nonlinear magneto-optical rotation (NMOR), is a promising technique for a new generation of ultrasensitive atomic magnetometers. For magnetic fields directed along the light propagation direction, resonances in NMOR appear when linearly polarized light is frequency or amplitude modulated at twice the Larmor frequency. Because the frequency of these resonances depends on the magnitude but not the direction of the field, they are useful for scalar magnetometry. Additional NMOR resonances at the Larmor frequency appear when the magnetic field is tilted away from the light propagation direction in the plane defined by the light propagation and polarization vectors. These resonances, studied both experimentally and with a density matrix calculation in the present work, offer a convenient method of achieving additional information about a direction of the magnetic field. C1 Jagiellonian Univ, M Smoluchowski Inst Phys, Ctr Badan Magnetooptycnych, PL-30059 Krakow, Poland. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Calif State Univ Hayward, Dept Phys, Hayward, CA 94542 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Pustelny, S (reprint author), Jagiellonian Univ, M Smoluchowski Inst Phys, Ctr Badan Magnetooptycnych, Reymonta 4, PL-30059 Krakow, Poland. RI Budker, Dmitry/F-7580-2016 OI Budker, Dmitry/0000-0002-7356-4814 NR 25 TC 14 Z9 15 U1 3 U2 15 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD DEC PY 2006 VL 74 IS 6 AR 063420 DI 10.1103/PhysRevA.74.063420 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 121OK UT WOS:000243166700110 ER PT J AU Sathe, C Guimaraes, FF Rubensson, JE Nordgren, J Agui, A Guo, J Ekstrom, U Norman, P Gel'mukhanov, F Agren, H AF Sathe, C. Guimaraes, F. F. Rubensson, J. -E. Nordgren, J. Agui, A. Guo, J. Ekstrom, U. Norman, P. Gel'mukhanov, F. Agren, H. TI Resonant L-II,L-III x-ray Raman scattering from HCl SO PHYSICAL REVIEW A LA English DT Article ID EMISSION-SPECTROSCOPY; SYNCHROTRON-RADIATION; HIGH-RESOLUTION; MOLECULES; DISSOCIATION; EXCITATION; DYNAMICS; ATOMS AB We have studied the spectral features of Cl L-II,L-III resonant x-ray Raman scattering of HCl molecules in gas phase both experimentally and theoretically. The theory, formulated in the intermediate-coupling scheme, takes into account the spin-orbital and molecular-field splittings in the Cl 2p shells, as well as the Coulomb interaction of the core hole with unoccupied molecular orbitals. Experiment and theory display nondispersive dissociative peaks formed by decay transitions in both molecular and dissociative regions. The molecular and atomic peaks collapse in a single narrow resonance because the dissociative potentials of core-excited and final states are parallel to each other along the whole pathway of the nuclear wave packet. C1 Uppsala Univ, Dept Phys, S-75121 Uppsala, Sweden. Royal Inst Technol, S-10691 Stockholm, Sweden. Univ Fed Minas Gerais, Dept Quim, BR-31270901 Belo Horizonte, MG, Brazil. Japan Atom Energy Agcy, Synchrotron Radiat Res Unit, Sayo, Hyogo 6795148, Japan. Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. Linkoping Univ, Dept Phys Chem & Biol, SE-58183 Linkoping, Sweden. RP Sathe, C (reprint author), Uppsala Univ, Dept Phys, Box 530, S-75121 Uppsala, Sweden. RI Agren, Hans/H-7715-2016; Sathe, Conny/P-8139-2016; Norman, Patrick/R-3281-2016 OI Sathe, Conny/0000-0001-7799-8575; Norman, Patrick/0000-0002-1191-4954 NR 23 TC 6 Z9 6 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD DEC PY 2006 VL 74 IS 6 AR 062512 DI 10.1103/PhysRevA.74.062512 PG 8 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 121OK UT WOS:000243166700063 ER PT J AU Bacorisen, D Smith, R Uberuaga, BP Sickafus, KE Ball, JA Grimes, RW AF Bacorisen, D. Smith, Roger Uberuaga, B. P. Sickafus, K. E. Ball, J. A. Grimes, R. W. TI Atomistic simulations of radiation-induced defect formation in spinels: MgAl2O4, MgGa2O4, and MgIn2O4 SO PHYSICAL REVIEW B LA English DT Article ID MAGNESIUM ALUMINATE SPINEL; CATION DISTRIBUTION; AMORPHIZATION; DAMAGE AB Molecular dynamics simulations of collision cascades were performed in three spinel oxides with varying inversion, namely normal magnesium aluminate, MgAl2O4, half-inverse magnesium gallate, MgGa2O4, and inverse magnesium indate, MgIn2O4. The response of each of these oxides for energies of up to 10 keV for the initial knock-on event was analyzed and compared. Defect production was characterized mainly by split interstitials/crowdions and cation antisite or disorder defects. The results show that cation interstitials preferentially occupy octahedral sites in all three materials. In the normal spinel, subcascade branching occurs and the defects at the end of the cascade are generally isolated, whereas in the half-inverse spinel, the higher energy cascades show a core damage region some of which consists of a partial rearrangement of atoms to the normal spinel structure and a partial transformation to a disordered rocksalt structure. In the fully inverse spinel a more connected region of the disordered rocksalt structure with the cascade core is evident. C1 Univ Loughborough, Dept Math Sci, Loughborough LE11 3TU, Leics, England. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Imperial Coll Sch Med, Dept Mat, London SW7 2BP, England. RP Bacorisen, D (reprint author), Univ Loughborough, Dept Math Sci, Loughborough LE11 3TU, Leics, England. RI Smith, Roger/C-2550-2013 NR 23 TC 16 Z9 16 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 21 AR 214105 DI 10.1103/PhysRevB.74.214105 PG 11 WC Physics, Condensed Matter SC Physics GA 121ZM UT WOS:000243195500027 ER PT J AU Beaujour, JML Lee, JH Kent, AD Krycka, K Kao, CC AF Beaujour, J. -M. L. Lee, J. H. Kent, A. D. Krycka, K. Kao, C. -C. TI Magnetization damping in ultrathin polycrystalline Co films: Evidence for nonlocal effects SO PHYSICAL REVIEW B LA English DT Article ID FERROMAGNETIC-RESONANCE LINEWIDTH; THIN-FILMS; SPIN; RELAXATION; INSULATORS; SURFACES; CU; PD AB The magnetic properties and magnetization dynamics of polycrystalline ultrathin Co layers were investigated using a broadband ferromagnetic resonance technique at room temperature. A variable-thickness (1 nm <= t <= 10 nm) Co layer is sandwiched between 10-nm-thick Cu layers (10 nm Cu vertical bar t Co vertical bar 10 nm Cu), while materials in contact with the Cu outer interfaces are varied to determine their influence on the magnetization damping. The resonance field and the linewidth were studied for in-plane magnetic fields in field-swept experiments at a fixed frequency, from 4 to 25 GHz. The Co layers have a lower magnetization density than the bulk and an interface contribution to the magnetic anisotropy normal to the film plane. The Gilbert damping, as determined from the frequency dependence of the linewidth, increases with decreasing Co layer thickness for films with outer Pt layers. This enhancement is not observed in structures without Pt layers. The result can be understood in terms of a nonlocal contribution to the damping due to spin pumping from Co through the Cu layer and spin relaxation in Pt layers. Pt layers just 1.5 nm thick are found to be sufficient to enhance the damping and thus act as efficient "spin sinks." In structures with Pt outer layers, this nonlocal contribution to the damping becomes predominant when the Co layer is thinner than 4 nm. C1 NYU, Dept Phys, New York, NY 10003 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Beaujour, JML (reprint author), NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA. NR 35 TC 28 Z9 29 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 21 AR 214405 DI 10.1103/PhysRevB.74.214405 PG 8 WC Physics, Condensed Matter SC Physics GA 121ZM UT WOS:000243195500056 ER PT J AU Beloborodov, IS Zapol, P Gruen, DM Curtiss, LA AF Beloborodov, I. S. Zapol, P. Gruen, D. M. Curtiss, L. A. TI Transport properties of n-type ultrananocrystalline diamond films SO PHYSICAL REVIEW B LA English DT Article ID NANOCRYSTALLINE DIAMOND; GRAIN-BOUNDARIES; CONDUCTIVITY AB We investigate transport properties of ultrananocrystalline diamond films for a broad range of temperatures. Addition of nitrogen during plasma-assisted growth increases the conductivity of ultrananocrystalline diamond films by several orders of magnitude. We show that films produced at low concentration of nitrogen in the plasma are very resistive and electron transport occurs via a variable range hopping mechanism while in films produced at high nitrogen concentration the electron states become delocalized and the transport properties of ultrananocrystalline diamond films can be described using the Boltzmann formalism. We discuss the critical concentration of carriers at which the metal to insulator transition in ultrananocrystalline diamond films occurs and compare our results with available experimental data. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Univ Chicago, Dept Phys, Chicago, IL 60637 USA. Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Beloborodov, IS (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM zapol@anl.gov RI Zapol, Peter/G-1810-2012 OI Zapol, Peter/0000-0003-0570-9169 NR 16 TC 23 Z9 23 U1 2 U2 9 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 23 AR 235434 DI 10.1103/PhysRevB.74.235434 PG 5 WC Physics, Condensed Matter SC Physics GA 121ZO UT WOS:000243195700122 ER PT J AU Clem, JR Mawatari, Y AF Clem, John R. Mawatari, Yasunori TI Flux domes in weak-pinning superconducting films without edges SO PHYSICAL REVIEW B LA English DT Article ID CRITICAL-CURRENT-DENSITY; II SUPERCONDUCTORS; MAGNETIC-FLUX; THIN-FILMS; NONDESTRUCTIVE DETERMINATION; GEOMETRICAL BARRIER; INTERMEDIATE STATE; SURFACE-BARRIER; PENETRATION; TEMPERATURE AB Domelike magnetic-flux-density distributions previously have been observed experimentally and analyzed theoretically in superconducting films with edges, such as in strips and thin plates. Such flux domes have been explained as arising from a combination of strong geometric barriers and weak bulk pinning. In this paper we predict that, even in films with bulk pinning, flux domes also occur when vortices and antivortices are produced far from the film edges underneath current-carrying wires, coils, or permanent magnets placed above the film. Vortex-antivortex pairs penetrating through the film are generated when the magnetic field parallel to the surface exceeds H(c1)+K(c), where H(c1) is the lower critical field and K(c)=j(c)d is the critical sheet-current density (the product of the bulk critical current density j(c) and the film thickness d). The vortices and antivortices move in opposite directions to locations where they join others to create separated vortex and antivortex flux domes. We consider a simple arrangement of a pair of current-carrying wires carrying current I(0) in opposite directions and calculate the magnetic-field and current-density distributions as a function of I(0) both in the bulk-pinning-free case (K(c)=0) and in the presence of bulk pinning, characterized by a field-independent critical sheet-current density (K(c)> 0). C1 Iowa State Univ, Ames Lab, DOE, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Natl Inst Adv Ind Sci & Technol, AIST, Tsukuba, Ibaraki 3058568, Japan. RP Clem, JR (reprint author), Iowa State Univ, Ames Lab, DOE, Ames, IA 50011 USA. NR 33 TC 5 Z9 5 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 21 AR 214505 DI 10.1103/PhysRevB.74.214505 PG 14 WC Physics, Condensed Matter SC Physics GA 121ZM UT WOS:000243195500085 ER PT J AU Dahal, HP Joglekar, YN Bedell, KS Balatsky, AV AF Dahal, Hari P. Joglekar, Yogesh N. Bedell, Kevin S. Balatsky, Alexander V. TI Absence of Wigner crystallization in graphene SO PHYSICAL REVIEW B LA English DT Article ID BERRYS PHASE; GAS AB Graphene, a single sheet of graphite, has attracted tremendous attention due to recent experiments which demonstrate that carriers in it are described by massless fermions with linear dispersion. In this Brief Report, we consider the possibility of Wigner crystallization in graphene in the absence of an external magnetic field. We show that the ratio of potential and kinetic energy is independent of the carrier density, the tuning parameter that usually drives Wigner crystallization, and find that for given material parameters (dielectric constant and Fermi velocity), Wigner crystallization is not possible. We comment on how these results change in the presence of a strong external magnetic field. C1 Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Indiana Univ Purdue Univ, Dept Phys, Indianapolis, IN 46202 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Dahal, HP (reprint author), Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. EM avb@lanl.gov NR 23 TC 39 Z9 39 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 23 AR 233405 DI 10.1103/PhysRevB.74.233405 PG 3 WC Physics, Condensed Matter SC Physics GA 121ZO UT WOS:000243195700019 ER PT J AU Deen, PP Yokaichiya, F de Santis, A Bobba, F Wildes, AR Cucolo, AM AF Deen, P. P. Yokaichiya, F. de Santis, A. Bobba, F. Wildes, A. R. Cucolo, A. M. TI Ferromagnetic clusters and superconducting order in La0.7Ca0.3MnO3/YBa2Cu3O7-delta heterostructures SO PHYSICAL REVIEW B LA English DT Article ID PHASE-SEPARATION; MAGNETIC ORDER; THIN-FILMS; MANGANITES; SUPERLATTICES; NOISE; YBA2CU3O7-DELTA; MULTILAYERS; TRANSITION AB The existence of magnetic and superconducting order in a [(La0.7Ca0.3MnO3)(100 A)/(YBa2Cu3O7-delta)(100 A)](10) superlattice has been studied by polarized neutron reflectometry, SQUID magnetometry, and resistivity measurements. The magnetization line shapes observed by SQUID magnetometry under zero-field-cooled and field-cooled conditions imply an inhomogeneously disordered magnetic state of the manganite blocks. This is substantiated by resistivity measurements and polarized neutron reflectometry. Resistivity measurements under field-cooled conditions reveal strong perturbations, which imply that the ferromagnetic La0.7Ca0.3MnO3 blocks contain strong magnetic disorder with perturbations coupled to the magnetic order via charge hopping between domains. Polarized neutron reflectometry under zero-field-cooled conditions, below the superconducting transition, reveal a noncollinear ferromagnetic structure, coherent across half the superlattice blocks. Across the superconducting transition, the noncollinear components are perturbed by the superconducting order and attempt to align with the dominant ferromagnetic order. Additionally, the magnetic correlation length increases from half the superlattice structure to a magnetic structure correlated across the complete superlattice. At temperatures above the superconducting transition, the noncollinear magnetic components and the magnetic correlation length relax to the structure observed below the superconducting transition. C1 Inst Laue Langevin, F-38042 Grenoble, France. European Synchrotron Radiat Facil, F-38043 Grenoble, France. Brookhaven Natl Lab, Upton, NY 11973 USA. Univ Salerno, CNR INFM Supermat Lab, I-84081 Baronissi, Italy. Univ Salerno, Phys Dept, I-84081 Baronissi, Italy. RP Deen, PP (reprint author), Inst Laue Langevin, 6 Rue Jules Horowitz,Boite Postale 156, F-38042 Grenoble, France. NR 37 TC 11 Z9 11 U1 0 U2 8 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 22 AR 224414 DI 10.1103/PhysRevB.74.224414 PG 8 WC Physics, Condensed Matter SC Physics GA 121ZN UT WOS:000243195600050 ER PT J AU Drichko, N Dressel, M Kuntscher, CA Pashkin, A Greco, A Merino, J Schlueter, J AF Drichko, N. Dressel, M. Kuntscher, C. A. Pashkin, A. Greco, A. Merino, J. Schlueter, J. TI Electronic properties of correlated metals in the vicinity of a charge-order transition: Optical spectroscopy of alpha-(BEDT-TTF)(2)MHg(SCN)(4) (M=NH4, Rb, Tl) SO PHYSICAL REVIEW B LA English DT Article ID ORGANIC CONDUCTORS; BEDT-TTF; TEMPERATURE-DEPENDENCE; INFRARED CONDUCTIVITY; PRESSURE; STATE; FIELD; NH4; ALPHA-(BEDT-TTF)(2)KHG(SCN)(4); SUPERCONDUCTIVITY AB The infrared spectra of the quasi-two-dimensional organic conductors alpha-(BEDT-TTF)(2)MHg(SCN)(4) (M=NH4, Rb, Tl) were measured in the range from 50 to 7000 cm(-1) down to low temperatures in order to explore the influence of electronic correlations in quarter-filled metals. The interpretation of electronic spectra was confirmed by measurements of pressure dependent reflectance of alpha-(BEDT-TTF)(2)KHg(SCN)(4) at T=300 K. The signatures of charge order fluctuations become more pronounced when going from the NH4 salt to Rb and further to Tl compounds. On reducing the temperature, the metallic character of the optical response in the NH4 and Rb salts increases, and the effective mass diminishes. For the Tl compound, clear signatures of charge order are found albeit the metallic properties still dominate. From the temperature dependence of the electronic scattering rate the crossover temperature is estimated below which the coherent charge carriers response sets in. The observations are in excellent agreement with recent theoretical predictions for a quarter-filled metallic system close to charge order. C1 Univ Stuttgart, Inst Phys 1, D-70550 Stuttgart, Germany. AF Ioffe Phys Tech Inst, St Petersburg, Russia. UNR, CONICET, Fac Ciencias Exactas Ingn & Agrimensura, Rosario, Argentina. UNR, CONICET, Inst Fis Rosario, Rosario, Argentina. Univ Autonoma Madrid, Dept Fis Teor Mat Condensada, E-28049 Madrid, Spain. Argonne Natl Lab, Div Sci Mat, Argonne, IL 60439 USA. RP Drichko, N (reprint author), Univ Stuttgart, Inst Phys 1, Pfaffenwaldring 57, D-70550 Stuttgart, Germany. RI Pashkin, Alexej/A-4705-2009; Dressel, Martin/D-3244-2012; Merino, Jaime/L-4135-2014 OI Merino, Jaime/0000-0002-2413-7189 NR 43 TC 30 Z9 30 U1 0 U2 8 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 23 AR 235121 DI 10.1103/PhysRevB.74.235121 PG 11 WC Physics, Condensed Matter SC Physics GA 121ZO UT WOS:000243195700040 ER PT J AU Du, JC Devanathan, R Corrales, LR Weber, WJ Cormack, AN AF Du, Jincheng Devanathan, Ram Corrales, L. Rene Weber, William J. Cormack, Alastair N. TI Short- and medium-range structure of amorphous zircon from molecular dynamics simulations SO PHYSICAL REVIEW B LA English DT Article ID NUCLEAR-MAGNETIC-RESONANCE; RADIATION-DAMAGE; CRYSTAL-STRUCTURE; SILICATE; DIFFRACTION; GLASS; TEMPERATURE; TRANSITION; METAMICTIZATION; ZRSIO4 AB We have simulated the structure of amorphous zircon using classical molecular dynamics simulations with a partial-charge model. We present detailed structural characterizations of the simulated high and low density amorphous zircon, and compare our results with available neutron diffraction, EXAFS, NMR and other experimental results. The results show that amorphization leads to polymerization of the silicon-oxygen network and the formation of regions rich in zirconium. The average n value of Q(n) species is 1.6-1.8, where a considerable percentage of the oxygen ions (around 20%) have only zirconium in the first coordination shell in amorphous zircon. The Zr-O bond length (around 2.10 angstrom) is shorter and the oxygen coordination number around zirconium smaller (6-7) than in crystalline zircon, in good agreement with the EXAFS results. The calculated static neutron structure factors show reasonable agreement with experimental result. The medium range structures were characterized by the first sharp diffraction peak and primitive ring analysis, as well as from Qn distribution, oxygen environment and cation-cation pair distribution. It is found that most of the silicon-oxygen tetrahedra form branched chains and rings of various sizes, while the zircon-oxygen polyhedra form a percolated network different from the crystalline percolated structure. C1 Pacific NW Natl Lab, Fundamental Sci Directorate, Richland, WA 99352 USA. Alfred Univ, Sch Engn, Alfred, NY 14802 USA. RP Du, JC (reprint author), Pacific NW Natl Lab, Fundamental Sci Directorate, Richland, WA 99352 USA. EM jd9xc@virginia.edu RI Du, Jincheng/A-8052-2011; Weber, William/A-4177-2008; Devanathan, Ram/C-7247-2008 OI Weber, William/0000-0002-9017-7365; Devanathan, Ram/0000-0001-8125-4237 NR 46 TC 7 Z9 7 U1 2 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 21 AR 214204 DI 10.1103/PhysRevB.74.214204 PG 14 WC Physics, Condensed Matter SC Physics GA 121ZM UT WOS:000243195500044 ER PT J AU Fister, TT Seidler, GT Hamner, C Cross, JO Soininen, JA Rehr, JJ AF Fister, T. T. Seidler, G. T. Hamner, C. Cross, J. O. Soininen, J. A. Rehr, J. J. TI Background proportional enhancement of the extended fine structure in nonresonant inelastic x-ray scattering SO PHYSICAL REVIEW B LA English DT Article ID NEAR-EDGE STRUCTURE; ABSORPTION-SPECTRA; COMPTON-SCATTERING; RAMAN-SCATTERING; PHOTOABSORPTION AB We report new measurements and calculations of the nonresonant inelastic x-ray scattering (NRIXS) from Mg and Al for a wide range of momentum transfers, q. Extended oscillations in the dynamic structure factor S (q,omega) due to scattering from the 2p and 2s orbitals (i.e., L edges) are observed out to more than 150 eV past the binding energy. These results are discussed in context of the recently proposed representation of S (q,omega) for core shells as an atomic background modulated by interference between different photoelectron scattering paths, in analogy to the standard treatment of extended x-ray absorption fine structure. In agreement with this representation, we find a strong increase in the atomic background with increasing q with a concomitant enhancement in the amplitude of the extended fine structure. This effect should be generic and hence may enable improved measurement of the extended fine structure in a wide range of materials containing low-Z elements. C1 Univ Washington, Dept Phys, Seattle, WA 98105 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Helsinki, Div Xray Phys, Dept Phys Sci, FIN-00014 Helsinki, Finland. RP Seidler, GT (reprint author), Univ Washington, Dept Phys, Seattle, WA 98105 USA. EM seidler@phys.washington.edu RI Seidler, Gerald/I-6974-2012 NR 29 TC 22 Z9 22 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 21 AR 214117 DI 10.1103/PhysRevB.74.214117 PG 7 WC Physics, Condensed Matter SC Physics GA 121ZM UT WOS:000243195500039 ER PT J AU Franceschetti, A Barabash, SV Osorio-Guillen, J Zunger, A van Schilfgaarde, M AF Franceschetti, A. Barabash, S. V. Osorio-Guillen, J. Zunger, A. van Schilfgaarde, M. TI Enhancement of interactions between magnetic ions in semiconductors due to declustering SO PHYSICAL REVIEW B LA English DT Article ID 1ST PRINCIPLES; ALLOYS AB It is often assumed that the exchange interaction between two magnetic ions in a semiconductor host depends only on the distance and orientation of the magnetic ions. Using first-principles electronic structure calculations of Mn impurities in GaAs, we show that the exchange interaction between two magnetic ions depends also on the concentration and spatial arrangement of the other, "spectator" magnetic ions. Thus, such systems cannot be described by a Heisenberg Hamiltonian with fixed exchange interactions. Specifically, we find that at fixed Mn concentration, association ("clustering") of Mn impurities leads to a decrease of the Curie temperature, while dissociation ("declustering") leads to higher Curie temperatures. We conclude that clustering is the major impediment to achieve high Curie temperatures in Mn-doped GaAs. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. Univ Arizona, Tempe, AZ 85287 USA. RP Franceschetti, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM alberto_franceschetti@nrel.gov RI Osorio-Guillen, Jorge/B-7587-2008; Schaff, William/B-5839-2009; Zunger, Alex/A-6733-2013 OI Osorio-Guillen, Jorge/0000-0002-7384-8999; NR 18 TC 4 Z9 4 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 24 AR 241303 DI 10.1103/PhysRevB.74.241303 PG 4 WC Physics, Condensed Matter SC Physics GA 121ZP UT WOS:000243195800010 ER PT J AU Garcia-Lekue, A Wang, LW AF Garcia-Lekue, A. Wang, Lin-Wang TI Elastic quantum transport calculations for molecular nanodevices using plane waves SO PHYSICAL REVIEW B LA English DT Article ID COMPLEX BAND-STRUCTURES; ELECTRONIC-STRUCTURE; CONDUCTANCE; JUNCTION; SURFACES; DEVICE AB The elastic quantum transport through a molecule connected by two quantum wires is calculated using the exact scattering states of the system. The formalism introduced in Phys. Rev. B 72, 045417 (2005) has been implemented here using exact evanescent states, instead of approximated evanescent states. We present a direct approach to calculate the complex band structure under the plane-wave pseudopotential Hamiltonian. The overall scheme allows us to obtain numerically accurate and stable solutions for the elastic transport using a plane-wave basis. The total computational time is similar to that of a standard ground-state calculation. As a model system, we have considered a benzene molecule connected by two Cu wires and we have investigated the effects of the molecule rotation on the transmission coefficients. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Garcia-Lekue, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. EM agarcia-lckuc@lbl.gov NR 35 TC 10 Z9 10 U1 1 U2 6 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 24 AR 245404 DI 10.1103/PhysRevB.74.245404 PG 10 WC Physics, Condensed Matter SC Physics GA 121ZP UT WOS:000243195800099 ER PT J AU Graetz, J Chaudhuri, S Lee, Y Vogt, T Muckerman, JT Reilly, JJ AF Graetz, J. Chaudhuri, S. Lee, Y. Vogt, T. Muckerman, J. T. Reilly, J. J. TI Pressure-induced structural and electronic changes in alpha-AlH3 SO PHYSICAL REVIEW B LA English DT Article ID ALUMINUM-HYDRIDE; CRYSTAL-STRUCTURE; PHASE-TRANSITION; HYDROGEN; ALH3; THERMODYNAMICS; SIMULATION AB Pressure-induced structural, electronic, and thermodynamic changes in alpha-AlH3 were investigated using synchrotron x-ray powder diffraction and density-functional theory. No first-order structural transitions were observed up to 7 GPa. However, increasing Bragg peak asymmetry with pressure suggests a possible monoclinic distortion at moderate pressures (1-7 GPa). The pressure-volume relationship was fit to the Birch-Murnaghan equation of state to give a bulk modulus of approximately 40 GPa. The reduced cell volume at high pressure is accommodated by octahedral tilting and a decrease of the Al-H bond distance. Ab initio calculations of the free energy indicate that hydrogenation becomes favorable at H-2 pressures above 0.7 GPa at 300 K. Electronic density of states calculations reveal a slight decrease in the band gap with pressure but no evidence of an insulator-to-metal transition predicted by previous high-pressure studies. Calculated Mulliken charges and bond populations suggest a mixed ionic and covalent Al-H bond at 1 atm with an increase in covalent character with pressure. C1 Brookhaven Natl Lab, Dept Energy Sci & Technol, Upton, NY 11973 USA. Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. Yonsei Univ, Dept Earth Syst Sci, Seoul 120749, South Korea. Univ S Carolina, USC NanoCtr, Columbia, SC 29208 USA. Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. RP Graetz, J (reprint author), Brookhaven Natl Lab, Dept Energy Sci & Technol, Upton, NY 11973 USA. RI Vogt, Thomas /A-1562-2011; Muckerman, James/D-8752-2013; Lee, Yongjae/K-6566-2016 OI Vogt, Thomas /0000-0002-4731-2787; NR 36 TC 50 Z9 50 U1 2 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 21 AR 214114 DI 10.1103/PhysRevB.74.214114 PG 7 WC Physics, Condensed Matter SC Physics GA 121ZM UT WOS:000243195500036 ER PT J AU Gungerich, M Klar, PJ Heimbrodt, W Weiser, G Geisz, JF Harris, C Lindsay, A O'Reilly, EP AF Guengerich, M. Klar, P. J. Heimbrodt, W. Weiser, G. Geisz, J. F. Harris, C. Lindsay, A. O'Reilly, E. P. TI Experimental and theoretical investigation of the conduction band edge of GaNxP1-x SO PHYSICAL REVIEW B LA English DT Article ID HYDROSTATIC-PRESSURE; STIMULATED EMISSION; ISOELECTRONIC TRAP; ALLOYS; GAP; SEMICONDUCTORS; GAN(X)AS1-X; DEPENDENCE AB We show that a two-level band-anticrossing (BAC) model fails to describe the evolution of N-related states in GaNxP1-x. Band structure calculations prove that a two-level model describes these states in ordered GaNP supercells. Photocurrent measurements support a BAC-related blueshift of the GaP-like direct band gap in disordered GaNP, but calculations and electromodulated absorption and pressure studies show that the wide energy distribution of the lower-lying N-related states leads to the anticrossing interaction involving many N levels in disordered GaNP. C1 Univ Marburg, Dept Phys, D-35032 Marburg, Germany. Univ Marburg, Ctr Mat Sci, D-35032 Marburg, Germany. Natl Renewable Energy Lab, Golden, CO 80401 USA. Tyndall Natl Inst, Cork, Ireland. RP Gungerich, M (reprint author), Univ Marburg, Dept Phys, Renthof 5, D-35032 Marburg, Germany. EM Martin.Guengerich@physik.uni-marburg.de RI O'Reilly, Eoin/A-5329-2009 OI O'Reilly, Eoin/0000-0001-5537-2985 NR 24 TC 21 Z9 21 U1 0 U2 7 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 24 AR 241202 DI 10.1103/PhysRevB.74.241202 PG 4 WC Physics, Condensed Matter SC Physics GA 121ZP UT WOS:000243195800007 ER PT J AU Homes, CC Lobo, RPSM Fournier, P Zimmers, A Greene, RL AF Homes, C. C. Lobo, R. P. S. M. Fournier, P. Zimmers, A. Greene, R. L. TI Optical determination of the superconducting energy gap in electron-doped Pr1.85Ce0.15CuO4 SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; T-C SUPERCONDUCTORS; QUANTUM CRITICAL-BEHAVIOR; CUPRATE SUPERCONDUCTORS; TRANSPORT-PROPERTIES; PENETRATION DEPTH; INFRARED PROPERTIES; PAIRING SYMMETRY; CHARGE-CARRIERS; THIN-FILMS AB The optical properties of single crystal Pr1.85Ce0.15CuO4 have been measured over a wide frequency range above and below the critical temperature (T-c similar or equal to 20 K). In the normal state the coherent part of the conductivity is described by the Drude model, from which the scattering rate just above T-c is determined to be 1/tau similar or equal to 80 cm(-1). The condition that h/tau approximate to 2k(B)T near T-c appears to be a general result in many of the cuprate superconductors. Below T-c the formation of a superconducting energy gap is clearly visible in the reflectance, from which the gap maximum is estimated to be Delta(0)similar or equal to 35 cm(-1) (4.3 meV). The ability to observe the superconducting energy gap in the optical properties favors the nonmonotonic over the monotonic description of the d-wave gap. The penetration depth for T < T-c is lambda similar or equal to 2000 A, which when taken with the estimated value for the dc conductivity just above T-c of sigma(dc)similar or equal to 35x10(3) Omega(-1) cm(-1) places this material on the general scaling line for the cuprates defined by 1/lambda(2)proportional to sigma(dc)(T similar or equal to T-c)center dot T-c. These results are consistent with the observation that 1/tau approximate to 2 Delta(0), which implies that the material is not in the clean limit. C1 Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. ESPCI, CNRS, UPR 5, Lab Phys Solide, F-75231 Paris, France. Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada. Univ Maryland, Dept Phys, Ctr Superconduct Res, College Pk, MD 20742 USA. RP Homes, CC (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM homes@bnl.gov OI Lobo, Ricardo/0000-0003-2355-6856 NR 80 TC 27 Z9 29 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 21 AR 214515 DI 10.1103/PhysRevB.74.214515 PG 8 WC Physics, Condensed Matter SC Physics GA 121ZM UT WOS:000243195500095 ER PT J AU Hong, W Zhang, ZY Suo, ZG AF Hong, Wei Zhang, Zhenyu Suo, Zhigang TI Interplay between elastic interactions and kinetic processes in stepped Si (001) homoepitaxy SO PHYSICAL REVIEW B LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; CRYSTAL-SURFACES; VICINAL SI(001); EQUILIBRIUM STRUCTURES; SI(100) SURFACES; BILAYER STEPS; SINGLE-LAYER; MBE GROWTH; DIFFUSION; SI AB A vicinal Si (001) surface may form stripes of terraces, separated by monatomic-layer-high steps of two kinds, S-A and S-B. As adatoms diffuse on the terraces and attach to or detach from the steps, the steps move. In equilibrium, the steps are equally spaced due to elastic interaction. During deposition, however, S-A is less mobile than S-B. We model the interplay between the elastic and kinetic effects that drives step motion, and show that during homoepitaxy all the steps may move in a steady state, such that alternating terraces have time-independent, but unequal, widths. The ratio between the widths of neighboring terraces is tunable by the deposition flux and substrate temperature. We study the stability of the steady-state mode of growth using both linear perturbation analysis and numerical simulations. We elucidate the delicate roles played by the standard Ehrlich-Schwoebel (ES) barriers and inverse ES barriers in influencing growth stability in the complex system containing (S-A+S-B) step pairs. C1 Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Hong, W (reprint author), Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA. RI Hong, Wei/B-1537-2008; Suo, Zhigang/B-1067-2008 OI Hong, Wei/0000-0001-6598-3456; Suo, Zhigang/0000-0002-4068-4844 NR 36 TC 3 Z9 3 U1 1 U2 10 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 23 AR 235318 DI 10.1103/PhysRevB.74.235318 PG 9 WC Physics, Condensed Matter SC Physics GA 121ZO UT WOS:000243195700077 ER PT J AU Joglekar, YN Balatsky, AV Das Sarma, S AF Joglekar, Yogesh N. Balatsky, Alexander V. Das Sarma, S. TI Wigner supersolid of excitons in electron-hole bilayers SO PHYSICAL REVIEW B LA English DT Article ID SPATIALLY SEPARATED ELECTRONS; BOSE-EINSTEIN CONDENSATION; PHASE-DIAGRAM; 2-DIMENSIONAL ELECTRON; SYSTEMS; SUPERCONDUCTIVITY; TRANSPORT; MECHANISM; HELIUM; STATE AB Bilayer electron-hole systems, where carriers in one layer are electrons and carriers in the other are holes, have been actively investigated in recent years with the focus on Bose-Einstein condensation of excitons. This condensation is expected to occur when the layer separation d is much smaller than the interparticle distance r(s)a(B) within each layer. In this Brief Report, we argue for the existence of a state, Wigner supersolid, in which excitons are phase coherent but form a Wigner crystal due to dipolar repulsion. We present the qualitative phase diagram of a bilayer system and discuss properties and possible signatures of the Wigner supersolid phase. C1 Indiana Univ Purdue Univ, Dept Phys, Indianapolis, IN 46202 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Univ Maryland, Dept Phys, Condensed Matter Theory Ctr, College Pk, MD 20742 USA. RP Joglekar, YN (reprint author), Indiana Univ Purdue Univ, Dept Phys, Indianapolis, IN 46202 USA. RI Das Sarma, Sankar/B-2400-2009 OI Das Sarma, Sankar/0000-0002-0439-986X NR 36 TC 24 Z9 25 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 23 AR 233302 DI 10.1103/PhysRevB.74.233302 PG 4 WC Physics, Condensed Matter SC Physics GA 121ZO UT WOS:000243195700009 ER PT J AU Kirby, BJ Borchers, JA Rhyne, JJ O'Donovan, KV Velthuis, SGET Roy, S Sanchez-Hanke, C Wojtowicz, T Liu, X Lim, WL Dobrowolska, M Furdyna, JK AF Kirby, B. J. Borchers, J. A. Rhyne, J. J. O'Donovan, K. V. Velthuis, S. G. E. te Roy, S. Sanchez-Hanke, Cecilia Wojtowicz, T. Liu, X. Lim, W. L. Dobrowolska, M. Furdyna, J. K. TI Magnetic and chemical nonuniformity in Ga1-xMnxAs films as probed by polarized neutron and x-ray reflectometry SO PHYSICAL REVIEW B LA English DT Article ID CURIE-TEMPERATURE; (GA,MN)AS; FERROMAGNETISM; EPILAYERS; INJECTION; GAMNAS; GAAS AB We have used complementary neutron and x-ray reflectivity techniques to examine the depth profiles of a series of as-grown and annealed Ga1-xMnxAs thin films. A magnetization gradient is observed for two as-grown films and originates from a nonuniformity of Mn at interstitial sites, and not from local variations in Mn at Ga sites. Furthermore, we see that the depth-dependent magnetization can vary drastically among as-grown Ga1-xMnxAs films despite being deposited under seemingly similar conditions. These results imply that the depth profile of interstitial Mn is dependent not only on annealing, but is also extremely sensitive to initial growth conditions. We observe that annealing improves the magnetization by producing a surface layer that is rich in Mn and O, indicating that the interstitial Mn migrates to the surface. Finally, we expand upon our previous neutron reflectivity study of Ga1-xMnxAs, by showing how the depth profile of the chemical composition at the surface and through the film thickness is directly responsible for the complex magnetization profiles observed in both as-grown and annealed films. C1 Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. Univ Calif Irvine, Dept Physiol & Biophys, Irvine, CA 92697 USA. RP Kirby, BJ (reprint author), Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. RI te Velthuis, Suzanne/I-6735-2013 OI te Velthuis, Suzanne/0000-0002-1023-8384 NR 28 TC 16 Z9 16 U1 1 U2 7 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 24 AR 245304 DI 10.1103/PhysRevB.74.245304 PG 7 WC Physics, Condensed Matter SC Physics GA 121ZP UT WOS:000243195800066 ER PT J AU Kiselev, MN Kikoin, K Shekhter, RI Vinokur, VM AF Kiselev, M. N. Kikoin, K. Shekhter, R. I. Vinokur, V. M. TI Kondo shuttling in a nanoelectromechanical single-electron transistor SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM DOTS AB We investigate theoretically a mechanically assisted Kondo effect and electric charge shuttling in a nanoelectromechanical single-electron transistor. It is shown that the mechanical motion of the central island (a small metallic particle) with the spin results in a time-dependent tunneling width Gamma(t) which leads to an effective increase of the Kondo temperature. The time-dependent oscillating Kondo temperature T(K)(t) changes the scaling behavior of the differential conductance, resulting in the suppression of transport in a strong-coupling and its enhancement in a weak-coupling regime. The conditions for fine-tuning of the Abrikosov-Suhl resonance and possible experimental realization of the Kondo shuttling are discussed. C1 Univ Wurzburg, Inst Theoret Phys, D-97074 Wurzburg, Germany. Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel. Univ Gothenburg, Dept Phys, SE-41296 Gothenburg, Sweden. RP Kiselev, MN (reprint author), Univ Wurzburg, Inst Theoret Phys, D-97074 Wurzburg, Germany. RI Kiselev, Mikhail/C-8726-2012 OI Kiselev, Mikhail/0000-0003-2542-3686 NR 29 TC 18 Z9 19 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 23 AR 233403 DI 10.1103/PhysRevB.74.233403 PG 4 WC Physics, Condensed Matter SC Physics GA 121ZO UT WOS:000243195700017 ER PT J AU Klimczuk, T Xu, Q Morosan, E Thompson, JD Zandbergen, HW Cava, RJ AF Klimczuk, T. Xu, Q. Morosan, E. Thompson, J. D. Zandbergen, H. W. Cava, R. J. TI Superconductivity in noncentrosymmetric Mg10Ir19B16 SO PHYSICAL REVIEW B LA English DT Article ID TEMPERATURE; TRANSITION; SPIN AB Mg10Ir19B16, a previously unreported compound in the Mg-Ir-B chemical system, is found to be superconducting at temperatures near 5 K. The fact that the compound exhibits a range of superconducting temperatures between 4 and 5 K suggests that a range of stoichiometries is allowed, though no structural evidence for this is observed. The compound has a large, noncentrosymmetric, body centered cubic unit cell with a=10.568 A, displaying a structure type for which no previous superconductors have been reported. C1 Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. Gdansk Univ Technol, Fac Appl Phys & Math, PL-80952 Gdansk, Poland. Delft Univ Technol, Kavli Inst Nanosci, Natl Ctr HREM, Delft, Netherlands. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Klimczuk, T (reprint author), Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RI Klimczuk, Tomasz/M-1716-2013 OI Klimczuk, Tomasz/0000-0003-2602-5049 NR 22 TC 44 Z9 44 U1 3 U2 12 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 22 AR 220502 DI 10.1103/PhysRevB.74.220502 PG 4 WC Physics, Condensed Matter SC Physics GA 121ZN UT WOS:000243195600007 ER PT J AU Lee, GD Wang, CZ Yoon, E Hwang, NM Ho, KM AF Lee, Gun-Do Wang, C. Z. Yoon, Euijoon Hwang, Nong-Moon Ho, K. M. TI Vacancy defects and the formation of local haeckelite structures in graphene from tight-binding molecular dynamics SO PHYSICAL REVIEW B LA English DT Article ID SCANNING TUNNELING MICROSCOPE; TOTAL-ENERGY CALCULATIONS; WALLED CARBON NANOTUBES; WAVE BASIS-SET; GRAPHITE AB The dynamics of multivacancy defects in a graphene layer is investigated by tight-binding molecular dynamics simulations and by first principles calculation. The simulations show that four single vacancies in the graphene layer first coalesce into two double vacancies, each consisting of a pentagon-heptagon-pentagon (5-8-5) defective structure. While one of the 5-8-5 defects further reconstructs into a 555-777 defect, which is composed of three pentagonal rings and three heptagonal rings, another 5-8-5 defect diffuses toward the reconstructed 555-777 defect. During the 5-8-5 defect diffusion process, three interesting mechanisms, i.e., "dimer diffusion," "chain diffusion," and "single atom diffusion," are observed. Finally, the four single vacancies reconstruct into two adjacent 555-777 defects, which is a local haeckelite structure. C1 Seoul Natl Univ, Sch Mat Sci & Engn, Seoul 151742, South Korea. Seoul Natl Univ, Interuniv Semicond Res Ctr, ISRC, Seoul 151742, South Korea. Seoul Natl Univ, Sch Mat Sci & Engn, Natl Res Lab Charged Nanoparticles, Seoul 151742, South Korea. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Lee, GD (reprint author), Seoul Natl Univ, Sch Mat Sci & Engn, Seoul 151742, South Korea. RI Lee, Gun-Do/L-1259-2013; OI Lee, Gun-Do/0000-0001-8328-8625; Wang, Chong/0000-0003-4489-4344 NR 24 TC 60 Z9 60 U1 3 U2 36 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 24 AR 245411 DI 10.1103/PhysRevB.74.245411 PG 5 WC Physics, Condensed Matter SC Physics GA 121ZP UT WOS:000243195800106 ER PT J AU Lu, JQ Zhang, XG Pantelides, ST AF Lu, Jun-Qiang Zhang, X. -G. Pantelides, Sokrates T. TI Tunable spin Hall effect by Stern-Gerlach diffraction SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC-FIELD; SEMICONDUCTORS AB We propose an effect based on simultaneous real- and reciprocal-space magnetic inhomogeneities, combining features of the Stern-Gerlach and both the intrinsic and extrinsic spin Hall effects. The known difficulties of directly observing the spin Hall effect are circumvented as spin currents generated from the effect are well-defined, dissipative, and detectable. Simulations of a specific system are used to illustrate wide tunability, allowing formation of a periodic "spin lattice" distinct from the "charge lattice," selective polarization flipping, or spin current detection. Similar effects can be produced by photons and neutrons. C1 Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. RP Lu, JQ (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RI LU, JUN-QIANG/B-9511-2008 OI LU, JUN-QIANG/0000-0002-0758-9925 NR 21 TC 0 Z9 0 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 24 AR 245319 DI 10.1103/PhysRevB.74.245319 PG 5 WC Physics, Condensed Matter SC Physics GA 121ZP UT WOS:000243195800081 ER PT J AU Lu, L Hancock, JN Chabot-Couture, G Ishii, K Vajk, OP Yu, G Mizuki, J Casa, D Gog, T Greven, M AF Lu, L. Hancock, J. N. Chabot-Couture, G. Ishii, K. Vajk, O. P. Yu, G. Mizuki, J. Casa, D. Gog, T. Greven, M. TI Incident energy and polarization-dependent resonant inelastic x-ray scattering study of La2CuO4 SO PHYSICAL REVIEW B LA English DT Article ID RAMAN-SCATTERING; ABSORPTION SPECTROSCOPY; EDGE; EXCITATIONS; SPECTRA; ND2CUO4; SOLIDS; OXIDES; WATER AB We present a detailed Cu K-edge resonant inelastic x-ray scattering (RIXS) study of the Mott insulator La2CuO4 in the 1-7 eV energy loss range. As initially found for the high-temperature superconductor HgBa2CuO4+delta, the spectra exhibit a multiplet of weakly dispersive electron-hole excitations, which are revealed by utilizing the subtle dependence of the cross section on the incident photon energy. The close similarity between the fine structures for in-plane and out-of-plane polarizations is indicative of the central role played by the 1s core hole in inducing charge excitations within the CuO2 planes. On the other hand, we observe a polarization dependence of the spectral weight, and careful analysis reveals two separate features near 2 eV that may be related to different charge-transfer processes. The polarization dependence indicates that the 4p electrons contribute significantly to the RIXS cross section. Third-order perturbation arguments and a shake-up of valence excitations are then applied to account for the final-energy resonance in the spectra. As an alternative scenario, we discuss fluorescence-like emission processes due to 1s -> 4p transitions into a narrow continuum 4p band. C1 Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. Stanford Univ, Dept Phys, Stanford, CA 94305 USA. Argonne Natl Lab, CMC XOR, Adv Photon Source, Argonne, IL 60439 USA. RP Lu, L (reprint author), Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. RI Hancock, Jason/F-4694-2010; Yu, Guichuan/K-4025-2014; Casa, Diego/F-9060-2016 NR 45 TC 29 Z9 29 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 22 AR 224509 DI 10.1103/PhysRevB.74.224509 PG 9 WC Physics, Condensed Matter SC Physics GA 121ZN UT WOS:000243195600094 ER PT J AU Lumsden, MD Nagler, SE Sales, BC Tennant, DA McMorrow, DF Lee, SH Park, S AF Lumsden, M. D. Nagler, S. E. Sales, B. C. Tennant, D. A. McMorrow, D. F. Lee, S. -H. Park, S. TI Magnetic excitation spectrum of the square lattice S=1/2 Heisenberg antiferromagnet K2V3O8 SO PHYSICAL REVIEW B LA English DT Article ID SPIN-WAVE THEORY; TEMPERATURE BEHAVIOR; LA2CUO4; DYNAMICS; SUPERCONDUCTIVITY; ENERGY; OXIDES; ORDER; ALPHA'-NAV2O5; FLUCTUATIONS AB We have explored the magnetic excitation spectrum of the S=1/2 square lattice Heisenberg antiferromagnet, K2V3O8, using both triple-axis and time-of-flight inelastic neutron scattering. The long-wavelength spin waves are consistent with the previously determined Hamiltonian for this material. A small energy gap of 72 +/- 9 mu eV is observed at the antiferromagnetic zone center and the near-neighbor exchange constant is determined to be 1.08 +/- 0.03 meV. A finite ferromagnetic interplanar coupling is observed along the crystallographic c axis with a magnitude of J(c)=-0.0036 +/- 0.0006 meV. However, upon approaching the zone boundary, the observed excitation spectrum deviates significantly from the expectation of linear spin wave theory resulting in split modes at the (pi/2,pi/2) zone boundary point. The effects of magnon-phonon interaction, orbital degrees of freedom, multimagnon scattering, and dilution/site randomness are considered in the context of the mode splitting. Unfortunately, no fully satisfactory explanation of this phenomenon is found and further theoretical and experimental work is needed. C1 Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany. Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. UCL, London Ctr Nanotechnol, London WC1E 6BT, England. UCL, Dept Phys & Astron, London WC1E 6BT, England. Riso Natl Lab, Dept Mat Res, DK-4000 Roskilde, Denmark. Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. Korea Atom Energy Res Inst, HANARO Ctr, Taejon, South Korea. RP Lumsden, MD (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, POB 2008, Oak Ridge, TN 37831 USA. RI McMorrow, Desmond/C-2655-2008; Nagler, Stephen/B-9403-2010; Nagler, Stephen/E-4908-2010; Tennant, David/Q-2497-2015; Lumsden, Mark/F-5366-2012 OI McMorrow, Desmond/0000-0002-4947-7788; Nagler, Stephen/0000-0002-7234-2339; Tennant, David/0000-0002-9575-3368; Lumsden, Mark/0000-0002-5472-9660 NR 81 TC 12 Z9 12 U1 0 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 21 AR 214424 DI 10.1103/PhysRevB.74.214424 PG 14 WC Physics, Condensed Matter SC Physics GA 121ZM UT WOS:000243195500075 ER PT J AU Melko, RG Del Maestro, A Burkov, AA AF Melko, R. G. Del Maestro, A. Burkov, A. A. TI Striped supersolid phase and the search for deconfined quantum criticality in hard-core bosons on the triangular lattice SO PHYSICAL REVIEW B LA English DT Article ID DENSITY; MODEL AB Using large-scale quantum Monte Carlo simulations we study bosons hopping on a triangular lattice with nearest (V) and next-nearest (V(')) neighbor repulsive interactions. In the limit where V=0 but V(') is large, we find an example of an unusual period-three striped supersolid state that is stable at 1/2-filling. We discuss the relationship of this state to others on the rich ground-state phase diagram, which include a previously discovered supersolid, a uniform superfluid, as well as several Mott insulating phases. We study several superfluid- and supersolid-to-Mott phase transitions, including one proposed by a recent phenomenological dual vortex field theory as a candidate for an exotic deconfined quantum critical point. We find no examples of unconventional quantum criticality among any of the interesting phase transitions in the model. C1 Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. RP Melko, RG (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI Del Maestro, Adrian/E-8281-2011 OI Del Maestro, Adrian/0000-0001-9483-8258 NR 37 TC 23 Z9 23 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 21 AR 214517 DI 10.1103/PhysRevB.74.214517 PG 9 WC Physics, Condensed Matter SC Physics GA 121ZM UT WOS:000243195500097 ER PT J AU Meng, Y Von Dreele, RB Toby, BH Chow, P Hu, MY Shen, GY Mao, HK AF Meng, Yue Von Dreele, Robert B. Toby, Brian H. Chow, Paul Hu, Michael Y. Shen, Guoyin Mao, Ho-kwang TI Hard x-ray radiation induced dissociation of N-2 and O-2 molecules and the formation of ionic nitrogen oxide phases under pressure SO PHYSICAL REVIEW B LA English DT Article ID NITROSONIUM NITRATE; CRYSTAL-STRUCTURE; CARBON-DIOXIDE; ELECTRON; DISPROPORTIONATION; TRANSFORMATIONS; PHOTOIONIZATION; FRAGMENTATION; TEMPERATURES; EXCITATION AB Applying hard x-ray photon radiation to a mixture of liquid N-2 and O-2 contained under pressure in a diamond-anvil cell, we break the strong covalent bonding of the molecules and form ionic compounds of complex nitrogen oxide ions at a pressure as low as 0.5 GPa previously expected for molecular phases. A new ionic NO(+)NO3(-) phase has been discovered at around 2 GPa. Structural characterization of the high-pressure ionic NO(+)NO3(-) phase with Rietveld refinement reveals an interesting layered monoclinic P2(1)/m structure with large elastic anisotropy, offering promises for generating materials with interesting properties and providing the basis for future theoretical studies. C1 Argonne Natl Lab, HPCAT, Adv Photon Source, Argonne, IL 60439 USA. Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Argonne, IL 60439 USA. RP Meng, Y (reprint author), Argonne Natl Lab, HPCAT, Adv Photon Source, Argonne, IL 60439 USA. EM ymeng@hpcat.aps.anl.gov RI Shen, Guoyin/D-6527-2011; Toby, Brian/F-3176-2013 OI Toby, Brian/0000-0001-8793-8285 NR 29 TC 10 Z9 10 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 21 AR 214107 DI 10.1103/PhysRevB.74.214107 PG 5 WC Physics, Condensed Matter SC Physics GA 121ZM UT WOS:000243195500029 ER PT J AU Miyake, T Zhang, PH Cohen, ML Louie, SG AF Miyake, Takashi Zhang, Peihong Cohen, M. L. Louie, S. G. TI Quasiparticle energy of semicore d electrons in ZnS: Combined LDA+U and GW approach SO PHYSICAL REVIEW B LA English DT Article ID II-VI-COMPOUNDS; BAND-STRUCTURES; SEMICONDUCTORS; DENSITY; APPROXIMATION; PHOTOEMISSION; INSULATORS; WURTZITE; STATES; GAPS AB We present a first-principles study of quasiparticle energies in ZnS, with particular emphasis on the semicore d electrons that are located too shallow by similar to 2.8 eV compared to experiment in the local density approximation (LDA). Although the many-body correction in the GW approximation pulls down the d band, the correction (-0.7 eV) is too small to reproduce measured values. The LDA+U method also shifts the d band down compared to LDA. With a reasonable choice of U, d-state energy in agreement with experiment may be achieved. Subsequent quasiparticle calculation within the GW approximation performed to the LDA+U mean-field solution, however, pushes the d band back close to the GW result. These results show that the standard GW method is insensitive to the reference mean-field Hamiltonian for this class of materials and suggest that going beyond GW may be needed for an accurate description of the d electron level in this system. C1 AIST, Res Inst Computat Sci, Tsukuba, Ibaraki 3058568, Japan. SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Miyake, T (reprint author), AIST, Res Inst Computat Sci, Tsukuba, Ibaraki 3058568, Japan. RI Zhang, Peihong/D-2787-2012 NR 20 TC 46 Z9 46 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 24 AR 245213 DI 10.1103/PhysRevB.74.245213 PG 5 WC Physics, Condensed Matter SC Physics GA 121ZP UT WOS:000243195800056 ER PT J AU Ozer, MM Thompson, JR Weitering, HH AF Ozer, Mustafa M. Thompson, James R. Weitering, Hanno H. TI Robust superconductivity in quantum-confined Pb: Equilibrium and irreversible superconductive properties SO PHYSICAL REVIEW B LA English DT Article ID THIN-FILM SUPERCONDUCTORS; CONTINUOUS SYMMETRY GROUP; LONG-RANGE ORDER; 2-DIMENSIONAL SYSTEMS; FLUX-CREEP; HARD SUPERCONDUCTIVITY; II SUPERCONDUCTORS; VORTEX; DESTRUCTION; TRANSITION AB Strong quantum size effects enable the formation of crystalline Pb films that are atomically flat on a macroscopic length scale. The superconducting properties of 5-18-monolayer-(ML) thick Pb films were investigated in a superconducting quantum interference device (SQUID) magnetometer using combined ac and dc methods. Even the thinnest films (5 ML) are extraordinarily robust type-II superconductors. Despite the extreme two-dimensional geometry, the thermodynamic parameters T-c and upper critical field H-c2 are primarily controlled by the physical boundary conditions of the film and show no evidence for disorder-driven or fluctuation-driven quenching of superconductivity. A magnetically hard critical state is established as a consequence of vortex trapping by quantum growth defects. C1 Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Ozer, MM (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. NR 66 TC 27 Z9 27 U1 2 U2 11 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 23 AR 235427 DI 10.1103/PhysRevB.74.235427 PG 11 WC Physics, Condensed Matter SC Physics GA 121ZO UT WOS:000243195700115 ER PT J AU Prozorov, R Shantsev, DV Mints, RG AF Prozorov, Ruslan Shantsev, Daniel V. Mints, Roman G. TI Collapse of the critical state in superconducting niobium SO PHYSICAL REVIEW B LA English DT Article ID NB THIN-FILMS; VORTEX AVALANCHES; FIELD PENETRATION; MAGNETIC-FIELD; FLUX JUMPS; INSTABILITY; GROWTH AB Giant abrupt changes in the magnetic-flux distribution in niobium foils were studied by using magneto-optical visualization, thermal, and magnetic measurements. Uniform flux jumps and sometimes almost total catastrophic collapse of the critical state are reported. Results are discussed in terms of thermomagnetic instability mechanism with different development scenarios. C1 Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Univ Oslo, Dept Phys, N-0316 Oslo, Norway. AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. RP Prozorov, R (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM prozorov@ameslab.gov RI Mints, Roman/A-5091-2008; Prozorov, Ruslan/A-2487-2008 OI Prozorov, Ruslan/0000-0002-8088-6096 NR 27 TC 15 Z9 15 U1 1 U2 9 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 22 AR 220511 DI 10.1103/PhysRevB.74.220511 PG 4 WC Physics, Condensed Matter SC Physics GA 121ZN UT WOS:000243195600016 ER PT J AU Rai, RC Cao, J Brown, S Musfeldt, JL Kasinathan, D Singh, DJ Lawes, G Rogado, N Cava, RJ Wei, X AF Rai, R. C. Cao, J. Brown, S. Musfeldt, J. L. Kasinathan, D. Singh, D. J. Lawes, G. Rogado, N. Cava, R. J. Wei, X. TI Optical properties and magnetic-field-induced phase transitions in the ferroelectric state of Ni3V2O8: Experiments and first-principles calculations SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE; MOTT INSULATORS; ROOM-TEMPERATURE; METAL OXIDES; NIO; BAND; PLANE; APPROXIMATION; CO3V2O8 AB We use a combination of optical spectra, first-principles calculations, and energy-dependent magneto-optical measurements to elucidate the electronic structure and to study the phase diagram of Ni3V2O8. We find a remarkable interplay of magnetic field and optical properties that reveals additional high magnetic-field phases and an unexpected electronic structure, which we associate with the strong magnetodielectric couplings in this material over a wide energy range. Specifically, we observed several prominent magnetodielectric effects that derive from changes in the crystal-field environment around Ni spine and cross tie centers. This effect is consistent with a field-induced modification of local structure. Symmetry-breaking effects are also evident with temperature. We find Ni3V2O8 to be an intermediate-gap, local-moment band insulator. This electronic structure is particularly favorable for magnetodielectric couplings, because the material is not subject to the spin-charge separation characteristic of strongly correlated large-gap Mott insulators, while at the same time remaining a magnetic insulator independent of the particular spin order and temperature. C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Wayne State Univ, Dept Phys, Detroit, MI 48201 USA. DuPont Cent Res & Dev, Expt Stn, Wilmington, DE 19880 USA. Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. Princeton Univ, Princeton Mat Inst, Princeton, NJ 08544 USA. Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RP Cao, J (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM musfeldt@utk.edu RI Cao, Jinbo/C-7537-2009; Singh, David/I-2416-2012; Kasinathan, Deepa/M-8825-2015; OI Kasinathan, Deepa/0000-0002-9063-6867; Rai, Ram/0000-0003-2475-2488 NR 46 TC 22 Z9 24 U1 0 U2 10 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 23 AR 235101 DI 10.1103/PhysRevB.74.235101 PG 10 WC Physics, Condensed Matter SC Physics GA 121ZO UT WOS:000243195700020 ER PT J AU Roman, E Yates, JR Veithen, M Vanderbilt, D Souza, I AF Roman, Eric Yates, Jonathan R. Veithen, Marek Vanderbilt, David Souza, Ivo TI Ab initio study of the nonlinear optics of III-V semiconductors in the terahertz regime SO PHYSICAL REVIEW B LA English DT Article ID CUBIC SEMICONDUCTORS; ABSOLUTE SIGNS; GAP; SUSCEPTIBILITIES; COEFFICIENTS; GENERATION; CRYSTALS; POLARIZATION; DISPERSION; RESONANCE AB We compute from first principles the infrared dispersion of the nonlinear susceptibility chi((2)) in zinc-blende semiconductors. At terahertz frequencies the nonlinear susceptibility depends not only on the purely electronic response chi((2))(infinity), but also on three other parameters C-1, C-2, and C-3 describing the contributions from ionic motion. They relate to the TO Raman polarizability, the second-order displacement-induced dielectric polarization, and the third-order lattice potential. Contrary to previous theory, we find that mechanical anharmonicity (C-3) dominates over electrical anharmonicity (C-2), which is consistent with recent experiments on GaAs. We predict that the sharp minimum in the intensity of second-harmonic generation recently observed for GaAs between omega(TO)/2 and omega(TO) does not occur for several other III-V compounds. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Mat Sci Div, Berkeley, CA 94720 USA. Univ Liege, Dept Phys, B-4000 Sart Tilman Par Liege, Belgium. Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Roman, E (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Yates, Jonathan/E-7339-2010; OI Vanderbilt, David/0000-0002-2465-9091 NR 41 TC 19 Z9 19 U1 1 U2 9 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 24 AR 245204 DI 10.1103/PhysRevB.74.245204 PG 9 WC Physics, Condensed Matter SC Physics GA 121ZP UT WOS:000243195800047 ER PT J AU Ross, M Yang, LH Pilgrim, WC AF Ross, M. Yang, L. H. Pilgrim, W. -C. TI Simulations of liquid rubidium near the critical density SO PHYSICAL REVIEW B LA English DT Article ID 1ST-PRINCIPLES MOLECULAR-DYNAMICS; MAGNETIC-SUSCEPTIBILITY; ELECTRON-GAS; CESIUM; ACCURATE; CURVES; ENERGY; PHASE AB Quantum molecular dynamic simulations were used to examine the change in atomic and electronic structure in liquid rubidium along its liquid-vapor coexistence curve below twice the critical density. We observe evidence for clustering at 0.58 g/cm(3), the presence of bound states near 0.47 g/cm(3), and dimers at the critical density (0.29 g/cm(3)). C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Univ Marburg, Inst Phys Chem, D-35032 Marburg, Germany. Univ Marburg, Ctr Mat Sci, D-35032 Marburg, Germany. RP Ross, M (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. NR 21 TC 4 Z9 4 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 21 AR 212302 DI 10.1103/PhysRevB.74.212302 PG 3 WC Physics, Condensed Matter SC Physics GA 121ZM UT WOS:000243195500003 ER PT J AU Schroer, DM Huttel, AK Eberl, K Ludwig, S Kiselev, MN Altshuler, BL AF Schroeer, D. M. Huettel, A. K. Eberl, K. Ludwig, S. Kiselev, M. N. Altshuler, B. L. TI Kondo effect in a one-electron double quantum dot: Oscillations of the Kondo current in a weak magnetic field SO PHYSICAL REVIEW B LA English DT Article ID COULOMB-BLOCKADE; SPECTROSCOPY AB We present transport measurements of the Kondo effect in a double quantum dot charged with only one or two electrons, respectively. For the one-electron case, we observe a surprising quasiperiodic oscillation of the Kondo conductance as a function of a small perpendicular magnetic field parallel to B(perpendicular to)parallel to less than or similar to 50 mT. We discuss possible explanations of this effect and interpret it by means of a fine tuning of the energy mismatch of the single dot levels of the two quantum dots. The observed degree of control implies important consequences for applications in quantum information processing. C1 Univ Munich, Ctr NanoSci, D-80539 Munich, Germany. Univ Munich, Dept Phys, D-80539 Munich, Germany. Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. Univ Wurzburg, Inst Theoret Phys 1, D-97074 Wurzburg, Germany. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy. Columbia Univ, Dept Phys, New York, NY 10027 USA. NEC Labs Amer, Princeton, NJ 08540 USA. RP Schroer, DM (reprint author), Univ Munich, Ctr NanoSci, Geschwister Scholl Pl 1, D-80539 Munich, Germany. EM schroeer@lmu.de RI Huttel, Andreas/C-2400-2008; Ludwig, Stefan/A-5199-2009; Kiselev, Mikhail/C-8726-2012 OI Huttel, Andreas/0000-0001-5794-5919; Ludwig, Stefan/0000-0002-0978-7458; Kiselev, Mikhail/0000-0003-2542-3686 NR 22 TC 9 Z9 9 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 23 AR 233301 DI 10.1103/PhysRevB.74.233301 PG 4 WC Physics, Condensed Matter SC Physics GA 121ZO UT WOS:000243195700008 ER PT J AU Shibauchi, T Krusin-Elbaum, L Kasahara, Y Shimono, Y Matsuda, Y McDonald, RD Mielke, CH Yonezawa, S Hiroi, Z Arai, M Kita, T Blatter, G Sigrist, M AF Shibauchi, T. Krusin-Elbaum, L. Kasahara, Y. Shimono, Y. Matsuda, Y. McDonald, R. D. Mielke, C. H. Yonezawa, S. Hiroi, Z. Arai, M. Kita, T. Blatter, G. Sigrist, M. TI Uncommonly high upper critical field of the pyrochlore superconductor KOs2O6 below the enhanced paramagnetic limit SO PHYSICAL REVIEW B LA English DT Article ID SPIN; TEMPERATURE; RBOS2O6 AB The entire temperature dependence of the upper critical field H-c2 in the beta-pyrochlore KOs2O6 is obtained from high-field resistivity and magnetic measurements. Both techniques identically give H-c2(T similar or equal to 0 K) not only surprisingly high (similar to 33 T), but also the approach to it is unusually temperature linear all the way below T-c(=9.6 K). We show that, while H-c2(0) exceeds a simple spin-singlet paramagnetic limit H-P, it is well below an H-P enhanced due to the missing spatial inversion symmetry reported recently in KOs2O6, ensuring that the pair breaking here is executed by orbital degrees. Ab initio calculations of orbital H-c2 show that an unusual temperature dependence is reproduced if dominant s-wave superconductivity resides on the smaller closed Fermi surfaces. C1 Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. IBM TJ Watson Res Ctr, New York, NY 10598 USA. Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan. Los Alamos Natl Lab, NHMFL, Los Alamos, NM 87545 USA. Natl Inst Mat Sci, Tsukuba, Ibaraki 3050044, Japan. Hokkaido Univ, Div Phys, Sapporo, Hokkaido 0600810, Japan. ETH, CH-8093 Zurich, Switzerland. RP Shibauchi, T (reprint author), Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. RI Shibauchi, Takasada/B-9349-2008; Arai, Masao/F-9098-2011; McDonald, Ross/H-3783-2013; Sigrist, Manfred/C-4570-2008; Kasahara, Yuichi/N-8436-2013 OI Mcdonald, Ross/0000-0002-5819-4739; Shibauchi, Takasada/0000-0001-5831-4924; Arai, Masao/0000-0003-0088-5649; McDonald, Ross/0000-0002-0188-1087; Sigrist, Manfred/0000-0002-8627-5093; NR 36 TC 25 Z9 25 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 22 AR 220506 DI 10.1103/PhysRevB.74.220506 PG 4 WC Physics, Condensed Matter SC Physics GA 121ZN UT WOS:000243195600011 ER PT J AU Telling, ND Keatley, PS van der Laan, G Hicken, RJ Arenholz, E Sakuraba, Y Oogane, M Ando, Y Miyazaki, T AF Telling, N. D. Keatley, P. S. van der Laan, G. Hicken, R. J. Arenholz, E. Sakuraba, Y. Oogane, M. Ando, Y. Miyazaki, T. TI Interfacial structure and half-metallic ferromagnetism in Co2MnSi-based magnetic tunnel junctions SO PHYSICAL REVIEW B LA English DT Article ID 2P ABSORPTION-SPECTRA; X-RAY-ABSORPTION; CIRCULAR-DICHROISM; SPIN-POLARIZATION; HEUSLER ALLOYS; MAGNETORESISTANCE; BARRIER; MOMENTS; FILM AB X-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD) techniques are utilized to explore the ferromagnetic/barrier interface in Co2MnSi full Heusler alloy magnetic tunnel junctions. Structural and magnetic properties of the interface region are studied as a function of the degree of site disorder in the alloy and for different degrees of barrier oxidation. Photoelectron scattering features that depend upon the degree of L2(1) ordering are observed in the XAS spectra. Additionally, the moments per 3d hole for Co and Mn atoms are found to be a sensitive function of both the degree of L2(1) ordering and the barrier oxidation state. Significantly, a multiplet structure is observed in the XMCD spectra that indicates a degree of localization of the moments and may result from the half-metallic ferromagnetism (HMF) in the alloy. The magnitude of this multiplet structure appears to vary with preparation conditions and could be utilized to ascertain the role of the constituent atoms in producing the HMF, and to examine methods for preserving the half-metallic state after barrier preparation. The changes in the magnetic structure caused by barrier oxidation could be reversed by inserting a thin Mg interface layer in order to suppress the oxidation of Mn in the Co2MnSi layer. C1 CCLRC, Daresbury Lab, Magnet Spect Grp, Warrington WA4 4AD, Cheshire, England. Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. Tohoku Univ, Grad Sch Engn, Dept Appl Phys, Sendai, Miyagi 9808579, Japan. RP Telling, ND (reprint author), CCLRC, Daresbury Lab, Magnet Spect Grp, Warrington WA4 4AD, Cheshire, England. RI Sakuraba, Yuya/C-1902-2009; Miyazaki, Terunobu/E-5068-2010; van der Laan, Gerrit/Q-1662-2015; OI van der Laan, Gerrit/0000-0001-6852-2495; Keatley, Paul/0000-0002-7679-6418 NR 30 TC 38 Z9 38 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 22 AR 224439 DI 10.1103/PhysRevB.74.224439 PG 7 WC Physics, Condensed Matter SC Physics GA 121ZN UT WOS:000243195600075 ER PT J AU Teplin, CW Iwaniczko, E To, B Moutinho, H Stradins, P Branz, HM AF Teplin, Charles W. Iwaniczko, Eugene To, Bobby Moutinho, Helio Stradins, Paul Branz, Howard M. TI Breakdown physics of low-temperature silicon epitaxy grown from silane radicals SO PHYSICAL REVIEW B LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; SI GROWTH; HOMOEPITAXY; FILMS; SI(100); LAYERS AB We grow epitaxial silicon films on (100) Si wafers at low temperature (< 400 degrees C), from silane radicals, to understand the mechanisms of sudden epitaxy breakdown and simultaneous growth of amorphous and crystalline silicon phases. Surface roughness is below 0.7 nm before breakdown and below 1 nm in epitaxial regions persisting after breakdown, in contrast to the roughness-induced breakdown observed in molecular beam epitaxy from atomic Si. Spherical caps of hydrogenated amorphous Si (a-Si:H) breakdown cones protrude above the crystal surface, with each sphere centered on its cone apex. This means that the a-Si:H grows isotropically from impinging radicals with low surface mobility and that the a-Si:H growth rate is higher than the epitaxial growth rate. Similar physical mechanisms likely apply to nanocrystalline silicon film growth. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Teplin, CW (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM Charles_Teplin@NREL.go NR 21 TC 17 Z9 17 U1 0 U2 7 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 23 AR 235428 DI 10.1103/PhysRevB.74.235428 PG 5 WC Physics, Condensed Matter SC Physics GA 121ZO UT WOS:000243195700116 ER PT J AU van Schilfgaarde, M Kotani, T Faleev, SV AF van Schilfgaarde, Mark Kotani, Takao Faleev, Sergey V. TI Adequacy of approximations in GW theory SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE; CORE POLARIZATION; SELF-ENERGY; WAVE METHOD; SEMICONDUCTORS; PSEUDOPOTENTIALS; SPECTRA; METALS; GAS AB Following the usual procedure of the GW approximation (GWA) within the first-principles framework, we calculate the self-energy from eigenfunctions and eigenvalues generated by the local-density approximation. We analyze several possible sources of error in the theory and its implementation, using a recently developed all-electron approach based on the full-potential linear muffin-tin orbital (LMTO) method. First we present some analysis of convergence in some quasiparticle energies with respect to the number of bands, and also their dependence on different basis sets within the LMTO method. We next present a new analysis of core contributions. Then we apply the GWA to a variety of materials systems to test its range of validity. For simple sp semiconductors, GWA always underestimates band gaps. Better agreement with experiment is obtained when the renormalization (Z) factor is not included, and we propose a justification for it. We close with some analysis of difficulties in the usual GWA procedure. C1 Arizona State Univ, Sch Mat, Tempe, AZ 85284 USA. Sandia Natl Labs, Livermore, CA 94551 USA. RP van Schilfgaarde, M (reprint author), Arizona State Univ, Sch Mat, Tempe, AZ 85284 USA. RI kotani, takao/G-4355-2011 OI kotani, takao/0000-0003-1693-7052 NR 40 TC 99 Z9 99 U1 0 U2 10 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 24 AR 245125 DI 10.1103/PhysRevB.74.245125 PG 16 WC Physics, Condensed Matter SC Physics GA 121ZP UT WOS:000243195800040 ER PT J AU Wang, YY Ozcan, AS Ozaydin, G Ludwig, KF Bhattacharyya, A Moustakas, TD Zhou, H Headrick, RL Siddons, DP AF Wang, Yiyi Ozcan, Ahmet S. Ozaydin, Gozde Ludwig, Karl F., Jr. Bhattacharyya, Anirban Moustakas, Theodore D. Zhou, Hua Headrick, Randall L. Siddons, D. Peter TI Real-time synchrotron x-ray studies of low- and high-temperature nitridation of c-plane sapphire SO PHYSICAL REVIEW B LA English DT Article ID MOLECULAR-BEAM EPITAXY; GAN GROWTH; THIN-FILMS; SURFACE; ALN; REFLECTIVITY; DIFFRACTION; AL2O3(0001); INTERFACES; SCATTERING AB The plasma nitridation kinetics of c-plane sapphire at both low (200-300 degrees C) and high (750 degrees C) substrate temperatures was examined using grazing-incidence real-time x-ray diffraction, in situ x-ray reflection and in situ reflection high-energy electron diffraction (RHEED). These monitored the evolution of the nitride thickness, strain, and surface structure during nitridation. The evolution of the AlN(10 (1) over bar0) peak showed that the heteroepitaxial strain in the first layer of nitride is already significantly relaxed relative to the substrate. Subsequent layers grow with increasing relaxation. In both the high- and low-temperature nitridation cases, the results suggest that the early stage nitridation is governed by a complex nucleation and growth process. Nitridation at both temperatures apparently proceeds in a two-dimensional growth mode with the initial nucleating islands consisting of several monolayers which grow laterally. At low temperature the growth slows or even stops after impingement of the nucleating islands covering the surface, possibly due to low diffusivities through the existing layer. Initial formation and growth rates of nucleating islands at high temperatures are comparable to those at low temperatures, but subsequent growth into the substrate is significantly enhanced over the low temperature case, consistent with activation energies of 0.1-0.25 eV. C1 Boston Univ, Dept Phys, Boston, MA 02215 USA. Boston Univ, Dept Aeronaut & Mech Engn, Boston, MA 02215 USA. Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA. Univ Vermont, Dept Phys, Burlington, VT 05405 USA. Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Wang, YY (reprint author), Boston Univ, Dept Phys, Boston, MA 02215 USA. RI Ozaydin-Ince, Gozde/F-3780-2011; Moustakas, Theodore/D-9249-2016 OI Moustakas, Theodore/0000-0001-8556-884X NR 26 TC 11 Z9 11 U1 2 U2 12 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 23 AR 235304 DI 10.1103/PhysRevB.74.235304 PG 11 WC Physics, Condensed Matter SC Physics GA 121ZO UT WOS:000243195700063 ER PT J AU Weisse, A Hager, G Bishop, AR Fehske, H AF Weisse, Alexander Hager, Georg Bishop, Alan R. Fehske, Holger TI Phase diagram of the spin-Peierls chain with local coupling: Density-matrix renormalization-group calculations and unitary transformations SO PHYSICAL REVIEW B LA English DT Article ID HEISENBERG CHAIN; LATTICE FLUCTUATIONS; TRANSITION; QUANTUM; CUGEO3; PHONONS; SYSTEM; MODEL AB We explore the ground-state phase diagram of a Heisenberg spin chain coupled locally to optical phonons (bond coupling), using large-scale density-matrix renormalization-group calculations and extending a unitary transformation approach which removes the spin-phonon coupling in leading order. For the quantum phase transition from the spin liquid to the dimerized phase, we find deviations from previous quantum Monte Carlo and flow equation results. C1 Univ Greifswald, Inst Phys, D-17487 Greifswald, Germany. Reg Rechenzentrum Erlangen, HPC Serv, D-91058 Erlangen, Germany. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Weisse, A (reprint author), Univ Greifswald, Inst Phys, Domstr 10A, D-17487 Greifswald, Germany. NR 35 TC 8 Z9 8 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 21 AR 214426 DI 10.1103/PhysRevB.74.214426 PG 5 WC Physics, Condensed Matter SC Physics GA 121ZM UT WOS:000243195500077 ER PT J AU Wright, AF Modine, NA AF Wright, A. F. Modine, N. A. TI Comparison of two methods for circumventing the Coulomb divergence in supercell calculations for charged point defects SO PHYSICAL REVIEW B LA English DT Article ID PERIODIC BOUNDARY-CONDITIONS; ELECTRONIC-STRUCTURE; SYSTEMS; ENERGY; SEMICONDUCTORS; APPROXIMATION; IMPURITIES; SILICON; GAAS AB Density-functional-theory calculations were performed for the unrelaxed +2 Si vacancy and +2 self-interstitial utilizing periodic boundary conditions and two different methods-the uniform background charge method and the local moment counter charge method-for circumventing the divergence of the Coulomb potential. Formation energies in nominal 64-, 216-, 512-, 1000-, and 1728-atom supercells were converged with respect to Brillouin zone sampling and then extrapolated to an infinite sized supercell by fitting to a polynomial in odd powers of 1/L where L is the cubed root of the supercell volume. The extrapolated values from the two methods agreed very well (2 meV difference for the vacancy and 13 meV difference for the interstitial) as expected from inspection of their respective energy expressions. The extrapolated values and fitting parameters were then employed to evaluate analytic correction formulas that have been proposed to remove spurious electrostatic contributions from defect formation energies. The results indicate that existing formulas are not capable of removing these contributions and that further development is needed in this area. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Wright, AF (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 27 TC 32 Z9 32 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 23 AR 235209 DI 10.1103/PhysRevB.74.235209 PG 8 WC Physics, Condensed Matter SC Physics GA 121ZO UT WOS:000243195700049 ER PT J AU Wu, T Mitchell, JF AF Wu, T. Mitchell, J. F. TI Creation and annihilation of conducting filaments in mesoscopic manganite structures SO PHYSICAL REVIEW B LA English DT Article ID INSULATOR-METAL TRANSITION; PHASE-SEPARATION; THIN-FILMS; MAGNETORESISTANCE; MAGNETIZATION; TEMPERATURE; RESISTIVITY; RELAXATION; STRAIN AB Anomalous transport properties are observed in mesoscopic (several hundreds of nanometers to several micrometers) structures of manganite Pr(0.65)(Ca(0.75)Sr(0.25))(0.35)MnO(3): (i) spontaneous jumps of resistance occur during both the ramping of magnetic field and the relaxation after the field cycle; and (ii) in certain ranges of temperature and magnetic field, steplike negative differential resistance (NDR) emerges in the current vs voltage measurements as the bias voltage reaches critical values. Two elements are responsible for the appearance of these giant sharp resistive steps: (i) a field- and temperature-dependent mixture of ferromagnetic metallic (FMM) and charge-ordered insulating (COI) phases found in this material; (ii) similarity between device dimensions and the size of competing FMM and COI domains. The phenomenology of the observed spontaneous steps is consistent with the filamentary conduction that has been previously observed in these materials with multiphase coexistence. The switching of individual conducting filaments manifests themselves as the discrete resistance steps in the mesoscopic samples while its effect is much less visible in continuous films. A local Joule heating-induced annihilation of conducting filaments is proposed as the underlying mechanism for the NDR. C1 Argonne Natl Lab, Ctr Nanoscale Mat, Div Sci Mat, Argonne, IL 60439 USA. RP Wu, T (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, Div Sci Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM tomwu@ntu.edu.sg RI Wu, Tom/A-1158-2012 OI Wu, Tom/0000-0003-0845-4827 NR 41 TC 44 Z9 45 U1 3 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 21 AR 214423 DI 10.1103/PhysRevB.74.214423 PG 9 WC Physics, Condensed Matter SC Physics GA 121ZM UT WOS:000243195500074 ER PT J AU Wu, YZ Qiu, ZQ Zhao, Y Young, AT Arenholz, E Sinkovic, B AF Wu, Y. Z. Qiu, Z. Q. Zhao, Y. Young, A. T. Arenholz, E. Sinkovic, B. TI Tailoring the spin direction of antiferromagnetic NiO thin films grown on vicinal Ag(001) SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC-ANISOTROPY; EXCHANGE BIAS; DICHROISM; MOMENTS; SURFACE; NIO(100); DOMAINS AB The magnetic properties of antiferromagnetic NiO thin films grown on curved Ag(001) substrate were investigated using x-ray magnetic linear dichroism. We show that atomic steps on a vicinal Ag(001) surface induce an in-plane uniaxial magnetic anisotropy, which favors the Ni spins to be perpendicular to the steps, which are parallel to a [110] axis and parallel to the steps for steps that are along a [100] axis. Temperature- and thickness-dependent measurements show that [110] and [100] steps produce different in-plane crystal field, which may be responsible for the different NiO in-plane magnetic anisotropy. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Fudan Univ, Natl Key Lab, Surface Phys Lab, Shanghai 200433, Peoples R China. Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Wu, YZ (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Wu, yizheng/P-2395-2014; Qiu, Zi Qiang/O-4421-2016 OI Wu, yizheng/0000-0002-9289-1271; Qiu, Zi Qiang/0000-0003-0680-0714 NR 30 TC 13 Z9 14 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 21 AR 212402 DI 10.1103/PhysRevB.74.212402 PG 4 WC Physics, Condensed Matter SC Physics GA 121ZM UT WOS:000243195500005 ER PT J AU Yoshida, T Zhou, XJ Tanaka, K Yang, WL Hussain, Z Shen, ZX Fujimori, A Sahrakorpi, S Lindroos, M Markiewicz, RS Bansil, A Komiya, S Ando, Y Eisaki, H Kakeshita, T Uchida, S AF Yoshida, T. Zhou, X. J. Tanaka, K. Yang, W. L. Hussain, Z. Shen, Z. -X. Fujimori, A. Sahrakorpi, S. Lindroos, M. Markiewicz, R. S. Bansil, A. Komiya, Seiki Ando, Yoichi Eisaki, H. Kakeshita, T. Uchida, S. TI Systematic doping evolution of the underlying Fermi surface of La2-xSrxCuO4 SO PHYSICAL REVIEW B LA English DT Article ID CUPRATE SUPERCONDUCTORS AB We have performed a systematic doping-dependent study of La2-xSrxCuO4 (LSCO) (0.03 <= x <= 0.3) by angle-resolved photoemission spectroscopy. Over this entire doping range, the underlying "Fermi surface" determined from the low-energy spectral weight approximately satisfies Luttinger's theorem, even down to the lightly doped region. This is in strong contrast to the results on Ca2-xNaxCuO2Cl2 (Na-CCOC), which show a clear deviation from Luttinger's theorem. We correlate these differences between LSCO and Na-CCOC with differences in the behavior of chemical potential shift and spectral weight transfer induced by hole doping. C1 Univ Tokyo, Dept Complex Sci & Engn, Kashiwa, Chiba 2778561, Japan. Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. Northeastern Univ, Dept Phys, Boston, MA 02115 USA. Tampere Univ Technol, Inst Phys, FIN-33101 Tampere, Finland. Cent Res Inst Elect Power Ind, Komae, Tokyo 2018511, Japan. Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan. ISTEC, Superconduct Res Lab, Koto Ku, Tokyo 1350062, Japan. Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. RP Yoshida, T (reprint author), Univ Tokyo, Dept Complex Sci & Engn, Kashiwa, Chiba 2778561, Japan. RI Ando, Yoichi/B-8163-2013; Yang, Wanli/D-7183-2011 OI Ando, Yoichi/0000-0002-3553-3355; Yang, Wanli/0000-0003-0666-8063 NR 31 TC 117 Z9 119 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD DEC PY 2006 VL 74 IS 22 AR 224510 DI 10.1103/PhysRevB.74.224510 PG 5 WC Physics, Condensed Matter SC Physics GA 121ZN UT WOS:000243195600095 ER PT J AU Adams, J Aggarwal, MM Ahammed, Z Amonett, J Anderson, BD Arkhipkin, D Averichev, GS Badyal, SK Bai, Y Balewski, J Barannikova, O Barnby, LS Baudot, J Bekele, S Belaga, VV Bellingeri-Laurikainen, A Bellwied, R Berger, J Bezverkhny, BI Bharadwaj, S Bhasin, A Bhati, AK Bhatia, VS Bichsel, H Bielcik, J Bielcikova, J Billmeier, A Bland, LC Blyth, CO Blyth, SL Bonner, BE Botje, M Boucham, A Bouchet, J Brandin, AV Bravar, A Bystersky, M Cadman, RV Cai, XZ Caines, H Sanchez, MCD Castillo, J Catu, O Cebra, D Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, Y Cheng, J Cherney, M Chikanian, A Choi, HA Christie, W Coffin, JP Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Das, S Daugherity, M de Moura, MM Dedovich, TG DePhillips, M Derevschikov, AA Didenko, L Dietel, T Dogra, SM Dong, WJ Dong, X Draper, JE Du, F Dubey, AK Dunin, VB Dunlop, JC Mazumdar, MRD Eckardt, V Edwards, WR Efimov, LG Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Fachini, P Faivre, J Fatemi, R Fedorisin, J Filimonov, K Filip, P Finch, E Fine, V Fisyak, Y Fornazier, KSF Fu, J Gagliardi, CA Gaillard, L Gans, J Ganti, MS Geurts, F Ghazikhanian, V Ghosh, P Gonzalez, JE Gos, H Grachov, O Grebenyuk, O Grosnick, D Guertin, SM Guo, Y Gupta, A Gupta, N Gutierrez, TD Hallman, TJ Hamed, A Hardtke, D Harris, JW Heinz, M Henry, TW Hepplemann, S Hippolyte, B Hirsch, A Hjort, E Hoffmann, GW Horner, MJ Huang, HZ Huang, SL Hughes, EW Humanic, TJ Igo, G Ishihara, A Jacobs, P Jacobs, WW Jedynak, M Jiang, H Jones, PG Judd, EG Kabana, S Kang, K Kaplan, M Keane, D Kechechyan, A Khodyrev, VY Kim, BC Kiryluk, J Kisiel, A Kislov, EM Klay, J Klein, SR Koetke, DD Kollegger, T Kopytine, M Kotchenda, L Kowalik, KL Kramer, M Kravtsov, P Kravtsov, VI Krueger, K Kuhn, C Kulikov, AI Kumar, A Kutuev, RK Kuznetsov, AA Lamont, MAC Landgraf, JM Lange, S Laue, F Lauret, J Lebedev, A Lednicky, R Lee, CH Lehocka, S LeVine, MJ Li, C Li, Q Li, Y Lin, G Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Liu, L Liu, QJ Liu, Z Ljubicic, T Llope, WJ Long, H Longacre, RS Lopez-Noriega, M Love, WA Lu, Y Ludlam, T Lynn, D Ma, GL Ma, JG Ma, YG Magestro, D Mahajan, S Mahapatra, DP Majka, R Mangotra, LK Manweiler, R Margetis, S Markert, C Martin, L Marx, JN Matis, HS Matulenko, YA McClain, CJ McShane, TS Meissner, F Melnick, Y Meschanin, A Miller, ML Minaev, NG Mironov, C Mischke, A Mishra, DK Mitchell, J Mohanty, B Molnar, L Moore, CF Morozov, DA Munhoz, MG Nandi, BK Nayak, SK Nayak, TK Nelson, JM Netrakanti, PK Nikitin, VA Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okorokov, V Oldenburg, M Olson, D Pal, SK Panebratsev, Y Panitkin, SY Pavlinov, AI Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Petrov, VA Phatak, SC Picha, R Planinic, M Pluta, J Porile, N Porter, J Poskanzer, AM Potekhin, M Potrebenikova, E Potukuchi, BVKS Prindle, D Pruneau, C Putschke, J Rakness, G Raniwala, R Raniwala, S Ravel, O Ray, RL Razin, SV Reichhold, D Reid, JG Reinnarth, J Renault, G Retiere, F Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Sahoo, R Sakrejda, I Salur, S Sandweiss, J Sarsour, M Savin, I Sazhin, PS Schambach, J Scharenberg, RP Schmitz, N Schweda, K Seger, J Selyuzhenkov, I Seyboth, P Shahaliev, E Shao, M Shao, W Sharma, M Shen, WQ Shestermanov, KE Shimanskiy, SS Sichtermann, E Simon, F Singaraju, RN Smirnov, N Snellings, R Sood, G Sorensen, P Sowinski, J Speltz, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Stock, R Stolpovsky, A Strikhanov, M Stringfellow, B Suaide, AAP Sugarbaker, E Sumbera, M Surrow, B Swanger, M Symons, TJM de Toledo, AS Tai, A Takahashi, J Tang, AH Tarnowsky, T Thein, D Thomas, JH Timmins, AR Timoshenko, S Tokarev, M Trainor, TA Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van der Kolk, N van Leeuwen, M Vander Molen, AM Varma, R Vasilevski, IM Vasiliev, AN Vernet, R Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Waggoner, WT Wang, F Wang, G Wang, G Wang, XL Wang, Y Wang, Y Wang, ZM Ward, H Watson, JW Webb, JC Westfall, GD Wetzler, A Whitten, C Wieman, H Wissink, SW Witt, R Wood, J Wu, J Xu, N Xu, Z Xu, ZZ Yamamoto, E Yepes, P Yoo, IK Yurevich, VI Zborovsky, I Zhang, H Zhang, WM Zhang, Y Zhang, ZP Zhong, C Zoulkarneev, R Zoulkarneeva, Y Zubarev, AN Zuo, JX AF Adams, J. Aggarwal, M. M. Ahammed, Z. Amonett, J. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Badyal, S. K. Bai, Y. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Bekele, S. Belaga, V. V. Bellingeri-Laurikainen, A. Bellwied, R. Berger, J. Bezverkhny, B. I. Bharadwaj, S. Bhasin, A. Bhati, A. K. Bhatia, V. S. Bichsel, H. Bielcik, J. Bielcikova, J. Billmeier, A. Bland, L. C. Blyth, C. O. Blyth, S. -L. Bonner, B. E. Botje, M. Boucham, A. Bouchet, J. Brandin, A. V. Bravar, A. Bystersky, M. Cadman, R. V. Cai, X. Z. Caines, H. Sanchez, M. Calderon de la Barca Castillo, J. Catu, O. Cebra, D. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, Y. Cheng, J. Cherney, M. Chikanian, A. Choi, H. A. Christie, W. Coffin, J. P. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Das, S. Daugherity, M. de Moura, M. M. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. Didenko, L. Dietel, T. Dogra, S. M. Dong, W. J. Dong, X. Draper, J. E. Du, F. Dubey, A. K. Dunin, V. B. Dunlop, J. C. Mazumdar, M. R. Dutta Eckardt, V. Edwards, W. R. Efimov, L. G. Emelianov, V. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Fachini, P. Faivre, J. Fatemi, R. Fedorisin, J. Filimonov, K. Filip, P. Finch, E. Fine, V. Fisyak, Y. Fornazier, K. S. F. Fu, J. Gagliardi, C. A. Gaillard, L. Gans, J. Ganti, M. S. Geurts, F. Ghazikhanian, V. Ghosh, P. Gonzalez, J. E. Gos, H. Grachov, O. Grebenyuk, O. Grosnick, D. Guertin, S. M. Guo, Y. Gupta, A. Gupta, N. Gutierrez, T. D. Hallman, T. J. Hamed, A. Hardtke, D. Harris, J. W. Heinz, M. Henry, T. W. Hepplemann, S. Hippolyte, B. Hirsch, A. Hjort, E. Hoffmann, G. W. Horner, M. J. Huang, H. Z. Huang, S. L. Hughes, E. W. Humanic, T. J. Igo, G. Ishihara, A. Jacobs, P. Jacobs, W. W. Jedynak, M. Jiang, H. Jones, P. G. Judd, E. G. Kabana, S. Kang, K. Kaplan, M. Keane, D. Kechechyan, A. Khodyrev, V. Yu. Kim, B. C. Kiryluk, J. Kisiel, A. Kislov, E. M. Klay, J. Klein, S. R. Koetke, D. D. Kollegger, T. Kopytine, M. Kotchenda, L. Kowalik, K. L. Kramer, M. Kravtsov, P. Kravtsov, V. I. Krueger, K. Kuhn, C. Kulikov, A. I. Kumar, A. Kutuev, R. Kh. Kuznetsov, A. A. Lamont, M. A. C. Landgraf, J. M. Lange, S. Laue, F. Lauret, J. Lebedev, A. Lednicky, R. Lee, C. -H. Lehocka, S. LeVine, M. J. Li, C. Li, Q. Li, Y. Lin, G. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Liu, L. Liu, Q. J. Liu, Z. Ljubicic, T. Llope, W. J. Long, H. Longacre, R. S. Lopez-Noriega, M. Love, W. A. Lu, Y. Ludlam, T. Lynn, D. Ma, G. L. Ma, J. G. Ma, Y. G. Magestro, D. Mahajan, S. Mahapatra, D. P. Majka, R. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Martin, L. Marx, J. N. Matis, H. S. Matulenko, Yu. A. McClain, C. J. McShane, T. S. Meissner, F. Melnick, Yu. Meschanin, A. Miller, M. L. Minaev, N. G. Mironov, C. Mischke, A. Mishra, D. K. Mitchell, J. Mohanty, B. Molnar, L. Moore, C. F. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nayak, S. K. Nayak, T. K. Nelson, J. M. Netrakanti, P. K. Nikitin, V. A. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okorokov, V. Oldenburg, M. Olson, D. Pal, S. K. Panebratsev, Y. Panitkin, S. Y. Pavlinov, A. I. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Petrov, V. A. Phatak, S. C. Picha, R. Planinic, M. Pluta, J. Porile, N. Porter, J. Poskanzer, A. M. Potekhin, M. Potrebenikova, E. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Putschke, J. Rakness, G. Raniwala, R. Raniwala, S. Ravel, O. Ray, R. L. Razin, S. V. Reichhold, D. Reid, J. G. Reinnarth, J. Renault, G. Retiere, F. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Sahoo, R. Sakrejda, I. Salur, S. Sandweiss, J. Sarsour, M. Savin, I. Sazhin, P. S. Schambach, J. Scharenberg, R. P. Schmitz, N. Schweda, K. Seger, J. Selyuzhenkov, I. Seyboth, P. Shahaliev, E. Shao, M. Shao, W. Sharma, M. Shen, W. Q. Shestermanov, K. E. Shimanskiy, S. S. Sichtermann, E. Simon, F. Singaraju, R. N. Smirnov, N. Snellings, R. Sood, G. Sorensen, P. Sowinski, J. Speltz, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Stock, R. Stolpovsky, A. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Sugarbaker, E. Sumbera, M. Surrow, B. Swanger, M. Symons, T. J. M. de Toledo, A. Szanto Tai, A. Takahashi, J. Tang, A. H. Tarnowsky, T. Thein, D. Thomas, J. H. Timmins, A. R. Timoshenko, S. Tokarev, M. Trainor, T. A. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van der Kolk, N. van Leeuwen, M. Vander Molen, A. M. Varma, R. Vasilevski, I. M. Vasiliev, A. N. Vernet, R. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Waggoner, W. T. Wang, F. Wang, G. Wang, G. Wang, X. L. Wang, Y. Wang, Y. Wang, Z. M. Ward, H. Watson, J. W. Webb, J. C. Westfall, G. D. Wetzler, A. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wood, J. Wu, J. Xu, N. Xu, Z. Xu, Z. Z. Yamamoto, E. Yepes, P. Yoo, I-K. Yurevich, V. I. Zborovsky, I. Zhang, H. Zhang, W. M. Zhang, Y. Zhang, Z. P. Zhong, C. Zoulkarneev, R. Zoulkarneeva, Y. Zubarev, A. N. Zuo, J. X. CA STAR Collaboration TI Proton-Lambda correlations in central Au+Au collisions at root s(NN)=200 GeV SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; LOW-ENERGY; NUCLEON; SCATTERING AB We report on p-Lambda, p-(Lambda) over bar, (p) over bar-Lambda, and (p) over bar-(Lambda) over bar correlation functions constructed in central Au-Au collisions at root s(NN) = 200 GeV by the STAR experiment at RHIC. The proton and lambda source size is inferred from the p-Lambda and (p) over bar-(Lambda) over bar correlation functions. It is found to be smaller than the pion source size also measured by the STAR experiment at smaller transverse masses, in agreement with a scenario of a strong universal collective flow. The p-(Lambda) over bar and (p) over bar-Lambda correlation functions, which are measured for the first time, exhibit a large anticorrelation. Annihilation channels and/or a negative real part of the spin-averaged scattering length must be included in the final-state interactions calculation to reproduce the measured correlation function. C1 Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Bern, CH-3012 Bern, Switzerland. Brookhaven Natl Lab, Upton, NY 11973 USA. CALTECH, Pasadena, CA 91125 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Creighton Univ, Omaha, NE 68178 USA. Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. JINR, Lab High Energy, Dubna, Russia. JINR, Particle Phys Lab, Dubna, Russia. Goethe Univ Frankfurt, D-6000 Frankfurt, Germany. Inst Phys, Bhubaneswar 751005, Orissa, India. Indian Inst Technol, Bombay, Maharashtra, India. Indiana Univ, Bloomington, IN 47408 USA. Inst Rech Subatom, Strasbourg, France. Univ Jammu, Jammu 180001, India. Kent State Univ, Kent, OH 44242 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. MIT, Cambridge, MA 02139 USA. Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. Michigan State Univ, E Lansing, MI 48824 USA. Moscow Phys Engn Inst, Moscow, Russia. CUNY City Coll, New York, NY 10031 USA. NIKHEF, Amsterdam, Netherlands. Univ Utrecht, Amsterdam, Netherlands. Ohio State Univ, Columbus, OH 43210 USA. Panjab Univ, Chandigarh 160014, India. Penn State Univ, University Pk, PA 16802 USA. Inst High Energy Phys, Protvino, Russia. Purdue Univ, W Lafayette, IN 47907 USA. Pusan Natl Univ, Pusan 609735, South Korea. Univ Rajasthan, Jaipur 302004, Rajasthan, India. Rice Univ, Houston, TX 77251 USA. Univ Sao Paulo, BR-05508 Sao Paulo, Brazil. Univ Sci & Technol China, Anhui 230027, Peoples R China. Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. SUBATECH, Nantes, France. Texas A&M Univ, College Stn, TX 77843 USA. Univ Texas, Austin, TX 78712 USA. Tsinghua Univ, Beijing 100084, Peoples R China. Valparaiso Univ, Valparaiso, IN 46383 USA. Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. Warsaw Univ Technol, PL-00661 Warsaw, Poland. Univ Washington, Seattle, WA 98195 USA. Wayne State Univ, Detroit, MI 48201 USA. HZNU, CCNU, Inst Particle Phys, Wuhan 430079, Peoples R China. Yale Univ, New Haven, CT 06520 USA. Univ Zagreb, HR-10002 Zagreb, Croatia. RP Adams, J (reprint author), Univ Birmingham, Birmingham B15 2TT, W Midlands, England. RI Dogra, Sunil /B-5330-2013; Fornazier Guimaraes, Karin Silvia/H-4587-2016; Chaloupka, Petr/E-5965-2012; Suaide, Alexandre/L-6239-2016; van der Kolk, Naomi/M-9423-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014; Barnby, Lee/G-2135-2010; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Chen, Yu/E-3788-2012; Planinic, Mirko/E-8085-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Castillo Castellanos, Javier/G-8915-2013; Voloshin, Sergei/I-4122-2013; Lednicky, Richard/K-4164-2013; Zborovsky, Imrich/G-7964-2014 OI Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Suaide, Alexandre/0000-0003-2847-6556; van der Kolk, Naomi/0000-0002-8670-0408; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405; Barnby, Lee/0000-0001-7357-9904; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Castillo Castellanos, Javier/0000-0002-5187-2779; NR 34 TC 28 Z9 28 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD DEC PY 2006 VL 74 IS 6 AR 064906 DI 10.1103/PhysRevC.74.064906 PG 9 WC Physics, Nuclear SC Physics GA 121PC UT WOS:000243168500053 ER PT J AU Ahmad, I Greene, JP Moore, EF Ghelberg, S Ofan, A Paul, M Kutschera, W AF Ahmad, I. Greene, J. P. Moore, E. F. Ghelberg, S. Ofan, A. Paul, M. Kutschera, W. TI Improved measurement of the Ti-44 half-life from a 14-year long study SO PHYSICAL REVIEW C LA English DT Article ID GAMMA-RAY; SUPERNOVA REMNANT; CASSIOPEIA-A; NUCLEOSYNTHESIS; COLLAPSE; CORE; 44TI AB The half-life of Ti-44 was determined by following the decay of Ti-44 and Co-60 for 14 yr. Mixed sources containing Ti-44 and Co-60 and pure sources of Ti-44 and Co-60 were prepared and their gamma-ray spectra were measured with a Ge spectrometer once or twice a year. Counts in the 1157.0-keV gamma-ray photopeak of Ti-44 and the 1173.2- and 1332.5-keV gamma-ray photopeaks of Co-60 were used for this measurement. From the decay of the Ti-44 and Co-60 activity ratios, the half-life of Ti-44 was determined. Using a value of 5.2711 +/- 0.0004 yr for Co-60 half-life, we determined the half-life of Ti-44 as 58.9 +/- 0.3 yr. Special efforts were made to check for systematic errors and these were found to be negligible within the quoted uncertainty. C1 Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. Univ Vienna, VERA, Inst Isotopenforsch & Kernphys, A-1090 Vienna, Austria. RP Ahmad, I (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. NR 23 TC 40 Z9 40 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD DEC PY 2006 VL 74 IS 6 AR 065803 DI 10.1103/PhysRevC.74.065803 PG 8 WC Physics, Nuclear SC Physics GA 121PC UT WOS:000243168500070 ER PT J AU Gericke, MT Bowman, JD Carlini, RD Chupp, TE Coulter, KP Dabaghyan, M Dawkins, M Desai, D Freedman, SJ Gentile, TR Gillis, RC Greene, GL Hersman, FW Ino, T Jones, GL Kandes, M Lauss, B Leuschner, M Lozowski, WR Mahurin, R Mason, M Masuda, Y Mitchell, GS Muto, S Nann, H Page, SA Penttila, SI Ramsay, WD Santra, S Seo, PN Sharapov, EI Smith, TB Snow, WM Wilburn, WS Yuan, V Zhu, H AF Gericke, M. T. Bowman, J. D. Carlini, R. D. Chupp, T. E. Coulter, K. P. Dabaghyan, M. Dawkins, M. Desai, D. Freedman, S. J. Gentile, T. R. Gillis, R. C. Greene, G. L. Hersman, F. W. Ino, T. Jones, G. L. Kandes, M. Lauss, B. Leuschner, M. Lozowski, W. R. Mahurin, R. Mason, M. Masuda, Y. Mitchell, G. S. Muto, S. Nann, H. Page, S. A. Penttila, S. I. Ramsay, W. D. Santra, S. Seo, P. -N. Sharapov, E. I. Smith, T. B. Snow, W. M. Wilburn, W. S. Yuan, V. Zhu, H. CA NPDGamma Collaboration TI Upper bounds on parity-violating gamma-ray asymmetries in compound nuclei from polarized cold neutron capture SO PHYSICAL REVIEW C LA English DT Article ID RADIATIVE-CAPTURE; DETECTOR ARRAY; NONCONSERVATION; CL-35 AB Parity-odd asymmetries in the electromagnetic decays of compound nuclei can sometimes be amplified above values expected from simple dimensional estimates by the complexity of compound nuclear states. Using a statistical approach, we estimate the root-mean-square of the distribution of expected parity-odd correlations (s) over right arrow (n)center dot(k) over right arrow (gamma), where (s) over right arrow (n) is the neutron spin and (k) over right arrow (gamma) is the momentum of the gamma, in the integrated gamma spectrum from the capture of cold polarized neutrons on Al, Cu, and In. We present measurements of the asymmetries in these and other nuclei. Based on our calculations, large enhancements of asymmetries were not predicted for the studied nuclei and the statistical estimates are consistent with our measured upper bounds on the asymmetries. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Manitoba, Winnipeg, MB R3T 2N2, Canada. Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Michigan, Ann Arbor, MI 48104 USA. Univ New Hampshire, Durham, NH 03824 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. NIST, Gaithersburg, MD 20899 USA. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. Hamilton Coll, Clinton, NY 13323 USA. TRIUMF, Vancouver, BC V6T 2A3, Canada. Joint Inst Nucl Res, Dubna, Russia. Univ Dayton, Dayton, OH 45469 USA. RP Gericke, MT (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM mgericke@jlab.org NR 33 TC 11 Z9 11 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD DEC PY 2006 VL 74 IS 6 AR 065503 DI 10.1103/PhysRevC.74.065503 PG 10 WC Physics, Nuclear SC Physics GA 121PC UT WOS:000243168500067 ER PT J AU Hoteling, N Walters, WB Janssens, RVF Broda, R Carpenter, MP Fornal, B Hecht, AA Hjorth-Jensen, M Krolas, W Lauritsen, T Pawlat, T Seweryniak, D Wang, X Wohr, A Wrzesinski, J Zhu, S AF Hoteling, N. Walters, W. B. Janssens, R. V. F. Broda, R. Carpenter, M. P. Fornal, B. Hecht, A. A. Hjorth-Jensen, M. Krolas, W. Lauritsen, T. Pawlat, T. Seweryniak, D. Wang, X. Wohr, A. Wrzesinski, J. Zhu, S. TI Yrast structure of Fe-64 SO PHYSICAL REVIEW C LA English DT Article ID NEUTRON-RICH NUCLEI; SHELL CLOSURES; ISOTOPES; DEFORMATION; SE-72; DECAY AB The level structure of the N=38 isotone Fe-64 was studied with the Ni-64 + U-238 reaction at 430 MeV. Several new levels were identified and compared to shell model calculations. Results show no evidence for deformation in the ground state, but a possible contribution from intruder orbitals at higher energy and spin. C1 Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. Univ Oslo, Dept Phys, N-0316 Oslo, Norway. Univ Oslo, Ctr Math Applicat, N-0316 Oslo, Norway. Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP Hoteling, N (reprint author), Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. RI Hjorth-Jensen, Morten/B-1417-2008; Krolas, Wojciech/N-9391-2013; Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 NR 27 TC 30 Z9 30 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD DEC PY 2006 VL 74 IS 6 AR 064313 DI 10.1103/PhysRevC.74.064313 PG 6 WC Physics, Nuclear SC Physics GA 121PC UT WOS:000243168500026 ER PT J AU Pinston, JA Urban, W Droste, C Rzaca-Urban, T Genevey, J Simpson, G Durell, JL Smith, AG Varley, BJ Ahmad, I AF Pinston, J. A. Urban, W. Droste, Ch. Rzaca-Urban, T. Genevey, J. Simpson, G. Durell, J. L. Smith, A. G. Varley, B. J. Ahmad, I. TI Triaxiality in Mo-105 and Mo-107 from the low to intermediate spin region SO PHYSICAL REVIEW C LA English DT Article ID FISSION FRAGMENTS; NUCLEI; DEFORMATION; QUASIPARTICLE; TRANSITION; ISOMERS; STATES; SR; ZR AB The nuclear structure of the odd Mo-105 and Mo-107 isotopes was reinvestigated in the present work. The excited levels of Mo-105 were studied by observing prompt gamma rays emitted after the spontaneous fission of Cm-248 with the EUROGAM2 multidetector array. The already well-studied level structure of Mo-107 was also completed by a search for microsecond isomers. For this purpose, this nucleus was produced by the thermal-neutron-induced fission reaction at the ILL reactor, in Grenoble. We have shown that the experimental level energies and the gamma-decay patterns are well reproduced by simple particle-rotor calculations, assuming that these nuclei have an asymmetric shape. The shapes of the odd and even Mo are compared in the neutron range N=62-66. C1 Univ Grenoble 1, Lab Phys Subatom & Cosmol, IN2P3, CNRS, F-38026 Grenoble, France. Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England. Argonne Natl Lab, Argonne, IL 60439 USA. RP Pinston, JA (reprint author), Univ Grenoble 1, Lab Phys Subatom & Cosmol, IN2P3, CNRS, F-38026 Grenoble, France. NR 29 TC 21 Z9 21 U1 1 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD DEC PY 2006 VL 74 IS 6 AR 064304 DI 10.1103/PhysRevC.74.064304 PG 10 WC Physics, Nuclear SC Physics GA 121PC UT WOS:000243168500017 ER PT J AU Vinodkumar, AM Loveland, W Sprunger, PH Peterson, D Liang, JF Shapira, D Varner, RL Gross, CJ Kolata, JJ AF Vinodkumar, A. M. Loveland, W. Sprunger, P. H. Peterson, D. Liang, J. F. Shapira, D. Varner, R. L. Gross, C. J. Kolata, J. J. TI Capture cross sections for the near symmetric Sn-124+Zr-96 reaction SO PHYSICAL REVIEW C LA English DT Article ID ENTRANCE CHANNEL; NUCLEAR SYSTEMS; MASSIVE NUCLEI; HEAVY-NUCLEI; FUSION; DYNAMICS; FISSION; COLLISIONS AB Capture-fission cross sections were measured for the near symmetric reaction between the massive nuclei Sn-124 and Zr-96 for center of mass energies from 195 to 265 MeV. Coincident fission fragments were detected and separated from elastic and deep inelastic scattering products by angle/energy/mass conditions. The measured capture cross sections agree quite well with calculations using the dinuclear system (DNS) model. The DNS model also predicts the fusion cross section for this reaction with a fusion barrier height of 208.0 MeV. The deduced extra push energy, corresponding to this barrier height, differs from that deduced from evaporation residue measurements. C1 Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA. Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP Vinodkumar, AM (reprint author), Oregon State Univ, Dept Chem, Gilbert Hall 153, Corvallis, OR 97331 USA. EM attukalv@onid.orst.edu RI Attukalathil, Vinodkumar/A-7441-2009 OI Attukalathil, Vinodkumar/0000-0002-8204-7800 NR 29 TC 15 Z9 15 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD DEC PY 2006 VL 74 IS 6 AR 064612 DI 10.1103/PhysRevC.74.064612 PG 5 WC Physics, Nuclear SC Physics GA 121PC UT WOS:000243168500042 ER PT J AU Zhu, S Deacon, AN Freeman, SJ Janssens, RVF Fornal, B Honma, M Xu, FR Broda, R Calderin, IR Carpenter, MP Chowdhury, P Kondev, FG Krolas, W Lauritsen, T Liddick, SN Lister, CJ Mantica, PF Pawlat, T Seweryniak, D Smith, JF Tabor, SL Tomlin, BE Varley, BJ Wrzesinski, J AF Zhu, S. Deacon, A. N. Freeman, S. J. Janssens, R. V. F. Fornal, B. Honma, M. Xu, F. R. Broda, R. Calderin, I. R. Carpenter, M. P. Chowdhury, P. Kondev, F. G. Krolas, W. Lauritsen, T. Liddick, S. N. Lister, C. J. Mantica, P. F. Pawlat, T. Seweryniak, D. Smith, J. F. Tabor, S. L. Tomlin, B. E. Varley, B. J. Wrzesinski, J. TI Level structure of the neutron-rich Cr-56,Cr-58,Cr-60 isotopes: Single-particle and collective aspects SO PHYSICAL REVIEW C LA English DT Article ID SHELL-MODEL; COULOMB-EXCITATION; CR ISOTOPES; BETA-DECAY; NUCLEI; REGION; DEFORMATION; QUADRUPOLE; STABILITY; CA-48 AB The structure of the Cr-56,Cr-58,Cr-60 nuclei was investigated at Gammasphere using both deep inelastic and fusion-evaporation reactions. As a result of this work, expanded level schemes are now available for these three neutron-rich, even-even isotopes. Experimental signatures were found for both single-particle and collective excitations whose relative importance varies with neutron number. Together with recent structural information on the odd-A Cr-55,Cr-57,Cr-59 neighbors, the present data highlight the changing role of the g(9/2) orbital with neutron number. Comparisons with shell-model calculations using the recently developed GXPF1A interaction and with total Routhian surface calculations are presented. C1 Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. Univ Manchester, Schuster Lab, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. Polish Acad Sci, Inst Phys Nucl, PL-31342 Krakow, Poland. Univ Aizu, Ctr Math Sci, Fukushima 9658580, Japan. Peking Univ, Dept Tech Phys, Beijing 100871, Peoples R China. Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. Univ Massachusetts, Lowell, MA 01854 USA. Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. RP Zhu, S (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RI Freeman, Sean/B-1280-2010; Xu, Furong/K-4178-2013; Krolas, Wojciech/N-9391-2013; Carpenter, Michael/E-4287-2015 OI Freeman, Sean/0000-0001-9773-4921; Carpenter, Michael/0000-0002-3237-5734 NR 40 TC 60 Z9 60 U1 0 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD DEC PY 2006 VL 74 IS 6 AR 064315 DI 10.1103/PhysRevC.74.064315 PG 15 WC Physics, Nuclear SC Physics GA 121PC UT WOS:000243168500028 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Berntzon, L Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Blumenschein, U Boehnlein, A Bolton, TA Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Couderc, F Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Das, M Davies, B Davies, G De, K de Jong, P de Jong, SJ De la Cruz-Burelo, E Martins, CD Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elmsheuser, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Geist, W Gele, D Gelhaus, R Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Hansson, P Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jenkins, A Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Johnsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, JM Kalk, JR Kappler, S Karmanov, D Kasper, J Kasper, P Katsanos, I Kau, D Kaur, R Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Krop, D Kryemadhi, A Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lam, D Lammers, S Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Lesne, V Leveque, J Lewis, P Li, J Li, L Li, QZ Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Z Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M McCarthy, R Meder, D Melnitchouk, A Mendes, A Mendoza, L Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Monk, J Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Oguri, V Oliveira, N Onoprienko, D Oshima, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Peters, K Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Rani, KJ Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Shpakov, D Siccardi, V Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stolin, V Stone, A Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tiller, B Titov, M Tokmenin, VV Tomoto, M Toole, T Torchiani, I Trefzger, T Trincaz-Duvoid, S Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ van Eijk, B Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vlimant, JR Von Toerne, E Voutilainen, M Vreeswijk, M Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Weerts, H Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Womersley, J Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, C Yu, J Yurkewicz, A Zatserklyaniy, A Zeitnitz, C Zhang, D Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Askew, A. Asman, B. Assis Jesus, A. C. S. Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Bargassa, P. Baringer, P. Barnes, C. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Berntzon, L. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Binder, M. Biscarat, C. Blackler, I. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Blumenschein, U. Boehnlein, A. Bolton, T. A. Borissov, G. Bos, K. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Burdin, S. Burke, S. Burnett, T. H. Busato, E. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Caron, S. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Claes, D. Clement, B. Clement, C. Coadou, Y. Cooke, M. Cooper, W. E. Coppage, D. Corcoran, M. Couderc, F. Cousinou, M. -C. Cox, B. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Das, M. Davies, B. Davies, G. De, K. de Jong, P. de Jong, S. J. De la Cruz-Burelo, E. De Oliveira Martins, C. Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Doidge, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elmsheuser, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Feligioni, L. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fleck, I. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gardner, J. Gavrilov, V. Gay, A. Gay, P. Geist, W. Gele, D. Gelhaus, R. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Grunendahl, S. Grunewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Hansson, P. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hooper, R. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jenkins, A. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Johnsson, P. Juste, A. Kaefer, D. Kahn, S. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kalk, J. R. Kappler, S. Karmanov, D. Kasper, J. Kasper, P. Katsanos, I. Kau, D. Kaur, R. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Klima, B. Kohli, J. M. Konrath, J. -P. Kopal, M. Korablev, V. M. Kotcher, J. Kothari, B. Koubarovsky, A. Kozelov, A. V. Krop, D. Kryemadhi, A. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lam, D. Lammers, S. Landsberg, G. Lazoflores, J. Le Bihan, A. -C. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lesne, V. Leveque, J. Lewis, P. Li, J. Li, L. Li, Q. Z. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Lounis, A. Love, P. Lubatti, H. J. Lynker, M. Lyon, A. L. Maciel, A. K. A. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Magnan, A. -M. Makovec, N. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martens, M. McCarthy, R. Meder, D. Melnitchouk, A. Mendes, A. Mendoza, L. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Michaut, M. Miettinen, H. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Monk, J. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Noeding, C. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Oguri, V. Oliveira, N. Onoprienko, D. Oshima, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Perea, P. M. Peters, K. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Pompos, A. Pope, B. G. Popov, A. V. Potter, C. Prado da Silva, W. L. Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Rani, K. J. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Royon, C. Rubinov, P. Ruchti, R. Rud, V. I. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schmitt, C. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Sengupta, S. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Shpakov, D. Siccardi, V. Sidwell, R. A. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smith, R. P. Snow, G. R. Snow, J. Snyder, S. Soldner-Rembold, S. Song, X. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stone, A. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, M. Stroehmer, R. Strom, D. Strovink, M. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Talby, M. Tamburello, P. Taylor, W. Telford, P. Temple, J. Tiller, B. Titov, M. Tokmenin, V. V. Tomoto, M. Toole, T. Torchiani, I. Trefzger, T. Trincaz-Duvoid, S. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. van Eijk, B. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vartapetian, A. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vlimant, J. -R. Von Toerne, E. Voutilainen, M. Vreeswijk, M. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Weerts, H. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Womersley, J. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, C. Yu, J. Yurkewicz, A. Zatserklyaniy, A. Zeitnitz, C. Zhang, D. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Measurement of the t(t)over-bar production cross section in p(p)over-bar collisions at root s=1.96 TeV using secondary vertex b tagging SO PHYSICAL REVIEW D LA English DT Article ID QCD HARD SCATTERING; PLUS JETS EVENTS; HADRONIC COLLISIONS; HEAVY QUARKS; TOP-QUARK; RESUMMATION; DETECTOR AB We report a new measurement of the t (t) over bar production cross section in p (beta) over bar collisions at a center-of-mass energy of 1.96 TeV using events with one charged lepton (electron or muon), missing transverse energy, and jets. Using 425 pb(-1) of data collected using the D0 detector at the Fermilab Tevatron Collider, and enhancing the t (t) over bar content of the sample by tagging b jets with a secondary vertex tagging algorithm, the t (t) over bar production cross section is measured to be sigma(p (t) over bar -> t (t) over bar +X)=6.6 +/- 0.9(stat+syst) +/- 0.4(lum) pb. This cross section is the most precise D0 measurement to date for t (t) over bar production and is in good agreement with standard model expectations. C1 Joint Inst Nucl Res, Dubna, Russia. Univ Buenos Aires, Buenos Aires, DF, Argentina. Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. Univ Estado Rio De Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Univ Alberta, Edmonton, AB, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. York Univ, Toronto, ON M3J 2R7, Canada. McGill Univ, Montreal, PQ, Canada. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco, Quito, Ecuador. Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. Univ Aix Marseille 2, CNRS, IN2P3, CPPM, Marseille, France. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. CEA, DAPNIA, Serv Phys Particules, Saclay, France. Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. Univ Haute Alsace, Mulhouse, France. Univ Lyon 1, CNRS, Inst Phys Nucl, IN2P3, F-69622 Villeurbanne, France. Rhein Westfal TH Aachen, Inst Phys 3, D-5100 Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, Freiburg, Germany. Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. Sungkyunkwan Univ, Suwon, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. NIKHEF H, FOM Inst, NL-1009 DB Amsterdam, Netherlands. Univ Amsterdam, Amsterdam, Netherlands. Radboud Univ Nijmegen, Nijmegen, Netherlands. Inst Theoret & Expt Phys, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Inst Nucl Phys, St Petersburg, Russia. Lund Univ, Lund, Sweden. Royal Inst Technol, Stockholm, Sweden. Stockholm Univ, S-10691 Stockholm, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Zurich, Inst Phys, Zurich, Switzerland. Univ Lancaster, Lancaster, England. Univ London Imperial Coll Sci Technol & Med, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Purdue Univ Calumet, Hammond, IN 46323 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02215 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. SUNY Buffalo, Buffalo, NY 14260 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Oklahoma State Univ, Stillwater, OK 74078 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Ancu, Lucian Stefan/F-1812-2010; Telford, Paul/B-6253-2011; Nomerotski, Andrei/A-5169-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Merkin, Mikhail/D-6809-2012; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Novaes, Sergio/D-3532-2012; Mundim, Luiz/A-1291-2012; Fisher, Wade/N-4491-2013; Oguri, Vitor/B-5403-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015 OI Ancu, Lucian Stefan/0000-0001-5068-6723; Dudko, Lev/0000-0002-4462-3192; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107 NR 45 TC 41 Z9 41 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC PY 2006 VL 74 IS 11 AR 112004 DI 10.1103/PhysRevD.74.112004 PG 25 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 121PW UT WOS:000243170500010 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Berntzon, L Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Das, M Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grunendahl, R Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Hansson, P Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jenkins, A Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, JM Kalk, JR Kappler, S Karmanov, D Kasper, J Kasper, P Katsanos, I Kau, D Kaur, R Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Krop, D Kryemadhi, A Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lammers, S Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Lesne, V Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Z Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M McCarthy, R Meder, D Melnitchouk, A Mendes, A Mendoza, L Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Millet, T Mitrevski, J Molina, J Mondal, NK Monk, J Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Mutaf, YD Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Oguri, V Oliveira, N Onoprienko, D Oshima, N Otec, R Garzon, GJOY Owen, M Padley, P Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Peters, K Petroff, P Petteni, M Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Rani, KJ Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Siccardi, V Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stolin, V Stone, A Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tiller, B Titov, M Tokmenin, VV Tomoto, M Toole, T Torchiani, I Towers, S Trefzger, T Trincaz-Duvoid, S Tsybychev, D Tuchming, B Tully, C Turcot, AS Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vlimant, JR Von Toerne, E Voutilainen, M Vreeswijk, M Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Weerts, H Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Womersley, J Wood, DR Wyatt, TR Xie, Y Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, C Yu, J Yurkewicz, A Zatserklyaniy, A Zeitnitz, C Zhang, D Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Agelou, M. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Bargassa, P. Baringer, P. Barnes, C. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Berntzon, L. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Binder, M. Biscarat, C. Black, K. M. Blackler, I. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Blumenschein, U. Boehnlein, A. Boeriu, O. Bolton, T. A. Borissov, G. Bos, K. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Burdin, S. Burke, S. Burnett, T. H. Busato, E. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Caron, S. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Claes, D. Clement, B. Clement, C. Coadou, Y. Cooke, M. Cooper, W. E. Coppage, D. Corcoran, M. Cousinou, M. -C. Cox, B. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Das, M. Davies, B. Davies, G. Davis, G. A. De, K. de Jong, P. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Demine, P. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Doidge, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Edwards, T. Ellison, J. Elmsheuser, J. Elvira, V. D. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Fatakia, S. N. Feligioni, L. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fleck, I. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gardner, J. Gavrilov, V. Gay, A. Gay, P. Gele, D. Gelhaus, R. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Gruenendahl, R. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Hansson, P. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hooper, R. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jenkins, A. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kaefer, D. Kahn, S. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kalk, J. R. Kappler, S. Karmanov, D. Kasper, J. Kasper, P. Katsanos, I. Kau, D. Kaur, R. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Klima, B. Kohli, J. M. Konrath, J. -P. Kopal, M. Korablev, V. M. Kotcher, J. Kothari, B. Koubarovsky, A. Kozelov, A. V. Krop, D. Kryemadhi, A. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lammers, S. Landsberg, G. Lazoflores, J. Le Bihan, A. -C. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lesne, V. Leveque, J. Lewis, P. Li, J. Li, Q. Z. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Lounis, A. Love, P. Lubatti, H. J. Lynker, M. Lyon, A. L. Maciel, A. K. A. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Magnan, A. -M. Makovec, N. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martens, M. McCarthy, R. Meder, D. Melnitchouk, A. Mendes, A. Mendoza, L. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Michaut, M. Miettinen, H. Millet, T. Mitrevski, J. Molina, J. Mondal, N. K. Monk, J. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Mutaf, Y. D. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Noeding, C. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Oguri, V. Oliveira, N. Onoprienko, D. Oshima, N. Otec, R. Garzon, G. J. Otero y Owen, M. Padley, P. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Perea, P. M. Perez, E. Peters, K. Petroff, P. Petteni, M. Piegaia, R. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Rani, K. J. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Royon, C. Rubinov, P. Ruchti, R. Rud, V. I. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schmitt, C. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Sengupta, S. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shephard, W. D. Shivpuri, R. K. Shpakov, D. Siccardi, V. Sidwell, R. A. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smith, R. P. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Song, X. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stone, A. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, M. Stroehmer, R. Strom, D. Strovink, M. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Talby, M. Tamburello, P. Taylor, W. Telford, P. Temple, J. Tiller, B. Titov, M. Tokmenin, V. V. Tomoto, M. Toole, T. Torchiani, I. Towers, S. Trefzger, T. Trincaz-Duvoid, S. Tsybychev, D. Tuchming, B. Tully, C. Turcot, A. S. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vartapetian, A. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vlimant, J. -R. Von Toerne, E. Voutilainen, M. Vreeswijk, M. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Weerts, H. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Womersley, J. Wood, D. R. Wyatt, T. R. Xie, Y. Xuan, N. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, C. Yu, J. Yurkewicz, A. Zatserklyaniy, A. Zeitnitz, C. Zhang, D. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Measurement of B-d mixing using opposite-side flavor tagging SO PHYSICAL REVIEW D LA English DT Article ID PHYSICS; DECAYS AB We report on a measurement of the B-d(0) mixing frequency and the calibration of an opposite-side flavor tagger in the D0 experiment. Various properties associated with the b quark on the opposite side of the reconstructed B meson are combined using a likelihood-ratio method into a single variable with enhanced tagging power. Its performance is tested with data, using a large sample of reconstructed semileptonic B ->mu(DX)-X-0 and B ->mu(DX)-X-* decays, corresponding to an integrated luminosity of approximately 1 fb(-1). The events are divided into groups depending on the value of the combined tagging variable, and an independent analysis is performed in each group. Combining the results of these analyses, the overall effective tagging power is found to be epsilon D-2=(2.48 +/- 0.21(-0.06)(+0.08))%. The measured B-d(0) mixing frequency Delta m(d)=0.506 +/- 0.020(stat)+/- 0.016(syst) ps(-1) is in good agreement with the world average value. C1 Joint Inst Nucl Res, Dubna, Russia. Univ Buenos Aires, Buenos Aires, DF, Argentina. Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. Univ Estado Rio De Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Univ Alberta, Edmonton, AB, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. York Univ, Toronto, ON M3J 2R7, Canada. McGill Univ, Montreal, PQ, Canada. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. Acad Sci Czech Republic, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco, Quito, Ecuador. Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. Univ Aix Marseille 2, CNRS, IN2P3, CPPM, Marseille, France. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. CEA, DAPNIA, Serv Phys Particules, Saclay, France. Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. Univ Haute Alsace, Mulhouse, France. Univ Lyon 1, CNRS, Inst Phys Nucl, IN2P3, F-69622 Villeurbanne, France. Rhein Westfal TH Aachen, Inst Phys 3, D-5100 Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, Freiburg, Germany. Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. Sungkyunkwan Univ, Suwon, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. NIKHEF H, FOM Inst, NL-1009 DB Amsterdam, Netherlands. Univ Amsterdam, Amsterdam, Netherlands. Radboud Univ Nijmegen, Nijmegen, Netherlands. Inst Theoret & Expt Phys, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Royal Inst Technol, Stockholm, Sweden. Lund Univ, Lund, Sweden. Stockholm Univ, S-10691 Stockholm, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Zurich, Inst Phys, Zurich, Switzerland. Univ Lancaster, Lancaster, England. Univ London Imperial Coll Sci Technol & Med, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Purdue Univ Calumet, Hammond, IN 46323 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. SUNY Buffalo, Buffalo, NY 14260 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Oklahoma State Univ, Stillwater, OK 74078 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Bargassa, Pedrame/O-2417-2016; Oguri, Vitor/B-5403-2013; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Juste, Aurelio/I-2531-2015; Telford, Paul/B-6253-2011; Nomerotski, Andrei/A-5169-2010; Shivpuri, R K/A-5848-2010; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012 OI Haas, Andrew/0000-0002-4832-0455; Weber, Michele/0000-0002-2770-9031; Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Filthaut, Frank/0000-0003-3338-2247; Naumann, Axel/0000-0002-4725-0766; Fatakia, Sarosh/0000-0003-0430-3191; Belanger-Champagne, Camille/0000-0003-2368-2617; Blazey, Gerald/0000-0002-7435-5758; Wahl, Horst/0000-0002-1345-0401; Gershtein, Yuri/0000-0002-4871-5449; Weber, Gernot/0000-0003-4199-1640; Bean, Alice/0000-0001-5967-8674; Bargassa, Pedrame/0000-0001-8612-3332; Strovink, Mark/0000-0001-7020-7769; Begel, Michael/0000-0002-1634-4399; Landsberg, Greg/0000-0002-4184-9380; Blessing, Susan/0000-0002-4455-7279; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; Blekman, Freya/0000-0002-7366-7098; Beuselinck, Raymond/0000-0003-2613-7446; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Qian, Jianming/0000-0003-4813-8167; Madaras, Ronald/0000-0001-7399-2993; Evans, Harold/0000-0003-2183-3127; Malik, Sudhir/0000-0002-6356-2655; Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Sawyer, Lee/0000-0001-8295-0605; Hedin, David/0000-0001-9984-215X; Juste, Aurelio/0000-0002-1558-3291; de Jong, Sijbrand/0000-0002-3120-3367; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549 NR 17 TC 30 Z9 30 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC PY 2006 VL 74 IS 11 AR 112002 DI 10.1103/PhysRevD.74.112002 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 121PW UT WOS:000243170500008 ER PT J AU Afanasev, AV Carlson, CE AF Afanasev, Andrei V. Carlson, Carl E. TI Beam single-spin asymmetry in semiinclusive deep inelastic scattering SO PHYSICAL REVIEW D LA English DT Article ID ODD FRAGMENTATION FUNCTIONS; FINAL-STATE INTERACTIONS; PARTON DISTRIBUTIONS; DRELL-YAN; AZIMUTHAL ASYMMETRIES; ELECTROPRODUCTION; LEPTOPRODUCTION; HADRONS; QUARKS AB We calculate, in a model, the beam spin asymmetry in semi-inclusive jet production in deep inelastic scattering. This twist-3, T-odd observable is nonzero due to final state strong interactions. With reasonable choices for the parameters, one finds an asymmetry of several percent, about the size seen experimentally. We present the result both as an explicit asymmetry calculation and as a model calculation of the new transverse-momentum dependent distribution function g(perpendicular to). C1 Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. RP Afanasev, AV (reprint author), Hampton Univ, Dept Phys, Hampton, VA 23668 USA. OI Afanasev, Andrei/0000-0003-0679-3307 NR 40 TC 7 Z9 7 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC PY 2006 VL 74 IS 11 AR 114027 DI 10.1103/PhysRevD.74.114027 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 121PW UT WOS:000243170500048 ER PT J AU Albright, CH Chen, MC AF Albright, Carl H. Chen, Mu-Chun TI Model predictions for neutrino oscillation parameters SO PHYSICAL REVIEW D LA English DT Review ID SU(3) FAMILY SYMMETRY; LONG-BASE-LINE; MU-L-TAU; FERMION MASSES; CP-VIOLATION; SUPERSYMMETRIC SO(10); FLAVOR SYMMETRY; LSND EXPERIMENT; MIXINGS; MATRIX AB We have surveyed leptonic and grand unified models of neutrino masses and mixings in the literature which are still viable and give numerical predictions for the reactor angle, theta(13). The results are of considerable interest in anticipation of the next generation reactor experiments and the possible future need for neutrino factories. Of the 63 models considered which were published or posted on the Archive before June 2006, half predict values of sin(2)2 theta(13)greater than or similar to 0.015, which should yield positive signals for nu(e) disappearance in the reactor experiments planned for the near future. Depending upon the outcome of those experiments, half of the models can be eliminated on the basis of the presence or absence of such an observed nu(e) disappearance signal. C1 No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. RP Albright, CH (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. EM albright@fnal.gov; mcchen@fnal.gov OI Chen, Mu-Chun/0000-0002-5749-2566; Albright, Carl/0000-0002-2252-6359 NR 114 TC 61 Z9 61 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC PY 2006 VL 74 IS 11 AR 113006 DI 10.1103/PhysRevD.74.113006 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 121PW UT WOS:000243170500017 ER PT J AU Aubert, B Bona, M Boutigny, D Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Grauges, E Palano, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Mir, LM Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Tackmann, K Wenzel, WA Sanchez, PD Barrett, M Harrison, TJ Hart, AJ Hawkes, CM Watson, AT Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Sherwood, DJ Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Zhang, L Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Williams, DC Wilson, MG Winstrom, LO Albert, J Chen, E Cheng, CH Dvoretskii, A Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Flack, RL Nash, JA Nikolich, MB Vazquez, WP Behera, PK Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Denig, AG Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hoecker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Rodier, S Roudeau, P Schune, MH Serrano, J Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP LoSecco, JM Benelli, G Corwin, LA Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Potter, CT Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL Leruste, P Malcles, J Ocariz, J Gladney, L Biasini, M Covarelli, R Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Haire, M Judd, D Wagoner, DE Biesiada, J Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Ricciardi, S Wilson, FF Aleksan, R Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Oyanguren, A Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Mellado, B Pan, Y Pierini, M Prepost, R Wu, SL Yu, Z Neal, H AF Aubert, B. Bona, M. Boutigny, D. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Pegna, D. Lopes Lynch, G. Mir, L. M. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Tackmann, K. Wenzel, W. A. del Amo Sanchez, P. Barrett, M. Harrison, T. J. Hart, A. J. Hawkes, C. M. Watson, A. T. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Sherwood, D. J. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Zhang, L. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Williams, D. C. Wilson, M. G. Winstrom, L. O. Albert, J. Chen, E. Cheng, C. H. Dvoretskii, A. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Flack, R. L. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Serrano, J. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Benelli, G. Corwin, L. A. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Potter, C. T. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. Leruste, Ph. Malcles, J. Ocariz, J. Gladney, L. Biasini, M. Covarelli, R. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Ricciardi, S. Wilson, F. F. Aleksan, R. Emery, S. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Oyanguren, A. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Mellado, B. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Yu, Z. Neal, H. CA BaBar Collaboration TI Observation of the exclusive reaction e(+)e(-)->phi eta at root s=10.58 GeV SO PHYSICAL REVIEW D LA English DT Article ID ASYMPTOTIC-BEHAVIOR; QCD; CHARM; TESTS; SPIN AB We report the observation of e(+)e(-)->phi eta near root s=10.58 GeV with 6.5 sigma significance in the K+K-gamma gamma final state in a data sample of 224 fb(-1) collected by the BABAR experiment at the PEP-II e(+)e(-) storage rings. We measure the restricted radiation-corrected cross section to be sigma(e(+)e(-)->phi eta)=2.1 +/- 0.4(stat)+/- 0.1(syst) fb within the range vertical bar cos theta(*)vertical bar < 0.8, where theta(*) is the center-of-mass polar angle of the phi meson. The phi meson is required to be in the invariant mass range of 1.008 < m(phi)< 1.035 GeV/c(2). The radiation-corrected cross section in the full cos theta(*) range is extrapolated to be 2.9 +/- 0.5(stat)+/- 0.1(syst) fb. C1 CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Savoie, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci & Technol, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. Lab Accelerateur Lineaire, IN2P3, CNRS, F-91898 Orsay, France. Univ Paris 11, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Queen Mary Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Lab Nucl Sci, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Denis Diderot Paris 7, Lab Phys Nucl & Hautes Energies, IN2P3, CNRS,Univ Pierre & Marie Curie Paris 6, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Basilicata, I-85100 Potenza, Italy. Univ Durham, Dept Phys, IPPP, Durham DH1 3LE, England. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Lista, Luca/C-5719-2008; Peters, Klaus/C-2728-2008; Bellini, Fabio/D-1055-2009; Della Ricca, Giuseppe/B-6826-2013; Patrignani, Claudia/C-5223-2009; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Cavallo, Nicola/F-8913-2012; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Roe, Natalie/A-8798-2012 OI Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Peters, Klaus/0000-0001-7133-0662; Bellini, Fabio/0000-0002-2936-660X; Della Ricca, Giuseppe/0000-0003-2831-6982; Patrignani, Claudia/0000-0002-5882-1747; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; NR 30 TC 9 Z9 9 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC PY 2006 VL 74 IS 11 AR 111103 DI 10.1103/PhysRevD.74.111103 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 121PW UT WOS:000243170500003 ER PT J AU Aubert, B Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Sanchez, PD Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Watson, AT Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Sherwood, DJ Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Nash, JA Nikolich, MB Vazquez, WP Behera, PK Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Denig, AG Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Cowan, R Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Corwin, LA Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Rahimi, AM Regensburger, JJ Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Briand, H Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Gladney, L Biasini, M Covarelli, R Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Aleksan, R Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Cheng, B Dasu, S Datta, M Flood, KT Hollar, JJ Kutter, PE Mellado, B Mihalyi, A Pan, Y Pierini, M Prepost, R Wu, SL Yu, Z Neal, H AF Aubert, B. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Sanchez, P. del Amo Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Watson, A. T. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Sherwood, D. J. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dvoretskii, A. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Cowan, R. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Corwin, L. A. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Rahimi, A. M. Regensburger, J. J. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Briand, H. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Gladney, L. Biasini, M. Covarelli, R. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Aleksan, R. Emery, S. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Flood, K. T. Hollar, J. J. Kutter, P. E. Mellado, B. Mihalyi, A. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Yu, Z. Neal, H. CA BaBar Collection TI Measurement of the absolute branching fractions B -> D pi, D-*pi, D-**pi with a missing mass method SO PHYSICAL REVIEW D LA English DT Article ID NONLEPTONIC DECAYS; FINAL-STATES; B-MESONS; FACTORIZATION; CHARM; QCD AB We present branching fraction measurements of charged and neutral B decays to D pi(-), D-*pi(-), and "D-**"pi(-) with a missing mass method, based on a sample of 231x10(6) Upsilon(4S)-> B (B) over bar pairs collected by the BABAR detector at the PEP-II e(+)e(-) collider. One of the B mesons is fully reconstructed and the other one decays to a reconstructed charged pi and a companion charmed meson identified by its recoil mass, inferred by kinematics. Here "D-**" refers to the sum of all the nonstrange charm meson states with masses in the range 2.2-2.8 GeV/c(2). We measure the branching fractions: B(B--> D-0 pi(-))=(4.49 +/- 0.21 +/- 0.23)x10(-3), B(B--> D-*0 pi(-))=(5.13 +/- 0.22 +/- 0.28)x10(-3), B(B-->"D-**0"pi(-))=(5.50 +/- 0.52 +/- 1.04)x10(-3), B((B) over bar (0)-> D+pi(-))=(3.03 +/- 0.23 +/- 0.23)x10(-3), B((B) over bar (0)-> D*+pi(-))=(2.99 +/- 0.23 +/- 0.24)x10(-3), B((B) over bar (0)->"D**+"pi(-))=(2.34 +/- 0.65 +/- 0.88)x10(-3), and their ratios. C1 CNRS, Lab Phys Particules, IN2P3, F-74941 Annecy Le Vieux, France. Univ Savoie, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dept Phys, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, Accelerateur Lineaire Lab, IN2P3, F-91898 Orsay, France. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Queen Mary Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. Natl Inst Nucl & High Energy Phys, NIKHEF H, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, CNRS, IN2P3, Lab Phys Nucll & Hautes Energies, F-75252 Paris, France. Univ Paris 07, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. RP Aubert, B (reprint author), CNRS, Lab Phys Particules, IN2P3, F-74941 Annecy Le Vieux, France. RI Rizzo, Giuliana/A-8516-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; dong, liaoyuan/A-5093-2015; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Peters, Klaus/C-2728-2008; de Groot, Nicolo/A-2675-2009; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Della Ricca, Giuseppe/B-6826-2013; Cavallo, Nicola/F-8913-2012; Saeed, Mohammad Alam/J-7455-2012 OI Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Paoloni, Eugenio/0000-0001-5969-8712; Faccini, Riccardo/0000-0003-2613-5141; Raven, Gerhard/0000-0002-2897-5323; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Peters, Klaus/0000-0001-7133-0662; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Della Ricca, Giuseppe/0000-0003-2831-6982; Saeed, Mohammad Alam/0000-0002-3529-9255 NR 32 TC 1 Z9 1 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC PY 2006 VL 74 IS 11 AR 111102 DI 10.1103/PhysRevD.74.111102 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 121PW UT WOS:000243170500002 ER PT J AU Beane, SR Bedaque, PF Luu, TC Orginos, K Pallante, E Parreno, A Savage, MJ AF Beane, Silas R. Bedaque, Paulo F. Luu, Thomas C. Orginos, Kostas Pallante, Elisabetta Parreno, Assumpta Savage, Martin J. CA NPLQCD Collaboration TI pi K scattering in full QCD with domain-wall valence quarks SO PHYSICAL REVIEW D LA English DT Article ID CHIRAL PERTURBATION-THEORY; KAON SCATTERING; ONE LOOP; LATTICE; THRESHOLD; LENGTH; STATES AB We calculate the pi K-+(+) scattering length in fully-dynamical lattice QCD with domain-wall valence quarks on MILC lattices with rooted staggered sea-quarks at a lattice spacing of b=0.125 fm, lattice spatial size of L=2.5 fm and at pion masses of m(pi)similar to 290, 350, 490 and 600 MeV. The lattice data, analyzed at next-to-leading order in chiral perturbation theory, allows an extraction of the full pi K scattering amplitude at threshold. Extrapolating to the physical point gives m(pi)a(3/2)=-0.0574 +/- 0.0016(-0.0058)(+0.0024) and m(pi)a(1/2)=0.1725 +/- 0.0017(-0.0156)(+0.0023) for the I=3/2 and I=1/2 scattering lengths, respectively, where the first error is statistical and the second error is an estimate of the systematic due to truncation of the chiral expansion. C1 Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. Univ Maryland, Dept Phys, College Pk, MD 20742 USA. Lawrence Livermore Natl Lab, N Div, Livermore, CA 94551 USA. Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. Jefferson Lab, Newport News, VA 23606 USA. Univ Groningen, Inst Theoret Phys, NL-9747 AG Groningen, Netherlands. Univ Barcelona, Dept Estruct & Constituents Mat, E-08028 Barcelona, Spain. Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Beane, SR (reprint author), Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. NR 46 TC 53 Z9 53 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC PY 2006 VL 74 IS 11 AR 114503 DI 10.1103/PhysRevD.74.114503 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 121PW UT WOS:000243170500054 ER PT J AU Bodwin, GT Kang, D Lee, J AF Bodwin, Geoffrey T. Kang, Daekyoung Lee, Jungil TI Reconciling the light-cone and nonrelativistic QCD approaches to calculating e(+)e(-)-> J/psi+eta(c) SO PHYSICAL REVIEW D LA English DT Article ID HEAVY QUARKONIUM; ROOT-S=10.6 GEV; ANNIHILATION; LATTICE; STATES; NRQCD AB It has been suggested in Ref. [A. E. Bondar and V. L. Chernyak, Phys. Lett. B 612, 215 (2005)] that the disagreement between theoretical calculations and experimental observations for the rate for the process e(+)e(-)-> J/psi+eta(c) at the B factories might be resolved by using the light-cone method to take into account the relative momentum of the heavy-quark and antiquark in the quarkonia. The light-cone result for the production cross section in Ref. [A. E. Bondar and V. L. Chernyak, Phys. Lett. B 612, 215 (2005)] is almost an order-of-magnitude larger than existing NRQCD factorization results. We investigate this apparent theoretical discrepancy. We compute light-cone distribution functions by making use of quarkonium wave functions from the Cornell potential model. Our light-cone distribution functions are similar in shape to those of Ref. [A. E. Bondar and V. L. Chernyak, Phys. Lett. B 612, 215 (2005)] and yield a similar cross section. However, when we subtract parts of the light-cone distribution functions that correspond to corrections of relative-order alpha(s) in the NRQCD approach, we find that the cross section decreases by about a factor of three. When we set certain renormalization factors Z(i) in the light-cone calculation equal to unity, we find a further reduction in the cross section of about a factor of two. The resulting light-cone cross section is similar in magnitude to the NRQCD factorization cross sections and shows only a modest enhancement over the light-cone cross section in which the relative momentum of the heavy-quark and antiquark is neglected. C1 Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. Korea Univ, Dept Phys, Seoul 136701, South Korea. RP Bodwin, GT (reprint author), Argonne Natl Lab, Div High Energy Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 34 TC 65 Z9 65 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC PY 2006 VL 74 IS 11 AR 114028 DI 10.1103/PhysRevD.74.114028 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 121PW UT WOS:000243170500049 ER PT J AU Cuoco, A Miele, G Serpico, PD AF Cuoco, A. Miele, G. Serpico, P. D. TI First hints of large scale structures in the ultrahigh energy sky? SO PHYSICAL REVIEW D LA English DT Article ID COSMIC-RAYS; SPECTRUM AB The result of a recent publication by M. Kachelriess and D. Semikoz of a broad maximum around 25 degrees in the two-point autocorrelation function of ultrahigh energy cosmic ray arrival directions has been intriguingly interpreted as the first imprint of the large scale structures (LSS) of baryonic matter in the near universe. We analyze this suggestion in light of the clustering properties expected from the PSCz astronomical catalogue of LSS. The chance probability of the signal is consistent within 2 sigma with the predictions based on the catalogue. No evidence for a significant cross correlation of the observed events with known overdensities in the LSS is found, which may be due to the role of the galactic and extragalactic magnetic fields, and is however consistent with the limited statistics. The larger statistics to be collected by the Pierre Auger Observatory is needed to answer definitely the question. C1 Univ Naples Federico II, Dipartimento Sci Fisiche, Naples, Italy. Ist Nazl Fis Nucl, Sez Naples, I-80125 Naples, Italy. Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Cuoco, A (reprint author), Univ Naples Federico II, Dipartimento Sci Fisiche, Naples, Italy. RI Miele, Gennaro/F-3628-2010 OI Miele, Gennaro/0000-0002-2028-0578 NR 15 TC 9 Z9 9 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD DEC PY 2006 VL 74 IS 12 AR 123008 DI 10.1103/PhysRevD.74.123008 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 121QJ UT WOS:000243171800019 ER PT J AU Dawson, C Izubuchi, T Kaneko, T Sasaki, S Soni, A AF Dawson, Chris Izubuchi, Taku Kaneko, Takashi Sasaki, Shoichi Soni, Amarjit TI Vector form factor in K-l3 semileptonic decay with two flavors of dynamical domain-wall quarks SO PHYSICAL REVIEW D LA English DT Article ID CHIRAL PERTURBATION-THEORY; KOBAYASHI-MASKAWA MATRIX; RADIATIVE-CORRECTIONS; WILSON FERMIONS; KLOE DETECTOR; V-US; LATTICE; LIFETIME; ELEMENTS; THEOREM AB We calculate the vector form factor in K ->pi l nu semileptonic decays at zero momentum transfer f(+)(0) from numerical simulations of two-flavor QCD on the lattice. Our simulations are carried out on 16(3)x32 at a lattice spacing of a similar or equal to 0.12 fm using a combination of the DBW2 gauge and the domain-wall quark actions, which possesses excellent chiral symmetry even at finite lattice spacings. The size of fifth dimension is set to L-s=12, which leads to a residual quark mass of a few MeV. Through a set of double ratios of correlation functions, the form factor calculated on the lattice is accurately interpolated to zero momentum transfer, and then is extrapolated to the physical quark mass. We obtain f(+)(0)=0.968(9)(6), where the first error is statistical and the second is the systematic error due to the chiral extrapolation. Previous estimates based on a phenomenological model and chiral perturbation theory are consistent with our result. Combining with an average of the decay rate from recent experiments, our estimate of f(+)(0) leads to the Cabibbo-Kobayashi-Maskawa (CKM) matrix element vertical bar V-us vertical bar=0.2245(27), which is consistent with CKM unitarity. These estimates of f(+)(0) and vertical bar V-us vertical bar are subject to systematic uncertainties due to the finite lattice spacing and quenching of strange quarks, though nice consistency in f(+)(0) with previous lattice calculations suggests that these errors are not large. C1 Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. Kanazawa Univ, Inst Theoret Phys, Kanazawa, Ishikawa 9201192, Japan. High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. Grad Univ Adv Studies, Tsukuba, Ibaraki 3050801, Japan. Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Dawson, C (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. NR 67 TC 31 Z9 31 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC PY 2006 VL 74 IS 11 AR 114502 DI 10.1103/PhysRevD.74.114502 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 121PW UT WOS:000243170500053 ER PT J AU Ferrara, S Gimon, EG Kallosh, R AF Ferrara, Sergio Gimon, Eric G. Kallosh, Renata TI Magic supergravities, N=8 and black hole composites SO PHYSICAL REVIEW D LA English DT Article ID MAXWELL-EINSTEIN SUPERGRAVITY; JORDAN ALGEBRAS; FIXED SCALARS; U-DUALITY; SUPERSYMMETRY; OXIDATION; ATTRACTORS; GEOMETRY; ENTROPY; MODULI AB We present explicit U-duality invariants for the R, C, Q, O (real, complex, quaternionic, and octonionic) magic supergravities in four and five dimensions using complex forms with a reality condition. From these invariants we derive an explicit entropy function and corresponding stabilization equations which we use to exhibit stationary multicenter 1/2 Bogomol'nyi-Prasad-Sommerfield (BPS) solutions of these N=2 d=4 theories, starting with the octonionic one with E7(-25) duality symmetry. We generalize to stationary 1/8 BPS multicenter solutions of N=8, d=4 supergravity, using the consistent truncation to the quaternionic magic N=2 supergravity. We present a general solution of non-BPS attractor equations of the STU truncation of magic models. We finish with a discussion of the BPS-non-BPS relations and attractors in N=2 versus N=5, 6, 8. C1 CERN, Ist Nazl Fis Nucl, Dept Phys, Theory Unit, CH-1211 Geneva 23, Switzerland. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. LBNL, Theoret Phys Grp, Berkeley, CA 94720 USA. Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Ferrara, S (reprint author), CERN, Ist Nazl Fis Nucl, Dept Phys, Theory Unit, CH-1211 Geneva 23, Switzerland. EM Sergio.Ferrara@cern.ch; eggimon@lbl.gov; kallosh@stanford.edu OI Ferrara, Sergio/0000-0001-7662-3480 NR 61 TC 58 Z9 58 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD DEC PY 2006 VL 74 IS 12 AR 125018 DI 10.1103/PhysRevD.74.125018 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 121QJ UT WOS:000243171800092 ER PT J AU Fleming, S Leibovich, AK Mehen, T AF Fleming, Sean Leibovich, Adam K. Mehen, Thomas TI Resummation of large endpoint corrections to color-octet J/psi photoproduction SO PHYSICAL REVIEW D LA English DT Article ID CHARMONIUM PRODUCTION; QUARKONIA PRODUCTION; FERMILAB-TEVATRON; QCD ANALYSIS; HERA; FRAGMENTATION; DISTRIBUTIONS; POLARIZATION; COLLIDERS; DECAYS AB An unresolved problem in J/psi phenomenology is a systematic understanding of the differential photoproduction cross section, d sigma/dz[gamma+p -> J/psi+X], where z=E-psi/E-gamma in the proton rest frame. In the nonrelativistic QCD (NRQCD) factorization formalism, fixed-order perturbative calculations of color-octet mechanisms suffer from large perturbative and nonperturbative corrections that grow rapidly in the endpoint region, z -> 1. In this paper, NRQCD and soft collinear effective theory are combined to resum these large corrections to the color-octet photoproduction cross section. We derive a factorization theorem for the endpoint differential cross section involving the parton distribution function and the color-octet J/psi shape functions. A one-loop matching calculation explicitly confirms our factorization theorem at next-to-leading order. Large perturbative corrections are resummed using the renormalization group. The calculation of the color-octet contribution to d sigma/dz is in qualitative agreement with data. Quantitative tests of the universality of color-octet matrix elements require improved knowledge of shape functions entering these calculations as well as resummation of the color-singlet contribution which accounts for much of the total cross section and also peaks near the endpoint. C1 Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. Duke Univ, Dept Phys, Durham, NC 27708 USA. Jefferson Lab, Newport News, VA 23606 USA. RP Fleming, S (reprint author), Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. EM fleming@physics.arizona.edu; akl2@pitt.edu; mehen@phy.duke.edu RI Fleming, Sean/C-3677-2015 OI Fleming, Sean/0000-0002-9553-7198 NR 55 TC 47 Z9 47 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC PY 2006 VL 74 IS 11 AR 114004 DI 10.1103/PhysRevD.74.114004 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 121PW UT WOS:000243170500025 ER PT J AU Jen, CM Chang, P Abe, K Abe, K Adachi, I Aihara, H Anipko, D Arinstein, K Aulchenko, V Bakich, AM Barberio, E Barbero, M Bay, A Bedny, I Belous, K Bitenc, U Bizjak, I Bondar, A Bozek, A Bracko, M Browder, TE Chen, A Chen, WT Cheon, BG Choi, SK Choi, Y Choi, YK Chuvikov, A Cole, S Dalseno, J Dash, M Drutskoy, A Eidelman, S Epifanov, D Fratina, S Gabyshev, N Gershon, T Go, A Gokhroo, G Golob, B Ha, H Haba, J Hara, T Hayasaka, K Hayashii, H Hazumi, M Heffernan, D Hoshi, Y Hou, S Hou, WS Hsiung, YB Iijima, T Inami, K Itoh, R Iwasaki, M Iwasaki, Y Kang, JH Kapusta, P Katayama, N Kawai, H Kawasaki, T Khan, HR Kichimi, H Kim, HJ Kim, YJ Krizan, P Krokovny, P Kulasiri, R Kumar, R Kuo, CC Kuzmin, A Kwon, YJ Leder, G Lee, SE Lee, YJ Lesiak, T Lin, SW Liventsev, D Mandl, F Matsumoto, T McOnie, S Mitaroff, W Miyake, H Miyata, H Miyazaki, Y Nagamine, T Nagasaka, Y Nakano, E Nakao, M Natkaniec, Z Nishida, S Nitoh, O Nozaki, T Ogawa, S Ohshima, T Okuno, S Onuki, Y Ozaki, H Palka, H Park, CW Park, H Peak, LS Pestotnik, R Piilonen, LE Poluektov, A Sakai, Y Schietinger, T Schneider, O Schwartz, AJ Seidl, R Sevior, ME Shapkin, M Shibuya, H Shwartz, B Somov, A Soni, N Stanic, S Stoeck, H Sumiyoshi, T Takasaki, F Tamai, K Tanaka, M Taylor, GN Teramoto, Y Tian, XC Tsukamoto, T Uehara, S Uglov, T Uno, S Urquijo, P Usov, Y Varner, G Varvell, KE Villa, S Wang, CC Wang, CH Wang, MZ Watanabe, Y Won, E Yamaguchi, A Yamashita, Y Yamauchi, M Zhang, LM Zhang, ZP Zhilich, V Zupanc, A AF Jen, C. -M. Chang, P. Abe, K. Abe, K. Adachi, I. Aihara, H. Anipko, D. Arinstein, K. Aulchenko, V. Bakich, A. M. Barberio, E. Barbero, M. Bay, A. Bedny, I. Belous, K. Bitenc, U. Bizjak, I. Bondar, A. Bozek, A. Bracko, M. Browder, T. E. Chen, A. Chen, W. T. Cheon, B. G. Choi, S. -K. Choi, Y. Choi, Y. K. Chuvikov, A. Cole, S. Dalseno, J. Dash, M. Drutskoy, A. Eidelman, S. Epifanov, D. Fratina, S. Gabyshev, N. Gershon, T. Go, A. Gokhroo, G. Golob, B. Ha, H. Haba, J. Hara, T. Hayasaka, K. Hayashii, H. Hazumi, M. Heffernan, D. Hoshi, Y. Hou, S. Hou, W. -S. Hsiung, Y. B. Iijima, T. Inami, K. Itoh, R. Iwasaki, M. Iwasaki, Y. Kang, J. H. Kapusta, P. Katayama, N. Kawai, H. Kawasaki, T. Khan, H. R. Kichimi, H. Kim, H. J. Kim, Y. J. Krizan, P. Krokovny, P. Kulasiri, R. Kumar, R. Kuo, C. C. Kuzmin, A. Kwon, Y. -J. Leder, G. Lee, S. E. Lee, Y. -J. Lesiak, T. Lin, S. -W. Liventsev, D. Mandl, F. Matsumoto, T. McOnie, S. Mitaroff, W. Miyake, H. Miyata, H. Miyazaki, Y. Nagamine, T. Nagasaka, Y. Nakano, E. Nakao, M. Natkaniec, Z. Nishida, S. Nitoh, O. Nozaki, T. Ogawa, S. Ohshima, T. Okuno, S. Onuki, Y. Ozaki, H. Palka, H. Park, C. W. Park, H. Peak, L. S. Pestotnik, R. Piilonen, L. E. Poluektov, A. Sakai, Y. Schietinger, T. Schneider, O. Schwartz, A. J. Seidl, R. Sevior, M. E. Shapkin, M. Shibuya, H. Shwartz, B. Somov, A. Soni, N. Stanic, S. Stoeck, H. Sumiyoshi, T. Takasaki, F. Tamai, K. Tanaka, M. Taylor, G. N. Teramoto, Y. Tian, X. C. Tsukamoto, T. Uehara, S. Uglov, T. Uno, S. Urquijo, P. Usov, Y. Varner, G. Varvell, K. E. Villa, S. Wang, C. C. Wang, C. H. Wang, M. -Z. Watanabe, Y. Won, E. Yamaguchi, A. Yamashita, Y. Yamauchi, M. Zhang, L. M. Zhang, Z. P. Zhilich, V. Zupanc, A. CA Belle Collaboration TI Improved measurements of branching fractions and CP partial rate asymmetries for B ->omega K and B ->omega pi SO PHYSICAL REVIEW D LA English DT Article ID BELLE DETECTOR; DECAYS AB We report improved measurements of B to pseudoscalar-vector decays containing an omega meson in the final state. Our results are obtained from a data sample that contains 388x10(6) B (B) over bar pairs accumulated at the Upsilon(4S) resonance, with the Belle detector at the KEKB asymmetric-energy e(+)e(-) collider. We measure the following branching fractions: B(B+->omega K+)=[8.1 +/- 0.6(stat.)+/- 0.6(syst.)]x10(-6), B(B+->omega pi(+))=[6.9 +/- 0.6(stat.)+/- 0.5(syst.)]x10(-6), and B(B-0 ->omega K-0)=[4.4(-0.7)(+0.8)(stat.)+/- 0.4(syst.)]x 10(-6). The partial width ratio (Gamma(B+->omega K+))/(Gamma(B0 ->omega K0))=1.7 +/- 0.3(stat.)+/- 0.1(sys.). We also set the 90% confidence level upper limit B(B-0 ->omega pi(0))< 2.0x10(-6). In addition, we obtain the partial rate asymmetries A(CP)=0.05(-0.07)(+0.08)(stat.)+/- 0.01(syst.) for B+->omega K+, and A(CP)=-0.02 +/- 0.09(stat.)+/- 0.01(syst.) for B+->omega pi(+). C1 Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Chiba Univ, Chiba 260, Japan. Chonnam Natl Univ, Kwangju 500757, South Korea. Univ Cincinnati, Cincinnati, OH 45221 USA. Grad Univ Adv Studies, Hayama, Japan. Gyeongsang Natl Univ, Chinju, South Korea. Univ Hawaii, Honolulu, HI 96822 USA. High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. Hiroshima Inst Technol, Hiroshima, Japan. Univ Illinois, Urbana, IL 61801 USA. Inst High Energy Phys, Vienna, Austria. Inst High Energy Phys, Protvino, Russia. Inst Theoret & Expt Phys, Moscow, Russia. Jozef Stefan Inst, Ljubljana 61000, Slovenia. Kanagawa Univ, Yokohama, Kanagawa, Japan. Korea Univ, Seoul 136701, South Korea. Kyungpook Natl Univ, Taegu 702701, South Korea. Ecole Polytech Fed Lausanne, Swiss Fed Inst Technol, CH-1015 Lausanne, Switzerland. Univ Ljubljana, Ljubljana 61000, Slovenia. Univ Maribor, SLO-2000 Maribor, Slovenia. Univ Melbourne, Parkville, Vic 3052, Australia. Nagoya Univ, Nagoya, Aichi 464, Japan. Nara Womens Univ, Nara 630, Japan. Natl Cent Univ, Chungli 32054, Taiwan. Natl Taiwan Univ, Dept Phys, Taipei 10764, Taiwan. H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. Nippon Dent Univ, Niigata, Japan. Niigata Univ, Niigata 95021, Japan. Osaka City Univ, Osaka 558, Japan. Osaka Univ, Suita, Osaka 565, Japan. Panjab Univ, Chandigarh 160014, India. Peking Univ, Beijing 100871, Peoples R China. Princeton Univ, Princeton, NJ 08544 USA. Brookhaven Natl Lab, Res Ctr, RIKEN, Upton, NY 11973 USA. Univ Sci & Technol China, Hefei 230026, Peoples R China. Sungkyunkwan Univ, Suwon 440746, South Korea. Univ Sydney, Sydney, NSW 2006, Australia. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Toho Univ, Funabashi, Chiba 274, Japan. Tohoku Gakuin Univ, Tagajo, Miyagi 985, Japan. Tohoku Univ, Sendai, Miyagi 980, Japan. Univ Tokyo, Dept Phys, Tokyo 106, Japan. Tokyo Inst Technol, Tokyo 152, Japan. Tokyo Metropolitan Univ, Tokyo 158, Japan. Tokyo Univ Agr & Technol, Tokyo, Japan. Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. Yonsei Univ, Seoul 120749, South Korea. RP Jen, CM (reprint author), Budker Inst Nucl Phys, Novosibirsk 630090, Russia. RI Abe, Kazuo/F-6576-2010; Aihara, Hiroaki/F-3854-2010; Nitoh, Osamu/C-3522-2013; Tian, Xinchun/L-2060-2013; Uglov, Timofey/B-2406-2014; Krokovny, Pavel/G-4421-2016; Drutskoy, Alexey/C-8833-2016; OI Aihara, Hiroaki/0000-0002-1907-5964; Tian, Xinchun/0000-0002-6246-0470; Uglov, Timofey/0000-0002-4944-1830; Krokovny, Pavel/0000-0002-1236-4667; Drutskoy, Alexey/0000-0003-4524-0422; Jen, Chun-Min/0000-0003-4070-8866; HSIUNG, YEE/0000-0003-4801-1238; CHANG, PAO-TI/0000-0003-4064-388X NR 22 TC 7 Z9 7 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC PY 2006 VL 74 IS 11 AR 111101 DI 10.1103/PhysRevD.74.111101 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 121PW UT WOS:000243170500001 ER PT J AU Kitano, R AF Kitano, Ryuichiro TI Dynamical GUT breaking and mu-term driven supersymmetry breaking SO PHYSICAL REVIEW D LA English DT Article ID GRAND UNIFIED THEORIES; LIGHT HIGGS DOUBLETS; SUSY GAUGE-THEORIES; EXACT SUPERPOTENTIALS; NATURAL UNIFICATION; FALSE VACUUM; PROTON DECAY; 4 DIMENSIONS; MODELS; SUPERGRAVITY AB Models for dynamical breaking of supersymmetric grand unified theories are presented. The doublet-triplet splitting problem is absent since the Higgs-doublet superfields can be identified with the massless mesons of the strong gauge group whereas there are no massless states corresponding to the colored-Higgs fields. Various strong gauge groups SU(N-c), Sp(N-c), and SO(N-c) are examined. In a model with SO(9) strong gauge group, adding a mu-term for the Higgs fields triggers to break supersymmetry in a metastable vacuum. The pattern of the supersymmetry breaking parameters is predicted to be of the gauge-mediation type with modifications in the Higgs sector. C1 Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Kitano, R (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. NR 75 TC 27 Z9 27 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD DEC PY 2006 VL 74 IS 11 AR 115002 DI 10.1103/PhysRevD.74.115002 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 121PW UT WOS:000243170500063 ER PT J AU Kouvaris, C Qiu, JW Vogelsang, W Yuan, F AF Kouvaris, Chris Qiu, Jian-Wei Vogelsang, Werner Yuan, Feng TI Single transverse-spin asymmetry in high transverse momentum pion production in pp collisions SO PHYSICAL REVIEW D LA English DT Article ID PROMPT-PHOTON PRODUCTION; CHIRAL-ODD CONTRIBUTION; POLARIZED PROTON-BEAM; LARGE-PT REACTIONS; PARTON DISTRIBUTIONS; HADRONIC SCATTERING; POWER CORRECTIONS; HARD-SCATTERING; CROSS-SECTIONS; QCD AB We study the single-spin (left-right) asymmetry in single-inclusive pion production in hadronic scattering. This asymmetry is power-suppressed in the transverse momentum of the produced pion and can be analyzed in terms of twist-three parton correlation functions in the proton. We present new calculations of the corresponding partonic hard-scattering functions that include the so-called "nonderivative" contributions not previously considered in the literature. We find a remarkably simple structure of the results. We also present a brief phenomenological study of the spin asymmetry, taking into account data from fixed-target scattering and also the latest information available from Relativistic Heavy Ion Collider (RHIC). We make additional predictions that may be tested experimentally at RHIC. C1 Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Kouvaris, C (reprint author), Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark. EM kouvaris@nbi.dk; jwq@iastate.edu; vogelsan@quark.phy.bnl.gov; fyuan@quark.phy.bnl.gov RI Yuan, Feng/N-4175-2013; OI kouvaris, chris/0000-0002-0671-2362 NR 57 TC 128 Z9 128 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC PY 2006 VL 74 IS 11 AR 114013 DI 10.1103/PhysRevD.74.114013 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 121PW UT WOS:000243170500034 ER PT J AU Lin, HW Ohta, S Soni, A Yamada, N AF Lin, Huey-Wen Ohta, Shigemi Soni, Amarjit Yamada, Norikazu TI Charm as a domain wall fermion in quenched lattice QCD SO PHYSICAL REVIEW D LA English DT Review ID HEAVY-LIGHT MESONS; CHIRAL PERTURBATION-THEORY; MASS ANOMALOUS DIMENSION; EFFECTIVE FIELD-THEORY; QUARK MASS; MATRIX-ELEMENTS; NONPERTURBATIVE RENORMALIZATION; HADRON SPECTROSCOPY; CONTINUUM-LIMIT; DECAY CONSTANTS AB We report a study describing the charm quark by a domain-wall fermion (DWF) in lattice quantum chromodynamics (QCD). Our study uses a quenched gauge ensemble with the DBW2 rectangle-improved gauge action at a lattice cutoff of a(-1) similar to 3 GeV. We calculate masses of heavy-light (charmed) and heavy-heavy (charmonium) mesons with spin-parity J(P) = 0(-/+) and 1(-/+), leptonic decay constants of the charmed pseudoscalar mesons (D and D-s), and the D-0-(D) over bar (0) mixing parameter. The charm quark mass is found to be m(c)(MS)(m(c)) = 1.24(1)(stat)18(syst) GeV. The mass splittings in charmed-meson parity partners Delta(q,J=0) and Delta(q,J=1) are degenerate within statistical errors, in accordance with experiment, and they satisfy a relation Delta(q=ud,J) > Delta(q = s,) (J), also consistent with experiment. Using our lattice calculation of the splitting between h(c) and chi(c1) and the experimental chi(c1) mass, we obtain a parity-odd axial-vector charmonium state m(hc) = 3533(11)(stat)((336))(syst) MeV, with a systematic error dominated by heavy quark discretization at order (am(c))(2). However, in this regard, we emphasize significant discrepancies in the calculation of hyperfine splittings on the lattice. The leptonic decay constants of D and D-s mesons are found to be f(D) = 232(7)stat((+6)(-0))(chiral)(17)(syst) MeV and f(Ds)/f(D) = 1.05(2)(stat)((+0)(-2))(chiral)(2)(syst), where the first error is statistical, the second is systematic due to chiral extrapolation, and the third error is a combination of other known systematics. The D-0-(D) over bar (0) mixing bag parameter, which enters the Delta C = 2 transition amplitude, is found to be B-D (2 GeV) = 0.845(24)(stat)((+24))(-6)(chiral)(105)(syst). All the above systematic errors include our estimates of quenching errors. C1 Columbia Univ, Dept Phys, New York, NY 10027 USA. Inst Particle & Nucl Studies, Ibaraki 3050801, Japan. Grad Univ Adv Studies, Tsukuba, Ibaraki 3050801, Japan. Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Lin, HW (reprint author), Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. EM hwlin@theory1.phys.columbia.edu; shigemi.ohta@kek.jp; soni@bnl.gov; norikazu.yamada@kek.jp NR 102 TC 25 Z9 25 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC PY 2006 VL 74 IS 11 AR 114506 DI 10.1103/PhysRevD.74.114506 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 121PW UT WOS:000243170500057 ER PT J AU Pisarski, RD AF Pisarski, Robert D. TI Effective theory of Wilson lines and deconfinement SO PHYSICAL REVIEW D LA English DT Article ID QUARK-GLUON PLASMA; T-HOOFT LOOP; GAUGE-THEORY; FINITE-TEMPERATURE; HOT QCD; CUBIC ORDER; FREE-ENERGY; COLLABORATION; CONFINEMENT; PERSPECTIVE AB To study the deconfining phase transition at nonzero temperature, I outline the perturbative construction of an effective theory for straight, thermal Wilson lines. Certain large, time dependent gauge transformations play a central role. They imply the existence of interfaces, which can be used to determine the form of the effective theory as a gauged, nonlinear sigma model of adjoint matrices. Especially near the transition, the Wilson line may undergo a Higgs effect. As an adjoint field, this can generate eigenvalue repulsion in the effective theory. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Pisarski, RD (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 45 TC 84 Z9 84 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD DEC PY 2006 VL 74 IS 12 AR 121703 DI 10.1103/PhysRevD.74.121703 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 121QJ UT WOS:000243171800007 ER PT J AU Sasaki, S Yamazaki, T AF Sasaki, Shoichi Yamazaki, Takeshi TI Signatures of S-wave bound-state formation in finite volume SO PHYSICAL REVIEW D LA English DT Article ID PION-SCATTERING LENGTH; QUANTUM-FIELD THEORIES; LATTICE; MATRIX; PHASE; TRANSITION; CHANNEL AB We discuss formation of an S-wave bound state in finite volume on the basis of Luscher's phase-shift formula. It is found that although a bound-state pole condition is fulfilled only in the infinite-volume limit, its modification by the finite-size corrections is exponentially suppressed by the spatial extent L in a finite box L-3. We also confirm that the appearance of the S-wave bound state is accompanied by an abrupt sign change of the S-wave scattering length even in finite volume through numerical simulations. This distinctive behavior may help us to distinguish the loosely bound state from the lowest energy level of the scattering state in finite-volume simulations. C1 Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. RP Sasaki, S (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, BLDG 510A, Upton, NY 11973 USA. EM ssasaki@phys.s.u-tokyo.ac.jp; yamazaki@quark.phy.bnl.gov NR 43 TC 33 Z9 33 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC PY 2006 VL 74 IS 11 AR 114507 DI 10.1103/PhysRevD.74.114507 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 121PW UT WOS:000243170500058 ER PT J AU Sterman, G Vogelsang, W AF Sterman, George Vogelsang, Werner TI Crossed threshold resummation SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC SCATTERING; TRANSVERSE-MOMENTUM DISTRIBUTION; DRELL-YAN PROCESS; TO-LEADING ORDER; E(+)E(-) ANNIHILATION; BOSON PRODUCTION; HARD PROCESSES; BACK JETS; LARGE-X; QCD AB We show that certain general properties of threshold and joint resummations in Drell-Yan cross sections hold as well for their crossed analogs in semi-inclusive deep-inelastic scattering and double-inclusive leptonic annihilation. We show that all plus-distribution corrections near threshold have the same structure, and are determined to all logarithmic order by two anomalous dimensions, one of which is a generalization of the D-term previously derived in Drell-Yan. We also discuss the possibility of universality in power corrections implied by the resummation. C1 SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Sterman, G (reprint author), SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. NR 48 TC 10 Z9 10 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD DEC PY 2006 VL 74 IS 11 AR 114002 DI 10.1103/PhysRevD074.114002 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 121PW UT WOS:000243170500023 ER PT J AU Tegmark, M Eisenstein, DJ Strauss, MA Weinberg, DH Blanton, MR Frieman, JA Fukugita, M Gunn, JE Hamilton, AJS Knapp, GR Nichol, RC Ostriker, JP Padmanabhan, N Percival, WJ Schlegel, DJ Schneider, DP Scoccimarro, R Seljak, U Seo, HJ Swanson, M Szalay, AS Vogeley, MS Yoo, J Zehavi, I Abazajian, K Anderson, SF Annis, J Bahcall, NA Bassett, B Berlind, A Brinkmann, J Budavari, T Castander, F Connolly, A Csabai, I Doi, M Finkbeiner, DP Gillespie, B Glazebrook, K Hennessy, GS Hogg, DW Ivezic, Z Jain, B Johnston, D Kent, S Lamb, DQ Lee, BC Lin, H Loveday, J Lupton, RH Munn, JA Pan, K Park, C Peoples, J Pier, JR Pope, A Richmond, M Rockosi, C Scranton, R Sheth, RK Stebbins, A Stoughton, C Szapudi, I Tucker, DL Vanden Berk, DE Yanny, B York, DG AF Tegmark, Max Eisenstein, Daniel J. Strauss, Michael A. Weinberg, David H. Blanton, Michael R. Frieman, Joshua A. Fukugita, Masataka Gunn, James E. Hamilton, Andrew J. S. Knapp, Gillian R. Nichol, Robert C. Ostriker, Jeremiah P. Padmanabhan, Nikhil Percival, Will J. Schlegel, David J. Schneider, Donald P. Scoccimarro, Roman Seljak, Uros Seo, Hee-Jong Swanson, Molly Szalay, Alexander S. Vogeley, Michael S. Yoo, Jaiyul Zehavi, Idit Abazajian, Kevork Anderson, Scott F. Annis, James Bahcall, Neta A. Bassett, Bruce Berlind, Andreas Brinkmann, Jon Budavari, Tamas Castander, Francisco Connolly, Andrew Csabai, Istvan Doi, Mamoru Finkbeiner, Douglas P. Gillespie, Bruce Glazebrook, Karl Hennessy, Gregory S. Hogg, David W. Ivezic, Zeljko Jain, Bhuvnesh Johnston, David Kent, Stephen Lamb, Donald Q. Lee, Brian C. Lin, Huan Loveday, Jon Lupton, Robert H. Munn, Jeffrey A. Pan, Kaike Park, Changbom Peoples, John Pier, Jeffrey R. Pope, Adrian Richmond, Michael Rockosi, Constance Scranton, Ryan Sheth, Ravi K. Stebbins, Albert Stoughton, Christopher Szapudi, Istvan Tucker, Douglas L. Vanden Berk, Daniel E. Yanny, Brian York, Donald G. TI Cosmological constraints from the SDSS luminous red galaxies SO PHYSICAL REVIEW D LA English DT Review ID DIGITAL SKY SURVEY; SPECTROSCOPIC TARGET SELECTION; POWER-SPECTRUM ANALYSIS; CFA REDSHIFT SURVEY; MICROWAVE BACKGROUND ANISOTROPIES; PARAMETER-ESTIMATION; COSMIC COMPLEMENTARITY; ACOUSTIC-OSCILLATIONS; INFLATIONARY UNIVERSE; EIGENMODE ANALYSIS AB We measure the large-scale real-space power spectrum P(k) using luminous red galaxies (LRGs) in the Sloan Digital Sky Survey (SDSS) and use this measurement to sharpen constraints on cosmological parameters from the Wilkinson Microwave Anisotropy Probe (WMAP). We employ a matrix-based power spectrum estimation method using Pseudo-Karhunen-Loeve eigenmodes, producing uncorrelated minimum-variance measurements in 20 k-bands of both the clustering power and its anisotropy due to redshift-space distortions, with narrow and well-behaved window functions in the range 0.01h/Mpc < k < 0.2h/Mpc. Results from the LRG and main galaxy samples are consistent, with the former providing higher signal-to-noise. Our results are robust to omitting angular and radial density fluctuations and are consistent between different parts of the sky. They provide a striking confirmation of the predicted large-scale Lambda CDM power spectrum. Combining only SDSS LRG and WMAP data places robust constraints on many cosmological parameters that complement prior analyses of multiple data sets. The LRGs provide independent cross-checks on Omega(m) and the baryon fraction in good agreement with WMAP. Within the context of flat Lambda CDM models, our LRG measurements complement WMAP by sharpening the constraints on the matter density, the neutrino density and the tensor amplitude by about a factor of 2, giving Omega(m)=0.24 +/- 0.02 (1 sigma), (95%) and r < 0.3 (95%). Baryon oscillations are clearly detected and provide a robust measurement of the comoving distance to the median survey redshift z=0.35 independent of curvature and dark energy properties. Within the Lambda CDM framework, our power spectrum measurement improves the evidence for spatial flatness, sharpening the curvature constraint Omega(tot)=1.05 +/- 0.05 from WMAP alone to Omega(tot)=1.003 +/- 0.010. Assuming Omega(tot)=1, the equation of state parameter is constrained to w=-0.94 +/- 0.09, indicating the potential for more ambitious future LRG measurements to provide precision tests of the nature of dark energy. All these constraints are essentially independent of scales k > 0.1h/Mpc and associated nonlinear complications, yet agree well with more aggressive published analyses where nonlinear modeling is crucial. C1 MIT, Dept Phys, Cambridge, MA 02139 USA. Univ Arizona, Dept Astron, Tucson, AZ 85721 USA. Princeton Univ Observ, Princeton, NJ 08544 USA. Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. Univ Chicago, Ctr Cosmol Phys, Chicago, IL 60637 USA. Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan. Univ Colorado, Joint Inst Lab Astrophys, Boulder, CO 80309 USA. Univ Colorado, Dept Astrophys & Planetry Sci, Boulder, CO 80309 USA. Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth P01 2EG, Hants, England. Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. Abdus Salaam Int Ctr Theoret Phys, I-34014 Trieste, Italy. Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. Case Western Reserve Univ, Dept Astron, Cleveland, OH 44106 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Univ Washington, Dept Astron, Seattle, WA 98195 USA. S African Astron Observ, ZA-7935 Cape Town, South Africa. Univ Cape Town, Dept Appl Math, ZA-7925 Cape Town, South Africa. Apache Point Observ, Sunspot, NM 88349 USA. CSIC, Inst Estudis Espacials Catalunya, ES-08034 Barcelona, Spain. Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. Univ Tokyo, Inst Astron, Tokyo 1810015, Japan. Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. US Geol Survey, Flagstaff Stn, Flagstaff, AZ 86001 USA. Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. Jet Prop Lab, Pasadena, CA 91109 USA. CALTECH, Pasadena, CA 91125 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Gatan Inc, Pleasanton, CA 94588 USA. Univ Sussex, Sussex Astron Ctr, Brighton BN1 9QJ, E Sussex, England. Seoul Natl Univ, Dept Astron, Seoul 151742, South Korea. Rochester Inst Technol, Dept Phys, Rochester, NY 14623 USA. Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. RP Tegmark, M (reprint author), MIT, Dept Phys, Cambridge, MA 02139 USA. RI Padmanabhan, Nikhil/A-2094-2012; Csabai, Istvan/F-2455-2012; Glazebrook, Karl/N-3488-2015; OI Glazebrook, Karl/0000-0002-3254-9044; Csabai, Istvan/0000-0001-9232-9898; Hogg, David/0000-0003-2866-9403; Tucker, Douglas/0000-0001-7211-5729 NR 184 TC 956 Z9 963 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC PY 2006 VL 74 IS 12 AR 123507 DI 10.1103/PhysRevD.74.123507 PG 34 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 121QJ UT WOS:000243171800028 ER PT J AU Borzsonyi, T Ecke, RE AF Borzsonyi, Tamas Ecke, Robert E. TI Rapid granular flows on a rough incline: Phase diagram, gas transition, and effects of air drag SO PHYSICAL REVIEW E LA English DT Article ID LONGITUDINAL VORTICES; RHEOLOGY; HOURGLASS; BEHAVIOR; PLANE AB We report experiments on the overall phase diagram of granular flows on an incline with emphasis on high inclination angles where the mean layer velocity approaches the terminal velocity of a single particle free falling in air. The granular flow was characterized by measurements of the surface velocity, the average layer height, and the mean density of the layer as functions of the hopper opening, the plane inclination angle, and the downstream distance x of the flow. At high inclination angles the flow does not reach an x-invariant steady state over the length of the inclined plane. For low volume flow rates, a transition was detected between dense and very dilute (gas) flow regimes. We show using a vacuum flow channel that air did not qualitatively change the phase diagram and did not quantitatively modify mean flow velocities of the granular layer except for small changes in the very dilute gaslike phase. C1 Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. Hungarian Acad Sci, Solid State Phys Res Inst, H-1525 Budapest, Hungary. RP Borzsonyi, T (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. EM btamas@szfki.hu OI Ecke, Robert/0000-0001-7772-5876 NR 34 TC 12 Z9 12 U1 0 U2 10 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD DEC PY 2006 VL 74 IS 6 AR 061301 DI 10.1103/PhysRevE.74.061301 PN 1 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 121NW UT WOS:000243165300029 ER PT J AU Eyink, GL AF Eyink, Gregory L. TI Cascade of circulations in fluid turbulence SO PHYSICAL REVIEW E LA English DT Article ID ENERGY-DISSIPATION RATE; 3-DIMENSIONAL TURBULENCE; ISOTROPIC TURBULENCE; VORTICITY; SUPERCONDUCTORS; HYDRODYNAMICS; CONSERVATION; STATISTICS; DISPERSION; DIMENSION AB Kelvin's theorem on conservation of circulations is an essential ingredient of Taylor's theory of turbulent energy dissipation by the process of vortex-line stretching. In previous work, we have proposed a nonlinear mechanism for the breakdown of Kelvin's theorem in ideal turbulence at infinite Reynolds number. We develop here a detailed physical theory of this cascade of circulations. Our analysis is based upon an effective equation for large-scale coarse-grained velocity, which contains a turbulent-induced vortex force that can violate Kelvin's theorem. We show that singularities of sufficient strength, which are observed to exist in turbulent flow, can lead to nonvanishing dissipation of circulation for an arbitrarily small coarse-graining length in the effective equations. This result is an analog for circulation of Onsager's theorem on energy dissipation for singular Euler solutions. The physical mechanism of the breakdown of Kelvin's theorem is diffusion of lines of large-scale vorticity out of the advected loop. This phenomenon can be viewed as a classical analog of the Josephson-Anderson phase-slip phenomenon in superfluids due to quantized vortex lines. We show that the circulation cascade is local in scale and use this locality to develop concrete expressions for the turbulent vortex force by a multiscale gradient expansion. We discuss implications for Taylor's theory of turbulent dissipation and we point out some related cascade phenomena, in particular for magnetic flux in magnetohydrodynamic turbulence. C1 Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Eyink, GL (reprint author), Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA. NR 72 TC 4 Z9 4 U1 1 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD DEC PY 2006 VL 74 IS 6 AR 066302 DI 10.1103/PhysRevE.74.066302 PN 2 PG 11 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 121OC UT WOS:000243165900034 ER PT J AU Mertens, FG Morales-Molina, L Bishop, AR Sanchez, A Muller, P AF Mertens, F. G. Morales-Molina, L. Bishop, A. R. Sanchez, A. Mueller, P. TI Optimization of soliton ratchets in inhomogeneous sine-Gordon systems SO PHYSICAL REVIEW E LA English DT Article ID BROWNIAN MOTORS; JOSEPHSON-JUNCTIONS; DYNAMICS; KINKS AB Unidirectional motion of solitons can take place, although the applied force has zero average in time, when the spatial symmetry is broken by introducing a potential V(x), which consists of periodically repeated cells with each cell containing an asymmetric array of strongly localized inhomogeneities at positions x(i). A collective coordinate approach shows that the positions, heights, and widths of the inhomogeneities (in that order) are the crucial parameters so as to obtain an optimal effective potential U-opt that yields a maximal average soliton velocity. U-opt essentially exhibits two features: double peaks consisting of a positive and a negative peak, and long flat regions between the double peaks. Such a potential can be obtained by choosing inhomogeneities with opposite signs (e.g., microresistors and microshorts in the case of long Josephson junctions) that are positioned close to each other, while the distance between each peak pair is rather large. These results of the collective variable theory are confirmed by full simulations for the inhomogeneous sine-Gordon system. C1 Univ Bayreuth, Inst Phys, D-95440 Bayreuth, Germany. Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. Univ Carlos III Madrid, Dept Matemat, GISC, Madrid 28911, Spain. Univ Zaragoza, Inst Biocomputac & Fis Sist Complejos, Zaragoza 50009, Spain. RP Mertens, FG (reprint author), Univ Bayreuth, Inst Phys, POB 101251, D-95440 Bayreuth, Germany. RI Sanchez, Angel/A-9229-2008 OI Sanchez, Angel/0000-0003-1874-2881 NR 37 TC 8 Z9 8 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD DEC PY 2006 VL 74 IS 6 AR 066602 DI 10.1103/PhysRevE.74.066602 PN 2 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 121OC UT WOS:000243165900048 PM 17280157 ER PT J AU Ramaprabhu, P Dimonte, G Young, YN Calder, AC Fryxell, B AF Ramaprabhu, P. Dimonte, Guy Young, Yuan-Nan Calder, A. C. Fryxell, B. TI Limits of the potential flow approach to the single-mode Rayleigh-Taylor problem SO PHYSICAL REVIEW E LA English DT Article ID NUMERICAL SIMULATIONS; INITIAL PERTURBATIONS; INSTABILITY; CODE; DEPENDENCE AB We report on the behavior of a single-wavelength Rayleigh-Taylor flow at late times. The calculations were performed in a long square duct (lambda x lambda x8 lambda), using four different numerical simulations. In contradiction with potential flow theories that predict a constant terminal velocity, the single-wavelength Rayleigh-Taylor problem exhibits late-time acceleration. The onset of acceleration occurs as the bubble penetration depth exceeds the diameter of bubbles, and is observed for low and moderate density differences. Based on our simulations, we provide a phenomenological description of the observed acceleration, and ascribe this behavior to the formation of Kelvin-Helmholtz vortices on the bubble-spike interface that diminish the friction drag, while the associated induced flow propels the bubbles forward. For large density ratios, the formation of secondary instabilities is suppressed, and the bubbles remain terminal consistent with potential flow models. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA. Univ Chicago, Chicago, IL 60637 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ramaprabhu, P (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Calder, Alan/E-5348-2011; Young, Yuan-Nan/L-6413-2015 OI Young, Yuan-Nan/0000-0001-9771-5480 NR 31 TC 34 Z9 34 U1 0 U2 7 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD DEC PY 2006 VL 74 IS 6 AR 066308 DI 10.1103/PhysRevE.74.066308 PN 2 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 121OC UT WOS:000243165900040 PM 17280149 ER PT J AU Redner, S Petersen, MR AF Redner, S. Petersen, Mark R. TI Role of global warming on the statistics of record-breaking temperatures SO PHYSICAL REVIEW E LA English DT Article ID TRENDS; CLIMATE; EVENTS; VARIABILITY; SUMMER; DYNAMICS; MAXIMUM; WEATHER; MODEL AB We theoretically study the statistics of record-breaking daily temperatures and validate these predictions using both Monte Carlo simulations and 126 years of available data from the city of Philadelphia. Using extreme statistics, we derive the number and the magnitude of record temperature events, based on the observed Gaussian daily temperature distribution in Philadelphia, as a function of the number of years of observation. We then consider the case of global warming, where the mean temperature systematically increases with time. Over the 126-year time range of observations, we argue that the current warming rate is insufficient to measurably influence the frequency of record temperature events, a conclusion that is supported by numerical simulations and by the Philadelphia data. We also study the role of correlations between temperatures on successive days and find that they do not affect the frequency or magnitude of record temperature events. C1 Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA. Boston Univ, Dept Phys, Boston, MA 02215 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Nonlinerat Studies, Los Alamos, NM 87545 USA. RP Redner, S (reprint author), Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA. EM redner@bu.edu; mpetersen@lanl.gov OI Petersen, Mark/0000-0001-7170-7511 NR 37 TC 50 Z9 50 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD DEC PY 2006 VL 74 IS 6 AR 061114 DI 10.1103/PhysRevE.74.061114 PN 1 PG 14 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 121NW UT WOS:000243165300018 PM 17280045 ER PT J AU Xing, JH Kim, KS AF Xing, Jianhua Kim, K. S. TI Protein fluctuations and breakdown of time-scale separation in rate theories SO PHYSICAL REVIEW E LA English DT Article ID ELASTIC-NETWORK MODEL; CHEMICAL-REACTIONS; GAUSSIAN NETWORKS; DYNAMIC DISORDER; SINGLE-MOLECULE; BROWNIAN-MOTION; X-RAY; MOTOR; DIFFUSION; ATPASES AB A long-time fluctuation correlation function with a power-law form has been observed in recent single-molecule experiments by the Xie group. By analyzing the dynamics of an elastic network model (ENM) under white noise, we show that the observed long-time memory kernel can be explained by the discrepancy between the experimentally measured coordinate (or the coordinate directly coupled to protein function) and the minimum energy path of the system. Consequently, the dynamics of the measured collective coordinate has contributions from degrees of freedoms with a broad distribution of time scales. Our study also implies that the widely used ENM Hamiltonian should be viewed as a coarse-grained model of a protein over a rugged energy landscape. Large effective drag coefficients are needed to describe protein dynamics with the ENM's. C1 Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. Virginia Polytech Inst & State Univ, Dept Biol Sci, Blacksburg, VA 24061 USA. RP Xing, JH (reprint author), Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. EM xing3@llnl.gov RI Xing, Jianhua/A-8101-2012 OI Xing, Jianhua/0000-0002-3700-8765 NR 46 TC 5 Z9 5 U1 0 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD DEC PY 2006 VL 74 IS 6 AR 061911 DI 10.1103/PhysRevE.74.061911 PN 1 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 121NW UT WOS:000243165300073 PM 17280100 ER PT J AU Achterberg, A Ackermann, M Adams, J Ahrens, J Andeen, K Atlee, DW Bahcall, JN Bai, X Baret, B Bartelt, M Barwick, SW Bay, R Beattie, K Becka, T Becker, JK Becker, KH Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Blaufuss, E Boersma, DJ Bohm, C Bolmont, J Boser, S Botner, O Bouchta, A Braun, J Burgess, C Burgess, T Castermans, T Chirkin, D Christy, B Clem, J Cowen, DF D'Agostino, MV Davour, A Day, CT De Clercq, C Demirors, L Descamps, F Desiati, P DeYoung, T Diaz-Velez, JC Dreyer, J Dumm, JP Duvoort, MR Edwards, WR Ehrlich, R Eisch, J Ellsworth, RW Evenson, PA Fadiran, O Fazely, AR Feser, T Filimonov, K Fox, BD Gaisser, TK Gallagher, J Ganugapati, R Geenen, H Gerhardt, L Goldschmidt, A Goodman, JA Gozzini, R Grullon, S Gross, A Gunasingha, RM Gurtner, M Hallgren, A Halzen, F Han, K Hanson, K Hardtke, D Hardtke, R Harenberg, T Hart, JE Hauschildt, T Hays, D Heise, J Helbing, K Hellwig, M Herquet, P Hill, GC Hodges, J Hoffman, KD Hommez, B Hoshina, K Hubert, D Hughey, B Hulth, PO Hultqvist, K Hundertmark, S Hulss, JP Ishihara, A Jacobsen, J Japaridze, GS Jones, A Joseph, JM Kampert, KH Karle, A Kawai, H Kelley, JL Kestel, M Kitamura, N Klein, SR Klepser, S Kohnen, G Kolanoski, H Kopke, L Krasberg, M Kuehn, K Landsman, H Leich, H Liubarsky, I Lundberg, J Madsen, J Mase, K Matis, HS McCauley, T McParland, CP Meli, A Messarius, T Meszaros, P Miyamoto, H Mokhtarani, A Montaruli, T Morey, A Morse, R Movit, SM Munich, K Nahnhauer, R Nam, JW Niessen, P Nygren, DR Ogelman, H Olbrechts, P Olivas, A Patton, S Pena-Garay, C de los Heros, CP Piegsa, A Pieloth, D Pohl, AC Porrata, R Pretz, J Price, PB Przybylski, GT Rawlins, K Razzaque, S Refflinghaus, F Resconi, E Rhode, W Ribordy, M Rizzo, A Robbins, S Roth, P Rott, C Rutledge, D Ryckbosch, D Sander, HG Sarkar, S Schlenstedt, S Schmidt, T Schneider, D Seckel, D Seo, SH Seunarine, S Silvestri, A Smith, AJ Solarz, M Song, C Sopher, JE Spiczak, GM Spiering, C Stamatikos, M Stanev, T Steffen, P Stezelberger, T Stokstad, RG Stoufer, MC Stoyanov, S Strahler, EA Straszheim, T Sulanke, KH Sullivan, GW Sumner, TJ Taboada, I Tarasova, O Tepe, A Thollander, L Tilav, S Toale, PA Turcan, D van Eijndhoven, N Vandenbroucke, J Van Overloop, A Voigt, B Wagner, W Walck, C Waldmann, H Walter, M Wang, YR Wendt, C Wiebusch, CH Wikstrom, G Williams, DR Wischnewski, R Wissing, H Woschnagg, K Xu, XW Yodh, G Yoshida, S Zornoza, JD AF Achterberg, A. Ackermann, M. Adams, J. Ahrens, J. Andeen, K. Atlee, D. W. Bahcall, J. N. Bai, X. Baret, B. Bartelt, M. Barwick, S. W. Bay, R. Beattie, K. Becka, T. Becker, J. K. Becker, K. -H. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Blaufuss, E. Boersma, D. J. Bohm, C. Bolmont, J. Boeser, S. Botner, O. Bouchta, A. Braun, J. Burgess, C. Burgess, T. Castermans, T. Chirkin, D. Christy, B. Clem, J. Cowen, D. F. D'Agostino, M. V. Davour, A. Day, C. T. De Clercq, C. Demirors, L. Descamps, F. Desiati, P. DeYoung, T. Diaz-Velez, J. C. Dreyer, J. Dumm, J. P. Duvoort, M. R. Edwards, W. R. Ehrlich, R. Eisch, J. Ellsworth, R. W. Evenson, P. A. Fadiran, O. Fazely, A. R. Feser, T. Filimonov, K. Fox, B. D. Gaisser, T. K. Gallagher, J. Ganugapati, R. Geenen, H. Gerhardt, L. Goldschmidt, A. Goodman, J. A. Gozzini, R. Grullon, S. Gross, A. Gunasingha, R. M. Gurtner, M. Hallgren, A. Halzen, F. Han, K. Hanson, K. Hardtke, D. Hardtke, R. Harenberg, T. Hart, J. E. Hauschildt, T. Hays, D. Heise, J. Helbing, K. Hellwig, M. Herquet, P. Hill, G. C. Hodges, J. Hoffman, K. D. Hommez, B. Hoshina, K. Hubert, D. Hughey, B. Hulth, P. O. Hultqvist, K. Hundertmark, S. Huelss, J.-P. Ishihara, A. Jacobsen, J. Japaridze, G. S. Jones, A. Joseph, J. M. Kampert, K. -H. Karle, A. Kawai, H. Kelley, J. L. Kestel, M. Kitamura, N. Klein, S. R. Klepser, S. Kohnen, G. Kolanoski, H. Koepke, L. Krasberg, M. Kuehn, K. Landsman, H. Leich, H. Liubarsky, I. Lundberg, J. Madsen, J. Mase, K. Matis, H. S. McCauley, T. McParland, C. P. Meli, A. Messarius, T. Meszaros, P. Miyamoto, H. Mokhtarani, A. Montaruli, T. Morey, A. Morse, R. Movit, S. M. Muenich, K. Nahnhauer, R. Nam, J. W. Niessen, P. Nygren, D. R. Ogelman, H. Olbrechts, Ph. Olivas, A. Patton, S. Pena-Garay, C. de los Heros, C. Perez Piegsa, A. Pieloth, D. Pohl, A. C. Porrata, R. Pretz, J. Price, P. B. Przybylski, G. T. Rawlins, K. Razzaque, S. Refflinghaus, F. Resconi, E. Rhode, W. Ribordy, M. Rizzo, A. Robbins, S. Roth, P. Rott, C. Rutledge, D. Ryckbosch, D. Sander, H. -G. Sarkar, S. Schlenstedt, S. Schmidt, T. Schneider, D. Seckel, D. Seo, S. H. Seunarine, S. Silvestri, A. Smith, A. J. Solarz, M. Song, C. Sopher, J. E. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Steffen, P. Stezelberger, T. Stokstad, R. G. Stoufer, M. C. Stoyanov, S. Strahler, E. A. Straszheim, T. Sulanke, K. -H. Sullivan, G. W. Sumner, T. J. Taboada, I. Tarasova, O. Tepe, A. Thollander, L. Tilav, S. Toale, P. A. Turcan, D. van Eijndhoven, N. Vandenbroucke, J. Van Overloop, A. Voigt, B. Wagner, W. Walck, C. Waldmann, H. Walter, M. Wang, Y. -R. Wendt, C. Wiebusch, C. H. Wikstrom, G. Williams, D. R. Wischnewski, R. Wissing, H. Woschnagg, K. Xu, X. W. Yodh, G. Yoshida, S. Zornoza, J. D. CA IceCube Collaboration TI Limits on the high-energy gamma and neutrino fluxes from the SGR 1806-20 giant flare of 27 December 2004 with the AMANDA-II detector SO PHYSICAL REVIEW LETTERS LA English DT Article ID SGR 1806-20; RAY BURSTS; DISTANCE; CONSTRAINTS; TELESCOPE; ASTRONOMY AB On 27 December 2004, a giant gamma flare from the Soft Gamma-Ray Repeater 1806-20 saturated many satellite gamma-ray detectors, being the brightest transient event ever observed in the Galaxy. AMANDA-II was used to search for down-going muons indicative of high-energy gammas and/or neutrinos from this object. The data revealed no significant signal, so upper limits (at 90% C.L.) on the normalization constant were set: 0.05(0.5) TeV-1 m(-2) s(-1) for gamma=-1.47 (-2) in the gamma flux and 0.4(6.1) TeV-1 m(-2) s(-1) for gamma=-1.47 (-2) in the high-energy neutrino flux. C1 Univ Alaska, Dept Phys & Astron, Anchorage, AK 99508 USA. Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. So Univ, Dept Phys, Baton Rouge, LA 70813 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Free Univ Brussels, Fac Sci, B-1050 Brussels, Belgium. Vrije Univ Brussels, Dienst ELEM, B-1050 Brussels, Belgium. Chiba Univ, Dept Phys, Chiba 2638522, Japan. Univ Canterbury, Dept Phys & Astron, Christchurch, New Zealand. Univ Maryland, Dept Phys, College Pk, MD 20742 USA. Univ Dortmund, Dept Phys, D-44221 Dortmund, Germany. Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. Max Planck Inst Kernphys, D-69177 Heidelberg, Germany. Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England. Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. Univ Mainz, Inst Phys, D-55099 Mainz, Germany. Univ Mons, B-7000 Mons, Belgium. Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. Univ Oxford, Dept Phys, Oxford OX1 3NP, England. Inst Adv Study, Princeton, NJ 08540 USA. Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. Penn State Univ, Dept Phys, University Pk, PA 16802 USA. Univ Uppsala, Div High Energy Phys, S-75121 Uppsala, Sweden. Univ Utrecht, Dept Phys & Astron, NL-3584 CC Utrecht, Netherlands. Berg Univ Gesamthsch Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. DESY, D-15735 Zeuthen, Germany. RP Zornoza, JD (reprint author), Univ Alaska, Dept Phys & Astron, 3211 Providence Dr, Anchorage, AK 99508 USA. EM zornoza@icecube.wisc.edu RI Song, Chihwa/A-3455-2008; Hundertmark, Stephan/A-6592-2010; Wiebusch, Christopher/G-6490-2012; Botner, Olga/A-9110-2013; Hallgren, Allan/A-8963-2013; Tjus, Julia/G-8145-2012; Zornoza, Juan de Dios/L-1604-2014; Sarkar, Subir/G-5978-2011; OI Wiebusch, Christopher/0000-0002-6418-3008; Hubert, Daan/0000-0002-4365-865X; Zornoza, Juan de Dios/0000-0002-1834-0690; Sarkar, Subir/0000-0002-3542-858X; Perez de los Heros, Carlos/0000-0002-2084-5866 NR 36 TC 16 Z9 16 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 1 PY 2006 VL 97 IS 22 AR 221101 DI 10.1103/PhysRevLett.97.221101 PG 5 WC Physics, Multidisciplinary SC Physics GA 112PL UT WOS:000242538700008 PM 17155787 ER PT J AU Aubert, B Barate, R Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Sanchez, PD Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Sherwood, DJ Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Best, DS Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Petzold, A Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Nash, JA Nikolich, MB Vazquez, WP Behera, PK Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Denig, AG Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Cowan, R Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J Briand, H David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Gladney, L Panetta, J Biasini, M Covarelli, R Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Aleksan, R Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Cheng, B Dasu, S Datta, M Flood, KT Hollar, JJ Kutter, PE Mellado, B Mihalyi, A Pan, Y Pierini, M Prepost, R Wu, SL Yu, Z Neal, H AF Aubert, B. Barate, R. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Sanchez, P. del Amo Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Sherwood, D. J. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Best, D. S. Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dvoretskii, A. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Petzold, A. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Grenier, P. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Capra, R. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Cowan, R. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Chauveau, J. Briand, H. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. John, M. J. J. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Gladney, L. Panetta, J. Biasini, M. Covarelli, R. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Aleksan, R. Emery, S. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Lanceri, L. Vitale, L. Azzolini, V. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Flood, K. T. Hollar, J. J. Kutter, P. E. Mellado, B. Mihalyi, A. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Yu, Z. Neal, H. CA BABAR Collaboration TI Search for D-0-(D)over-bar(0) mixing and branching-ratio measurement in the decay D-0 -> K+pi(-)pi(0) SO PHYSICAL REVIEW LETTERS LA English DT Article ID DETECTOR AB We analyze 230.4 fb(-1) of data collected with the BABAR detector at the PEP-II e(+)e(-) collider at SLAC to search for evidence of D-0-(D) over bar (0) mixing using regions of phase space in the decay D-0 -> K+pi(-)pi(0). We measure the time-integrated mixing rate R-M=(0.023(-0.014)(+0.018)(stat.)+/- 0.004(syst.))%, and R-M < 0.054% at the 95% confidence level, assuming CP invariance. The data are consistent with no mixing at the 4.5% confidence level. We also measure the branching ratio for D-0 -> K+pi(-)pi(0) relative to D-0 -> K-pi(+)pi(0) to be (0.214 +/- 0.008(stat.)+/- 0.008(syst.))%. C1 Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Univ Bari, Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Inst Particle Phys, Santa Barbara, CA 93106 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, Lab Leprince Ringuet, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. Univ Ferrara, Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Univ Genoa, Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, Lab Accelerateur Lineaire, IN2P3, F-91898 Orsay, France. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Univ London Queen Mary Coll, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Univ Milan, Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. Univ Naples Federico II, Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF H, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Univ Padua, Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Perugia, Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Univ Pisa, Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Univ Roma La Sapienza, Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Univ Turin, Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Univ Trieste, Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Politecn Valencia, IFIC, CSIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Basilicata, I-85100 Potenza, Italy. RP Aubert, B (reprint author), Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. RI Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Della Ricca, Giuseppe/B-6826-2013; de Groot, Nicolo/A-2675-2009; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Cavallo, Nicola/F-8913-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Peters, Klaus/C-2728-2008 OI Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Egede, Ulrik/0000-0001-5493-0762; Raven, Gerhard/0000-0002-2897-5323; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Della Ricca, Giuseppe/0000-0003-2831-6982; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Peters, Klaus/0000-0001-7133-0662 NR 17 TC 21 Z9 21 U1 0 U2 7 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 1 PY 2006 VL 97 IS 22 AR 221803 DI 10.1103/PhysRevLett.97.221803 PG 7 WC Physics, Multidisciplinary SC Physics GA 112PL UT WOS:000242538700015 ER PT J AU Aubert, B Barate, R Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Lopez, L Palano, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Sanchez, PD Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Sherwood, DJ Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Best, DS Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Petzold, A Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Nash, JA Nikolich, MB Vazquez, WP Behera, PK Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Denig, AG Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Cowan, R Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J Briand, H David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Gladney, L Panetta, J Biasini, M Covarelli, R Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Aleksan, R Emery, S Gaidot, A Ganzhur, SF De Monchenault, GH Kozanecki, W Legendre, M Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Cheng, B Dasu, S Datta, M Flood, KT Hollar, JJ Kutter, PE Mellado, B Mihalyi, A Pan, Y Pierini, M Prepost, R Wu, SL Yu, Z Neal, H AF Aubert, B. Barate, R. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Lopez, L. Palano, A. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. del Amo Sanchez, P. Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Sherwood, D. J. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Best, D. S. Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dvoretskii, A. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Petzold, A. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Grenier, P. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Capra, R. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Cowan, R. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Chauveau, J. Briand, H. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. John, M. J. J. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Gladney, L. Panetta, J. Biasini, M. Covarelli, R. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Aleksan, R. Emery, S. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Lanceri, L. Vitale, L. Azzolini, V. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Flood, K. T. Hollar, J. J. Kutter, P. E. Mellado, B. Mihalyi, A. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Yu, Z. Neal, H. CA BABAR Collaboration TI Observation of a new D-s meson decaying to DK at a mass of 2.86 GeV/c(2) SO PHYSICAL REVIEW LETTERS LA English DT Article ID HEAVY-QUARK; SPECTROSCOPY AB We observe a new D-s meson with mass (2856.6 +/- 1.5(stat)+/- 5.0(syst)) MeV/c(2) and width (48 +/- 7(stat)+/- 10(syst)) MeV/c(2) decaying into (DK+)-K-0 and (D+KS0). In the same mass distributions, we also observe a broad structure with mass (2688 +/- 4(stat)+/- 3(syst)) MeV/c(2) and width (112 +/- 7(stat)+/- 36(syst)) MeV/c(2). To obtain this result, we use 240 fb(-1) of data recorded by the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) storage rings at the Stanford Linear Accelerator Center running at center-of-mass energies near 10.6 GeV. C1 Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. Univ Bristol, Dept Phys, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, Lab Leprince Ringuet, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Univ Ferrara, Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Nazl Frascati Lab, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, Lab Accelerateur Lineaire, IN2P3, F-91898 Orsay, France. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Univ London Queen Mary Coll, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF H, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Politecn Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Basilicata, Potenza, Italy. RP Aubert, B (reprint author), Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. RI Rizzo, Giuliana/A-8516-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; dong, liaoyuan/A-5093-2015; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Saeed, Mohammad Alam/J-7455-2012; Peters, Klaus/C-2728-2008; de Groot, Nicolo/A-2675-2009; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Della Ricca, Giuseppe/B-6826-2013; Cavallo, Nicola/F-8913-2012 OI Wilson, Robert/0000-0002-8184-4103; Strube, Jan/0000-0001-7470-9301; Barlow, Roger/0000-0002-8295-8612; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Pacetti, Simone/0000-0002-6385-3508; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Paoloni, Eugenio/0000-0001-5969-8712; Lanceri, Livio/0000-0001-8220-3095; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Faccini, Riccardo/0000-0003-2613-5141; Cristinziani, Markus/0000-0003-3893-9171; Cavoto, Gianluca/0000-0003-2161-918X; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Egede, Ulrik/0000-0001-5493-0762; Bettarini, Stefano/0000-0001-7742-2998; Ebert, Marcus/0000-0002-3014-1512; Cibinetto, Gianluigi/0000-0002-3491-6231; Hamel de Monchenault, Gautier/0000-0002-3872-3592; dong, liaoyuan/0000-0002-4773-5050; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Saeed, Mohammad Alam/0000-0002-3529-9255; Peters, Klaus/0000-0001-7133-0662; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Della Ricca, Giuseppe/0000-0003-2831-6982; NR 14 TC 110 Z9 110 U1 2 U2 11 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 1 PY 2006 VL 97 IS 22 AR 222001 DI 10.1103/PhysRevLett.97.222001 PG 8 WC Physics, Multidisciplinary SC Physics GA 112PL UT WOS:000242538700016 ER PT J AU Gweon, GH Zhou, SY Watson, MC Sasagawa, T Takagi, H Lanzara, A AF Gweon, G. -H. Zhou, S. Y. Watson, M. C. Sasagawa, T. Takagi, H. Lanzara, A. TI Strong and complex electron-lattice correlation in optimally doped Bi2Sr2CaCu2O8+delta SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHONONS; LA1.85SR0.15CUO4; SUPERCONDUCTORS; ABSORPTION; DISPERSION; DYNAMICS; LA2CUO4; SYSTEMS AB We discuss the nature of electron-lattice interaction in optimally doped Bi2Sr2CaCu2O8+delta samples, using the isotope effect (IE) in angle resolved photoemission spectroscopy (ARPES) data. The IE in the ARPES linewidth and the IE in the ARPES dispersion are both quite large, implying a strong electron-lattice correlation. The strength of the electron-lattice interaction is "intermediate," i.e., stronger than the Migdal-Eliashberg regime but weaker than the small polaron regime, requiring a more general picture of the ARPES kink than the commonly used Migdal-Eliashberg picture. The two IEs also imply a complex interaction, due to their strong momentum dependence and their differing sign behaviors. In sum, we propose an intermediate-strength coupling of electrons to localized lattice vibrations via charge density fluctuations. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Tokyo, Dept Adv Mat Sci, Kashiwa, Chiba 2778561, Japan. RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. RP Gweon, GH (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Zhou, Shuyun/A-5750-2009; Takagi, Hidenori/B-2935-2010; Sasagawa, Takao/E-6666-2014 OI Sasagawa, Takao/0000-0003-0149-6696 NR 36 TC 12 Z9 12 U1 1 U2 7 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 1 PY 2006 VL 97 IS 22 AR 227001 DI 10.1103/PhysRevLett.97.227001 PG 4 WC Physics, Multidisciplinary SC Physics GA 112PL UT WOS:000242538700052 PM 17155831 ER PT J AU Libal, A Reichhardt, C Reichhardt, CJO AF Libal, A. Reichhardt, C. Reichhardt, C. J. Olson TI Realizing colloidal artificial ice on arrays of optical traps SO PHYSICAL REVIEW LETTERS LA English DT Article ID SPIN ICE; GEOMETRICAL FRUSTRATION; PRESSURE; LATTICE; LIQUID AB We demonstrate how a colloidal version of artificial ice can be realized on optical trap lattices. Using numerical simulations, we show that this system obeys the ice rules and that for strong colloid-colloid interactions, an ordered ground state appears. We show that the ice-rule ordering can occur for systems with as few as 24 traps and that the ordering transition can be observed at constant temperature by varying the barrier strength of the traps. C1 Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP Libal, A (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. OI Libal, Andras/0000-0002-9850-9264 NR 29 TC 63 Z9 63 U1 0 U2 13 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 1 PY 2006 VL 97 IS 22 AR 228302 DI 10.1103/PhysRevLett.97.228302 PG 4 WC Physics, Multidisciplinary SC Physics GA 112PL UT WOS:000242538700068 PM 17155847 ER PT J AU Sergienko, IA Sen, C Dagotto, E AF Sergienko, Ivan A. Sen, Cengiz Dagotto, Elbio TI Ferroelectricity in the magnetic e-phase of orthorhombic perovskites SO PHYSICAL REVIEW LETTERS LA English DT Article ID POLARIZATION AB We show that the symmetry of the spin zigzag chain E phase of the orthorhombic perovskite manganites and nickelates allows for the existence of a finite ferroelectric polarization. The proposed microscopic mechanism is independent of spin-orbit coupling. We predict that the polarization induced by the E-type magnetic order can potentially be enhanced by up to 2 orders of magnitude with respect to that in the spiral magnetic phases of TbMnO3 and similar multiferroic compounds. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA. Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RP Sergienko, IA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. NR 37 TC 257 Z9 262 U1 6 U2 71 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 1 PY 2006 VL 97 IS 22 AR 227204 DI 10.1103/PhysRevLett.97.227204 PG 4 WC Physics, Multidisciplinary SC Physics GA 112PL UT WOS:000242538700058 PM 17155837 ER PT J AU Yang, A Steger, M Karaiskaj, D Thewalt, MLW Cardona, M Itoh, KM Riemann, H Abrosimov, NV Churbanov, MF Gusev, AV Bulanov, AD Kaliteevskii, AK Godisov, ON Becker, P Pohl, HJ Ager, JW Haller, EE AF Yang, A. Steger, M. Karaiskaj, D. Thewalt, M. L. W. Cardona, M. Itoh, K. M. Riemann, H. Abrosimov, N. V. Churbanov, M. F. Gusev, A. V. Bulanov, A. D. Kaliteevskii, A. K. Godisov, O. N. Becker, P. Pohl, H. -J. Ager, J. W., III Haller, E. E. TI Optical detection and ionization of donors in specific electronic and nuclear spin states SO PHYSICAL REVIEW LETTERS LA English DT Article ID RESONANCE FORCE MICROSCOPY; QUANTUM COMPUTER; SINGLE SPIN; SILICON; SPECTROSCOPY; DIAMOND AB We resolve the remarkably sharp bound exciton transitions of highly enriched Si-28 using a single-frequency laser and photoluminescence excitation spectroscopy, as well as photocurrent spectroscopy. Well-resolved doublets in the spectrum of the P-31 donor reflect the hyperfine coupling of the electronic and nuclear donor spins. The optical detection of the nuclear spin state, and selective pumping and ionization of donors in specific electronic and nuclear spin states, suggests a number of new possibilities which could be useful for the realization of silicon-based quantum computers. C1 Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. JST, CREST, Yokohama, Kanagawa 2238522, Japan. Keio Univ, Yokohama, Kanagawa 2238522, Japan. IKZ, Inst Crystal Growth, D-124890 Berlin, Germany. RAS, IChHPS, RU-603000 Nizhnii Novgorod, Russia. Sci & Tech Ctr Centrotech, RU-198096 St Petersburg, Russia. Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany. VITCON Projectconsult GmbH, Jena, Germany. Univ Calif Berkeley, Berkeley, CA 94720 USA. LBNL, Berkeley, CA 94720 USA. RP Thewalt, MLW (reprint author), Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. EM thewalt@sfu.ca RI Thewalt, Michael/B-3534-2008; Itoh, Kohei/C-5738-2014; OI Thewalt, Michael/0000-0002-5806-0618; Ager, Joel/0000-0001-9334-9751 NR 27 TC 59 Z9 59 U1 1 U2 23 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 1 PY 2006 VL 97 IS 22 AR 227401 DI 10.1103/PhysRevLett.97.227401 PG 4 WC Physics, Multidisciplinary SC Physics GA 112PL UT WOS:000242538700061 PM 17155840 ER PT J AU Burov, A AF Burov, A. TI Two-beam instability in electron cooling SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID STABILITY; COOLER; BEAMS; ION AB The drift motion of cooling electrons makes them able to respond to transverse perturbations of a cooled ion beam. This response may lead to dipole or quadrupole transverse instabilities at specific longitudinal wave numbers. While the dipole instabilities can be suppressed by a combination of the Landau damping, machine impedance, and the active damper, the quadrupole and higher order modes can lead to either emittance growth, or a lifetime degradation, or both. The growth rates of these instabilities are strongly determined by the machine x - y coupling. Thus, tuning out of the coupling resonance and/or reduction of the machine coupling can be an efficient remedy for these instabilities. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Burov, A (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. NR 31 TC 3 Z9 3 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD DEC PY 2006 VL 9 IS 12 AR 120101 DI 10.1103/PhysRevSTAB.9.120101 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 142QU UT WOS:000244665600001 ER PT J AU Cameron, P DellaPenna, A Hoff, L Luo, Y Marusic, A Schultheiss, C Tepikian, S Gasior, M Jones, R Tan, CY AF Cameron, P. DellaPenna, A. Hoff, L. Luo, Y. Marusic, A. Schultheiss, C. Tepikian, S. Gasior, M. Jones, R. Tan, C. Y. TI Simultaneous tune and coupling feedback in the Relativistic Heavy Ion Collider, and possible implications for the Large Hadron Collider commissioning SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Simultaneous tune and coupling feedback were successfully implemented during RHIC run 6. In this paper we describe the measurement and control hardware and software used to accomplish this, present some of the results, discuss areas that require further investigation, and finally offer a few comments on possible implications of these results for LHC commissioning. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland. Fermilab Natl Accelerator Lab, Tevatron Dept, Batavia, IL 60510 USA. RP Cameron, P (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. RI Marusic, Ana/E-7683-2013 OI Marusic, Ana/0000-0001-6272-0917 NR 14 TC 7 Z9 7 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD DEC PY 2006 VL 9 IS 12 AR 122801 DI 10.1103/PhysRevSTAB.9.122801 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 142QU UT WOS:000244665600007 ER PT J AU Cornacchia, M Di Mitri, S Penco, G Zholents, AA AF Cornacchia, M. Di Mitri, S. Penco, G. Zholents, A. A. TI Formation of electron bunches for harmonic cascade x-ray free electron lasers SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Specific requirements for the electron beam in harmonic cascade-free electron lasers, together with means to produce such beams, are presented. All results are illustrated with simulations and particle tracking studies. C1 Sincrotrone Trieste, I-34012 Trieste, Italy. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Cornacchia, M (reprint author), Sincrotrone Trieste, Padriciano 99, I-34012 Trieste, Italy. OI Penco, Giuseppe/0000-0002-4900-6513 NR 22 TC 25 Z9 25 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD DEC PY 2006 VL 9 IS 12 AR 120701 DI 10.1103/PhysRevSTAB.9.120701 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 142QU UT WOS:000244665600002 ER PT J AU Decker, G Borland, M Horan, D Lumpkin, A Sereno, N Yang, BX Krinsky, S AF Decker, Glenn Borland, Michael Horan, Doug Lumpkin, Alex Sereno, Nicholas Yang, Bingxin Krinsky, Samuel TI Transient bunch compression using pulsed phase modulation in high-energy electron storage rings SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID RF; MOTION AB A method for producing short electron bunches in an electron storage ring using pulsed phase modulation has been demonstrated. A simple theoretical model was validated using the particle tracking code ELEGANT, and the bunch compression process was observed experimentally in the Advanced Photon Source storage ring using a visible light streak camera. Compression to 54% of the initial bunch length was achieved. C1 Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Decker, G (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 34 TC 6 Z9 6 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD DEC PY 2006 VL 9 IS 12 AR 120702 DI 10.1103/PhysRevSTAB.9.120702 PG 12 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 142QU UT WOS:000244665600003 ER PT J AU Luo, Y Cameron, P Dellapenna, A Hoff, L Marusic, A Peggs, S Schultheiss, C Jones, R AF Luo, Y. Cameron, P. Dellapenna, A. Hoff, L. Marusic, A. Peggs, S. Schultheiss, C. Jones, R. TI Continuous measurement of global difference coupling using a phase-locked-loop tune meter in the Relativistic Heavy Ion Collider SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB We present a new technique to continuously measure and compensate the global difference coupling coefficient through the continuous measurements of eigenmode projection parameters, using a high resolution phase-locked-loop tune meter. First, four eigenmode projection parameters are defined as the observables for weak difference coupling. Then, their analytical expressions are obtained using the strict matrix treatment and the Hamiltonian perturbation theory of linear coupling. From these parameters, the complex global coupling coefficient can be fully determined and compensated. This method was successfully demonstrated in the Relativistic Heavy Ion Collider (RHIC) 2006 run. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. RP Luo, Y (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM yluo@bnl.gov RI Marusic, Ana/E-7683-2013 OI Marusic, Ana/0000-0001-6272-0917 NR 20 TC 4 Z9 4 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD DEC PY 2006 VL 9 IS 12 AR 124001 DI 10.1103/PhysRevSTAB.9.124001 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 142QU UT WOS:000244665600009 ER PT J AU Wang, JG AF Wang, J. G. TI Particle optics of quadrupole doublet magnets in Spallation Neutron Source accumulator ring SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID ORDER TRANSFER MATRICES; FRINGING FIELD; LENSES AB The Spallation Neutron Source ring employs doublet quadrupoles and dipole correctors in its straight sections. The electromagnetic quadrupoles have a large aperture, small aspect ratio, and relatively short iron-to-iron distance. The corrector is even closer to one of the quads. There have been concerns on the magnetic fringe field and interference in the doublet magnets and their assemblies. We have performed 3D computing simulations to study magnetic field distributions in the doublet magnets. Further, we have analyzed the particle optics based on the z-dependent focusing functions of the quads. The effect of the magnetic fringe field and interference, including the third-order aberrations, on the particle motion are investigated. The lens parameters and the first-order hard edge models are derived and compared with the parameters used in the ring lattice calculations. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Wang, JG (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM jgwang@ornl.gov NR 32 TC 20 Z9 20 U1 0 U2 6 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD DEC PY 2006 VL 9 IS 12 AR 122401 DI 10.1103/PhysRevSTAB.9.122401 PG 15 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 142QU UT WOS:000244665600006 ER PT J AU Riley, BJ Johnson, BR Sundaram, SK Engelhard, MH Williford, RE Olmstead, JD AF Riley, B. J. Johnson, B. R. Sundaram, S. K. Engelhard, M. H. Williford, R. E. Olmstead, J. D. TI Pressure-temperature dependence of nanowire formation in the arsenic-sulfur system SO PHYSICS AND CHEMISTRY OF GLASSES-EUROPEAN JOURNAL OF GLASS SCIENCE AND TECHNOLOGY PART B LA English DT Article; Proceedings Paper CT Joint Meeting of the Glass and Optical Materials Division of the American-Ceramic-Society/14th International Symposium on Non-Oxide Glasses CY NOV 07-12, 2004 CL Cape Canaveral, FL SP Amer Ceram Soc, Int Soc Non Oxide Glasses ID CHALCOGENIDE GLASSES; ELECTRODEPOSITION AB Arsenic sulfide (AsxSy) nanowires, nanodroplets, and micro-islands were synthesised on fused silica substrates using an evaporation-condensation process at reduced pressures (70 mTorr-70 Torr) in sealed ampoules. Microstructural control of the deposited thin film was achieved by controlling initial pressure, substrate temperature, and substrate surface treatment. Microstructures were characterised using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Surface chemistry and topography of the substrates were characterised using x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. Semi-quantitative image analysis and basic curve fitting were used to develop an empirical model to mathematically describe the variation of microstructure as a function of initial pressure and substrate temperature and map out the regions of different microstructures in P-T space. Nanowires of an amorphous, semiconducting material that is transparent in the visible-LWIR region such as As2S3, provide new opportunities for the development of novel nanophotonic and electronic devices and also provide an excellent opportunity to model (and control) microstructure development from nanometre to micron scales in a physical vapour deposition process. C1 Pacific NW Natl Lab, Richland, WA 99354 USA. RP Johnson, BR (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM Bradley.Johnson@pnl.gov RI Engelhard, Mark/F-1317-2010; OI Riley, Brian/0000-0002-7745-6730; Engelhard, Mark/0000-0002-5543-0812 NR 13 TC 4 Z9 4 U1 1 U2 4 PU SOC GLASS TECHNOLOGY PI SHEFFIELD PA UNIT 9, TWELVE O CLOCK COURT, 21 ATTERCLIFFE RD, SHEFFIELD S4 7WW, S YORKSHIRE, ENGLAND SN 0031-9090 J9 PHYS CHEM GLASSES-B JI Phys. Chem. Glasses-Eur. J. Glass Sci. Technol. Part B PD DEC PY 2006 VL 47 IS 6 BP 675 EP 680 PG 6 WC Chemistry, Physical; Materials Science, Ceramics SC Chemistry; Materials Science GA 150JT UT WOS:000245213400009 ER PT J AU Allen, PJ Johnson, BR Baran, RT Anheier, NC Sundaram, SK Engelhard, MH Broocks, BT AF Allen, P. J. Johnson, B. R. Baran, R. T. Anheier, N. C. Sundaram, S. K. Engelhard, M. H. Broocks, B. T. TI Surface degradation of As2S3 thin films SO PHYSICS AND CHEMISTRY OF GLASSES-EUROPEAN JOURNAL OF GLASS SCIENCE AND TECHNOLOGY PART B LA English DT Article; Proceedings Paper CT Joint Meeting of the Glass and Optical Materials Division of the American-Ceramic-Society/14th International Symposium on Non-Oxide Glasses CY NOV 07-12, 2004 CL Cape Canaveral, FL SP Amer Ceram Soc, Int Soc Non Oxide Glasses ID CHALCOGENIDE GLASSES; AMORPHOUS AS2SE3; OXIDATION; SULFIDE; XPS AB Thin films of as-deposited, thermally evaporated, As2S3 glass degrade (a visible white haze that develops on the surface of the film) on exposure to ambient conditions. The effects of visible light, oxygen, humidity, and temperature on the films were studied. X-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) were used to characterise the chemical species (and bonding environment), the crystal structure, and the morphology of the degradation layer. It is shown that exposing As2S3 films simultaneously to light and humidity results in the formation of arsenolite (As2O3) crystals on the surface of the film. A reaction mechanism is proposed to explain this process based on the known photoinduced breakage of As-As bonds in the As4S4 moieties in the film and their reaction with water and oxygen in the environment. C1 Pacific NW Natl Lab, Richland, WA 99354 USA. RP Johnson, BR (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM Bradley.Johnson@pnl.gov RI Engelhard, Mark/F-1317-2010; OI Engelhard, Mark/0000-0002-5543-0812 NR 24 TC 5 Z9 5 U1 0 U2 4 PU SOC GLASS TECHNOLOGY PI SHEFFIELD PA UNIT 9, TWELVE O CLOCK COURT, 21 ATTERCLIFFE RD, SHEFFIELD S4 7WW, S YORKSHIRE, ENGLAND SN 0031-9090 J9 PHYS CHEM GLASSES-B JI Phys. Chem. Glasses-Eur. J. Glass Sci. Technol. Part B PD DEC PY 2006 VL 47 IS 6 BP 681 EP 687 PG 7 WC Chemistry, Physical; Materials Science, Ceramics SC Chemistry; Materials Science GA 150JT UT WOS:000245213400010 ER PT J AU Wenk, HR Rybacki, E Dresen, G Lonardelli, I Barton, N Franz, H Gonzalez, G AF Wenk, Hans-Rudolf Rybacki, Erik Dresen, Georg Lonardelli, Ivan Barton, Nathan Franz, Hermann Gonzalez, Gabriela TI Dauphine twinning and texture memory in polycrystalline quartz. Part 1: Experimental deformation of novaculite SO PHYSICS AND CHEMISTRY OF MINERALS LA English DT Article DE quartz; twinning; texture; deformation experiments; synchrotron X-rays ID SYNCHROTRON DIFFRACTION IMAGES; ALPHA-BETA-TRANSITION; PREFERRED ORIENTATION; TEMPERATURE-VARIATION; PHASE-TRANSITION; MYLONITE; STRESS; TRANSFORMATION; PRESSURE; BEHAVIOR AB Mechanical Dauphine twinning in quartz has been of long-standing interest, both in single crystals and polycrystalline aggregates. This study investigates texture development in fine-grained quartz rock novaculite with no initial texture using compression experiments conducted in the Paterson gas apparatus to explore the influence of stress and temperature. Texture patterns are measured with time-of-flight neutron diffraction and hard synchrotron X-rays, analyzing diffraction data with the Rietveld method. Similar texture patterns are observed as described previously but the new results establish a profound influence of temperature and document that twinning initiates at stresses less than 50 MPa. Possibilities of using Dauphine twinning as a paleopiezometer in quartz-bearing rocks are discussed. C1 Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. Geoforschungszentrum Potsdam, D-14473 Potsdam, Germany. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. DESY, D-22607 Hamburg, Germany. European Synchrotron Radiat Facil, F-38043 Grenoble, France. RP Wenk, HR (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM wenk@berkeley.edu NR 46 TC 24 Z9 28 U1 1 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0342-1791 J9 PHYS CHEM MINER JI Phys. Chem. Miner. PD DEC PY 2006 VL 33 IS 10 BP 667 EP 676 DI 10.1007/s00269-006-0115-9 PG 10 WC Materials Science, Multidisciplinary; Mineralogy SC Materials Science; Mineralogy GA 122YB UT WOS:000243262400003 ER PT J AU Cremonesi, O Ardito, R Arnaboldi, C Artusa, DR Avignone, FT Balata, M Bandac, I Barucci, M Beeman, JW Bellini, F Brofferio, C Bucci, C Capelli, S Capozzi, F Carbone, L Cebrian, S Clemenza, M Cosmelli, C Creswick, RJ Dafinei, I de Waard, A Dolinski, M Farach, HA Ferroni, F Fiorini, E Gargiulo, C Guardincerri, E Giuliani, A Gorla, P Gutierrez, TD Haller, EE Irastorza, IG Longo, E Maier, G Maruyama, R Morganti, S Nisi, S Nones, C Norman, EB Nucciotti, A Olivieri, E Ottonello, P Pallavicini, M Palmieri, E Pavan, M Pedretti, M Pessina, G Pirro, S Previtali, E Quiter, B Risegari, L Rosenfeld, C Sangiorgio, S Sisti, M Smith, AR Torres, L Ventura, G Xu, N Zanotti, L AF Cremonesi, O. Ardito, R. Arnaboldi, C. Artusa, D. R. Avignone, F. T., III Balata, M. Bandac, I. Barucci, M. Beeman, J. W. Bellini, F. Brofferio, C. Bucci, C. Capelli, S. Capozzi, F. Carbone, L. Cebrian, S. Clemenza, M. Cosmelli, C. Creswick, R. J. Dafinei, I. de Waard, A. Dolinski, M. Farach, H. A. Ferroni, F. Fiorini, E. Gargiulo, C. Guardincerri, E. Giuliani, A. Gorla, P. Gutierrez, T. D. Haller, E. E. Irastorza, I. G. Longo, E. Maier, G. Maruyama, R. Morganti, S. Nisi, S. Nones, C. Norman, E. B. Nucciotti, A. Olivieri, E. Ottonello, P. Pallavicini, M. Palmieri, E. Pavan, M. Pedretti, M. Pessina, G. Pirro, S. Previtali, E. Quiter, B. Risegari, L. Rosenfeld, C. Sangiorgio, S. Sisti, M. Smith, A. R. Torres, L. Ventura, G. Xu, N. Zanotti, L. CA CUORE Collaboration TI New CUORICINO results and status of CUORE SO PHYSICS OF ATOMIC NUCLEI LA English DT Article; Proceedings Paper CT 5th International Conference onNonaxxelerator New Physics CY 2005 CL Dubna, RUSSIA ID DOUBLE-BETA-DECAY; RANDOM-PHASE-APPROXIMATION; NEUTRINO MASS; GE-76; SUPPRESSION; WMAP AB CUORICINO is an array of 62 TeO2 bolometers with a total mass of 40.7 kg ( 11.2 kg of Te-130), operated at about 10mK to search for beta beta(0 nu) of 130Te. The detectors are organized as a 14-story tower and intended as a slightly modified version of one of the 19 towers of the CUORE project, a proposed tightly packed array of 988 TeO2 bolometers ( 741 kg of total mass of TeO2) for ultralow-background searches on neutrinoless double-beta decay, cold dark matter, solar axions, and rare nuclear decays. Started in April 2003 at the Laboratori Nazionali del Gran Sasso ( LNGS), CUORICINO data taking was stopped in November 2003 to repair the readout wiring system of the 62 bolometers. Restarted in spring 2004, CUORICINO is presently the most sensitive running experiment on neutrinoless double-beta decay. No evidence for beta beta(0 nu) decay has been found so far and a new lower limit, T-1/2(0v). >=(1/2) >= 1.8 x 10(24) yr ( 90% C.L.), is set, corresponding to < m(v)> <= = 0.2- 1.1 eV, depending on the theoretical nuclear matrix elements used in the analysis. Detector performance, operational procedures, and background analysis results are reviewed. The expected performance and sensitivity of CUORE is also discussed. C1 Univ Milano Bicocca, Dipartimento Fis, Sez Milano, Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Politecn Milan, Dipartimento Ingn Strutt, I-20133 Milan, Italy. Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. Lab Nazl Gran Sasso, Laquila, Italy. Univ Florence, Dipartimento Fis, Florence, Italy. Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. Lawrence Berkeley Lab, Berkeley, CA USA. Univ Rome, Dipartimento Fis, Rome, Italy. Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. Univ Zaragoza, Lab Fis Nucl & Alta Energias, Zaragoza, Spain. Leiden Univ, Kamerlingh Onnes Lab, NL-2300 RA Leiden, Netherlands. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Genoa, Dipartimento Fis, Genoa, Italy. Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. Univ Insubria, Dipartimento Fis & Matemat, Como, Italy. Ist Nazl Fis Nucl, Sez Milano, Como, Italy. Lawrence Livermore Natl Lab, Livermore, CA USA. Lab Nazl Legnaro, Padua, Italy. RP Cremonesi, O (reprint author), Univ Milano Bicocca, Dipartimento Fis, Sez Milano, Milan, Italy. EM Oliviero.Cremonesi@mib.infn.it RI Bellini, Fabio/D-1055-2009; Irastorza, Igor/B-2085-2012; Pallavicini, Marco/G-5500-2012; Nucciotti, Angelo/I-8888-2012; Gorla, Paolo/B-5243-2014; Sangiorgio, Samuele/F-4389-2014; Barucci, Marco/D-4209-2012; Sisti, Monica/B-7550-2013; capelli, silvia/G-5168-2012; OI Bellini, Fabio/0000-0002-2936-660X; Irastorza, Igor/0000-0003-1163-1687; Pallavicini, Marco/0000-0001-7309-3023; Nucciotti, Angelo/0000-0002-8458-1556; Sangiorgio, Samuele/0000-0002-4792-7802; Barucci, Marco/0000-0003-0381-3376; Sisti, Monica/0000-0003-2517-1909; capelli, silvia/0000-0002-0300-2752; Longo, Egidio/0000-0001-6238-6787; Gutierrez, Thomas/0000-0002-0330-6414; ARDITO, RAFFAELE/0000-0002-4271-9190; Clemenza, Massimiliano/0000-0002-8064-8936; pavan, maura/0000-0002-9723-7834; Pessina, Gianluigi Ezio/0000-0003-3700-9757 NR 44 TC 2 Z9 2 U1 0 U2 3 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7788 EI 1562-692X J9 PHYS ATOM NUCL+ JI Phys. Atom. Nuclei PD DEC PY 2006 VL 69 IS 12 BP 2083 EP 2089 DI 10.1134/S1063778806120118 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 119YN UT WOS:000243050500011 ER PT J AU Brooks, JN Allain, JP Rognlien, TD AF Brooks, J. N. Allain, J. P. Rognlien, T. D. TI Erosion/redeposition analysis of the ITER first wall with convective and non-convective plasma transport SO PHYSICS OF PLASMAS LA English DT Article ID TOKAMAK EDGE PLASMAS; FUSION-REACTORS; DIII-D; CODEPOSITION; SIMULATION AB Sputtering erosion/redeposition is analyzed for IAEA [Report GA10FDR1-01-07-13 (2001)] plasma facing components, with scrape-off layer (SOL) plasma convective radial transport and nonconvective (diffusion-only) transport. The analysis uses the UEDGE code [T .D. Rognlien , J. Nucl. Mater. 196, 347 (1992)] and DEGAS code [D. P. Stotler , Contrib. Plasma Phys. 40, 221 (2000)] to compute plasma SOL profiles and ion and neutral fluxes to the wall, TRIM-SP code [J. P. Biersack, W. Eckstein, J. Appl. Phys. A34, 73 (1984)] to compute sputter yields, and the REDEP/WBC code package [J. N. Brooks, Fusion Eng. Des. 60, 515 (2002)] for three-dimensional kinetic modeling of sputtered particle transport. Convective transport is modeled for the background plasma by a radially varying outward-flow component of the fluid velocity, and for the impurity ions by three models designed to bracket existing models/data. Results are reported here for the first wall with the reference beryllium coating and an alternative tungsten coating. The analysis shows: (1) sputtering erosion for convective flow is 20-40 times higher than for diffusion-only but acceptably low (similar to 0.3 nm/s) for beryllium, and very low (similar to 0.002 nm/s) for tungsten; (2) plasma contamination by wall sputtering, with convective flow, is of order 1% for beryllium and negligible for tungsten; (3) wall-to-divertor beryllium transport may be significant (similar to 10%-60% of the sputtered Be current); (4) tritium co-deposition in redeposited beryllium may be high (similar to 1-6 gT/400 s pulse). (c) 2006 American Institute of Physics. C1 Argonne Natl Lab, Argonne, IL 60439 USA. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Brooks, JN (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. OI Allain, Jean Paul/0000-0003-1348-262X NR 20 TC 17 Z9 17 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2006 VL 13 IS 12 AR 122502 DI 10.1063/1.2401610 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 121LJ UT WOS:000243158800022 ER PT J AU Carreras, BA Garcia, L Pedrosa, MA Hidalgo, C AF Carreras, B. A. Garcia, L. Pedrosa, M. A. Hidalgo, C. TI Critical transition for the edge shear layer formation: Comparison of model and experiment SO PHYSICS OF PLASMAS LA English DT Article ID TURBULENCE; FLOW; CONFINEMENT; STELLARATOR; TRANSPORT AB The experimental results for the emergence of the plasma edge shear flow layer in TJ-II [C. Alehaldre Fusion Technol. 17, 131 (1990)] can be explained using a simple model for a second-order transition based on the sheared flow amplification by Reynolds stress and turbulence suppression by shearing. In the dynamics of the model, the resistive interchange instability is used. This model gives power dependence on density gradients before and after the transition, consistent with experiment. (c) 2006 American Institute of Physics. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. Univ Carlos III Madrid, Madrid 28911, Spain. EURATOM, CIEMAT, Lab Nacl Fus, Madrid 28040, Spain. RP Carreras, BA (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37830 USA. EM carrerasba@orn1.gov RI Garcia, Luis/A-5344-2015; Hidalgo, Carlos/H-6109-2015 OI Garcia, Luis/0000-0002-0492-7466; NR 15 TC 14 Z9 14 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2006 VL 13 IS 12 AR 122509 DI 10.1063/1.2405344 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 121LJ UT WOS:000243158800029 ER PT J AU Catto, PJ Simakov, AN AF Catto, Peter J. Simakov, Andrei N. TI A new, explicitly collisional contribution to the gyroviscosity and the radial electric field in a collisional tokamak (vol 12, pg 114503, 2005) SO PHYSICS OF PLASMAS LA English DT Correction C1 MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Catto, PJ (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. OI Simakov, Andrei/0000-0001-7064-9153 NR 1 TC 8 Z9 8 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2006 VL 13 IS 12 AR 129901 DI 10.1063/1.2402507 PG 1 WC Physics, Fluids & Plasmas SC Physics GA 121LJ UT WOS:000243158800062 ER PT J AU Esaulov, AA Velikovich, AL Kantsyrev, VL Mehlhorn, TA Cuneo, ME AF Esaulov, A. A. Velikovich, A. L. Kantsyrev, V. L. Mehlhorn, T. A. Cuneo, M. E. TI Wire dynamics model of the implosion of nested and planar wire arrays SO PHYSICS OF PLASMAS LA English DT Article ID Z-PINCH EXPERIMENTS; POWER AB This paper presents the wire dynamics model (WDM), which can effectively replace the generic 0D (zero-dimensional) model in simulation of the implosions of arbitrary shaped wire arrays, including high-wire-number nested and planar array loads at multi-MA generators. Fast and inexpensive WDM modeling can predict the array implosion time and the rate of thermalization of the kinetic energy, and can estimate the timing of the x-ray pulse. Besides serving the purposes of the design and optimization of the wire array loads of complex configurations, the WDM reproduces the specific features of the wire array implosion dynamics due to the inductive current transfer, which makes the WDM a valuable amplification of the magnetohydrodynamic models. (c) 2006 American Institute of Physics. C1 Univ Nevada, Dept Phys, Reno, NV 89557 USA. USN, Res Lab, Div Plasma Phys, Washington, DC 20375 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Esaulov, AA (reprint author), Univ Nevada, Dept Phys, Reno, NV 89557 USA. RI Velikovich, Alexander/B-1113-2009 NR 20 TC 22 Z9 24 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2006 VL 13 IS 12 AR 120701 DI 10.1063/1.2402147 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 121LJ UT WOS:000243158800001 ER PT J AU Kolesnichenko, YI White, RB Yakovenko, YV AF Kolesnichenko, Ya. I. White, R. B. Yakovenko, Yu. V. TI High-frequency shear Alfven instability driven by circulating energetic ions in NSTX SO PHYSICS OF PLASMAS LA English DT Article ID TOROIDAL PLASMAS AB It is shown that a number of features of an instability with the frequency comparable to the ion gyrofrequency observed in the National Spherical Torus Experiment [E. D. Fredrickson , "Observation of hole-clump pair generation by global or compressional Alfven eigenmodes," Contributed Papers, 33rd European Physical Society Conference on Plasma Physics, Rome, 2006, Europhysics Conference Abstracts (European Physical Society, Petit-Lancy, 2006), Report P5.058 (unpublished)] is consistent with the features of the Alfven instability with large, about the inverse, Larmor radius of the energetic ions (rho(-1)(b)) longitudinal wavenumbers. The conclusions drawn are based on an analysis of the resonant interaction of the energetic circulating ions and the waves, as well as on the calculation of the instability growth rate taking into account effects of the finite Larmor radius, rho(b). (c) 2006 American Institute of Physics. C1 Inst Nucl Res, UA-03680 Kiev, Ukraine. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Kolesnichenko, YI (reprint author), Inst Nucl Res, Prospect Nauky 47, UA-03680 Kiev, Ukraine. RI White, Roscoe/D-1773-2013 OI White, Roscoe/0000-0002-4239-2685 NR 8 TC 4 Z9 4 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2006 VL 13 IS 12 AR 122503 DI 10.1063/1.2402129 PG 3 WC Physics, Fluids & Plasmas SC Physics GA 121LJ UT WOS:000243158800023 ER PT J AU Lindberg, RR Charman, AE Wurtele, JS Friedland, L Shadwick, BA AF Lindberg, R. R. Charman, A. E. Wurtele, J. S. Friedland, L. Shadwick, B. A. TI Autoresonant beat-wave generation SO PHYSICS OF PLASMAS LA English DT Article ID LASER-PLASMA INTERACTIONS; ELECTRON BUNCHES; ACCELERATOR; EXCITATION; SIMULATIONS; INSTABILITY; SCATTERING; PULSES; MODE AB Autoresonance offers an efficient and robust means for the ponderomotive excitation of nonlinear Langmuir waves by phase-locking of the plasma wave to the slowly chirped beat frequency of the driving lasers via adiabatic passage through resonance. This mechanism is analyzed for the case of a cold, relativistic, underdense electron plasma, and its suitability for particle acceleration is discussed. Compared to traditional approaches, this new autoresonant scheme achieves larger accelerating electric fields for given laser intensity; the plasma wave excitation is much more robust to variations in plasma density; it is largely insensitive to the precise choice of chirp rate, provided only that it is sufficiently slow; and the suitability of the resulting plasma wave for accelerator applications is, in some respects, superior. As in previous schemes, modulational instabilities of the ionic background ultimately limit the useful interaction time, but nevertheless peak electric fields approaching the wave-breaking limit seem readily attainable. The total frequency shift required is only of the order of a few percent of the laser carrier frequency, and might be implemented with relatively little additional modification to existing systems based on chirped pulse amplification techniques, or, with somewhat greater technological effort, using a CO2 or other gas laser system. (c) 2006 American Institute of Physics. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Beam Phys, Berkeley, CA 94720 USA. Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. Inst Adv Phys, Conifer, CO 80433 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, LOASIS Program, Berkeley, CA 94720 USA. RP Lindberg, RR (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM RL236@socrates.berkeley.edu RI wurtele, Jonathan/J-6278-2016 OI wurtele, Jonathan/0000-0001-8401-0297 NR 40 TC 4 Z9 5 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2006 VL 13 IS 12 AR 123103 DI 10.1063/1.2390692 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 121LJ UT WOS:000243158800041 ER PT J AU Nevins, WM Candy, J Cowley, S Dannert, T Dimits, A Dorland, W Estrada-Mila, C Hammett, GW Jenko, F Pueschel, MJ Shumaker, DE AF Nevins, W. M. Candy, J. Cowley, S. Dannert, T. Dimits, A. Dorland, W. Estrada-Mila, C. Hammett, G. W. Jenko, F. Pueschel, M. J. Shumaker, D. E. TI Characterizing electron temperature gradient turbulence via numerical simulation SO PHYSICS OF PLASMAS LA English DT Article ID EXB VELOCITY SHEAR; DRIVEN TURBULENCE; DIII-D; TRANSPORT; CONFINEMENT; FLOW; TOKAMAKS; MODES; MICROTURBULENCE; DISCHARGES AB Numerical simulations of electron temperature gradient (ETG) turbulence are presented that characterize the ETG fluctuation spectrum, establish limits to the validity of the adiabatic ion model often employed in studying ETG turbulence, and support the tentative conclusion that plasma-operating regimes exist in which ETG turbulence produces sufficient electron heat transport to be experimentally relevant. We resolve prior controversies regarding simulation techniques and convergence by benchmarking simulations of ETG turbulence from four microturbulence codes, demonstrating agreement on the electron heat flux, correlation functions, fluctuation intensity, and rms flow shear at fixed simulation cross section and resolution in the plane perpendicular to the magnetic field. Excellent convergence of both continuum and particle-in-cell codes with time step and velocity-space resolution is demonstrated, while numerical issues relating to perpendicular (to the magnetic field) simulation dimensions and resolution are discussed. A parameter scan in the magnetic shear, s, demonstrates that the adiabatic ion model is valid at small values of s (s < 0.4 for the parameters used in this scan) but breaks down at higher magnetic shear. A proper treatment employing gyrokinetic ions reveals a steady increase in the electron heat transport with increasing magnetic shear, reaching electron heat transport rates consistent with analyses of experimental tokamak discharges. (c) 2006 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Gen Atom Co, San Diego, CA 92186 USA. Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. Ecole Polytech Fed Lausanne, CRPP, CH-1015 Lausanne, Switzerland. Univ Maryland, College Pk, MD 20742 USA. Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. Princeton Plasma Phys Lab, Plainsboro, NJ 08536 USA. Max Planck Inst Plasma Phys, D-85748 Garching, Germany. RP Nevins, WM (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Hammett, Gregory/D-1365-2011; Dorland, William/B-4403-2009 OI Hammett, Gregory/0000-0003-1495-6647; Dorland, William/0000-0003-2915-724X NR 41 TC 82 Z9 82 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2006 VL 13 IS 12 AR 122306 DI 10.1063/1.2402510 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 121LJ UT WOS:000243158800016 ER PT J AU Ruden, EL Zhang, SY Intrator, TP Wurden, GA AF Ruden, E. L. Zhang, Shouyin Intrator, T. P. Wurden, G. A. TI Experimental profile evolution of a high-density field-reversed configuration SO PHYSICS OF PLASMAS LA English DT Article ID MAGNETIZED TARGET FUSION; ROTATIONAL INSTABILITIES; THETA-PINCH; FRX-L; PLASMA; RADIUS AB A field-reversed configuration (FRC) gains angular momentum over time, eventually resulting in an n=2 rotational instability (invariant under rotation by pi) terminating confinement. To study this, a laser interferometer probes the time history of line integrated plasma density along eight chords of the high-density (similar to 10(17) cm(-3)) field-reversed configuration experiment with a liner. Abel and tomographic inversions provide density profiles during the FRC's azimuthally symmetric phase, and over a period when the rotational mode has saturated and rotates with a roughly fixed profile, respectively. During the latter part of the symmetric phase, the FRC approximates a magnetohydrodynamic (MHD) equilibrium, allowing the axial magnetic-field profile to be calculated from pressure balance. Basic FRC properties such as temperature and poloidal flux are then inferred. The subsequent two-dimensional n=2 density profiles provide angular momentum information needed to set bounds on prior values of the stability relevant parameter alpha (rotational to ion diamagnetic drift frequency ratio), in addition to a view of plasma kinematics useful for benchmarking plasma models of higher order than MHD. (c) 2006 American Institute of Physics. C1 USAF, Res Lab, Directed Energy Directorate, Kirtland AFB, NM 87117 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ruden, EL (reprint author), USAF, Res Lab, Directed Energy Directorate, 3550 Aberdeen Ave SE, Kirtland AFB, NM 87117 USA. RI Wurden, Glen/A-1921-2017 OI Wurden, Glen/0000-0003-2991-1484 NR 25 TC 7 Z9 7 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2006 VL 13 IS 12 AR 122505 DI 10.1063/1.2402130 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 121LJ UT WOS:000243158800025 ER PT J AU Ryutov, DD AF Ryutov, D. D. TI The dynamics of an isolated plasma filament at the edge of a toroidal device SO PHYSICS OF PLASMAS LA English DT Article ID SCRAPE-OFF-LAYER; TEMPERATURE-GRADIENT INSTABILITY; FLUTE-LIKE PERTURBATIONS; ALCATOR C-MOD; CONVECTIVE-TRANSPORT; X-POINT; TURBULENCE; BLOB AB The dynamics of an isolated plasma filament (an isolated blob) in the far scrape-off layer (SOL) of a toroidal device is described, with a proper averaging of the geometrical parameters as well as plasma parameters along the filament. The analysis is limited to the magnetohydrodynamic description. The effects of the electrical contact of the filament end with the limiter and of the finite plasma resistivity are also discussed. (c) 2006 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Ryutov, DD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM ryutov1@llnl.gov NR 24 TC 19 Z9 19 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2006 VL 13 IS 12 AR 122307 DI 10.1063/1.2403092 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 121LJ UT WOS:000243158800017 ER PT J AU Theobald, W Miller, JE Boehly, TR Vianello, E Meyerhofer, DD Sangster, TC Eggert, J Celliers, PM AF Theobald, W. Miller, J. E. Boehly, T. R. Vianello, E. Meyerhofer, D. D. Sangster, T. C. Eggert, J. Celliers, P. M. TI X-ray preheating of window materials in direct-drive shock-wave timing experiments SO PHYSICS OF PLASMAS LA English DT Article ID LASER; COMPRESSION; POLYSTYRENE; IGNITION; DIAMOND; FUSION; OMEGA; FACILITY; PLASMAS; SURFACE AB The optical properties of x-ray preheated planar-window materials relevant for shock-wave timing experiments were studied on the OMEGA Laser System. The x-ray radiation was generated by 100 ps, 1x10(15) W/cm(2) laser pulses incident on planar plastic targets, instantaneously affecting samples located similar to 0.7 mm away. An abrupt onset of strong absorption of an optical probe beam (lambda=532 nm) and a temporally varying refractive index were measured in polystyrene and diamond windows. The behavior of diamond windows exposed to x rays is consistent with a simple model based on the generation of free charge carriers. Polystyrene windows showed indications of optical transitions due to molecular states that are created by the ionizing radiation. (c) 2006 American Institute of Physics. C1 Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA. Univ Rochester, Dept Phys & Astron, Rochester, NY 14623 USA. RP Theobald, W (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. NR 36 TC 18 Z9 25 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2006 VL 13 IS 12 AR 122702 DI 10.1063/1.2397581 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 121LJ UT WOS:000243158800033 ER PT J AU Samios, NP AF Samios, Nicholas P. TI Melvin Schwartz - Obituary SO PHYSICS TODAY LA English DT Biographical-Item C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Samios, NP (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD DEC PY 2006 VL 59 IS 12 BP 75 EP 76 DI 10.1063/1.2435691 PG 2 WC Physics, Multidisciplinary SC Physics GA 109NM UT WOS:000242315000025 ER PT J AU McDonald, FB Thomsen, MR Gurnett, DA AF McDonald, Frank B. Thomsen, Michelle R. Gurnett, Donald A. TI James Alfred van Allen - Obituary SO PHYSICS TODAY LA English DT Biographical-Item C1 Univ Maryland, College Pk, MD 20742 USA. Los Alamos Natl Lab, Los Alamos, NM USA. Univ Iowa, Iowa City, IA USA. RP McDonald, FB (reprint author), Univ Maryland, College Pk, MD 20742 USA. NR 1 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD DEC PY 2006 VL 59 IS 12 BP 77 EP 78 DI 10.1063/1.2435692 PG 2 WC Physics, Multidisciplinary SC Physics GA 109NM UT WOS:000242315000026 ER PT J AU Crease, RP AF Crease, Robert P. TI Critical Point The book of nature SO PHYSICS WORLD LA English DT Editorial Material C1 SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD DEC PY 2006 VL 19 IS 12 BP 16 EP 16 PG 1 WC Physics, Multidisciplinary SC Physics GA 114SQ UT WOS:000242686300022 ER PT J AU Liu, CJ Deavours, BE Richard, SB Ferrer, JL Blount, JW Huhman, D Dixon, RA Noel, JP AF Liu, Chang-Jun Deavours, Bettina E. Richard, Stephane B. Ferrer, Jean-Luc Blount, Jack W. Huhman, David Dixon, Richard A. Noel, Joseph P. TI Structural basis for dual functionality of isoflavonoid O-methyltransferases in the evolution of plant defense responses SO PLANT CELL LA English DT Article ID CELL-SUSPENSION CULTURES; MEDICAGO-SATIVA L; NECTRIA-HAEMATOCOCCA; 2-HYDROXYISOFLAVANONE DEHYDRATASE; BIOCHEMICAL-CHARACTERIZATION; S-ADENOSYLMETHIONINE; SEQUENCE ALIGNMENT; PISUM-SATIVUM; CDNA CLONING; BIOSYNTHESIS AB In leguminous plants such as pea ( Pisum sativum), alfalfa ( Medicago sativa), barrel medic ( Medicago truncatula), and chickpea (Cicer arietinum), 4'-O-methylation of isoflavonoid natural products occurs early in the biosynthesis of defense chemicals known as phytoalexins. However, among these four species, only pea catalyzes 3-O-methylation that converts the pterocarpanoid isoflavonoid 6a-hydroxymaackiain to pisatin. In pea, pisatin is important for chemical resistance to the pathogenic fungus Nectria hematococca. While barrel medic does not biosynthesize 6a-hydroxymaackiain, when cell suspension cultures are fed 6a-hydroxymaackiain, they accumulate pisatin. In vitro, hydroxyisoflavanone 49-O-methyltransferase (HI4'OMT) from barrel medic exhibits nearly identical steady state kinetic parameters for the 49-O-methylation of the isoflavonoid intermediate 2,7,4'-trihydroxyisoflavanone and for the 3-O-methylation of the 6a-hydroxymaackiain isoflavonoid-derived pterocarpanoid intermediate found in pea. Protein x-ray crystal structures of HI4'OMT substrate complexes revealed identically bound conformations for the 2S, 3R-stereoisomer of 2,7,4'-trihydroxyisoflavanone and the 6aR, 11aR-stereoisomer of 6a-hydroxymaackiain. These results suggest how similar conformations intrinsic to seemingly distinct chemical substrates allowed leguminous plants to use homologous enzymes for two different biosynthetic reactions. The three-dimensional similarity of natural small molecules represents one explanation for how plants may rapidly recruit enzymes for new biosynthetic reactions in response to changing physiological and ecological pressures. C1 Salk Inst Biol Studies, Howard Hughes Med Inst, Jack H Skirball Ctr Chem Biol & Proteom, La Jolla, CA 92037 USA. Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73402 USA. Univ Grenoble 1, Inst Biol Struct, Commissariat Energia Atom, CNRS, F-38027 Grenoble 1, France. RP Noel, JP (reprint author), Salk Inst Biol Studies, Howard Hughes Med Inst, Jack H Skirball Ctr Chem Biol & Proteom, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM noel@salk.edu RI FIP, BM30A/I-5166-2015 NR 43 TC 42 Z9 52 U1 1 U2 10 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 EI 1532-298X J9 PLANT CELL JI Plant Cell PD DEC PY 2006 VL 18 IS 12 BP 3656 EP 3669 DI 10.1105/tpc.106.041376 PG 14 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA 135TR UT WOS:000244177000024 PM 17172354 ER PT J AU Mazzucato, E AF Mazzucato, E. TI Detection of short-scale turbulence in the next generation of tokamak burning plasma experiments SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID ADIABATIC TOROIDAL COMPRESSOR; DENSITY-FLUCTUATIONS; ELECTROMAGNETIC-WAVES; SCATTERING; TRANSPORT AB In this paper, we discuss the use of coherent scattering of CO2 lasers for high resolution measurements of short-scale turbulent fluctuations in the next generation of tokamak burning plasma experiments. The unique feature of the proposed scheme is the oblique propagation of the probing beam with respect to the magnetic field, with the toroidal curvature of field lines playing a major role in improving the spatial resolution of measured signals. In addition, small scattering angles and negligible wave refraction effects minimize the size of needed ports - a matter of vital importance for a plasma diagnostic that must operate in the hostile environment of a burning plasma. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Mazzucato, E (reprint author), Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. EM mazzucato@pppl.gov NR 16 TC 20 Z9 20 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2006 VL 48 IS 12 BP 1749 EP 1763 DI 10.1088/0741-3335/48/12/005 PG 15 WC Physics, Fluids & Plasmas SC Physics GA 112TN UT WOS:000242550200005 ER PT J AU Alonso, JA Zweben, SJ Carvalho, P de Pablos, JL de la Cal, E Hidalgo, C Klinger, T van Milligen, BP Maqueda, RJ Pedrosa, MA Silva, C Spolaore, M Thomsen, H AF Alonso, J. A. Zweben, S. J. Carvalho, P. de Pablos, J. L. de la Cal, E. Hidalgo, C. Klinger, T. van Milligen, B. Ph Maqueda, R. J. Pedrosa, M. A. Silva, C. Spolaore, M. Thomsen, H. CA TH-II Team TI Impact of different confinement regimes on the two-dimensional structure of edge turbulence SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 33rd European-Physical-Society Conference on Plasma Physics CY JUN 19-23, 2006 CL Angelicum Univ, Rome, ITALY SP Assoc EURATOM-ENEA Fusione, European Phys Soc HO Angelicum Univ ID TJ-II STELLARATOR; SCRAPE-OFF-LAYER; SHEARED FLOW; TRANSPORT AB This paper reports the impact of different confinement regimes on the 2D structure of edge turbulence. An image analysis method based on two-dimensional continuous wavelet transformation is used to localize structures (blobs) in the images and to extract their geometrical characteristics (position, scale, orientation angle and aspect ratio). We study the impact of edge shearlayers on these geometrical aspects of blobs. Results show a reduction in the angular dispersion of blobs as the shear layer is established in the boundary, as well as an increase in the elongation of these structures. Similar behaviour is found in NSTX image sequences when going from L to H mode plasmas. During improved confinement regimes the number of detected blobs decreases. Some indications are found suggesting that the turbulence reduction could be scale-selective in the biasing-induced improved confinement regime of TJ-II stellarator. Perpendicular flow reversal is visualized with the cameras and the time scales for flow reversal are found to be less than 50 mu s. Radially propagating structures are found in the SOL with velocities in the range similar to 1000 m/s and with a poloidally asymmetric spatial distribution. C1 CIEMAT, EURATOM Assoc, Lab Nacl Fus, E-28040 Madrid, Spain. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. EURATOM, IST, Ctr Fusao Nucl, Lisbon, Portugal. EURATOM, Max Planck IPP, Greifswald, Germany. Nova Photon Inc, Princeton, NJ USA. EURATOM, ENEA, Consorzio RFX, Padua, Italy. RP Alonso, JA (reprint author), CIEMAT, EURATOM Assoc, Lab Nacl Fus, E-28040 Madrid, Spain. EM ja.alonso@ciemat.es RI Silva, Carlos/L-6490-2013; Alonso, Juan Arturo/K-9009-2014; van Milligen, Boudewijn/H-5121-2015; Hidalgo, Carlos/H-6109-2015 OI Silva, Carlos/0000-0001-6348-0505; Alonso, Juan Arturo/0000-0001-6863-8578; van Milligen, Boudewijn/0000-0001-5344-6274; NR 12 TC 34 Z9 34 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2006 VL 48 IS 12B SI SI BP B465 EP B473 DI 10.1088/0741-3335/48/12B/S44 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 112UK UT WOS:000242552600046 ER PT J AU Benuzzi-Mounaix, A Koenig, M Ravasio, A Vinci, T Ozaki, N le Gloahec, MR Loupias, B Huser, G Henry, E Bouquet, S Michaut, C Hicks, D MacKinnon, A Patel, P Park, HS Le Pape, S Boehly, T Borghesi, M Cecchetti, C Notley, M Clark, R Bandyopadhyay, S Atzeni, S Schiavi, A Aglitskiy, Y Faenov, A Pikuz, T Batani, D Dezulian, R Tanaka, K AF Benuzzi-Mounaix, A. Koenig, M. Ravasio, A. Vinci, T. Ozaki, N. le Gloahec, M. Rabec Loupias, B. Huser, G. Henry, E. Bouquet, S. Michaut, C. Hicks, D. MacKinnon, A. Patel, P. Park, H. S. Le Pape, S. Boehly, T. Borghesi, M. Cecchetti, C. Notley, M. Clark, R. Bandyopadhyay, S. Atzeni, S. Schiavi, A. Aglitskiy, Y. Faenov, A. Pikuz, T. Batani, D. Dezulian, R. Tanaka, K. TI Laser-driven shock waves for the study of extreme matter states SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 33rd European-Physical-Society Conference on Plasma Physics CY JUN 19-23, 2006 CL Angelicum Univ, Rome, ITALY SP Assoc EURATOM-ENEA Fusione, European Phys Soc HO Angelicum Univ ID EQUATION-OF-STATE; SUPERCRITICAL SHOCK; ABSOLUTE EQUATION; PLASTIC FOAMS; IRON; PRESSURES; REGIME; ASTROPHYSICS; TEMPERATURES; GENERATION AB During the last ten years, the ability of high power lasers to generate high energy density shocks has made them a reliable tool to study extreme states of matter. These states of matter are relevant in many important physics areas such as astrophysics, planetology and ICF physics. Here, we present some representative studies performed by using a driven laser shock: melting of iron at pressures relevant for geophysics, developments of new techniques to measure the density of highly compressed matter and a study of a radiative shock. C1 Univ Paris 06, Ecole Polytech, CNRS,Lab Utilisat Lasers Intenses, CEA,UMR 7605, F-91128 Palaiseau, France. CEA, DRIF, F-91680 Bruyeres Le Chatel, France. Observ Paris, LUTH, UMR 8102, F-92195 Meudon, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Rochester, Laser Energet Lab, Rochester, NY 14627 USA. Queens Univ Belfast, Belfast, Antrim, North Ireland. Rutherford Appleton Lab, Cent Laser Facil, Didcot OX11 0QX, Oxon, England. Univ Roma La Sapienza, Dipartimento Energet, Rome, Italy. INFM, Rome, Italy. Sci Applicat Int Corp, Mclean, VA 22150 USA. VNIIFTRI Mendeleevo, MISDC, Mendeleyevsk 141570, Moscow Region, Russia. Univ Milano Bicocca, Dipartimento Fis G Occhialini, I-20126 Milan, Italy. INFM, I-20126 Milan, Italy. Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan. RP Benuzzi-Mounaix, A (reprint author), Univ Paris 06, Ecole Polytech, CNRS,Lab Utilisat Lasers Intenses, CEA,UMR 7605, F-91128 Palaiseau, France. RI Patel, Pravesh/E-1400-2011; Koenig, Michel/A-2167-2012; Atzeni, Stefano/F-5538-2012; Borghesi, Marco/K-2974-2012; Hicks, Damien/B-5042-2015; MacKinnon, Andrew/P-7239-2014; Schiavi, Angelo/D-2924-2017 OI Atzeni, Stefano/0000-0002-4339-2994; Hicks, Damien/0000-0001-8322-9983; MacKinnon, Andrew/0000-0002-4380-2906; Schiavi, Angelo/0000-0002-7081-2747 NR 42 TC 18 Z9 18 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2006 VL 48 IS 12B SI SI BP B347 EP B358 DI 10.1088/0741-3335/48/12B/S32 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 112UK UT WOS:000242552600034 ER PT J AU Doyle, EJ Garofalo, AM Greenfield, CM Kaye, SM Menard, JE Murakami, M Sabbagh, SA Austin, ME Bell, RE Burrell, KH Ferron, JR Gates, DA Groebner, RJ Hyatt, AW Jayakumar, RJ Kinsey, JE LeBlanc, BP Luce, TC Mckee, GR Okabayashi, M Peng, YKM Petty, CC Politzer, PA Rhodes, TL Wade, MR Waltz, RE AF Doyle, E. J. Garofalo, A. M. Greenfield, C. M. Kaye, S. M. Menard, J. E. Murakami, M. Sabbagh, S. A. Austin, M. E. Bell, R. E. Burrell, K. H. Ferron, J. R. Gates, D. A. Groebner, R. J. Hyatt, A. W. Jayakumar, R. J. Kinsey, J. E. LeBlanc, B. P. Luce, T. C. McKee, G. R. Okabayashi, M. Peng, Y-K M. Petty, C. C. Politzer, P. A. Rhodes, T. L. Wade, M. R. Waltz, R. E. CA DII-D Res Teams NSTX Res Teams TI Progress on advanced tokamak and steady-state scenario development on DIII-D and NSTX SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 33rd European-Physical-Society Conference on Plasma Physics CY JUN 19-23, 2006 CL Angelicum Univ, Rome, ITALY SP Assoc EURATOM-ENEA Fusione, European Phys Soc HO Angelicum Univ ID HIGH-BETA; PLASMAS; ITER; CONFINEMENT; OPERATION AB Advanced tokamak (AT) research seeks to develop steady-state operating scenarios for ITER and other future devices from a demonstrated scientific basis. Normalized target parameters for steady-state operation on ITER are 100% non-inductive current operation with a bootstrap current fraction f(BS) >= 60%, q(95) similar to 4-5 and G = beta H-N(scaling)/q(95)(2) >= 0.3. Progress in realizing such plasmas is considered in terms of the development of plasma control capabilities and scientific understanding, leading to improved AT performance. NSTX has demonstrated active resistive wall mode stabilization with low, ITER-relevant, rotation rates below the critical value required for passive stabilization. On DIII-D, experimental observations and GYRO simulations indicate that ion internal transport barrier (ITB) formation at rational-q surfaces is due to equilibrium zonal flows generating high local E x B shear levels. In addition, stability modelling for DIII-D indicates a path to operation at beta N >= 4 with q(min) >= 2, using broad, hollow current profiles to increase the ideal wall stability limit. Both NSTX and DIII-D have optimized plasma performance and expanded AT operational limits. NSTX now has long-pulse, high performance discharges meeting the normalized targets for an spherical torus-based component test facility. DIII-D has developed sustained discharges combining high beta and ITBs, with performance approaching levels required for AT reactor concepts, e. g. beta(N) = 4, H-89 = 2.5, with f(BS) > 60%. Most importantly, DIII-D has developed ITER steady-state demonstration discharges, simultaneously meeting the targets for steady-state Q >= 5 operation on ITER set out above, substantially increasing confidence in ITER meeting its steady-state performance objective. C1 Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. Univ Calif Los Angeles, PSTI, Los Angeles, CA 90095 USA. Columbia Univ, New York, NY 10027 USA. Gen Atom Co, San Diego, CA 92186 USA. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Texas, Austin, TX 78712 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Lehigh Univ, Bethlehem, PA 18015 USA. Univ Wisconsin, Madison, WI 53706 USA. RP Doyle, EJ (reprint author), Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. RI Sabbagh, Steven/C-7142-2011; OI Menard, Jonathan/0000-0003-1292-3286 NR 33 TC 11 Z9 11 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2006 VL 48 IS 12B SI SI BP B39 EP B52 DI 10.1088/0741-3335/48/12B/S04 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 112UK UT WOS:000242552600006 ER PT J AU Hammel, BA AF Hammel, B. A. CA Natl Ignition Campaign Team TI The NIF Ignition Program: progress and planning SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 33rd European-Physical-Society Conference on Plasma Physics CY JUN 19-23, 2006 CL Angelicum Univ, Rome, ITALY SP Assoc EURATOM-ENEA Fusione, European Phys Soc HO Angelicum Univ ID INERTIAL CONFINEMENT FUSION; SYMMETRY CONTROL; PHYSICS BASIS; FACILITY; TARGETS; ASYMMETRY; HOHLRAUMS; NOVA; SPECIFICATIONS; PLASMAS AB The first experimental campaign for ignition, beginning in 2010 after NIF construction and commissioning are completed, will include experiments to measure and optimize key laser and target conditions necessary for ignition. These 'tuning campaigns' will precede the first ignition shots. Ignition requires acceptable target performance in several key areas: energetics, symmetry, shock timing and capsule hydrodynamics. Detailed planning and simulations for 'tuning campaigns' in each of these areas is currently underway, as part of the National Ignition Campaign (NIC) Program. Tuning and diagnostic methods are being developed and tested on present facilities, including the OMEGA laser at the Laboratory for Energetics (LLE), the Z facility at Sandia National Laboratories (SNL), and the Trident laser at Los Alamos National Laboratory (LANL). Target fabrication development is underway at General Atomics (GA), Lawrence Livermore National Laboratory (LLNL), and LANL. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Gen Atom Co, San Diego, CA USA. Univ Rochester, Laser Energet Lab, Rochester, NY USA. Los Alamos Natl Lab, Los Alamos, NM USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Hammel, BA (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM hammel1@llnl.gov NR 36 TC 39 Z9 42 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2006 VL 48 IS 12B SI SI BP B497 EP B506 DI 10.1088/0741-3335/48/12B/S47 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 112UK UT WOS:000242552600049 ER PT J AU Ohyabu, N Morisaki, T Masuzaki, S Sakamoto, R Kobayashi, M Miyazawa, J Shoji, M Funaba, H Harris, JH Hirooka, Y Inagaki, S Itoh, K Narihara, K Nakajima, N Narushima, Y Ohdachi, S Peterson, B Sakakibara, S Sanchez, R Tanaka, K Watanabe, K Yokoyama, M Ida, K Shimozuma, T Yamada, H Nagayama, Y Kaneko, O Mutoh, T Kawahata, K Komori, A Sudo, S Motojima, O AF Ohyabu, N. Morisaki, T. Masuzaki, S. Sakamoto, R. Kobayashi, M. Miyazawa, J. Shoji, M. Funaba, H. Harris, J. H. Hirooka, Y. Inagaki, S. Itoh, K. Narihara, K. Nakajima, N. Narushima, Y. Ohdachi, S. Peterson, B. Sakakibara, S. Sanchez, R. Tanaka, K. Watanabe, K. Yokoyama, M. Ida, K. Shimozuma, T. Yamada, H. Nagayama, Y. Kaneko, O. Mutoh, T. Kawahata, K. Komori, A. Sudo, S. Motojima, O. TI Properties of the LHD plasmas with a large island- super dense core plasma and island healing SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 33rd European-Physical-Society Conference on Plasma Physics CY JUN 19-23, 2006 CL Angelicum Univ, Rome, ITALY SP Assoc EURATOM-ENEA Fusione, European Phys Soc HO Angelicum Univ ID LARGE-HELICAL-DEVICE; REVERSED MAGNETIC SHEAR; EDGE-LOCALIZED MODES; DIVERTOR EXPERIMENTS; IMPROVED CONFINEMENT; DIII-D; DISCHARGES; TOKAMAK; TFTR; BETA AB In local island (m/n = 1/1) divertor discharges in the large helical device a stable super dense core plasma develops when a series of pellets are injected. A core region with a density as high as 4.6 x 10(20) m(-3) and a temperature of 0.85 keV is maintained by an internal diffusion barrier with a very high density gradient. In a study of island dynamics, we find that an externally imposed large island (m/n = 1/1) as large as 15% of the minor radius is healed when beta at the island exceeds a critical value. C1 Natl Inst Fus Sci, Toki 5095292, Japan. Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Ohyabu, N (reprint author), Natl Inst Fus Sci, Toki 5095292, Japan. RI Sanchez, Raul/C-2328-2008; Sakakibara, Satoru/E-7542-2013; Sakamoto, Ryuichi/E-7557-2013; Ida, Katsumi/E-4731-2016 OI Sakakibara, Satoru/0000-0002-3306-0531; Sakamoto, Ryuichi/0000-0002-4453-953X; Ida, Katsumi/0000-0002-0585-4561 NR 29 TC 7 Z9 7 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2006 VL 48 IS 12B SI SI BP B383 EP B390 DI 10.1088/0741-3335/48/12B/S35 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 112UK UT WOS:000242552600037 ER PT J AU Zonca, F Briguglio, S Chen, L Fogaccia, G Hahm, TS Milovanov, AV Vlad, G AF Zonca, F. Briguglio, S. Chen, L. Fogaccia, G. Hahm, T. S. Milovanov, A. V. Vlad, G. TI Physics of burning plasmas in toroidal magnetic confinement devices SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 33rd European-Physical-Society Conference on Plasma Physics CY JUN 19-23, 2006 CL Angelicum Univ, Rome, ITALY SP Assoc EURATOM-ENEA Fusione, European Phys Soc HO Angelicum Univ ID ELECTRON-TEMPERATURE GRADIENT; INDUCED ALFVEN EIGENMODES; DRIFT-WAVE TURBULENCE; E X B; LINEAR GYROKINETIC CALCULATIONS; ENERGETIC ION-TRANSPORT; ALPHA-PARTICLE LOSSES; DIII-D TOKAMAK; ZONAL FLOWS; DRIVEN TURBULENCE AB Some of the crucial physics aspects of burning plasmas magnetically confined in toroidal systems are presented from the viewpoint of nonlinear dynamics. Most of the discussions specifically refer to tokamaks, but they can be readily extended to other toroidal confinement devices. Particular emphasis is devoted to fluctuation induced transport processes of mega electron volts energetic ions and charged fusion products as well as to energy and particle transports of the thermal plasma. Long time scale behaviours due to the interplay of fast ion induced collective effects and plasma turbulence are addressed in the framework of burning plasmas as complex self-organized systems. The crucial roles of mutual positive feedbacks between theory, numerical simulation and experiment are shown to be the necessary premise for reliable extrapolations from present day laboratory to burning plasmas. Examples of the broader applications of fundamental problems to other fields of plasma physics and beyond are also given. C1 ENEA CR Frascati, I-00044 Rome, Italy. Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. Space Res Inst, Dept Space Plasma Phys, Moscow 117997, Russia. Univ Tromso, Dept Phys & Technol, N-9037 Tromso, Norway. RP Zonca, F (reprint author), ENEA CR Frascati, CP 65, I-00044 Rome, Italy. RI chen, liu/I-2297-2013; Zonca, Fulvio/I-8236-2016 OI Zonca, Fulvio/0000-0002-9270-4704 NR 146 TC 58 Z9 58 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2006 VL 48 IS 12B SI SI BP B15 EP B28 DI 10.1088/0741-3335/48/12B/S02 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 112UK UT WOS:000242552600004 ER PT J AU Pikuz, SA Shelkovenko, TA Sinars, DB Hammer, DA AF Pikuz, S. A. Shelkovenko, T. A. Sinars, D. B. Hammer, D. A. TI Temporal characteristics of X-ray emission from X-pinches SO PLASMA PHYSICS REPORTS LA English DT Article ID PLASMA; RADIOGRAPHY; DYNAMICS; POINT AB The temporal characteristics of X-ray emission from X-pinches have been studied experimentally on the XP facility (with a 100-ns current pulse duration and 470-kA current amplitude) at Cornell University. The experiments were performed with X-pinches made of Al, Ti, Mo, and W wires. Radiation in the photon energy range 1-10 keV was recorded using diamond and silicon photodiodes with a subnanosecond time resolution and X-ray streak cameras with a picosecond time resolution. It is shown that, for high-Z elements, the duration of the X-ray pulse in the short-wavelength part of the spectral range under study does not exceed 5-10 ps. C1 Cornell Univ, Ithaca, NY 14853 USA. Russian Acad Sci, Lebedev Phys Inst, Moscow 117991, Russia. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Pikuz, SA (reprint author), Cornell Univ, Ithaca, NY 14853 USA. RI Pikuz, Sergey/M-8231-2015; Shelkovenko, Tatiana/M-8254-2015 NR 19 TC 11 Z9 11 U1 0 U2 0 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-780X J9 PLASMA PHYS REP+ JI Plasma Phys. Rep. PD DEC PY 2006 VL 32 IS 12 BP 1020 EP 1033 DI 10.1134/S1063780X06120051 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 119HO UT WOS:000243003600005 ER PT J AU Scott, KM Sievert, SM Abril, FN Ball, LA Barrett, CJ Blake, RA Boller, AJ Chain, PSG Clark, JA Davis, CR Detter, C Do, KF Dobrinski, KP Faza, BI Fitzpatrick, KA Freyermuth, SK Harmer, TL Hauser, LJ Hugler, M Kerfeld, CA Klotz, MG Kong, WW Land, M Lapidus, A Larimer, FW Longo, DL Lucas, S Malfatti, SA Massey, SE Martin, DD McCuddin, Z Meyer, F Moore, JL Ocampo, LH Paul, JH Paulsen, IT Reep, DK Ren, QH Ross, RL Sato, PY Thomas, P Tinkham, LE Zeruth, GT AF Scott, Kathleen M. Sievert, Stefan M. Abril, Fereniki N. Ball, Lois A. Barrett, Chantell J. Blake, Rodrigo A. Boller, Amanda J. Chain, Patrick S. G. Clark, Justine A. Davis, Carisa R. Detter, Chris Do, Kimberly F. Dobrinski, Kimberly P. Faza, Brandon I. Fitzpatrick, Kelly A. Freyermuth, Sharyn K. Harmer, Tara L. Hauser, Loren J. Hugler, Michael Kerfeld, Cheryl A. Klotz, Martin G. Kong, William W. Land, Miriam Lapidus, Alla Larimer, Frank W. Longo, Dana L. Lucas, Susan Malfatti, Stephanie A. Massey, Steven E. Martin, Darlene D. McCuddin, Zoe Meyer, Folker Moore, Jessica L. Ocampo, Luis H., Jr. Paul, John H. Paulsen, Ian T. Reep, Douglas K. Ren, Qinghu Ross, Rachel L. Sato, Priscila Y. Thomas, Phaedra Tinkham, Lance E. Zeruth, Gary T. TI The genome of deep-sea vent chemolithoautotroph Thiomicrospira crunogena XCL-2 SO PLOS BIOLOGY LA English DT Review ID HYDROGEN-OXIDIZING BACTERIUM; ISOPENTENYL DIPHOSPHATE BIOSYNTHESIS; PARACOCCUS-PANTOTROPHUS GB17; INORGANIC SULFUR-COMPOUNDS; HEAVY-METAL RESISTANCE; HYDROTHERMAL VENT; PHOTOSYNTHETIC BACTERIUM; ISOPRENOID BIOSYNTHESIS; CONCENTRATING MECHANISM; TRANSPORT CAPABILITIES AB Presented here is the complete genome sequence of Thiomicrospira crunogena XCL-2, representative of ubiquitous chemolithoautotrophic sulfur-oxidizing bacteria isolated from deep-sea hydrothermal vents. This gammaproteobacterium has a single chromosome (2,427,734 base pairs), and its genome illustrates many of the adaptations that have enabled it to thrive at vents globally. It has 14 methyl-accepting chemotaxis protein genes, including four that may assist in positioning it in the redoxcline. A relative abundance of coding sequences (CDSs) encoding regulatory proteins likely control the expression of genes encoding carboxysomes, multiple dissolved inorganic nitrogen and phosphate transporters, as well as a phosphonate operon, which provide this species with a variety of options for acquiring these substrates from the environment. Thiom. crunogena XCL-2 is unusual among obligate sulfur-oxidizing bacteria in relying on the Sox system for the oxidation of reduced sulfur compounds. The genome has characteristics consistent with an obligately chemolithoautotrophic lifestyle, including few transporters predicted to have organic allocrits, and Calvin-Benson-Bassham cycle CDSs scattered throughout the genome. C1 Univ S Florida, Dept Biol, Tampa, FL 33620 USA. Woods Hole Oceanog Inst, Dept Biol, Woods Hole, MA 02543 USA. Lawrence Livermore Natl Lab, Livermore, CA USA. Joint Genome Inst, Walnut Creek, CA USA. Univ Missouri, Dept Biochem, Columbia, MO 65211 USA. Richard Stockton Coll New Jersey, Div Nat Sci & Math, Pomona, NJ USA. Oak Ridge Natl Lab, Oak Ridge, TN USA. Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90024 USA. Univ Louisville, Louisville, KY 40292 USA. Monsanto Co, Ankeny, IA USA. Univ Bielefeld, Ctr Biotechnol, D-4800 Bielefeld, Germany. Univ S Florida, Coll Marine Sci, Tampa, FL 33620 USA. Inst Genom Res, Rockville, MD USA. RP Scott, KM (reprint author), Univ S Florida, Dept Biol, Tampa, FL 33620 USA. EM kscott@cas.usf.edu RI Land, Miriam/A-6200-2011; Hauser, Loren/H-3881-2012; Paulsen, Ian/K-3832-2012; chain, patrick/B-9777-2013; Klotz, Martin/D-2091-2009; Lapidus, Alla/I-4348-2013; OI Land, Miriam/0000-0001-7102-0031; Paulsen, Ian/0000-0001-9015-9418; Klotz, Martin/0000-0002-1783-375X; Lapidus, Alla/0000-0003-0427-8731; Sievert, Stefan/0000-0002-9541-2707; Meyer, Folker/0000-0003-1112-2284 NR 113 TC 79 Z9 162 U1 4 U2 47 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1544-9173 J9 PLOS BIOL JI PLoS. Biol. PD DEC PY 2006 VL 4 IS 12 BP 2196 EP 2212 AR e383 DI 10.1371/journal.pbio.0040383 PG 17 WC Biochemistry & Molecular Biology; Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics GA 116FY UT WOS:000242789100004 PM 17105352 ER PT J AU Poutsma, ML AF Poutsma, Marvin L. TI Mechanistic analysis and thermochemical kinetic simulation of the pathways for volatile product formation from pyrolysis of polystyrene, especially for the dimer SO POLYMER DEGRADATION AND STABILITY LA English DT Review DE polystyrene; pyrolysis; computational modeling; radical mechanisms; hydrogen shift ID ABSOLUTE RATE CONSTANTS; ATOM-TRANSFER-REACTIONS; RESOLUTION GAS-CHROMATOGRAPHY; MOLECULAR-WEIGHT DISTRIBUTION; IONIZATION MASS-SPECTROMETRY; FREE-RADICAL POLYMERIZATION; BINARY-MIXTURE PYROLYSIS; FIRE RETARDANT MIXTURES; THERMAL-DEGRADATION; VACUUM PYROLYSIS AB Simulations of the initial distribution of volatiles from pyrolysis of polystyrene were based on propagation rate constants estimated by thermo-chemical kinetic procedures. The voluminous database exhibits a disturbing lack of consistency with respect to effects of conversion level, temperature, and reactor type. It therefore remains difficult to assign the true primary distribution of the major products, styrene, 2,4-diphenyl-1-butene ("dimer"), 2,4,6-triphenyl-1-hexene ("trimer"), 1,3-diphenylpropane, and toluene, and its dependence on conditions. Probable perturbations by secondary reactions and selective evaporation are considered. The rate constant for 1,3-hydrogen shift appears much too small to accommodate the commonly proposed "back-biting" mechanism for dimer formation. Dimer more likely arises by addition of benzyl radical to olefinic chain-ends, followed by P-scission, although ambiguities remain in assigning rate constants for the addition and beta-scission steps. With this modification, the major products can be successfully associated with decay of the sec-benzylic chain-end radical. In contrast, the minimal formation of allylbenzene, 2,4-diphenyl-1-pentene, and 2,4,6-triphenyl-1-heptene suggests a minimal chain-propagating role for the prim chain-end radical. Compared with polyethylene, the much enhanced "unzipping" to form monomer from polystyrene and the more limited depth of "back-biting" into the chain arise from an enthalpy-driven acceleration of P-scission coupled with a kinetically driven deceleration of intramolecular hydrogen transfer. In contrast, the greater "unzipping" of poly (isobutylene) compared with polyethylene is proposed to result from relief of steric strain. (c) 2006 Elsevier Ltd. All rights reserved. C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Poutsma, ML (reprint author), Oak Ridge Natl Lab, Div Chem Sci, POB 2008, Oak Ridge, TN 37831 USA. EM poutsmaml@ornl.gov NR 206 TC 15 Z9 15 U1 1 U2 18 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-3910 J9 POLYM DEGRAD STABIL JI Polym. Degrad. Stabil. PD DEC PY 2006 VL 91 IS 12 BP 2979 EP 3009 DI 10.1016/j.polymdegradstab.2006.08.015 PG 31 WC Polymer Science SC Polymer Science GA 120MF UT WOS:000243088200021 ER PT J AU Gillen, KT Celina, M Bernstein, R Shedd, M AF Gillen, K. T. Celina, M. Bernstein, R. Shedd, M. TI Lifetime predictions of EPR materials using the Wear-out approach SO POLYMER DEGRADATION AND STABILITY LA English DT Article DE lifetime prediction; EPR; accelerated aging; cable insulation ID NON-ARRHENIUS BEHAVIOR; EXTRAPOLATION; TEMPERATURE; DEGRADATION AB The Wear-out approach for lifetime prediction, based on cumulative damage concepts, is applied to several ethylene propylene rubber (EPR) cable insulation materials. EPR materials typically follow "induction-time" behavior in which their material properties change very slowly until just before failure, precluding the use of such time-dependent properties to predict failure. In the Wear-out approach, a material that has been aged at its ambient aging temperature T-a or at a low accelerated aging temperature is subsequently aged at a higher "Wear-out" temperature T-w in order to cause the material to reach its "failure" condition. In the simplest case, which involves the same chemical processes underlying degradation at T-a and T-w, a linear relationship is predicted between the time spent at T-a and the time required at T-w to complete the degradation. Data consistent with this expectation are presented for one of the EPR insulation materials. When the degradation chemistry at the two temperatures is different, a linear relationship between the time spent at T-a and the time required at T-w to complete the degradation is not generally expected. Even so, the Wear-out results for a second EPR material, which has evidence of changing chemistry, are reasonably linear and therefore useful from a predictive point-of-view. The Wear-out approach can therefore be used to transform non-predictive time-dependent material property results into predictive lifetime estimates. As a final example, the Wear-out approach is applied to an EPR insulation that had been aged in a nuclear power plant environment (similar to 51 degrees C) for times up to 23 years to show its likely viability for the hundreds of years predicted at this aging temperature from accelerated aging tests on EPR insulation materials. Published by Elsevier Ltd. C1 Sandia Natl Labs, Organ Mat Dept, Albuquerque, NM 87185 USA. RP Gillen, KT (reprint author), Sandia Natl Labs, Organ Mat Dept, POB 5800, Albuquerque, NM 87185 USA. EM ktgille@sandia.gov NR 20 TC 10 Z9 12 U1 1 U2 18 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-3910 J9 POLYM DEGRAD STABIL JI Polym. Degrad. Stabil. PD DEC PY 2006 VL 91 IS 12 BP 3197 EP 3207 DI 10.1016/j.polymdegradstab.2006.07.027 PG 11 WC Polymer Science SC Polymer Science GA 120MF UT WOS:000243088200044 ER PT J AU Thompson, DG Osborn, JC Kober, EM Schoonover, JR AF Thompson, Darla Graff Osborn, Jill C. Kober, Edward M. Schoonover, Jon R. TI Effects of hydrolysis-induced molecular weight changes on the phase separation of a polyester polyurethane SO POLYMER DEGRADATION AND STABILITY LA English DT Article DE estane; polyester polyurethane; vibrational spectroscopy; hydrolysis; molecular weight ID MULTIPLE ENDOTHERMIC BEHAVIOR; X-RAY-SCATTERING; BLOCK COPOLYMERS; SEGMENTED POLYURETHANES; MECHANICAL-PROPERTIES; MODEL POLYURETHANES; SPECTROSCOPIC ANALYSIS; URETHANE ELASTOMERS; KINETICS; MORPHOLOGY AB A polyester polyurethane, was subjected to humid and dry aging conditions at 70 degrees C with 75% and 0% relative humidity, respectively. Differences in molecular weight and quasi-static tensile strength between humid- and dry-aged samples are attributed to hydrolysis of the humid-aged polymers. A phase-separation study was performed on selected samples from the aging matrix. Polymer samples were subjected to 110 degrees C for 10 min, by mixing the polyester (soft) and the polyurethane (hard) domains, then rapidly cooled to room temperature, initiating the phase-separation process. Uniaxial tension, dynamic shear and infrared spectra of these samples were measured as a function of time providing insight into the effects of hydrolytic degradation and the relationship of mechanical and molecular-level properties. An Avrami-type analysis shows two distinct processes whose characteristics vary as a function of increased hydrolysis. LA-UR 04-6447. (c) 2006 Elsevier Ltd. All rights reserved. C1 Los Alamos Natl Lab, Dynam Experimentat Div, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Thompson, DG (reprint author), Los Alamos Natl Lab, Dynam Experimentat Div, MS C920, Los Alamos, NM 87545 USA. EM dkgraff@lanl.gov NR 32 TC 17 Z9 17 U1 1 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-3910 J9 POLYM DEGRAD STABIL JI Polym. Degrad. Stabil. PD DEC PY 2006 VL 91 IS 12 BP 3360 EP 3370 DI 10.1016/j.polymdegradstab.2006.05.019 PG 11 WC Polymer Science SC Polymer Science GA 120MF UT WOS:000243088200064 ER PT J AU Rodriguez, MA Adams, DP AF Rodriguez, Mark A. Adams, David P. TI X-ray powder diffraction data for rhornbohedral AlPt SO POWDER DIFFRACTION LA English DT Article DE X-ray diffraction (XRD); self-propagating high-temperature synthesis (SHS); AlPt AB X-ray powder diffraction data for a rhombohedral AlPt phase formed by self-propagating, high-temperature reactions of Al/Pt bi-layer films are reported. Multilayer Al/Pt thin film samples, reacted in air or vacuum, transformed into rhombohedral AlPt with space group R-3(148). Indexing and lattice parameter refinement of AlPt powders (generated from thin-film samples) yielded trigonal/hexagonal unit-cell lattice parameters of a = 15.623(6) angstrom and c = 5.305(2) angstrom, Z = 39, and V = 1121.5 angstrom(3). (C) 2006 International Centre for Diffraction Data. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Rodriguez, MA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 4 TC 0 Z9 0 U1 3 U2 6 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 J9 POWDER DIFFR JI Powder Diffr. PD DEC PY 2006 VL 21 IS 4 BP 318 EP 319 DI 10.1154/1.2362854 PG 2 WC Materials Science, Characterization & Testing SC Materials Science GA 119AP UT WOS:000242984900011 ER PT J AU Chen, Y Lawrence, FV Barkan, CPL Dantzig, JA AF Chen, Y. Lawrence, F. V. Barkan, C. P. L. Dantzig, J. A. TI Weld defect formation in rail thermite welds SO PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART F-JOURNAL OF RAIL AND RAPID TRANSIT LA English DT Article DE rail thermite welding; weld defect; shrinkage cavity; centre-line defect; microporosity ID POROSITY FORMATION; SOLIDIFICATION AB A previously developed heat transfer model is used to study the influence of welding parameters on weld defect development in thermite welds. Weld defect formation maps are constructed from a series of heat transfer simulations. For the current normal rail thermite welding conditions, it is found that shrinkage cavity formation can be avoided but cold-lap and centre-line defects are likely to occur. This study also shows that increasing the preheating time or the liquid temperature can suppress the development of cold-lap and centre-line defects but can lead to a slightly higher microporosity content in the railhead as well. Alternatively, it is found that instead of increasing the preheating time or the liquid temperature, the same effect can be achieved by increasing the 25 mm weld gap (standard) to a slightly larger value. C1 Univ Illinois, Energy Technol Div, Argonne Natl Lab, Argonne, IL 60439 USA. Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. Univ Illinois, Dept Mech & Ind Engn, Urbana, IL 61801 USA. RP Chen, Y (reprint author), Univ Illinois, Energy Technol Div, Argonne Natl Lab, 9700 S Casss Ave,Bldg 212,G178, Argonne, IL 60439 USA. EM yiren_chen@anl.gov NR 21 TC 8 Z9 8 U1 0 U2 9 PU PROFESSIONAL ENGINEERING PUBLISHING LTD PI WESTMINISTER PA 1 BIRDCAGE WALK, WESTMINISTER SW1H 9JJ, ENGLAND SN 0954-4097 J9 P I MECH ENG F-J RAI JI Proc. Inst. Mech. Eng. Part F-J. Rail Rapid Transit PD DEC PY 2006 VL 220 IS 4 BP 373 EP 384 DI 10.1243/0954409JRRT44 PG 12 WC Engineering, Civil; Engineering, Mechanical; Transportation Science & Technology SC Engineering; Transportation GA 125PO UT WOS:000243454500004 ER PT J AU Cadwallader, LC AF Cadwallader, L. C. TI Plant safety and risk with temporary equipment SO PROCESS SAFETY PROGRESS LA English DT Article DE operating experience; portable equipment; air compressors ID RELIABILITY AB Temporary equipment may be brought onto a plant site for a variety of process needs. The risk profile of the facility is altered by use of such temporary equipment, but since the time durations of temporary equipment usage are generally small, usually fewer than 90 days per year, the risk increase is also small and is typically not modeled in a probabilistic risk assessment. This article describes some risk issues with temporary equipment in long-term use, gives a case study of a temporary, diesel-driven air compressor under extended use at the Idaho National Laboratory, and suggests the need to model temporary equipment in the facility risk assessment if the equipment is used more than a few months. (C) 2006 American Institute of Chemical Engineers. C1 Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Cadwallader, LC (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Lee.Cadwallader@inl.gov RI Cadwallader, Lee/F-6933-2014 NR 16 TC 0 Z9 0 U1 1 U2 2 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1066-8527 J9 PROCESS SAF PROG JI Process Saf. Prog. PD DEC PY 2006 VL 25 IS 4 BP 339 EP 344 DI 10.1002/prs.10144 PG 6 WC Engineering, Chemical SC Engineering GA 110OU UT WOS:000242389000017 ER PT J AU Hadjichristidis, N Iatrou, H Pitsikalis, M Mays, J AF Hadjichristidis, Nikos Iatrou, Hermis Pitsikalis, Marmos Mays, Jimmy TI Macromolecular architectures by living and controlled/living polymerizations SO PROGRESS IN POLYMER SCIENCE LA English DT Review DE macromolecular architecture; living polymerization; controlled polymerization ID TRANSFER RADICAL POLYMERIZATION; STAR-BLOCK-COPOLYMERS; OPENING METATHESIS POLYMERIZATION; DILUTE-SOLUTION PROPERTIES; CONDENSING VINYL POLYMERIZATION; CHAIN-TRANSFER POLYMERIZATION; X-RAY-SCATTERING; GRAFT-COPOLYMERS; ANIONIC-POLYMERIZATION; BRANCHED POLYMERS AB The discovery of living anionic polymerization by Szwarc 50 years ago opened the way to the synthesis of model polymers. This ground-breaking discovery inspired many researchers to develop controlled/living routes for a plethora of monomers including those not compatible with anionic polymerization. These methods and their combinations serve as an arsenal for the synthesis of well-defined polymeric materials with predetermined properties and a rich variety of applications. A few representative examples of living and controlled/living methodologies for the synthesis of polymers with different macromolecular architectures are presented in this review. (c) 2006 Elsevier Ltd. All rights reserved. C1 Univ Athens, Dept Chem, GR-15771 Athens, Greece. Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Hadjichristidis, N (reprint author), Univ Athens, Dept Chem, GR-15771 Athens, Greece. EM hadjichristidis@chem.uoa.gr NR 232 TC 355 Z9 365 U1 24 U2 180 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0079-6700 J9 PROG POLYM SCI JI Prog. Polym. Sci. PD DEC PY 2006 VL 31 IS 12 BP 1068 EP 1132 DI 10.1016/j.progpolymsci.2006.07.002 PG 65 WC Polymer Science SC Polymer Science GA 121IF UT WOS:000243150600003 ER PT J AU Willey, TM van Buuren, T Lee, JRI Overturf, GE Kinney, JH Handly, J Weeks, BL Ilavsky, J AF Willey, Trevor M. van Buuren, Tony Lee, Jonathan R. I. Overturf, George E. Kinney, John H. Handly, Jeff Weeks, Brandon L. Ilavsky, Jan TI Changes in pore size distribution upon thermal cycling of TATB-based explosives measured by ultra-small angle X-ray scattering SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE TATB; LX-17; PBX-9502; small-angle scattering ID MOLECULAR-DYNAMICS SIMULATIONS; ELECTRONIC-STRUCTURE; HOT-SPOTS; 1,3,5-TRIAMINO-2,4,6-TRINITROBENZENE; INSTRUMENT; EXPANSION; SOLIDS AB Hot-spot models of initiation and detonation show that voids or porosity ranging from nanometer to micrometer in size within highly insensitive energetic materials affect initiability and detonation properties. Thus, the knowledge of the void size distribution, and how it changes with the volume expansion seen with temperature cycling, are important to understanding the properties of the insensitive explosive 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). In this paper, void size distributions in the 2 nm to 2 mu m regime, obtained from small-angle X-ray scattering measurements, are presented for LX-17-1, PBX-9502, and ultrafine TATB formulations, both as processed and after thermal cycling. Two peaks were observed in the void size distribution: a narrow peak between 7-10 nm and a broad peak between 20 nm and about 1 mm. The first peak was attributed to porosity intrinsic to the TATB crystallites. The larger pores were believed to be intercrystalline, a result of incomplete consolidation during processing and pressing. After thermal cycling, these specimens showed an increase in both the number and size of these larger pores. These results illuminate the nature of the void distributions in these TATB-based explosives from 2 nm to 2 mu m and provide empirical experimental input for computational models of initiation and detonation. C1 Lawrence Livermore Natl Lab, Livermore, CA USA. BWXT, Amarillo, TX USA. Texas Tech Univ, Lubbock, TX 79409 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Willey, TM (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA. EM willey1@llnl.gov RI Willey, Trevor/A-8778-2011; Weeks, Brandon/P-6331-2014; USAXS, APS/D-4198-2013; OI Willey, Trevor/0000-0002-9667-8830; Weeks, Brandon/0000-0003-2552-4129; Ilavsky, Jan/0000-0003-1982-8900 NR 31 TC 35 Z9 41 U1 1 U2 16 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0721-3115 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD DEC PY 2006 VL 31 IS 6 BP 466 EP 471 DI 10.1002/prep.200600063 PG 6 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 123NP UT WOS:000243302900007 ER PT J AU Gopalan, G He, ZY Battaile, KP Luan, S Swaminathan, K AF Gopalan, Gayathri He, Zengyong Battaile, Kevin P. Luan, Sheng Swaminathan, Kunchithapadam TI Structural comparison of oxidized and reduced FKBP13 from Arabidopsis thaliana SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE PPIase; redox regulation; X-ray crystal structure; dithiothreitol; reduced disulfide bonds ID ESCHERICHIA-COLI THIOREDOXIN; CHLOROPLAST THYLAKOID LUMEN; DISULFIDE-BOND ISOMERASE; CRYSTAL-STRUCTURE; 3-DIMENSIONAL STRUCTURE; PROTEIN STRUCTURES; IMMUNOPHILINS; RESOLUTION; REDOX; CYCLOPHILIN AB AtFKBP13, an immunophilin in the chloroplast thylakoid lumen, participates in redoxregulatory processes via a pair of conserved disulfide bonds that are present at the N- and C-termini of the protein. Characterization of this protein by structural and biochemical analysis has revealed a novel mechanism of redox regulation in the thylakoid lumen. The protein is active in its oxidized form but is inactivated after reduction by the thioredoxin system. This is in sharp contrast with the regulation of biosynthetic enzymes in the stroma. of the chloroplast, where reduction of enzymes by thioredoxin activates their function. To understand how the reduced form of AtFKBP13 is stabilized and how reduction of the cysteine residues affects the molecular properties of the enzyme, we determined the crystal structure of reduced AtFKBP13 at 1.88 1 Comparison of the reduced structure and the oxidized form that we published earlier shows rearrangements in redox site regions, readjustments of hydrogen-bonding interactions and the secondary structure of the active site residues 50-53, and reduced accessibility of the catalytic residues involved in the peptidyl proline isomerase (PPIase) activity of this enzyme. We propose that redox-linked changes in the secondary structure of the PPIase domain are responsible for significant functional differences in this protein in the reduced and oxidized states. C1 Inst Mol & Cell Biol, Singapore 138673, Singapore. Natl Univ Singapore, Dept Sci Biol, Singapore 117548, Singapore. Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. Univ Chicago, Argonne Natl Lab, IMCA CAT, CARS, Argonne, IL USA. RP Swaminathan, K (reprint author), Inst Mol & Cell Biol, 61 Biopolis Dr, Singapore 138673, Singapore. EM dbsks@nus.edu.sg RI ASTAR, IMCB/E-2320-2012; OI Battaile, Kevin/0000-0003-0833-3259 NR 38 TC 16 Z9 17 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0887-3585 J9 PROTEINS JI Proteins PD DEC 1 PY 2006 VL 65 IS 4 BP 789 EP 795 DI 10.1002/prot.21108 PG 7 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 105TZ UT WOS:000242056500001 PM 17029235 ER PT J AU Whitten, DG Achyuthan, KE Lopez, GP Kim, OK AF Whitten, David G. Achyuthan, Komandoor E. Lopez, Gabriel P. Kim, Oh-Kil TI Cooperative self-assembly of cyanines on carboxymethylamylose and other anionic scaffolds as tools for fluorescence-based biochemical sensing SO PURE AND APPLIED CHEMISTRY LA English DT Article; Proceedings Paper CT 21st IUPAC Symposium on Photochemistry CY APR 02-07, 2006 CL Kyoto, JAPAN DE cyanine dyes; carbohydrate polymers; biosensing; fluorescence; carboxymethylamylose ID DYES; AGGREGATION; DYNAMICS; TEMPLATES; EMISSION AB We recently found that certain cyanines form tight complexes with carboxymethylamylose (CMA) in aqueous solutions and that in these complexes the cyanine exists as a strongly fluorescent and stable J-aggregate. Cyanine dyes are characterized by their ability to form J-aggregates showing very narrow absorption and fluorescence spectra relative to the monomer. Although they have found uses in sensing applications, the practicability has been limited in many cases due to the low quantum efficiencies for J-aggregate fluorescence. The CMA-cyanine complex is formed by a cooperative self-assembly in which both components undergo conformational changes during the association. The CMA exists as a random coil in solution prior to complex formation; helix formation is prevented due to repulsion of the charges on the carboxymethylated glucose units. The cyanine exists as a nonfluorescent monomer in the same solutions. A helical atomic force microscopy image and large induced circular dichroism (CD) spectra of the cyanine J-aggregate indicate that the self-assembly is a superhelix scaffold of CMA decorated with J-aggregates of the cyanine. Similar behavior was also observed with carboxymethylated cellulose (CMC). Enzymatic disruption of the helical structures (e.g., by the use of amylase to disrupt the structure of CMA helix) leads to the disappearance of the J-aggregate-associated fluorescence. The photophysical behavior and applications of this complex for sensing are discussed. C1 Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. Univ New Mexico, Ctr Biomed Engn, Albuquerque, NM 87131 USA. Sandia Natl Labs, Biosensors & Nanomat Dept, Albuquerque, NM 87185 USA. USN, Div Chem, Res Lab, Washington, DC 20375 USA. USN, Inst Nanosci, Res Lab, Washington, DC 20375 USA. RP Whitten, DG (reprint author), Univ New Mexico 1, Dept Chem & Nucl Engn, Farris Engn Ctr 209, MSC01 1120, Albuquerque, NM 87131 USA. EM whitten@unm.edu NR 21 TC 20 Z9 20 U1 1 U2 6 PU INT UNION PURE APPLIED CHEMISTRY PI RES TRIANGLE PK PA 104 TW ALEXANDER DR, PO BOX 13757, RES TRIANGLE PK, NC 27709-3757 USA SN 0033-4545 J9 PURE APPL CHEM JI Pure Appl. Chem. PD DEC PY 2006 VL 78 IS 12 BP 2313 EP 2323 DI 10.1351/pac200678122313 PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA 117AG UT WOS:000242844300012 ER PT J AU Schlachter, AS Pratt, RH AF Schlachter, Alfred S. Pratt, R. H. TI New directions in the study of interaction of energetic photons with matter - Foreword SO RADIATION PHYSICS AND CHEMISTRY LA English DT Editorial Material C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. RP Schlachter, AS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM fsschlachter@lbl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD DEC PY 2006 VL 75 IS 12 BP 2105 EP 2105 DI 10.1016/j.radphyschem.2006.07.001 PG 1 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 115TJ UT WOS:000242756400001 ER PT J AU Schlachter, AS AF Schlachter, Alfred S. TI The search for quantum chaos: From celestial mechanics to the helium atom SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article ID DOUBLE-EXCITATION STATES; RESOLUTION; SERIES AB The classical problem of three bodies interacting under their mutual gravitational force has long been known to exhibit a mixture of regular and chaotic dynamics. Three bodies interacting under the influence of their mutual electric force should exhibit the same dynamical behavior, because the gravitational force and the electric force both obey the same inverse-square power law. However, an atomic-scale three-body electrical system-the helium atom-is also governed by quantum mechanics. The question is how the underlying chaotic classical behavior of the three-body electrical problem manifests in a quantum system. Or, how large does an atom have to be to show classical behavior? This question is addressed by experiments performed using an ultrabright beam of photons from the Advanced Light Source to study doubly excited autoionizing states of the helium atom. (C) 2006 Elsevier Ltd. All rights reserved. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Schlachter, AS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,MS 7-222, Berkeley, CA 94720 USA. EM fsschlachter@lbl.gov NR 8 TC 1 Z9 1 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD DEC PY 2006 VL 75 IS 12 BP 2159 EP 2164 DI 10.1016/j.radphyschem.2006.05.001 PG 6 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 115TJ UT WOS:000242756400008 ER PT J AU Kanter, EP Dunford, RW Krassig, B Southworth, SH Young, L AF Kanter, E. P. Dunford, R. W. Kraessig, B. Southworth, S. H. Young, L. TI Higher-order processes in X-ray photoionization of atoms SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article DE X-ray photoionization; double-K ionization ID K-VACANCY PRODUCTION; HYPERSATELLITE SPECTRA; FLUORESCENCE YIELDS; SHELL IONIZATION; CROSS-SECTIONS; TRANSITION; FE; EXCITATION; SEQUENCE; SINGLE AB There are several fourth-generation X-ray light source projects now underway around the world and it is anticipated that by the end of the decade, one or more of these X-ray free-electron lasers will be operational. In this contribution, we describe recent measurements and future plans to study both multielectron and multiphoton atomic photoionization. Although such higher-order processes are rare with present third-generation sources, they will be commonplace in experimental work with the new sources. The topics we discuss here are double K-shell ionization and two-photon X-ray photoionization. (C) 2005 Published by Elsevier Ltd. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Kanter, EP (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM kanter@anl.gov NR 41 TC 7 Z9 7 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD DEC PY 2006 VL 75 IS 12 BP 2174 EP 2181 DI 10.1016/j.radphyschem.2005.05.003 PG 8 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 115TJ UT WOS:000242756400010 ER PT J AU Macek, JH Jones, S AF Macek, J. H. Jones, S. TI Tests of continuum distorted waves SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article ID COMPTON DOUBLE-IONIZATION; CROSS-SECTIONS; SCATTERING; HELIUM; ELECTRON; ENERGY; IMPACT; EXCITATION; SYSTEMS; PHOTON AB Continuum distorted waves have proved useful for the computation of one-electron ion-atom collision processes. Despite this success, approximations based on these functions have not proved reliable for ionization processes involving electron collisions. Recently, it has been noted that if initial states that have the same form as the CDW final state are used in a balanced approach, improved agreement with experiment for (e, 3e) processes is found. We have investigated the high energy limit of other double ionization processes, namely (gamma, gamma'2e) and (gamma, 2e), and find that such agreement does not extend to the high energy limit. When the CDW initial state is improved, the high energy limit improves but agreement with experiment degrades at intermediate energies. The balanced approach, found useful for electron processes, does not work for Compton processes at high energy, while an unbalanced approximation works for photon processes at high energy, but not for (e, 3e) at intermediate energies. (C) 2006 Published by Elsevier Ltd. C1 Univ Tennessee, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Macek, JH (reprint author), Univ Tennessee, Knoxville, TN 37996 USA. EM jmacek@utk.edu NR 15 TC 1 Z9 1 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD DEC PY 2006 VL 75 IS 12 BP 2206 EP 2210 DI 10.1016/j.radphyschem.2006.08.004 PG 5 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 115TJ UT WOS:000242756400014 ER PT J AU Toburen, LH McLawhorn, SL McLawhorn, RA Evans, NL Justiniano, ELB Shinpaugh, JL Schultz, DR Reinhold, CO AF Toburen, L. H. McLawhorn, S. L. McLawhorn, R. A. Evans, N. L. Justiniano, E. L. B. Shinpaugh, J. L. Schultz, D. R. Reinhold, C. O. TI Charge transfer and ionisation by intermediate-energy heavy ions SO RADIATION PROTECTION DOSIMETRY LA English DT Article; Proceedings Paper CT 14th International Symposium on Microdosimetry CY NOV 13-18, 2005 CL Venezia-Isola di San Servo, ITALY SP INFN Lab Nazl Legnaro, Legnaro Padova, INFN Sezione Pavia, Univ Pavia Dipartimento Fis Nucl Teor, NASA Johnson Space Ctr, CERN, Med Res Council ID CROSS-SECTIONS; ELECTRON-CAPTURE; COLLISIONS; GASES; EMISSION; PROTONS AB The use of heavy ion beams for microbeam studies of mammalian cell response leads to a need to better understand interaction cross sections for collisions of heavy ions with tissue constituents. For ion energies of a few MeV u(-1) or less, ions capture electrons from the media in which they travel and undergo subsequent interactions as partially 'dressed' ions. For example, 16 MeV fluorine ions have an equilibrium charge of 7(+), 32 MeV sulphur ions have an equilibrium charge of similar to 11(+), and as the ion energies decrease the equilibrium charge decreases dramatically. Data for interactions of partially dressed ions are extremely rare, making it difficult to estimate microscopic patterns of energy deposition leading to damage to cellular components. Such estimates, normally obtained by Monte Carlo track structure simulations, require a comprehensive database of differential and total ionisation cross sections as well as charge transfer cross sections. To provide information for track simulation, measurement of total ionisation cross sections have been initiated at East Carolina University using the recoil ion time-of-flight method that also yields cross sections for multiple ionisation processes and charge transfer cross sections; multiple ionisation is prevalent for heavy ion interactions. In addition, measurements of differential ionisation cross sections needed for Monte Carlo simulation of detailed event-by-event particle tracks are under way. Differential, total and multiple ionisation cross sections and electron capture and loss cross sections measured for C+ ions with energies of 100 and 200 keV u(-1) are described. C1 E Carolina Univ, Dept Phys, Greenville, NC 27858 USA. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Toburen, LH (reprint author), E Carolina Univ, Dept Phys, Greenville, NC 27858 USA. EM toburenl@ecu.edu FU NCI NIH HHS [1R01CA93351-01A1] NR 13 TC 5 Z9 5 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD DEC PY 2006 VL 122 IS 1-4 BP 22 EP 25 PG 4 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 162YR UT WOS:000246125900004 PM 17132666 ER PT J AU Trovati, S Ballarini, F Battistoni, G Cerutti, F Fasso, A Ferrari, A Gadioli, E Garzelli, MV Mairani, A Ottolenghi, A Paretzke, HG Parini, V Pelliccioni, M Pinsky, L Sala, PR Scannicchio, D Zankl, M AF Trovati, S. Ballarini, F. Battistoni, G. Cerutti, F. Fasso, A. Ferrari, A. Gadioli, E. Garzelli, M. V. Mairani, A. Ottolenghi, A. Paretzke, H. G. Parini, V. Pelliccioni, M. Pinsky, L. Sala, P. R. Scannicchio, D. Zankl, M. TI Human exposure to space radiation: Role of primary and secondary particles SO RADIATION PROTECTION DOSIMETRY LA English DT Article; Proceedings Paper CT 14th International Symposium on Microdosimetry CY NOV 13-18, 2005 CL Venezia-Isola di San Servo, ITALY SP INFN Lab Nazl Legnaro, Legnaro Padova, INFN Sezione Pavia, Univ Pavia Dipartimento Fis Nucl Teor, NASA Johnson Space Ctr, CERN, Med Res Council ID PRODUCTION CROSS-SECTIONS; MONTE-CARLO CODE; FLUKA CODE; TRANSPORT; PHANTOMS AB Human exposure to space radiation implies two kinds of risk, both stochastic and deterministic. Shielding optimisation therefore represents a crucial goal for long-term missions, especially in deep space. In this context, the use of radiation transport codes coupled with anthropomorphic phantoms allows to simulate typical radiation exposures for astronauts behind different shielding, and to calculate doses to different organs. In this work, the FLUKA Monte Carlo code and two phantoms, a mathematical model and a voxel model, were used, taking the Galactic Cosmic Rays (GCR) spectra from the model of Badhwar and O'Neill. The time integral spectral proton fluence of the August 1972 Solar Particle Event (SPE) was represented by an exponential function. For each aluminium shield thickness, besides total doses the contributions from primary and secondary particles for different organs and tissues were calculated separately. More specifically, organ-averaged absorbed doses, dose equivalents and a form of 'biological dose', defined on the basis of initial (clustered) DNA damage, were calculated. As expected, the SPE doses dramatically decreased with increasing shielding, and doses in internal organs were lower than in skin. The contribution of secondary particles to SPE doses was almost negligible; however it is of note that, at high shielding (10 g cm(-2)), most of the secondaries are neutrons. GCR organ doses remained roughly constant with increasing All shielding. In contrast to SPE results, for the case of cosmic rays, secondary particles accounted for a significant fraction of the total dose. C1 Univ Pavia, Dept Nucl & Theoret Phys, I-27100 Pavia, Italy. Ist Nazl Fis Nucl, Sect Pavia, I-27100 Pavia, Italy. Univ Milan, Dept Phys, I-20133 Milan, Italy. Ist Nazl Fis Nucl, Sect Milano, I-20133 Milan, Italy. SLAC, Stanford, CA USA. CERN, Geneva, Switzerland. GSF, Natl Res Ctr Environm & Hlth, Neuherberg, Germany. Ist Nazl Fis Nucl, Francati, Roma, Italy. Univ Houston, Dept Phys, Houston, TX USA. RP Trovati, S (reprint author), Univ Pavia, Dept Nucl & Theoret Phys, Via Bassi 6, I-27100 Pavia, Italy. EM Stefania.Trovati@pv.infn.it RI Garzelli, Maria Vittoria/G-8055-2011; sala, paola/E-2868-2013; Ballarini, Francesca/J-7293-2013; Zankl, Maria/M-7348-2014; Battistoni, Giuseppe/B-5264-2012 OI sala, paola/0000-0001-9859-5564; Ballarini, Francesca/0000-0002-6629-3382; Zankl, Maria/0000-0003-4743-970X; Battistoni, Giuseppe/0000-0003-3484-1724 NR 14 TC 9 Z9 11 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD DEC PY 2006 VL 122 IS 1-4 BP 362 EP 366 DI 10.1093/rpd/ncl438 PG 5 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 162YR UT WOS:000246125900076 PM 17151013 ER PT J AU Traub, RJ Olsen, PC McDonald, JC AF Traub, R. J. Olsen, P. C. McDonald, J. C. TI The radiological properties of a novel lung tissue substitute SO RADIATION PROTECTION DOSIMETRY LA English DT Article AB Lung phantoms have been manufactured using commercially available, polyurethane foam products. Some of these materials are no longer available; therefore, a new lung tissue substitute was developed. The elemental composition and radiological properties of the new lung tissue substitute are described in this paper. Because the lung tissue substitute will be used to manufacture phantom lungs that will be used to evaluate chest counting systems, it is necessary to know the radiological properties of the material. These properties must be compared with reference materials and materials that have been used for lung phantoms in the past. The radiological properties of interest include the electron density, mean excitation energy, electron stopping power and photon mass attenuation coefficients. In all these properties, the calculated values for the new lung tissue substitute closely matched the calculated values of ICRU Publication 44 lung tissue. Good agreement was also found when the new lung tissue substitute was compared with the Griffith lung tissue substitute described by the ICRU. The new material was determined to be an excellent lung tissue substitute. C1 Pacific NW Natl Lab, Richland, WA 99354 USA. RP Traub, RJ (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM Richard.Traub@pnl.gov NR 11 TC 2 Z9 2 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD DEC PY 2006 VL 121 IS 2 BP 202 EP 207 DI 10.1093/rpd/nci371 PG 6 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 115EN UT WOS:000242717700018 PM 17142822 ER PT J AU Moussa, HM Eckerman, KF Townsend, LW AF Moussa, H. M. Eckerman, F. Townsend, L. W. TI Charged particle equilibrium effects on the electron absorbed fraction in the extrathoracic airways SO RADIATION PROTECTION DOSIMETRY LA English DT Article ID MODEL; NOSE AB Estimates of the dose to the extrathoracic airway (nasal vestibule) from inhaled beta-emitting radionuclides, obtained using the respiratory tract model presented in Publication 66 of the International Commission on Radiological Protection, frequently predict that the basal cells in this region are the most highly irradiated tissues of the body. The dose to the basal cells is averaged over a layer of tissue 10 mu m thick located at a depth of 40 mu m into the airway assuming that charged particle equilibrium exists. Since the target (basal cell layer) is very small and thin (10 cm(2) area and 10 mu m thickness), charged particle equilibrium does not exist. In this work the effect on the absorbed fraction of the lack of charged particle equilibrium is investigated. C1 Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Townsend, LW (reprint author), Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. EM ltownsen@tennessee.edu NR 9 TC 1 Z9 1 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD DEC PY 2006 VL 121 IS 3 BP 252 EP 256 DI 10.1093/rpd/ncl039 PG 5 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 123VB UT WOS:000243323100006 PM 16603605 ER PT J AU Jobling, ME Mott, JD Finnegan, MT Jurukovski, V Erickson, AC Walian, PJ Taylor, SE Ledbetter, S Lawrence, CM Rifkin, DB Barcellos-Hoff, MH AF Jobling, Michael E. Mott, Joni D. Finnegan, Monica T. Jurukovski, Vladimir Erickson, Anna C. Walian, Peter J. Taylor, Scott E. Ledbetter, Steven Lawrence, Catherine M. Rifkin, Daniel B. Barcellos-Hoff, Mary Helen TI Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species SO RADIATION RESEARCH LA English DT Article ID TGF-BETA; ENDOTHELIAL-CELLS; OXIDATIVE STRESS; MAMMARY-GLAND; IN-SITU; TGF-BETA-1; BINDING; CANCER; MICE; RADIATION AB The three mammalian transforming growth factor beta (TGF-beta) isoforms are each secreted in a latent complex in which TGF-beta homodimers are non-covalently associated with homodimers of their respective pro-peptide called the latency-associated peptide (LAP). Release of TGF-beta from its LAP, called activation, is required for binding of TGF-beta to cellular receptors, making extracellular activation a critical regulatory point for TGF-beta bioavailability. Our previous work demonstrated that latent TGF-beta 1 (LTGF-beta 1) is efficiently activated by ionizing radiation in vivo and by reactive oxygen species (ROS) generated by Fenton chemistry in vitro. In the current study, we determined the specific ROS and protein target that render LTGF-beta 1 redox sensitive. First, we compared LTGF-beta 1. LTGF-beta 2 and LTGF-beta 3 to determine the generality of this mechanism of activation and found that redox-mediated activation is restricted to the LTGF-beta 1 isoform. Next, e used scavengers to determine that ROS activation was a function of OH(center dot) availability, confirming oxidation as the primary mechanism. To identify which partner of the LTGF-beta 1 complex was functionally modified, each was exposed to ROS and tested for the ability to form a latent complex. Exposure of TGF-beta 1 did not alter its ability to associate with LAP, but exposing LAP-beta 1 to ROS prohibited this phenomenon, while treatment of ROS-exposed LAP-beta 1 with a mild reducing agent restored its ability to neutralize TGF-beta 1 activity. Taken together, these results suggest that ROS-induced oxidation in LAP-beta 1 triggers a conformational change that releases TGF-beta 1. Using site-specific mutation, we identified a methionine residue at amino acid position 253 unique to LAP-beta 1 as critical to ROS-mediated activation. We propose that LTGF-beta 1 contains a redox switch centered at methionine 253, which allows LTGF-beta 1 to act uniquely as an extracellular sensor of oxidative stress in tissues. (c) 2006 by Radiation Research Society. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. Genzyme Corp, Cambridge, MA 02139 USA. NYU, Sch Med, Dept Cell Biol, New York, NY 10016 USA. NYU, Sch Med, Dept Med, New York, NY 10016 USA. RP Barcellos-Hoff, MH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, MS 977-225A,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM MHBarcellos-Hoff@lbl.gov FU NCI NIH HHS [CA034282] NR 50 TC 91 Z9 93 U1 0 U2 8 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD DEC PY 2006 VL 166 IS 6 BP 839 EP 848 DI 10.1667/RR0695.1 PG 10 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 116ZP UT WOS:000242842600003 PM 17149983 ER PT J AU Ding, Y Bailey, K Davis, AM Hu, SM Lu, ZT O'Connor, TP AF Ding, Y. Bailey, K. Davis, A. M. Hu, S. -M. Lu, Z. -T. O'Connor, T. P. TI Beam of metastable krypton atoms extracted from a microwave-driven discharge SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID HELIUM-ATOMS AB A microwave-driven discharge is used to produce a thermal beam of metastable krypton atoms at the 5s[3/2](2) level with an angular flux density of 7x10(14) s(-1) sr(-1), while consuming 1x10(17) krypton atoms/s. This source of atomic beam uses commercially available microwave parts, and has achieved comparable beam flux and excitation efficiency with a previously described source that employs a rf-driven discharge [C. Y. Chen , Rev. Sci. Instrum. 72, 271 (2001)]. (c) 2006 American Institute of Physics. C1 Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China. RP Ding, Y (reprint author), Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. EM ding@anl.gov RI Hu, Shuiming/C-4287-2008; OI Hu, Shuiming/0000-0002-1565-8468; Davis, Andrew/0000-0001-7955-6236 NR 15 TC 8 Z9 8 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2006 VL 77 IS 12 AR 126105 DI 10.1063/1.2400014 PG 2 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 121LM UT WOS:000243159100036 ER PT J AU Francis, MK Calabrese, RV Phongikaroon, S AF Francis, Michael K. Calabrese, Richard V. Phongikaroon, Supathorn TI Novel probe for the in situ measurement of particle size distributions SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID DROP SIZE; DISPERSIONS AB The development of a novel instrument for the in situ measurement of particle size distributions in the size range of 3-200 mu m is presented. The system uses high magnification optics, housed in a stainless steel probe, which can be inserted into a process stream or vessel, where images of the dispersed phase particles are recorded. A pulsed light source is used to freeze the motion of the particles in the field of view and present an image of the dispersion onto a charge-coupled device camera chip. The images are digitized and stored for later processing. Automated image analysis routines have been developed for extracting particle size information from the acquired images. An extensive validation of the instrument has been performed for spherical particles, which has produced several important findings. First, a size bias in the depth of field (DOF) exists which favors larger particles. An experiment procedure was developed for the direct measurement of DOF size biases. Additionally, the behavior of the instrument is dependent on the environmental conditions, such as dispersed phase concentration and the difference in index of refraction between continuous phase and dispersed phase. (c) 2006 American Institute of Physics. C1 Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA. Idaho Natl Lab, Pyroproc Technol Dept, Idaho Falls, ID 83415 USA. RP Francis, MK (reprint author), WR Grace & Co, 7500 Grace Dr, Columbia, MD 21044 USA. EM michael.francis@grace.com; rvc@umd.edu NR 22 TC 1 Z9 1 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2006 VL 77 IS 12 AR 123704 DI 10.1063/1.2405388 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 121LM UT WOS:000243159100017 ER PT J AU Schmiedeshoff, GM Lounsbury, AW Luna, DJ Tracy, SJ Schramm, AJ Tozer, SW Correa, VF Hannahs, ST Murphy, TP Palm, EC Lacerda, AH Bud'ko, SL Canfield, PC Smith, JL Lashley, JC Cooley, JC AF Schmiedeshoff, G. M. Lounsbury, A. W. Luna, D. J. Tracy, S. J. Schramm, A. J. Tozer, S. W. Correa, V. F. Hannahs, S. T. Murphy, T. P. Palm, E. C. Lacerda, A. H. Bud'ko, S. L. Canfield, P. C. Smith, J. L. Lashley, J. C. Cooley, J. C. TI Versatile and compact capacitive dilatometer SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ANISOTROPIC THERMAL-EXPANSION; PRESSURE-DEPENDENCE; MAGNETOSTRICTION; ALUMINUM; COPPER; NICKEL; FIELD AB We describe the design, construction, calibration, and operation of a relatively simple differential capacitive dilatometer suitable for measurements of thermal expansion and magnetostriction from 300 to below 1 K with a low-temperature resolution of about 0.05 A. The design is characterized by an open architecture permitting measurements on small samples with a variety of shapes. Dilatometers of this design have operated successfully with a commercial physical property measurement system, with several types of cryogenic refrigeration systems, in vacuum, in helium exchange gas, and while immersed in liquid helium (magnetostriction only) to temperatures of 30 mK and in magnetic fields to 45 T. (c) 2006 American Institute of Physics. C1 Occidental Coll, Dept Phys, Los Angeles, CA 90041 USA. Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Schmiedeshoff, GM (reprint author), Occidental Coll, Dept Phys, Los Angeles, CA 90041 USA. RI Hannahs, Scott/B-1274-2008; Cooley, Jason/E-4163-2013; Lounsbury, Amanda/L-9285-2013; Canfield, Paul/H-2698-2014 OI Hannahs, Scott/0000-0002-5840-7714; Lounsbury, Amanda/0000-0002-1246-5214; NR 29 TC 54 Z9 54 U1 0 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2006 VL 77 IS 12 AR 123907 DI 10.1063/1.2403088 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 121LM UT WOS:000243159100024 ER PT J AU Suter, RM Hennessy, D Xiao, C Lienert, U AF Suter, R. M. Hennessy, D. Xiao, C. Lienert, U. TI Forward modeling method for microstructure reconstruction using x-ray diffraction microscopy: Single-crystal verification SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID GRAIN MAPS; INDIVIDUAL GRAINS; MAPPING GRAINS; 3 DIMENSIONS; GROWTH; POLYCRYSTALS; GENERATION; DYNAMICS; POWDERS; DEFORMATION AB We describe and illustrate a forward modeling method for quantitatively reconstructing the geometry and orientation of microstructural features inside of bulk samples from high-energy x-ray diffraction microscopy data. Data sets comprise charge-coupled device images of Bragg diffracted beams originating from individual grains in a thin planar section of sample. Our analysis approach first reduces the raw images to a binary data set in which peaks have been thresholded at a fraction of their height after noise reduction processing. We then use a computer simulation of the measurement and the sample microstructure to generate calculated diffraction patterns over the same range of sample orientations used in the experiment. The crystallographic orientation at each of an array of area elements in the sample space is adjusted to optimize overlap between experimental and simulated scattering. In the present verification exercise, data are collected at the Advanced Photon Source beamline 1-ID using microfocused 50 keV x rays. Our sample is a thin silicon wafer. By choosing the appropriate threshold fraction and convergence criteria, we are able to reconstruct to <= 10 mu m errors the subregion of the silicon wafer that remains in the incident beam throughout the rotation range of the measurement. The standard deviation of area element orientations is approximate to 0.3 degrees. Our forward modeling approach offers a degree of noise immunity, is applicable to polycrystals and composite materials, and can be extended to include scattering rules appropriate for defected materials. (c) 2006 American Institute of Physics. C1 Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Suter, RM (reprint author), Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. RI Hennessy, Daniel/A-6203-2011; Suter, Robert/P-2541-2014 OI Suter, Robert/0000-0002-0651-0437 NR 26 TC 86 Z9 86 U1 5 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2006 VL 77 IS 12 AR 123905 DI 10.1063/1.2400017 PG 12 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 121LM UT WOS:000243159100022 ER PT J AU Tompsett, GA Panzarella, B Conner, WC Yngvesson, KS Lu, F Suib, SL Jones, KW Bennett, S AF Tompsett, G. A. Panzarella, B. Conner, W. C. Yngvesson, K. S. Lu, F. Suib, S. L. Jones, K. W. Bennett, S. TI In situ small angle x-ray scattering, wide angle x-ray scattering, and Raman spectroscopy of microwave synthesis SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID NEUTRON-SCATTERING; ZEOLITE SYNTHESIS; CRYSTAL-GROWTH; SILICA-GELS; REAL-TIME; TPA-MFI; CRYSTALLIZATION; TEMPERATURE; PRECURSORS; DIFFRACTION AB Recent studies in microwave chemistry have proven many enhancements in reaction rates and selectivities. Most dramatic are several zeolite syntheses where over an order of magnitude more rapid rates are often, but not always, found. The reasons for these enhancements are not understood in part because in situ spectroscopies under microwave exposure are problematic. Thus, techniques have been slow to develop. This study describes a novel system with which x-ray scattering and Raman studies can be performed in situ during exposure to microwave radiation. The mechanisms and rates for the syntheses of zeolites or other microwave syntheses can be studied dynamically in this manner. A 2.45 GHz waveguide system operating in single pass or as a tuned cavity was developed through which an x-ray beam and/or a Raman laser could probe a synthesis solution and the appropriate scattering are studied. The X10A beamline at Brookhaven National Synchrotron Light Source was used for these studies. (c) 2006 American Institute of Physics. C1 Univ Massachusetts, Dept Chem Engn, Amherst, MA 01003 USA. Univ Massachusetts, Dept Elect & Comp Engn, Amherst, MA 01003 USA. Univ Connecticut, Dept Chem, Storrs, CT 06269 USA. Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. RP Tompsett, GA (reprint author), Univ Massachusetts, Dept Chem Engn, 159 Goessman Lab, Amherst, MA 01003 USA. EM tompsett@ecs.umass.edu NR 43 TC 7 Z9 7 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2006 VL 77 IS 12 AR 124101 DI 10.1063/1.2390630 PG 10 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 121LM UT WOS:000243159100025 ER PT J AU Poloski, AP Bredt, PR Daniel, RC Saez, AE AF Poloski, Adam P. Bredt, Paul R. Daniel, Richard C. Saez, Avelino Eduardo TI The contribution of frictional contacts to the shear strength of coarse glass bead powders and slurries SO RHEOLOGICA ACTA LA English DT Article DE shear strength; shear vane; granular stress networks; frictional contacts ID YIELD-STRESS; GRANULAR MEDIA; SUSPENSIONS; SPHERE; MOTION; VANE AB This paper investigates the use of the shear vane technique as a means of determining frictional and cohesive interparticle force contributions to the shear strength of coarse glass bead powders and slurries. To this end, the shear strength of 203-mu m glass beads in air and slurried in water and kaolinite suspensions was determined as a function of vane immersion depth, vane geometry, and container size. Both vane immersion depth and container diameter are found to significantly impact the shear strength measured using the vane technique. An equation describing interparticle frictional and cohesive contributions to shear vane measurements was derived in an effort to describe the experimental results. A Janssen stress distribution model for granular materials forms the basis for this equation and appears to explain the behavior of shear strength measurements at varying immersion depths. The presence of the Janssen stress distribution can affect the interpretation of shear vane results. Rather than shear strength being a material property, as is the case with flocculated colloid slurries and polymer solutions, shear strength becomes a process property where vane depth, container size, and container material can result in significant measurement variations. Such parameters should be considered before using the shear vane results on applications involving granular material components. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. Univ Arizona, Tucson, AZ 85721 USA. RP Poloski, AP (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM Adam.Poloski@pnl.gov RI Saez, Avelino/K-1136-2016 OI Saez, Avelino/0000-0002-3548-6325 NR 30 TC 3 Z9 3 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0035-4511 J9 RHEOL ACTA JI Rheol. Acta PD DEC PY 2006 VL 46 IS 2 BP 249 EP 259 DI 10.1007/s00397-006-0105-3 PG 11 WC Mechanics SC Mechanics GA 107DV UT WOS:000242151800009 ER PT J AU Bogen, KT AF Bogen, Kenneth T. TI Comment on "Steady state solutions to PBPK models and their applications to risk assessment I: Route to route extrapolation of volatile chemicals," by Chiu and White in Risk analysis, 26(3), 769-780 SO RISK ANALYSIS LA English DT Editorial Material ID TRICHLOROETHYLENE; PHARMACOKINETICS C1 Lawrence Livermore Natl Lab, Energy & Environm Directorate, Livermore, CA 94550 USA. RP Bogen, KT (reprint author), Lawrence Livermore Natl Lab, Energy & Environm Directorate, POB 5508, Livermore, CA 94550 USA. EM bogen@LLNL.gov NR 5 TC 0 Z9 0 U1 0 U2 2 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0272-4332 J9 RISK ANAL JI Risk Anal. PD DEC PY 2006 VL 26 IS 6 BP 1415 EP 1415 DI 10.1111/j.1539-6924.2006.00854.x PG 1 WC Public, Environmental & Occupational Health; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods SC Public, Environmental & Occupational Health; Mathematics; Mathematical Methods In Social Sciences GA 117IS UT WOS:000242867200004 PM 17184387 ER PT J AU Stork, LG Gennings, C Carchman, RA Carter, WH Pounds, J Mumtaz, M AF Stork, LeAnna G. Gennings, Chris Carchman, Richard A. Carter, Walter H., Jr. Pounds, Joel Mumtaz, Moiz TI Testing for additivity at select mixture groups of interest based on statistical equivalence testing methods SO RISK ANALYSIS LA English DT Article DE antagonism; low dose; risk assessment; synergy ID QUASI-LIKELIHOOD FUNCTIONS; CHEMICAL-MIXTURES; RISK-ASSESSMENT; TOXICOLOGICAL EVALUATION; THRESHOLD; MODELS; TRIALS AB Several assumptions, defined and undefined, are used in the toxicity assessment of chemical mixtures. In scientific practice mixture components in the low-dose region, particularly subthreshold doses, are often assumed to behave additively (i.e., zero interaction) based on heuristic arguments. This assumption has important implications in the practice of risk assessment, but has not been experimentally tested. We have developed methodology to test for additivity in the sense of Berenbaum (Advances in Cancer Research, 1981), based on the statistical equivalence testing literature where the null hypothesis of interaction is rejected for the alternative hypothesis of additivity when data support the claim. The implication of this approach is that conclusions of additivity are made with a false positive rate controlled by the experimenter. The claim of additivity is based on prespecified additivity margins, which are chosen using expert biological judgment such that small deviations from additivity, which are not considered to be biologically important, are not statistically significant. This approach is in contrast to the usual hypothesis-testing framework that assumes additivity in the null hypothesis and rejects when there is significant evidence of interaction. In this scenario, failure to reject may be due to lack of statistical power making the claim of additivity problematic. The proposed method is illustrated in a mixture of five organophosphorus pesticides that were experimentally evaluated alone and at relevant mixing ratios. Motor activity was assessed in adult male rats following acute exposure. Four low-dose mixture groups were evaluated. Evidence of additivity is found in three of the four low-dose mixture groups. The proposed method tests for additivity of the whole mixture and does not take into account subset interactions (e.g., synergistic, antagonistic) that may have occurred and cancelled each other out. C1 Monsanto Co, St Louis, MO 63167 USA. Virginia Commonwealth Univ, Dept Biostat, Richmond, VA 23298 USA. Solveritas LLC, Richmond, VA 23291 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. ATSDR, Div Toxicol & Environm Med, Atlanta, GA 30333 USA. RP Stork, LG (reprint author), Monsanto Co, 800 N Lindbergh Blvd,Mail Zone O3A, St Louis, MO 63167 USA. EM leanna.g.stork@monsanto.com OI Pounds, Joel/0000-0002-6616-1566 FU NIEHS NIH HHS [T32 ES007334-04, T32 ES007334] NR 35 TC 4 Z9 4 U1 0 U2 4 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0272-4332 J9 RISK ANAL JI Risk Anal. PD DEC PY 2006 VL 26 IS 6 BP 1601 EP 1612 DI 10.1111/j.1539-6924.2006.00846.x PG 12 WC Public, Environmental & Occupational Health; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods SC Public, Environmental & Occupational Health; Mathematics; Mathematical Methods In Social Sciences GA 117IS UT WOS:000242867200017 PM 17184400 ER PT J AU Grand, TC Railsback, SF Hayse, JW Lagory, KE AF Grand, Tamara C. Railsback, Steven F. Hayse, John W. Lagory, Kirk E. TI A physical habitat model for predicting the effects of flow fluctuations in nursery habitats of the endangered Colorado pikeminnow (Ptychocheilus lucius) SO RIVER RESEARCH AND APPLICATIONS LA English DT Article DE backwater habitats; flow fluctuations; simulation modelling; Colorado pikeminnow; Green River; Flaming Gorge Dam; temperature; invertebrate production ID LARVAL CHIRONOMIDAE; GREEN RIVER; GROWTH; TEMPERATURE; POPULATION; SQUAWFISH; DISCHARGE; DIPTERA; FISHES; TROUT AB Larval and juvenile Colorado pikeminnow (Ptychocheilus lucius) use shallow, low-velocity, channel-margin areas (backwaters) as nursery habitats. It is hypothesized that within-day flow fluctuations caused by hydropower operations can directly affect the suitability of such habitats by altering water temperature and habitat geometry. Despite the importance of backwaters to juvenile fishes, there is a lack of established approaches for modelling how river management affects these habitats. Here, we describe a physical habitat model that predicts the effects of mainstem flow variation on backwater temperature, geometry and invertebrate availability. We specifically modelled these effects on habitat in a portion of the Green River in Utah below Flaming Gorge Dam. The overall model combines a cell-based model of backwater geometry, a pond-based temperature model and a model of invertebrate production. Results from a series of simulations suggest that the most important biological effects of within-day flow fluctuations are likely to be those associated with the availability of invertebrate prey including (1) minimum wetted area, (2) the proportion of the backwater's volume exchanged with the mainstem, and, to a lesser degree, (3) backwater temperature. Taken together, such effects could have important implications for the growth and survival of juvenile fish when flow fluctuations are sufficiently large. Copyright (c) 2006 John Wiley & Sons, Ltd. C1 Lang Railsback & Associates, Arcata, CA USA. Argonne Natl Lab, Div Environm Assessment, Argonne, IL USA. RP Grand, TC (reprint author), 108 Roe Dr, Port Moody, BC V3H 3M8, Canada. EM tgrand@sfu.ca OI Railsback, Steven/0000-0002-5923-9847 NR 28 TC 10 Z9 10 U1 1 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1535-1459 EI 1535-1467 J9 RIVER RES APPL JI River Res. Appl. PD DEC PY 2006 VL 22 IS 10 BP 1125 EP 1142 DI 10.1002/rra.967 PG 18 WC Environmental Sciences; Water Resources SC Environmental Sciences & Ecology; Water Resources GA 118BY UT WOS:000242918200005 ER PT J AU Bollen, J Rodriguez, MA Van De Sompel, H AF Bollen, Johan Rodriguez, Marko A. Van de Sompel, Herbert TI Journal status SO SCIENTOMETRICS LA English DT Article ID IMPACT FACTOR; RESEARCH OUTPUT; RESEARCHERS; QUALITY; INDEX AB The status of an actor in a social context is commonly defined in terms of two factors: the total number of endorsements the actor receives from other actors and the prestige of the endorsing actors. These two factors indicate the distinction between popularity and expert appreciation of the actor. respectively. We refer to the former as popularity and to the latter as prestige. These notions of popularity and prestige also apply to the domain of scholarly assessment. The ISI Impact Factor (ISI IF) is defined as the mean number of citations a journal receives over a 2 year period. By merely Counting the amount of citations and disregarding the prestige of the citing journals, the ISI IF is a metric of popularity, not of prestige. We demonstrate how a weighted version of the popular PageRank algorithm can be used to obtain a metric that reflects prestige. We contrast the rankings Of journals according to their ISI IF and their Weighted PageRank, and we provide an analysis that reveals both significant overlaps and differences. Furthermore, we introduce the Y-factor which is a simple combination of both the ISI IF and the weighted PageRank, and find that the resulting journal rankings correspond well to a general understanding of journal status. C1 Los Alamos Natl Lab, Digital Lib Res & Prototyping Team, Res Lib, Los Alamos, NM 87545 USA. EM jbollen@lanl.gov NR 34 TC 184 Z9 191 U1 4 U2 49 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 J9 SCIENTOMETRICS JI Scientometrics PD DEC PY 2006 VL 69 IS 3 BP 669 EP 687 DI 10.1007/s11192-006-0176-z PG 19 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science SC Computer Science; Information Science & Library Science GA 114NF UT WOS:000242672200013 ER PT J AU Klavans, R Boyack, KW AF Klavans, Richard Boyack, Kevin W. TI Quantitative evaluation of large maps of science SO SCIENTOMETRICS LA English DT Article; Proceedings Paper CT 10th International Conference of the International-Society-for-Scientometrics-and-Informetrics CY JUL 24-28, 2005 CL Stockholm, SWEDEN SP Int Soc Scientometr & Informetr ID KNOWLEDGE DOMAINS AB This article describes recent improvements in mapping the world-wide scientific literature. Existing research is extended in three ways. First, a method for generating maps directly from the data on the relationships between hundreds of thousands of documents is presented. Second, quantitative techniques for evaluating these large maps of science are introduced. Third, these techniques are applied to data in order to evaluate eight different maps. The analyses suggest that accuracy can be increased by using a modified cosine measure of relatedness. Disciplinary bias can be significantly reduced and accuracy can be further increased by using much lower threshold levels. In short, much larger samples of papers can and should be used to generate more accurate maps of science. C1 SciTech Strat Inc, Berwyn, PA 19312 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Klavans, R (reprint author), SciTech Strat Inc, Berwyn, PA 19312 USA. EM rklavans@mapofscience.com OI Boyack, Kevin/0000-0001-7814-8951 NR 16 TC 45 Z9 46 U1 2 U2 14 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD DEC PY 2006 VL 68 IS 3 BP 475 EP 499 DI 10.1007/s11192-006-0125-x PG 25 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science SC Computer Science; Information Science & Library Science GA 067KK UT WOS:000239300600011 ER PT J AU Cui, Y Xu, CL Han, Q AF Cui, Y. Xu, C. L. Han, Q. TI Effect of ultrasonic vibration on unmixed zone formation SO SCRIPTA MATERIALIA LA English DT Article DE welding; austenitic steels; microstructure; ultrasonic vibration AB Ultrasonic vibration was applied to molten super-austenitic stainless weld metal during the shielded metal arc-welding process. It was observed that the unmixed zone in the weld metal was completely eliminated by high-intensity ultrasonic vibrations. This is mainly due to a complete mixing of the molten filler metal and base metal, at the freezing front, caused by acoustically induced cavitation and streaming. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. RP Cui, Y (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM ycui1@utk.edu NR 13 TC 25 Z9 35 U1 2 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD DEC PY 2006 VL 55 IS 11 BP 975 EP 978 DI 10.1016/j.scriptamat.2006.08.035 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 094MC UT WOS:000241242500002 ER PT J AU Burr, T Hengartner, N AF Burr, Tom Hengartner, Nicolas TI Overview of physical models and statistical approaches for weak gaseous plume detection using passive infrared hyperspectral imagery SO SENSORS LA English DT Review DE clutter; generalized least squares; infrared; model averaging; temperature-emissivity separation; errors in predictors; plume detection ID ELLIPTICALLY CONTOURED DISTRIBUTIONS; IMAGING DATA; ATMOSPHERIC COMPENSATION; ANOMALY DETECTION; BAYES FACTORS; GAS PLUMES; ALGORITHMS AB The performance of weak gaseous plume-detection methods in hyperspectral long-wave infrared imagery depends on scene-specific conditions such at the ability to properly estimate atmospheric transmission, the accuracy of estimated chemical signatures, and background clutter. This paper reviews commonly-applied physical models in the context of weak plume identification and quantification, identifies inherent error sources as well as those introduced by making simplifying assumptions, and indicates research areas. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Burr, T (reprint author), Los Alamos Natl Lab, Mail Stop F600, Los Alamos, NM 87545 USA. EM tburr@lanl.gov; nickh@lanl.gov NR 51 TC 23 Z9 23 U1 1 U2 9 PU MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL PI BASEL PA MATTHAEUSSTRASSE 11, CH-4057 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD DEC PY 2006 VL 6 IS 12 BP 1721 EP 1750 DI 10.3390/s6121721 PG 30 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 142FG UT WOS:000244634200001 ER PT J AU Pawlowski, RR Shadid, JN Simonis, JP Walker, HF AF Pawlowski, Roger R. Shadid, John N. Simonis, Joseph P. Walker, Homer F. TI Globalization techniques for Newton-Krylov methods and applications to the fully coupled solution of the Navier-Stokes equations SO SIAM REVIEW LA English DT Article DE Newton's method; inexact Newton methods; Newton iterative methods; Newton-Krylov methods; globalized Newton methods; backtracking; line search; trust-region methods; dogleg methods; fully coupled solution methods; Navier-Stokes equations ID NONSYMMETRIC LINEAR-SYSTEMS; MINIMAL RESIDUAL ALGORITHM; NONLINEAR-SYSTEMS; CAVITY; FLOW; CONVERGENCE; BIFURCATION; GMRES AB A Newton-Krylov method is an implementation of Newton's method in which a Krylov subspace method is used to solve approximately the linear subproblems that determine Newton steps. To enhance robustness when good initial approximate solutions are not available, these methods are usually globalized, i.e., augmented with auxiliary procedures (globalizations) that improve the likelihood of convergence from a starting point that is not near a solution. In recent years, globalized Newton-Krylov methods have been used increasingly for the fully coupled solution of large-scale problems. In this paper, we review several representative globalizations, discuss their properties, and report on a numerical study aimed at evaluating their relative merits on large-scale two- and three-dimensional problems involving the steady-state Navier-Stokes equations. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA. RP Pawlowski, RR (reprint author), Sandia Natl Labs, MS 0316,Box 5800, Albuquerque, NM 87185 USA. EM rppawlo@sandia.gov; jnshadi@sandia.gov; jpsimoni@wpi.edu; walker@wpi.edu NR 55 TC 29 Z9 29 U1 0 U2 1 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 0036-1445 J9 SIAM REV JI SIAM Rev. PD DEC PY 2006 VL 48 IS 4 BP 700 EP 721 DI 10.1137/S0036144504443511 PG 22 WC Mathematics, Applied SC Mathematics GA 109RO UT WOS:000242326500003 ER PT J AU McNeill, CR Watts, B Thomsen, L Belcher, WJ Kilcoyne, ALD Greenham, NC Dastoor, PC AF McNeill, Christopher R. Watts, Benjamin Thomsen, Lars Belcher, Warwick J. Kilcoyne, A. L. David Greenham, Neil C. Dastoor, Paul C. TI X-ray spectromicroscopy of polymer/fullerene composites: Quantitative chemical mapping SO SMALL LA English DT Article DE fullerenes; phase morphology; polymer blends; solar cells; X-ray microscopy ID ORGANIC SOLAR-CELLS; ABSORPTION FINE-STRUCTURE; POLYMER BLENDS; MORPHOLOGY; SPECTROSCOPY; DERIVATIVES; MICROSCOPY C1 Univ Cambridge, Cavendish Lab, Dept Phys, Cambridge CB3 0HE, England. Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia. N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, ALS, Berkeley, CA 94720 USA. RP McNeill, CR (reprint author), Univ Cambridge, Cavendish Lab, Dept Phys, JJ Thomson Ave, Cambridge CB3 0HE, England. EM crm5l@cam.ac.uk RI McNeill, Christopher/B-4530-2008; Thomsen, Lars/B-3016-2012; DASTOOR, PAUL/G-7189-2013; Kilcoyne, David/I-1465-2013 OI McNeill, Christopher/0000-0001-5221-878X; NR 25 TC 50 Z9 50 U1 2 U2 8 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD DEC PY 2006 VL 2 IS 12 BP 1432 EP 1435 DI 10.1002/smll.200600300 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 108YT UT WOS:000242275800007 PM 17193000 ER PT J AU Liu, SH Tok, JBH Locklin, J Bao, ZN AF Liu, Shuhong Tok, Jeffrey B. -H. Locklin, Jason Bao, Zhenan TI Assembly and alignment of metallic nanorods on surfaces with patterned wettability SO SMALL LA English DT Article DE hydrophilic effects; nanolithography; nanorods; patterning; self-assembly ID COLLOIDAL PARTICLES; MAGNETIC ALIGNMENT; CARBON NANOTUBES; NANOWIRE ARRAYS; FEATURES; DEPOSITION; MONOLAYERS; GOLD; ELECTRODEPOSITION; LITHOGRAPHY C1 Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94551 USA. RP Bao, ZN (reprint author), Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. EM zbao@stanford.edu NR 36 TC 43 Z9 43 U1 2 U2 29 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD DEC PY 2006 VL 2 IS 12 BP 1448 EP 1453 DI 10.1002/smll.200600275 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 108YT UT WOS:000242275800011 PM 17193004 ER PT J AU Letant, SE Schaldach, CM Johnson, MR Sawvel, A Bourcier, WL Wilson, WD AF Letant, Sonia E. Schaldach, Charlene M. Johnson, Mackenzie R. Sawvel, April Bourcier, William L. Wilson, William D. TI Pore conductivity control at the hundred-nanometer scale: An experimental and theoretical study SO SMALL LA English DT Article DE conductivity; ions; membranes; porous materials; transport ID GOLD NANOTUBULE MEMBRANES; TRANSPORT-PROPERTIES; SEPARATIONS; FILTRATION AB We report on the observation of an unexpected mechanism that controls conductivity at the 100-nm scale on track-etched polycarbonate membranes. Transport measurements of positively charged methyl viologen performed by absorption spectroscopy under various pH conditions demonstrate that for 100-nm-diameter pores at pH 2 conductivity is blocked, while at pH 5 the ions move through the membrane according to diffusion laws. An oppositely charged molecular ion, naphthalene disulfonate, in the same membrane, shows the opposite trend: diffusion of the negative ion at pH 2 and very low conductivity at pH 5. The influence of parameters such as ionic strength and membrane surface coating are also investigated. A theoretical study of the system shows that at the 100-nm scale the magnitude of the electric field in the vicinity of the pores is too small to account for the experimental observations; rather, it is the surface trapping of the mobile ion (Cl- or Na+) that gives rise to the observed control of the conductivity. This surprising effect has potential applications for high-throughput separation of large molecules and bio-organisms. C1 Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. Lawrence Livermore Natl Lab, Energy & Environm Directorate, Livermore, CA 94550 USA. RP Letant, SE (reprint author), Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, 7000 East Ave, Livermore, CA 94550 USA. EM letant1@llnl.gov NR 19 TC 7 Z9 7 U1 1 U2 4 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD DEC PY 2006 VL 2 IS 12 BP 1504 EP 1510 DI 10.1002/smll.200600263 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 108YT UT WOS:000242275800020 PM 17193013 ER PT J AU Park, G Farrar, CR di Scalea, FL Coccia, S AF Park, Gyuhae Farrar, Charles R. di Scalea, Francesco Lanza Coccia, Stefano TI Performance assessment and validation of piezoelectric active-sensors in structural health monitoring SO SMART MATERIALS & STRUCTURES LA English DT Article ID PIEZO-TRANSDUCERS; IMPEDANCE; PATCHES; BEAMS AB A sensor diagnostics and validation process that performs in situ monitoring of the operational status of piezoelectric (PZT) active-sensors in structural health monitoring (SHM) applications is presented. Both degradation of the mechanical/electrical properties of a PZT transducer and the bonding defects between a PZT patch and a host structure could be identified by the proposed process. This study also includes the investigation into the effects of the sensor/structure bonding defects on high-frequency SHM techniques, including Lamb wave propagations and impedance methods. It has been found that the effects are significant, modifying the phase and amplitude of propagated waves and changing the measured impedance spectrum. These changes could lead to false indications on the structural conditions without an efficient sensor-diagnostic process. The feasibility of the proposed sensor diagnostics procedure is then demonstrated by analytical studies and experimental examples, where the functionality of the surface-mounted piezoelectric sensors was continuously deteriorated. The proposed process can provide a metric that can be used to determine the sensor functionality over a long period of service time or after an extreme loading event. Further, the proposed method can be useful if one needs to check the operational status of a sensing network right after its installation. C1 Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. Univ Calif San Diego, Jacobs Sch Engn, Dept Struct Engn, La Jolla, CA 92093 USA. RP Park, G (reprint author), Los Alamos Natl Lab, Engn Inst, Mail Stop T001, Los Alamos, NM 87545 USA. EM gpark@lanl.gov RI Farrar, Charles/C-6954-2012; OI Farrar, Charles/0000-0001-6533-6996 NR 24 TC 129 Z9 129 U1 3 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0964-1726 J9 SMART MATER STRUCT JI Smart Mater. Struct. PD DEC PY 2006 VL 15 IS 6 BP 1673 EP 1683 DI 10.1088/0964-1726/15/6/020 PG 11 WC Instruments & Instrumentation; Materials Science, Multidisciplinary SC Instruments & Instrumentation; Materials Science GA 113LD UT WOS:000242598500020 ER PT J AU Mikhailova, EA Post, CJ Magrini-Bair, K Castle, JW AF Mikhailova, Elena A. Post, Christopher. J. Magrini-Bair, Kimberly Castle, James W. TI Pedogenic carbonate concretions in the Russian Chernozem SO SOIL SCIENCE LA English DT Article DE calcium; carbon; cycle; inorganic; Russia; sequestration; soil ID ORGANIC-MATTER DYNAMICS; STABLE CARBON; SASKATCHEWAN SOILS; ISOTOPE; GRASSLAND; PYROLYSIS; BIOMASS; OXYGEN; MODEL; IDENTIFICATION AB Pedogenic carbonate concretions are commonly found in grassland soils, but their origin is not fully understood. This study was conducted to determine the radiocarbon age, the stable isotope geochemistry, and chemical composition of carbonate concretions in the Russian Cher-nozem, one of the typical soils in grasslands. Three sites were sampled: a native grassland field (not cultivated for at least 300 years), an adjacent 50-year continuous fallow field in the V. V. Alekhin Central-Chernozem Biosphere State Reserve in the Kursk region of Russia, and a continuously cropped field in the Experimental Station of the Kursk Institute of Agronomy and Soil Erosion Control. All sampled soils were classified as fine-silty, mixed, frigid Pachic Hapludolls. The mineralogical composition of concretions varies from low-magnesium calcite to pure calcite. The concretion contains 0.05% N, 6.4% C, and has delta C-13 and 8180 values of -10.9 parts per thousand (the per mill symbol, parts per thousand) and -7.8 parts per thousand, respectively. The outside part of the carbonate concretion is 1909 40 C-14 age Before Present (B.P.) compared with 1693 +/- 40 C-14 age B.P. for the inside part of the same concretion, even though the concretion is found in the C horizon of much older age (10,902 +/- 63 C-14 age B.P.). Remnants of soil organic matter in concretions are closely associated with the cropped and fallow/plowed soils by pyrolysis molecular beam mass spectrometry. C1 Clemson Univ, Dept Forestry & Nat Resources, Clemson, SC USA. US DOE, Natl Renewable Energy Lab, Golden, CO USA. Clemson Univ, Dept Geol Sci, Clemson, SC USA. RP Mikhailova, EA (reprint author), Clemson Univ, Dept Forestry & Nat Resources, Clemson, SC USA. EM eleanam@clemson.edu NR 46 TC 2 Z9 2 U1 2 U2 9 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0038-075X J9 SOIL SCI JI Soil Sci. PD DEC PY 2006 VL 171 IS 12 BP 981 EP 991 DI 10.1097/01.ss.0000235232.09686.ea PG 11 WC Soil Science SC Agriculture GA 117PT UT WOS:000242886000007 ER PT J AU Jian, L Russell, CT Luhmann, JG Skoug, RM AF Jian, L. Russell, C. T. Luhmann, J. G. Skoug, R. M. TI Properties of stream interactions at one AU during 1995-2004 SO SOLAR PHYSICS LA English DT Article ID SOLAR-WIND STREAM; COROTATING INTERACTION REGIONS; LARGE HELIOCENTRIC DISTANCES; CORONAL MASS EJECTIONS; INTERFACES; EVOLUTION; PIONEER-10; ULYSSES; MODEL; TEMPERATURE AB A stream interaction region (SIR) forms when a fast solar stream overtakes a slow stream, leading to structure that evolves as an SIR moves away from the Sun. Based on Wind (1995-2004) and ACE (1998-2004) in situ observations, we have conducted a comprehensive survey of SIRs at one AU, including a separate assessment of the longer-lasting corotating interaction regions (CIRs) that recur on more than one solar rotation. In all there are 196 CIRs, accounting for about 54% of the 365 SIRs. The largest proportion of CIRs to SIRs (64%) appears in 1999, and the smallest proportion (49%) is in 2002. Over the ten years, the annual number of SIR events varies little, from 32 up to 45. On average, the occurrence rate of shocks at SIRs at one AU is about 24%. Seventy percent of the SIRs with shocks have only forward shocks, more than twice the percentage of SIRs with only reverse shocks. This preponderance of forward shocks is consistent with the deflections of forward and reverse shocks relative to the ecliptic plane. In order to help address the effect of SIRs and CIRs on geomagnetic activity, we determine the solar-cycle variation of the event duration, scale size, the change in velocity from slow stream to fast stream, and the solar-cycle variation of the maximum magnetic field, peak total perpendicular pressure, and other properties. These statistics also provide a baseline for future studies at other heliocentric distances and for validating heliospheric models. C1 Univ Calif Los Angeles, Dept Geophys & Planetary Phys, Los Angeles, CA 90095 USA. Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Jian, L (reprint author), Univ Calif Los Angeles, Dept Geophys & Planetary Phys, 595 Charles E Young Dr E,6862 Slichter, Los Angeles, CA 90095 USA. EM jlan@igpp.ucla.edu; ctrussel@igpp.ucla.edu; jgluhman@ssl.berkeley.edu; rskoug@lanl.gov RI Jian, Lan/B-4053-2010; OI Jian, Lan/0000-0002-6849-5527; Russell, Christopher/0000-0003-1639-8298 NR 53 TC 100 Z9 101 U1 1 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 J9 SOL PHYS JI Sol. Phys. PD DEC PY 2006 VL 239 IS 1-2 BP 337 EP 392 DI 10.1007/s11207-006-0132-3 PG 56 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 115AJ UT WOS:000242706500017 ER PT J AU Jian, L Russell, CT Luhmann, JG Skoug, RM AF Jian, L. Russell, C. T. Luhmann, J. G. Skoug, R. M. TI Properties of interplanetary coronal mass ejections at one AU during 1995-2004 SO SOLAR PHYSICS LA English DT Article ID STRUCTURED SOLAR-WIND; MAGNETIC-FIELD STRUCTURE; EARTHS BOW SHOCK; 3-DIMENSIONAL PROPAGATION; ELECTRON-TEMPERATURE; EVENTS; PLASMA; CLOUDS; SPACECRAFT; FLOW AB We present a comprehensive survey of 230 interplanetary CMEs (ICMEs) during 1995 - 2004 using Wind and ACE in situ observations near one AU, and examine the solar-cycle variation of the occurrence rate, shock association rate, scale size, velocity change, and other properties of ICMEs. The ICME occurrence rate increases (from 5 in 1996 to 40 in 2001) with solar activity; and 66% of all ICMEs occurred with shock(s). A compound parameter, the total pressure perpendicular to the magnetic field (Pt), i.e., the sum of magnetic and perpendicular plasma thermal pressures, assists us in effectively distinguishing ICMEs from other solar-wind structures such as stream interactions, and in quantifying the interaction strength. We interpret the characteristic signatures of the Pt temporal variation in terms of the inferred distance perpendicular to the flow to the center of the obstacle. Group 1 includes events that appear to be traversed near the ICME center, showing an apparent enhanced central Pt; Group 3 represents ICMEs passed far away from the center, displaying a rapid rise and then gradual decay in Pt; and Group 2 includes events with intermediate signatures. About 36% of 198 classifiable ICMEs are Group 1 events, consistent with the conventional wisdom that at one AU a magnetic cloud is found during crossings of only similar to 1/3 of ICMEs. Our set of Group 1 ICMEs and the set of magnetic clouds from other researchers have significant overlap and a similar solar-cycle dependence. The rough decline of the Group 1 fraction as solar activity increases, is consistent with rough increases of scale size, shock percentage, and peak Pt. These results call into question the need to have different mechanisms to create differently appearing ICMEs. Rather it is possible that all ICMEs have a central flux rope that is traversed about 33% of the time, but in the majority of cases is missed by the spacecraft. C1 Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Jian, L (reprint author), Univ Calif Los Angeles, Inst Geophys & Planetary Phys, 595 Charles E Young Dr E,6862 Slichter, Los Angeles, CA 90095 USA. EM jlan@igpp.ucla.edu; ctrussel@igpp.ucla.edu; jgluhman@ssl.berkeley.edu; rskoug@lanl.gov RI Jian, Lan/B-4053-2010 OI Jian, Lan/0000-0002-6849-5527 NR 71 TC 153 Z9 155 U1 1 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 J9 SOL PHYS JI Sol. Phys. PD DEC PY 2006 VL 239 IS 1-2 BP 393 EP 436 DI 10.1007/s11207-006-0133-2 PG 44 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 115AJ UT WOS:000242706500018 ER PT J AU Farshchi, R Scarpulla, MA Stone, PR Yu, KM Sharp, ID Beeman, JW Silvestri, HH Reichert, LA Haller, EE Dubon, OD AF Farshchi, R. Scarpulla, M. A. Stone, P. R. Yu, K. M. Sharp, I. D. Beeman, J. W. Silvestri, H. H. Reichert, L. A. Haller, E. E. Dubon, O. D. TI Compositional tuning of ferromagnetism in Ga1-xMnxP SO SOLID STATE COMMUNICATIONS LA English DT Article DE ferromagnetic semiconductors; laser processing; impurities in semiconductors ID ION-IMPLANTATION; MAGNETIC SEMICONDUCTORS AB We report the magnetic and transport properties of Ga1-xMnxP synthesized via ion implantation followed by pulsed laser melting over a range of x, namely 0.018-0.042. Like Ga1-xMnxAs, Ga1-xMnxP displays a monotonic increase of the ferromagnetic Curie temperature with x associated with the hole-mediated ferromagnetic phase while thermal annealing above 300 degrees C leads to a quenching of ferromagnetism that is accompanied by a reduction of the substitutional fraction of Mn. However, contrary to observations in Ga1-xMnxAs, Ga1-xMnxP is non-metallic over the entire composition range. At the lower temperatures over which the films are ferromagnetic, hole transport occurs via hopping conduction in a Mn-derived band; at higher temperatures it arises from holes in the valence band which are thermally excited across an energy gap that shrinks with X. (c) 2006 Elsevier Ltd. All rights reserved. C1 Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Dubon, OD (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM oddubon@berkeley.edu RI Scarpulla, Michael/C-7941-2009; Yu, Kin Man/J-1399-2012; Sharp, Ian/I-6163-2015; OI Yu, Kin Man/0000-0003-1350-9642; Sharp, Ian/0000-0001-5238-7487; Scarpulla, Michael/0000-0002-6084-6839 NR 14 TC 9 Z9 9 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 J9 SOLID STATE COMMUN JI Solid State Commun. PD DEC PY 2006 VL 140 IS 9-10 BP 443 EP 446 DI 10.1016/j.ssc.2006.09.010 PG 4 WC Physics, Condensed Matter SC Physics GA 113QM UT WOS:000242612400009 ER PT J AU Klein, C Ramchal, R Farle, M Schmid, AK AF Klein, C. Ramchal, R. Farle, M. Schmid, A. K. TI Direct imaging of spin-reorientation transitions in ultrathin Ni films by spin-polarized low-energy electron microscopy SO SURFACE AND INTERFACE ANALYSIS LA English DT Article; Proceedings Paper CT Symposium on Mechanical Properties of Bioinspired and Biological Materials held at the 2004 MRS Fall Meeting CY NOV 29-DEC 02, 2004 CL Boston, MA SP Mat Res Soc, Hysitron Co DE spin-reorientation transition; SPLEEM; ultrathin films ID CU(001); MAGNETIZATION; TEMPERATURE; NI/CU(001); ANISOTROPY; THICKNESS; GROWTH; ORDER AB The thickness-dependent spin-reorientation transition (SRT) in ultrathin Ni films grown on a stepped Cu(100) substrate was studied by spin-polarized low-energy electron microscopy (SPLEEM). Magnetic contrast in SPLEEM is proportional to the scalar product of beam polarization and magnetization of the film. This dependence was exploited to determine the local 3D magnetization vector by evaluating magnetic contrast in images obtained using three orthogonal polarizations of the incident electron beam. Using this method, we were able to directly image the rotation of the magnetization vector in Ni films from in-plane and parallel to the steps to out-of-plane and perpendicular to the steps of the substrate. We found the SRT to proceed via two mechanisms: continuous growth of the out-of-plane component, accompanied by discontinuous reorientation of the in-plane component via domain nucleation. Published in 2006 by John Wiley & Sons, Ltd. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. Univ Duisburg Essen, Expt Phys AG Farle, Fachbereich Phys, D-47048 Duisburg, Germany. RP Klein, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. EM cklein@lbl.gov OI Farle, Michael/0000-0002-1864-3261 NR 21 TC 5 Z9 5 U1 1 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0142-2421 J9 SURF INTERFACE ANAL JI Surf. Interface Anal. PD DEC PY 2006 VL 38 IS 12-13 BP 1550 EP 1553 DI 10.1002/sia.2418 PG 4 WC Chemistry, Physical SC Chemistry GA 123NV UT WOS:000243303500006 ER PT J AU Suzuki, T Sorescu, DC Yates, JT AF Suzuki, T. Sorescu, D. C. Yates, J. T., Jr. TI The chemisorption of pentacene on Si(001)-2 x 1 SO SURFACE SCIENCE LA English DT Article DE density functional calculations; scanning tunneling microscopy; chemisorption; silicon; aromatic molecules ID SCANNING TUNNELING MICROSCOPE; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; SURFACE; ADSORPTION; MOLECULES; PSEUDOPOTENTIALS; SILICON; METALS AB Adsorption structures of the pentacene (C22H14) molecule on the clean Si(001)-2 x 1 surface were investigated by scanning tunneling microscopy (STM) in conjunction with density functional theory calculations and STM image simulations. The pentacene molecules were found to adsorb on four major sites and four minor sites. The adsorption structures of the pentacene molecules at the four major sites were determined by comparison between the experimental and the simulated STM images. Three out of the four theoretically identified adsorption structures are different from the previously proposed adsorption structures. They involve six to eight Si-C covalent chemical bonds. The adsorption energies of the major four structures are calculated to be in the range 67-128 kcal/mol. It was also found that the pentacene molecule hardly hopped on the surface when applying pulse bias voltages on the molecule, but was mostly decomposed. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Pittsburgh, Dept Chem, Ctr Surface Sci, Pittsburgh, PA 15260 USA. US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Yates, JT (reprint author), Univ Pittsburgh, Dept Chem, Ctr Surface Sci, Pittsburgh, PA 15260 USA. EM jyates@pitt.edu NR 21 TC 16 Z9 16 U1 2 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD DEC 1 PY 2006 VL 600 IS 23 BP 5092 EP 5103 DI 10.1016/j.susc.2006.08.035 PG 12 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 118EO UT WOS:000242925200012 ER PT J AU Bentwich, J AF Bentwich, Jonathan TI The duality principle: irreducibility of sub-threshold psychophysical computation to neuronal brain activation SO SYNTHESE LA English DT Article DE neuroscience; computation; materialistic reductionism; duality principle; psychophysics; body-mind; binding problem AB A key working hypothesis in neuroscience is 'materialistic reductionism', i.e., the assumption whereby all physiological, behavioral or cognitive phenomena is produced by localized neurochemical brain activation (but not vice versa). However, analysis of sub-threshold Weber's psychophysical stimulation indicates its computational irreducibility to the direct interaction between psychophysical stimulation and any neuron/s. This is because the materialistic-reductionistic working hypothesis assumes that the determination of the existence or non-existence of any psychophysical stimulation [s] may only be determined through its direct interaction [di1] with a given neuron/s [N] that together forms the 'neural registry' computational level [NR/di1]. But, this implies that in cases of (initial) sub-threshold (sensory-specific) psychophysical stimulation which is increased above the sensory-specific threshold but below Weber's psychophysical 'dv' the psychophysical computational processing [PCP] produces an apparently 'computationally indeterminate' output. This is because materialistic reductionism asserts the contingency of PCP upon the existence of a direct interaction between 's' and 'N' within the NR/di1 level, but in the special case of Weber's sub-threshold psychophysical stimulation the same PCP/di1 also asserts the non-existence of 's' (as demanded by Weber's psychophysical law). However, given robust empirical evidence indicating the capability of PCP to determine whether (or not) 's' exists, we must conclude that PCP may not be carried out from within NR's direct interaction between a particular psychophysical stimulation and any set of neuron/s in the brain. Hence, the Duality Principle asserts the conceptual irreducibility of sub-threshold psychophysical stimulation to any direct NR/di1: s-N interaction, thereby challenging the current materialistic-reductionistic assumption. C1 Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Bentwich, J (reprint author), Brookhaven Natl Lab, Dept Med, Bldg 490,30 Bell Ave, Upton, NY 11973 USA. EM jbentwic@bnl.gov NR 7 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0039-7857 J9 SYNTHESE JI Synthese PD DEC PY 2006 VL 153 IS 3 BP 451 EP 455 DI 10.1007/s11229-006-9101-5 PG 5 WC History & Philosophy Of Science; Philosophy SC History & Philosophy of Science; Philosophy GA 109DN UT WOS:000242288200007 ER PT J AU Luna-Reyes, LF Martinez-Moyano, IJ Pardo, TA Cresswell, AM Andersen, DF Richardson, GP AF Luna-Reyes, Luis Felipe Martinez-Moyano, Ignacio J. Pardo, Theresa A. Cresswell, Anthony M. Andersen, David F. Richardson, George P. TI Anatomy of a group model-building intervention: building dynamic theory from case study research SO SYSTEM DYNAMICS REVIEW LA English DT Article ID SUPPORT-SYSTEMS; WORK AB The system dynamics group at the Rockefeller College of the University at Albany has been developing techniques to create system dynamic models with groups of managers during the last 25 years. Building upon their tradition in decision conferencing, the group has developed a particular style that involves a facilitation team in which people play different roles. Throughout these years of experience, the group has also developed several "scripts" to elicit knowledge from experts based on small-groups research, and well-established practices in the development of system dynamics models. This paper constitutes a detailed documentation of a relatively small-scale modeling effort that took place in early 2001, offering a "soup to nuts" description of group model building at Albany. The paper describes in detail nine of the scripts that the group has developed, offering some reflections about their advantages and limitations. Copyright (c) 2006 John Wiley & Sons, Ltd. C1 Univ Americas Puebla, Sch Business, Cholula 72820, Mexico. Argonne Natl Lab, Argonne, IL 60439 USA. SUNY Albany, Ctr Technol Govt, Albany, NY 12222 USA. SUNY Albany, Rockefeller Coll Publ Affairs & Policy, Albany, NY 12222 USA. RP Luna-Reyes, LF (reprint author), Univ Americas Puebla, Sch Business, NE-221J,Sta Catarina Martir, Cholula 72820, Mexico. EM luisf.luna@udlap.mx RI Luna-Reyes, Luis/G-5548-2012 OI Luna-Reyes, Luis/0000-0002-0852-404X NR 45 TC 30 Z9 31 U1 1 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0883-7066 J9 SYST DYNAM REV JI Syst. Dyn. Rev. PD WIN PY 2006 VL 22 IS 4 BP 291 EP 320 DI 10.1002/sdr.349 PG 30 WC Management; Social Sciences, Mathematical Methods SC Business & Economics; Mathematical Methods In Social Sciences GA 143PZ UT WOS:000244736300001 ER PT J AU Hart, W AF Hart, William TI Contaminant-warning systems counter threats to water SO TRAC-TRENDS IN ANALYTICAL CHEMISTRY LA English DT News Item C1 Sandia Natl Labs, Livermore, CA 94550 USA. RP Hart, W (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM wehart@sandia.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0165-9936 J9 TRAC-TREND ANAL CHEM JI Trac-Trends Anal. Chem. PD DEC PY 2006 VL 25 IS 11 BP VII EP VIII PG 2 WC Chemistry, Analytical SC Chemistry GA 122TM UT WOS:000243249800007 ER PT J AU Willson, JD Winne, CT Dorcas, ME Gibbons, JW AF Willson, John D. Winne, Christopher T. Dorcas, Michael E. Gibbons, J. Whitfield TI Post-drought responses of semi-aquatic snakes inhabiting an isolated wetland: Insights on different strategies for persistence in a dynamic habitat SO WETLANDS LA English DT Article DE Agkistrodon piscivorus; drought; Farancia abacura; Farancia erytrogramma; metapopulation dynamics; Nerodia erythrogaster; Nerodia fasciata; Nerodia floridana; Seminatrix pygaea; wetland conservation ID EVAPORATIVE WATER-LOSS; CAROLINA BAY WETLANDS; SEMINATRIX-PYGAEA; POPULATION-STRUCTURE; TROPICAL AUSTRALIA; ARAFURA FILESNAKES; AQUATIC SNAKES; CONSERVATION; ANIMALS; RATES AB Most aquatic habitats are temporally dynamic, and selection has favored diverse strategies to persist in the face of fluctuating environmental conditions. Isolated wetlands in the southeastern United States harbor high diversities of aquatic and semi-aquatic organisms. However, drought may render these wetlands temporarily unsuitable for many species, sometimes for years at a time. We studied the movement patterns and demography of seven species of semi-aquatic snakes at Ellenton Bay, an isolated 10-ha freshwater wetland in the Upper Coastal Plain of South Carolina, following complete drying of the bay during a drought from 2000 to 2003. Behavioral and population responses varied markedly among species. Cottonmouths (Agkistrodon piscivorus) migrated to and from the wetland annually, fared well, and reproduced during the drought. Banded watersnakes (Nerodia fasciata) suffered a dramatic population decline and apparently did not reproduce, while eastern green watersnakes (N. loridana) were locally extirpated. Black swamp snakes (Seminatrix pygaea) aestivated within the wetland and were less affected by the drought than Nerodia. Interspecific differences in response to drought demonstrate that conservation measures may affect species differently and highlight the importance of terrestrial habitat around wetlands for semi-aquatic reptiles. C1 Savannah River Ecol Lab, Aiken, SC 29802 USA. Davidson Coll, Dept Biol, Davidson, NC 28035 USA. RP Willson, JD (reprint author), Savannah River Ecol Lab, PO Drawer E, Aiken, SC 29802 USA. EM willson@srel.edu NR 45 TC 29 Z9 30 U1 6 U2 24 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0277-5212 EI 1943-6246 J9 WETLANDS JI Wetlands PD DEC PY 2006 VL 26 IS 4 BP 1071 EP 1078 DI 10.1672/0277-5212(2006)26[1071:PROSSI]2.0.CO;2 PG 8 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA 124LT UT WOS:000243370000016 ER PT J AU Singh, B Sheth, AC Dahotre, NB AF Singh, Binay Sheth, Atul C. Dahotre, Narendra B. TI Laser synthesis of palladium-alumina composite membranes for production of high purity hydrogen from gasification SO APPLIED SURFACE SCIENCE LA English DT Article DE palladium membranes; hydrogen permeation; ceramic membranes; laser deposition; inorganic membranes; catalytic steam gasification ID CHEMICAL-VAPOR-DEPOSITION; CATALYTIC MEMBRANE; SEPARATION; DEHYDROGENATION; REACTORS; ALLOY; MICROSTRUCTURE; FABRICATION; TRANSPORT; TANTALUM AB This paper describes a special method of laser-based deposition to synthesize palladium-ceramic composite membranes. Thin film Pd was deposited on a ceramic substrate by Nd-YAG laser irradiation of coating precursor PdCl2 on gamma-alumina substrate. The parameters of the laser processing technique were optimized to synthesize metal-ceramic composite membranes. The physical and chemical characteristics of Pd coated gamma-alumina membranes were studied and compared with various other alumina membranes referenced in the literature. Hydrogen permeation experiments were performed in a CO + CO2 + CH4 + H-2 environment under typical catalytic steam gasifier exit conditions. The Pd-ceramic composite showed good mechanical and thermal stability and resulted in a hydrogen permeability flux of about 0.061 mol/m(2) s. The activation energy of the Pd membrane was found to be 5.39 KJ/mol in a temperature range of 900-1300 degrees F. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Tennessee, Inst Space, Dept Chem Engn, Tullahoma, TN 37388 USA. Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Met & Ceram, Mat Proc Grp, Oak Ridge, TN 37831 USA. RP Sheth, AC (reprint author), Univ Tennessee, Inst Space, Dept Chem Engn, Tullahoma, TN 37388 USA. EM asheth@utsi.edu NR 36 TC 8 Z9 8 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD NOV 30 PY 2006 VL 253 IS 3 BP 1247 EP 1254 DI 10.1016/j.apsusc.2006.01.079 PG 8 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 116QS UT WOS:000242818000034 ER PT J AU Fisher, GL Lakis, RE Davis, CC Szakal, C Swadener, JG Wetteland, CJ Winograd, N AF Fisher, Gregory L. Lakis, Rollin E. Davis, Charles C. Szakal, Christopher Swadener, John G. Wetteland, Christopher J. Winograd, Nicholas TI Mechanical properties and the evolution of matrix molecules in PTFE upon irradiation with MeV alpha particles SO APPLIED SURFACE SCIENCE LA English DT Article DE ToF-SIMS; PTFE; nanoindentation; alpha particle; ionizing radiation ID RADIATION CROSS-LINKING; ALIPHATIC-HYDROCARBONS; BEAM IRRADIATION; STATIC SIMS; POLYTETRAFLUOROETHYLENE; SURFACES; FLUOROPOLYMERS; BOMBARDMENT; POLYMERS; PASTE AB The morphology, chemical composition, and mechanical properties in the surface region of alpha-irradiated polytetrafluoroethylene (PTFE) have been examined and compared to unirradiated specimens. Samples were irradiated with 5.5 MeV (4)He(2+) ions from a tandem accelerator to doses between 1 x 10(6) and 5 x 10(10) Rad. Static time-of-flight secondary ion mass spectrometry (ToF-SIMS), using a 20 keV C(60)(+) source, was employed to probe chemical changes as a function of a dose. Chemical images and high resolution spectra were collected and analyzed to reveal the effects of a particle radiation on the chemical structure. Residual gas analysis (RGA) was utilized to monitor the evolution of volatile species during vacuum irradiation of the samples. Scanning electron microscopy (SEM) was used to observe the morphological variation of samples with increasing a particle dose, and nanoindentation was engaged to determine the hardness and elastic modulus as a function of alpha dose. The data show that PTFE nominally retains its innate chemical structure and morphology at alpha doses < 10(9) Rad. At alpha doses >= 10(9) Rad the polymer matrix experiences increased chemical degradation and morphological roughening which are accompanied by increased hardness and declining elasticity. At alpha doses > 10(10) Rad the polymer matrix suffers severe chemical degradation and material loss. Chemical degradation is observed in ToF-SIMS by detection of ions that are indicative of fragmentation, unsaturation, and functionalization of molecules in the PTFE matrix. The mass spectra also expose the subtle trends of crosslinking within the alpha-irradiated polymer matrix. ToF-SIMS images support the assertion that chemical degradation is the result of alpha particle irradiation and show morphological roughening of the sample with increased a dose. High resolution SEM images more clearly illustrate the morphological roughening and the mass loss that accompanies high doses of alpha particles. RGA confirms the supposition that the outcome of chemical degradation in the PTFE matrix with continuing irradiation is evolution of volatile species resulting in morphological roughening and mass loss. Finally, we reveal and discuss relationships between chemical structure and mechanical properties such as hardness and elastic modulus. (c) 2006 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, NMT 16, Los Alamos, NM 87545 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Los Alamos Natl Lab, MST 8, Los Alamos, NM 87545 USA. RP Fisher, GL (reprint author), Los Alamos Natl Lab, NMT 16, POB 1663, Los Alamos, NM 87545 USA. EM gfisher@phi.com OI Winograd, Nicholas/0000-0002-2690-7714; Lakis, Rollin/0000-0002-7308-6832; Swadener, John G/0000-0001-5493-3461 NR 35 TC 6 Z9 6 U1 2 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD NOV 30 PY 2006 VL 253 IS 3 BP 1330 EP 1342 DI 10.1016/j.apsusc.2006.02.002 PG 13 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 116QS UT WOS:000242818000047 ER PT J AU Chen, Y Friedel, RHW Reeves, GD AF Chen, Y. Friedel, R. H. W. Reeves, G. D. TI Phase space density distributions of energetic electrons in the outer radiation belt during two Geospace Environment Modeling Inner Magnetosphere/Storms selected storms SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID DAWN-DUSK ASYMMETRY; GEOSYNCHRONOUS ORBIT; MAGNETIC-FIELD; PARTICLES; FLUXES; CUSP AB The phase space density distributions of energetic electrons during two storm periods, including the two storms on 21-23 October 2001 and 4-9 September 2002 selected by Geospace Environment Modeling Inner Magnetosphere/ Storms campaign as the radiation belt assessment challenge in 2004 workshop, are presented in this paper. Electron data from the Synchronous Orbit Particle Analysis instrument aboard three Los Alamos National Laboratory geosynchronous satellites as well as the Comprehensive Energetic Particle and Pitch Angle Distribution instrument aboard Polar are used. The Tsyganenko 2001 storm model is chosen for the storm time magnetic field presentation, compared to the best-fitting magnetic model achieved in a previous study. By tracing the temporally evolving radial distributions, we conclude that while the dropout of electron phase space density during storm main phases appears to be energy-independent, the enhancement in recovery phases shows an energy-dependent pattern. The average outwardly decreasing radial gradients of phase space density obtained during the recovery phases of the two storm periods strongly suggest the in situ acceleration is most likely the main source of new energetic electrons, along with a possible contribution from an external source. RP Chen, Y (reprint author), Los Alamos Natl Lab, POB 1663 MS D446, Los Alamos, NM 87545 USA. EM cheny@lanl.gov; rfriedel@lanl.gov; reeves@lanl.gov RI Friedel, Reiner/D-1410-2012; Reeves, Geoffrey/E-8101-2011 OI Friedel, Reiner/0000-0002-5228-0281; Reeves, Geoffrey/0000-0002-7985-8098 NR 26 TC 47 Z9 47 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 30 PY 2006 VL 111 IS A11 AR A11S04 DI 10.1029/2006JA011703 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 115PP UT WOS:000242746500001 ER PT J AU Jiang, DE Sumpter, BG Dai, S AF Jiang, De-en Sumpter, Bobby G. Dai, Sheng TI How do aryl groups attach to a graphene sheet? SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID GLASSY-CARBON ELECTRODES; TOTAL-ENERGY CALCULATIONS; ATOMIC-FORCE MICROSCOPY; AUGMENTED-WAVE METHOD; ELECTROCHEMICAL REDUCTION; DIAZONIUM SALTS; COVALENT MODIFICATION; ARYLDIAZONIUM SALTS; RAMAN-SPECTROSCOPY; SURFACE MODIFICATION AB How aryl groups attach to a graphene sheet is an experimentally unanswered question. Using first principles density functional theory methods, we shed light on this problem. For the basal plane, isolated phenyl groups are predicted to be weakly bonded to the graphene sheet, even though a new single C-C bond is formed between the phenyl group and the basal plane by converting a sp(2)-carbon in the graphene sheet to sp(3). However, the interaction can be strengthened significantly with two phenyl groups attached to the para positions of the same six-membered ring to form a pair on the basal plane. The strongest bonding is found at the graphene edges. A 1,2-addition pair is predicted to be most stable for the armchair edge, whereas the zigzag edge possesses a unique localized state near the Fermi level that shows a high affinity for the phenyl group. C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Jiang, DE (reprint author), Oak Ridge Natl Lab, Div Chem Sci, POB 2008, Oak Ridge, TN 37831 USA. EM jiangd@ornl.gov RI Jiang, De-en/D-9529-2011; Sumpter, Bobby/C-9459-2013; Dai, Sheng/K-8411-2015 OI Jiang, De-en/0000-0001-5167-0731; Sumpter, Bobby/0000-0001-6341-0355; Dai, Sheng/0000-0002-8046-3931 NR 44 TC 125 Z9 128 U1 4 U2 81 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 30 PY 2006 VL 110 IS 47 BP 23628 EP 23632 DI 10.1021/jp065980+ PG 5 WC Chemistry, Physical SC Chemistry GA 109HA UT WOS:000242297500004 PM 17125318 ER PT J AU Dang, LX Schenter, GK Glezakou, VA Fulton, JL AF Dang, Liem X. Schenter, Gregory K. Glezakou, Vassiliki-Alexandra Fulton, John L. TI Molecular simulation analysis and X-ray absorption measurement of Ca2+, K+ and Cl- ions in solution SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID 3-BODY CORRELATION-FUNCTIONS; SHORT-RANGE STRUCTURE; GAUSSIAN-BASIS SETS; FINE-STRUCTURE; AQUEOUS-SOLUTIONS; DYNAMICS SIMULATIONS; SUPERCRITICAL WATER; LOCAL-STRUCTURE; EXAFS SPECTRA; AB-INITIO AB This paper presents recent advances in the use of molecular simulations and extended X-ray absorption fine structure (EXAFS) spectroscopy, which enable us to understand solvated ions in solution. We report and discuss the EXAFS spectra and related properties governing solvation processes of different ions in water and methanol. Molecular dynamics (MD) trajectories are coupled to electron scattering simulations to generate the MD-EXAFS spectra, which are found to be in very good agreement with the corresponding experimental measurements. From these simulated spectra, the ion-oxygen distances for the first hydration shell are in agreement with experiment within 0.05-0.1 angstrom. The ionic species studied range from monovalent to divalent, positive and negative: K+, Ca2+, and Cl-. This work demonstrates that the combination of MD-EXAFS and the corresponding experimental measurement provides a powerful tool in the analysis of the solvation structure of aqueous ionic solutions. We also investigate the value of electronic structure analysis of small aqueous clusters as a benchmark to the empirical potentials. In a novel computational approach, we determine the Debye-Waller factors for Ca2+, K+, and Cl- in water by combining the harmonic analysis of data obtained from electronic structure calculations on finite ion-water clusters, providing excellent agreement with the experimental values, and discuss how they compare with results from a harmonic classical statistical mechanical analysis of an empirical potential. C1 Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. RP Dang, LX (reprint author), Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. RI Schenter, Gregory/I-7655-2014 OI Schenter, Gregory/0000-0001-5444-5484 NR 69 TC 61 Z9 61 U1 2 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 30 PY 2006 VL 110 IS 47 BP 23644 EP 23654 DI 10.1021/jp064661f PG 11 WC Chemistry, Physical SC Chemistry GA 109HA UT WOS:000242297500008 PM 17125322 ER PT J AU Wang, G Ji, Y Huang, XR Yang, XQ Gouma, PI Dudley, M AF Wang, Guan Ji, Yuan Huang, Xianrong Yang, Xiaoqing Gouma, Pelagia-Irene Dudley, Michael TI Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID TUNGSTEN-OXIDE NANOWIRES; RAY-POWDER DIFFRACTION; IN-SITU; SENSORS; FIBERS; PHASE; MOO3 AB We describe the fabrication and characterization of tungsten oxide nanofibers using the electrospinning technique and sol-gel chemistry. Tungsten isopropoxide sol-gel precursor was incorporated into poly(vinyl acetate)(PVAc)/DMF solutions and electrospun to form composite nanofibers. The as-spun composite nanofibers were subsequently calcinated to obtain pure tungsten oxide nanofibers with controllable diameters of around 100 nm. SEM and TEM were utilized to investigate the structure and morphology of tungsten oxide nanofibers before and after calcination. The relationship between solution concentration and ceramic nanofiber morphology has been studied. A synchrotron-based in situ XRD method was employed to study the dynamic structure evolution of the tungsten oxide nanofibers during the calcination process. It has been shown that the as-prepared tungsten oxide ceramic nanofibers have a quick response to ammonia with various concentrations, suggesting potential applications of the electrospun tungsten oxide nanofibers as a sensor material for gas detection. C1 SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11790 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Wang, G (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11790 USA. EM guwang@ic.sunysb.edu RI Ji, Yuan/A-6180-2010 NR 28 TC 152 Z9 157 U1 14 U2 156 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 30 PY 2006 VL 110 IS 47 BP 23777 EP 23782 DI 10.1021/jp0635819 PG 6 WC Chemistry, Physical SC Chemistry GA 109HA UT WOS:000242297500025 PM 17125339 ER PT J AU Chen, HT Padilla, WJ Zide, JMO Gossard, AC Taylor, AJ Averitt, RD AF Chen, Hou-Tong Padilla, Willie J. Zide, Joshua M. O. Gossard, Arthur C. Taylor, Antoinette J. Averitt, Richard D. TI Active terahertz metamaterial devices SO NATURE LA English DT Article ID TIME-DOMAIN SPECTROSCOPY; NEGATIVE PERMEABILITY; EXPLOSIVES; MODULATOR; SPECTRA; DRUGS AB The development of artificially structured electromagnetic materials, termed metamaterials, has led to the realization of phenomena that cannot be obtained with natural materials(1). This is especially important for the technologically relevant terahertz ( 1 THz = 10(12) Hz) frequency regime; many materials inherently do not respond to THz radiation, and the tools that are necessary to construct devices operating within this range - sources, lenses, switches, modulators and detectors - largely do not exist. Considerable efforts are underway to fill this 'THz gap' in view of the useful potential applications of THz radiation(2-7). Moderate progress has been made in THz generation and detection(8); THz quantum cascade lasers are a recent example(9). However, techniques to control and manipulate THz waves are lagging behind. Here we demonstrate an active metamaterial device capable of efficient real-time control and manipulation of THz radiation. The device consists of an array of gold electric resonator elements ( the metamaterial) fabricated on a semiconductor substrate. The metamaterial array and substrate together effectively form a Schottky diode, which enables modulation of THz transmission by 50 per cent, an order of magnitude improvement over existing devices(10). C1 Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. RP Chen, HT (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. EM chenht@lanl.gov RI Chen, Hou-Tong/C-6860-2009; Zide, Joshua/B-5105-2010; Padilla, Willie/A-7235-2008 OI Chen, Hou-Tong/0000-0003-2014-7571; Zide, Joshua/0000-0002-6378-7221; Padilla, Willie/0000-0001-7734-8847 NR 29 TC 1024 Z9 1045 U1 92 U2 526 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD NOV 30 PY 2006 VL 444 IS 7119 BP 597 EP 600 DI 10.1038/nature05343 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 110KK UT WOS:000242377600043 PM 17136089 ER PT J AU Bruzzi, M Harkonen, J Li, Z Luukka, P Menichelli, D Tuovinen, E Verbitskaya, E AF Bruzzi, M. Haerkoenen, J. Li, Z. Luukka, P. Menichelli, D. Tuovinen, E. Verbitskaya, E. TI Thermal donor generation in Czochralski silicon particle detectors SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 10th European Symposium on Semiconductor Detectors CY JUN 12-16, 2005 CL Wildbad Kreuth, GERMANY SP iseg Spezialelektronik GmbH, Micron Semiconduc Ltd, PNSensor GmbH, XIA LLC DE Si particles detectors; thermal donors; material engineering ID CHARGE SIGN INVERSION; PROTON; IRRADIATION; SIMULATION; RADIATION; DAMAGE AB In this report, the processing of thermal donor (TD) compensated detectors is described. Heat treatment of Czochralski silicon (Cz-Si) wafers between 400 and 600 degrees C leads to aggregation of interstitial oxygen atoms resulting in electrically active shallow levels in the silicon band gap. This process is known as TD formation. It depends on the temperature, the oxygen concentration in the silicon material and the presence of hydrogen in device manufacturing process. The oxygen concentration in silicon wafers grown by Magnetic Czochralski (MCz) method is sufficiently high in order that the concentration of TDs is comparable with the initial phosphorous or boron doping of high-resistivity Cz-Si. The TD formation has been studied by monitoring the detector full depletion voltage with respect to the heating time at 430 degrees C. The TD formation has been verified by Deep Level Transient Spectroscopy (DLTS) measurements. In addition, the annealing behavior of the irradiated samples at different temperatures is discussed. The TD formation in n(+)/p(-)/p(+) pad detectors has been observed not to influence the leakage current of the devices. Thus, the full depletion voltage of the detectors processed on p-type MCz-Si wafers can be modified by this method. (c) 2006 Elsevier B.V. All rights reserved. C1 CERN, PH, Helsinki Inst Phys, CH-1211 Geneva, Switzerland. Brookhaven Natl Lab, Upton, NY 11973 USA. Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 196140, Russia. Ist Nazl Fis Nucl, Florence Div, I-50019 Sesto Fiorentino, Italy. Dept Energet, I-50139 Florence, Italy. RP Harkonen, J (reprint author), CERN, PH, Helsinki Inst Phys, CH-1211 Geneva, Switzerland. EM jaakko.haerkonen@cern.ch RI Verbitskaya, Elena/D-1521-2014; Bruzzi, Mara/K-1326-2015; OI Bruzzi, Mara/0000-0001-7344-8365; Luukka, Panja/0000-0003-2340-4641 NR 20 TC 5 Z9 5 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 30 PY 2006 VL 568 IS 1 BP 56 EP 60 DI 10.1016/j.nima.2006.05.201 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 115NZ UT WOS:000242742300011 ER PT J AU Castoldi, A Galimberti, A Guazzoni, C Rehak, P Hartmann, R Struder, L AF Castoldi, A. Galimberti, A. Guazzoni, C. Rehak, P. Hartmann, R. Strueder, L. TI Multi-linear silicon drift detectors for X-ray and Compton imaging SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 10th European Symposium on Semiconductor Detectors CY JUN 12-16, 2005 CL Wildbad Kreuth, GERMANY SP iseg Spezialelektronik GmbH, Micron Semiconduc Ltd, PNSensor GmbH, XIA LLC DE X-ray imaging and spectroscopy; Compton electron tracking; position-sensitive detectors; K-edge subtraction ID ROOM-TEMPERATURE; SPECTROSCOPY; DIFFUSION; TRANSPORT AB Novel architectures of multi-anode silicon drift detectors with linear geometry (Multi-Linear Silicon Drift Detectors) have been developed to image X-rays and Compton electrons with excellent time resolution and achievable energy resolution better than 200 eV FWHM at 5.9keV. In this paper we describe the novel features of Multi-Linear Silicon Drift Detectors and their possible operating modes highlighting the impact on the imaging and spectroscopic capabilities. An application example of Multi-Linear Silicon Drift Detectors for fast 2D elemental mapping by means of K-edge subtraction imaging is shown. The charge deposited by Compton electrons in a Multi-Linear Silicon Drift Detector prototype irradiated by a Na-22 source has been measured showing the possibility to clearly resolve the 2D projection of the ionization track and to estimate the specific energy loss per pixel. The reconstruction of Compton electron tracks within a silicon detector layer can increase the sensitivity of Compton telescopes for nuclear medicine and gamma-ray astronomy. (c) 2006 Elsevier B.V. All rights reserved. C1 Politecn Milan, Dipartimento Ingn Nucl, Ce SNEF, I-20133 Milan, Italy. Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. Politecn Milan, Dipartimento Elettron & Informaz, I-20133 Milan, Italy. Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. PNSensor GmbH, D-80803 Munich, Germany. Max Planck Inst Halbleiterlabor, D-81739 Munich, Germany. Max Planck Inst Extraterr Phys, D-85741 Garching, Germany. Univ Siegen, FB Phys, D-57068 Siegen, Germany. RP Castoldi, A (reprint author), Politecn Milan, Dipartimento Ingn Nucl, Ce SNEF, Piazza L da Vinci 32, I-20133 Milan, Italy. EM Andrea.Castoldi@polimi.it RI Guazzoni, Chiara/A-5070-2008 OI Guazzoni, Chiara/0000-0001-6399-8670 NR 23 TC 19 Z9 19 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 30 PY 2006 VL 568 IS 1 BP 89 EP 95 DI 10.1016/j.nima.2006.07.016 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 115NZ UT WOS:000242742300017 ER PT J AU De Geronimo, G Deptuch, G Dragone, A Radeka, V Rehak, P Castoldi, A Fazzi, A Gatti, E Guazzoni, C Rijssenbeek, M Dulinski, W Besson, A Deveaux, M Winter, M AF De Geronimo, G. Deptuch, G. Dragone, A. Radeka, V. Rehak, P. Castoldi, A. Fazzi, A. Gatti, E. Guazzoni, C. Rijssenbeek, M. Dulinski, W. Besson, A. Deveaux, M. Winter, M. TI A novel position and time sensing active pixel sensor with field-assisted electron collection for charged particle tracking and electron microscopy SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 10th European Symposium on Semiconductor Detectors CY JUN 12-16, 2005 CL Wildbad Kreuth, GERMANY SP iseg Spezialelektronik GmbH, Micron Semiconduc Ltd, PNSensor GmbH, XIA LLC DE APS; electron tracking; imaging detectors; electron microscopy ID DETECTORS AB A new type of active pixel sensors (APSs) to track charged particles for particle physics experiments or to count number of electrons that cross any pixel at the focal plane of electron microscopes is described. The electric field of desirable shape is created inside the active volume of the pixel introducing the drift component in the movement of the signal electrons towards charge collecting electrodes. The electric field results from the flow of similar to 100 mA/cm(2) hole currents within individual pixels of the sensor. The proposed sensor is produced using a standard industrially available complementary metal oxide silicon (CMOS) process. There are two main advantages of the proposed detectors when compared to the present (February 2005) state-of-the-art, i.e. field-free APS sensors. The first advantage of a field-assisted transport mechanism is the reduction of the charge collection time and of the sharing of the signal electrons between adjacent pixels by diffusion. The second advantage is the freedom to use both kinds of MOS transistors within each pixel of the sensor. Thus, the full functional power of CMOS circuits can be embedded in situ. As an example, 16-bit scalers will be implemented in each pixel of the sensor for electron microscopy. The reduced collection time combined with the state-of-the-art electronics within each pixel provides the most complete information about the position and the timing of incident charged particles for particle physics experiments. Position resolution of new sensors was computationally simulated to be a few microns, that is, the same as the resolution of standard APSs. Moreover, the active depth of the sensor and the associate electronics is less than about 20 mu m and a thinned down sensor together with its beryllium backing can have a total thickness of less than 0.1% of one radiation length. The reduction of the thickness of the detector reduces the amount of multiple scattering within the detector. The determination of the momentum and of the origin of a particle can be improved in particle physics experiments and images from electron microscopes can be sharper. (c) 2006 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. Politecn Milan, Dipartimento Ingn Nucl, I-20133 Milan, Italy. Politecn Milan, Dipartimento Elettron & Informat, I-20133 Milan, Italy. Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. SUNY Stony Brook, Dept Phys, Stony Brook, NY 11790 USA. Inst Rech Subatom, F-67037 Strasbourg, France. RP Rehak, P (reprint author), Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. EM rehak@bnl.gov RI Guazzoni, Chiara/A-5070-2008 OI Guazzoni, Chiara/0000-0001-6399-8670 NR 10 TC 3 Z9 3 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 30 PY 2006 VL 568 IS 1 BP 167 EP 175 DI 10.1016/j.nima.2006.05.266 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 115NZ UT WOS:000242742300030 ER PT J AU Aihara, H Asano, Y Aso, T Bakich, A Barbero, M Browder, T Chang, MC Chao, Y Chen, KF Chidzik, S Chouvikov, A Dalseno, J Dowd, R Fernholz, R Fratina, S Friedl, M Fujii, H Fujiyama, Y Haba, J Hara, K Hara, T Harrop, B Haruyama, T Hayashi, K Hazumi, M Heffernan, D Higuchi, T Igarashi, A Igarashi, Y Ikeda, H Ishino, H Iwaida, S Kameshima, T Kapusta, P Kasami, K Kawasaki, T Kibayashi, A Koike, S Korpar, S Krizan, P Kurashiro, H Kusaka, A Lesiak, T Marlow, D Matsumoto, H Mikami, Y Miyake, H Moloney, GR Natkaniec, Z Nozaki, S Ohkubo, R Okuno, S Ono, S Onuki, Y Ostrowicz, W Ozaki, H Peak, L Pernicka, M Rosen, M Rozanska, M Sato, N Schmid, S Schumann, J Shibata, T Stamen, R Stanic, S Steininger, H Sumisawa, K Suzuki, J Tajima, H Tajima, O Takahashi, K Takasaki, F Tamura, N Tanaka, M Taylor, GN Trabelsi, K Tsuboyama, T Uchida, K Ueno, K Ueno, K Ushiroda, Y Vahsen, S Varner, G Varvell, K Velikzhanin, YS Wang, CC Wang, MZ Watanabe, M Watanabe, Y Yamamoto, H Yamashita, Y Yamauchi, M Yang, R Yasu, Y Ziegler, T Zontar, D AF Aihara, H. Asano, Y. Aso, T. Bakich, A. Barbero, M. Browder, T. Chang, M. C. Chao, Y. Chen, K. F. Chidzik, S. Chouvikov, A. Dalseno, J. Dowd, R. Fernholz, R. Fratina, S. Friedl, M. Fujii, H. Fujiyama, Y. Haba, J. Hara, K. Hara, T. Harrop, B. Haruyama, T. Hayashi, K. Hazumi, M. Heffernan, D. Higuchi, T. Igarashi, A. Igarashi, Y. Ikeda, H. Ishino, H. Iwaida, S. Kameshima, T. Kapusta, P. Kasami, K. Kawasaki, T. Kibayashi, A. Koike, S. Korpar, S. Krizan, P. Kurashiro, H. Kusaka, A. Lesiak, T. Marlow, D. Matsumoto, H. Mikami, Y. Miyake, H. Moloney, G. R. Natkaniec, Z. Nozaki, S. Ohkubo, R. Okuno, S. Ono, S. Onuki, Y. Ostrowicz, W. Ozaki, H. Peak, L. Pernicka, M. Rosen, M. Rozanska, M. Sato, N. Schmid, S. Schuemann, J. Shibata, T. Stamen, R. Stanic, S. Steininger, H. Sumisawa, K. Suzuki, J. Tajima, H. Tajima, O. Takahashi, K. Takasaki, F. Tamura, N. Tanaka, M. Taylor, G. N. Trabelsi, K. Tsuboyama, T. Uchida, K. Ueno, K. Ueno, K. Ushiroda, Y. Vahsen, S. Varner, G. Varvell, K. Velikzhanin, Y. S. Wang, C. C. Wang, M. Z. Watanabe, M. Watanabe, Y. Yamamoto, H. Yamashita, Y. Yamauchi, M. Yang, R. Yasu, Y. Ziegler, T. Zontar, D. TI Belle SVD2 vertex detector SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 10th European Symposium on Semiconductor Detectors CY JUN 12-16, 2005 CL Wildbad Kreuth, GERMANY SP iseg Spezialelektronik GmbH, Micron Semiconduc Ltd, PNSensor GmbH, XIA LLC DE Belle; silicon vertex detector AB A new silicon vertex detector for the Belle experiment has been in operation at the high-luminosity asymmetric energy electron-positron collider KEKB since October 2003. It provides a larger polar angle acceptance, a better vertex resolution and a higher radiation tolerance than the previous one. The obtained performances indicate that the SVD2 works reliably, in very good agreement with expectations. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. Univ Tsukuba, Inst Appl Phys, Tsukuba, Ibaraki 3058573, Japan. Toyama Natl Coll Maritime Technol, Toyama, Japan. Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. Natl Taiwan Univ, Dept Phys, HEP Lab, Taipei 10764, Taiwan. Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia. IHEP Vienna, A-1050 Vienna, Austria. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305080, Japan. Tokyo Inst Technol, Dept Phys, Grp HP, Meguro Ku, Tokyo 1528551, Japan. Osaka Univ, Grad Sch Sci, Dept Phys, Toyonaka, Osaka 5600043, Japan. Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan. Polish Acad Sci, H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. Niigata Univ, Niigata Grad Sch Sci & Technol, Niigata 9502181, Japan. Tohoku Univ, Dept Phys, HEP Grp, Aoba Ku, Sendai, Miyagi 9808578, Japan. Kanagawa Univ, Fac Engn, Kanagawa Ku, Yokohama, Kanagawa 2218686, Japan. Nova Gorica Polytech, SI-5000 Nova Gorica, Slovenia. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Nihon Dent Coll, Niigata 9518151, Japan. RP Korpar, S (reprint author), Univ Tokyo, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. EM samo.korpar@ijs.si RI Aihara, Hiroaki/F-3854-2010; Marlow, Daniel/C-9132-2014; Ishino, Hirokazu/C-1994-2015; Kibayashi, Atsuko/K-7327-2015; OI Krizan, Peter/0000-0002-4967-7675; Aihara, Hiroaki/0000-0002-1907-5964; Ishino, Hirokazu/0000-0002-8623-4080; Trabelsi, Karim/0000-0001-6567-3036; Moloney, Glenn/0000-0002-3539-3233 NR 9 TC 5 Z9 5 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 30 PY 2006 VL 568 IS 1 BP 269 EP 273 DI 10.1016/j.nima.2006.05.281 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 115NZ UT WOS:000242742300044 ER PT J AU Tanaka, T Watanabe, S Takeda, S Oonuki, K Mitani, T Nakazawa, K Takashima, T Takahashi, T Tajima, H Sawamoto, N Fukazawa, Y Nomachi, M AF Tanaka, Takaaki Watanabe, Shin Takeda, Shin'ichiro Oonuki, Kousuke Mitani, Takefumi Nakazawa, Kazuhiro Takashima, Takeshi Takahashi, Tadayuki Tajima, Hiroyasu Sawamoto, Naoyuki Fukazawa, Yasushi Nomachi, Masaharu TI Recent results from a Si/CdTe semiconductor Compton telescope SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 10th European Symposium on Semiconductor Detectors CY JUN 12-16, 2005 CL Wildbad Kreuth, GERMANY SP iseg Spezialelektronik GmbH, Micron Semiconduc Ltd, PNSensor GmbH, XIA LLC DE gamma-ray detector; compton telescope; silicon strip detector; cadmium telluride (CdTe) ID RAY IMAGING DETECTOR; HARD-X-RAY; CDTE DIODE; MISSION; CAMERA; RESOLUTION; POLARIZATION; PERFORMANCE; ASTRONOMY; ENERGY AB We are developing a Compton telescope based on high-resolution Si and CdTe detectors for astrophysical observations in sub-MeV/ MeV gamma-ray region. Recently, we constructed a prototype Compton telescope which consists of six layers of double-sided Si strip detectors (DSSDs) and CdTe pixel detectors to demonstrate the basic performance of this new technology. By irradiating the detector with gamma rays from radio isotope sources, we have succeeded in Compton reconstruction of images and spectra. The obtained angular resolution is 3.9 degrees(FWHM) at 511 keV, and the energy resolution is 14 keV (FWHM) at the same energy. In addition to the conventional Compton reconstruction, i.e., drawing cones in the sky, we also demonstrated a full reconstruction by tracking Compton recoil electrons using the signals detected in successive Si layers. By irradiating Cs-137 source, we successfully obtained an image and a spectrum of 662 keV line emission with this method. As a next step, development of larger DSSDs with a size of 4 cm x 4 cm, is under way to improve the effective area of the Compton telescope. We are also developing a new low-noise analog ASIC to handle the increasing number of channels. Initial results from these two new technologies are presented in this paper as well. (c) 2006 Elsevier B.V. All rights reserved. C1 Inst Space & Astronaut Sci, JAXA, Sagamihara, Kanagawa 2298510, Japan. Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Hiroshima Univ, Dept Phys, Hiroshima 7398526, Japan. Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan. RP Tanaka, T (reprint author), Inst Space & Astronaut Sci, JAXA, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2298510, Japan. EM ttanaka@astro.isas.jaxa.jp NR 22 TC 25 Z9 25 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 30 PY 2006 VL 568 IS 1 BP 375 EP 381 DI 10.1016/j.nima.2006.06.014 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 115NZ UT WOS:000242742300061 ER PT J AU Lappi, T AF Lappi, T. TI Energy density of the glasma SO PHYSICS LETTERS B LA English DT Article ID HEAVY-ION COLLISIONS; GLUON DISTRIBUTION-FUNCTIONS; NUCLEUS-NUCLEUS COLLISIONS; WEIZSACKER-WILLIAMS FIELD; TRANSVERSE-MOMENTUM; CONDENSATE; QUARK; THERMALIZATION; RADIATION; EVOLUTION AB The initial energy density produced in an ultrarelativistic heavy ion collision can, in the color glass condensate framework, be factorized into a product of the integrated gluon distributions of the nuclei. Although this energy density is well defined without any infrared cutoff besides the saturation scale, it is apparently logarithmically ultraviolet divergent. We argue that this divergence is not physically meaningful and does not affect the behavior of the system at any finite proper time. (c) 2006 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Lappi, T (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM lappi@bnl.gov NR 48 TC 67 Z9 67 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD NOV 30 PY 2006 VL 643 IS 1 BP 11 EP 16 DI 10.1016/j.physletb.2006.10.017 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 112QS UT WOS:000242542400003 ER PT J AU Brodsky, SJ Gardner, S AF Brodsky, Stanley J. Gardner, Susan TI Evidence for the absence of gluon orbital angular momentum in the nucleon SO PHYSICS LETTERS B LA English DT Article ID FINAL-STATE INTERACTIONS; SINGLE-SPIN ASYMMETRIES; DEEP-INELASTIC SCATTERING; PARTON DISTRIBUTIONS; QUANTUM CHROMODYNAMICS; FLAVOR ASYMMETRY; MAGNETIC-MOMENT; HARD-SCATTERING; FORM-FACTORS; DRELL-YAN AB The Sivers mechanism for the single-spin asymmetry in unpolarized lepton scattering from a transversely polarized nucleon is driven by the orbital angular momentum carried by its quark and gluon constituents, combined with QCD final-state interactions. Both quark and gluon mechanisms can generate such a single-spin asymmetry, though only the quark mechanism can explain the small single-spin asymmetry measured by the COMPASS Collaboration on the deuteron, suggesting the gluon mechanism is small relative to the quark mechanism. We detail empirical studies through which the gluon and quark orbital angular momentum contributions, quark-flavor by quark-flavor, can be elucidated. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Gardner, S (reprint author), Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. EM gardner@pa.uky.edu NR 54 TC 42 Z9 42 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD NOV 30 PY 2006 VL 643 IS 1 BP 22 EP 28 DI 10.1016/j.physletb.2006.10.024 PG 7 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 112QS UT WOS:000242542400005 ER PT J AU Wind, RA Hu, JZ AF Wind, R. A. Hu, J. Z. TI In vivo and ex vivo high-resolution H-1 NMR in biological systems using low-speed magic angle spinning SO PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY LA English DT Review DE magnetic resonance; magic angle spinning; slow MAS; metabolites; proton NMR ID MAGNETIC-RESONANCE-SPECTROSCOPY; SIGNAL-TO-NOISE; SOLID-STATE NMR; TENSOR PRINCIPAL VALUES; BREAST-CANCER TISSUE; H-1 MR SPECTROSCOPY; CHEMICAL-SHIFT; HUMAN BRAIN; RELAXATION-TIMES; LIPID DROPLETS C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wind, RA (reprint author), Pacific NW Natl Lab, POB 999,MS K8-98, Richland, WA 99352 USA. EM robert.wind@pnl.gov RI Hu, Jian Zhi/F-7126-2012 NR 183 TC 34 Z9 34 U1 0 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0079-6565 J9 PROG NUCL MAG RES SP JI Prog. Nucl. Magn. Reson. Spectrosc. PD NOV 30 PY 2006 VL 49 IS 3-4 BP 207 EP 259 DI 10.1016/j.pnmrs.2006.05.003 PG 53 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Spectroscopy SC Chemistry; Physics; Spectroscopy GA 114UD UT WOS:000242690200002 ER PT J AU Cohen, SM Furey, TS Doggett, NA Kaufman, DG AF Cohen, Stephanie M. Furey, Terrence S. Doggett, Norman A. Kaufman, David G. TI Genome-wide sequence and functional analysis of early replicating DNA in normal human fibroblasts SO BMC GENOMICS LA English DT Article ID C3H 10T1/2 CELLS; S-PHASE; CHROMOSOME BANDS; HIGH-RESOLUTION; REPLICON CLUSTERS; GENE; REPAIR; ORGANIZATION; TRANSFORMATION; LINES AB Background: The replication of mammalian genomic DNA during the S phase is a highly coordinated process that occurs in a programmed manner. Recent studies have begun to elucidate the pattern of replication timing on a genomic scale. Using a combination of experimental and computational techniques, we identified a genome-wide set of the earliest replicating sequences. This was accomplished by first creating a cosmid library containing DNA enriched in sequences that replicate early in the S phase of normal human fibroblasts. Clone ends were then sequenced and aligned to the human genome. Results: By clustering adjacent or overlapping early replicating clones, we identified 1759 "islands" averaging 100 kb in length, allowing us to perform the most detailed analysis to date of DNA characteristics and genes contained within early replicating DNA. Islands are enriched in open chromatin, transcription related elements, and Alu repetitive elements, with an underrepresentation of LINE elements. In addition, we found a paucity of LTR retroposons, DNA transposon sequences, and an enrichment in all classes of tandem repeats, except for dinucleotides. Conclusion: An analysis of genes associated with islands revealed that nearly half of all genes in the WNT family, and a number of genes in the base excision repair pathway, including four of ten DNA glycosylases, were associated with island sequences. Also, we found an overrepresentation of members of apoptosis-associated genes in very early replicating sequences from both fibroblast and lymphoblastoid cells. These data suggest that there is a temporal pattern of replication for some functionally related genes. C1 Univ N Carolina, Dept Pathol & Lab Med, Chapel Hill, NC 27599 USA. Duke Univ, Inst Genome Sci & Policy, Durham, NC 27708 USA. Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Cohen, SM (reprint author), Univ N Carolina, Dept Pathol & Lab Med, Chapel Hill, NC 27599 USA. EM stepmi@med.unc.edu; tsfurey@duke.edu; doggett@lanl.gov; uncdgk@med.unc.edu FU NCI NIH HHS [CA084493, R01 CA084493]; NIEHS NIH HHS [ES09112, R01 ES009112] NR 59 TC 12 Z9 12 U1 0 U2 2 PU BIOMED CENTRAL LTD PI LONDON PA MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD NOV 29 PY 2006 VL 7 AR 301 DI 10.1186/1471-2164-7-301 PG 15 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 118XY UT WOS:000242978000001 PM 17134498 ER PT J AU O'Brien, M Nielsen, KF O'Kiely, P Forristal, PD Fuller, HT Frisvad, JC AF O'Brien, Martin Nielsen, Kristian F. O'Kiely, Padraig Forristal, Patrick D. Fuller, Hubert T. Frisvad, Jens C. TI Mycotoxins and other secondary metabolites produced in vitro by Penicillium paneum Frisvad and Penicillium roqueforti Thom isolated from baled grass silage in Ireland SO JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY LA English DT Article DE Penicillium paneum; Penicillium roqueforti; baled grass silage; secondary metabolites; patulin; roquefortine C; mycophenolic acid; PR toxin; andrastin A ID PR-TOXIN; MYCOPHENOLIC-ACID; MAIZE SILAGE; TERVERTICILLATE PENICILLIA; PATULIN; BREVICOMPACTUM; IDENTIFICATION; INHIBITION; GRAIN; FEED AB Secondary metabolites produced by Penicillium paneum and Penicillium roqueforti from baled grass silage were analyzed. A total of 157 isolates were investigated, comprising 78 P. paneum and 79 P. roqueforti isolates randomly selected from more than 900 colonies cultured from bales. The findings mostly agreed with the literature, although some metabolites were not consistently produced by either fungus. Roquefortine C, marcfortine A, and andrastin A were consistently produced, whereas PR toxin and patulin were not. Five silage samples were screened for fungal metabolites, with two visually moldy samples containing up to 20 mg/kg of roquefortine C, mycophenolic acid, and andrastin A along with minor quantities (0.1-5 mg/kg) of roquefortines A, B, and D, festuclavine, marcfortine A, and agroclavine. Three visually nonmoldy samples contained low amounts of mycophenolic acid and andrastin A. The ability of both molds to produce a diverse range of secondary metabolites in vitro and in silage should be a concern to livestock producers. C1 TEAGASC, Grange Beef Res Ctr, Dunsany, Meath, Ireland. Tech Univ Denmark, Bioctr, Ctr Microbial Biotechnol, DK-2800 Lyngby, Denmark. TEAGASC, Crops Res Ctr, Carlow, Ireland. Univ Coll Dublin, Coll Life Sci, Sch Biol & Environm Sci, Dublin 4, Ireland. RP O'Brien, M (reprint author), TEAGASC, Grange Beef Res Ctr, Dunsany, Meath, Ireland. EM martin.obrien@teagasc.ie RI Nielsen, Kristian/C-7233-2011; OI Nielsen, Kristian/0000-0002-5848-0911; O'Brien, Martin/0000-0003-1096-1991 NR 48 TC 64 Z9 65 U1 0 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0021-8561 J9 J AGR FOOD CHEM JI J. Agric. Food Chem. PD NOV 29 PY 2006 VL 54 IS 24 BP 9268 EP 9276 DI 10.1021/jf0621018 PG 9 WC Agriculture, Multidisciplinary; Chemistry, Applied; Food Science & Technology SC Agriculture; Chemistry; Food Science & Technology GA 108BT UT WOS:000242216000040 PM 17117820 ER PT J AU Tkalcic, H Pasyanos, ME Rodgers, AJ Goek, R Walter, WR Al-Amri, A AF Tkalcic, H. Pasyanos, M. E. Rodgers, A. J. Goek, R. Walter, W. R. Al-Amri, A. TI A multistep approach for joint modeling of surface wave dispersion and teleseismic receiver functions: Implications for lithospheric structure of the Arabian Peninsula SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID UPPER-MANTLE STRUCTURE; SEISMIC ANISOTROPY BENEATH; CRUSTAL STRUCTURE; NORTH-AFRICA; VELOCITY STRUCTURE; MIDDLE-EAST; SURROUNDING REGIONS; SAUDI-ARABIA; SHIELD; INVERSION AB [ 1] We present a multiple step procedure for joint modeling of surface wave group velocity dispersion curves and teleseismic receiver functions for lithospheric velocity structure. The method relies on an initial grid search for a simple crustal structure, followed by a formal iterative inversion, an additional grid search for shear wave velocity in the mantle, and finally, forward modeling of transverse isotropy to resolve Love-Rayleigh surface wave dispersion discrepancy. It considers longer-period surface wave group velocity (SWGV) dispersion, allowing for the resolution of deeper structure compared to previous joint inversions. The grid search for simple crustal structure is facilitated using a library of precomputed receiver functions and SWGV dispersion curves. The iterative inversion improves fit to the data by increasing the number of layers in the crust when necessary. In order to fit the SWGV for periods greater than about 50 s, we perform a grid search over mantle velocities including the mantle lid and low-velocity zone, keeping the crustal structure fixed to the values from the previous step. In some cases a clear Love-Rayleigh discrepancy prevents a simultaneous fit of the group velocities with an isotropic model. The Love-Rayleigh discrepancy can be resolved by allowing shear wave transverse isotropy with a vertical symmetry axis (v(SH) - v(SV) differences) in the uppermost mantle. The method is applied to 10 stations in the Arabian Peninsula sampling various tectonic environments including active continental rifting and stable regions. The resulting shear velocity models confirm rapid crustal thinning of the Arabian Shield toward the Red Sea; however, we do not find strong evidence for crustal thickening toward the Arabian Platform. Our results suggest that the mantle lithosphere thickness varies regionally but that the mantle shear velocities beneath the Arabian Shield and Red Sea coast are generally anomalously low. Furthermore, our results indicate the presence of strong polarization anisotropy ( up to about 10%) in the lithospheric upper mantle, in the vicinity of, as well as farther away from, the Red Sea. Our modeling yields v(SV) > v(SH) in the southwestern part of the Arabian Peninsula, consistent with vertical flow, and v(SH) > v(SV) in the northwestern part of the Arabian Peninsula and the continental interior, consistent with horizontal flow, indicating that the mantle flow pattern is not uniform along the axis of the Red Sea. C1 Lawrence Livermore Natl Lab, Atmospher Earth & Energy Sci Dept, Livermore, CA 94551 USA. King Saud Univ, Dept Geol, Riyadh 11451, Saudi Arabia. RP Tkalcic, H (reprint author), Multimax Inc, 5740 Hollis St, Emeryville, CA 94608 USA. EM tkalcic@multimax.com RI Rodgers, Arthur/E-2443-2011; Pasyanos, Michael/C-3125-2013; Walter, William/C-2351-2013; Tkalcic, Hrvoje/E-8465-2013; Gok, Rengin/O-6639-2014 OI Walter, William/0000-0002-0331-0616; Tkalcic, Hrvoje/0000-0001-7072-490X; NR 55 TC 49 Z9 49 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD NOV 29 PY 2006 VL 111 IS B11 AR B11311 DI 10.1029/2005JB004130 PG 25 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 115OZ UT WOS:000242744900001 ER PT J AU Pandey, SK Khalid, S Lalla, NP Pimpale, AV AF Pandey, S. K. Khalid, S. Lalla, N. P. Pimpale, A. V. TI Local distortion in LaCoO3 and PrCoO3: extended x-ray absorption fine structure, x-ray diffraction and x-ray absorption near edge structure studies SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID ELECTRONIC STATES; SPIN-STATE; TRANSITIONS; CRYSTALS; SPECTRA AB Room temperature Co K edge extended x-ray absorption fine structure (EXAFS), x-ray absorption near edge structure (XANES), including the pre-edge structure, and x-ray diffraction (XRD) studies are carried out on LaCoO3 and PrCoO3. The Co-O, Co-La/Pr and Co-Co bond lengths are obtained from EXAFS analysis and compared with those obtained from XRD study. The EXAFS analysis of the data indicates that the CoO6 octahedron is distorted in both LaCoO3 and PrCoO3. There are two Co-O bonds with bond length 1.863 (1.886) angstrom and four Co-O bonds with bond length 1.928 (1.942) angstrom for LaCoO3 (PrCoO3). Such distortion is expected in orthorhombic PrCoO3 but not in rhombohedral LaCoO3. This distortion in the CoO6 octahedron is attributed to Jahn-Teller active Co3+ ions in an intermediate spin state in these compounds. Higher shell studies reveal that Debye-Waller (DW) factors of Co-Pr and Co-Co bonds in PrCoO3 are greater in comparison with those of Co-La and Co-Co bonds in LaCoO3, indicating that these bonds are structurally more disordered in PrCoO3. The comparison of Co-Co bond lengths and corresponding DW factors indicates that the structural disorder plays an important role in deciding the insulating properties of these compounds. XANES studies have shown changes in the intensities and positions of different near edge features. The comparison of experimental spectra with the calculated ones-using the Co 4p density of states obtained from local density approximation calculations and matrix elements calculated using an atomic like core state as the initial state and a confluent hypergeometric function as the final state-indicates that for orthorhombic structure, the intensities of different features are lower as compared to those for the cubic structure. The pre-edge peaks attributed to Co 1s -> e(g)(up arrow) and e(g)(down arrow) transitions show the effects of hybridization of the e(g) orbitals with O 2p orbitals, and their relative intensities in PrCoO3 and LaCoO3, can be explained by using the average Co-O bond length obtained from the EXAFS. C1 UGC DAE Consortium Sci Res, Indore 452017, India. Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Pandey, SK (reprint author), UGC DAE Consortium Sci Res, Univ Campus,Khandwa Rd, Indore 452017, India. EM sk_iuc@rediffmail.com; avp@csr.ernet.in RI Pandey, Sudhir/C-6023-2011 OI Pandey, Sudhir/0000-0003-3673-4818 NR 30 TC 15 Z9 15 U1 2 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 29 PY 2006 VL 18 IS 47 BP 10617 EP 10630 DI 10.1088/0953-8984/18/47/008 PG 14 WC Physics, Condensed Matter SC Physics GA 113RO UT WOS:000242615200010 ER PT J AU Suzuki, T Zhang, YW Koyama, T Sasaki, DY Kurihara, K AF Suzuki, Takehiro Zhang, Yuan-Wei Koyama, Tanetoshi Sasaki, Darryl Y. Kurihara, Kazue TI Direct observation of substrate-enzyme complexation by surface forces measurement SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID FARNESYL-DIPHOSPHATE SYNTHASE; HEPTAPRENYL PYROPHOSPHATE SYNTHETASE; QUARTZ-CRYSTAL MICROBALANCE; BACILLUS-SUBTILIS; 2 SUBUNITS; RESIDUES; SITE; MUTAGENESIS; MICROSCOPY; WATER AB The substrate-enzyme complexation of heptaprenyl diphosphate synthase was directly investigated using colloidal probe atomic force microscopy (AFM) and a quartz crystal microbalance (QCM) in order to obtain new insights into the molecular mechanism of the enzyme reaction. This enzyme is composed of two dissociable subunits that exhibit a catalytic activity only when they are associated together in the presence of a cofactor, Mg2+, and a substrate, farnesyl diphosphate (FPP). The QCM measurement revealed that FPP was preferentially bound to subunit II in the presence of Mg2+, while the AFM measurement showed that the adhesive force between the subunits was observed only in the presence of both Mg2+ and FPP. This is the first direct demonstration of the specific interaction involved in the enzyme reaction. The dependence of the Mg2+ concentration on the specific interaction between subunits I and II well agreed with that on the enzyme activity of heptaprenyl diphosphate synthase. This indicated that the observed adhesive forces were indeed involved in the catalytic reaction of this enzyme. On the basis of these results, we discussed the processes involved in the substrate-enzyme complexation. The first, the substrate FPP bound to subunit II using Mg2+, followed by the formation of the subunit I-FPP-Mg2+-subunit II complex. Our study showed a very useful methodology for examining the elemental processes of biological reactions such as an enzyme reaction. C1 Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Aoba Ku, Sendai, Miyagi 9808577, Japan. Sandia Natl Labs, Biomol Mat Dept, Albuquerque, NM 87185 USA. RP Kurihara, K (reprint author), Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan. EM kurihara@tagen.tohoku.ac.jp RI Kurihara, Kazue/E-5018-2010 NR 38 TC 17 Z9 17 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 29 PY 2006 VL 128 IS 47 BP 15209 EP 15214 DI 10.1021/ja061822k PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 108BU UT WOS:000242216100049 PM 17117872 ER PT J AU Forstner, MB Yee, CK Parikh, AN Groves, JT AF Forstner, Martin B. Yee, Chanel K. Parikh, Atul N. Groves, Jay T. TI Lipid lateral mobility and membrane phase structure modulation by protein binding SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID FLUORESCENCE CORRELATION SPECTROSCOPY; ATOMIC-FORCE MICROSCOPY; INFRARED-SPECTROSCOPY; CELL-MEMBRANE; PHOSPHOLIPID-BILAYERS; SUPPORTED BILAYERS; MODEL MEMBRANES; SPIN LABELS; DIFFUSION; FLUID AB Using a combination of fluorescence correlation and infrared absorption spectroscopies, we characterize lipid lateral diffusion and membrane phase structure as a function of protein binding to the membrane surface. In a supported membrane configuration, cholera toxin binding to the pentasaccharaide headgroup of membrane-incorporated GM(1) lipid alters the long-range lateral diffusion of fluorescently labeled probe lipids, which are not involved in the binding interaction. This effect is prominently amplified near the gel-fluid transition temperature, T-m, of the majority lipid component. At temperatures near T-m, large changes in probe lipid diffusion are measured at average protein coverage densities as low as 0.02 area fraction. Spectral shifts of the methylene symmetric and asymmetric stretching modes in the lipid acyl chain confirm that protein binding alters the fraction of lipid in the gel phase. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. Lawrence Berkeley Lab, Phys Biosci & Mat Sci Div, Berkeley, CA 94720 USA. RP Groves, JT (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM JTGroves@lbl.gov RI Forstner, Martin/A-8903-2008; PARIKH, ATUL/D-2243-2014 OI Forstner, Martin/0000-0003-0413-8659; PARIKH, ATUL/0000-0002-5927-4968 NR 66 TC 61 Z9 61 U1 1 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 29 PY 2006 VL 128 IS 47 BP 15221 EP 15227 DI 10.1021/ja064093h PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 108BU UT WOS:000242216100051 PM 17117874 ER PT J AU Ozen, C Malek, JM Serpersu, EH AF Ozen, Can Malek, Joseph M. Serpersu, Engin H. TI Dissection of aminoglycoside-enzyme interactions: A calorimetric and NMR study of neomycin B binding to the aminoglycoside phosphotransferase(3 ')-IIIa SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ISOTHERMAL TITRATION CALORIMETRY; MAGNETIC-RESONANCE SPECTROSCOPY; ANTIBIOTIC-RESISTANCE ENZYME; STAPHYLOCOCCAL NUCLEASE; MODIFYING ENZYMES; ACTIVE-SITE; CONFORMATIONS; IIIA; 3-PHOSPHOTRANSFERASE; OVEREXPRESSION AB In this work, for the first time, we report pK(a) values of the amino functions in a target-bound aminoglycoside antibiotic, which permitted dissection of the thermodynamic properties of an enzyme-aminoglycoside complex. Uniformly enriched N-15-neomycin was isolated from cultures of Streptomyces fradiae and used to study its binding to the aminoglycoside phosphotransferase(3')-IIIa (APH) by N-15 NMR spectroscopy. N-15 NMR studies showed that binding of neomycin to APH causes upshifts of similar to 1 pK(a) unit for the amines N2' and N2''' while N6' experienced a 0.3 p K a unit shift. The pK(a) of N6''' remained unaltered, and resonances of N1 and N3 showed significant broadening upon binding to the enzyme. The binding-linked protonation and pH dependence of the association constant (K-b) for the enzyme-aminoglycoside complex was determined by isothermal titration calorimetry. The enthalpy of binding became more favorable (negative) with increasing pH. At high pH, binding-linked protonation was attributable mostly to the amino functions of neomycin; however, at neutral pH, functional groups of the enzyme, possibly remote from the active site, also underwent protonation/deprotonation upon formation of the binary enzyme-neomycin complex. The K-b for the enzyme-neomycin complex showed a complicated dependence on pH, indicating that multiple interactions may affect the affinity of the ligand to the enzyme and altered conditions, such as pH, may favor one or another. This work highlights the importance of determining thermodynamic parameters of aminoglycoside-target interactions under different conditions before making attributions to specific sites and their effects on these global parameters. C1 Univ Tennessee, Grad Sch Genome Sci & Technol, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Knoxville, TN 37996 USA. Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. Univ Tennessee, Ctr Excellence Struct Biol, Knoxville, TN 37996 USA. RP Serpersu, EH (reprint author), Univ Tennessee, Grad Sch Genome Sci & Technol, Knoxville, TN 37996 USA. EM serpersu@utk.edu NR 34 TC 19 Z9 20 U1 3 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 29 PY 2006 VL 128 IS 47 BP 15248 EP 15254 DI 10.1021/ja0643220 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 108BU UT WOS:000242216100054 PM 17117877 ER PT J AU Tang, YY Lee, HY Tang, Y Kim, CY Mathews, I Khosla, C AF Tang, Yinyan Lee, Ho Young Tang, Yi Kim, Chu-Young Mathews, Irimpan Khosla, Chaitan TI Structural and functional studies on SCO1815: A beta-ketoacyl-acyl carrier protein reductase from Streptomyces coelicolor A3(2) SO BIOCHEMISTRY LA English DT Article ID AROMATIC POLYKETIDE SYNTHASE; PRECURSOR-DIRECTED BIOSYNTHESIS; IN-VITRO RECONSTITUTION; ENGINEERED BIOSYNTHESIS; HETEROLOGOUS EXPRESSION; KETOREDUCTASE DOMAINS; BACTERIAL POLYKETIDE; CRYSTAL-STRUCTURE; KINETIC-ANALYSIS; GENE-CLUSTER AB Aromatic polyketides are medicinally important natural products produced by type II polyketide synthases (PKSs). Some aromatic PKSs are bimodular and include a dedicated initiation module which synthesizes a non-acetate primer unit. Understanding the mechanism of this initiation module is expected to further enhance the potential for regiospecific modification of bacterial aromatic polyketides. A typical initiation module is comprised of a ketosynthase (KS), an acyl carrier protein (ACP), a malonyl-CoA: ACP transacylase (MAT), an acyl-ACP thioesterase, a ketoreductase (KR), a dehydratase (DH), and an enoyl reductase (ER). Thus far, the identities of the ketoreductase, dehydratase, and enoyl reductase remain a mystery because they are not encoded within the PKS biosynthetic gene cluster. Here we report that SCO1815 from Streptomyces coelicolor A3(2), an uncharacterized homologue of a NADPH-dependent ketoreductase, recognizes and reduces the beta-ketoacyl-ACP intermediate from the initiation module of the R1128 PKS. SCO1815 exhibits moderate specificity for both the acyl chain and the thiol donor. The X-ray crystal structure of SCO1815 was determined to 2.0 angstrom. The structure shows that SCO1815 adopts a Rossmann fold and suggests that a conformational change occurs upon cofactor binding. We propose that a positively charged patch formed by three conserved residues is the ACP docking site. Our findings provide new engineering opportunities for incorporating unnatural primer units into novel polyketides and shed light on the biology of yet another cryptic protein in the S. coelicolor genome. C1 Stanford Univ, Dept Chem & Chem Engn, Stanford, CA 94305 USA. Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. Stanford Univ, Dept Biochem, Stanford, CA 94305 USA. RP Khosla, C (reprint author), Stanford Univ, Dept Chem & Chem Engn, Stanford, CA 94305 USA. EM khosla@stanford.edu RI Kim, Chu-Young/D-8849-2012 OI Kim, Chu-Young/0000-0003-3744-7802 NR 52 TC 25 Z9 25 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD NOV 28 PY 2006 VL 45 IS 47 BP 14085 EP 14093 DI 10.1021/bi061187v PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 107NU UT WOS:000242179100016 PM 17115703 ER PT J AU Yu, HG AF Yu, Hua-Gen TI A rigorous full-dimensional quantum dynamics calculation of the vibrational energies of H3O2- SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SHARED PROTON; SPECTROSCOPY; FLUCTUATIONS; SPECTRA; COMPLEX; STATE AB The vibrational energy levels of the H3O2- anion have been calculated using a rigorous quantum dynamics method based on an accurate ab initio potential energy surface. The eigenvalue problem is solved using the two-layer Lanczos iterative diagonalization algorithm in a mixed grid/nondirect product basis set, where the system Hamiltonian is expressed in a set of orthogonal polyspherical coordinates. The lowest 312 vibrational energy levels in each inversion symmetry, together with a comparison of fundamental frequencies with previous quantum dynamics calculations, are reported. Finally, a statistical analysis of nearest level spacing distribution is carried out, revealing a strongly chaotic nature. (c) 2006 American Institute of Physics. C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Yu, HG (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM hgy@bnl.gov RI Yu, Hua-Gen/N-7339-2015 NR 20 TC 19 Z9 19 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 28 PY 2006 VL 125 IS 20 AR 204306 DI 10.1063/1.2364892 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 110UZ UT WOS:000242408100020 PM 17144699 ER PT J AU Alonzo, J Huang, ZY Liu, M Mays, JW Toomey, RG Dadmun, MD Kilbey, SM AF Alonzo, Jose Huang, Zhenyu Liu, Ming Mays, Jimmy W. Toomey, Ryan G. Dadmun, Mark D. Kilbey, S. Michael, II TI Looped polymer brushes formed by self-assembly of poly(2-vinylpyridine)-polystyrene-poly(2-vinylpyridine) triblock copolymers at the solid-fluid interface. Kinetics of preferential adsorption SO MACROMOLECULES LA English DT Article ID BLOCK-COPOLYMERS; DIBLOCK COPOLYMERS; SELECTIVE SOLVENTS; SURFACE; POLY(2-VINYLPYRIDINE); ELLIPSOMETRY; THICKNESS; BEHAVIOR; MODEL AB The kinetics of assembly of a series of poly(2-vinylpyridine)-polystyrene-poly(2-vinylpyridine) (PVP-b-PS-b-PVP) triblock copolymers from the selective solvent toluene onto a silicon surface has been studied using phase-modulated ellipsometry. The adsorbed amount and thickness have been determined independently as functions of time. Even though the adsorbed amount as a function of time follows the traditional two-step process that is typical of the self-assembly of diblock copolymers-there is an initial fast adsorption followed by a slow buildup of the layer ( brush regime)-the thickness shows an "overshoot" that corresponds to the brush regime. We attribute this phenomenon, not observed in the self-assembly of amphiphilic diblock copolymers, to having both ends of the chain tethered. The final ellipsometric thicknesses of the brush made from the triblocks are less than that expected for a single-end tethered brush made from a diblock copolymer with a buoy block of similar molecular weight. This result supports the conclusion that PVP-b-PS-b-PVP triblock copolymers adsorb mainly in a looplike conformation. C1 Clemson Univ, Dept Chem & Biomol Engn, Clemson, SC 29634 USA. Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Univ S Florida, Dept Chem Engn, Tampa, FL 33620 USA. RP Kilbey, SM (reprint author), Clemson Univ, Dept Chem & Biomol Engn, Clemson, SC 29634 USA. NR 27 TC 17 Z9 17 U1 2 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD NOV 28 PY 2006 VL 39 IS 24 BP 8434 EP 8439 DI 10.1021/ma0610941 PG 6 WC Polymer Science SC Polymer Science GA 107OK UT WOS:000242180700033 ER PT J AU Donley, JP Heine, DR AF Donley, James P. Heine, David R. TI Structure of strongly charged polyelectrolyte solutions SO MACROMOLECULES LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; INTEGRAL-EQUATION THEORY; ANGLE NEUTRON-SCATTERING; COUNTERION CONDENSATION; FLEXIBLE POLYELECTROLYTES; LIGHT-SCATTERING; IONIC-STRENGTH; LINEAR POLYELECTROLYTES; RIGID POLYELECTROLYTES; MULTIMACROION DOMAINS AB Molecular dynamics simulation and recent theory are used to examine density correlations in semidilute solutions of highly charged, intrinsically flexible, and hydrophilic polyelectrolytes in low salt. Quantitative comparison with no adjustable parameters is made with recent scattering and osmometry experiments. Agreement is found for the polymer-polymer structure factor at intermediate wavevectors q with varying chain charge fraction f. Theory is also in agreement with simulation and experiment for the osmotic pressure but not with q -> 0 extrapolations of scattering data that show anomalously large intensities at low q. C1 Boeing Co, Huntington Beach, CA 92647 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Donley, JP (reprint author), Valaence4 Technol, Los Angeles, CA 90025 USA. EM jdonley@mailaps.org NR 48 TC 3 Z9 3 U1 2 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD NOV 28 PY 2006 VL 39 IS 24 BP 8467 EP 8472 DI 10.1021/ma0607012 PG 6 WC Polymer Science SC Polymer Science GA 107OK UT WOS:000242180700037 ER PT J AU Kim, SH Misner, MJ Yang, L Gang, O Ocko, BM Russell, TP AF Kim, Seung Hyun Misner, Matthew J. Yang, Ling Gang, Oleg Ocko, Benjamin M. Russell, Thomas P. TI Salt complexation in block copolymer thin films SO MACROMOLECULES LA English DT Article ID CRYSTALLINE POLYMER ELECTROLYTES; ARRAYS; NANOSTRUCTURES; LITHOGRAPHY; FABRICATION; NANOLITHOGRAPHY; CONDUCTIVITY; BATTERIES; MICELLES; PATTERNS AB Ion complexation within cylinder-forming block copolymer thin films was found to affect the ordering process of the copolymer films during solvent annealing, significantly enhancing the long-range positional order. Small amounts of alkali halide or metal salts were added to PS-b-PEO, on the order of a few ions per chain, where the salt complexed with the PEO block. The orientation of the cylindrical microdomains strongly depended on the salt concentration and the ability of the ions to complex with PEO. The process shows large flexibility in the choice of salt used, including gold or cobalt salts, whereby well-organized patterns of nanoparticles can be generated inside the copolymer microdomains. By further increasing the amount of added salts, the copolymer remained highly ordered at large degrees of swelling and demonstrated long-range positional correlations of the microdomains in the swollen state, which holds promise as a route to addressable media. C1 Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. Inha Univ, Div Nanosyst Engn, Inchon, South Korea. Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Russell, TP (reprint author), Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. NR 42 TC 110 Z9 110 U1 4 U2 59 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD NOV 28 PY 2006 VL 39 IS 24 BP 8473 EP 8479 DI 10.1021/ma061170k PG 7 WC Polymer Science SC Polymer Science GA 107OK UT WOS:000242180700038 ER PT J AU Lei, CH Shin, Y Magnuson, JK Fryxell, G Lasure, LL Elliott, DC Liu, J Ackerman, EJ AF Lei, Chenghong Shin, Yongsoon Magnuson, Jon K. Fryxell, Glen Lasure, Linda L. Elliott, Douglas C. Liu, Jun Ackerman, Eric J. TI Characterization of functionalized nanoporous supports for protein confinement SO NANOTECHNOLOGY LA English DT Article ID MESOPOROUS MOLECULAR-SIEVES; SOL-GEL PROCESS; GLUCOSE-OXIDASE; ENZYME IMMOBILIZATION; PSEUDOMONAS-DIMINUTA; SILICA; ISOMERASE; PHOSPHOTRIESTERASE; ENCAPSULATION; RESOLUTION AB Here we characterize a highly efficient approach for protein confinement and enzyme immobilization in NH(2)- or HOOC-functionalized mesoporous silica (FMS) with pore sizes as large as tens of nanometres. We observed a dramatic increase of enzyme loading in both enzyme activity and protein amount when using appropriate FMS in comparison with unfunctionalized mesoporous silica and normal porous silica. With different protein loading density in NH(2)-FMS, the negatively charged glucose oxidase (GOX) displayed an immobilization efficiency (I(e), the ratio of the specific activity of the immobilized enzyme to the specific activity of the free enzyme in stock solution) in a range from 30% to 160%, while the same charged glucose isomerase (GI) showed an I(e) of 100% to 120%, and the positively charged organophosphorus hydrolase (OPH) exhibited I(e) of more than 200% in HOOC-FMS. The enzyme-FMS composite was stained with the charged gold nanoparticles and imaged by transmission electron microscopy (TEM). Fourier transform infrared (FTIR) spectroscopy showed no major secondary structural change for the enzymes entrapped in FMS. Thanks to the large, rigid, open pore structure of FMS, the reaction rate and Km of the entrapped enzymes in FMS were comparable to those of the free enzymes in solution. In principle, the general approach described here should be applicable to many enzymes, proteins, and protein complexes since both pore sizes and functional groups of FMS are controllable. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lei, CH (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM Eric.Ackerman@pnl.gov NR 32 TC 79 Z9 81 U1 2 U2 36 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD NOV 28 PY 2006 VL 17 IS 22 BP 5531 EP 5538 DI 10.1088/0957-4484/17/22/001 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 112IM UT WOS:000242519200001 PM 21727320 ER PT J AU Molina, SI Ben, T Sales, DL Pizarro, J Galindo, PL Varela, M Pennycook, SJ Fuster, D Gonzalez, Y Gonzalez, L AF Molina, S. I. Ben, T. Sales, D. L. Pizarro, J. Galindo, P. L. Varela, M. Pennycook, S. J. Fuster, D. Gonzalez, Y. Gonzalez, L. TI Determination of the strain generated in InAs/InP quantum wires: prediction of nucleation sites SO NANOTECHNOLOGY LA English DT Article ID DEPOSITED THICKNESS; STRESS MEASUREMENTS; DOTS; GROWTH; NANOSTRUCTURES; NANOWIRES; INP(001) AB The compositional distribution in a self-assembled InAs( P) quantum wire grown by molecular beam epitaxy on an InP( 001) substrate has been determined by electron energy loss spectrum imaging. We have determined the strain and stress fields generated in and around this wire capped with a 5 nm InP layer by finite element calculations using as input the compositional map experimentally obtained. Preferential sites for nucleation of wires grown on the surface of this InP capping layer are predicted, based on chemical potential minimization, from the determined strain and stress fields on this surface. The determined preferential sites for wire nucleation agree with their experimentally measured locations. The method used in this paper, which combines electron energy loss spectroscopy, high-resolution Z contrast imaging, and elastic theory finite element calculations, is believed to be a valuable technique of wide applicability for predicting the preferential nucleation sites of epitaxial self-assembled nano-objects. C1 Univ Cadiz, Fac Ciencia, Dept Ciencia Mat & IM & QI, Cadiz 11510, Spain. Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. Univ Cadiz, CASEM, Dept Lenguajes & Sist Informat, Cadiz 11510, Spain. CSIC, CNM, Inst Microelect Madrid, Madrid 28760, Spain. RP Molina, SI (reprint author), Univ Cadiz, Fac Ciencia, Dept Ciencia Mat & IM & QI, Campus Rio San Pedro S-N, Cadiz 11510, Spain. EM sergio.molina@uca.es RI Ben, Teresa/B-8753-2017; Molina, Sergio/A-8241-2008; Gonzalez, Luisa/E-6990-2010; Varela, Maria/H-2648-2012; Gonzalez, Yolanda/C-5234-2011; Microelectronica de Madrid, Instituto de/D-5173-2013; Fuster, David/A-7295-2014; Varela, Maria/E-2472-2014; BEN, TERESA/I-9076-2014; Sales, David/K-9453-2014; Pizarro Junquera, Joaquin/L-5943-2014; GALINDO, PEDRO/L-6183-2014 OI Ben, Teresa/0000-0003-4842-1472; Molina, Sergio/0000-0002-5221-2852; Gonzalez, Luisa/0000-0002-8745-7673; Gonzalez, Yolanda/0000-0002-7581-7328; Microelectronica de Madrid, Instituto de/0000-0003-4211-9045; Fuster, David/0000-0002-8809-697X; Varela, Maria/0000-0002-6582-7004; Sales, David/0000-0001-6652-514X; Pizarro Junquera, Joaquin/0000-0002-4295-6743; GALINDO, PEDRO/0000-0003-0892-8113 NR 19 TC 20 Z9 20 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD NOV 28 PY 2006 VL 17 IS 22 BP 5652 EP 5658 DI 10.1088/0957-4484/17/22/020 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 112IM UT WOS:000242519200020 PM 21727338 ER PT J AU Fowlkes, JD Hullander, ED Fletcher, BL Retterer, ST Melechko, AV Hensley, DK Simpson, ML Doktycz, MJ AF Fowlkes, J. D. Hullander, E. D. Fletcher, B. L. Retterer, S. T. Melechko, A. V. Hensley, D. K. Simpson, M. L. Doktycz, M. J. TI Molecular transport in a crowded volume created from vertically aligned carbon nanofibres: a fluorescence recovery after photobleaching study SO NANOTECHNOLOGY LA English DT Article ID BROWNIAN DYNAMICS SIMULATIONS; CHEMICAL-VAPOR-DEPOSITION; SINGLE-PARTICLE TRACKING; ANOMALOUS DIFFUSION; NANOTUBE MEMBRANES; DISORDERED MEDIA; MASS-TRANSPORT; MONTE-CARLO; COMPUTER-SIMULATION; SELF-DIFFUSION AB Rapid and selective molecular exchange across a barrier is essential for emulating the properties of biological membranes. Vertically-aligned carbon nanofibre ( VACNF) forests have shown great promise as membrane mimics, owing to their mechanical stability, their ease of integration with microfabrication technologies and the ability to tailor their morphology and surface properties. However, quantifying transport through synthetic membranes having micro- and nanoscale features is challenging. Here, fluorescence recovery after photobleaching ( FRAP) is coupled with finite difference and Monte Carlo simulations to quantify diffusive transport in microfluidic structures containing VACNF forests. Anomalous subdiffusion was observed for FITC ( hydrodynamic radius of 0.54 nm) diffusion through both VACNFs and SiO2-coated VACNFS ( oxVACNFs). Anomalous subdiffusion can be attributed to multiple FITC - nanofibre interactions for the case of diffusion through the VACNF forest. Volume crowding was identified as the cause of anomalous subdiffusion in the oxVACNF forest. In both cases the diffusion mode changes to a time-independent, Fickian mode of transport that can be defined by a crossover length ( RCR). By identifying the space- and time-dependent transport characteristics of the VACNF forest, the dimensional features of membranes can be tailored to achieve predictable molecular exchange. C1 Oak Ridge Natl Lab, Mol Scale Engn & Nanoscale Technol Res Grp, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Biol & Nanoscale Syst Grp, Life Sci Div, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Fowlkes, JD (reprint author), Oak Ridge Natl Lab, Mol Scale Engn & Nanoscale Technol Res Grp, Condensed Matter Sci Div, POB 2008, Oak Ridge, TN 37831 USA. EM fo2@ornl.gov RI Melechko, Anatoli/B-8820-2008; Retterer, Scott/A-5256-2011; Doktycz, Mitchel/A-7499-2011; Simpson, Michael/A-8410-2011; Hensley, Dale/A-6282-2016 OI Retterer, Scott/0000-0001-8534-1979; Doktycz, Mitchel/0000-0003-4856-8343; Simpson, Michael/0000-0002-3933-3457; Hensley, Dale/0000-0001-8763-7765 NR 73 TC 13 Z9 14 U1 3 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD NOV 28 PY 2006 VL 17 IS 22 BP 5659 EP 5668 DI 10.1088/0957-4484/17/22/021 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 112IM UT WOS:000242519200021 PM 21727339 ER PT J AU Carlsten, BE Bishofberger, KA AF Carlsten, Bruce E. Bishofberger, Kip A. TI Simple algorithm for designing skew-quadrupole cooling configurations SO NEW JOURNAL OF PHYSICS LA English DT Article AB Previous discussions of skew-quadrupole channels for emittance cooling have lacked a clear prescription of how to design a specific configuration. We present simple formulae that can be used to design such a channel for a beam entering at a waist. A nominal design is presented for a 120 kV, 2A electron beam that requires 433 G of axial field at the cathode and three skew-quadrupoles with reasonable field gradients in a 10 cm long region. This design leads to a final emittance ratio of nearly three hundred. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Carlsten, BE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM bcarlsten@lanl.gov OI Carlsten, Bruce/0000-0001-5619-907X NR 10 TC 3 Z9 3 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD NOV 28 PY 2006 VL 8 AR 286 DI 10.1088/1367-2630/8/11/286 PG 10 WC Physics, Multidisciplinary SC Physics GA 112TG UT WOS:000242549500009 ER PT J AU Fedotov, AV Ben-Zvi, I Bruhwiler, DL Litvinenko, VN Sidorin, AO AF Fedotov, A. V. Ben-Zvi, I. Bruhwiler, D. L. Litvinenko, V. N. Sidorin, A. O. TI High-energy electron cooling in a collider SO NEW JOURNAL OF PHYSICS LA English DT Article ID INTRA-BEAM SCATTERING; STORAGE-RINGS; SIMULATION; FRICTION; PHYSICS; FORCES; IONS AB High-energy electron cooling can open new possibilities in particle physics by producing high-quality hadron beams in colliders, and is presently considered for several accelerator physics projects. However, it also presents many unique features and challenges. For example, an accurate estimate of the cooling times requires a detailed calculation of the cooling process, which takes place simultaneously with various diffusive mechanisms. This task becomes even more challenging when the cooling is performed directly at a collision energy which puts special demands on the description of the beam distribution function under cooling. To address these issues, a systematic study of the cooling dynamics is underway at Brookhaven National Laboratory. In this paper, we present various aspects of this research and summarize our findings. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. Tech X Corp, Boulder, CO 80303 USA. Joint Inst Nucl Res, Dubna 141980, Russia. RP Fedotov, AV (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM fedotov@bnl.gov NR 42 TC 8 Z9 8 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD NOV 28 PY 2006 VL 8 AR 283 DI 10.1088/1367-2630/8/11/283 PG 15 WC Physics, Multidisciplinary SC Physics GA 112TG UT WOS:000242549500006 ER PT J AU Furman, MA AF Furman, M. A. TI A preliminary assessment of the electron-cloud effect for the FNAL main injector upgrade SO NEW JOURNAL OF PHYSICS LA English DT Article AB We present results from a preliminary assessment, via computer simulations, of the electron-cloud (EC) density for the FNAL Main Injector upgrade at injection energy. Assuming a peak value for secondary emission yield delta(max) = 1.3, we find a threshold value of the bunch population, N-b,N-th similar or equal to 1.25 x 10(11), beyond which the EC density rho(e) reaches a steady-state level that is similar to 10(4) times larger than for N-b < N-b,N-th, essentially neutralizing the beam, and leading to a tune shift similar to 0.05. Our investigation is limited to a field-free region and to a dipole magnet region, both of which yield similar results for both N-b,N-th and the steady-state value of rho(e). Possible dynamical effects from the EC on the beam, such as emittance growth and instabilities, remain to be investigated separately. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Beam Phys, Berkeley, CA 94720 USA. RP Furman, MA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Beam Phys, Bldg 71R0259,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM mafurman@lbl.gov NR 22 TC 2 Z9 2 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD NOV 28 PY 2006 VL 8 AR 279 DI 10.1088/1367-2630/8/11/279 PG 13 WC Physics, Multidisciplinary SC Physics GA 112TG UT WOS:000242549500002 ER PT J AU Guo, JQ Tantawi, S AF Guo, Jiquan Tantawi, Sami TI Active RF pulse compression using an electrically controlled semiconductor switch SO NEW JOURNAL OF PHYSICS LA English DT Article ID RESONANT DELAY-LINES AB First we review the theory of active pulse compression systems using resonant delay lines. Then we describe the design of an electrically controlled semiconductor active switch. The switch comprises an active window and an overmoded waveguide three-port network. The active window is based on a four-inch silicon wafer which has 960 PIN diodes. These are spatially combined in an overmoded waveguide. We describe the philosophy and design methodology for the three-port network and the active window. We then present the results of using this device to compress 11.4 GHz RF signals with high compression ratios. We show how the system can be used with amplifier-like sources, in which one can change the phase of the source by manipulating the input to the source. We also show how the active switch can be used to compress a pulse from an oscillator-like source, which is not possible with passive pulse compression systems. C1 Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. RP Guo, JQ (reprint author), Stanford Univ, SLAC, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM jqguo@slac.stanford.edu NR 18 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD NOV 28 PY 2006 VL 8 AR 293 DI 10.1088/1367-2630/8/11/293 PG 17 WC Physics, Multidisciplinary SC Physics GA 112TG UT WOS:000242549500016 ER PT J AU Kaganovich, ID Startsev, E Davidson, RC AF Kaganovich, Igor D. Startsev, Edward Davidson, Ronald C. TI Scaling and formulary of cross-sections for ion-atom impact ionization SO NEW JOURNAL OF PHYSICS LA English DT Article ID MULTIPLY-CHARGED IONS; HIGHLY STRIPPED IONS; ELECTRON-CAPTURE; PLASMA LENS; PROTON COLLISIONS; NA 3P; HELIUM; HYDROGEN; ENERGY; HEAVY AB The values of ion-atom ionization and stripping cross-sections are frequently needed for many applications that utilize the propagation of fast ions through matter. When experimental data and theoretical calculations are not available, approximate formulae are frequently used. This paper briefly summarizes the most important theoretical results and approaches to cross-section calculations in order to place the discussion in historical perspective and offer a concise introduction to the topic. Based on experimental data and theoretical predictions, a new fit for ionization cross-sections is proposed. The range of validity and accuracy of several frequently used approximations (classical trajectory, the Born approximation, and so forth) are discussed using, as examples, the ionization cross-sections of hydrogen and helium atoms by various fully stripped ions. A formulary of analytical approximations for cross-sections is presented. C1 Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Kaganovich, ID (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM ikaganov@pppl.gov NR 94 TC 27 Z9 27 U1 7 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD NOV 28 PY 2006 VL 8 AR 278 DI 10.1088/1367-2630/8/11/278 PG 45 WC Physics, Multidisciplinary SC Physics GA 112TG UT WOS:000242549500001 ER PT J AU Ostroumov, PN AF Ostroumov, P. N. TI Physics design of the 8 GeVH-minus linac SO NEW JOURNAL OF PHYSICS LA English DT Article AB The proposed 8 GeV proton driver (PD) linac at FNAL is based on 436 independently phased superconducting (SC) resonators (Foster and MacLachlan 2002 Proc. LINAC-2002 p 826). The linac includes a front end up to similar to 420 MeV and a high energy section operating at 325 and 1300 MHz respectively. A room temperature (RT) radio frequency quadrupole (RFQ) and short H-type resonators are proposed for the initial acceleration of the H-minus or proton beam up to 10 MeV. From 10 to similar to 420 MeV the voltage gain is provided by SC spoke-loaded cavities. In the high-energy section, the acceleration is provided by the International Linear Collider (ILC)-style SC elliptical cell cavities. The beam physics and the lattice design for the FNAL 8 GeV linac are discussed in this paper. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Ostroumov, PN (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ostroumov@phy.anl.gov NR 44 TC 16 Z9 16 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD NOV 28 PY 2006 VL 8 AR 281 DI 10.1088/1367-2630/8/11/281 PG 30 WC Physics, Multidisciplinary SC Physics GA 112TG UT WOS:000242549500004 ER PT J AU Stupakov, G AF Stupakov, Gennady TI Using the parabolic equation for calculation of beam impedance SO NEW JOURNAL OF PHYSICS LA English DT Article AB In this paper we develop a new method, using the parabolic equation (PE), for the calculation of both high-frequency and small-angle taper (or collimator) impedances. The applicability of the PE in the high-frequency limit is based on the observation that in this case the contribution to impedance comes from the electromagnetic waves that catch up with the beam far from the obstacle and propagate at small angles to the axis of the pipe. One of the most important advantages of the PE is that it eliminates the spatial scale of the small wavelength from the problem. As a result, the numerical solution of the PE requires coarser spatial meshes. In this paper we focus on the longitudinal impedance for an axisymmetric geometry and assume a perfect conductivity of the walls. We show how the known analytical results which include a small-angle collimator, step-in and step-out transitions, and a pillbox cavity, can be derived within the framework of the PE. C1 Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Stupakov, G (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. EM stupakov@slac.stanford.edu NR 18 TC 5 Z9 5 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD NOV 28 PY 2006 VL 8 AR 280 DI 10.1088/1367-2630/8/11/280 PG 14 WC Physics, Multidisciplinary SC Physics GA 112TG UT WOS:000242549500003 ER PT J AU Vlaicu, I Colestock, PL Kashuba, RJ AF Vlaicu, I. Colestock, P. L. Kashuba, R. J. TI On a model for weak turbulence in synchrotrons SO NEW JOURNAL OF PHYSICS LA English DT Article AB In this work we formulate a theory of weak turbulence for the longitudinal degree of freedom in a stored, coasting beam. We employ a perturbative approach to the fully nonlinear Vlasov equation that is well suited to a set of well separated eigenfrequencies and study the case where the beam is marginally stable to longitudinal oscillations. We derive an averaged equation that describes the nonlinear flow of the fluctuation power among the multiplicity of harmonic modes, characterized by the properties of the machine impedance. In addition, we introduce the Schottky noise of the beam that acts as a thermal reservoir with which the wake-driven oscillations must come into equilibrium. We find steady-state solutions of the nonlinear equation set that indicate significant enhancement of the Schottky spectrum is possible. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Colestock, PL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM colestoc@lanl.gov NR 11 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD NOV 28 PY 2006 VL 8 AR 282 DI 10.1088/1367-2630/8/11/282 PG 16 WC Physics, Multidisciplinary SC Physics GA 112TG UT WOS:000242549500005 ER PT J AU Hallam, SJ Konstantinidis, KT Putnam, N Schleper, C Watanabe, Y Sugahara, J Preston, C de la Torre, J Richardson, PM DeLong, EF AF Hallam, Steven J. Konstantinidis, Konstantinos T. Putnam, Nik Schleper, Christa Watanabe, Yoh-ichi Sugahara, Junichi Preston, Christina de la Torre, Jose Richardson, Paul M. DeLong, Edward F. TI Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE Archaea; crenarchaea; environmental genomics; marine microbiology; population genomics ID BLUE COPPER PROTEIN; SPLICING ENDONUCLEASE; ARCHAEA; OCEAN; DIVERSITY; PROKARYOTES; NITRIFICATION; HALOCYANIN; ALIGNMENT; LIPIDS AB Crenarchaeota are ubiquitous and abundant microbial constituents of soils, sediments, lakes, and ocean waters. To further describe the cosmopolitan nonthermophilic Crenarchaeota, we analyzed the genome sequence of one representative, the uncultivated sponge symbiont Cenarchaeum symbiosum. C. symbiosum genotypes coinhabiting the same host partitioned into two dominant populations, corresponding to previously described a- and b-type ribosomal RNA variants. Although they were syntenic, overlapping a- and b-type ribotype genomes harbored significant variability. A single tiling path comprising the dominant a-type genotype was assembled and used to explore the genomic properties of C. symbiosum and its planktonic relatives. Of 2,066 ORFs, 55.6% matched genes with predicted function from previously sequenced genomes. The remaining genes partitioned between functional RNAs (2.4%) and hypotheticals (42%) with limited homology to known functional genes. The latter category included some genes likely involved in the archaeal-sponge symbiotic association. Conversely, 525 C. symbiosum ORI's were most highly similar to sequences from marine environmental genomic surveys, and they apparently represent orthologous genes from free-living planktonic Crenarchaeota. In total, the C symbiosum genome was remarkably distinct from those of other known Archaea and shared many core metabolic features in common with its free-living planktonic relatives. C1 MIT, Cambridge, MA 02139 USA. Joint Genome Inst, Walnut Creek, CA 94598 USA. Univ Bergen, Dept Biol, N-5020 Bergen, Norway. Univ Tokyo, Dept Biomed Chem, Tokyo 1130033, Japan. Keio Univ, Inst Adv Biosci, Tsuruoka 9970017, Japan. Monterey Bay Aquarium Res Inst, Moss Landing, CA 95069 USA. Univ Washington, Seattle, WA 98195 USA. RP DeLong, EF (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM delong@mit.edu RI Putnam, Nicholas/B-9968-2008; de la Torre, Jose/H-2081-2012 OI Putnam, Nicholas/0000-0002-1315-782X; NR 56 TC 268 Z9 383 U1 7 U2 63 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 28 PY 2006 VL 103 IS 48 BP 18296 EP 18301 DI 10.1073/pnas.0608549103 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 111PJ UT WOS:000242465200048 PM 17114289 ER PT J AU Banerjee, S Kim, DI Robinson, RD Herman, IP Mao, YB Wong, SS AF Banerjee, Sarbajit Kim, Dae-In Robinson, Richard D. Herman, Irving P. Mao, Yuanbing Wong, Stanislaus S. TI Observation of Fano asymmetry in Raman spectra of SrTiO3 and CaxSr1-xTiO3 perovskite nanocubes SO APPLIED PHYSICS LETTERS LA English DT Article ID STRONTIUM-TITANATE; THIN-FILMS; NANOSTRUCTURES; SPECTROSCOPY; SCATTERING; SYSTEM AB Bulk SrTiO3 is cubic and not expected to exhibit any first-order Raman scattering. However, nanocubes of SrTiO3 with an edge length of 80 +/- 10 nm show strong first-order Raman scattering originating from the breaking of symmetry caused by frozen surface dipoles (local tetragonality) and the presence of nanoscopic polar domains (arising from incorporated impurities). Rapid polarization fluctuations within these nanoscopic ferroelectric regions interfere with a polar phonon, resulting in a Fano-like asymmetric line shape in these SrTiO3 nanocubes, as well as in Ca0.3Sr0.7TiO3 nanocubes. (c) 2006 American Institute of Physics. C1 Columbia Univ, Mat Res Sci & Engn Ctr, New York, NY 10027 USA. Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Banerjee, S (reprint author), Columbia Univ, Mat Res Sci & Engn Ctr, New York, NY 10027 USA. EM iph1@columbia.edu NR 20 TC 26 Z9 26 U1 3 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 27 PY 2006 VL 89 IS 22 AR 223130 DI 10.1063/1.2400095 PG 3 WC Physics, Applied SC Physics GA 112PJ UT WOS:000242538500115 ER PT J AU Ivanov, I Puretzky, A Eres, G Wang, H Pan, ZW Cui, HT Jin, RY Howe, J Geohegan, DB AF Ivanov, Ilia Puretzky, Alexander Eres, Gyula Wang, Hsin Pan, Zhengwei Cui, Hongtao Jin, Rongying Howe, Jane Geohegan, David B. TI Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays SO APPLIED PHYSICS LETTERS LA English DT Article ID PREFERRED ORIENTATION; RAMAN-SPECTRA; FILMS; CONDUCTIVITY; DIFFUSIVITY; FIBERS AB This letter reports on fast and highly anisotropic thermal transport through millimeter-tall, vertically aligned carbon nanotube arrays (VANTAs) synthesized by chemical vapor deposition on Si substrates. Thermal diffusivity measurements were performed for both longitudinal and transverse to the nanotube alignment direction, with longitudinal values as large as 2.1 +/- 0.2 cm(2)/s and anisotropy ratios as large as 72. Longitudinal thermal conductivities of 15.3 +/- 1.8 W/(m K) for porous 8 +/- 1 vol % VANTAs in air and 5.5 +/- 0.7 W/(m K) for epoxy-infiltrated VANTAs already exceed those of phase-changing thermal interface materials used in microelectronics. Data suggest that further improvements are possible through optimization of density and defects in the arrays. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Ivanov, I (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM ivanovin@ornl.gov; geohegandb@ornl.gov RI Howe, Jane/G-2890-2011; ivanov, ilia/D-3402-2015; Puretzky, Alexander/B-5567-2016; Wang, Hsin/A-1942-2013; Geohegan, David/D-3599-2013; Eres, Gyula/C-4656-2017; OI ivanov, ilia/0000-0002-6726-2502; Puretzky, Alexander/0000-0002-9996-4429; Wang, Hsin/0000-0003-2426-9867; Geohegan, David/0000-0003-0273-3139; Eres, Gyula/0000-0003-2690-5214; Pan, Zhengwei/0000-0002-3854-958X NR 23 TC 74 Z9 74 U1 2 U2 36 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 27 PY 2006 VL 89 IS 22 AR 223110 DI 10.1063/1.2397008 PG 3 WC Physics, Applied SC Physics GA 112PJ UT WOS:000242538500095 ER PT J AU Lee, TW Hsu, JWP AF Lee, Tae-Woo Hsu, Julia W. P. TI Molecular monolayer modification of the cathode in organic light-emitting diodes SO APPLIED PHYSICS LETTERS LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; POLYMER; DEVICES; EFFICIENCY; INJECTION; METAL; ELECTRODES; LAYER AB The effects of alkanethiol self-assembled monolayers (SAMs) attached to the gold cathode of organic light-emitting diodes made by soft contact lamination are investigated. In spite of reported work function lowering by alkanethiol SAMs, the results from this work showed that their primary effect in carrier transport is to act as a thin insulating layer, causing current reduction. At the same time, the luminescence efficiency was enhanced because the SAMs reduce exciton quenching by the metal cathode. A two-order-of-magnitude enhancement at light emission onset was observed for a hexadecanethiol modified device. (c) 2006 American Institute of Physics. C1 Samsung Adv Inst Technol, Yongin, Gyeonggi, South Korea. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lee, TW (reprint author), Samsung Adv Inst Technol, Mt 14-1 Mongseo Dong, Yongin, Gyeonggi, South Korea. EM taew.lee@samsung.com NR 30 TC 10 Z9 10 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 27 PY 2006 VL 89 IS 22 AR 223511 DI 10.1063/1.2397033 PG 3 WC Physics, Applied SC Physics GA 112PJ UT WOS:000242538500128 ER PT J AU Limpijumnong, S Smith, MF Zhang, SB AF Limpijumnong, Sukit Smith, M. F. Zhang, S. B. TI Characterization of As-doped, p-type ZnO by x-ray absorption near-edge structure spectroscopy: Theory SO APPLIED PHYSICS LETTERS LA English DT Article ID MOLECULAR-BEAM EPITAXY; THIN-FILMS AB Vaithianathan [Appl. Phys. Lett. 88, 112103 (2006)] measured x-ray absorption near-edge structure (XANES) of As-doped ZnO and analyzed it as evidence for As-O acceptors. However, upon carrying out first principles calculations, we found that the simulated XANES spectrum for As-O is very different from that observed. Instead, the simulated spectrum for As-Zn-2V(Zn) defect complex, which is predicted to be an acceptor [S. Limpijumnong , Phys. Rev. Lett. 92, 155504 (2004)], is far more consistent with the XANES data. The combination of our study, with the XANES of Vaithianathan might be, until now, the strongest support for the As-Zn-2V(Zn) model. (c) 2006 American Institute of Physics. C1 Natl Synchrotron Res Ctr, Nakkhon Ratchasima 30000, Thailand. Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Limpijumnong, S (reprint author), Natl Synchrotron Res Ctr, Nakkhon Ratchasima 30000, Thailand. EM sukit@sut.ac.th RI Krausnick, Jennifer/D-6291-2013; Zhang, Shengbai/D-4885-2013 OI Zhang, Shengbai/0000-0003-0833-5860 NR 19 TC 32 Z9 33 U1 0 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 27 PY 2006 VL 89 IS 22 AR 222113 DI 10.1063/1.2398895 PG 3 WC Physics, Applied SC Physics GA 112PJ UT WOS:000242538500059 ER PT J AU Redigolo, ML Koktysh, DS Rosenthal, SJ Dickerson, JH Gai, Z Gao, L Shen, J AF Redigolo, Marcela L. Koktysh, Dmitry S. Rosenthal, Sandra J. Dickerson, James H. Gai, Zheng Gao, Lan Shen, Jian TI Magnetization reversal in europium sulfide nanocrystals SO APPLIED PHYSICS LETTERS LA English DT Article ID SINGLE-SOURCE PRECURSOR; EUS NANOCRYSTALS; MACROSCOPIC FERRIMAGNETS; SURFACE ANISOTROPY; NANOPARTICLES; CHALCOGENIDES; PRESSURES; NEUTRON; FILMS AB The authors report the observation of the reversal in the magnetization hysteresis curve of europium sulfide nanocrystals. This phenomenon was investigated through the temperature-dependent magnetization of two classes of nanomaterials, nanocrystalline (2.0 nm <= d(NCs)<= 100 nm) and quantum confined (d(NCs)<= 2.0 nm), where d(NCs) is the diameter of the nanomaterial. The effect of the size of the nanomaterial on the magnetization is attributed to the competition between the magnetic properties of strained surface atoms and unstrained core atoms. Superconducting quantum interference device probed the magnetic response. Electron microscopy and X-ray diffraction spectroscopy revealed the crystallinity and monodispersivity of the nanomaterials. (c) 2006 American Institute of Physics. C1 Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. Vanderbilt Univ, Inst Nanoscale Sci & Engn, Nashville, TN 37235 USA. Vanderbilt Univ, Dept Chem, Nashville, TN 37235 USA. Oak Ridge Natl Lab, Ctr Nanophase, Div Mat Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Dickerson, JH (reprint author), Vanderbilt Univ, Dept Phys & Astron, 221 Kirkland Hall, Nashville, TN 37235 USA. EM james.h.dickerson@vanderbilt.edu RI Dickerson, James/F-7950-2013; Gai, Zheng/B-5327-2012 OI Dickerson, James/0000-0001-9636-6303; Gai, Zheng/0000-0002-6099-4559 NR 28 TC 16 Z9 17 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 27 PY 2006 VL 89 IS 22 AR 222501 DI 10.1063/1.2396915 PG 3 WC Physics, Applied SC Physics GA 112PJ UT WOS:000242538500061 ER PT J AU Wang, RV Stephenson, GB Fong, DD Jiang, F Fuoss, PH Eastman, JA Streiffer, SK Latifi, K Thompson, C AF Wang, R. -V. Stephenson, G. B. Fong, D. D. Jiang, F. Fuoss, P. H. Eastman, J. A. Streiffer, S. K. Latifi, K. Thompson, Carol TI Real time x-ray observation of lattice pulling during growth of epitaxial Pb(Zr,Ti)O-3 films SO APPLIED PHYSICS LETTERS LA English DT Article ID THIN-FILMS; THERMODYNAMIC THEORY; FERROELECTRICITY; PBTIO3; STRAIN AB Using surface-sensitive grazing incidence synchrotron x-ray scattering and fluorescence, the authors have monitored the evolution of strain and Zr composition in situ during metal-organic chemical vapor deposition of Pb(Zr,Ti)O-3 epitaxially grown on (001) SrTiO3. The Zr fraction of the growing surface increases dramatically as the film relaxes, resulting in compositional nonuniformity in the growth direction. The observed composition variation can be quantitatively explained by the lattice pulling model, which includes strain energy in the thermodynamic equilibria for growth. C1 Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. Argonne Natl Lab, Div Sci Mat, Argonne, IL 60439 USA. No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Wang, RV (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rvwang@anl.gov RI Streiffer, Stephen/A-1756-2009; Eastman, Jeffrey/E-4380-2011; OI Thompson, Carol/0000-0003-3832-4855 NR 18 TC 7 Z9 7 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 27 PY 2006 VL 89 IS 22 AR 221914 DI 10.1063/1.2387980 PG 3 WC Physics, Applied SC Physics GA 112PJ UT WOS:000242538500040 ER PT J AU Xu, GY Li, JF Viehland, D AF Xu, Guangyong Li, Jiefang Viehland, D. TI Ground state monoclinic (M-b) phase in (110)(c) BiFeO3 epitaxial thin films SO APPLIED PHYSICS LETTERS LA English DT Article ID CRYSTAL AB The lattice structure of (110)-oriented BiFeO3 epitaxial thin layers has been identified by synchrotron x-ray diffraction. By using (221) and (22 (1) over bar) peaks in the (HHL) zone, a ground state monoclinic M-b phase has been observed with lattice parameters of (beta;a(m)/root 2 and c(m))=(89.35 degrees;3.985 and 3.888 angstrom). These results demonstrate a change in phase stability from rhombohedral in bulk single crystals, to monoclinic in epitaxial thin films with two domain states whose polarization is slightly tilted away from [110] towards [111]. (c) 2006 American Institute of Physics. C1 Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. Virginia Tech, Dept Mat Sci & Engn, Blacksburg, VA 24061 USA. RP Xu, GY (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM gxu@bnl.gov RI Xu, Guangyong/A-8707-2010 OI Xu, Guangyong/0000-0003-1441-8275 NR 26 TC 28 Z9 28 U1 3 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 27 PY 2006 VL 89 IS 22 AR 222901 DI 10.1063/1.2392818 PG 3 WC Physics, Applied SC Physics GA 112PJ UT WOS:000242538500074 ER PT J AU Xu, S Donaldson, MH Pines, A Rochester, SM Budker, D Yashchuk, VV AF Xu, S. Donaldson, M. H. Pines, A. Rochester, S. M. Budker, D. Yashchuk, V. V. TI Application of atomic magnetometry in magnetic particle detection SO APPLIED PHYSICS LETTERS LA English DT Article ID COBALT NANOPARTICLES; SYSTEM AB The authors demonstrate the detection of magnetic particles carried by water in a continuous flow using an atomic magnetic gradiometer. Studies on three types of magnetic particles are presented: a single cobalt particle (diameter similar to 150 mu m, multidomain), a suspension of superparamagnetic magnetite particles (diameter similar to 1 mu m), and ferromagnetic cobalt nanoparticles (diameter similar to 10 nm). Estimated detection limits are 20 mu m diameter for a single cobalt particle at a water flow rate of 30 ml/min, 5x10(3) magnetite particles at 160 ml/min, and 50 pl for the ferromagnetic fluid of cobalt nanoparticles at 130 ml/min. Possible applications of their method are discussed. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Xu, S (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM sxu@lbl.gov; pines@berkeley.edu; budker@berkeley.edu RI Budker, Dmitry/F-7580-2016 OI Budker, Dmitry/0000-0002-7356-4814 NR 18 TC 15 Z9 15 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 27 PY 2006 VL 89 IS 22 AR 224105 DI 10.1063/1.2400077 PG 3 WC Physics, Applied SC Physics GA 112PJ UT WOS:000242538500151 ER PT J AU Wang, M AF Wang, Michael TI Positive, Not 'Pro' SO FORTUNE LA English DT Letter C1 Argonne Natl Lab, Ctr Transportat Res, Chicago, IL USA. RP Wang, M (reprint author), Argonne Natl Lab, Ctr Transportat Res, Chicago, IL USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU TIME INC PI NEW YORK PA TIME & LIFE BUILDING ROCKEFELLER CENTER, NEW YORK, NY 10020-1393 USA SN 0015-8259 J9 FORTUNE JI Fortune PD NOV 27 PY 2006 VL 154 IS 11 BP 50 EP 51 PG 2 WC Business SC Business & Economics GA 106MY UT WOS:000242106100012 ER PT J AU Keith, JM Muller, RP Kemp, RA Goldberg, KI Goddard, WA Oxgaard, J AF Keith, Jason M. Muller, Richard P. Kemp, Richard A. Goldberg, Karen I. Goddard, William A., III Oxgaard, Jonas TI Mechanism of direct molecular oxygen insertion in a palladium(II)-hydride bond SO INORGANIC CHEMISTRY LA English DT Article ID CONTINUUM DIELECTRIC THEORY; AEROBIC OXIDATION; COORDINATED PALLADIUM(0); CATALYSIS; ACTIVATION; ENERGIES; HYDRIDE AB The mechanism of the direct insertion of molecular oxygen into a palladium hydride bond has been elucidated using quantum mechanics (B3LYP/LACVP** with the PBF continuum solvent model). The key step is found to be the abstraction of the hydrogen atom resulting in the formation of a Pd-1/HO2 (triplet) radical pair, which then proceeds to form a singlet palladium hydroperoxo species. Potential palladium(0) pathways were explored and were found to be inaccessible. The results are in agreement with recent experimental results and are consistent with our previously predicted mechanism for an analogue system. C1 CALTECH, Mat Proc & Simulat Ctr, Beckman Inst 139 74, Pasadena, CA 91125 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Univ New Mexico, Dept Chem, Albuquerque, NM 87131 USA. Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. Univ Washington, Dept Chem, Seattle, WA 98195 USA. RP Oxgaard, J (reprint author), CALTECH, Mat Proc & Simulat Ctr, Beckman Inst 139 74, Pasadena, CA 91125 USA. EM oxgaard@wag.caltech.edu RI Oxgaard, Jonas/A-1196-2007 NR 14 TC 64 Z9 64 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD NOV 27 PY 2006 VL 45 IS 24 BP 9631 EP 9633 DI 10.1021/ic061392z PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 106TL UT WOS:000242124300009 PM 17112254 ER PT J AU Cowley, RE Bontchev, RP Duesler, EN Smith, JM AF Cowley, Ryan E. Bontchev, Ranko P. Duesler, Eileen N. Smith, Jeremy M. TI Removing the sting from the tail: Reversible protonation of scorpionate ligands in cobalt(II) tris(carbene) borate complexes SO INORGANIC CHEMISTRY LA English DT Article ID N-HETEROCYCLIC CARBENES; H BOND ACTIVATION; REDUCTIVE ELIMINATION; CRYSTAL-STRUCTURES; ADDUCT; STABILITY; CHEMISTRY; CLEAVAGE; ROUTE; DONOR AB Low-temperature deprotonation of the phenylborane dications, PhB(RIm)(3)OTf2 (R = Bu-t, Mes), followed by in situ reaction with CoCI2(thf)(1.5), results in the formation of the four-coordinate complexes, k(3)-PhB(RIm)(3)CoCl, in which the metal is supported by tripodal N-heterocyclic carbene-based ligands. The chloride complexes are exceptionally sensitive to acid and can be reversibly protonated to form the zwitterions k(2)-{PhB(RIm)(2)(RIm center dot H)} CoCl2. This unexpected reactivity is attributed to the highly basic nature of the tris( carbene) borate ligands. Reaction of the chloride complexes with methylating reagents results in products that depend on the N-heterocyclic carbene substituent. For R = Bu-t, the four-coordinate high-spin complex, k(3)-PhB((t)BuIm)(3)CoMe, is formed, while for R = Mes, reduction to a multitude of complexes occurs. C1 New Mexico State Univ, Dept Chem & Biochem, Las Cruces, NM 88003 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Univ New Mexico, Dept Chem, Albuquerque, NM 87131 USA. RP Smith, JM (reprint author), New Mexico State Univ, Dept Chem & Biochem, Las Cruces, NM 88003 USA. EM jesmith@nmsu.edu RI Smith, Jeremy/H-5043-2012 NR 49 TC 63 Z9 63 U1 1 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD NOV 27 PY 2006 VL 45 IS 24 BP 9771 EP 9779 DI 10.1021/ic061299a PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 106TL UT WOS:000242124300029 PM 17112274 ER PT J AU Frank, P George, SD Anxolabehere-Mallart, E Hedman, B Hodgson, KO AF Frank, Patrick George, Serena DeBeer Anxolabehere-Mallart, Elodie Hedman, Britt Hodgson, Keith O. TI A systematic resolution of sulfur in reticulated vitreous carbon using X-ray absorption spectroscopy SO INORGANIC CHEMISTRY LA English DT Review ID FINE-STRUCTURE SPECTROSCOPY; TUNICATE ASCIDIA-CERATODES; NEAR-EDGE STRUCTURE; ROTATING CYLINDER ELECTRODES; ORBITAL ENERGY LEVELS; MODEL COMPOUNDS; BLOOD-CELLS; GLASSY-CARBON; PETROLEUM ASPHALTENES; XANES SPECTROSCOPY AB Sulfur K- edge X- ray absorption spectroscopy ( XAS) was used to characterize the similar to 0.1% sulfur found both in native reticulated vitreous carbon ( RVC) foam and in RVC oxidatively modified using 0.2 M KMnO4 in 2 M H2SO4. Sulfur valences and functional groups were assessed using K- edge XAS spectral curve-fitting and employing explicit sulfur compounds as models. For native RVC, these were episulfide (similar to 3%), thianthrene (similar to 9%), disulfide (similar to 10%), sulfenate ester (similar to 12%), benzothiophene(similar to 24%), N, N'- thiobisphthalimide ( similar to 30%), alkyl sulfonate (similar to 1.2%), alkyl sulfate monoester (similar to 6%), and sulfate dianion (similar to 6%). Permanganate oxidation of RVC diminished sulfenic sulfur to similar to 9%, thianthrenic sulfur to similar to 7%, and sulfate dianion to similar to 1% but increased sulfate monoester to similar to 12%, and newly produced sulfone (similar to 2%) and sulfate diester (similar to 5%). A simple thermodynamic model was derived that allows proportionate functional group comparisons despite differing (similar to +/- 15%) total sulfur contents between RVC batches. The limits of accuracy in the XAS curve- fitting analysis are discussed in terms of microenvironments and extended structures in RVC carbon that cannot be exactly modeled by small molecules. Sulfate esters cover similar to 0.15% of the RVC surface, increasing to similar to 0.51% following permanganate/ sulfuric acid treatment. The detection of episulfide directly corroborates a proposed mechanism for the migration of elemental sulfur through carbon. C1 Stanford Univ, Dept Chem, Stanford, CA 94305 USA. Stanford Univ, Stanford Linear Accelerator Ctr, Synchrotron Radiat Lab, Stanford, CA 94309 USA. RP Frank, P (reprint author), Stanford Univ, Dept Chem, Stanford, CA 94305 USA. EM Frank@ssrl.slac.stanford.edu RI DeBeer, Serena/G-6718-2012 FU NCRR NIH HHS [RR-0120] NR 109 TC 9 Z9 9 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD NOV 27 PY 2006 VL 45 IS 24 BP 9864 EP 9876 DI 10.1021/ic0610637 PG 13 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 106TL UT WOS:000242124300039 PM 17112284 ER PT J AU Gelis, F Venugopalan, R AF Gelis, Francois Venugopalan, Raju TI Particle production in field theories coupled to strong external sources, II: Generating functions SO NUCLEAR PHYSICS A LA English DT Article ID COLOR GLASS CONDENSATE; GLUON DISTRIBUTION-FUNCTIONS; ENERGY PA-COLLISIONS; HEAVY-ION COLLISIONS; RENORMALIZATION-GROUP; NUCLEAR COLLISIONS; SCATTERING; EVOLUTION; EQUATION; DENSITY AB We discuss a method for computing the generating function for the multiplicity distribution in field theories with strong time dependent external sources. At leading order, the computation of the generating function reduces to finding a pair of solutions of the classical equations of motion, with non-standard temporal boundary conditions. (c) 2006 Elsevier B.V. All rights reserved. C1 CEA Saclay, DSM, Serv Phys Theor, CNRS,URA 2306, F-91191 Gif Sur Yvette, France. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Gelis, F (reprint author), CEA Saclay, DSM, Serv Phys Theor, CNRS,URA 2306, Bat 774, F-91191 Gif Sur Yvette, France. EM gelis@spht.saclay.cea.fr NR 49 TC 49 Z9 49 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 27 PY 2006 VL 779 BP 177 EP 196 DI 10.1016/j.nuclphysa.2006.08.015 PG 20 WC Physics, Nuclear SC Physics GA 110WS UT WOS:000242412600009 ER PT J AU Schrader, PE Farrow, RL Kliner, DAV Feve, JP Landru, N AF Schrader, Paul E. Farrow, Roger L. Kliner, Dahv A. V. Feve, Jean-Philippe Landru, Nicolas TI High-power fiber amplifier with widely tunable repetition rate, fixed pulse duration, and multiple output wavelengths SO OPTICS EXPRESS LA English DT Article ID PEAK-POWER; ENERGY; GENERATION; CRYSTAL; LASERS AB We report a pulsed, fiber-amplified microchip laser providing widely tunable repetition rate ( 7.1 - 27 kHz) with constant pulse duration ( 1.0 ns), pulse energy up to 0.41 mJ, linear output polarization, diffraction-limited beam quality ( M-2 < 1.2), and < 1% pulse-energy fluctuations. The pulse duration was shown to minimize nonlinear effects that cause temporal and spectral distortion of the amplified pulses. This source employs passive Q-switching, single-stage single-pass amplification, and cw pumping, thus offering high efficiency, simplicity, and compact, rugged packaging for use in practical applications. The high peak power and high beam quality make this system an ideal pump source for nonlinear frequency conversion, and we demonstrated efficient harmonic generation and optical parametric generation of wavelengths from 213 nm to 4.4 mu m with Watt-level output powers. (c) 2006 Optical Society of America. C1 Sandia Natl Labs, Livermore, CA 94551 USA. Teem Photon, F-38246 Meylan, France. RP Schrader, PE (reprint author), Sandia Natl Labs, POB 969,MS 9056, Livermore, CA 94551 USA. EM afarrow@sandia.gov; jp.feve@teemphotonics.com NR 20 TC 17 Z9 17 U1 0 U2 10 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 27 PY 2006 VL 14 IS 24 BP 11528 EP 11538 DI 10.1364/OE.14.011528 PG 11 WC Optics SC Optics GA 109RH UT WOS:000242325700006 PM 19529572 ER PT J AU Mueschke, NJ Andrews, MJ Schilling, O AF Mueschke, Nicholas J. Andrews, Malcolm J. Schilling, Oleg TI Experimental characterization of initial conditions and spatio-temporal evolution of a small-Atwood-number Rayleigh-Taylor mixing layer SO JOURNAL OF FLUID MECHANICS LA English DT Review ID PARTICLE IMAGE VELOCIMETRY; RICHTMYER-MESHKOV INSTABILITIES; NATIONAL-IGNITION-FACILITY; INERTIAL CONFINEMENT FUSION; NUMERICAL-SIMULATION; VARIABLE ACCELERATION; NONLINEAR EVOLUTION; PIPE-FLOW; TURBULENCE; TRANSITION AB The initial multi-mode interfacial velocity and density perturbations present at the onset of a small-Atwood-number, incompressible, miscible Rayleigh-Taylor instability-driven mixing layer have been quantified using a combination of experimental techniques. The streamwise interfacial and spanwise interfacial perturbations were measured using high-resolution thermocouples and planar laser-induced fluorescence (PLIF), respectively. The initial multi-mode strearnwise velocity perturbations at the two-fluid density interface were measured using particle-image velocimetry (PIV). It was found that the measured initial conditions describe an initially anisotropic state, in which the perturbations in the strearnwise and spanwise directions are independent of one another. The evolution of various fluctuating velocity and density statistics, together with velocity and density variance spectra, were measured using PIV and high-resolution thermocouple data. The evolution of the velocity and density statistics is used to investigate the early-time evolution and the onset of strongly nonlinear, transitional dynamics within the mixing layer. The early-time evolution of the density and vertical velocity variance spectra indicate that velocity fluctuations are the dominant mechanism driving the instability development. The implications of the present experimental measurements on the initialization of Reynolds-averaged turbulent transport and mixing models and of direct and large-eddy simulations of Rayleigh-Taylor instability-induced turbulence are discussed. C1 Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Andrews, MJ (reprint author), Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. OI Schilling, Oleg/0000-0002-0623-2940 NR 104 TC 29 Z9 29 U1 1 U2 11 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD NOV 25 PY 2006 VL 567 BP 27 EP 63 DI 10.1017/S0022112006001959 PG 37 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 111CG UT WOS:000242428000002 ER PT J AU Jankowski, AF Saw, CK Hayes, JP AF Jankowski, Alan F. Saw, Cheng K. Hayes, Jeffrey P. TI The thermal stability of nanocrystalline Au-Cu alloys SO THIN SOLID FILMS LA English DT Article; Proceedings Paper CT 33rd International Conference on Metallurgical Coatings and Thin Films CY MAY 01-05, 2006 CL San Diego, CA SP Amer Vacuum Soc, Adv Surface Engn Div DE gold-copper; nanocrystalline; grain growth; diffusivity; electrodeposition ID GRAIN-GROWTH; DIFFUSION; GOLD; DISLOCATIONS; SOLIDS; COPPER; FILMS AB Grain refinement to the nanocrystalline scale is known to enhance physical properties as strength and surface hardness. For the case of Au-Cu alloys, development of the pulsed electroplating has led to the functional control of nanocrystalline grain size in the as-deposited condition. The thermal aging of Au-Cu electrodeposits is now investigated to assess the stability of the nanocrystalline grain structure and the difference between two diffusion mechanisms. The mobility of grain boundaries, dominant at low temperatures, leads to coarsening of grain size, whereas at high temperature the process of bulk diffusion dominates. Although the kinetics of bulk diffusion are slow below 500 K at 10(-20) cm(2) s(-1), the kinetics of grain boundary diffusion are faster at 10(-16) cm(2) s(-1). The diffusivity values indicate that the grain boundaries of the as-deposited nanocrystalline Au-Cu are mobile and sensitive to low-temperature anneal treatments affecting the grain size, hence the strength of the material. (c) 2006 Elsevier B.V. All rights reserved. C1 Lawrence Livermore Natl Lab, Chem & Mat Sci Mat Sci & Technol Div, Livermore, CA 94550 USA. RP Jankowski, AF (reprint author), Lawrence Livermore Natl Lab, Chem & Mat Sci Mat Sci & Technol Div, POB 808,MS L-352, Livermore, CA 94550 USA. EM jankowski1@llnl.gov NR 26 TC 13 Z9 14 U1 1 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD NOV 25 PY 2006 VL 515 IS 3 BP 1152 EP 1156 DI 10.1016/j.tsf.2006.07.167 PG 5 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 114AR UT WOS:000242639600060 ER PT J AU Yu, HG AF Yu, Hua-Gen TI Density functional theory study of ethylene partial oxidation on Ag-7 clusters SO CHEMICAL PHYSICS LETTERS LA English DT Article ID SILVER CLUSTERS; CONFIGURATION-INTERACTION; AG(111) SURFACE; ENERGY; OXYGEN; DISSOCIATION; EPOXIDATION; DYNAMICS; ATOMS; MODEL AB The partial oxidation reaction of ethylene on neutral and anionic Ag-7 clusters has been studied using the BPW91 hybrid DFT method with the Stuttgart RSC97 relativistic pseudopotential for the 28-electron ionic core of Ag. The atomic oxygen reaction mechanism is mainly addressed. Results show that the reaction occurs via a stable oxametallacycle intermediate (Ag7OC,H-4(P), p = 0 or -1), but it involves small reaction barriers along the reaction path. The ZPE-corrected barrier heights are obtained as 0.7-6.5 kcal/mole. In addition, the structure and anionic effects of Ag-7 clusters are also discussed. (c) 2006 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Yu, HG (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM hgy@bnl.gov RI Yu, Hua-Gen/N-7339-2015 NR 25 TC 4 Z9 4 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD NOV 24 PY 2006 VL 431 IS 4-6 BP 236 EP 240 DI 10.1016/j.cplett.2006.09.086 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 108LG UT WOS:000242240700004 ER PT J AU Shkrob, IA Schlueter, JA AF Shkrob, Ilya A. Schlueter, John A. TI Can a single molecule trap the electron? SO CHEMICAL PHYSICS LETTERS LA English DT Article ID SOLVATED ELECTRONS; DYNAMICS SIMULATION; NONPOLAR-SOLVENTS; DILUTE-SOLUTIONS; POLAR-MOLECULES; GLASS; MODULATION; SPECTRA; DENSITY; MODEL AB We suggest that it might be possible to trap the electron in a cavity of a macrocycle molecule, in the same way this trapping occurs cooperatively, by several solvent molecules, in hydroxylic liquids. Such an encapsulated electron is a 'molecular capacitor,' in which the excess electron is largely decoupled from valence electrons in the trap. A specific design for such a trap that is based on calix[4]cyclohexanol is discussed in detail. It is shown theoretically that one of the conformations of this molecule forms the optimum trap for the electron. The resulting species strikingly resembles the solvated electron. (c) 2006 Published by Elsevier B.V. C1 Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Shkrob, IA (reprint author), Argonne Natl Lab, Div Chem, 9700 S Cass Ave, Argonne, IL 60439 USA. EM shkrob@anl.gov NR 25 TC 6 Z9 6 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD NOV 24 PY 2006 VL 431 IS 4-6 BP 364 EP 369 DI 10.1016/j.cplett.2006.09.106 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 108LG UT WOS:000242240700029 ER PT J AU Abulencia, A Acosta, D Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arguin, JF Arisawa, T Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Bachacou, H Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Belloni, A Ben Haim, E Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carron, S Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chapman, J Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Chu, PH Chuang, SH Chung, K Chung, WH Chung, YS Ciljak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Cruz, A Almenar, CC Cuevas, J Culbertson, R Cyr, D DaRonco, S D'Auria, S D'Onofrio, M Dagenhart, D de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G Dell'Orso, M Paoli, FD Demers, S Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Dionisi, C Dittmann, JR DiTuro, P Dorr, C Donati, S Donega, M Dong, P Donini, J Dorigo, T Dube, S Ebina, K Efron, J Ehlers, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Flores-Castillo, LR Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Sciveres, MG Garfinkel, AF Gay, C Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, A Gibson, K Ginsburg, C Giokaris, N Giolo, K Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Gotra, Y Goulianos, K Gresele, A Griffiths, M Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Hahn, K Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, M Harper, S Harr, RF Harris, RM Hatakeyama, K Hauser, J Hays, C Heijboer, A Heinemann, B Heinrich, J Herndon, M Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Huston, J Incandela, J Introzzi, G Iori, M Ishizawa, Y Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jensen, H Jeon, EJ Jindariani, S Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Kang, J Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kobayashi, H Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kovalev, A Kraan, A Kraus, J Kravchenko, I Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kuhlmann, SE Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Maki, T Maksimovic, P Malde, S Manca, G Margaroli, F Marginean, R Marino, C Martin, A Martin, V Martinez, M Maruyama, T Mastrandrea, P Matsunaga, H Mattson, ME Mazini, R Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A von der Mey, M Miao, T Miladinovic, N Miles, J Miller, R Miller, JS Mills, C Milnik, M Miquel, R Mitra, A Mitselmakher, G Miyamoto, A Moggi, N Mohr, B Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Nachtman, J Naganoma, J Nahn, S Nakano, I Napier, A Naumov, D Necula, V Neu, C Neubauer, MS Nielsen, J Nigmanov, T Nodulman, L Norniella, O Nurse, E Ogawa, T Oh, SH Oh, YD Okusawa, T Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Paoletti, R Papadimitriou, V Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Rakitin, A Rappoccio, S Ratnikov, F Reisert, B Rekovic, V van Remortel, N Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robertson, WJ Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Rott, C Ruiz, A Russ, J Rusu, V Saarikko, H Sabik, S Safonov, A Sakumoto, WK Salamanna, G Salto, O Saltzberg, D Sanchez, C Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfiligoi, I Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Sjolin, J Skiba, A Slaughter, AJ Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spezziga, M Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Staveris-Polykalas, A Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sumorok, K Sun, H Suzuki, T Taffard, A Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tanimoto, N Tecchio, M Teng, PK Terashi, K Tether, S Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Tonnesmann, M Torre, S Torretta, D Tourneur, S Trischuk, W Tsuchiya, R Tsuno, S Turini, N Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vaiciulis, A Vallecorsa, S Varganov, A Vataga, E Velev, G Veramendi, G Veszpremi, V Vidal, R Vila, I Vilar, R Vine, T Vollrath, I Volobouev, I Volpi, G Wutthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, W Wallny, R Walter, T Wan, Z Wang, SM Warburton, A Waschke, S Waters, D Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zetti, F Zhang, X Zhou, J Zucchelli, S AF Abulencia, A. Acosta, D. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Ambrose, D. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arguin, J. -F. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Bachacou, H. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Bedeschi, F. Behari, S. Belforte, S. Bellettini, G. Bellinger, J. Belloni, A. Ben Haim, E. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carron, S. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chapman, J. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Chu, P. H. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciljak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Cruz, A. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cyr, D. DaRonco, S. D'Auria, S. D'Onofrio, M. Dagenhart, D. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. Dell'Orso, M. Paoli, F. Delli Demers, S. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Dionisi, C. Dittmann, J. R. DiTuro, P. Dorr, C. Donati, S. Donega, M. Dong, P. Donini, J. Dorigo, T. Dube, S. Ebina, K. Efron, J. Ehlers, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Flores-Castillo, L. R. Foland, A. Forrester, S. Foster, G. W. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Sciveres, M. Garcia Garfinkel, A. F. Gay, C. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, A. Gibson, K. Ginsburg, C. Giokaris, N. Giolo, K. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Gotra, Y. Goulianos, K. Gresele, A. Griffiths, M. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Hahn, K. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hatakeyama, K. Hauser, J. Hays, C. Heijboer, A. Heinemann, B. Heinrich, J. Herndon, M. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ishizawa, Y. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jensen, H. Jeon, E. J. Jindariani, S. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Kang, J. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kobayashi, H. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kovalev, A. Kraan, A. Kraus, J. Kravchenko, I. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kuhlmann, S. E. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Loverre, P. Lu, R. -S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Maki, T. Maksimovic, P. Malde, S. Manca, G. Margaroli, F. Marginean, R. Marino, C. Martin, A. Martin, V. Martinez, M. Maruyama, T. Mastrandrea, P. Matsunaga, H. Mattson, M. E. Mazini, R. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. von der Mey, M. Miao, T. Miladinovic, N. Miles, J. Miller, R. Miller, J. S. Mills, C. Milnik, M. Miquel, R. Mitra, A. Mitselmakher, G. Miyamoto, A. Moggi, N. Mohr, B. Moore, R. Morello, M. Fernandez, P. Movilla Mulmenstadt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Nachtman, J. Naganoma, J. Nahn, S. Nakano, I. Napier, A. Naumov, D. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nigmanov, T. Nodulman, L. Norniella, O. Nurse, E. Ogawa, T. Oh, S. H. Oh, Y. D. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Paoletti, R. Papadimitriou, V. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Rakitin, A. Rappoccio, S. Ratnikov, F. Reisert, B. Rekovic, V. van Remortel, N. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robertson, W. J. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Rott, C. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Sabik, S. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Saltzberg, D. Sanchez, C. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfiligoi, I. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Sjolin, J. Skiba, A. Slaughter, A. J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spezziga, M. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sumorok, K. Sun, H. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Takikawa, K. Tanaka, M. Tanaka, R. Tanimoto, N. Tecchio, M. Teng, P. K. Terashi, K. Tether, S. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Tonnesmann, M. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tsuchiya, R. Tsuno, S. Turini, N. Ukegawa, F. Unverhau, T. Uozumi, S. Usynin, D. Vaiciulis, A. Vallecorsa, S. Varganov, A. Vataga, E. Velev, G. Veramendi, G. Veszpremi, V. Vidal, R. Vila, I. Vilar, R. Vine, T. Vollrath, I. Volobouev, I. Volpi, G. Wutthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wallny, R. Walter, T. Wan, Z. Wang, S. M. Warburton, A. Waschke, S. Waters, D. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zetti, F. Zhang, X. Zhou, J. Zucchelli, S. CA CDF Collaboration TI Observation of B-s(0)-> K+K- and measurements of branching fractions of charmless two-body decays of B-0 and B-s(0) mesons in pp collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID B DECAYS; PHYSICS; GAMMA AB We search for decays of the type B-(s)(0)-> h(+)h('-) (where h,h(')=K or pi) in 180 pb(-1) of (p) over barp collisions collected at the Tevatron by the upgraded Collider Detector at Fermilab. We report the first observation of the new mode B-s(0)-> K+K- with a yield of 236 +/- 32 events, corresponding to (f(s)/f(d))xB(B-s(0)-> K+K-)/B(B-0 -> K+pi(-))=0.46 +/- 0.08(stat)+/- 0.07(syst), where f(s)/f(d) is the ratio of production fractions of B-s(0) and B-0. We find results in agreement with world averages for the B-0 modes, and set the following new limits at 90% C.L.: B(B-s(0)-> K-pi(+))< 5.6x10(-6) and B(B-s(0)->pi(+)pi(-))< 1.7x10(-6). C1 Univ Illinois, Urbana, IL 61801 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. Baylor Univ, Waco, TX 76798 USA. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Joint Nucl Res Inst, RU-141980 Dubna, Russia. Duke Univ, Dept Geol, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva 4, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Univ Illinois, Urbana, IL 61801 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Inst Theoret & Expt Phys, Moscow 117259, Russia. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Paris 06, CNRS, IN2P3, LPNHE,UMR 7585, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Scuola Normale Super Pisa, I-56127 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00165 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Abulencia, A (reprint author), Univ Illinois, Urbana, IL 61801 USA. RI Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Introzzi, Gianluca/K-2497-2015; Muelmenstaedt, Johannes/K-2432-2015; Gorelov, Igor/J-9010-2015; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Punzi, Giovanni/J-4947-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014 OI Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Muelmenstaedt, Johannes/0000-0003-1105-6678; Gorelov, Igor/0000-0001-5570-0133; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Punzi, Giovanni/0000-0002-8346-9052; Warburton, Andreas/0000-0002-2298-7315; NR 35 TC 62 Z9 62 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 24 PY 2006 VL 97 IS 21 AR 211802 DI 10.1103/PhysRevLett.97.211802 PG 7 WC Physics, Multidisciplinary SC Physics GA 108DG UT WOS:000242219900009 ER PT J AU Aubert, B Barate, R Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Sanchez, PD Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Sherwood, DJ Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Best, DS Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Petzold, A Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Nash, JA Nikolich, MB Vazquez, WP Behera, PK Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Denig, AG Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Cowan, R Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J Briand, H David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Gladney, L Panetta, J Biasini, M Covarelli, R Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Aleksan, R Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Cheng, B Dasu, S Datta, M Flood, KT Hollar, JJ Kutter, PE Mellado, B Mihalyi, A Pan, Y Pierini, M Prepost, R Wu, SL Yu, Z Neal, H AF Aubert, B. Barate, R. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Sanchez, P. del Amo Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Sherwood, D. J. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Best, D. S. Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dvoretskii, A. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Petzold, A. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Grenier, P. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Capra, R. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Cowan, R. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Chauveau, J. Briand, H. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. John, M. J. J. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Gladney, L. Panetta, J. Biasini, M. Covarelli, R. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Aleksan, R. Emery, S. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Lanceri, L. Vitale, L. Azzolini, V. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Flood, K. T. Hollar, J. J. Kutter, P. E. Mellado, B. Mihalyi, A. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Yu, Z. Neal, H. CA BaBar Collaborat TI Measurement of the B ->pi l nu branching fraction and determination of vertical bar V-ub vertical bar with tagged B mesons SO PHYSICAL REVIEW LETTERS LA English DT Article AB We report a measurement of the B ->pi center dot nu branching fraction based on 211 fb(-1) of data collected with the BABAR detector. We use samples of B-0 and B+ mesons tagged by a second B meson reconstructed in a semileptonic or hadronic decay and combine the results assuming isospin symmetry to obtain B(B-0 ->pi(-)center dot(+)nu)=(1.33 +/- 0.17(stat)+/- 0.11(syst))x10(-4). We determine the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element vertical bar V-ub vertical bar by combining the partial branching fractions measured in ranges of the momentum transfer squared and theoretical calculations of the form factor. Using a recent lattice QCD calculation, we find vertical bar V-ub vertical bar=(4.5 +/- 0.5(stat)+/- 0.3(syst)0.7/0.5(FF))x10(-3), where the last error is due to the normalization of the form factor. C1 Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, Lab Leprince Ringuet, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-00044 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Ferrara, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Univ London, Queen Mary, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF H, Natl Inst Nucl & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Scuola Normale Super, Dipartimento Fis, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Univ Wisconsin, New Haven, CT 06511 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Rotondo, Marcello/I-6043-2012; Neri, Nicola/G-3991-2012; Roe, Natalie/A-8798-2012; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Saeed, Mohammad Alam/J-7455-2012; Patrignani, Claudia/C-5223-2009; M, Saleem/B-9137-2013; de Groot, Nicolo/A-2675-2009; Peters, Klaus/C-2728-2008; de Sangro, Riccardo/J-2901-2012; Forti, Francesco/H-3035-2011; Cavallo, Nicola/F-8913-2012 OI Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Rotondo, Marcello/0000-0001-5704-6163; Neri, Nicola/0000-0002-6106-3756; Bellini, Fabio/0000-0002-2936-660X; Saeed, Mohammad Alam/0000-0002-3529-9255; Patrignani, Claudia/0000-0002-5882-1747; Peters, Klaus/0000-0001-7133-0662; de Sangro, Riccardo/0000-0002-3808-5455; Forti, Francesco/0000-0001-6535-7965; NR 11 TC 32 Z9 32 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 24 PY 2006 VL 97 IS 21 AR 211801 DI 10.1103/PhysRevLett.97.211801 PG 7 WC Physics, Multidisciplinary SC Physics GA 108DG UT WOS:000242219900008 ER PT J AU N'Diaye, AT Bleikamp, S Feibelman, PJ Michely, T AF N'Diaye, Alpha T. Bleikamp, Sebastian Feibelman, Peter J. Michely, Thomas TI Two-dimensional Ir cluster lattice on a graphene moire on Ir(111) SO PHYSICAL REVIEW LETTERS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; MOLECULAR-DYNAMICS; BASIS-SET; SURFACES; METALS; GRAPHITE; SOLIDS; FILMS AB Lattices of Ir clusters have been grown by vapor phase deposition on graphene moires on Ir(111). The clusters are highly ordered, and spatially and thermally stable below 500 K. Their narrow size distribution is tunable from 4 to about 130 atoms. A model for cluster binding to the graphene is presented based on scanning tunneling microscopy and density functional theory. The proposed binding mechanism suggests that similar cluster lattices might be grown of materials other than Ir. C1 Rhein Westfal TH Aachen, Inst Phys 1, D-52056 Aachen, Germany. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP N'Diaye, AT (reprint author), Rhein Westfal TH Aachen, Inst Phys 1, D-52056 Aachen, Germany. EM ndiaye@physik.rwth-aachen.de NR 18 TC 379 Z9 386 U1 9 U2 123 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 24 PY 2006 VL 97 IS 21 AR 215501 DI 10.1103/PhysRevLett.97.215501 PG 4 WC Physics, Multidisciplinary SC Physics GA 108DG UT WOS:000242219900018 PM 17155746 ER PT J AU Neaton, JB Hybertsen, MS Louie, SG AF Neaton, J. B. Hybertsen, Mark S. Louie, Steven G. TI Renormalization of molecular electronic levels at metal-molecule interfaces SO PHYSICAL REVIEW LETTERS LA English DT Article ID AFFINITIES; TRANSPORT; JUNCTIONS; GRAPHITE; SURFACES; BENZENE; FILMS; AU AB The electronic structure of benzene on graphite (0001) is computed using the GW approximation for the electron self-energy. The benzene quasiparticle energy gap is predicted to be 7.2 eV on graphite, substantially reduced from its calculated gas-phase value of 10.5 eV. This decrease is caused by a change in electronic correlation energy, an effect completely absent from the corresponding Kohn-Sham gap. For weakly coupled molecules, this correlation energy change can be described as a surface polarization effect. A classical image potential model illustrates the impact for other conjugated molecules on graphite. C1 Lawrence Berkeley Natl Lab, Div Sci Mat, Berkeley, CA 94720 USA. Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. Columbia Univ, Ctr Electron Transport Mol Nanostruct, New York, NY 10027 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Neaton, JB (reprint author), Lawrence Berkeley Natl Lab, Div Sci Mat, Berkeley, CA 94720 USA. RI Neaton, Jeffrey/F-8578-2015; OI Neaton, Jeffrey/0000-0001-7585-6135; Hybertsen, Mark S/0000-0003-3596-9754 NR 31 TC 434 Z9 434 U1 9 U2 90 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 24 PY 2006 VL 97 IS 21 AR 216405 DI 10.1103/PhysRevLett.97.216405 PG 4 WC Physics, Multidisciplinary SC Physics GA 108DG UT WOS:000242219900031 PM 17155759 ER PT J AU Son, YW Cohen, ML Louie, SG AF Son, Young-Woo Cohen, Marvin L. Louie, Steven G. TI Energy gaps in graphene nanoribbons SO PHYSICAL REVIEW LETTERS LA English DT Article ID GRAPHITE; RIBBONS; CARBON; EDGE; FERROMAGNETISM; STATE; GAS AB Based on a first-principles approach, we present scaling rules for the band gaps of graphene nanoribbons (GNRs) as a function of their widths. The GNRs considered have either armchair or zigzag shaped edges on both sides with hydrogen passivation. Both varieties of ribbons are shown to have band gaps. This differs from the results of simple tight-binding calculations or solutions of the Dirac's equation based on them. Our ab initio calculations show that the origin of energy gaps for GNRs with armchair shaped edges arises from both quantum confinement and the crucial effect of the edges. For GNRs with zigzag shaped edges, gaps appear because of a staggered sublattice potential on the hexagonal lattice due to edge magnetization. The rich gap structure for ribbons with armchair shaped edges is further obtained analytically including edge effects. These results reproduce our ab initio calculation results very well. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Son, YW (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM sglouie@berkeley.edu RI son, Young-Woo/B-2566-2010 NR 38 TC 2694 Z9 2727 U1 97 U2 843 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 24 PY 2006 VL 97 IS 21 AR 216803 DI 10.1103/PhysRevLett.97.216803 PG 4 WC Physics, Multidisciplinary SC Physics GA 108DG UT WOS:000242219900037 PM 17155765 ER PT J AU Wu, YZ Schmid, AK Qiu, ZQ AF Wu, Y. Z. Schmid, A. K. Qiu, Z. Q. TI Spin-dependent quantum interference from epitaxial MgO thin films on Fe(001) SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTRONIC BAND-STRUCTURE; ROOM-TEMPERATURE; TUNNEL-JUNCTIONS; MAGNETORESISTANCE; PHOTOEMISSION; MAGNESIUM; EXCHANGE; SURFACES; STATES; WELL AB Spin-dependent electron reflection from MgO thin films grown on Fe(001) was measured using spin-polarized low energy electron microscopy. The electron reflectivity exhibits quantum interference from which two MgO energy bands with Delta(1) symmetry were determined in experiment. We found that a bulklike MgO energy gap is fully established for MgO film thicker than 3 atomic monolayers and that the electron reflectivity from the MgO/Fe interface exhibits a spin-dependent amplitude and a spin-independent phase change. C1 Fudan Univ, Surface Phys Lab, Natl Key Lab, Shanghai 200433, Peoples R China. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, NCEM, Berkeley, CA 94720 USA. RP Wu, YZ (reprint author), Fudan Univ, Surface Phys Lab, Natl Key Lab, Shanghai 200433, Peoples R China. EM wuyizheng@fudan.edu.cn RI wu, YiZheng/O-1547-2013; Wu, yizheng/P-2395-2014; Qiu, Zi Qiang/O-4421-2016 OI Wu, yizheng/0000-0002-9289-1271; Qiu, Zi Qiang/0000-0003-0680-0714 NR 38 TC 19 Z9 19 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 24 PY 2006 VL 97 IS 21 AR 217205 DI 10.1103/PhysRevLett.97.217205 PG 4 WC Physics, Multidisciplinary SC Physics GA 108DG UT WOS:000242219900044 PM 17155772 ER PT J AU Woo, HK Lau, KC Wang, XB Wang, LS AF Woo, Hin-Koon Lau, Kai-Chung Wang, Xue-Bin Wang, Lai-Sheng TI Observation of cysteine thiolate and S-center dot center dot center dot H-O intermolecular hydrogen bond SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID PHOTOELECTRON-SPECTROSCOPY; GAS-PHASE; ENZYMATIC CATALYSIS; SERINE PROTEASES; AMINO-ACIDS; AB-INITIO; MALEATE; STATE; PHOSPHATASE; ENZYMES AB The cysteine anion was produced in the gas phase by electrospray ionization and investigated by photoelectron spectroscopy at low temperature ( 70 K). The cysteine anion was found to exhibit the thiolate form [-SCH2CH(NH2)CO2H], rather than the expected carboxylate form [HSCH2CH(NH2)CO2-]. This observation was confirmed by two control experiments, that is, methyl cysteine [CH3SCH2CH(NH2)CO2-] and cysteine methyl ester [-SCH2CH(NH2)CO2CH3]. The electron binding energy of [-SCH2CH(NH2)CO2H] was measured to be about 0.7 eV blue-shifted relative to [-SCH2CH(NH2)CO2CH3] due to the formation of an intramolecular -S-center dot center dot center dot HO2C-hydrogen bond in the cysteine thiolate. Theoretical calculations at the CCSD(T)/6-311++G- (2df,p) and B3LYP/6-311++G(2df,p) levels were carried out to estimate the strength of this intramolecular -S-center dot center dot center dot HO2C-hydrogen bond. Combining experimental measurements and theoretical calculations yielded an estimated value of 16.4 +/- 2.0 kcal/mol for the -S-center dot center dot center dot HO2C-intramolecular hydrogen-bond strength. C1 Washington State Univ, Dept Phys, Richland, WA 99354 USA. Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. Univ Chicago, Dept Chem, Chicago, IL 60637 USA. James Franck Inst, Chicago, IL 60637 USA. RP Wang, LS (reprint author), Washington State Univ, Dept Phys, 2710 Univ Dr, Richland, WA 99354 USA. EM ls.wang@pnl.gov NR 37 TC 43 Z9 43 U1 2 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 23 PY 2006 VL 110 IS 46 BP 12603 EP 12606 DI 10.1021/jp0643799 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 105PY UT WOS:000242046000009 PM 17107110 ER PT J AU Gibbs, GV Jayatilaka, D Spackman, MA Cox, DF Rosso, KM AF Gibbs, G. V. Jayatilaka, D. Spackman, M. A. Cox, D. F. Rosso, K. M. TI Si-O bonded interactions in silicate crystals and molecules: A comparison SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ELECTRON-DENSITY DISTRIBUTIONS; CRITICAL-POINT PROPERTIES; POTENTIAL-ENERGY FUNCTION; EARTH MATERIALS; ATOMIC CHARGES; CHEMICAL-BOND; DISILOXANE; FRAMEWORK; IONICITY; DISSOLUTION AB Bond critical point, local kinetic energy density, G(r(c)), and local potential energy density, V( rc), properties of the electron density distributions, rho(r), calculated for silicates such as quartz and gas-phase molecules such as disiloxane are similar, indicating that the forces that govern the Si-O bonded interactions in silica are short-ranged and molecular-like. Using the G(r(c))/rho(r(c)) ratio as a measure of bond character, the ratio increases as the Si-O bond length, the local electronic energy density, H(r(c)) G(r(c)) + V(r(c)), and the coordination number of the Si atom decrease and as the accumulation of the electron density at the bond critical point, rho(r(c)), and the Laplacian, del(2)rho(r(c)), increase. The G(r(c))/rho(r(c)) and H(r(c))/rho(r(c)) ratios categorize the bonded interaction as observed for other second row atom M-O bonds into discrete categories with the covalent character of each of the M-O bonds increasing with the H(r(c))/rho(r(c)) ratio. The character of the bond is examined in terms of the large net atomic charges conferred on the Si atoms comprising disiloxane, stishovite, quartz, and forsterite and the domains of localized electron density along the Si-O bond vectors and on the reflex side of the Si-O-Si angle together with the close similarity of the Si-O bonded interactions observed for a variety of hydroxyacid silicate molecules and a large number of silicate crystals. The bond critical point and local energy density properties of the electron density distribution indicate that the bond is an intermediate interaction between Al-O and P-O bonded interactions rather than being a closed-shell or a shared interaction. C1 Virginia Polytech Inst & State Univ, Dept Geosci Mat Sci & Engn & Math, Blacksburg, VA 24061 USA. Virginia Polytech Inst & State Univ, Dept Chem Engn, Blacksburg, VA 24061 USA. Univ Western Australia, Sch Biomed Biomol & Chem Sci, Perth, WA 6009, Australia. Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Gibbs, GV (reprint author), Virginia Polytech Inst & State Univ, Dept Geosci Mat Sci & Engn & Math, Blacksburg, VA 24061 USA. EM gvgibbs@vt.edu RI Jayatilaka, Dylan/B-3498-2012; Spackman, Mark/D-1197-2010 OI Jayatilaka, Dylan/0000-0002-3349-5834; Spackman, Mark/0000-0003-1521-2041 NR 51 TC 11 Z9 11 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 23 PY 2006 VL 110 IS 46 BP 12678 EP 12683 DI 10.1021/jp063881q PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 105PY UT WOS:000242046000019 PM 17107120 ER PT J AU Sun, Y Frenkel, AI White, H Zhang, LH Zhu, YM Xu, HP Yang, JC Koga, T Zaitsev, V Rafailovich, MH Sokolov, JC AF Sun, Yuan Frenkel, Anatoly I. White, Henry Zhang, Lihua Zhu, Yimei Xu, Huiping Yang, Judith C. Koga, Tadanori Zaitsev, Vladimir Rafailovich, Miriam H. Sokolov, Jonathan C. TI Comparison of decanethiolate gold nanoparticles synthesized by one-phase and two-phase methods SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID LANGMUIR-BLODGETT-FILMS; SELF-ASSEMBLED MONOLAYERS; X-RAY; SURFACE TENSION; NANO-PARTICLES; QUANTUM DOTS; SIZE; CLUSTERS; EXAFS; NANOCLUSTERS AB We investigated the differences between the decanethiolate gold nanoparticles synthesized by two different routes: one-phase and two-phase methods. Their properties were compared in bulk and at the air-water interface by transmission electron microscopy (TEM), X-ray reflectivity (XR), extended X-ray absorption fine structure (EXAFS) spectroscopy, X-ray powder diffraction (XRD), thermal gravimetric analysis (TGA), time-of-flight secondary-ion mass spectrometry (TOF-SIMS), electron paramagnetic resonance (EPR), and Langmuir-Blodgett technique. The mean nanoparticles sizes obtained by EXAFS and XRD were found to be smaller than those by the TEM measurements. We explained these differences by the structural disorder and multiple twinning in the nanoparticles. The one-phase particles were found by EXAFS to be smaller and had a higher grafting density of thiol chains than the two-phase particles. We attributed these differences to the enhanced disorder of the one-phase particles. At the air-water interface, the one-phase particles did not spread, while the two-phase particles spread and formed Langmuir films. TEM and XR results revealed that the close-packed monolayer of the two-phase particles collapsed and folded into multilayer films upon further compression. C1 SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. Yeshiva Univ, Dept Phys, New York, NY 10016 USA. Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. Univ Pittsburgh, Dept Mat Sci & Engn, Pittsburgh, PA 15261 USA. RP Rafailovich, MH (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. EM miriam.rafailovich@sunysb.edu RI Koga, Tadanori/A-4007-2010; Sun, Yuan/B-2250-2010; Frenkel, Anatoly/D-3311-2011; Zhang, Lihua/F-4502-2014 OI Frenkel, Anatoly/0000-0002-5451-1207; NR 56 TC 17 Z9 17 U1 1 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 23 PY 2006 VL 110 IS 46 BP 23022 EP 23030 DI 10.1021/jp060432h PG 9 WC Chemistry, Physical SC Chemistry GA 105PX UT WOS:000242045900017 PM 17107140 ER PT J AU Borodko, Y Habas, SE Koebel, M Yang, PD Frei, H Somorjai, GA AF Borodko, Yuri Habas, Susan E. Koebel, Matthias Yang, Peidong Frei, Heinz Somorjai, Gabor A. TI Probing the interaction of poly( vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID CRYSTAL-STRUCTURE; RESONANCE RAMAN; SURFACE; POLY(N-VINYL-2-PYRROLIDONE); SCATTERING; SILVER; COMPLEXES; WATER; NANOPARTICLES; SPECTROSCOPY AB The vibrational spectra of platinum nanoparticles (2.4-9 nm) capped with poly(N-vinylpyrrolidone) (PVP) were investigated by deep UV-Raman and FTIR spectroscopy and compared with those of pure PVP. Raman spectra of PVP/Pt show selective enhancement of C = O, C-N, and CH2 vibrational modes attributed to the pyrrolidone ring. Selective enhancement of ring vibrations is attributed both to the resonance Raman effect and SERS chemical enhancement. A red shift of the PVP carbonyl frequency on the order of 60 cm(-1) indicates the formation of strong > C = O-Pt bonds. It is concluded that PVP adheres to the nanoparticles through a charge-transfer interaction between the pyrrolidone rings and surface Pt atoms. Heating the Pt nanoparticles under reducing conditions initiates the decomposition of the capping agent, PVP, at a temperature 100 degrees C below that of pure PVP. Under oxidizing conditions, both PVP/Pt and PVP degrade to form amorphous carbon. C1 Lawrence Berkeley Natl Lab, Div Sci Mat, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Lawrence Berkeley Natl Lab, Div Sci Mat, Berkeley, CA 94720 USA. NR 40 TC 266 Z9 267 U1 13 U2 131 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 23 PY 2006 VL 110 IS 46 BP 23052 EP 23059 DI 10.1021/jp063338+ PG 8 WC Chemistry, Physical SC Chemistry GA 105PX UT WOS:000242045900020 PM 17107143 ER PT J AU Webb, LJ Michalak, DJ Biteen, JS Brunschwig, BS Chan, ASY Knapp, DW Meyer, HM Nemanick, EJ Traub, MC Lewis, NS AF Webb, Lauren J. Michalak, David J. Biteen, Julie S. Brunschwig, Bruce S. Chan, Ally S. Y. Knapp, David W. Meyer, Harry M., III Nemanick, Eric J. Traub, Matthew C. Lewis, Nathan S. TI High-resolution soft X-ray photoelectron spectroscopic studies and scanning auger microscopy studies of the air oxidation of alkylated silicon(111) surfaces SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID TERMINATED SI SURFACES; NATIVE-OXIDE-GROWTH; SI(111) SURFACES; RECOMBINATION VELOCITY; INFRARED-SPECTROSCOPY; CRYSTALLINE SI(111); SIO2/SI INTERFACE; LOW-TEMPERATURE; INITIAL-STAGE; PHOTOEMISSION AB High-resolution soft X-ray photoelectron spectroscopy was used to investigate the oxidation of alkylated silicon(111) surfaces under ambient conditions. Silicon(111) surfaces were functionalized through a two-step route involving radical chlorination of the H-terminated surface followed by alkylation with alkylmagnesium halide reagents. After 24 h in air, surface species representing Si+, Si2+, Si3+, and Si4+ were detected on the Cl-terminated surface, with the highest oxidation state (Si4+) oxide signal appearing at +3.79 eV higher in energy than the bulk Si 2p(3/2) peak. The growth of silicon oxide was accompanied by a reduction in the surface-bound Cl signal. After 48 h of exposure to air, the Cl-terminated Si(111) surface exhibited 3.63 equivalent monolyers (ML) of silicon oxides. In contrast, after exposure to air for 48 h, CH3-, C2H5-, or C6H5CH2-terminated Si surfaces displayed < 0.4 ML of surface oxide, and in most cases only displayed approximate to 0.20 ML of oxide. This oxide was principally composed of Si+ and Si3+ species with peaks centered at +0.8 and +3.2 eV above the bulk Si 2p(3/2) peak, respectively. The silicon 2p SXPS peaks that have previously been assigned to surface Si-C bonds did not change significantly, either in binding energy or in relative intensity, during such air exposure. Use of a high miscut-angle surface (7 degrees vs 0.5 degrees off of the (111) surface orientation) yielded no increase in the rate of oxidation nor change in binding energy of the resultant oxide that formed on the alkylated Si surfaces. Scanning Auger microscopy indicated that the alkylated surfaces formed oxide in isolated, inhomogeneous patches on the surface. C1 CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. Rutgers State Univ, Lab Surface Modificat, Piscataway, NJ 08854 USA. Oak Ridge Natl Lab, High Temp Mat Lab, Oak Ridge, TN 37831 USA. RP Lewis, NS (reprint author), CALTECH, Div Chem & Chem Engn, 210 Noyes Lab 127-72, Pasadena, CA 91125 USA. RI Brunschwig, Bruce/G-4249-2011 NR 39 TC 45 Z9 45 U1 1 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 23 PY 2006 VL 110 IS 46 BP 23450 EP 23459 DI 10.1021/jp063366s PG 10 WC Chemistry, Physical SC Chemistry GA 105PX UT WOS:000242045900074 PM 17107197 ER PT J AU Van Waeyenberge, B Puzic, A Stoll, H Chou, KW Tyliszczak, T Hertel, R Fahnle, M Bruckl, H Rott, K Reiss, G Neudecker, I Weiss, D Back, CH Schutz, G AF Van Waeyenberge, B. Puzic, A. Stoll, H. Chou, K. W. Tyliszczak, T. Hertel, R. Faehnle, M. Brueckl, H. Rott, K. Reiss, G. Neudecker, I. Weiss, D. Back, C. H. Schuetz, G. TI Magnetic vortex core reversal by excitation with short bursts of an alternating field SO NATURE LA English DT Article ID DYNAMICS; MOTION; PERMALLOY; DOTS AB The vortex state, characterized by a curling magnetization, is one of the equilibrium configurations of soft magnetic materials(1-4) and occurs in thin ferromagnetic square and disk-shaped elements of micrometre size and below. The interplay between the magneto-static and the exchange energy favours an in-plane, closed flux domain structure. This curling magnetization turns out of the plane at the centre of the vortex structure, in an area with a radius of about 10 nanometres-the vortex core(5-7). The vortex state has a specific excitation mode: the in-plane gyration of the vortex structure about its equilibrium position(8-10). The sense of gyration is determined by the vortex core polarization(11). Here we report on the controlled manipulation of the vortex core polarization by excitation with small bursts of an alternating magnetic field. The vortex motion was imaged by time-resolved scanning transmission X-ray microscopy(12). We demonstrate that the sense of gyration of the vortex structure can be reversed by applying short bursts of the sinusoidal excitation field with amplitude of about 1.5 mT. This reversal unambiguously indicates a switching of the out-of-plane core polarization. The observed switching mechanism, which can be understood in the framework of micromagnetic theory, gives insights into basic magnetization dynamics and their possible application in data storage. C1 Max Planck Inst Met Res, D-70569 Stuttgart, Germany. Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. Forschungszentrum Julich, Inst Festkorperforsch Elektron Eigenschaften IFF9, D-52425 Julich, Germany. Univ Bielefeld, Fak Phys, D-33615 Bielefeld, Germany. Univ Regensburg, Inst Expt & Angew Phys, D-93040 Regensburg, Germany. RP Stoll, H (reprint author), Max Planck Inst Met Res, D-70569 Stuttgart, Germany. EM stoll@mf.mpg.de RI Reiss, Gunter/A-3423-2010; Weiss, Dieter/G-4883-2016; Hertel, Riccardo/H-9964-2016; Hertel, Riccardo/P-5806-2016; Back, Christian/A-8969-2012 OI Reiss, Gunter/0000-0002-0918-5940; Weiss, Dieter/0000-0002-9630-9787; Hertel, Riccardo/0000-0002-0646-838X; Hertel, Riccardo/0000-0002-0646-838X; Back, Christian/0000-0003-3840-0993 NR 27 TC 459 Z9 461 U1 5 U2 111 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD NOV 23 PY 2006 VL 444 IS 7118 BP 461 EP 464 DI 10.1038/nature05240 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 108BQ UT WOS:000242215700040 PM 17122851 ER PT J AU Pennacchio, LA Ahituv, N Moses, AM Prabhakar, S Nobrega, MA Shoukry, M Minovitsky, S Dubchak, I Holt, A Lewis, KD Plajzer-Frick, I Akiyama, J De Val, S Afzal, V Black, BL Couronne, O Eisen, MB Visel, A Rubin, EM AF Pennacchio, Len A. Ahituv, Nadav Moses, Alan M. Prabhakar, Shyam Nobrega, Marcelo A. Shoukry, Malak Minovitsky, Simon Dubchak, Inna Holt, Amy Lewis, Keith D. Plajzer-Frick, Ingrid Akiyama, Jennifer De Val, Sarah Afzal, Veena Black, Brian L. Couronne, Olivier Eisen, Michael B. Visel, Axel Rubin, Edward M. TI In vivo enhancer analysis of human conserved non-coding sequences SO NATURE LA English DT Article ID TOWNES-BROCKS-SYNDROME; HUMAN GENOME; EXPRESSION; GENE; MUTATIONS; FORKHEAD; ELEMENTS; DOMAINS; DISEASE; SALL1 AB Identifying the sequences that direct the spatial and temporal expression of genes and defining their function in vivo remains a significant challenge in the annotation of vertebrate genomes. One major obstacle is the lack of experimentally validated training sets. In this study, we made use of extreme evolutionary sequence conservation as a filter to identify putative gene regulatory elements, and characterized the in vivo enhancer activity of a large group of non-coding elements in the human genome that are conserved in human-pufferfish, Takifugu (Fugu) rubripes, or ultra-conserved(1) in human-mouse-rat. Wetested 167 of these extremely conserved sequences in a transgenic mouse enhancer assay. Here we report that 45% of these sequences functioned reproducibly as tissue-specific enhancers of gene expression at embryonic day 11.5. While directing expression in a broad range of anatomical structures in the embryo, the majority of the 75 enhancers directed expression to various regions of the developing nervous system. We identified sequence signatures enriched in a subset of these elements that targeted forebrain expression, and used these features to rank all 3,100 non-coding elements in the human genome that are conserved between human and Fugu. The testing of the top predictions in transgenic mice resulted in a threefold enrichment for sequences with forebrain enhancer activity. These data dramatically expand the catalogue of human gene enhancers that have been characterized in vivo, and illustrate the utility of such training sets for a variety of biological applications, including decoding the regulatory vocabulary of the human genome. C1 US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mol & Cellular Biol, Berkeley, CA 94720 USA. Univ Calif San Francisco, Cardiovasc Res Inst, San Francisco, CA 94143 USA. RP Pennacchio, LA (reprint author), US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. EM LAPennacchio@lbl.gov RI Visel, Axel/A-9398-2009; Couronne, Olivier Couronne/G-1244-2012; OI Visel, Axel/0000-0002-4130-7784; Eisen, Michael/0000-0002-7528-738X; Ahituv, Nadav/0000-0002-7434-8144; Black, Brian/0000-0002-6664-8913 NR 29 TC 641 Z9 663 U1 6 U2 39 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD NOV 23 PY 2006 VL 444 IS 7118 BP 499 EP 502 DI 10.1038/nature05295 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 108BQ UT WOS:000242215700049 PM 17086198 ER PT J AU Li, BA Steiner, AW AF Li, Bao-An Steiner, Andrew W. TI Constraining the radii of neutron stars with terrestrial nuclear laboratory data SO PHYSICS LETTERS B LA English DT Article ID HEAVY-ION COLLISIONS; EQUATION-OF-STATE; DENSE MATTER; RICH NUCLEI; DENSITIES; DEPENDENCE; EMISSION; PHYSICS; BINARY; PB-208 AB Neutron star radii are primarily determined by the pressure of isospin asymmetric matter which is proportional to the slope of the nuclear symmetry energy. Available terrestrial laboratory data on the isospin diffusion in heavy-ion reactions at intermediate energies constrain the slope of the symmetry energy. Using this constraint, we show that the radius (radiation radius) of a 1.4 solar mass (MO) neutron star is between 11.5 (14.4) and 13.6 (16.3) km. (c) 2006 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Texas A&M Univ, Dept Phys, Commerce, TX 75429 USA. Arkansas State Univ, Dept Chem & Phys, State Univ, AR 72467 USA. RP Steiner, AW (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM bao-an_li@tamu-commerce.edu; steinera@pa.msu.edu OI Steiner, Andrew/0000-0003-2478-4017 NR 60 TC 77 Z9 78 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD NOV 23 PY 2006 VL 642 IS 5-6 BP 436 EP 440 DI 10.1016/j.physletb.2006.09.065 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 112CT UT WOS:000242503500004 ER PT J AU Radyushkin, AV AF Radyushkin, A. V. TI Holographic wave functions, meromorphization and counting rules SO PHYSICS LETTERS B LA English DT Article ID PION FORM-FACTOR; GENERALIZED PARTON DISTRIBUTIONS; QUARK-HADRON DUALITY; QCD SUM-RULES; QUANTUM CHROMODYNAMICS; EXCLUSIVE PROCESSES; TRANSVERSE-MOMENTUM; ASYMPTOTIC-BEHAVIOR; REGULARIZATION AB We study the large-Q(2) behavior of the meson form factor F-M (Q(2)) constructed using the holographic light-front wave functions proposed recently by Brodsky and de Teramond. We show that this model can be also obtained within the Migdal's regularization approach ("meromorphization"), if one applies it to 3-point function for scalar currents made of scalar quarks. We found that the asymptotic 1/Q(2) behavior of F-M(Q2) is generated by soft Feynman mechanism rather than by large transverse momentum dynamics, which causes very late onset of the 1/Q(2) asymptotic behavior. It becomes visible only for unaccessible momenta Q(2) greater than or similar to 10 GeV2. Using meromorphization for spin-1/2 quarks, we demonstrated that resulting form factor F-M(spinor) (Q(2)) has 1/Q asymptotic behavior. Now, owing to the late onset of this asymptotic pattern, F-M(spinor) (Q(2)) imitates the 1/Q(2) behavior in the few GeV2 region. We discuss analogy between meromorphization and local quark-hadron duality model for the pion form factor, and show that adding the O(alpha(s)) correction to the spectral function brings in the hard pQCD contribution that has the dimensional counting 1/Q(2) behavior at large Q(2). At accessible Q(2), the O(alpha(s)) term is a rather small fraction of the total result. In this scenario, the "observed" quark counting rules for hadronic form factors is an approximate phenomenon resulting from Feynman mechanism in its preasymptotic regime. (c) 2006 Published by Elsevier B.V. C1 Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. Ctr Theory, Jefferson Lab, Newport News, VA 23606 USA. JINR, Bogoliubov Lab Theoret Phys, Dubna, Russia. RP Radyushkin, AV (reprint author), Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. EM radyush@jlab.org NR 41 TC 19 Z9 19 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD NOV 23 PY 2006 VL 642 IS 5-6 BP 459 EP 468 DI 10.1016/j.physletb.2006.10.008 PG 10 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 112CT UT WOS:000242503500008 ER PT J AU Donnadieu, Y Godderis, Y Pierrehumbert, R Dromart, G Fluteau, F Jacob, R AF Donnadieu, Y. Godderis, Y. Pierrehumbert, R. Dromart, G. Fluteau, F. Jacob, R. TI A GEOCLIM simulation of climatic and biogeochemical consequences of Pangea breakup SO GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS LA English DT Article DE carbon cycle; climate; modeling; Pangea; Mesozoic; CO(2); biogeosciences : carbon cycling (4806); geochemistry : magma chamber processes (3618); geochemistry : geochemical cycles (0330) ID NEOPROTEROZOIC SNOWBALL EARTH; ATMOSPHERIC CO2; CARBON-CYCLE; PHANEROZOIC TIME; SEDIMENTARY CARBONATE; CENOZOIC EVOLUTION; CHEMICAL EVOLUTION; CALCIUM-CARBONATE; SEAWATER; TEMPERATURE AB [1] Large fluctuations in continental configuration occur throughout the Mesozoic. While it has long been recognized that paleogeography may potentially influence atmospheric CO(2) via the continental silicate weathering feedback, no numerical simulations have been done, because of the lack of a spatially resolved climate-carbon model. GEOCLIM, a coupled numerical model of the climate and global biogeochemical cycles, is used to investigate the consequences of the Pangea breakup. The climate module of the GEOCLIM model is the FOAM atmospheric general circulation model, allowing the calculation of the consumption of atmospheric CO(2) through continental silicate weathering with a spatial resolution of 7.5 degrees long x 4.5 degrees lat. Seven time slices have been simulated. We show that the breakup of the Pangea supercontinent triggers an increase in continental runoff, resulting in enhanced atmospheric CO(2) consumption through silicate weathering. As a result, atmospheric CO(2) falls from values above 3000 ppmv during the Triassic down to rather low levels during the Cretaceous ( around 400 ppmv), resulting in a decrease in global mean annual continental temperatures from about 20 degrees C to 10 degrees C. Silicate weathering feedback and paleogeography both act to force the Earth system toward a dry and hot world reaching its optimum over the last 260 Myr during the Middle-Late Triassic. In the super continent case, given the persistent aridity, the model generates high CO(2) values to produce very warm continental temperatures. Conversely, in the fragmented case, the runoff becomes the most important contributor to the silicate weathering rate, hence producing a CO(2) drawdown and a fall in continental temperatures. Finally, another unexpected outcome is the pronounced fluctuation in carbonate accumulation simulated by the model in response to the Pangea breakup. These fluctuations are driven by changes in continental carbonate weathering flux. Accounting for the fluctuations in area available for carbonate platforms, the simulated ratio of carbonate deposition between neritic and deep sea environments is in better agreement with available data. C1 CEA Saclay, CNRS, Lab Sci Climat & Environm, F-91191 Gif Sur Yvette, France. Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. Observ Midi Pyrenees, CNRS, LMTG, F-31400 Toulouse, France. Ecole Normale Super Lyon, LST, F-69364 Lyon 07, France. Inst Phys Globe, F-75252 Paris 05, France. Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Donnadieu, Y (reprint author), CEA Saclay, CNRS, Lab Sci Climat & Environm, Orme Merisiers,Bat 701, F-91191 Gif Sur Yvette, France. EM yannick.donnadieu@cea.fr RI Jacob, Robert/D-2580-2011; Donnadieu, Yannick/G-7546-2016; fluteau, frederic/A-7523-2011; OI Jacob, Robert/0000-0002-9444-6593; Donnadieu, Yannick/0000-0002-7315-2684; fluteau, frederic/0000-0002-9952-7325; Pierrehumbert, Raymond/0000-0002-5887-1197 NR 69 TC 33 Z9 33 U1 3 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1525-2027 J9 GEOCHEM GEOPHY GEOSY JI Geochem. Geophys. Geosyst. PD NOV 22 PY 2006 VL 7 AR Q11019 DI 10.1029/2006GC001278 PG 21 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 110GY UT WOS:000242367600001 ER PT J AU Guazzone, F Payzant, EA Speakman, SA Ma, YH AF Guazzone, Federico Payzant, E. Andrew Speakman, Scott A. Ma, Yi Hua TI Microstrains and stresses analysis in electroless deposited thin Pd films SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID POROUS STAINLESS-STEEL; PALLADIUM-HYDROGEN EQUILIBRIUM; THERMALLY INDUCED STRAINS; X-RAY-DIFFRACTION; NANOCRYSTALLINE PALLADIUM; COMPOSITE MEMBRANES; METAL-FILMS; REACTOR AB This work is aimed at the measurement with X-ray diffraction techniques of microstrains, intrinsic stresses, and thermal and hydrogen stresses in composite Pd porous metal (PM) structures and their release at high temperatures. In addition, the changes in the Pd microstructure upon heating were studied with SEM to determine the relation between stress release and microstructure changes. The initial microstrains, 0.29%, in the electroless deposited Pd layer were irreversibly released after annealing at 400 degrees C for 1 h in He atmosphere. The initial intrinsic stress, mostly due to the deposition method, was tensile in nature (104.7 MPa) and was also released at 400 degrees C for 1 h in He atmosphere. After the release of intrinsic stresses, the total stress was given by the sum of the thermal stresses ( mismatch in coefficients of thermal expansion) and the H-2 stresses due to the absorption of H-2 in the Pd layer. The total stress (thermal + hydrogen stresses) was compressive and was released at temperatures higher than 400 degrees C with a significant change in Pd morphology. A model, valid in the 60-400 degrees C temperature range, was also developed to predict the total stress to which composite Pd membranes were exposed in the 250-400 degrees C temperature and the 1-5 bar H-2 pressure range. The highest total stress, at 250 degrees C and 5 bar, was estimated to be equal to -260 MPa according to the model developed in this work. The lowest stress, at 400 degrees C and 1.5 bar, equaled -78 MPa. At temperatures higher than 400 degrees C, the model did not hold since stresses were released by plastic deformation; however, their value was lower than -78 MPa. The characterization of several composite Pd membranes prepared on porous metal (PM) supports showed that leaks formed at temperatures above 400-450 degrees C. Since leaks only formed at T > 400 degrees C, the magnitude of stresses only played a minor role in leak formation. C1 Worcester Polytech Inst, Dept Chem Engn, Ctr Inorgan Membrane Studies, Worcester, MA 01609 USA. Oak Ridge Natl Lab, High Temp Mat Lab, Oak Ridge, TN 37831 USA. RP Ma, YH (reprint author), Worcester Polytech Inst, Dept Chem Engn, Ctr Inorgan Membrane Studies, Worcester, MA 01609 USA. EM guazzone@wpi.edu; payzanta@ornl.gov; speakman@mit.edu; yhma@wpi.edu RI Payzant, Edward/B-5449-2009 OI Payzant, Edward/0000-0002-3447-2060 NR 38 TC 19 Z9 19 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD NOV 22 PY 2006 VL 45 IS 24 BP 8145 EP 8153 DI 10.1021/ie060756s PG 9 WC Engineering, Chemical SC Engineering GA 105HK UT WOS:000242020800020 ER PT J AU Nagasubramanian, G Bronstein, L Carini, J AF Nagasubramanian, G. Bronstein, Lyudmila Carini, John TI Improved performance of Li hybrid solid polymer electrolyte cells SO JOURNAL OF POWER SOURCES LA English DT Article; Proceedings Paper CT International Power Sources Symposium 2005 CY APR 19-21, 2005 CL Brighton, ENGLAND SP CEA GENEC DE solid polymer; impedance; capacity ID BATTERY APPLICATIONS; LITHIUM BATTERIES AB The seminal research by Wright et al. on polyethylene oxide (PEO) solid polymer electrolyte (SPE) generated intense interest in all solid-state rechargeable lithium batteries. Following this a number of researchers have studied the physical, electrical and transport properties of thin film PEO electrolyte containing Li salt. These studies have clearly identified the limitations of the PEO electrolyte. Chief among the limitations are a low cation transport number (t(+)), high crystallinity and segmental motion of the polymer chain, which carries the cation through the bulk electrolyte. While low t(+) leads to cell polarization and increase in cell resistance high T-g reduces conductivity at and around room temperatures. For example, the conductivity of PEO electrolyte containing lithium salt is < 10(-7) S cm(-1) at room temperature. Although modified PEO electrolytes with lower T-g exhibited higher conductivity (similar to 10(-5) S cm(-1) at RT) the t(+) is still very low similar to 0.25 for lithium ion. Numerous other attempts to improving t(+) have met with limited success. The latest approach involves integrating nano domains of inorganic moieties, such as silcate, alumosilicate, etc. within the polymer component. This approach yields an inorganic-organic component (OIC) based polymer electrolyte with higher conductivity and t(+) for Li+. This paper describes the improved electrical and electrochemical properties of OIC-based polymer electrolyte and cells containing Li anode with either a TiS2 cathode or Mag-10 carbon electrode. Several solid polymer electrolytes derived from silicate OIC and salt-in-polymer constituent based on Li triflate (LiTf) and PEO are studied. A typical composition of the SPE investigated in this work consists of 600 kDa PEO, lithium triflate (LiTf, LiSO3CF3) and 55% of silicate based on (3-glycidoxypropyl)trimethoxysilane and tetramethoxysilane at molar ratio 4:1 and 0.65 mol% of aluminum(tri-sec-butoxide) (GTMOS-A11-900k-55%). Several pouch cells consisting of Li/OIC-based-SPE/cathode containing OIC-based-SPE-LiTf binder were fabricated and tested, these cells are called modified cells. The charge/discharge and impedance characteristics of the new cells (also called modified cells) are compared with that of the pouch cells containing the conventional PEO-LiTf electrolyte as the cathode binder, these cells are called non-modified cells. The new cells can be charged and discharged at 70 degrees C at higher currents. However, the old cells can be charged and discharged only at 80 degrees C or above and at lower currents. The cell impedance for the new cells is much lower than that for the old cells. (c) 2005 Elsevier B.V. All rights reserved. C1 Sandia Natl Labs, Lithium Battery R&D 2521, Albuquerque, NM 87185 USA. Indiana Univ, Bloomington, IN 47405 USA. RP Nagasubramanian, G (reprint author), Sandia Natl Labs, Lithium Battery R&D 2521, POB 5800, Albuquerque, NM 87185 USA. EM gnagasu@sandia.gov NR 10 TC 10 Z9 10 U1 8 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD NOV 22 PY 2006 VL 162 IS 2 SI SI BP 847 EP 850 DI 10.1016/j.jpowsour.2005.07.025 PG 4 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 116SB UT WOS:000242821500018 ER PT J AU Lee, DK Park, SH Amine, K Bang, HJ Parakash, J Sun, YK AF Lee, D. -K. Park, S. -H. Amine, K. Bang, H. J. Parakash, J. Sun, Y. -K. TI High capacity Li[Li0.2Ni0.2Mn0.6]O-2 cathode materials via a carbonate co-precipitation method SO JOURNAL OF POWER SOURCES LA English DT Article DE cathode material; carbonate co-precipitation; ASI; thermal stability; lithium secondary batteries ID LITHIUM-ION BATTERIES; SITU X-RAY; ELECTROCHEMICAL PROPERTIES; SECONDARY BATTERIES; LI AB Spherical Li[Li0.2Ni0.2Mn0.6]O-2 has been synthesized by a carbonate co-precipitation method. The Li[Li0.2Ni0.2Mn0.6]O-2 with a phase-pure and well-ordered layered structure was synthesized by heat-treatment of a spherical (Ni0.25Mn0.75)(3)O-4 precursor with (LiOHH2O)-H-.. The average particle size of the Li[Li0.2Ni0.2Mn0.6]O-2 powders was approximately 20 mu m and the size distribution was quite narrow due to the homogeneity of the (Ni0.25Mn0.75)CO3. The Li[Li0.2Ni0.2Mn0.6]O-2 electrode calcined at 900 degrees C delivered an initial discharge capacity of approximately 270 mAh g(-1) in the voltage range of 2.0-4.6 V The differential scanning calorimetry (DSC) results for the Li[Li0.2Ni0.2Mn0.6]O-2 prepared at 900 degrees C showed a major exothermic reaction at 270 degrees C. (c) 2006 Elsevier B.V. All rights reserved. C1 Hanyang Univ, Ctr Informat & Commun Mat, Dept Chem Engn, Seoul 133791, South Korea. Argonne Natl Lab, Div Chem Engn, Electrochem Technol Program, Argonne, IL 60439 USA. IIT, Dept Environm Chem & Engn, Ctr Electrochem Sci & Engn, Chicago, IL 60616 USA. RP Sun, YK (reprint author), Hanyang Univ, Ctr Informat & Commun Mat, Dept Chem Engn, Seoul 133791, South Korea. EM yksun@hanyang.ac.kr RI Sun, Yang-Kook/B-9157-2013; Amine, Khalil/K-9344-2013 OI Sun, Yang-Kook/0000-0002-0117-0170; NR 20 TC 80 Z9 95 U1 5 U2 73 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD NOV 22 PY 2006 VL 162 IS 2 SI SI BP 1346 EP 1350 DI 10.1016/j.jpowsour.2006.07.064 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 116SB UT WOS:000242821500086 ER PT J AU Pessanha, M Morgado, L Louro, RO Londer, YY Pokkuluri, PR Schiffer, M Salgueiro, CA AF Pessanha, Miguel Morgado, Leonor Louro, Ricardo O. Londer, Yuri Y. Pokkuluri, P. Raj Schiffer, Marianne Salgueiro, Carlos A. TI Thermodynamic characterization of triheme cytochrome PpcA from Geobacter sulfurreducens: Evidence for a role played in e(-)/H+ energy transduction SO BIOCHEMISTRY LA English DT Article ID DESULFOVIBRIO-VULGARIS; DESULFUROMONAS-ACETOXIDANS; FE(III) REDUCTION; CONTAMINATED AQUIFER; REDOX-BOHR; C(3); C(7); RESOLUTION; PROTEIN; GIGAS AB The facultative aerobic bacterium Geobacter sulfurreducens produces a small periplasmic c-type triheme cytochrome with 71 residues ( PpcA) under anaerobic growth conditions, which is involved in the iron respiration. The thermodynamic properties of the PpcA redox centers and of a protonatable center were determined using NMR and visible spectroscopy techniques. The redox centers have negative and different reduction potentials (- 162, - 143, and - 133 mV for heme I, III, and IV, respectively, for the fully reduced and protonated protein), which are modulated by redox interactions among the hemes ( covering a range from 10 to 36 mV) and by redox-Bohr interactions ( up to - 62 mV) between the hemes and a protonatable center located in the proximity of heme IV. All the interactions between the four centers are dominated by electrostatic effects. The microscopic reduction potential of heme III is the one most affected by the oxidation of the other hemes, whereas heme IV is the most affected by the protonation state of the molecule. The thermodynamic properties of PpcA showed that pH strongly modulates the redox behavior of the individual heme groups. A preferred electron transfer pathway at physiologic pH is defined, showing that PpcA has the necessary thermodynamic properties to perform e(-)/H+ energy transduction, contributing to a H+ electrochemical potential gradient across the periplasmic membrane that drives ATP synthesis. PpcA is 46% identical in sequence to and shares a high degree of structural similarity with a periplasmic triheme cytochrome c(7) isolated from Desulfuromonas acetoxidans, a bacterium closely related to the Geobacteracea family. However, the results obtained for PpcA are quite different from those published for D. acetoxidans c7, and the physiological consequences of these differences are discussed. C1 Univ Nova Lisboa, Dept Quim, Fac Ciencias & Tecnol, Requimte,CQFB, P-2829516 Caparica, Portugal. Univ Nova Lisboa, Inst Tecnol Quim & Biol, P-2780156 Oeiras, Portugal. Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Salgueiro, CA (reprint author), Univ Nova Lisboa, Dept Quim, Fac Ciencias & Tecnol, Requimte,CQFB, P-2829516 Caparica, Portugal. EM csalgueiro@dq.fct.unl.pt RI Salgueiro, Carlos/A-4522-2013; Morgado, Leonor/D-7387-2013; REQUIMTE, AL/H-9106-2013; REQUIMTE, SMB/M-5694-2013; REQUIMTE, UCIBIO/N-9846-2013; OI Salgueiro, Carlos/0000-0003-1136-809X; Morgado, Leonor/0000-0002-3760-5180; Louro, Ricardo/0000-0002-2392-6450 NR 39 TC 28 Z9 28 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD NOV 21 PY 2006 VL 45 IS 46 BP 13910 EP 13917 DI 10.1021/bi061394v PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 105HN UT WOS:000242021100023 PM 17105209 ER PT J AU Freeman, JL Quinn, CF Marcus, MA Fakra, S Pilon-Smits, EAH AF Freeman, John L. Quinn, Colin F. Marcus, Matthew A. Fakra, Sirine Pilon-Smits, Elizabeth A. H. TI Selenium-tolerant diamondback moth disarms hyperaccumulator plant defense SO CURRENT BIOLOGY LA English DT Article ID BACILLUS-THURINGIENSIS; PLUTELLA-XYLOSTELLA; SPODOPTERA-EXIGUA; INDIAN MUSTARD; ACCUMULATION; BRASSICACEAE; LEPIDOPTERA; RESISTANCE; NI; PHYTOREMEDIATION AB Background: Some plants hyperaccumulate the toxic element selenium (Se) to extreme levels, up to 1% of dry weight. The function of this intriguing phenomenon is obscure. Results: Here, we show that the Se in the hyperaccumulator prince's plume (Stanleya pinnata) protects it from caterpillar herbivory because of deterrence and toxicity. In its natural habitat, however, a newly discovered variety of the invasive diamondback moth (Plutella xylostelia) has disarmed this elemental defense. It thrives on plants containing highly toxic Se levels and shows no oviposition or feeding deterrence, in contrast to related varieties. Interestingly, a Se-tolerant wasp (Diadegma insulare) was found to parasitize the tolerant moth. The insect's Se tolerance mechanism was revealed by X-ray absorption spectroscopy and liquid chromatography-mass spectroscopy, which showed that the Se-tolerant moth and its parasite both accumulate methylselenocysteine, the same form found in the hyperaccumulator plant, whereas related sensitive moths accumulate selenocysteine. The latter is toxic because of its nonspecific incorporation into proteins. Indeed, the Se-tolerant diamondback moth incorporated less Se into protein. Additionally, the tolerant variety sequestered Se in distinct abdominal areas, potentially involved in detoxification and larval defense to predators. Conclusions: Although Se hyperaccumulation protects plants from herbivory by some invertebrates, it can give rise to the evolution of unique Se-tolerant herbivores and thus provide a portal for Se into the local ecosystem. In a broader context, this study provides insight into the possible ecological implications of using Se-enriched crops as a source of anti-carcinogenic selenocompounds and for the remediation of Se-polluted environments. C1 Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA. Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Pilon-Smits, EAH (reprint author), Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA. EM epsmits@lamar.colostate.edu RI Freeman, John/C-4910-2009; Marion-Poll, Frederic/D-8882-2011 OI Marion-Poll, Frederic/0000-0001-6824-0180 NR 54 TC 64 Z9 66 U1 4 U2 22 PU CELL PRESS PI CAMBRIDGE PA 1100 MASSACHUSETTS AVE, CAMBRIDGE, MA 02138 USA SN 0960-9822 J9 CURR BIOL JI Curr. Biol. PD NOV 21 PY 2006 VL 16 IS 22 BP 2181 EP 2192 DI 10.1016/j.cub.2006.09.015 PG 12 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 108WC UT WOS:000242268900019 PM 17113382 ER PT J AU Sodt, A Subotnik, JE Head-Gordon, M AF Sodt, Alex Subotnik, Joseph E. Head-Gordon, Martin TI Linear scaling density fitting SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID FUNCTIONAL THEORY CALCULATIONS; J-MATRIX ENGINE; QUANTUM-CHEMISTRY; INTEGRAL APPROXIMATIONS; COULOMB OPERATOR; GAUSSIAN-BASIS; BASIS-SETS; EXCHANGE; EFFICIENT; ALGORITHMS AB Two modifications of the resolution of the identity (RI)/density fitting (DF) approximations are presented. First, we apply linear scaling and J-engine techniques to speed up traditional DF. Second, we develop an algorithm that produces local, accurate fits with effort that scales linearly with system size. The fits produced are continuous, differentiable, well-defined, and do not require preset fitting domains. This metric-independent technique for producing a priori local fits is shown to be accurate and robust even for large systems. Timings are presented for linear scaling RI/DF calculations on large one-, two-, and three-dimensional carbon systems. (c) 2006 American Institute of Physics. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Sodt, A (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM mhg@bastille.cchem.berkeley.edu NR 45 TC 82 Z9 82 U1 0 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 21 PY 2006 VL 125 IS 19 AR 194109 DI 10.1063/1.2370949 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 107OV UT WOS:000242181800011 PM 17129091 ER PT J AU Gary, SP Karimabadi, H AF Gary, S. Peter Karimabadi, Homa TI Linear theory of electron temperature anisotropy instabilities: Whistler, mirror, and Weibel SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID EARTHS MAGNETOSHEATH; SPACE PLASMAS; SIMULATION; WAVES AB A collisionless, homogeneous plasma in which the electron velocity distribution is a bi-Maxwellian with T(perpendicular to e) > T(parallel to e), where the directional subscripts refer to directions relative to the background magnetic field B(o), can support the growth of two distinct instabilities. Linear dispersion theory predicts that the whistler anisotropy instability is excited with maximum growth rate gamma(m) at k x B(o) = 0 and real frequency omega(r) greater than the proton cyclotron frequency, whereas the electron mirror instability is excited at propagation oblique to Bo and zero real frequency. In an unmagnetized plasma with a similarly anisotropic electron distribution the electron Weibel instability may be excited with zero real frequency and maximum growth rate in the direction of the minimum temperature. Here linear theory is used to compare dispersion and threshold properties of these three growing modes. For 0.10 <= beta(parallel to e) <= 1000, the whistler has a larger gamma(m) and a smaller anisotropy threshold than the electron mirror, so that the former mode should dominate in homogeneous plasmas for most physical values of electron beta. Threshold conditions describing electron temperature anisotropies and parallel wave numbers at given maximum growth rates are presented for each instability. C1 Los Alamos Natl Lab, Grp ISR1, Los Alamos, NM 87545 USA. Univ Calif San Diego, Dept Elect & Elect Engn, La Jolla, CA 92093 USA. RP Gary, SP (reprint author), Los Alamos Natl Lab, Grp ISR1, Mail Stop D466, Los Alamos, NM 87545 USA. EM pgary@lanl.gov; homa@ece.ucsd.edu NR 27 TC 38 Z9 38 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 21 PY 2006 VL 111 IS A11 AR A11224 DI 10.1029/2006JA011764 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 110IA UT WOS:000242370500001 ER PT J AU Brooks, CF Grillet, AM Emerson, JA AF Brooks, Carlton F. Grillet, Anne M. Emerson, John A. TI Experimental investigation of the spontaneous wetting of polymers and polymer blends SO LANGMUIR LA English DT Article ID SURFACE FREE-ENERGIES; DROP SIZE DEPENDENCE; CONTACT-ANGLE; MOLECULAR-WEIGHT; SOLID-SURFACE; MACROMOLECULAR SYSTEMS; INTERFACIAL PHENOMENA; LINE TENSION; DYNAMICS; KINETICS AB The dynamics of polymeric liquids and mixtures spreading on a solid surface have been investigated on completely wetting and partially wetting surfaces. Drops were formed by pushing the test liquid through a hole in the underside of the substrate, and the drop profiles were monitored as the liquid wet the surface. Silicon surfaces coated with diphenyldichlorosilane (DPDCS) and octadecyltrichlorosilane (OTS) were used as wetting and partial wetting surfaces, respectively, for the fluids we investigated. The response under complete and partial wetting conditions for a series of polypropylene glycols (PPG) with different molecular weights and the same surface tension could be collapsed onto a single curve when scaling time based on the fluid viscosity, the liquid-vapor surface tension, and the radius of a spherical drop with equivalent volume. A poly(ethylene glycol) (PEG300) and a series of poly(ethylene oxide-rand-propylene oxide) copolymers did not show the same viscosity scaling when spread on the partially wetting surface. A combined model incorporating hydrodynamic and molecular-kinetic wetting models adequately described the complete wetting results. The assumptions in the hydrodynamic model, however, were not valid under the partial wetting conditions in our work, and the molecular-kinetic model was chosen to describe our results. The friction coefficient used in the molecular-kinetic model exhibited a nonlinear dependence with viscosity for the copolymers, indicating a more complex relationship between the friction coefficient and the fluid viscosity. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Grillet, AM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM amgrill@sandia.gov NR 53 TC 5 Z9 5 U1 4 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 21 PY 2006 VL 22 IS 24 BP 9928 EP 9941 DI 10.1021/la061013e PG 14 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 105HX UT WOS:000242022100020 PM 17106982 ER PT J AU Rutherford, SW AF Rutherford, S. W. TI Probing the mechanism of water adsorption in carbon micropores with multitemperature isotherms and water preadsorption experiments SO LANGMUIR LA English DT Article ID BPL ACTIVATED CARBON; MOLECULAR-SIEVES; ORGANIC-COMPOUNDS; AIR SEPARATION; KINETICS; GRAPHITE; SITES; GASES; VAPOR; COADSORPTION AB The phenomenon of water adsorption in carbon micropores is examined through the study of water adsorption equilibrium in molecular sieving carbon. Adsorption and desorption isotherms are obtained over a wide range of concentrations from less than 0.1% to beyond 80% of the vapor pressure. Evidence is provided in support of a proposed bimodal water adsorption mechanism that involves the interaction of water molecules with functional groups at low relative pressures and the adsorption of water molecules between graphene layers at higher pressures. Decomposition of the equilibrium isotherm data through application of the extended cooperative multimolecular sorption theory, together with favorable quantitative comparison, provides support for the proposed adsorption mechanism. Additional support is obtained from a multitemperature study of water equilibrium. Temperatures of 20, 50, and 60 degrees C were probed in this investigation in order to provide isosteric heat of adsorption data for water interaction with the carbon molecular sieve. At low loading, the derived isosteric heat of adsorption is estimated to be 69 kJ/mol. This value is indicative of the adsorption of water to functional groups. At higher loading, the isosteric heat of adsorption decreases with increasing loading and approaches the heat of condensation, indicative of adsorption between graphene layers. Further support for the proposed adsorption mechanism is derived from carbon dioxide adsorption experiments on carbon molecular sieve that is preadsorbed with various amounts of water. Significant exclusion of carbon dioxide occurs, and a quantitative analysis that is based on the proposed bimodal water adsorption mechanism is employed in this investigation. C1 Los Alamos Natl Lab, Engn Sci & Applicat Div, Los Alamos, NM 87545 USA. RP Rutherford, SW (reprint author), Los Alamos Natl Lab, Engn Sci & Applicat Div, MS E581, Los Alamos, NM 87545 USA. EM stevenr@lanl.gov NR 65 TC 9 Z9 9 U1 2 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 21 PY 2006 VL 22 IS 24 BP 9967 EP 9975 DI 10.1021/la061140a PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 105HX UT WOS:000242022100025 PM 17106987 ER PT J AU Lorenz, CD Travesset, A AF Lorenz, Christian D. Travesset, Alex TI Atomistic simulations of Langmuir monolayer collapse SO LANGMUIR LA English DT Article ID MOLECULAR-DYNAMICS; TRIBOLOGICAL PROPERTIES; SURFACE; MODEL; FILMS; WATER; REPLACEMENT; TRANSITIONS; PROTEINS; FLUID AB Monolayers at the vapor/water interface collapse by exploring the third dimension at sufficient lateral compression, either by forming three-dimensional structures or by solubilization into the aqueous solution. In this paper, we provide an atomistic description of collapse from molecular dynamics (MD) simulations. More specifically, we investigate monolayers of arachidic acids spread on pure water and in an aqueous solution with Ca2+ ions in the subphase. In both cases, it is found that the collapsed systems generally lead to the formation of multilayer structures, which in the system with Ca2+ ions, proceeds by an intermediate regime where the monolayer exhibits significant roughness (of the order of 4 angstrom). If no roughness is present, the system forms collapsed structures into the aqueous solution. The computational cost of atomic MD limits our simulations to relatively small system sizes, fast compression rates, and temporal scales on the order of a nanosecond. We discuss the issues caused by these limitations and present a detailed discussion of how the collapse regime proceeds at long time scales. We conclude with a summary of the implications of our results for further theoretical and experimental studies. C1 Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Ames Lab, Ames, IA 50011 USA. RP Lorenz, CD (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM cdlorenz@iastate.edu NR 37 TC 23 Z9 23 U1 0 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 21 PY 2006 VL 22 IS 24 BP 10016 EP 10024 DI 10.1021/la061868r PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 105HX UT WOS:000242022100032 PM 17106994 ER PT J AU Kesanli, B Hong, K Meyer, K Im, HJ Dai, S AF Kesanli, Banu Hong, Kunlun Meyer, Kent Im, Hee-Jung Dai, Sheng TI Highly efficient solid-state neutron scintillators based on hybrid sol-gel nanocomposite materials SO APPLIED PHYSICS LETTERS LA English DT Article ID POLYSTYRENE; POLYMER AB This research highlights opportunities in the formulation of neutron scintillators that not only have high scintillation efficiencies but also can be readily cast into two-dimensional detectors. Series of transparent, crack-free monoliths were prepared from hybrid polystyrene-silica nanocomposites in the presence of arene-containing alkoxide precursor through room temperature sol-gel processing. The monoliths also contain lithium-6 salicylate as a target material for neutron-capture reactions and amphiphilic scintillator solution as a fluorescent sensitizer. Polystyrene was functionalized by trimethoxysilyl group in order to enable the covalent incorporation of aromatic functional groups into the inorganic sol-gel matrices for minimizing macroscopic phase segregation and facilitating lithium-6 doping in the sol-gel samples. Neutron and alpha responses of these hybrid polystyrene-silica monoliths were explored. (c) 2006 American Institute of Physics. C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Kesanli, B (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM dais@ornl.gov RI Dai, Sheng/K-8411-2015; Hong, Kunlun/E-9787-2015 OI Dai, Sheng/0000-0002-8046-3931; Hong, Kunlun/0000-0002-2852-5111 NR 16 TC 10 Z9 10 U1 3 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 20 PY 2006 VL 89 IS 21 AR 214104 DI 10.1063/1.2393003 PG 3 WC Physics, Applied SC Physics GA 108DH UT WOS:000242220000086 ER PT J AU McGreer, ID Becker, RH Helfand, DJ White, RL AF McGreer, Ian D. Becker, Robert H. Helfand, David J. White, Richard L. TI Discovery of a z=6.1 radio-loud quasar in the NOAO Deep Wide Field Survey SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies : high-redshift; quasars : individual (FIRST J1427385+331241) ID DIGITAL SKY SURVEY; BROAD ABSORPTION-LINE; HIGHEST REDSHIFT QUASARS; Z-GREATER-THAN-5.7 QUASARS; ADDITIONAL QUASARS; STELLAR OBJECTS; DATA RELEASE; 1ST SURVEY; EVOLUTION; SYSTEMS AB From examination of only 4 deg(2) of sky in the NOAO Deep Wide-Field Survey (NDWFS) region, we have identified the first radio-loud quasar at a redshift z > 6. The object, FIRST J1427385+331241, was discovered by matching the FLAMINGOS Extragalactic Survey (FLAMEX) IR survey to Faint Images of the Radio Sky at Twenty cm (FIRST) survey radio sources with NDWFS counterparts. One candidate z > 6 quasar was found, and spectroscopy with the Keck II telescope confirmed its identification yielding a redshift z = 6.12. The object is a broad absorption line (BAL) quasar with an optical luminosity of M-B similar to -26.9 and a radio-to-optical flux ratio similar to 60. Two Mg II absorptions systems are present at redshifts of z = 2.18 and z = 2.20. We briefly discuss the implications of this discovery for the high-redshift quasar population. C1 Columbia Univ, Dept Astron, New York, NY 10027 USA. Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. Lawrence Livermore Natl Lab, IGPP, Livermore, CA 94551 USA. Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP McGreer, ID (reprint author), Columbia Univ, Dept Astron, 550 W 120th St, New York, NY 10027 USA. RI White, Richard/A-8143-2012 NR 43 TC 37 Z9 37 U1 0 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2006 VL 652 IS 1 BP 157 EP 162 DI 10.1086/507767 PN 1 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 106TX UT WOS:000242125700015 ER PT J AU Abe, K Hosaka, J Iida, T Ishihara, K Kameda, J Koshio, Y Minamino, A Mitsuda, C Miura, M Moriyama, S Nakahata, M Obayashi, Y Ogawa, H Shiozawa, M Suzuki, Y Takeda, A Takeuchi, Y Higuchi, I Ishihara, C Ishitsuka, M Kajita, T Kaneyuki, K Mitsuka, G Nakayama, S Nishino, H Okada, A Okumura, K Saji, C Takenaga, Y Clark, S Desai, S Dufour, F Kearns, E Likhoded, S Litos, M Raaf, JL Stone, JL Sulak, LR Wang, W Goldhaber, M Casper, D Cravens, JP Dunmore, J Kropp, WR Liu, DW Mine, S Regis, C Smy, MB Sobel, HW Vagins, MR Ganezer, KS Hill, J Keig, WE Jang, JS Kim, JY Lim, IT Scholberg, K Tanimoto, N Walter, CW Wendell, R Ellsworth, RW Tasaka, S Guillian, G Learned, JG Matsuno, S Messier, MD Hayato, Y Ichikawa, AK Ishida, T Ishii, T Iwashita, T Kobayashi, T Nakadaira, T Nakamura, K Nitta, K Oyama, Y Totsuka, Y Suzuki, AT Hasegawa, M Hiraide, K Kato, I Maesaka, H Nakaya, T Nishikawa, K Sasaki, T Sato, H Yamamoto, S Yokoyama, M Haines, TJ Dazeley, S Hatakeyama, S Svoboda, R Sullivan, GW Turcan, D Swanson, M Clough, A Habig, A Fukuda, Y Sato, T Itow, Y Koike, T Jung, CK Kato, T Kobayashi, K Malek, M McGrew, C Sarrat, A Terri, R Yanagisawa, C Tamura, N Sakuda, M Sugihara, M Kuno, Y Yoshida, M Kim, SB Yang, BS Yoo, J Ishizuka, T Okazawa, H Choi, Y Seo, HK Gando, Y Hasegawa, T Inoue, K Ishii, H Nishijima, K Ishino, H Watanabe, Y Koshiba, M Kielczewska, D Zalipska, J Berns, H Gran, R Shiraishi, KK Stachyra, A Thrane, E Washburn, K Wilkes, RJ AF Abe, K. Hosaka, J. Iida, T. Ishihara, K. Kameda, J. Koshio, Y. Minamino, A. Mitsuda, C. Miura, M. Moriyama, S. Nakahata, M. Obayashi, Y. Ogawa, H. Shiozawa, M. Suzuki, Y. Takeda, A. Takeuchi, Y. Higuchi, I. Ishihara, C. Ishitsuka, M. Kajita, T. Kaneyuki, K. Mitsuka, G. Nakayama, S. Nishino, H. Okada, A. Okumura, K. Saji, C. Takenaga, Y. Clark, S. Desai, S. Dufour, F. Kearns, E. Likhoded, S. Litos, M. Raaf, J. L. Stone, J. L. Sulak, L. R. Wang, W. Goldhaber, M. Casper, D. Cravens, J. P. Dunmore, J. Kropp, W. R. Liu, D. W. Mine, S. Regis, C. Smy, M. B. Sobel, H. W. Vagins, M. R. Ganezer, K. S. Hill, J. Keig, W. E. Jang, J. S. Kim, J. Y. Lim, I. T. Scholberg, K. Tanimoto, N. Walter, C. W. Wendell, R. Ellsworth, R. W. Tasaka, S. Guillian, G. Learned, J. G. Matsuno, S. Messier, M. D. Hayato, Y. Ichikawa, A. K. Ishida, T. Ishii, T. Iwashita, T. Kobayashi, T. Nakadaira, T. Nakamura, K. Nitta, K. Oyama, Y. Totsuka, Y. Suzuki, A. T. Hasegawa, M. Hiraide, K. Kato, I. Maesaka, H. Nakaya, T. Nishikawa, K. Sasaki, T. Sato, H. Yamamoto, S. Yokoyama, M. Haines, T. J. Dazeley, S. Hatakeyama, S. Svoboda, R. Sullivan, G. W. Turcan, D. Swanson, M. Clough, A. Habig, A. Fukuda, Y. Sato, T. Itow, Y. Koike, T. Jung, C. K. Kato, T. Kobayashi, K. Malek, M. McGrew, C. Sarrat, A. Terri, R. Yanagisawa, C. Tamura, N. Sakuda, M. Sugihara, M. Kuno, Y. Yoshida, M. Kim, S. B. Yang, B. S. Yoo, J. Ishizuka, T. Okazawa, H. Choi, Y. Seo, H. K. Gando, Y. Hasegawa, T. Inoue, K. Ishii, H. Nishijima, K. Ishino, H. Watanabe, Y. Koshiba, M. Kielczewska, D. Zalipska, J. Berns, H. Gran, R. Shiraishi, K. K. Stachyra, A. Thrane, E. Washburn, K. Wilkes, R. J. CA Super-Kamiokande Collaboration TI High-energy neutrino astronomy using upward-going muons in Super-Kamiokande-I SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic rays; elementary particles; neutrinos ID SOFT GAMMA-REPEATERS; NOBEL LECTURE; ASTROPHYSICS; MAGNETARS; DETECTOR; BURST; FLUX AB We present the results from several studies used to search for astrophysical sources of high-energy neutrinos using the Super-Kamiokande I (1996 April-2001 July) neutrino-induced upward-going muon data. The data set consists of 2359 events with minimum energy 1.6 GeV, of which 1892 are through-going and 467 stop within the detector. The results of several independent analyses are presented, including searches for point sources using directional and temporal information and a search for signatures of cosmic-ray interactions with the interstellar medium in the upward-going muons. No statistically significant evidence for point sources or any diffuse flux from the plane of the Galaxy was found, so specific limits on fluxes from likely point sources are calculated. The 90% confidence level (CL) upper limits on upward-going muon flux from astronomical sources that are located in the southern hemisphere and always under the horizon for Super-Kamiokande are similar to(1-4) x 10(-15) cm(-2) s(-1) . C1 Univ Tokyo, Kaioka Observ, Inst Cosm Ray Res, Gifu 5061205, Japan. Univ Tokyo, Res Ctr Cosm Neutrinos, Inst Coms Ray Res, Kashiwa, Chiba 2778582, Japan. Boston Univ, Dept Phys, Boston, MA 02115 USA. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. Calif State Univ Dominguez Hills, Dept Phys, Carson, CA 90747 USA. Chonnam Natl Univ, Dept Phys, Kwangju 500757, South Korea. Duke Univ, Dept Phys, Durham, NC 27708 USA. George Mason Univ, Dept Phys, Fairfax, VA 22030 USA. Gifu Univ, Dept Phys, Gifu 5011193, Japan. Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan. Kobe Univ, Dept Phys, Kobe, Hyogo 6578502, Japan. Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87544 USA. Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. Univ Maryland, Dept Phys, College Pk, MD 20742 USA. MIT, Dept Phys, Cambridge, MA 02139 USA. Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. Miyagi Univ Educ, Dept Phys, Sendai, Miyagi 98008545, Japan. Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648602, Japan. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Niigata Univ, Dept Phys, Niigata 9502181, Japan. Okayama Univ, Dept Phys, Okayama 7008530, Japan. Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan. Seoul Natl Univ, Dept Phys, Seoul 151742, South Korea. Shizuoka Univ, Dept Syst Engn, Shizuoka 4328561, Japan. Shizuoka Univ Welf, Dept Informat Social Welf, Shizuoka 4258611, Japan. Tohoku Univ, Res Ctr Neutrino Sci, Suwon 440746, South Korea. Tokai Univ, Dept Phys, Hiratsuka, Kanagawa 2591292, Japan. Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. Univ Tokyo, Tokyo 1130033, Japan. Univ Warsaw, Inst Expt Phys, PL-00681 Warsaw, Poland. Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Abe, K (reprint author), Univ Tokyo, Kaioka Observ, Inst Cosm Ray Res, Gifu 5061205, Japan. RI Takeuchi, Yasuo/A-4310-2011; Nakamura, Kenzo/F-7174-2010; Sobel, Henry/A-4369-2011; Suzuki, Yoichiro/F-7542-2010; Wilkes, R.Jeffrey/E-6011-2013; Kim, Soo-Bong/B-7061-2014; Yokoyama, Masashi/A-4458-2011; Ishino, Hirokazu/C-1994-2015; Koshio, Yusuke/C-2847-2015; Hiraide, Katsuki/A-4479-2011; Obayashi, Yoshihisa/A-4472-2011; Yoo, Jonghee/K-8394-2016 OI Yokoyama, Masashi/0000-0003-2742-0251; Ishino, Hirokazu/0000-0002-8623-4080; Koshio, Yusuke/0000-0003-0437-8505; NR 37 TC 20 Z9 20 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2006 VL 652 IS 1 BP 198 EP 205 DI 10.1086/508016 PN 1 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 106TX UT WOS:000242125700019 ER PT J AU Swanson, MEC Abe, K Hosaka, J Iida, T Ishihara, K Kameda, J Koshio, Y Minamino, A Mitsuda, C Miura, M Moriyama, S Nakahata, M Obayashi, Y Ogawa, H Shiozawa, M Suzuki, Y Takeda, A Takeuchi, Y Ueshima, K Higuchi, I Ishihara, C Ishitsuka, M Kajita, T Kaneyuki, K Mitsuka, G Nakayama, S Nishino, H Okada, A Okumura, K Saji, C Takenaga, Y Clark, S Desai, S Dufour, F Kearns, E Likhoded, S Litos, M Raaf, JL Stone, JL Sulak, LR Wang, W Goldhaber, M Casper, D Cravens, JP Dunmore, J Kropp, WR Liu, DW Mine, S Regis, C Smy, MB Sobel, HW Vagins, MR Ganezer, KS Hill, JE Keig, WE Jang, JS Kim, JY Lim, IT Scholberg, K Tanimoto, N Walter, CW Wendell, R Ellsworth, RW Tasaka, S Guillian, G Learned, JG Matsuno, S Messier, MD Hayato, Y Ichikawa, AK Ishida, T Ishii, T Iwashita, T Kobayashi, T Nakadaira, T Nakamura, K Nitta, K Oyama, Y Totsuka, Y Suzuki, AT Hasegawa, M Hiraide, K Kato, I Maesaka, H Nakaya, T Nishikawa, K Sasaki, T Sato, H Yamamoto, S Yokoyama, M Haines, TJ Dazeley, S Hatakeyama, S Svoboda, R Sullivan, GW Turcan, D Cooley, J Mahn, KBM Habig, A Fukuda, Y Sato, T Itow, Y Koike, T Jung, CK Kato, T Kobayashi, K Malek, M McGrew, C Sarrat, A Terri, R Yanagisawa, C Tamura, N Sakuda, M Sugihara, M Kuno, Y Yoshida, M Kim, SB Yang, BS Yoo, J Ishizuka, T Okazawa, H Choi, Y Seo, HK Gando, Y Hasegawa, T Inoue, K Ishii, H Nishijima, K Ishino, H Watanabe, Y Koshiba, M Kielczewska, D Zalipska, J Berns, HG Gran, R Shiraishi, KK Stachyra, A Thrane, E Washburn, K Wilkes, RJ AF Swanson, M. E. C. Abe, K. Hosaka, J. Iida, T. Ishihara, K. Kameda, J. Koshio, Y. Minamino, A. Mitsuda, C. Miura, M. Moriyama, S. Nakahata, M. Obayashi, Y. Ogawa, H. Shiozawa, M. Suzuki, Y. Takeda, A. Takeuchi, Y. Ueshima, K. Higuchi, I. Ishihara, C. Ishitsuka, M. Kajita, T. Kaneyuki, K. Mitsuka, G. Nakayama, S. Nishino, H. Okada, A. Okumura, K. Saji, C. Takenaga, Y. Clark, S. Desai, S. Dufour, F. Kearns, E. Likhoded, S. Litos, M. Raaf, J. L. Stone, J. L. Sulak, L. R. Wang, W. Goldhaber, M. Casper, D. Cravens, J. P. Dunmore, J. Kropp, W. R. Liu, D. W. Mine, S. Regis, C. Smy, M. B. Sobel, H. W. Vagins, M. R. Ganezer, K. S. Hill, J. E. Keig, W. E. Jang, J. S. Kim, J. Y. Lim, I. T. Scholberg, K. Tanimoto, N. Walter, C. W. Wendell, R. Ellsworth, R. W. Tasaka, S. Guillian, G. Learned, J. G. Matsuno, S. Messier, M. D. Hayato, Y. Ichikawa, A. K. Ishida, T. Ishii, T. Iwashita, T. Kobayashi, T. Nakadaira, T. Nakamura, K. Nitta, K. Oyama, Y. Totsuka, Y. Suzuki, A. T. Hasegawa, M. Hiraide, K. Kato, I. Maesaka, H. Nakaya, T. Nishikawa, K. Sasaki, T. Sato, H. Yamamoto, S. Yokoyama, M. Haines, T. J. Dazeley, S. Hatakeyama, S. Svoboda, R. Sullivan, G. W. Turcan, D. Cooley, J. Mahn, K. B. M. Habig, A. Fukuda, Y. Sato, T. Itow, Y. Koike, T. Jung, C. K. Kato, T. Kobayashi, K. Malek, M. McGrew, C. Sarrat, A. Terri, R. Yanagisawa, C. Tamura, N. Sakuda, M. Sugihara, M. Kuno, Y. Yoshida, M. Kim, S. B. Yang, B. S. Yoo, J. Ishizuka, T. Okazawa, H. Choi, Y. Seo, H. K. Gando, Y. Hasegawa, T. Inoue, K. Ishii, H. Nishijima, K. Ishino, H. Watanabe, Y. Koshiba, M. Kielczewska, D. Zalipska, J. Berns, H. G. Gran, R. Shiraishi, K. K. Stachyra, A. Thrane, E. Washburn, K. Wilkes, R. J. CA Super-Kamiokande Collaboration TI Search for diffuse astrophysical neutrino flux using ultra-high-energy upward-going muons in Super-Kamiokande I SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies : active; gamma rays : bursts; neutrinos ID ASTRONOMY; DISTRIBUTIONS; PROPAGATION; DETECTOR; PHYSICS; LIMIT AB Many astrophysical models predict a diffuse flux of high-energy neutrinos from active galactic nuclei and other extragalactic sources. At muon energies above 1 TeV, the upward-going muon flux induced by neutrinos from active galactic nuclei is expected to exceed the flux due to atmospheric neutrinos. We have performed a search for this astrophysical neutrino flux by looking for upward-going muons in the highest energy data sample from the Super-Kamiokande detector using 1679.6 live days of data. We found one extremely high energy upward- going muon event, compared with an expected atmospheric neutrino background of 0.46 +/- 0.23 events. Using this result, we set an upper limit on the diffuse flux of upward- going muons due to neutrinos from astrophysical sources in the muon energy range 3.16-100 TeV. C1 MIT, Dept Phys, Cambridge, MA 02139 USA. Univ Tokyo, Kamioka Observ, Inst Cosm Ray Res, Gifu 5061205, Japan. Univ Tokyo, Inst Cosm Ray Res, Res Ctr Cosm Neutrinos, Kashiwa, Chiba 2778582, Japan. Boston Univ, Dept Phys, Boston, MA 02215 USA. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. Calif State Univ Dominguez Hills, Dept Phys, Carson, CA 90747 USA. Chonnam Natl Univ, Dept Phys, Kwangju 500757, South Korea. Duke Univ, Dept Phys, Durham, NC 27708 USA. George Mason Univ, Dept Phys, Fairfax, VA 22030 USA. Gifu Univ, Dept Phys, Gifu 5011193, Japan. Univ Hawaii Manoa, Dept Phys & Astron, Honolulu, HI 96822 USA. Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan. Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87544 USA. Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. Univ Maryland, Dept Phys, College Pk, MD 20742 USA. Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. Miyagi Univ Educ, Dept Phys, Sendai, Miyagi 9800845, Japan. Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Niigata Univ, Dept Phys, Niigata 9502181, Japan. Okayama Univ, Dept Phys, Okayama 7008530, Japan. Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan. Seoul Natl Univ, Dept Phys, Seoul 151742, South Korea. Shizuoka Univ, Dept Syst Engn, Hamamatsu, Shizuoka 4328561, Japan. Shizuoka Univ Welf, Dept Informat Social Welf, Shizuoka 4258611, Japan. Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. Tohoku Univ, Res Ctr Neutrino Sci, Sendai, Miyagi 9808578, Japan. Tokai Univ, Dept Phys, Hiratsuka, Kanagawa 2591292, Japan. Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. Univ Tokyo, Dept Astron, Bunkyo Ku, Tokyo 1130033, Japan. Univ Warsaw, Inst Expt Phys, PL-00681 Warsaw, Poland. Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Swanson, MEC (reprint author), MIT, Dept Phys, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Yoo, Jonghee/K-8394-2016; Yokoyama, Masashi/A-4458-2011; Takeuchi, Yasuo/A-4310-2011; Nakamura, Kenzo/F-7174-2010; Sobel, Henry/A-4369-2011; Suzuki, Yoichiro/F-7542-2010; Wilkes, R.Jeffrey/E-6011-2013; Kim, Soo-Bong/B-7061-2014; Ishino, Hirokazu/C-1994-2015; Koshio, Yusuke/C-2847-2015; Hiraide, Katsuki/A-4479-2011; Obayashi, Yoshihisa/A-4472-2011 OI Yokoyama, Masashi/0000-0003-2742-0251; Ishino, Hirokazu/0000-0002-8623-4080; Koshio, Yusuke/0000-0003-0437-8505; NR 36 TC 11 Z9 11 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2006 VL 652 IS 1 BP 206 EP 215 DI 10.1086/507983 PN 1 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 106TX UT WOS:000242125700020 ER PT J AU Strigari, LE Bullock, JS Kaplinghat, M Kravtsov, AV Gnedin, OY Abazajian, K Klypin, AA AF Strigari, Louis E. Bullock, James S. Kaplinghat, Manoj Kravtsov, Andrey V. Gnedin, Oleg Y. Abazajian, Kevork Klypin, Anatoly A. TI A large dark matter core in the Fornax dwarf spheroidal galaxy? SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology : observations; cosmology : theory; dark matter; galaxies : dwarf; galaxies : formation; galaxies : kinematics and dynamics; galaxies : structure ID SURFACE BRIGHTNESS GALAXIES; MISSING-SATELLITES PROBLEM; DENSITY PROFILES; STERILE NEUTRINOS; GLOBULAR-CLUSTERS; HALOS; COSMOLOGY; SUBSTRUCTURE; PARTICLES; VELOCITY AB We use measurements of the stellar velocity dispersion profile of the Fornax dwarf spheroidal galaxy to derive constraints on its dark matter distribution. Although the data are unable to distinguish between models with small cores and those with cusps, we show that a large greater than or similar to k1 kpc dark matter core in Fornax is highly implausible. Irrespective of the origin of the core, reasonable dynamical limits on the mass of the Fornax halo constrain its core radius to be no larger than similar to 700 pc. We derive an upper limit of r(core) less than or similar to 300 pc by demanding that the central phase- space density of Fornax not exceed that directly inferred from the rotation curves of low-mass spiral galaxies. Furthermore, if the halo is composed of warm dark matter, then phase- space constraints force the core to be quite small in order to avoid conservative limits from the Ly alpha forest power spectrum, rcore less than or similar to 85 pc. We discuss our results in the context of the idea that the extended globular cluster distribution in Fornax can be explained by the presence of a large similar to 1.5 kpc core. A self-consistent core of this size would be drastically inconsistent with the expectations of standard warm or cold dark matter models and would also require an unreasonably massive dark matter halo, with V-max similar or equal to 200 km s(-1). C1 Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92717 USA. Univ Chicago, Enrico Fermi Inst, Dept Astron & Astrophys, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. New Mexico State Univ, Dept Astron, Las Cruces, NM 88001 USA. RP Strigari, LE (reprint author), Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92717 USA. EM lstrigar@uci.edu RI Bullock, James/K-1928-2015; OI Bullock, James/0000-0003-4298-5082; Strigari, Louis/0000-0001-5672-6079; Gnedin, Oleg/0000-0001-9852-9954 NR 67 TC 64 Z9 64 U1 0 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2006 VL 652 IS 1 BP 306 EP 312 DI 10.1086/506381 PN 1 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 106TX UT WOS:000242125700028 ER PT J AU Gonzalez, ME Kaspi, VM Pivovaroff, MJ Gaensler, BM AF Gonzalez, M. E. Kaspi, V. M. Pivovaroff, M. J. Gaensler, B. M. TI Chandra and XMM-Newton observations of the vela-like pulsar B1046-58 SO ASTROPHYSICAL JOURNAL LA English DT Article DE pulsars : general; pulsars : individual (PSR B1046-58); X-rays : general ID HUBBLE-SPACE-TELESCOPE; GAMMA-RAY EMISSION; SYNCHROTRON NEBULA; RADIO PULSARS; WIND NEBULAE; YOUNG PULSARS; CRAB-NEBULA; DEEP SEARCH; GEMINGA; PULSATIONS AB We present results from Chandra and XMM-Newton observations of the radio pulsar B1046-58. A high-resolution spatial analysis reveals an asymmetric pulsar wind nebula (PWN), similar to 6" x 11" in size. The combined emission from the pulsar and its PWN is faint, with a best-fit power-law photon index of Gamma = 1.7(-0.2)(+0.4) and absorbed luminosity of similar to 10(32) ergs s(-1) in the 0.5-10.0 keV range (assuming a distance of 2.7 kpc). A spatially resolved imaging analysis suggests the presence of softer emission from the pulsar. No pulsations are detected from PSR B1046-58; assuming a worst-case sinusoidal pulse profile, we derive a 3 sigma upper limit for the pulsed fraction in the 0.5-10.0 keV range of 53%. Extended PWN emission is seen within 2" of the pulsar; the additional structures are highly asymmetric and extend predominantly to the southeast. We discuss the emission from the PWN as resulting from material downstream of the wind termination shock, as outflow from the pulsar, or as structures confined by a high space velocity. The first two interpretations imply equipartition fields in the observed structures of greater than or similar to 40-100 mu G, while the latter case implies a velocity for the pulsar >= 190n(0)(-1/2)km s(-1) (where n(0) is the ambient number density in units of cm(-3)). No emission from an associated supernova remnant is detected. C1 McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Gonzalez, ME (reprint author), McGill Univ, Dept Phys, Rutherford Phys Bldg, Montreal, PQ H3A 2T8, Canada. EM gonzalez@physics.mcgill.ca RI Gaensler, Bryan/F-8655-2010; Pivovaroff, Michael/M-7998-2014; OI Pivovaroff, Michael/0000-0001-6780-6816; Gaensler, Bryan/0000-0002-3382-9558 NR 48 TC 18 Z9 18 U1 0 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2006 VL 652 IS 1 BP 569 EP 575 DI 10.1086/507125 PN 1 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 106TX UT WOS:000242125700050 ER PT J AU Howell, SB Walter, FM Harrison, TE Huber, ME Becker, RH White, RL AF Howell, Steve B. Walter, Frederick M. Harrison, Thomas E. Huber, Mark E. Becker, Robert H. White, Richard L. TI Mass determination and detection of the onset of chromospheric activity for the substellar object in EF Eridani SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars : activity; stars : individual (EF Eridani, AM Herculis, VV Puppis); stars : low-mass, brown dwarfs ID MAGNETIC CATACLYSMIC VARIABLES; WHITE-DWARFS; AM HERCULIS; SECONDARY STARS; ZEEMAN TOMOGRAPHY; PERIOD CHANGES; LOW STATES; INFRARED-SPECTROSCOPY; ABUNDANCE ANOMALIES; LINE INTENSITIES AB EF Eri is a magnetic cataclysmic variable that has been in a low accretion state for the past 9 yr. Low-state optical spectra reveal the underlying Zeeman-split white dwarf absorption lines. These features are used to determine a value of 13-14 MG as the white dwarf field strength. Recently, 5-7 yr into the low state, Balmer and other emission lines have appeared in the optical. An analysis of the H alpha emission line yields the first radial velocity solution for EF Eri, leading to a spectroscopic ephemeris for the binary and, using the best available white dwarf mass of 0.6 M-circle dot, a mass estimate for the secondary of 0.055 M-circle dot. For a white dwarf mass of 0.95 M-circle dot, the average for magnetic white dwarfs, the secondary mass increases to 0.087 M-circle dot. At EF Eri's orbital period of 81 minutes, this higher mass secondary could not be a normal star and still fit within the Roche lobe. The source of the Balmer and other emission lines is confirmed to be from the substellar secondary, and we argue that it is due to stellar activity. We compare EF Eri's emission-line spectrum and activity behavior to that recently observed in AM Her and VV Pup and attributed to stellar activity. We explore observations and models originally developed for V471 Tau, for the RS CVn binaries, and for extrasolar planets. We conclude that irradiation of the secondary in EF Eri and similar systems is unlikely and, in polars, the magnetic field interaction between the two stars (with a possible tidal component) is a probable mechanism that would concentrate chromospheric activity on the secondary near the substellar point of the white dwarf. C1 WIYN Observ, Tucson, AZ 85719 USA. Natl Opt Astron Observ, Tucson, AZ 85719 USA. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. New Mexico State Univ, Las Cruces, NM 88003 USA. Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Howell, SB (reprint author), WIYN Observ, 950 N Cherry Ave, Tucson, AZ 85719 USA. EM howell@noao.edu; fwalter@astro.sunysb.edu; tharriso@nmsu.edu; mhuber@igpp.ucllnl.org RI White, Richard/A-8143-2012 NR 75 TC 33 Z9 33 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2006 VL 652 IS 1 BP 709 EP 723 DI 10.1086/507603 PN 1 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 106TX UT WOS:000242125700064 ER PT J AU Song, I Schneider, G Zuckerman, B Farihi, J Becklin, EE Bessell, MS Lowrance, P Macintosh, BA AF Song, Inseok Schneider, G. Zuckerman, B. Farihi, J. Becklin, E. E. Bessell, M. S. Lowrance, P. Macintosh, B. A. TI HST NICMOS imaging of the planetary-mass companion to the young brown dwarf 2MASSW J1207334-393254 SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; stars : individual (2MASSW J1207334-393254); stars : low-mass, brown dwarfs ID TW-HYDRAE ASSOCIATION; EVOLUTIONARY MODELS; STARS; FRAGMENTATION; PARALLAXES; PHOTOMETRY; CANDIDATE; DISCOVERY; HD-209458; SPECTRA AB Multiband (0.9-1.6 mu m) images of the TW Hydrae association (TWA) brown dwarf 2MASSW J1207334- 393254 (also known as 2M 1207) and its candidate planetary-mass companion (2M 1207b) were obtained on 2004 August 28 and 2005 April 26 with HST NICMOS. The images from these two epochs unequivocally confirm the two objects as a common proper motion pair (16.0 sigma confidence). A new measurement of the proper motion of 2M 1207 implies a distance to the system of 59 +/- 7 pc and a projected separation of 46 +/- 5 AU. The NICMOS and previously published VLT photometry of 2M 1207b, extending overall from 0.9 to 3.8 mu m, are fully consistent with an object of a few Jupiter masses at the canonical age of a TWA member (similar to 8 Myr) based on evolutionary models of young giant planets. These observations provide information on the physical nature of 2M 1207b and unambiguously establish that the first direct image of a planetary-mass companion in orbit around a self-luminous body, other than our Sun, has been secured. C1 Gemini Observ, No Operat Ctr, Hilo, HI 96720 USA. Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. Univ Calif Los Angeles, Ctr Astrobiol, Los Angeles, CA 90095 USA. Australian Natl Univ, Inst Adv Studies, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. Spitzer Sci Ctr, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. Lawrence Livermore Natl Lab, Div 1, Livermore, CA 94550 USA. RP Song, I (reprint author), Gemini Observ, No Operat Ctr, 670 N Aohoku Pl, Hilo, HI 96720 USA. EM song@gemini.edu; gschneider@as.arizona.edu; ben@astro.ucla.edu; jfarihi@gemini.edu; becklin@astro.ucla.edu; bessell@mso.anu.edu.au; lowrance@ipac.caltech.edu; bmac@igpp.ucllnl.org OI Farihi, Jay/0000-0003-1748-602X NR 30 TC 31 Z9 31 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2006 VL 652 IS 1 BP 724 EP 729 DI 10.1086/507831 PN 1 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 106TX UT WOS:000242125700065 ER PT J AU Fukazawa, H Hoshikawa, A Ishii, Y Chakoumakos, BC Fernandez-Baca, JA AF Fukazawa, H. Hoshikawa, A. Ishii, Y. Chakoumakos, B. C. Fernandez-Baca, J. A. TI Existence of ferroelectric ice in the universe SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; methods : laboratory; planets and satellites : general ID CRYSTAL NEUTRON-DIFFRACTION; WATER ICE; PHASE-TRANSITION; DOPED ICE; HEXAGONAL ICE; KOH; XI; DISPERSION; SCATTERING; SATELLITE AB The question as to whether or not ferroelectric ice, named ice XI, exists in a stable low-temperature phase attracts much interest. This question arose as a condensed-matter issue and became of interest in astronomy (e.g., does ice XI exist on Pluto?) because astronomical observations identified the existence of crystalline ice in our solar system. From neutron diffraction experiments, we found the temperature conditions for the transformation of the largest fraction of ice into ice XI using the lowest level of impurity dopant. The finding of bulk crystal of ordered structure firmly supports that ice XI is stable. This suggests the existence of naturally occurring ice XI at a narrow temperature range (57-66 K) in our solar system. C1 JAEA, Neutron Mat Res Ctr, Tokai, Ibaraki 3191195, Japan. Oak Ridge Natl Lab, Ctr Neutron Scattering, Oak Ridge, TN 37831 USA. RP Fukazawa, H (reprint author), JAEA, Neutron Mat Res Ctr, 2-4 Shirane, Tokai, Ibaraki 3191195, Japan. EM fukazawa.hiroshi@jaea.go.jp; hoshikawa.akinori@jaea.go.jp; ishii.yoshinobu@jaea.go.jp; chakoumakobc@ornl.gov; fernandezbja@ornl.gov RI Fernandez-Baca, Jaime/C-3984-2014; Chakoumakos, Bryan/A-5601-2016 OI Fernandez-Baca, Jaime/0000-0001-9080-5096; Chakoumakos, Bryan/0000-0002-7870-6543 NR 29 TC 27 Z9 27 U1 1 U2 13 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2006 VL 652 IS 1 BP L57 EP L60 DI 10.1086/510017 PN 2 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 106TZ UT WOS:000242125900015 ER PT J AU Moskalenko, IV Porter, TA Digel, SW AF Moskalenko, Igor V. Porter, Troy A. Digel, Seth W. TI Inverse Compton scattering on solar photons, heliospheric modulation, and neutrino astrophysics SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic rays; elementary particles; gamma rays : theory; Sun : general; Sun : interior; Sun : X-rays, gamma rays ID COSMIC-RAY INTERACTIONS; EGRET DATA; SUN; TRANSPORT AB We study the inverse Compton scattering of solar photons by Galactic cosmic-ray electrons. We show that the gamma-ray emission from this process is substantial, with the maximum flux in the direction of the Sun; the angular distribution of the emission is broad. This previously neglected foreground should be taken into account in studies of the diffuse Galactic and extragalactic gamma-ray emission. Furthermore, observations by GLAST can be used to monitor the heliosphere and determine the electron spectrum as a function of position from distances as large as Saturn's orbit to close proximity of the Sun, thus enabling unique studies of solar modulation. This paves the way for the determination of other Galactic cosmic-ray species, primarily protons, near the solar surface, which will lead to accurate predictions of gamma-rays from p-p interactions in the solar atmosphere. These albedo gamma-rays will be observable by GLAST, allowing the study of deep atmospheric layers, magnetic field(s), and cosmic-ray cascade development. The latter is necessary to calculate the neutrino flux from p-p interactions at higher energies (> 1 TeV). Although this flux is small, it is a "guaranteed flux" in contrast to other astrophysical sources of neutrinos and may be detectable by km(3) neutrino telescopes of the near future, such as IceCube. Since the solar core is opaque for very high energy neutrinos, directly studying the mass distribution of the solar core may thus be possible. C1 Stanford Univ, Hansen Expt Phys Lab, Stanford, CA 94305 USA. Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Moskalenko, IV (reprint author), Stanford Univ, Hansen Expt Phys Lab, Stanford, CA 94305 USA. EM imos@stanford.edu; tporter@scipp.ucsc.edu; digel@stanford.edu RI Moskalenko, Igor/A-1301-2007 OI Moskalenko, Igor/0000-0001-6141-458X NR 21 TC 35 Z9 35 U1 0 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2006 VL 652 IS 1 BP L65 EP L68 DI 10.1086/509916 PN 2 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 106TZ UT WOS:000242125900017 ER PT J AU Di Bernardo, P Zanonato, P Bismondo, A Jiang, HJ Garnov, AY Jiang, J Rao, LF AF Di Bernardo, Plinio Zanonato, PierLuigi Bismondo, Arturo Jiang, Huijian Garnov, Alexander Yu. Jiang, Jun Rao, Linfeng TI Complexation of uranium(VI) with thiodiacetic acid in solution at 10-85 degrees C SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE uranium; thermodynamics; carboxylate ligands; EXAFS spectroscopy; temperature effect ID VARIABLE TEMPERATURES; ELEVATED-TEMPERATURES; ACETATE; NEODYMIUM AB The protonation of thiodiacetate and its complexation with uranium(VI) in 1.05 mol kg(-1) NaClO4 are studied at variable temperatures (10-85 degrees C). Three U-VI complexes (UO2L, UO2HL+, and UO2HL2-, where L is thiodiacetate) are identified in this temperature range. The formation constants and the enthalpies of complexation are determined by potentiometry and calorimetry. The complexation of uranium(VI) with thiodiacetate becomes more endothermic at higher temperatures. However, the complexes become stronger due to increasingly more positive entropies of complexation at higher temperatures, which exceeds the increase in the unfavorable enthalpy of complexation. The values of the heat capacity of complexation (Delta C-p degrees) are 122 +/- 16, 302 +/- 26, and 242 +/- 23 JK(-1) mol(-1) f or UO2L, UO2HL+, and UO2HL2-, respectively. The effect of temperature on the thermodynamics of the complexation is discussed in terms of the electrostatic model and the change in the solvent structure. C1 Univ Padua, Dipartimento Sci Chim, I-35131 Padua, Italy. CNR, Ist Chim Inorgan & Superfici, I-35127 Padua, Italy. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Di Bernardo, P (reprint author), Univ Padua, Dipartimento Sci Chim, Via Marzolo 1, I-35131 Padua, Italy. EM plinio.dibernardo@unipd.it; lrao@lbl.gov NR 21 TC 14 Z9 14 U1 1 U2 12 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1434-1948 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD NOV 20 PY 2006 IS 22 BP 4533 EP 4540 DI 10.1002/ejic.200600554 PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 112UD UT WOS:000242551900009 ER PT J AU Boyle, TJ Tribby, LJ Bunge, SD AF Boyle, Timothy J. Tribby, Louis J. Bunge, Scott D. TI Synthesis and structural characterization of a series of carboxylic acid modified cerium(III) alkoxides SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE metal alkoxides; cerium alkoxides; carboxylate ligands; chelates ID X-RAY STRUCTURES; THF = TETRAHYDROFURAN; MOLECULAR-STRUCTURE; CRYSTAL-STRUCTURE; THIN-FILMS; ARYLOXO-LANTHANOIDS; 4-METHYLPHENOXIDE COMPLEXES; ORGANOAMIDO-LANTHANOIDS; REACTIVITY; ND AB A series of cerium alkoxides were synthesized from the reaction of Ce(N[Si(CH(3))(3)](2))(3) and the appropriate alcohol: neopentyl alcohol [H-OCH(2)C(CH(3))(3) = H-ONep], tert-butyl alcohol [H-OC(CH(3))(3) = H-OtBu], o-(tert-butyl)phenol {H-OC(6)H(4)[C(CH(3))(3)]-2 H-oBPI, 2,6-dimethylphenol [H-OC(6)H(3)(CH(3))(2)-2,6 H-DMP], 2,6-diisopropylphenol [H-OC(6)H(3)[CH(CH(3))(2)]2-2,6 = H-DIP), 2,6-di-tert-butylphenol {H-OC(6)H(3)[C(CH(3))(3))(2)-2,6 = H-DBP), or 2,6-diphenylphenol [H-OC(6)H(3)(C(6)H(5))(2)-2,6 = H-DPP] using toluene (tol), tetrahydrofuran (THF) or pyridine (py). The precursors were characterized as [Ce(mu-ONep)(2)(ONep)](4) (1), Ce(4)(mu(3)-OtBU)(3)(mu-OtBU)(4)(OtBU)(5) (2), Ce(3)(mu(3)-OtBU)(3)(mu-OtBU)(3)(OtBu)(3)(H-OtBU)(2) (2a), Ce(oBP)(3)(THF)(3) (3), [Ce(mu-DMP)(DMP)(2)(solv)(2)](2) [solv = THF (4) and py (4a)], Ce(DIP)(3)(THF)(3) (5), Ce(DPP)(3)(THF)(2) (6). Once isolated, several of these species were further reacted with a series of sterically varied carboxylic acid modifiers including isobutyric acid [H-O(2)CCH(CH(3))(2) = H-OPc] and trimethylacetic acid [H-O(2)CC(CH(3))(3) = H-OBc]. The products were isolated as [Ce(OR)(mu-ORc)(mu(c)-ORc)(py)](2) [OR = oBP, OBc: 7; DMP, OPc: 8; DMP, OBc: 9; DIP, OI)c: 10]. These compounds were identified by single-crystal X-ray diffraction and powder XRD analyses. Several novel structure types are added to the cerium alkoxide family of compounds. C1 Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87105 USA. RP Boyle, TJ (reprint author), Sandia Natl Labs, Adv Mat Lab, 1001 Univ Blvd SE, Albuquerque, NM 87105 USA. EM tjboyle@Sandia.gov NR 65 TC 27 Z9 27 U1 1 U2 8 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1434-1948 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD NOV 20 PY 2006 IS 22 BP 4553 EP 4563 DI 10.1002/ejic.200600616 PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 112UD UT WOS:000242551900012 ER PT J AU Lapenta, G Chacon, L AF Lapenta, Giovanni Chacon, Luis TI Cost-effectiveness of fully implicit moving mesh adaptation: A practical investigation in 1D SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE adaptive grids; implicit methods; grid generation; Newton-Krylov; fully implicit methods; moving mesh ID PARTIAL-DIFFERENTIAL-EQUATIONS; INEXACT NEWTON METHODS; ERROR; ALGORITHM; SCHEMES; SYSTEMS AB The cost-effectiveness of moving mesh adaptation is studied in a number of 1D tests. We propose a method that is based on two established modern techniques. First, we use a moving mesh approach based on the classic equidistribution method. Second, we discretize the model equations for grid and physics using a conservative finite volume method and we solve the resulting equations with a preconditioned inexact Newton-Krylov method. Using these state of the art methods, we consider the question of whether a real improvement in performance can be achieved using adaptive grids. We consider rigorous metrics of the accuracy and cost of a numerical solution on uniform and adaptive grids. For a number of classic but challenging problems we demonstrate that indeed adaptive grids can lead to a great improvement in cost-effectiveness. (c) 2006 Elsevier Inc. All rights reserved. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. RP Lapenta, G (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87544 USA. EM lapenta@lanl.gov OI Chacon, Luis/0000-0002-4566-8763; Lapenta, Giovanni/0000-0002-3123-4024 NR 30 TC 8 Z9 8 U1 1 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD NOV 20 PY 2006 VL 219 IS 1 BP 86 EP 103 DI 10.1016/j.jcp.2006.03.011 PG 18 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 109TU UT WOS:000242332500007 ER PT J AU Reynolds, DR Samtaney, R Woodward, CS AF Reynolds, Daniel R. Samtaney, Ravi Woodward, Carol S. TI A fully implicit numerical method for single-fluid resistive magnetohydrodynamics SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Newton-Krylov; implicit couplings; resistive magnetohydrodynamics ID PELLET INJECTION; FINITE-ELEMENTS; HYDROGEN PELLET; KRYLOV METHODS; DIII-D; SIMULATION; PLASMA; SCHEME; SOLVER; MHD AB We present a nonlinearly implicit, conservative numerical method for integration of the single-fluid resistive MHD equations. The method uses a high-order spatial discretization that preserves the solenoidal property of the magnetic field. The fully coupled PDE system is solved implicitly in time, providing for increased interaction between physical processes as well as additional stability over explicit-time methods. A high-order adaptive time integration is employed, which in many cases enables time steps ranging from one to two orders of magnitude larger than those constrained by the explicit CFL condition. We apply the solution method to illustrative examples relevant to stiff magnetic fusion processes which challenge the efficiency of explicit methods. We provide computational evidence showing that for such problems the method is comparably accurate with explicit-time simulations, while providing a significant runtime improvement due to its increased temporal stability. (c) 2006 Elsevier Inc. All rights reserved. C1 Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Reynolds, DR (reprint author), Univ Calif San Diego, Dept Math, 9500 Gilman Dr,Dept 0112, La Jolla, CA 92093 USA. EM drreynolds@ucsd.edu; samtaney@pppl.gov; cswoodward@llnl.gov RI Woodward, Carol/M-4008-2014; OI Reynolds, Daniel/0000-0002-0911-7841 NR 37 TC 26 Z9 26 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD NOV 20 PY 2006 VL 219 IS 1 BP 144 EP 162 DI 10.1016/j.jcp.2006.03.022 PG 19 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 109TU UT WOS:000242332500010 ER PT J AU Evans, KJ Knoll, DA Pernice, M AF Evans, Katherine J. Knoll, D. A. Pernice, Michael TI Development of a 2-D algorithm to simulate convection and phase transition efficiently SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Newton-Krylov; SIMPLE preconditioner; phase change convection ID NEWTON-KRYLOV METHODS; FLOW; SYSTEMS AB We develop a Jacobian-Free Newton-Krylov (JFNK) method for the solution of a two-dimensional convection phase change model using the incompressible Navier-Stokes equation set and enthalpy as the energy conservation variable. The SIMPLE algorithm acts as a physics-based preconditioner to JFNK. This combined algorithm is compared to solutions using SIMPLE as the main solver. Algorithm performance is assessed for two benchmark problems of phase change convection of a pure material, one melting and one freezing. The JFNK-SIMPLE method is shown to be more efficient per time step and more robust at larger time steps. Overall CPU savings of more than an order of magnitude are realized. (c) 2006 Elsevier Inc. All rights reserved. C1 Los Alamos Natl Lab, Div Theoret, Fluid Dynam Grp T3, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Comp & Computat Sci Div, Modeling Algorithms & Informat Grp, Los Alamos, NM 87545 USA. RP Evans, KJ (reprint author), Los Alamos Natl Lab, Div Theoret, Fluid Dynam Grp T3, MS B216, Los Alamos, NM 87545 USA. EM kevans@lanl.gov OI Evans, Katherine/0000-0001-8174-6450 NR 20 TC 13 Z9 13 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD NOV 20 PY 2006 VL 219 IS 1 BP 404 EP 417 DI 10.1016/j.jcp.2006.03.025 PG 14 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 109TU UT WOS:000242332500022 ER PT J AU Dalvit, DAR De Matos, RL Toscano, F AF Dalvit, D. A. R. De Matos Filho, R. L. Toscano, F. TI Quantum metrology at the Heisenberg limit with ion trap motional compass states SO NEW JOURNAL OF PHYSICS LA English DT Article ID SUPERPOSITIONS; ENTANGLEMENT; GENERATION; FIELD; COMPUTATION; DYNAMICS; ATOM AB Sub-Planck phase-space structures in the Wigner function of the motional degree of freedom of a trapped ion can be used to perform weak force measurements with Heisenberg-limited sensitivity. We propose methods to engineer the Hamiltonian of the trapped ion to generate states with such small-scale structures, and we show how to use them in quantum metrology applications. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil. Fdn Ctr Ciencias & Educ Super Distancia Estado Ri, BR-20943001 Rio De Janeiro, Brazil. RP Dalvit, DAR (reprint author), Los Alamos Natl Lab, Div Theoret, MS B213, Los Alamos, NM 87545 USA. EM dalvit@lanl.gov RI de Matos Filho, Ruynet/A-9677-2013; Toscano, Fabricio/C-5332-2013 OI de Matos Filho, Ruynet/0000-0002-7514-141X; Toscano, Fabricio/0000-0001-8398-8541 NR 44 TC 14 Z9 15 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD NOV 20 PY 2006 VL 8 AR 276 DI 10.1088/1367-2630/8/11/276 PG 18 WC Physics, Multidisciplinary SC Physics GA 112TD UT WOS:000242549100001 ER PT J AU Lin, JF Jacobsen, SD Sturhahn, W Jackson, JM Zhao, JY Yoo, CS AF Lin, Jung-Fu Jacobsen, Steven D. Sturhahn, Wolfgang Jackson, Jennifer M. Zhao, Jiyong Yoo, Choong-Shik TI Sound velocities of ferropericlase in the Earth's lower mantle SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SPIN TRANSITION; SHEAR-WAVES; PEROVSKITE; IRON; TEMPERATURE; ELASTICITY; PRESSURE; (MG,FE)O; STATE; MODEL AB Sound velocity measurements on candidate mantle minerals at relevant mantle conditions are needed to interpret Earth's seismic structure in terms of model abundances, variable composition, and other potentially influential parameters such as electronic spin-pairing transitions. Here the sound velocities of the lower-mantle ferropericlase have been measured by nuclear resonant inelastic X-ray scattering to 110 GPa. Compressional and shear wave velocities and their pressure derivatives rise dramatically across the spin-pairing transition of iron in (Mg0.75Fe0.25) O above 50 GPa. Effects of the transition on the sound velocities of (Mg, Fe) O at lower-mantle pressures yield values that are much greater than what is predicted by studying pure MgO and high-spin ferropericlase. Our results indicate that sound velocities of the low-spin ferropericlase need to be considered in future geophysical and geochemical models, which could offset the effect of the addition of iron in the lower-mantle minerals and affect the evaluation of the lower-mantle heterogeneities. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. Northwestern Univ, Dept Earth & Planetary Sci, Evanston, IL 60208 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Lin, JF (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM afu@llnl.gov RI Jacobsen, Steven/F-3443-2013 OI Jacobsen, Steven/0000-0002-9746-958X NR 31 TC 40 Z9 40 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 18 PY 2006 VL 33 IS 22 AR L22304 DI 10.1029/2006GL028099 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 107MK UT WOS:000242175500007 ER PT J AU Henderson, BG Chylek, P Porch, WM Dubey, MK AF Henderson, Bradley G. Chylek, Petr Porch, William M. Dubey, Manvendra K. TI Satellite remote sensing of aerosols generated by the Island of Nauru SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MULTISPECTRAL THERMAL IMAGER; OPTICAL DEPTH RETRIEVAL; VALIDATION; RESOLUTION; ALGORITHM; PRODUCTS; MISSION; SIGNAL; MODIS; LAND AB We use imagery from the Multispectral Thermal Imager (MTI) to search for aerosols generated by the Island of Nauru, an island located in the tropical western Pacific Ocean. Nauru frequently displays linear cloud trails for many kilometers downwind of the island, and this study was intended to investigate the presence of aerosols as an aid to understanding those features. The study had three components: (1) a search for specific aerosol plumes, (2) a comparison of downwind and upwind aerosol loading to look for asymmetries, and (3) application of matched filters to increase the visibility of aerosol plumes. The plume search resulted in the finding of three aerosol plumes, two of which are presented as imagery and also radiance profiles. The comparison of downwind and upwind reflectance spectra demonstrated that the radiance is slightly higher downwind of the island, and the residual spectra (downwind minus upwind) have a spectrum consistent with sea salt aerosol. Application of clutter-matched filters to MTI imagery accentuated the upper (near source) sections of an aerosol plume when utilizing a single-scatter albedo signature for coarse-grained sea salt aerosol. We combine our observations with models from the literature to describe a simple mechanism by which Nauru aerosols are created by wave breaking and wind tearing of sea spray and then entrained by island-influenced wind motions. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Henderson, BG (reprint author), Los Alamos Natl Lab, ISR-2 MS B244, Los Alamos, NM 87545 USA. EM henders@lanl.gov RI Dubey, Manvendra/E-3949-2010 OI Dubey, Manvendra/0000-0002-3492-790X NR 30 TC 5 Z9 5 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 18 PY 2006 VL 111 IS D22 AR D22209 DI 10.1029/2005JD006850 PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 107MR UT WOS:000242176200007 ER PT J AU Zhao, YH Bingert, JE Liao, XZ Cui, BZ Han, K Sergueeva, AV Mukherjee, AK Valiev, RZ Langdon, TG Zhu, YTT AF Zhao, Yong-Hao Bingert, John E. Liao, Xiao-Zhou Cui, Bao-Zhi Han, Ke Sergueeva, Alla V. Mukherjee, Amiya K. Valiev, Ruslan Z. Langdon, Terence G. Zhu, Yuntian T. TI Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper SO ADVANCED MATERIALS LA English DT Article ID SEVERE PLASTIC-DEFORMATION; HIGH ELECTRICAL-CONDUCTIVITY; MECHANICAL-PROPERTIES; TENSILE DUCTILITY; NANOSTRUCTURED METALS; NANOCRYSTALLINE; ALLOYS; CU; BEHAVIOR; MICROSTRUCTURES AB Simultaneous increase of the ductility and strength of bulk ultra-fine-grained (UFG) Cu is achieved by introducing large amounts of deformation twins and high-angle grain boundaries via cryodrawing and cryorolling (red plots and image). Bulk UFG materials usually have high strength but disappointingly low ductility. Most previous attempts to enhance the ductility of single-phased UFG materials sacrificed their yield strength. This work provides a new approach for increasing ductility without sacrificing strength. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia. Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. Ufa State Aviat Tech Univ, Inst Phys Adv Mat, Ufa 450000, Russia. Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. Univ So Calif, Dept Mat Sci, Los Angeles, CA 90089 USA. RP Zhu, YTT (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM yzhu@lanl.gov RI Langdon, Terence/B-1487-2008; Zhu, Yuntian/B-3021-2008; Zhao, Yonghao/A-8521-2009; Liao, Xiaozhou/B-3168-2009; Lujan Center, LANL/G-4896-2012 OI Zhu, Yuntian/0000-0002-5961-7422; Liao, Xiaozhou/0000-0001-8565-1758; NR 38 TC 185 Z9 187 U1 13 U2 132 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD NOV 17 PY 2006 VL 18 IS 22 BP 2949 EP + DI 10.1002/adma.200601472 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 113LO UT WOS:000242599600004 ER PT J AU Smirnova, TI Chadwick, TG MacArthur, R Poluektov, O Song, L Ryan, MM Schaaf, G Bankaitis, VA AF Smirnova, Tatyana I. Chadwick, Thomas G. MacArthur, Ryan Poluektov, Oleg Song, Likai Ryan, Margaret M. Schaaf, Gabriel Bankaitis, Vytas A. TI The chemistry of phospholipid binding by the Saccharomyces cerevisiae phosphatidylinositol transfer protein Sec14p as determined by EPR spectroscopy SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID HIGH-FIELD EPR; ELECTRON-SPIN-RESONANCE; NITROXIDE SIDE-CHAINS; CONFORMATIONAL-CHANGES; LIPID-BILAYERS; T4 LYSOZYME; SITE; DYNAMICS; MEMBRANES; CHANNEL AB The major yeast phosphatidylinositol/phosphatidylcholine transfer protein Sec14p is the founding member of a large eukaryotic protein superfamily. Functional analyses indicate Sec14p integrates phospholipid metabolism with the membrane trafficking activity of yeast Golgi membranes. In this regard, the ability of Sec14p to rapidly exchange bound phospholipid with phospholipid monomers that reside in stable membrane bilayers is considered to be important for Sec14p function in cells. How Sec14p-like proteins bind phospholipids remains unclear. Herein, we describe the application of EPR spectroscopy to probe the local dynamics and the electrostatic microenvironment of phosphatidylcholine (PtdCho) bound by Sec14p in a soluble protein-PtdCho complex. We demonstrate that PtdCho movement within the Sec14p binding pocket is both anisotropic and highly restricted and that the C-5 region of the sn-2 acyl chain of bound PtdCho is highly shielded from solvent, whereas the distal region of that same acyl chain is more accessible. Finally, high field EPR reports on a heterogeneous polarity profile experienced by a phospholipid bound to Sec14p. Taken together, the data suggest a headgroup-out orientation of Sec14p-bound PtdCho. The data further suggest that the Sec14p phospholipid binding pocket provides a polarity gradient that we propose is a primary thermodynamic factor that powers the ability of Sec14p to abstract a phospholipid from a membrane bilayer. C1 N Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Florida State Univ, Tallahassee, FL 32310 USA. Univ N Carolina, Lineberger Comprehens Canc Ctr, Dept Cell & Dev Biol, Chapel Hill, NC 27599 USA. RP Smirnova, TI (reprint author), N Carolina State Univ, Dept Chem, 2620 Yarborough Dr, Raleigh, NC 27695 USA. EM Tatyana_Smirnova@ncsu.edu; vytas@med.unc.edu RI Schaaf, Gabriel/F-1956-2014 OI Schaaf, Gabriel/0000-0001-9022-4515 FU NIBIB NIH HHS [EB001980]; NIGMS NIH HHS [GM44530] NR 45 TC 10 Z9 10 U1 0 U2 7 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD NOV 17 PY 2006 VL 281 IS 46 BP 34897 EP 34908 DI 10.1074/jbc.M603054200 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 104CN UT WOS:000241933700022 PM 16997918 ER PT J AU Johnson, A Yao, NY Bowman, GD Kuriyan, J O'Donnell, M AF Johnson, Aaron Yao, Nina Y. Bowman, Gregory D. Kuriyan, John O'Donnell, Mike TI The replication factor C clamp loader requires arginine finger sensors to drive DNA binding and proliferating cell nuclear antigen loading SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID POLYMERASE-III HOLOENZYME; SISTER-CHROMATID COHESION; ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; SLIDING CLAMP; GAMMA-COMPLEX; ACCESSORY PROTEINS; CRYSTAL-STRUCTURE; ATP HYDROLYSIS; STRUCTURAL-ANALYSIS AB Replication factor C (RFC) is an AAA+ heteropentamer that couples the energy of ATP binding and hydrolysis to the loading of the DNA polymerase processivity clamp, proliferating cell nuclear antigen (PCNA), onto DNA. RFC consists of five subunits in a spiral arrangement (RFC-A, -B, -C, -D, and -E, corresponding to subunits RFC1, RFC4, RFC3, RFC2, and RFC5, respectively). The RFC subunits are AAA+ family proteins and the complex contains four ATP sites (sites A, B, C, and D) located at subunit interfaces. In each ATP site, an arginine residue from one subunit is located near the gamma-phosphate of ATP bound in the adjacent subunit. These arginines act as "arginine fingers" that can potentially perform two functions: sensing that ATP is bound and catalyzing ATP hydrolysis. In this study, the arginine fingers in RFC were mutated to examine the steps in the PCNA loading mechanism that occur after RFC binds ATP. This report finds that the ATP sites of RFC function in distinct steps during loading of PCNA onto DNA. ATP binding to RFC powers recruitment and opening of PCNA and activates a gamma-phosphate sensor in ATP site C that promotes DNA association. ATP hydrolysis in site D is uniquely stimulated by PCNA, and we propose that this event is coupled to PCNA closure around DNA, which starts an ordered hydrolysis around the ring. PCNA closure severs contact to RFC subunits D and E (RFC2 and RFC5), and the gamma-phosphate sensor of ATP site C is switched off, resulting in low affinity of RFC for DNA and ejection of RFC from the site of PCNA loading. C1 Howard Hughes Med Inst, Lab DNA Replicat, New York, NY 10021 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Johns Hopkins Univ, Dept Biophys, Baltimore, MD 21218 USA. RP O'Donnell, M (reprint author), 1230 York Ave,Box 228, New York, NY 10021 USA. EM odonnel@mail.rockefeller.edu OI O'Donnell, Michael/0000-0001-9002-4214 FU NIGMS NIH HHS [F32 GM066586, F32 GM066586-01, F32 GM066586-02, GM38839, GM45547] NR 71 TC 41 Z9 42 U1 1 U2 3 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD NOV 17 PY 2006 VL 281 IS 46 BP 35531 EP 35543 DI 10.1074/jbc.M606090200 PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 104CN UT WOS:000241933700086 PM 16980295 ER PT J AU Zhang, YL Smith, CL Saha, A Grill, SW Mihardja, S Smith, SB Cairns, BR Peterson, CL Bustamantel, C AF Zhang, Yongli Smith, Corey L. Saha, Anjanabha Grill, Stephan W. Mihardja, Shirley Smith, Steven B. Cairns, Bradley R. Peterson, Craig L. Bustamantel, Carlos TI DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC SO MOLECULAR CELL LA English DT Article ID HISTONE OCTAMER; NUCLEOSOME; COMPLEX; FORCE; MOLECULES; RNA; AFFINITY; REVEALS; PROTEIN; ISW2 AB ATP-dependent chromatin-remodeling complexes (remodelers) modulate gene transcription by regulating the accessibility of highly packaged genomic DNA. However, the molecular mechanisms involved at the nucleosomal level in this process remain controversial. Here, we monitor the real-time activity of single ySWI/SNF or RSC complexes on single, stretched nucleosomal templates under tensions above 1 pN forces. We find that these remodelers can translocate along DNA at rates of similar to 13 bp/s and generate forces up to similar to 12 pN, producing DNA loops of a broad range of sizes (20-1200 bp, average similar to 100 bp) in a nucleosome-dependent manner. This nucleosome-specific activity differs significantly from that on bare DNA observed under low tensions and suggests a nucleosome-remodeling mechanism through intranucleosomal DNA loop formation. Such loop formation may provide a molecular basis for the biological functions of remodelers. C1 Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Univ Massachusetts, Sch Med, Program Mol Med, Worcester, MA 01605 USA. Univ Utah, Sch Med, Huntsman Canc Inst, Dept Oncol Sci, Salt Lake City, UT 84112 USA. Univ Utah, Sch Med, Howard Hughes Med Inst, Salt Lake City, UT 84112 USA. Univ Calif Berkeley, Howard Hughes Med Inst, Dept Chem, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. Univ Calif Berkeley, Howard Hughes Med Inst, Dept Phys, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Bustamantel, C (reprint author), Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM carlos@alice.berkeley.edu RI Grill, Stephan /D-9427-2012 FU NIGMS NIH HHS [GM49650, GM32543, GM60415, R01 GM049650, R01 GM060415, R37 GM049650] NR 43 TC 117 Z9 120 U1 2 U2 11 PU CELL PRESS PI CAMBRIDGE PA 1100 MASSACHUSETTS AVE, CAMBRIDGE, MA 02138 USA SN 1097-2765 J9 MOL CELL JI Mol. Cell PD NOV 17 PY 2006 VL 24 IS 4 BP 559 EP 568 DI 10.1016/j.molcel.2006.10.025 PG 10 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 108PB UT WOS:000242250600009 PM 17188033 ER PT J AU Eltgroth, SF Adkins, JF Robinson, LF Southon, J Kashgarian, M AF Eltgroth, Selene F. Adkins, Jess F. Robinson, Laura F. Southon, John Kashgarian, Michaele TI A deep-sea coral record of North Atlantic radiocarbon through the Younger Dryas: Evidence for intermediate water/deepwater reorganization SO PALEOCEANOGRAPHY LA English DT Article ID LAST GLACIAL PERIOD; CARBON-CYCLE; OCEAN CIRCULATION; CLIMATE-CHANGE; HOHENHEIM OAK; ICE-CORE; DEGLACIATION; C-14; CALIBRATION; GREENLAND AB [ 1] Our record of Younger Dryas intermediate-depth seawater Delta(14)C from North Atlantic deep-sea corals supports a link between abrupt climate change and intermediate ocean variability. Our data show that northern source intermediate water (similar to 1700 m) was partially replaced by (14)C-depleted southern source water at the onset of the event, consistent with a reduction in the rate of North Atlantic Deep Water formation. This transition requires the existence of large, mobile gradients of Delta(14)C in the ocean during the Younger Dryas. The Delta(14)C water column profile from Keigwin ( 2004) provides direct evidence for the presence of one such gradient at the beginning of the Younger Dryas (similar to 12.9 ka), with a 100 parts per thousand offset between shallow (< similar to 2400 m) and deep water. Our early Younger Dryas data are consistent with this profile and also show a Delta(14)C inversion, with 35 parts per thousand more enriched water at similar to 2400 m than at similar to 1700 m. This feature is probably the result of mixing between relatively well 14 C ventilated northern source water and more poorly 14 C ventilated southern source intermediate water, which is slightly shallower. Over the rest of the Younger Dryas our intermediate water/deepwater coral Delta(14)C data gradually increase, while the atmosphere Delta(14)C drops. For a very brief interval at similar to 12.0 ka and at the end of the Younger Dryas (11.5 ka), intermediate water Delta(14)C (similar to 1200 m) approached atmospheric Delta(14)C. These enriched Delta(14)C results suggest an enhanced initial Delta(14)C content of the water and demonstrate the presence of large lateral Delta(14)C gradients in the intermediate/ deep ocean in addition to the sharp vertical shift at similar to 2500 m. The transient Delta(14)C enrichment at similar to 12.0 ka occurred in the middle of the Younger Dryas and demonstrates that there is at least one time when the intermediate/ deep ocean underwent dramatic change but with much smaller effects in other paleoclimatic records. C1 CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. Univ Calif Irvine, Dept Earth Syst Sci, Keck Carbon Cycle Accelerator Mass Spectrometry L, Irvine, CA 92697 USA. Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. RP Eltgroth, SF (reprint author), CALTECH, Div Geol & Planetary Sci, MS 100-23, Pasadena, CA 91125 USA. EM jess@caltech.edu RI Kashgarian, Michaele/E-1665-2011; OI Kashgarian, Michaele/0000-0001-7824-8418; Robinson, Laura/0000-0001-6811-0140 NR 53 TC 26 Z9 26 U1 1 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0883-8305 J9 PALEOCEANOGRAPHY JI Paleoceanography PD NOV 17 PY 2006 VL 21 IS 4 AR PA4207 DI 10.1029/2005PA001192 PG 12 WC Geosciences, Multidisciplinary; Oceanography; Paleontology SC Geology; Oceanography; Paleontology GA 107NX UT WOS:000242179400001 ER PT J AU Aubert, B Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Sanchez, PD Barrett, M Ford, KE Hart, AJ Harrison, TJ Hawkes, CM Watson, AT Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Sherwood, DJ Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A De Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Nash, JA Nikolich, MB Vazquez, WP Bard, DJ Behera, PK Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Denig, AG Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Cowan, R Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Corwin, LA Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Rahimi, AM Regensburger, JJ Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Briand, H Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Gladney, L Biasini, M Covarelli, R Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Li Gioi, L Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Aleksan, R Emery, S Gaidot, A Ganzhur, SF Hamel de Monchenault, G Kozanecki, W Legendre, M Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Cheng, B Dasu, S Datta, M Flood, KT Hollar, JJ Kutter, PE Mellado, B Mihalyi, A Pan, Y Pierini, M Prepost, R Wu, SL Yu, Z Neal, H AF Aubert, B. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. del Amo Sanchez, P. Barrett, M. Ford, K. E. Hart, A. J. Harrison, T. J. Hawkes, C. M. Watson, A. T. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Sherwood, D. J. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dvoretskii, A. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. De Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Bard, D. J. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Cowan, R. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Corwin, L. A. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Rahimi, A. M. Regensburger, J. J. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Briand, H. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Gladney, L. Biasini, M. Covarelli, R. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Li Gioi, L. Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Ebert, M. Schroder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Aleksan, R. Emery, S. Gaidot, A. Ganzhur, S. F. Hamel de Monchenault, G. Kozanecki, W. Legendre, M. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Flood, K. T. Hollar, J. J. Kutter, P. E. Mellado, B. Mihalyi, A. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Yu, Z. Neal, H. CA Babar Collaboration TI Measurement of branching fractions and charge asymmetries in B decays to an eta meson and a K-* meson SO PHYSICAL REVIEW LETTERS LA English DT Article ID QCD FACTORIZATION AB We present measurements of branching fractions and charge asymmetries for the decays B ->eta K-*, where K-* indicates a spin 0, 1, or 2 K pi system. The data sample corresponds to 344x10(6) B (B) over bar pairs collected with the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) collider at SLAC. We measure the branching fractions (in units of 10(-6)): B(B-0 ->eta K-*0(892))=16.5 +/- 1.1 +/- 0.8, B(B+->eta K*+(892))=18.9 +/- 1.8 +/- 1.3, B(B-0 ->eta(K pi)(0)(*0))=11.0 +/- 1.6 +/- 1.5, B(B+->eta(K pi)(0)(*+))=18.2 +/- 2.6 +/- 2.6, B(B-0 ->eta K-2(*0)(1430))=9.6 +/- 1.8 +/- 1.1, and B(B+->eta K-2(*+)(1430))=9.1 +/- 2.7 +/- 1.4. We also determine the charge asymmetries for all decay modes. C1 CNRS, Phys Particules Lab, IN2P3, F-74941 Annecy Le Vieux, France. Univ Savoie, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Imperial Coll London, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, Lab Accelerateur Lineaire, IN2P3, F-91898 Orsay, France. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Queen Mary Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 07, Lab Phys Nucl & Hautes Energies, IN2P3, Univ Paris 06,CNRS, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Basilicata, I-85100 Potenza, Italy. RP Aubert, B (reprint author), CNRS, Phys Particules Lab, IN2P3, F-74941 Annecy Le Vieux, France. RI Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; de Sangro, Riccardo/J-2901-2012; Della Ricca, Giuseppe/B-6826-2013; M, Saleem/B-9137-2013; Cavallo, Nicola/F-8913-2012; Peters, Klaus/C-2728-2008; de Groot, Nicolo/A-2675-2009; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009 OI Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Wilson, Robert/0000-0002-8184-4103; Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Egede, Ulrik/0000-0001-5493-0762; Ebert, Marcus/0000-0002-3014-1512; Cristinziani, Markus/0000-0003-3893-9171; Lanceri, Livio/0000-0001-8220-3095; Corwin, Luke/0000-0001-7143-3821; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; de Sangro, Riccardo/0000-0002-3808-5455; Della Ricca, Giuseppe/0000-0003-2831-6982; Peters, Klaus/0000-0001-7133-0662; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747 NR 15 TC 17 Z9 17 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 17 PY 2006 VL 97 IS 20 AR 201802 DI 10.1103/PhysRevLett.97.201802 PG 7 WC Physics, Multidisciplinary SC Physics GA 106LI UT WOS:000242101600011 ER PT J AU Aubert, B Barate, R Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Sanchez, PD Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Sherwood, DJ Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Best, DS Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Petzold, A Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Nash, JA Nikolich, MB Vazquez, WP Behera, PK Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Denig, AG Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Cowan, R Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J Briand, H David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Gladney, L Panetta, J Biasini, M Covarelli, R Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Aleksan, R Emery, S Escalier, M Gaidot, A Ganzhur, SF Hamel de Monchenault, G Kozanecki, W Legendre, M Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Cheng, B Dasu, S Datta, M Flood, KT Hollar, JJ Kutter, PE Li, H Mellado, B Mihalyi, A Pan, Y Pierini, M Prepost, R Wu, SL Yu, Z Neal, H AF Aubert, B. Barate, R. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. del Amo Sanchez, P. Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Sherwood, D. J. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Best, D. S. Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dvoretskii, A. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Petzold, A. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Grenier, P. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Capra, R. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Cowan, R. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Chauveau, J. Briand, H. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. John, M. J. J. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Gladney, L. Panetta, J. Biasini, M. Covarelli, R. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Ebert, M. Schroder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Aleksan, R. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. Hamel de Monchenault, G. Kozanecki, W. Legendre, M. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Lanceri, L. Vitale, L. Azzolini, V. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Flood, K. T. Hollar, J. J. Kutter, P. E. Li, H. Mellado, B. Mihalyi, A. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Yu, Z. Neal, H. CA Babar Collaboration TI Measurements of branching fractions, polarizations, and direct CP-violation asymmetries in B ->rho K-* and b -> f(0)(980)K-* decays SO PHYSICAL REVIEW LETTERS LA English DT Article AB We report searches for B-meson decays to the charmless final states rho K-* and f(0)(980)K-* with a sample of 232x10(6) B (B) over bar pairs collected with the BABAR detector at the PEP-II e(+)e(-) collider. We measure in units of 10(-6) the following branching fractions, where the first error quoted is statistical and the second systematic, or upper limits are given at the 90% confidence level : B(B+->rho K-0(*+))< 6.1, B(B+->rho K-+(*0))=9.6 +/- 1.7 +/- 1.5, B(B-0 ->rho K--(*+))< 12.0, B(B-0 ->rho K-0(*0))=5.6 +/- 0.9 +/- 1.3, B(B+-> f(0)(980)K*+)=5.2 +/- 1.2 +/- 0.5, and B(B-0 -> f(0)(980)K-*0)< 4.3. For the significant modes, we also measure the fraction of longitudinal polarization and the charge asymmetry: f(L)(B+->rho K-+(*0))=0.52 +/- 0.10 +/- 0.04, f(L)(B-0 ->rho K-0(*0))=0.57 +/- 0.09 +/- 0.08, A(CP)(B+->rho K-+(*0))=-0.01 +/- 0.16 +/- 0.02, A(CP)(B-0 ->rho K-0(*0))=0.09 +/- 0.19 +/- 0.02, and A(CP)(B+-> f(0)(980)K*+)=-0.34 +/- 0.21 +/- 0.03. C1 Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, Lab Leprince Ringuet, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Nazl Frascati Lab, I-00044 Frascati, Italy. Ist Nazl Fis Nucl, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Imperial Coll London, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, Accelerateur Lineaire Lab, IN2P3, F-91898 Orsay, France. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Queen Mary Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Basilicata, I-85100 Potenza, Italy. RP Aubert, B (reprint author), Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Della Ricca, Giuseppe/B-6826-2013; Peters, Klaus/C-2728-2008; Bellini, Fabio/D-1055-2009; Lista, Luca/C-5719-2008; Neri, Nicola/G-3991-2012; de Sangro, Riccardo/J-2901-2012; Rotondo, Marcello/I-6043-2012; Forti, Francesco/H-3035-2011; de Groot, Nicolo/A-2675-2009; Cavallo, Nicola/F-8913-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Roe, Natalie/A-8798-2012; Patrignani, Claudia/C-5223-2009 OI Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Egede, Ulrik/0000-0001-5493-0762; Raven, Gerhard/0000-0002-2897-5323; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Della Ricca, Giuseppe/0000-0003-2831-6982; Peters, Klaus/0000-0001-7133-0662; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; de Sangro, Riccardo/0000-0002-3808-5455; Rotondo, Marcello/0000-0001-5704-6163; Forti, Francesco/0000-0001-6535-7965; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747 NR 21 TC 41 Z9 41 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 17 PY 2006 VL 97 IS 20 AR 201801 DI 10.1103/PhysRevLett.97.201801 PG 7 WC Physics, Multidisciplinary SC Physics GA 106LI UT WOS:000242101600010 PM 17155736 ER PT J AU Frink, LJD Frischknecht, AL AF Frink, Laura J. Douglas Frischknecht, Amalie L. TI Computational investigations of pore forming peptide assemblies in lipid bilayers SO PHYSICAL REVIEW LETTERS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; NONUNIFORM POLYATOMIC SYSTEMS; INTRINSIC MEMBRANE-PROTEINS; ANTIMICROBIAL PEPTIDES; MEDIATED INTERACTIONS; INTEGRAL-EQUATIONS; SIMULATIONS; DYNAMICS; MODEL AB This Letter presents the first application of a three-dimensional numerical molecular theory based modeling approach to study the structure and energetics of assemblies of peptides embedded in lipid bilayers. Coarse-grained models were used for both the peptides and lipids. Both barrel-stave and toroidal pore morphologies for the lipids near the peptide assemblies are found, but at different assembly sizes. The free energy of the assembly is found to have a global free energy minimum for a solution with a membrane-spanning toroidal pore. A pairwise approximation to this free energy is found to underpredict the free energy minimum associated with the membrane-spanning pores. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Frink, LJD (reprint author), Sandia Natl Labs, Albuquerque, NM 87185 USA. RI Frischknecht, Amalie/N-1020-2014 OI Frischknecht, Amalie/0000-0003-2112-2587 NR 22 TC 9 Z9 9 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 17 PY 2006 VL 97 IS 20 AR 208701 DI 10.1103/PhysRevLett.97.208701 PG 4 WC Physics, Multidisciplinary SC Physics GA 106LI UT WOS:000242101600062 PM 17155725 ER PT J AU Wang, F Shen, YR AF Wang, Feng Shen, Y. Ron TI General properties of local plasmons in metal nanostructures SO PHYSICAL REVIEW LETTERS LA English DT Article ID NANOPARTICLES; LITHOGRAPHY; EXCITATION; RESONANCES; PARTICLES; OPTICS; SHAPE; GOLD AB Under the quasistatic approximation, the characteristics of a local plasmon resonance of a metal nanostructure exhibit several general properties. The resonance frequency depends on the fraction of plasmon energy residing in the metal through the real dielectric function of the metal. For a given resonant frequency, the Q factor of the resonance is determined only by the complex dielectric function of the metal material, independent of the nanostructure form or the dielectric environment. A simple result describing the effect of optical gain on the Q factor is also obtained. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Wang, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI wang, Feng/I-5727-2015 NR 26 TC 238 Z9 240 U1 7 U2 58 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 17 PY 2006 VL 97 IS 20 AR 206806 DI 10.1103/PhysRevLett.97.206806 PG 4 WC Physics, Multidisciplinary SC Physics GA 106LI UT WOS:000242101600043 PM 17155706 ER PT J AU Kubas, GJ AF Kubas, Gregory J. TI Chemistry - Breaking the H-2 marriage and reuniting the couple SO SCIENCE LA English DT Editorial Material ID BASE-CATALYZED HYDROGENATION; DIHYDROGEN; LECTURE C1 Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Kubas, GJ (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM kubas@lanl.gov NR 15 TC 52 Z9 53 U1 2 U2 21 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 17 PY 2006 VL 314 IS 5802 BP 1096 EP 1097 DI 10.1126/science.1135430 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 105PW UT WOS:000242045800028 PM 17110562 ER PT J AU Noonan, JP Coop, G Kudaravalli, S Smith, D Krause, J Alessi, J Platt, D Paabo, S Pritchard, JK Rubin, EM AF Noonan, James P. Coop, Graham Kudaravalli, Sridhar Smith, Doug Krause, Johannes Alessi, Joe Platt, Darren Paabo, Svante Pritchard, Jonathan K. Rubin, Edward M. TI Sequencing and analysis of Neanderthal genomic DNA SO SCIENCE LA English DT Article ID MODERN HUMANS; METAGENOMICS; AGE AB Our knowledge of Neanderthals is based on a limited number of remains and artifacts from which we must make inferences about their biology, behavior, and relationship to ourselves. Here, we describe the characterization of these extinct hominids from a new perspective, based on the development of a Neanderthal metagenomic library and its high-throughput sequencing and analysis. Several lines of evidence indicate that the 65,250 base pairs of hominid sequence so far identified in the library are of Neanderthal origin, the strongest being the ascertainment of sequence identities between Neanderthal and chimpanzee at sites where the human genomic sequence is different. These results enabled us to calculate the human-Neanderthal divergence time based on multiple randomly distributed autosomal loci. Our analyses suggest that on average the Neanderthal genomic sequence we obtained and the reference human genome sequence share a most recent common ancestor similar to 706,000 years ago, and that the human and Neanderthal ancestral populations split similar to 370,000 years ago, before the emergence of anatomically modern humans. Our finding that the Neanderthal and human genomes are at least 99.5% identical led us to develop and successfully implement a targeted method for recovering specific ancient DNA sequences from metagenomic libraries. This initial analysis of the Neanderthal genome advances our understanding of the evolutionary relationship of Homo sapiens and Homo neanderthalensis and signifies the dawn of Neanderthal genomics. C1 US Dept Energy Joint Genome Inst, Walnut Creek, CA 94598 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA. Max Planck Inst Evolutionary Anthropol, D-04103 Leipzig, Germany. RP Rubin, EM (reprint author), US Dept Energy Joint Genome Inst, 2800 Mitchell Dr, Walnut Creek, CA 94598 USA. EM emrubin@lbl.gov RI Krause, Johannes/E-6640-2015; OI Krause, Johannes/0000-0001-5475-4690; Coop, Graham/0000-0001-8431-0302 FU NHGRI NIH HHS [R01 HG002772, R01 HG002772-01, R01 HG002772-1]; NHLBI NIH HHS [HL066681]; NIGMS NIH HHS [1-F32-GM074367, F32 GM074367] NR 24 TC 332 Z9 352 U1 20 U2 156 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 17 PY 2006 VL 314 IS 5802 BP 1113 EP 1118 DI 10.1126/science.1131412 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 105PW UT WOS:000242045800035 PM 17110569 ER PT J AU Chang, CW Okawa, D Majumdar, A Zettl, A AF Chang, C. W. Okawa, D. Majumdar, A. Zettl, A. TI Solid-state thermal rectifier SO SCIENCE LA English DT Article ID NANOTUBES; CONDUCTIVITY; LATTICES AB We demonstrated nanoscale solid-state thermal rectification. High-thermal-conductivity carbon and boron nitride nanotubes were mass-loaded externally and inhomogeneously with heavy molecules. The resulting nanoscale system yields asymmetric axial thermal conductance with greater heat flow in the direction of decreasing mass density. The effect cannot be explained by ordinary perturbative wave theories, and instead we suggest that solitons may be responsible for the phenomenon. Considering the important role of electrical rectifiers ( diodes) in electronics, thermal rectifiers have substantial implications for diverse thermal management problems, ranging from nanoscale calorimeters to microelectronic processors to macroscopic refrigerators and energy-saving buildings. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Ctr Integrated Nanomech Syst, Berkeley, CA 94720 USA. RP Zettl, A (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM azettl@berkeley.edu RI Chang, Chih-Wei/A-5974-2012; Zettl, Alex/O-4925-2016 OI Zettl, Alex/0000-0001-6330-136X NR 16 TC 590 Z9 603 U1 12 U2 130 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 17 PY 2006 VL 314 IS 5802 BP 1121 EP 1124 DI 10.1126/science.1132898 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 105PW UT WOS:000242045800037 PM 17110571 ER PT J AU Schulz, M Textor, C Kinne, S Balkanski, Y Bauer, S Berntsen, T Berglen, T Boucher, O Dentener, F Guibert, S Isaksen, ISA Iversen, T Koch, D Kirkevag, A Liu, X Montanaro, V Myhre, G Penner, JE Pitari, G Reddy, S Seland, O Stier, P Takemura, T AF Schulz, M. Textor, C. Kinne, S. Balkanski, Y. Bauer, S. Berntsen, T. Berglen, T. Boucher, O. Dentener, F. Guibert, S. Isaksen, I. S. A. Iversen, T. Koch, D. Kirkevag, A. Liu, X. Montanaro, V. Myhre, G. Penner, J. E. Pitari, G. Reddy, S. Seland, O. Stier, P. Takemura, T. TI Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID GLOBAL 3-DIMENSIONAL MODEL; SINGLE-SCATTERING ALBEDO; SULFATE AEROSOLS; CLIMATE MODEL; CARBONACEOUS AEROSOLS; OPTICAL-PROPERTIES; BLACK CARBON; IMPACT; EMISSIONS; TRANSPORT AB Nine different global models with detailed aerosol modules have independently produced instantaneous direct radiative forcing due to anthropogenic aerosols. The anthropogenic impact is derived from the difference of two model simulations with prescribed aerosol emissions, one for present-day and one for pre-industrial conditions. The difference in the solar energy budget at the top of the atmosphere (ToA) yields a new harmonized estimate for the aerosol direct radiative forcing (RF) under all-sky conditions. On a global annual basis RF is -0.22 Wm(-2), ranging from +0.04 to -0.41 Wm(-2), with a standard deviation of +/- 0.16 Wm(-2). Anthropogenic nitrate and dust are not included in this estimate. No model shows a significant positive all-sky RF. The corresponding clear-sky RF is -0.68 Wm(-2). The cloud-sky RF was derived based on all-sky and clear-sky RF and modelled cloud cover. It was significantly different from zero and ranged between -0.16 and +0.34 Wm(-2). A sensitivity analysis shows that the total aerosol RF is influenced by considerable diversity in simulated residence times, mass extinction coefficients and most importantly forcing efficiencies (forcing per unit optical depth). The clear-sky forcing efficiency (forcing per unit optical depth) has diversity comparable to that for the all-sky/clear-sky forcing ratio. While the diversity in clear-sky forcing efficiency is impacted by factors such as aerosol absorption, size, and surface albedo, we can show that the all-sky/clear-sky forcing ratio is important because all-sky forcing estimates require proper representation of cloud fields and the correct relative altitude placement between absorbing aerosol and clouds. The analysis of the sulphate RF shows that long sulphate residence times are compensated by low mass extinction coefficients and vice versa. This is explained by more sulphate particle humidity growth and thus higher extinction in those models where short-lived sulphate is present at lower altitude and vice versa. Solar atmospheric forcing within the atmospheric column is estimated at +0.82 +/- 0.17 Wm(-2). The local annual average maxima of atmospheric forcing exceed +5 Wm(-2) confirming the regional character of aerosol impacts on climate. The annual average surface forcing is -1.02 +/- 0.23 Wm(-2). With the current uncertainties in the modelling of the radiative forcing due to the direct aerosol effect we show here that an estimate from one model is not sufficient but a combination of several model estimates is necessary to provide a mean and to explore the uncertainty. C1 CEA CNRS UVSQ, Lab Sci Climat & Environm, Gif Sur Yvette, France. Max Planck Inst Meteorol, Ctr Marine & Atmospher Sci ZMAW, Hamburg, Germany. Columbia Univ, GISS, New York, NY USA. Univ Oslo, Dept Geosci, Oslo, Norway. Hadley Ctr, Met Off, Exeter, Devon, England. Inst Environm & Sustainabil, Climate Change Unit, European Commiss, Joint Res Ctr, Ispra, Italy. Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. Univ Aquila, Dipartimento Fis, I-67010 Coppito, Italy. NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. Kyushu Univ, Appl Mech Res Inst, Fukuoka 8168580, Japan. Univ Sci & Technol Lille, CNRS, Opt Atmospher Lab, Villeneuve Dascq, France. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Schulz, M (reprint author), CEA CNRS UVSQ, Lab Sci Climat & Environm, Gif Sur Yvette, France. EM michael.schulz@cea.fr RI Myhre, Gunnar/A-3598-2008; U-ID, Kyushu/C-5291-2016; Stier, Philip/B-2258-2008; Takemura, Toshihiko/C-2822-2009; Boucher, Olivier/J-5810-2012; Boucher, Olivier/K-7483-2012; Pfister, Gabriele/A-9349-2008; Penner, Joyce/J-1719-2012; Liu, Xiaohong/E-9304-2011; Balkanski, Yves/A-6616-2011; Bauer, Susanne/P-3082-2014; Kyushu, RIAM/F-4018-2015; Schulz, Michael/A-6930-2011; OI Myhre, Gunnar/0000-0002-4309-476X; Stier, Philip/0000-0002-1191-0128; Takemura, Toshihiko/0000-0002-2859-6067; Boucher, Olivier/0000-0003-2328-5769; Boucher, Olivier/0000-0003-2328-5769; Liu, Xiaohong/0000-0002-3994-5955; Balkanski, Yves/0000-0001-8241-2858; Schulz, Michael/0000-0003-4493-4158; Pitari, Giovanni/0000-0001-7051-9578 NR 69 TC 328 Z9 334 U1 9 U2 64 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD NOV 16 PY 2006 VL 6 BP 5225 EP 5246 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 106KJ UT WOS:000242099100002 ER PT J AU Krauss, SW Popova, E Short, SA Lee, G Villalobos, J Koury, MJ Grigoryev, S Chasis, JA AF Krauss, Sharon Wald Popova, Evgenya Short, Sarah A. Lee, Gloria Villalobos, Jonathan Koury, Mark J. Grigoryev, Sergei Chasis, Joel Anne TI Histone deacetylation makes an important contribution to chromatin condensation and enucleation during murine erythroblast terminal differentiation. SO BLOOD LA English DT Meeting Abstract CT 48th Annual Meeting of the American-Society-of-Hematology CY DEC 09-12, 2006 CL Orlando, FL SP Amer Soc Hematol C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Penn State Univ, Coll Med, Hershey, PA USA. Vanderbilt Univ, Nashville, TN USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD NOV 16 PY 2006 VL 108 IS 11 MA 4179 BP 124B EP 125B PN 2 PG 2 WC Hematology SC Hematology GA 111GW UT WOS:000242440400459 ER PT J AU Gee, SL Schluepen, C Conboy, JG AF Gee, Sherry L. Schluepen, Christina Conboy, John G. TI Combinatorial regulation of protein 4.1R exon 16 alternative splicing: Modulation of fox-2 activated splicing by other intronic and exonic motifs. SO BLOOD LA English DT Meeting Abstract CT 48th Annual Meeting of the American-Society-of-Hematology CY DEC 09-12, 2006 CL Orlando, FL SP Amer Soc Hematol C1 Div Life Sci, Lawrence Berkeley Natl Lab, Berkeley, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD NOV 16 PY 2006 VL 108 IS 11 MA 540 BP 163A EP 163A PN 1 PG 1 WC Hematology SC Hematology GA 111GS UT WOS:000242440000541 ER PT J AU Pagel, JM Hedin, N Drouet, L Pantelias, A Lin, Y Hamlin, D Fisher, D Wilbur, DS Gopal, AK Green, D Appelbaum, FR Press, OW AF Pagel, John M. Hedin, Nathan Drouet, Lacey Pantelias, Anastasia Lin, Yukang Hamlin, Don Fisher, Darrell Wilbur, D. Scott Gopal, Ajay K. Green, Damian Appelbaum, Frederick R. Press, Oliver W. TI Conventional and pretargeted radioimmunotherapy using an Anti-Murine CD45 monoclonal antibody in a syngeneic, disseminated murine leukemia model. SO BLOOD LA English DT Meeting Abstract CT 48th Annual Meeting of the American-Society-of-Hematology CY DEC 09-12, 2006 CL Orlando, FL SP Amer Soc Hematol C1 Fred Hutchinson Canc Res Ctr, Seattle, WA 98104 USA. Univ Washington, Seattle, WA 98195 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD NOV 16 PY 2006 VL 108 IS 11 MA 570 BP 172A EP 172A PN 1 PG 1 WC Hematology SC Hematology GA 111GS UT WOS:000242440000571 ER PT J AU Ganguly, K Stein, SC Groff, RF Zhang, J Smith, DH Cines, DB Muzykantov, VR AF Ganguly, Kumkum Stein, Sherman C. Groff, Robert F. Zhang, Jun Smith, Douglas H. Cines, Douglas B. Muzykantov, Vladimir R. TI Erythrocyte coupled tPA improves outcomes of percussion brain trauma in rats. SO BLOOD LA English DT Meeting Abstract CT 48th Annual Meeting of the American-Society-of-Hematology CY DEC 09-12, 2006 CL Orlando, FL SP Amer Soc Hematol C1 Univ Penn, Inst Environm Med, Philadelphia, PA 19104 USA. Univ Penn, Dept Neurosurg, Philadelphia, PA 19104 USA. Univ Penn, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA. Univ Penn, Dept Pharmacol, Philadelphia, PA 19104 USA. Los Alamos Natl Lab, Bio CBSBFC, Bio Div, Los Alamos, NM USA. RI smith, douglas/A-1321-2007 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD NOV 16 PY 2006 VL 108 IS 11 MA 897 BP 269A EP 269A PN 1 PG 1 WC Hematology SC Hematology GA 111GS UT WOS:000242440001157 ER PT J AU Janatpour, KA Gosselin, RC Dager, WE Lee, A Owings, JT Wun, T AF Janatpour, Kim A. Gosselin, Robert C. Dager, William E. Lee, Andrew Owings, John T. Wun, Ted TI Utility of optical density values from heparin-platelet factor 4 antibody testing and probability scoring models to diagnose patients with heparin induced thrombocytopenia. SO BLOOD LA English DT Meeting Abstract CT 48th Annual Meeting of the American-Society-of-Hematology CY DEC 09-12, 2006 CL Orlando, FL SP Amer Soc Hematol C1 Lawrence Livermore Natl Lab, Davis Med Ctr, Sacramento, CA USA. Lawrence Livermore Natl Lab, Davis Med Ctr, Div Hematol & Oncol, Sacramento, CA USA. VA No California Hlth Care Syst, Sacramento, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD NOV 16 PY 2006 VL 108 IS 11 MA 1475 BP 426A EP 426A PG 1 WC Hematology SC Hematology GA 111GS UT WOS:000242440001734 ER PT J AU Parra, M Tan, J Mohandas, N Conboy, JG AF Parra, Marilyn Tan, Jeff Mohandas, Narla Conboy, John G. TI Mechanisms that link promoter choice with downstream alternative splicing in the erythroid protein 4.1R gene. SO BLOOD LA English DT Meeting Abstract CT 48th Annual Meeting of the American-Society-of-Hematology CY DEC 09-12, 2006 CL Orlando, FL SP Amer Soc Hematol C1 Div Life Sci, Lawrence Berkeley Natl Lab, Berkeley, CA USA. New York Blood Ctr, Red Cell Physiol Lab, New York, NY 10021 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD NOV 16 PY 2006 VL 108 IS 11 MA 1562 BP 448A EP 448A PN 1 PG 1 WC Hematology SC Hematology GA 111GS UT WOS:000242440002078 ER PT J AU Salomao, MA Short, S Lee, G An, XL Narla, M Chasis, JA AF Salomao, Marcela A. Short, Sarah Lee, Gloria An, Xiuli Narla, Mohandas Chasis, Joel Anne TI Aberrant protein sorting to the nucleus during erythroblast enucleation: Mechanistic basis for membrane protein loss in hereditary elliptocytosis and spherocytosis. SO BLOOD LA English DT Meeting Abstract CT 48th Annual Meeting of the American-Society-of-Hematology CY DEC 09-12, 2006 CL Orlando, FL SP Amer Soc Hematol C1 New York Blood Ctr, New York, NY 10021 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD NOV 16 PY 2006 VL 108 IS 11 MA 1559 BP 448A EP 448A PN 1 PG 1 WC Hematology SC Hematology GA 111GS UT WOS:000242440002075 ER PT J AU Mankelow, TJ Burton, N Stefansdottir, FO Spring, FA Parsons, SF Gilstring, CF Brady, RL Narla, M Chasis, JA Anstee, DJ AF Mankelow, Tosti J. Burton, Nicholas Stefansdottir, Fanney O. Spring, Frances A. Parsons, Stephen F. Gilstring, C. Fredrik Brady, R. Leo Narla, Mohandas Chasis, Joel Anne Anstee, David J. TI Characterisation of the laminin 10/11 binding site on the lutheran glycoprotein suggests a novel type of protein-protein interaction. SO BLOOD LA English DT Meeting Abstract CT 48th Annual Meeting of the American-Society-of-Hematology CY DEC 09-12, 2006 CL Orlando, FL SP Amer Soc Hematol C1 Bristol Inst Transfus Sci, Natl Blood Serv, Bristol, Avon, England. Univ Bristol, Sch Med Sci, Bristol BS8 1TD, Avon, England. Sidec Technol AB, Kista, Sweden. New York Blood Ctr, New York, NY 10021 USA. Lawrence Berkeley Natl Lab, Berkeley, CA USA. RI Burton, Nick/C-7064-2013 NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD NOV 16 PY 2006 VL 108 IS 11 MA 1566 BP 449A EP 449A PN 1 PG 1 WC Hematology SC Hematology GA 111GS UT WOS:000242440002082 ER PT J AU Green, DJ Nemecek, ER Hedin, N Pantelias, A Lin, Y Pagel, JM Fisher, DR Hamlin, DK Scott Wilbur, D Gopal, A Nilsson, R Sandberg, BEB Press, O AF Green, Damian J. Nemecek, Eneida R. Hedin, Nathan Pantelias, Anastasia Lin, Yukang Pagel, John M. Fisher, Darrell R. Hamlin, Don K. Scott Wilbur, D. Gopal, Ajay Nilsson, Rune Sandberg, Bengt E. B. Press, OliverW. TI Extracorporeal adsorption following infusion of radiolabeled anti-CD20 antibody clears unbound radioimmunoconjugate from the circulation and reduces radiation exposure of normal organs in the nonhuman primate. SO BLOOD LA English DT Meeting Abstract CT 48th Annual Meeting of the American-Society-of-Hematology CY DEC 09-12, 2006 CL Orlando, FL SP Amer Soc Hematol C1 Univ Washington, Fred Hutchinson Canc Res Ctr, Div Clin Res, Seattle, WA 98195 USA. Oregon Hlth Sci Univ, Doernbecher Mem Hosp Children, Div Hematol Oncol, Portland, OR 97201 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. Mitra Med AB, Lund, Sweden. RI Nilsson, Rune/C-1089-2013 OI Nilsson, Rune/0000-0001-8903-7384 NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD NOV 16 PY 2006 VL 108 IS 11 MA 2500 BP 708A EP 708A PN 1 PG 1 WC Hematology SC Hematology GA 111GS UT WOS:000242440003290 ER PT J AU Abel, GA Freeman, MP Smith, AJ Reeves, GD AF Abel, G. A. Freeman, M. P. Smith, A. J. Reeves, G. D. TI Association of substorm chorus events with drift echoes SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID VLF; MAGNETOSPHERE; SIGNATURES; ORBIT; WAVE AB Over recent years, substorm chorus events (SCEs) have been proposed as a useful indicator of substorm onset. The events are regularly seen in the data from the VELOX (VLF/ELF Logger Experiment) instrument at Halley, Antarctica, which has provided over a decade of near continuous observations. SCEs are generally thought to be excited by the injection of electrons near midnight as they gradient-curvature drift toward dawn. On close one-to-one inspection of SCEs seen at Halley and energetic electron signatures seen with the LANL geostationary spacecraft, we have found that many events are associated with the drift echo of the injected electrons rather than the initial injection. In this paper we present some example events as well as the relative statistics. We find that approximately 1/4 of SCEs where a clear signature can be seen in the LANL data are associated with drift echoes rather than the initial substorm injection. We argue that rather than being a direct signature of substorm onset, SCEs are a signature of enhanced electron fluxes in the chorus generation region, which are often, but not exclusively, associated with substorm injections. C1 British Antarctic Survey, NERC, Cambridge CB3 0ET, England. Los Alamos Natl Lab, Los Alamos, NM USA. RP Abel, GA (reprint author), British Antarctic Survey, NERC, High Cross,Madingley Rd, Cambridge CB3 0ET, England. EM gaab@bas.ac.uk; mpf@bas.ac.uk; ajsm@bas.ac.uk; reeves@lanl.gov RI Reeves, Geoffrey/E-8101-2011 OI Reeves, Geoffrey/0000-0002-7985-8098 NR 21 TC 9 Z9 9 U1 1 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 16 PY 2006 VL 111 IS A11 AR A11220 DI 10.1029/2006JA011860 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 107NV UT WOS:000242179200009 ER PT J AU Farrugia, CJ Jordanova, VK Thomsen, MF Lu, G Cowley, SWH Ogilvie, KW AF Farrugia, C. J. Jordanova, V. K. Thomsen, M. F. Lu, G. Cowley, S. W. H. Ogilvie, K. W. TI A two-ejecta event associated with a two-step geomagnetic storm SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID CORONAL MASS EJECTIONS; PERIODIC MAGNETOSPHERIC SUBSTORMS; RING CURRENT DYNAMICS; SOLAR-WIND; MAGNETIC STORMS; COMPLEX EJECTA; PLASMA SHEET; FIELD; CLOUDS; EARTH AB A new view on how large disturbances in the magnetosphere may be prolonged and intensified further emerges from a recently discovered interplanetary process: the collision/ merger of interplanetary (IP) coronal mass ejections (ICMEs; ejecta) within 1 AU. As shown in a recent pilot study, the merging process changes IP parameters dramatically with respect to values in isolated ejecta. The resulting geoeffects of the coalesced ("complex'') ejecta reflect a superposition of IP triggers which may result in, for example, two-step, major geomagnetic storms. In a case study, we isolate the effects on ring current enhancement when two coalescing ejecta reached Earth on 31 March 2001. The magnetosphere "senses'' the presence of the two ejecta and responds with a reactivation of the ring current soon after it started to recover from the passage of the first ejection, giving rise to a double-dip (DD) great storm ( each min Dst < -250 nT). A drift-loss global kinetic model of ring current buildup shows that in this case the major factor determining the intensity of the storm activity is the very high ( up to similar to 10 cm(-3)) plasma sheet density. The plasma sheet density, in turn, is found to correlate well with the very high solar wind density, suggesting the compression of the leading ejecta as the source of the hot, superdense plasma sheet in this case. This correlation is similar to that obtained in a previous investigation extending over several years, but the present case study extends the range of plasma sheet densities from similar to 2 to similar to 10 cm(-3). Since the features of the ejecta interaction in this example are fairly general, we propose that interacting ejecta are a new, important IP source of DD major storms. Peculiarities in the behavior of the magnetopause current during these extreme events are briefly discussed in the light of recent work. In a brief discussion of a second example (21 - 23 October 2001), we suggest that by strengthening the leading shock, the ejecta merger may have added to the "shock-driver gas'' origin of DD geomagnetic storms by increasing the ability of the shock to compress preexisting B(z) < 0 magnetic fields. C1 Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. Los Alamos Natl Lab, Los Alamos, NM USA. Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Farrugia, CJ (reprint author), Univ Leicester, Dept Phys & Astron, Univ Rd, Leicester LE1 7RH, Leics, England. EM charlie.farrugia@unh.edu; mthomsen@lanl.gov; ganglu@hao.ucar.edu; swhc1@ion.le.ac.uk; keith.w.ogilvie@nasa.gov RI Lu, Gang/A-6669-2011; OI Jordanova, Vania/0000-0003-0475-8743 NR 69 TC 35 Z9 36 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 16 PY 2006 VL 111 IS A11 AR A11104 DI 10.1029/2006JA011893 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 107NV UT WOS:000242179200011 ER PT J AU Kistler, LM Mouikis, CG Cao, X Frey, H Klecker, B Dandouras, I Korth, A Marcucci, MF Lundin, R McCarthy, M Friedel, R Lucek, E AF Kistler, L. M. Mouikis, C. G. Cao, X. Frey, H. Klecker, B. Dandouras, I. Korth, A. Marcucci, M. F. Lundin, R. McCarthy, M. Friedel, R. Lucek, E. TI Ion composition and pressure changes in storm time and nonstorm substorms in the vicinity of the near-Earth neutral line SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID POSSIBLE GEOMAGNETIC FEEDBACK; MAGNETOTAIL CURRENT SHEET; TERRESTRIAL O+ IONS; PLASMA SHEET; IONOSPHERIC IONS; MAGNETIC-FIELD; SOLAR-WIND; ENERGETIC 0.1; INJECTIONS; DEPENDENCE AB Using CLUSTER/CODIF data from close to similar to 19 Re in the magnetotail, we have performed a superposed epoch analysis of storm time and nonstorm substorms to determine how the ion composition changes during a substorm. We find that the median O+ density and pressure in the plasma sheet are a factor of 5 higher during storm times than during nonstorm times. However, we do not observe significant changes in the composition during a substorm that would indicate that ionospheric outflow is playing a dynamic role in loading the plasma sheet or triggering the substorm at this location. There are differences between the storm time and nonstorm substorms, and it is intriguing to consider whether the composition differences play a role. The storm time substorms exhibit more loading and faster unloading than the nonstorm substorms. In addition, we observe differences in the H+ and O+ behavior at onset in the storm time substorms that we attribute to the different dynamics of the two ion species at the reconnection site and during the field reconfiguration due to their different gyroradii. The H+ density and pressure decrease over the whole energy range at substorm onset, while the O+ density and pressure decrease less, and the O+ temperature increases. That more O+ is left after substorm onset indicates that either the O+ is more quickly replenished from O+ in the lobes and/or that the more energetic O+, due to its larger gyroradius, is not depleted when the field reconfigures and is accelerated in the thin current sheet. C1 Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. Max Planck Inst Extraterr Phys, D-37075 Garching, Germany. Ctr Etud Spatiale Rayonnements, Toulouse, France. Max Planck Inst Aeron, Katlenburg Lindau, Germany. Ist Fis Spazio Interplanetario, Rome, Italy. Swedish Inst Space Phys, S-98128 Kiruna, Sweden. Univ Washington, Geophys Program, Seattle, WA 98195 USA. Los Alamos Natl Lab, Los Alamos, NM USA. Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London, England. RP Kistler, LM (reprint author), Univ New Hampshire, Ctr Space Sci, Morse Hall,39 Coll Rd, Durham, NH 03824 USA. EM lynn.kistler@unh.edu RI Friedel, Reiner/D-1410-2012; OI Friedel, Reiner/0000-0002-5228-0281; Dandouras, Iannis/0000-0002-7121-1118; Frey, Harald/0000-0001-8955-3282 NR 31 TC 47 Z9 48 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 16 PY 2006 VL 111 IS A11 AR A11222 DI 10.1029/2006JA011939 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 107NV UT WOS:000242179200013 ER PT J AU Du, JC Corrales, LR AF Du, Jincheng Corrales, L. Rene TI Characterization of the structural and electronic properties of crystalline lithium silicates SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID MOLECULAR-ORBITAL CALCULATIONS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; AB-INITIO; SODIUM; DISILICATE; GLASSES; METASILICATE; POLYSILICATE; LI2SI2O5 AB Density functional theory (DFT) calculations within the generalized gradient approximation (GGA) were performed to study the atomic and electronic structure of lithium silicate crystals that were fully optimized within the theory. It is found that the relative stability of two crystalline forms of lithium disilicate agrees well with experimental results. The calculated electronic density of states shows distinguishable contributions to the oxygen 2s and upper valence bands associated with bridging (BO) and nonbridging oxygen (NBO) atoms. Bond ionicity, characterized by determining the relative atomic charges, is used to distinguish BO and NBO atoms as well as the corresponding Si-BO and Si-NBO bonds. Results from this work reveal that atomic charges obtained by using population analysis methods based on electron deformation density rather than total electron density provide an accurate description of bond ionicity consistent with chemical intuition. C1 Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. RP Corrales, LR (reprint author), Univ Arizona, Dept Mat Sci, Tucson, AZ 85721 USA. EM lrcorral@email.arizona.edu NR 36 TC 37 Z9 37 U1 5 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 16 PY 2006 VL 110 IS 45 BP 22346 EP 22352 DI 10.1021/jp056879s PG 7 WC Chemistry, Physical SC Chemistry GA 103RZ UT WOS:000241905700012 PM 17091974 ER PT J AU Riley, KJ Zazubovich, V Jankowiak, R AF Riley, Kerry J. Zazubovich, Valter Jankowiak, Ryszard TI Frequency-domain spectroscopic study of the PSI-CP43 ' supercomplex from the cyanobacterium Synechocystis PCC 6803 grown under iron stress conditions SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID CHLOROPHYLL-PROTEIN COMPLEX; RED ANTENNA STATES; PHOTOSYSTEM-I; SYNECHOCOCCUS-ELONGATUS; ENERGY-TRANSFER; CRYSTAL-STRUCTURE; ANGSTROM RESOLUTION; CHARGE SEPARATION; CP43; ISIA AB Absorption, fluorescence excitation, emission, and hole-burning (HB) spectra were measured at liquid helium temperatures for the PSI-CP43' supercomplexes of Synechocystis PCC 6803 grown under iron stress conditions and for respective trimeric PS I cores. Results are compared with those of room temperature, time-domain experiments (Biochemistry 2003, 42, 3893) as well as with the low-temperature steady-state experiments on PSI-CP43' supercomplexes of Synechococcus PCC 7942 (Biochim. Biophys. Acta 2002, 1556, 265). In contrast to the CP43' of Synechococcus PCC 7942, CP43' of Synechocystis PCC 6803 possesses two low-energy states analogous to the quasidegenerate states A and B of CP43 of photosystem II (J. Phys. Chem. B 2000, 104, 11805). Energy transfer between the CP43' and the PS I core occurs, to a significant degree, through the state A, characterized with a broader site distribution function (SDF). It is demonstrated that the low temperature (T = 5 K) excitation energy transfer (EET) time between the state A of CP43' (IsiA) and the PS I core in PSI-CP43' supercomplexes from Synechocystis PCC 6803 is about 60 ps, which is significantly slower than the EET observed at room temperature. Our results are consistent with fast (<= 10 ps) energy transfer from state B to state A in CP43'. Energy absorbed by the CP43' manifold has, on average, a greater chance of being transferred to the reaction center (RC) and utilized for charge separation than energy absorbed by the PS I core antenna. This indicates that energy is likely transferred from the CP43' to the RC along a well-defined path and that the "red antenna states" of the PS I core are localized far away from that path, most likely on the B7-A32 and B37-B38 dimers in the vicinity of the PS I trimerization domain (near PsaL subunit). We argue that the A38-A39 dimer does not contribute to the red antenna region. C1 Concordia Univ, Dept Phys, Montreal, PQ H4B 1R6, Canada. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. US DOE, Ames Lab, Ames, IA 50011 USA. Kansas State Univ, Dept Chem, Manhattan, KS 66506 USA. RP Zazubovich, V (reprint author), Concordia Univ, Dept Phys, 7141 Sherbrooke St W, Montreal, PQ H4B 1R6, Canada. EM vzazubov@alcor.concordia.ca; ryszard@ksu.edu NR 45 TC 11 Z9 11 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 16 PY 2006 VL 110 IS 45 BP 22436 EP 22446 DI 10.1021/jp063691f PG 11 WC Chemistry, Physical SC Chemistry GA 103RZ UT WOS:000241905700023 PM 17091985 ER PT J AU Andersen, LK Frei, H AF Andersen, Lars Klembt Frei, Heinz TI Dynamics of CO in mesoporous silica monitored by time-resolved step-scan and rapid-scan FT-IR spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID NMR DIFFUSION; MCM-41; ZEOLITE; PHOTOOXIDATION; ADSORBENTS; SIEVE; LIGHT; O-2 AB Carbon monoxide molecules generated in the channels of mesoporous MCM-41 silica sieve from a precursor (diphenyl cyclopropenone) by photodissociation with a nanosecond laser pulse were monitored by time-resolved Fourier transform infrared (FTIR) spectroscopy using the step-scan and rapid-scan methods. A very broad absorption of CO is observed in the region 2200-2080 cm(-1) at room temperature that decays in a biphasic mode. Two-thirds of the band intensity decays on the hundreds of microsecond scale (lifetime 344 +/- 70 mu s). The process represents the escape of the molecules through the mesopores into the surrounding gas phase, and a diffusion constant of 1.5 x 10(-9) m(2)/s is derived (assuming control by intra-MCM-41 particle diffusion). The broad profile of the absorption is attributed to contact of the random hopping CO with siloxane and silanol groups of the pore surface. Measurements using MCM-41 with the silanols partially capped by trimethyl silyl groups gave further insight into the nature of the IR band profile. These are the first observations on the diffusion behavior of carbon monoxide in a mesoporous material at room temperature. The residual carbon monoxide remains much longer in the pores and features distinct peaks at 2167 and 2105 cm(-1) characteristic for CO adsorbed on SiOH groups C end on and O end on, respectively. The bands decrease with time constants of 113 +/- 3 ms (2167 cm(-1)) and 155 +/- 15 ms (2105 cm(-1)) suggesting that CO in these sites is additionally trapped by surrounding diphenyl acetylene coproduct and/or precursor molecules. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Frei, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM hmfrei@lbl.gov RI Garcia-Sanchez, Almudena/B-3303-2009 NR 36 TC 10 Z9 12 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 16 PY 2006 VL 110 IS 45 BP 22601 EP 22607 DI 10.1021/jp0640326 PG 7 WC Chemistry, Physical SC Chemistry GA 103RZ UT WOS:000241905700045 PM 17092007 ER PT J AU Law, M Greene, LE Radenovic, A Kuykendall, T Liphardt, J Yang, PD AF Law, Matt Greene, Lori E. Radenovic, Aleksandra Kuykendall, Tevye Liphardt, Jan Yang, Peidong TI ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID NANOCRYSTALLINE TIO2 FILMS; ATOMIC LAYER DEPOSITION; BACK-REACTION; TITANIUM-DIOXIDE; THIN-FILMS; PHOTOCURRENT SPECTROSCOPY; RECOMBINATION PROCESSES; ELECTRONIC-PROPERTIES; NANOPOROUS ELECTRODE; PHOTOVOLTAIC CELLS AB We describe the construction and performance of dye-sensitized solar cells (DSCs) based on arrays of ZnO nanowires coated with thin shells of amorphous Al2O3 or anatase TiO2 by atomic layer deposition. We find that alumina shells of all thicknesses act as insulating barriers that improve cell open-circuit voltage (VOC) only at the expense of a larger decrease in short-circuit current density (JSC). However, titania shells 10-25 nm in thickness cause a dramatic increase in VOC and fill factor with little current falloff, resulting in a substantial improvement in overall conversion efficiency, up to 2.25% under 100 mW cm(-2) AM 1.5 simulated sunlight. The superior performance of the ZnO-TiO2 core-shell nanowire cells is a result of a radial surface field within each nanowire that decreases the rate of recombination in these devices. In a related set of experiments, we have found that TiO2 blocking layers deposited underneath the nanowire films yield cells with reduced efficiency, in contrast to the beneficial use of blocking layers in some TiO2 nanoparticle cells. Raising the efficiency of our nanowire DSCs above 2.5% depends on achieving higher dye loadings through an increase in nanowire array surface area. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu RI Liphardt, Jan/A-5906-2012; Radenovic, Aleksandra/C-5350-2011; OI Liphardt, Jan/0000-0003-2835-5025 NR 61 TC 518 Z9 533 U1 34 U2 450 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 16 PY 2006 VL 110 IS 45 BP 22652 EP 22663 DI 10.1021/jp0648644 PG 12 WC Chemistry, Physical SC Chemistry GA 103RZ UT WOS:000241905700051 PM 17092013 ER PT J AU Ji, HT Burin, M Schartman, E Goodman, J AF Ji, Hantao Burin, Michael Schartman, Ethan Goodman, Jeremy TI Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks SO NATURE LA English DT Article ID ROTATING CYLINDERS; ACCRETION DISKS; NONLINEAR STABILITY; SHEAR TURBULENCE; STRATIFIED DISKS; REYNOLDS-NUMBER; INSTABILITY; FLOW; CIRCULATION; EVOLUTION AB The most efficient energy sources known in the Universe are accretion disks. Those around black holes convert 5 - 40 per cent of restmass energy to radiation. Like water circling a drain, inflowing mass must lose angular momentum, presumably by vigorous turbulence in disks, which are essentially inviscid(1). The origin of the turbulence is unclear. Hot disks of electrically conducting plasma can become turbulent by way of the linear magnetorotational instability(2). Cool disks, such as the planet- forming disks of protostars, may be too poorly ionized for the magnetorotational instability to occur, and therefore essentially unmagnetized and linearly stable. Nonlinear hydrodynamic instability often occurs in linearly stable flows ( for example, pipe flows) at sufficiently large Reynolds numbers. Although planet- forming disks have extreme Reynolds numbers, keplerian rotation enhances their linear hydrodynamic stability, so the question of whether they can be turbulent and thereby transport angular momentum effectively is controversial(3-15). Here we report a laboratory experiment, demonstrating that non- magnetic quasi- keplerian flows at Reynolds numbers up to millions are essentially steady. Scaled to accretion disks, rates of angular momentum transport lie far below astrophysical requirements. By ruling out purely hydrodynamic turbulence, our results indirectly support the magnetorotational instability as the likely cause of turbulence, even in cool disks. C1 Princeton Univ, Ctr Magnet Self Org Lab & Astrophys Plasmas, Plasma Phys Lab, Princeton, NJ 08543 USA. Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08543 USA. RP Ji, HT (reprint author), Princeton Univ, Ctr Magnet Self Org Lab & Astrophys Plasmas, Plasma Phys Lab, Princeton, NJ 08543 USA. EM hji@pppl.gov NR 32 TC 134 Z9 134 U1 2 U2 16 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD NOV 16 PY 2006 VL 444 IS 7117 BP 343 EP 346 DI 10.1038/nature05323 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 105GL UT WOS:000242018300042 PM 17108959 ER PT J AU Son, YW Cohen, ML Louie, SG AF Son, Young-Woo Cohen, Marvin L. Louie, Steven G. TI Half-metallic graphene nanoribbons SO NATURE LA English DT Article ID RIBBONS; EDGE; FERROMAGNETISM; ELECTRONICS; GRAPHITE; SYSTEMS; CHAINS; STATE; GAS AB Electrical current can be completely spin polarized in a class of materials known as half- metals, as a result of the coexistence of metallic nature for electrons with one spin orientation and insulating nature for electrons with the other. Such asymmetric electronic states for the different spins have been predicted for some ferromagnetic metals - for example, the Heusler compounds(1) and were first observed in a manganese perovskite (2). In view of the potential for use of this property in realizing spin- based electronics, substantial efforts have been made to search for half-metallic materials(3,4). However, organic materials have hardly been investigated in this context even though carbon- based nanostructures hold significant promise for future electronic devices (5). Here we predict half- metallicity in nanometre- scale graphene ribbons by using first- principles calculations. We show that this phenomenon is realizable if in- plane homogeneous electric fields are applied across the zigzag- shaped edges of the graphene nanoribbons, and that their magnetic properties can be controlled by the external electric fields. The results are not only of scientific interest in the interplay between electric fields and electronic spin degree of freedom in solids 6,7 but may also open a new path to explore spintronics(3) at the nanometre scale, based on graphene(8 - 11). C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Louie, SG (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM sglouie@berkeley.edu RI son, Young-Woo/B-2566-2010 NR 30 TC 2405 Z9 2442 U1 112 U2 835 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD NOV 16 PY 2006 VL 444 IS 7117 BP 347 EP 349 DI 10.1038/nature05180 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 105GL UT WOS:000242018300043 PM 17108960 ER PT J AU Lipkin, HJ AF Lipkin, Harry J. TI Quantum theory of neutrino oscillations for pedestrians: simple answers to confusing questions SO PHYSICS LETTERS B LA English DT Article AB A simple rigorous calculation confirms the standard formula and clarifies some confusing difficulties arising in the standard textbook recipe converting the unobserved frequency of time oscillations between neutrino states with different energies to the observed oscillation wave length in space. Including the quantum fluctuations in the position of the detector and in the transit time between source and detector enables the treatment of: (1) The difference in velocity and transit time between neutrinos with different energies. (2) The destruction of all phases between states with different masses by an ideal detector which measures the energy and momentum of the neutrino. (3) The destruction of all phases between states with different energies by a realistic detector in thermal equilibrium with its macroscopic environment. (4) The difficulty for relativistic treatments and relativistic field theory to treat the crucial quantum mechanics of a macroscopic detector at rest in the laboratory. (c) 2006 Published by Elsevier B.V. C1 Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. Tel Aviv Univ, Sch Phys & Astron, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel. Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Lipkin, HJ (reprint author), Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. EM harry.lipkin@weizmann.ac.il NR 11 TC 17 Z9 17 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD NOV 16 PY 2006 VL 642 IS 4 BP 366 EP 371 DI 10.1016/j.physletb.2006.09.054 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 106ZU UT WOS:000242141300012 ER PT J AU Kelly, RT Page, JS Luo, QZ Moore, RJ Orton, DJ Tang, KQ Smith, RD AF Kelly, Ryan T. Page, Jason S. Luo, Quanzhou Moore, Ronald J. Orton, Daniel J. Tang, Keqi Smith, Richard D. TI Chemically etched open tubular and monolithic emitters for nanoelectrospray ionization mass spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID OPTICAL-FIBER TIPS; CAPILLARY-ELECTROPHORESIS; ASSISTED ELECTROSPRAY; MICROFLUIDIC CHIPS; SENSITIVITY; PERFORMANCE; FABRICATION; PROTEOMICS; ESI; MS AB We have developed a new procedure for fabricating fused-silica emitters for electrospray ionization-mass spectrometry (ESI-MS) in which the end of a bare fused-silica capillary is immersed into aqueous hydrofluoric acid, and water is pumped through the capillary to prevent etching of the interior. Surface tension causes the etchant to climb the capillary exterior, and the etch rate in the resulting meniscus decreases as a function of distance from the bulk solution. Etching continues until the silica touching the hydrofluoric acid reservoir is completely removed, essentially stopping the etch process. The resulting emitters have no internal taper, making them much less prone to clogging compared to, e. g., pulled emitters. The high aspect ratios and extremely thin walls at the orifice facilitate very low flow rate operation; stable ESI-MS signals were obtained for model analytes from 5-mu m-diameter emitters at a flow rate of 5 nL/min with a high degree of interemitter reproducibility. In extensive evaluation, the etched emitters were found to enable approximately four times as many LC-MS analyses of proteomic samples before failing compared with conventional pulled emitters. The fabrication procedure was also employed to taper the ends of polymer monolith-containing silica capillaries for use as ESI emitters. In contrast to previous work, the monolithic material protrudes beyond the fused-silica capillaries, improving the monolith-assisted electrospray process. C1 Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. EM rds@pnl.gov RI Luo, Quanzhou/B-4908-2011; Smith, Richard/J-3664-2012; Kelly, Ryan/B-2999-2008 OI Smith, Richard/0000-0002-2381-2349; Kelly, Ryan/0000-0002-3339-4443 FU NCRR NIH HHS [P41 RR018522, RR018522]; NIAID NIH HHS [Y1-AI-4894-01] NR 37 TC 138 Z9 140 U1 5 U2 54 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD NOV 15 PY 2006 VL 78 IS 22 BP 7796 EP 7801 DI 10.1021/ac061133r PG 6 WC Chemistry, Analytical SC Chemistry GA 105HQ UT WOS:000242021400025 PM 17105173 ER PT J AU Silver, GL AF Silver, G. L. TI Analysis of three-dimensional grids: Alternative polynomial equations for the nine-point prismatic array SO APPLIED MATHEMATICS AND COMPUTATION LA English DT Article DE interpolation; response surfaces; operational equations; experimental design; cubic array ID CUBES AB Equations representing data in prismatic array are useful for interpreting experiments involving three independent parameters. This paper illustrates two sets of four polynomial equations for the nine-point cubical array. The equations are exact on trilinear numbers and their second and third powers. The equations are potentially useful alternatives to the trilinear equation when they do not generate complex-number coefficients. (c) 2006 Elsevier Inc. All rights reserved. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Silver, GL (reprint author), Los Alamos Natl Lab, POB 1663,MS E517, Los Alamos, NM 87545 USA. EM gsilver@lanl.gov NR 7 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0096-3003 J9 APPL MATH COMPUT JI Appl. Math. Comput. PD NOV 15 PY 2006 VL 182 IS 2 BP 1201 EP 1207 DI 10.1016/j.amc.2006.04.062 PG 7 WC Mathematics, Applied SC Mathematics GA 122CE UT WOS:000243202500024 ER PT J AU Zhang, ZG Hou, PY Gesmundo, F Niu, Y AF Zhang, Z. G. Hou, P. Y. Gesmundo, F. Niu, Y. TI Effect of surface roughness on the development of protective Al2O3 on Fe-10Al (at.%) alloys containing 0-10 at.% Cr SO APPLIED SURFACE SCIENCE LA English DT Article DE high temperature oxidation; alumina; surface roughness; nodules; third element effect ID HIGH-TEMPERATURE OXIDATION; IRON-ALUMINUM-ALLOYS; AL ALLOYS; FE-AL; CHROMIUM-ALLOYS; GRAIN-SIZE; SCALES; RESISTANCE; GROWTH; OXYGEN AB The effect of alloy surface roughness, achieved by different degrees of surface polishing, on the development of protective alumina layer on Fe-10 at.% Al alloys containing 0, 5, and 10 at.% Cr was investigated during oxidation at 1000 degrees C in 0.1 MPa oxygen. For alloys that are not strong Al2O3 formers (Fe-10Al and Fe-5Cr-10Al), the rougher surfaces increased Fe incorporation into the overall surface layer. On the Fe-10Al, more iron oxides were formed in a uniform layer of mixed aluminum- and iron-oxides since the layer was thicker. On the Fe-5Cr-10Al, more iron-rich nodules developed on an otherwise thin Al2O3 Surface layer. These nodules nucleated preferentially along surface scratch marks but not on alloy grain boundaries. For the strong Al2O3-forming Fe-10Cr-10Al alloy, protective alumina surface layers were observed regardless of the surface roughness. These results indicate that the formation of a protective Al2O3 layer on Fe-Cr-Al surfaces is not dictated by Al diffusion to the surface. More cold-worked surfaces caused an enhanced Fe diffusion, hence produced more Fe-rich oxides during the early stage of oxidation. (c) 2006 Elsevier B.V. All rights reserved. C1 Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China. Shenyang Inst Chem Technol, Dept Appl Chem, Shenyang 110142, Peoples R China. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA. Univ Genoa, DICheP, I-16129 Genoa, Italy. RP Zhang, ZG (reprint author), Chinese Acad Sci, Inst Met Res, S Campus,Wencui Rd 62, Shenyang 110016, Peoples R China. EM zhangzhigangneu@sohu.com NR 30 TC 10 Z9 12 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD NOV 15 PY 2006 VL 253 IS 2 BP 881 EP 888 DI 10.1016/j.apsusc.2006.01.027 PG 8 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 114DV UT WOS:000242647800078 ER PT J AU Smentkowski, VS Duong, HM Tamaki, R Keenan, MR Ohlhausen, JAT Kotula, PG AF Smentkowski, V. S. Duong, H. M. Tamaki, R. Keenan, M. R. Ohlhausen, J. A. Tony Kotula, P. G. TI Using time-of-flight secondary ion mass spectrometry and multivariate statistical analysis to detect and image octabenzyl-polyhedral oligomeric silsesquioxane in polycarbonate SO APPLIED SURFACE SCIENCE LA English DT Article DE time-of-flight secondary ion mass spectrometry; multivariate statistical analysis; surface analysis; polymer additive; octabenzyl-polyhedral oligomeric silsesquioxane; microscopy ID SIMS SPECTRUM-IMAGES; TOF-SIMS; NANOCOMPOSITES; MATERIALS/; BLENDS; FILMS AB Silsesquioxane, with an empirical formula of RSiO3/2, has the potential to combine the mechanical properties of plastics with the oxidative stability of ceramics in one material [D.W. Scott, J. Am. Chem. Soc. 68 (1946) 356; K.J. Shea, D.A. Loy, Ace. Chem. Res. 34 (2001) 707; K.-M. Kim, D.-K. Keum, Y. Chujo, Macromolecules 36 (2003) 867; M.J. Abad, L. Barral, D.P. Fasce, R.J.J. William, Macromolecules 36 (2003) 3128]. The high sensitivity, surface specificity, and ability to detect and image high mass additives make time-of-flight secondary ion mass spectrometry (ToF-SIMS) a powerful surface analytical instrument for the characterization of polymer composite surfaces in an analytical laboratory [J.C. Vickerman, D. Briggs (Eds.). ToF-SIMS Surface Analysis by Mass Spectrometry, Surface Spectra/IMPublications, UK, 2001; X. Vanden Eynde, P. Bertand. Surf. Interface Anal. 27 (1999) 157; P.M. Thompson, Anal. Chem. 63 (1991) 2447; S.J. Simko, S.R. Bryan, D.P. Griffis, R.W. Murray, R.W. Linton, Anal. Chem. 57 (1985) 1198; S. Affrossman, S.A. O'Neill, M. Stamm, Macromolecules 31 (1998) 6280]. In this paper, we compare ToF-SIMS spectra of control samples with spectra generated from polymer nano-composites based on octabenzyl-polyhedral oligomeric silsesquioxane (BnPOSS) as well as spectra (and images) generated from multivariate statistical analysis (MVSA) of the entire spectral image. We will demonstrate that ToF-SIMS is able to detect and image low concentrations of BnPOSS in polycarbonate. We emphasize the use of MVSA tools for converting the massive amount of data contained in a ToF-SIMS spectral image into a smaller number of useful chemical components (spectra and images) that fully describe the ToF-SIMS measurement. (c) 2006 Elsevier B.V. All rights reserved. C1 Gen Elect, Global Res Ctr, Niskayuna, NY 12309 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Smentkowski, VS (reprint author), Gen Elect, Global Res Ctr, Bldg K1,Room 1D41, Niskayuna, NY 12309 USA. EM smentkow@crd.ge.com RI Kotula, Paul/A-7657-2011 OI Kotula, Paul/0000-0002-7521-2759 NR 38 TC 8 Z9 8 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD NOV 15 PY 2006 VL 253 IS 2 BP 1015 EP 1022 DI 10.1016/j.apsusc.2006.03.091 PG 8 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 114DV UT WOS:000242647800099 ER PT J AU Kirshner, J Jobling, MF Pajares, MJ Ravani, SA Glick, AB Lavin, MJ Koslov, S Shiloh, Y Barcellos-Hoff, MH AF Kirshner, Julia Jobling, Michael F. Pajares, Maria Jose Ravani, Shraddha A. Glick, Adam B. Lavin, Martin J. Koslov, Sergei Shiloh, Yosef Barcellos-Hoff, Mary Helen TI Inhibition of transforming growth factor-beta 1 signaling attenuates ataxia telanglectasia mutated activity in response to genotoxic stress SO CANCER RESEARCH LA English DT Article ID GROWTH-FACTOR-BETA; DOUBLE-STRAND BREAKS; CELL-CYCLE CHECKPOINTS; DNA-DAMAGE; TGF-BETA; MAMMARY-GLAND; IONIZING-RADIATION; GENE-EXPRESSION; IN-VITRO; ATM AB Ionizing radiation causes DNA damage that elicits a cellular program of damage control coordinated by the kinase activity of ataxia telangiectasia mutated protein (ATM). Transforming growth factor beta (TGF beta)-1, which is activated by radiation, is a potent and pleiotropic mediator of physiologic and pathologic processes. Here we show that TGF beta inhibition impedes the canonical cellular DNA damage stress response. Irradiated Tgf beta 1 nail murine epithelial cells or human epithelial cells treated with a small-molecule inhibitor of TGF beta type I receptor kinase exhibit decreased phosphorylation of Chk2, Rad17, and p53; reduced gamma H2AX radiation-induced foci; and increased radiosensitivity compared with TGF beta competent cells. We determined that loss of TGF beta signaling in epithelial cells truncated ATM autophosphorylation and significantly reduced its kinase activity, without affecting protein abundance. Addition of TGF beta restored functional ATM and downstream DNA damage responses. These data reveal a heretofore undetected critical link between the microenvironment and ATM, which directs epithelial cell stress responses, cell fate, and tissue integrity. Thus, Tgf beta 1, in addition to its role in homoeostatic growth control, plays a complex role in regulating responses to genotoxic stress, the failure of which would contribute to the development of cancer; conversely, inhibiting TGF beta may be used to advantage in cancer therapy. C1 Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. NCI, Lab Cellular Carcinogenesis & Tumor Promot, Bethesda, MD USA. Royal Brisbane Hosp, Queensland Inst Med Res, Herston, Qld, Australia. Tel Aviv Univ, Dept Human Genet, Sackler Sch Med, Ramat Aviv, Israel. RP Barcellos-Hoff, MH (reprint author), Lawrence Berkeley Natl Lab, Div Life Sci, Bldg 977,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM mhbarcellos-hoff@lbl.gov RI Lavin, Martin/F-5961-2014; Kozlov, Sergei/M-2067-2014 OI Lavin, Martin/0000-0002-5940-4769; Kozlov, Sergei/0000-0001-6183-7339 NR 48 TC 81 Z9 87 U1 0 U2 1 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 J9 CANCER RES JI Cancer Res. PD NOV 15 PY 2006 VL 66 IS 22 BP 10861 EP + DI 10.1158/0008-5472.CAN-06-2565 PG 10 WC Oncology SC Oncology GA 108UJ UT WOS:000242264400029 PM 17090522 ER PT J AU Carroll, M Romanek, C Paddock, L AF Carroll, M. Romanek, C. Paddock, L. TI The relationship between the hydrogen and oxygen isotopes of freshwater bivalve shells and their home streams SO CHEMICAL GEOLOGY LA English DT Article DE stable isotopes; continental environmental proxies; unionid; deuterium; palcotemperature ID NONEXCHANGEABLE HYDROGEN; HYDROLOGIC-CYCLE; STABLE-ISOTOPES; PINCTADA-MAXIMA; ORGANIC MATRIX; BONE-COLLAGEN; DELTA-D; RATIOS; TEMPERATURE; CARBON AB Recent technical advances have facilitated the analysis of microgram-size samples of mollusk shell for the hydrogen isotope composition of the organic matrix. Our results suggest that these data are meaningful as the delta D-shell values of samples of freshwater bivalve shells from different streams preserve the relative distribution of delta D values from the water they inhabited over their lifetime (6D(shell)-delta D-water=-145 parts per thousand) after correcting for the contribution of exchangeable hydrogen (similar to 36%) in organic matrix. When 6D(shell) values are compared to the delta O-18 values of the mineral fraction of the shell (CaCO3 as aragonite), they plot along a line that reflects the isotopic composition of the waters in which the bivalves lived. This relationship is potentially useful for paleoenvironmental reconstructions because the delta D value of the organic matrix may serve as an independent proxy for the delta O-18 value of water in paleotemperature equations. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Georgia, Dept Geol, Athens, GA 30602 USA. Univ Georgia, Savannah River Ecol Lab, Athens, GA 30602 USA. Univ Kansas, Dept Geol, Lawrence, KS 66045 USA. RP Carroll, M (reprint author), Univ Georgia, Dept Geol, Athens, GA 30602 USA. EM monicabc@uga.edu NR 46 TC 14 Z9 17 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 J9 CHEM GEOL JI Chem. Geol. PD NOV 15 PY 2006 VL 234 IS 3-4 BP 211 EP 222 DI 10.1016/j.chemgeo.2006.04.012 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 101CW UT WOS:000241717500002 ER PT J AU Baffert, C Boas, JF Bond, AM Kogerler, P Long, DL Pilbrow, JR Cronin, L AF Baffert, Carole Boas, John F. Bond, Alan M. Kogerler, Paul Long, De-Liang Pilbrow, John R. Cronin, Leroy TI Experimental and theoretical investigations of the sulfite-based polyoxometalate cluster redox series: alpha- and beta-[Mo18O54(SO3)(2)](4-15-16-) SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE density functional calculations; electrochemistry; EPR spectroscopy; molybdenum; polyoxometalates; sulfite ID MONONUCLEAR MOLYBDENUM ENZYMES; CRYSTAL-STRUCTURE; HETEROPOLY BLUES; ONE-ELECTRON; ELECTROCHEMICAL SYNTHESIS; DIPHOSPHATE COMPLEXES; REDUCTION; ANIONS; RESONANCE; PROTONS AB The synthesis, isolation and structural characterization of the sulfite polyoxomolybdate clusters alpha-(D-3h)-(C20H44N)(4){alpha-[Mo18O54(SO3)(2)]}(CH3CN)-C-. and beta-(D-3d)(C20H44N)(4){beta-[Mo18O54-(SO3)(2)]}.CH3CN is presented. Voltammetric studies in acetonitrile (0.1 m Hx(4)NClO(4), Hx(4)N=tetra-n-hexylammonium) reveal the presence of an extensive series of six one-electron reduction processes for both isomers. Under conditions of bulk electrolysis, the initial [Mo18O54(SO3)(2)](4--/5-) and [Mo18O54(SO3)(2)](5-/6-) processes produce stable [Mo18O54(SO3)(2)](5-) and [Mo18O54(SO3)(2)](6-) species, respectively, and the same reduced species may be produced by photochemical reduction. Spectroelectrochemical data imply that retention of structural form results upon reduction, so that both alpha and beta isomers are available at each of the 4-, 5-, and 6-redox levels. However, the alpha isomer is the thermodynamically favored species in both the one- and two-electron-reduced states, with beta ->alpha isomerization being detected in both cases on long time scales (days). EPR spectra also imply that increasing localization of the impaired electron occurs over the alpha-and beta-[Mo18O54(SO3)(2)](5-) frameworks as the temperature approaches 2 K where the EPR spectra show orthorhombic symmetry with different g and hyperfine values for the alpha and beta isomers. Theoretical studies support the observation that it is easier to reduce the a cluster than the beta form and also provide insight into the driving force for beta ->alpha isomerization in the reduced state. Data are compared with that obtained for the well studied alpha-[Mo18O54(SO4)(2))](4-) sulfate cluster. C1 Monash Univ, Sch Chem, Clayton, Vic 3800, Australia. Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Univ Glasgow, Dept Chem, Glasgow G12 8QQ, Lanark, Scotland. RP Bond, AM (reprint author), Monash Univ, Sch Chem, Clayton, Vic 3800, Australia. EM alan.bond@sci.monash.edu.au; L.Cronin@chem.gla.ac.uk RI Cronin, Leroy/B-7752-2008; Long, Deliang/C-3500-2011; Kogerler, Paul/H-5866-2013 OI Cronin, Leroy/0000-0001-8035-5757; Kogerler, Paul/0000-0001-7831-3953 NR 68 TC 37 Z9 37 U1 3 U2 17 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD NOV 15 PY 2006 VL 12 IS 33 BP 8472 EP 8483 DI 10.1002/chem.200501450 PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA 110OT UT WOS:000242388900005 PM 16953511 ER PT J AU Wal, RLV AF Wal, Randy L. Vander TI Initial investigation of effects of fuel oxygenation on nanostructure of soot from a direct-injection diesel engine SO ENERGY & FUELS LA English DT Article ID MICROSCOPY AB The oxidation rate of a soot sample is related to its nanostructure, that is, to the curvature and relative orientations of its constituent molecular layers. Soot with curved or disorganized layers generally will have a higher reactivity than soot with planar, graphitic layers. This study used high-resolution transmission electron microscopy to analyze the soot produced by the combustion of three different fuels, two of which contain oxygen bonded within the fuel molecule, in a modern diesel engine. Results show that increasing fuel oxygenation produces lower in-cylinder and engine-out soot levels, consistent with existing studies of the effects of fuel oxygenation on soot emissions from diesel engines. The intriguing new information is that increasing the level of fuel oxygenation produced soot with less graphitic structure and correspondingly higher reactivity. Hence, diesel fuel oxygenation may help curtail soot emissions by enhancing soot reactivity and oxidation rates as well as by preventing certain fuel carbon atoms from participating in reactions that form soot. C1 NASA Glenn Res Ctr, Natl Ctr Space Explorat Res, Cleveland, OH 44135 USA. Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. RP Wal, RLV (reprint author), NASA Glenn Res Ctr, Natl Ctr Space Explorat Res, 21000 Brookpark Rd, Cleveland, OH 44135 USA. EM Randall.L.VanderWal@grc.nasa.gov NR 16 TC 3 Z9 3 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD NOV 15 PY 2006 VL 20 IS 6 BP 2364 EP 2369 DI 10.1021/ef060201+ PG 6 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 105HZ UT WOS:000242022300012 ER PT J AU Goodman, AL Favors, RN Larsen, JW AF Goodman, A. L. Favors, R. N. Larsen, John W. TI Argonne coal structure rearrangement caused by sorption of CO2 SO ENERGY & FUELS LA English DT Article ID ILLINOIS NO-6 COAL; CARBON-DIOXIDE; MACROMOLECULAR STRUCTURE; PORE STRUCTURE; PREMIUM COALS; PENETRANT TRANSPORT; SURFACE-AREA; PRESSURE; SOLUBILITY; MOISTURE AB The exposure of powdered unconfined coals to CO2 results in changes in the coals' physical structures. The presence of water changes the behavior of the coals on exposure to CO2. The sorption of CO2 on seven Argonne premium coals was measured by using attenuated total reflectance- Fourier transform infrared (ATR-FTIR) spectroscopy as a function of time at constant CO2 pressure (similar to 0.62 MPa) and temperature (55 degrees C). The depth sampled is at least 1 mu m, and this ensures that both the bulk and surface of the sample were interrogated. Concentrations of CO2 in the top 1-7 Am of the coal were measured by using the peak area of the CO2 ATR-FTIR band near 2333 cm(-1). Diffusion rates were measured by using the time dependence of the area of the 2333 cm(-1) band. Surface adsorption is effectively instantaneous. The coals were either extensively or briefly dried. The coals were exposed to CO2, evacuated, and then exposed to CO2 a second time. For the extensively dried coals, removal of the CO2 under vacuum was much faster than CO2 sorption, indicating a coal structure change caused by CO2 sorption. The diffusion rate of the CO2 into the coal was much faster for the second exposure, confirming that the coal underwent a physical structure rearrangement. Structure rearrangement was observed for all seven extensively dried coals and for the Pittsburgh No. 8 briefly dried coal. The presence of residual moisture in the briefly dried coal samples appeared to inhibit or block CO2 uptake as equilibrium was reached within minutes. The second exposure of the briefly dried coals universally resulted in greater CO2 uptake that was again instantaneous on our experimental time scale. C1 US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. Penn State Univ, Energy Inst, University Pk, PA 16802 USA. RP Goodman, AL (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM angela.goodman@netl.doe.gov NR 52 TC 39 Z9 40 U1 2 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD NOV 15 PY 2006 VL 20 IS 6 BP 2537 EP 2543 DI 10.1021/ef060188t PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 105HZ UT WOS:000242022300038 ER PT J AU Michalsen, MM Goodman, BA Kelly, SD Kemner, KM McKinley, JP Stucki, JW Istok, JD AF Michalsen, Mandy M. Goodman, Bernard A. Kelly, Shelly D. Kemner, Kenneth M. McKinley, James P. Stucki, Joseph W. Istok, Jonathan D. TI Uranium and technetium bio-immobilization in intermediate-scale physical models of an in situ bio-barrier SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID 2 FORESTED WATERSHEDS; CONTAMINATED AQUIFER; REDUCTION; U(VI); CARBONATE; BACTERIA; SOILS; BIOREDUCTION AB We investigated the long-term effects of ethanol addition on U and Tc mobility in groundwater flowing through intermediate-scale columns packed with uncontaminated sediments. The columns were operated above-ground at a contaminated field site to serve as physical models of an in situ bio-barrier for U and Tc removal from groundwater. Groundwater containing 4 mu M U and 520 mu M Tc was pumped through the columns for 20 months. One column received additions of ethanol to stimulate activity of indigenous microorganisms; a second column received no ethanol and served as a control. U(VI) and Tc(VII) removal was sustained for 20 months (similar to 189 pore volumes) in the stimulated column under sulfate- and Fe(III)-reducing conditions. Less apparent microbial activity and only minor removal of U(VI) and Tc(VII) were observed in the control. Sequential sediment extractions and XANES spectra confirmed that U(IV) was present in the stimulated column, although U(IV) was also detected in the control; extremely low concentrations precluded detection of Tc(IV) in any sample. These results provide additional evidence that bio-immobilization may be effective for removing U and Tc from groundwater. However, long-term effectiveness of bio-immobilization may be limited by hydraulic conductivity reductions or depletion of bioavailable Fe( III). C1 Oregon State Univ, Dept Civil Engn, Corvallis, OR 97331 USA. Univ Illinois, Dept Nat Resources & Environm Sci, Urbana, IL 61801 USA. Argonne Natl Lab, Environm Res Div, Argonne, IL 60439 USA. Pacific NW Natl Lab, William R Wiley Lab, Richland, WA 99352 USA. RP Michalsen, MM (reprint author), Oregon State Univ, Dept Civil Engn, Corvallis, OR 97331 USA. EM mandy.michalsen@gmail.com RI ID, MRCAT/G-7586-2011 NR 38 TC 28 Z9 29 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 15 PY 2006 VL 40 IS 22 BP 7048 EP 7053 DI 10.1021/es060420+ PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 104FJ UT WOS:000241941700031 PM 17154015 ER PT J AU Liu, XF Lv, JY Hu, ZB Han, SB Chen, DF Xue, YJ Li, JH Kiyanagi, R Fieramosca, JS Short, S Jorgensen, J AF Liu, X. F. Lv, J. Y. Hu, Z. B. Han, S. B. Chen, D. F. Xue, Y. J. Li, J. H. Kiyanagi, R. Fieramosca, J. S. Short, S. Jorgensen, J. TI Effects of the substitution of Al for Fe on phase transition, crystal structures, and magnetic properties of Nd-3(Fe,Ti)(29)-type intermetallics SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID NEUTRON-DIFFRACTION; SOLID-SOLUTIONS; NITRIDES; TB; DY AB Effects of the substitution of nontransition metal Al on phase transition, crystal structures, and magnetic properties of Nd-3(Fe,Ti)(29)-type intermetallics have been systematically investigated by means of x-ray diffractions, time-of-flight powder neutron diffraction, and magnetic measurements. Rietveld analyses of x-ray diffraction patterns indicate that Nd3Fe27.5-xTi1.5Alx compounds mainly crystallize in Nd-3(Fe,Ti)(29)-type structure (A(2/m) space group) when x <= 1.5, but the main phase was replaced by Th2Zn17-type structure (R (3) over barm space group) when x > 1.5. The lattice parameters a, b, c, and unit cell volume V of 3:29 phase in Nd3Fe27.5-xTi1.5Alx increase linearly with the substitution of Al. The site distributions of Ti and Al atoms were determined by refining the powder neutron diffraction data and it was found that Ti atoms prefer to occupy 4i(1), 4i(2), and 4g sites with the largest number of Fe neighbors while Al atoms prefer to take 4i(4) and 8j(4) sites with the largest number of rare earth neighbors. The Curie temperature of Nd3Fe27.5-xTi1.5Alx increases monotonously while the saturated magnetization decreases almost linearly with increasing Al content (x <= 1.5). (c) 2006 American Institute of Physics. C1 Chinese Acad Sci, Grad Sch, Coll Chem & Chem Engn, Beijing 100049, Peoples R China. China Inst Atom Energy, Beijing 102413, Peoples R China. IPNS, MSD, Argonne Natl Lab, Argonne, IL 60439 USA. RP Liu, XF (reprint author), Chinese Acad Sci, Grad Sch, Coll Chem & Chem Engn, Beijing 100049, Peoples R China. EM huzq@gucas.ac.cn NR 30 TC 0 Z9 0 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2006 VL 100 IS 10 AR 103910 DI 10.1063/1.2386945 PG 5 WC Physics, Applied SC Physics GA 110UY UT WOS:000242408000060 ER PT J AU Setter, N Damjanovic, D Eng, L Fox, G Gevorgian, S Hong, S Kingon, A Kohlstedt, H Park, NY Stephenson, GB Stolitchnov, I Taganstev, AK Taylor, DV Yamada, T Streiffer, S AF Setter, N. Damjanovic, D. Eng, L. Fox, G. Gevorgian, S. Hong, S. Kingon, A. Kohlstedt, H. Park, N. Y. Stephenson, G. B. Stolitchnov, I. Taganstev, A. K. Taylor, D. V. Yamada, T. Streiffer, S. TI Ferroelectric thin films: Review of materials, properties, and applications (vol 100, art no 051606, 2006) SO JOURNAL OF APPLIED PHYSICS LA English DT Correction C1 Swiss Fed Inst Technol, Ceram Lab, CH-1015 Lausanne, Switzerland. Tech Univ Dresden, Inst Appl Phys Photophys, D-01062 Dresden, Germany. Ramtron Int Corp, Colorado Springs, CO 80921 USA. Chalmers, Dept Microtechnol & Nanosci, SE-41296 Gothenburg, Sweden. Ericsson AB, Microwave & High Speed Elect Res Ctr, S-43184 Molndal, Sweden. Samsung Adv Inst Technol, Nano Devices Lab, Suwon 440600, South Korea. N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. Forsch Zentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Setter, N (reprint author), Swiss Fed Inst Technol, Ceram Lab, CH-1015 Lausanne, Switzerland. EM nava.setter@epfl.ch RI Streiffer, Stephen/A-1756-2009; Gevorgian, Spartak/I-3841-2013; Stolichnov, Igor/B-3331-2014; Yamada, Tomoaki/I-6538-2014; Riminucci, Alberto/D-7525-2011; Damjanovic, Dragan/A-8231-2008 OI Gevorgian, Spartak/0000-0002-5313-8738; Stolichnov, Igor/0000-0003-0606-231X; Yamada, Tomoaki/0000-0001-5790-9029; Riminucci, Alberto/0000-0003-0976-1810; Damjanovic, Dragan/0000-0002-9596-7438 NR 1 TC 8 Z9 8 U1 2 U2 40 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2006 VL 100 IS 10 AR 109901 DI 10.1063/1.2393042 PG 1 WC Physics, Applied SC Physics GA 110UY UT WOS:000242408000118 ER PT J AU Sizyuk, V Hassanein, A Sizyuk, T AF Sizyuk, V. Hassanein, A. Sizyuk, T. TI Three-dimensional simulation of laser-produced plasma for extreme ultraviolet lithography applications SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID HEIGHTS INITIAL SIMULATION; EUV LITHOGRAPHY; RADIATION TRANSPORT; HYDRODYNAMICS; DEVICES; TIN AB Laser-produced plasma (LPP) from a tin target is being considered as the light source for the next generation of extreme ultraviolet (EUV) lithography. An integrated model was developed to simulate the plasma behavior and the EUV radiation output in LPP devices. The model includes plasma heat conduction and hydrodynamic processes in a two-temperature approximation, as well as detailed photon radiation transport using Monte Carlo methods. Multiple laser beams incident on a single target have been simulated in full three-dimensional geometry, using the total variation-diminishing scheme for the plasma hydrodynamics and an implicit scheme for heat conduction processes. Numerical simulations showed that EUV conversion efficiency increases for multiple-beam devices with specific optimum laser locations and direction compared to a single-beam device. (c) 2006 American Institute of Physics. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Sizyuk, V (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sizyuk@anl.gov NR 30 TC 24 Z9 24 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2006 VL 100 IS 10 AR 103106 DI 10.1063/1.2365717 PG 7 WC Physics, Applied SC Physics GA 110UY UT WOS:000242408000007 ER PT J AU Styka, AN Ren, Y Gorbenko, OY Babushkina, NA Brown, DE AF Styka, A. N. Ren, Y. Gorbenko, O. Yu. Babushkina, N. A. Brown, D. E. TI Examining the oxygen isotope and magnetic field effect on phase separation in Sm0.5Sr0.5MnO3 SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TRANSITION; STATE; MANGANITES; EXCHANGE AB Magnetic field (MF) dependence of the phase separation (PS) in the manganites Sm0.5Sr0.5MnO3 with O-16 and O-18 was studied using high-resolution high-energy x-ray powder diffraction in the temperature range from 4.2 to 240 K and with the MF up to 6 T. Although the two compounds have an identical structure [a paramagnetic (PM) phase with the Pbnm symmetry] at room temperature, they show a significant difference in the PS region below T-ps similar to 110 K, where the O-16 sample has a structural inhomogeneity in the form of two coexisting ferromagnetic (FM) and antiferromagnetic (AF) phases, while the O-18-sample phase separates into mixed AF and PM phases. The O-16 -> O-18 isotope substitution appears to prevent the formation of the FM phase at low temperature. The application of a magnetic field significantly enhances the FM phase by converting other phases, leading to a homogeneous structure. The effects on the microscopic structure of the oxygen isotope substitution and external magnetic field play the key role in the physics behind the colossal magnetoresistance effect. (c) 2006 American Institute of Physics. C1 Argonne Natl Lab, Xray Sci Div, XOR, Argonne, IL 60439 USA. Moscow MV Lomonosov State Univ, Dept Chem, Moscow 119899, Russia. Russian Res Ctr, Kurchatov Inst, Inst Mol Phys, Moscow 123182, Russia. No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Ren, Y (reprint author), Argonne Natl Lab, Xray Sci Div, XOR, 9700 S Cass Ave, Argonne, IL 60439 USA. EM yren@anl.gov NR 18 TC 8 Z9 8 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2006 VL 100 IS 10 AR 103520 DI 10.1063/1.2375011 PG 5 WC Physics, Applied SC Physics GA 110UY UT WOS:000242408000031 ER PT J AU Tuzemen, S Gur, E Yildirim, T Xiong, G Williams, RT AF Tuzemen, S. Gur, Emre Yildirim, T. Xiong, G. Williams, R. T. TI An investigation of control mechanisms of the excitonic behavior in reactively sputtered ZnO on (0001) Al2O3 SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID P-TYPE ZNO; THIN-FILMS; OPTICAL-PROPERTIES; ABSORPTION SPECTRA; EMITTING-DIODES; DOPED INP; DEPOSITION; DEFECTS; GROWTH; HETEROJUNCTION AB Above-band-edge absorption spectra of reactively sputtered Zn- and O-rich samples exhibit free exciton and neutral acceptor bound exciton (A(0)X) features. It is shown that the residual acceptors which bind excitons with an energy of 75 meV reside about 312 meV above the valence band, according to effective mass theory. An intra-band-gap absorption feature peaking at 2.5 eV shows correlation with the characteristically narrow A-free exciton peak intensity, suggesting a compensation mechanism of the centers involving oxygen vacancy (V-O) related donors. In order to enhance free exciton concentration relative to competing neutral bound exciton density, relevant annealing processes are performed without disturbing the residual shallow acceptor profile which is necessary for at least background p-type conductivity. (c) 2006 American Institute of Physics. C1 Ataturk Univ, Fac Arts & Sci, Dept Phys, TR-25240 Erzurum, Turkey. Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Tuzemen, S (reprint author), Ataturk Univ, Fac Arts & Sci, Dept Phys, TR-25240 Erzurum, Turkey. EM stuzemen@atauni.edu.tr; gang.xiong@pnl.gov NR 34 TC 32 Z9 32 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2006 VL 100 IS 10 AR 103513 DI 10.1063/1.2386926 PG 7 WC Physics, Applied SC Physics GA 110UY UT WOS:000242408000024 ER PT J AU Pokrovski, KA Bell, AT AF Pokrovski, Konstantin A. Bell, Alexis T. TI Effect of dopants on the activity Of Cu/M0.3Zr0.7O2 (M = Ce, Mn, and Pr) for CO hydrogenation to methanol SO JOURNAL OF CATALYSIS LA English DT Article DE methanol; Cu; ZrO2; synthesis gas ID CARBON-MONOXIDE; ZIRCONIA MORPHOLOGY; CATALYSTS; CU/ZRO2; ADSORPTION; REDUCTION; OXIDE; CERIA; SPECTROSCOPY; TEMPERATURE AB Previous investigations have shown that Cu/ZrO2 is an active catalyst for the hydrogenation of CO to methanol and that both components of the active play an active role in the reaction mechanism. It has also been shown that the substitution of Ce for Zr into the ZrO2 lattice results in significantly enhanced methanol synthesis activity. The present investigation was undertaken with the aim of understanding whether other substituents, such as Mn and Pr, could also enhance the activity of Cu/ZrO2. Zirconia and Ce-, Mn-, and Pr-substituted zirconia were prepared by forced hydrolysis at low pH, starting from nitrates of each metal, and Cu was then dispersed onto the surface of the calcined oxide by deposition-precipitation. All catalysts were characterized by XRD, XANES, and temperature-programmed reduction in H-2. H-2 and CO chemisorption capacities were also measured. The area-based activity of 3 wt% Cu/M0.3Zr0.7O2 decreased in the order 3 wt% Cu/Ce0.3Zr0.7O2 > 3 wt% Cu/Pr0.3Zr0.7O2 > 3 wt% Cu/Mn0.3Zr0.7O2 > 3 wt% Cu/ZrO2. Catalyst activity was found to correlate with H-2 adsorption capacity and the proportion of bridge-bonded hydroxyl groups. The importance of the latter species is ascribed to their higher Bronsted acidity, which contributes to the rapid release of methoxide groups formed on the oxide surface and the formation of methanol. Dopant cations that can participate in redox cycles (e.g., Ce and Mn) are desirable, because they can enhance the methanol synthesis activity Of Cu/M0.3Zr0.7O2 catalysts to a greater degree than cations that do not participate in redox cycles (e.g., Pr). (c) 2006 Elsevier Inc. All rights reserved. C1 Univ Calif Berkeley, Div Chem Sci, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Bell, AT (reprint author), Univ Calif Berkeley, Div Chem Sci, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM alexbell@berkeley.edu OI Bell, Alexis/0000-0002-5738-4645 NR 28 TC 19 Z9 20 U1 1 U2 18 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD NOV 15 PY 2006 VL 244 IS 1 BP 43 EP 51 DI 10.1016/j.jcat.2006.07.031 PG 9 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 106VM UT WOS:000242130100006 ER PT J AU Lewandowski, JLV AF Lewandowski, Jerome L. V. TI Marker method for the solution of nonlinear diffusion equations SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS LA English DT Article DE marker method; nonlinear diffusion equations; particle-in-cell method; dispersive equations AB The marker method for the solution of nonlinear diffusion equations is described. The method relies on the definition of a convective field associated with the underlying partial differential equation; the information about the approximate solution is associated with the response of an ensemble of markers to this convective field. Some key aspects of the method, such as the selection of the shape function and the initial loading, are discussed in some detail. Numerical experiments show that the method is accurate in determining the long time behavior of nonlinear diffusion equations. The marker method can be applied to an ensemble of nonlinear dispersive partial differential equations. (c) 2005 Elsevier B.V. All rights reserved. C1 Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Lewandowski, JLV (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM jlewando@pppl.gov NR 11 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0427 J9 J COMPUT APPL MATH JI J. Comput. Appl. Math. PD NOV 15 PY 2006 VL 196 IS 2 BP 523 EP 539 DI 10.1016/j.cam.2005.10.003 PG 17 WC Mathematics, Applied SC Mathematics GA 073MI UT WOS:000239746800017 ER PT J AU Machavaram, MV Whittemore, DO Conrad, ME Miller, NL AF Machavaram, Madhav V. Whittemore, Donald O. Conrad, Mark E. Miller, Norman L. TI Precipitation induced stream flow: An event based chemical and isotopic study of a small stream in the Great Plains region of the USA SO JOURNAL OF HYDROLOGY LA English DT Article DE stable isotopes; oxygen-18; deuterium excess; stream response; hydrograph separation; chloride; sulfate ID RIVER BASIN; CATCHMENT; WATER; STORMFLOW; CHEMISTRY; DEUTERIUM; GROUNDWATER; RUNOFF; TRACER; MODEL AB A small stream in the Great Plains of USA was sampled to understand the streamflow components following intense precipitation and the influence of water storage structures in the drainage basin. Precipitation, stream, ponds, ground-water and soil moisture were sampled for determination of isotopic (D, O-18) and chemical (Cl, SO4)composition before and after two intense rain events. Following the first storm event, flow at the downstream locations was generated primarily through shallow subsurface flow and runoff whereas in the headwaters region - where a pond is located in the stream channel - shallow ground-water and pond outflow contributed to the flow. The distinct isotopic signatures of precipitation and the evaporated pond water allowed separation of the event water from the other sources that contributed to the flow. Similarly, variations in the Cl and SO4 concentrations helped identify the relative contributions of ground-water and soil moisture to the streamflow. The relationship between deuterium excess and Cl or SO4 content reveals that the early contributions from a rain event to strearnflow depend upon the antecedent climatic conditions and the position along the stream channel within the watershed. The design of this study, in which data from several locations within a watershed were collected, shows that in small streams changes in relative contributions from ground water and soil moisture complicate hydrograph separation, with surface-water bodies providing additional complexity. It also demonstrates the usefulness of combined chemical and isotopic methods in hydrologic investigations, especially the utility of the deuterium excess parameter in quantifying the relative contributions of various source components to the stream flow. (c) 2006 Elsevier B.V. All rights reserved. C1 EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Kansas Geol Survey, Lawrence, KS 66047 USA. RP Machavaram, MV (reprint author), US EPA, Pegasus Tech Serv Inc, AWBERC, ML 421,26 W Martin Luther King Dr, Cincinnati, OH 45268 USA. EM machavaram.madhav@epa.gov RI Miller, Norman/E-6897-2010; Conrad, Mark/G-2767-2010; Whittemore, Donald/M-8875-2015 OI Whittemore, Donald/0000-0003-1679-6675 NR 29 TC 11 Z9 12 U1 6 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 J9 J HYDROL JI J. Hydrol. PD NOV 15 PY 2006 VL 330 IS 3-4 BP 470 EP 480 DI 10.1016/j.jhydrol.2006.04.004 PG 11 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA 105IN UT WOS:000242023700008 ER PT J AU Meunier, P Metivier, F Lajeunesse, E Meriaux, AS Faure, J AF Meunier, P. Metivier, F. Lajeunesse, E. Meriaux, A. S. Faure, Joel TI Flow pattern and sediment transport in a braided river: The "torrent de St Pierre" (French Alps) SO JOURNAL OF HYDROLOGY LA English DT Article DE mountain river; proglacial braided river; sediment transport; bed load; suspended load; mass balance ID BED-LOAD TRANSPORT; SHEAR-STRESS; STREAMS AB In order to bring some understanding on the mountain stream dynamics, we report measurements of flow and sediment transport leveled in a proglacial gravel-bed river, the "torrent de St Pierre" in the French Alps. The river exhibits a modest discharge (< 5 m(3)/s) during most of the glacier melting season. A braiding plain developed thanks to the occurrence of a massive landslide, providing a small and simplified study area quite similar to recent experimental studies. A mass balance was established at the outlet of the braiding plain. Our measurements indicate that, in the range of flows measured, the dominating transport mode is suspension. Though less important, bed load transport is far from being negligible. Dissolved load eventually appears to be very small compared to solid transport. Analysis of velocity profile measurements shows that in this highly turbulent and shallow stream, the use of a logarithmic form fails to recover the velocity profile and to estimate the shear velocity of the flow. A uniform Chezy-Like relationship is shown to be valid for the velocity with friction a coefficient considered as constant over the range of our measurements. Accordingly, the only relevant velocity for transport description is the average velocity. Coupled measurements of bed load and velocity show that bed load transport is related to the average velocity through a power taw. Eventually, a correlation between bed load transport and suspended load transport is evidenced and discussed. (c) 2006 Elsevier B.V. All rights reserved. C1 IPGP, Lab Dynam Syst Geol, F-75252 Paris 05, France. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Parc Natl Ecrins, F-05290 Vallouise, France. RP Meunier, P (reprint author), IPGP, Lab Dynam Syst Geol, 4 Pl Jussieu, F-75252 Paris 05, France. EM meunier@ipgp.jussieu.fr RI Meriaux, Anne-Sophie/G-1754-2010; Metivier, Francois/B-4202-2011; Meunier, Patrick/K-7958-2014; Lajeunesse, Eric/A-1352-2009; OI Lajeunesse, Eric/0000-0002-0950-6054; Metivier, Francois/0000-0001-8378-8734 NR 26 TC 17 Z9 17 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 J9 J HYDROL JI J. Hydrol. PD NOV 15 PY 2006 VL 330 IS 3-4 BP 496 EP 505 DI 10.1016/j.jhydrol.2006.04.009 PG 10 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA 105IN UT WOS:000242023700010 ER PT J AU Hu, XS Narayanan, S Lurio, LB Lal, J AF Hu, Xuesong Narayanan, Suresh Lurio, Laurence B. Lal, Jyosana TI Dynamics of polymer bilayer films SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article; Proceedings Paper CT 5th International Discussion Meeting on Relaxations in Complex Systems CY JUL 07-13, 2005 CL Univ Sci & Technologies, Lille, FRANCE HO Univ Sci & Technologies DE polymers and organics; fluctuations; viscosity and relaxation; X-rays AB We report grazing incidence coherent X-ray measurements from polymer bilayers consisting of spun-cast layers of Polystyrene (PS) and Poly(4-bromo styrene) (PBrS) supported on silicon wafers. For PS/PBrS/Si bilayers, the films are stable and we are able to probe equilibrium thermal surface height fluctuations using X-ray Photon Correlation Spectroscopy (XPCS). When the layers are inverted to PBrS/PS/Si. the films de-wet. In this geometry we can measure both the non-equilibrium evolution of the film structure using timeresolved surface diffuse X-ray scattering and quasi-equilibrium fluctuations of the de-wetting film using XPCS. (c) 2006 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Lal, J (reprint author), Argonne Natl Lab, Intense Pulsed Neutron Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jlal@anl.gov NR 6 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD NOV 15 PY 2006 VL 352 IS 42-49 SI SI BP 4973 EP 4976 DI 10.1016/j.jnoncrysol.2006.02.180 PG 4 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 116SE UT WOS:000242821800103 ER PT J AU Ryu, HJ Kim, YS Hofman, GL Park, JM Kim, CK AF Ryu, Ho Jin Kim, Yeon Soo Hofman, Gerard L. Park, Jong Man Kim, Chang Kyu TI Heats of formation of (U,Mo)Al-3 and U(Al,Si)(3) SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID DISPERSION FUELS; IRRADIATION BEHAVIOR; REACTORS AB The heats of formation of (U,Mo)Al-3 intermetallic compounds were obtained by measuring the reaction heats of U-Mo/Al dispersion samples by differential scanning calorimetry. Based on literature data for the reaction heats of U3Si/Al and U3Si2/Al dispersion samples, the heats of formation of U(Al,Si)(3) as a function of the Si content were calculated. The heat of formation of (U,Mo)Al-3 becomes less negative as the Mo content increases. Conversely, the heat of formation of U(Al,Si)(3) becomes more negative with increasing Si content. (c) 2006 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. Korea Atom Energy Res Inst, Nucl Fuel Fabricat Lab, Taejon 305353, South Korea. RP Ryu, HJ (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hjryu@kaeri.re.kr RI RYU, HO JIN/J-2764-2013 OI RYU, HO JIN/0000-0002-3387-7381 NR 10 TC 18 Z9 19 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV 15 PY 2006 VL 358 IS 1 BP 52 EP 56 DI 10.1016/j.jnucmat.2006.06.013 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 101BO UT WOS:000241714100007 ER PT J AU Dargaville, TR Elliott, JM Celina, M AF Dargaville, Tim R. Elliott, Julie M. Celina, Mathew TI Evaluation of piezoelectric PVDF polymers for use in space environments. III. Comparison of the effects of vacuum UV and gamma radiation SO JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS LA English DT Article DE piezoelectric polymers; polymer performance; radiation effects; space exposure; vinylidene fluoride ID POLY(VINYLIDENE FLUORIDE-TRIFLUOROETHYLENE) COPOLYMER; RELAXOR FERROELECTRIC BEHAVIOR; FLUORIDE POLYMERS; IRRADIATION; CHEMISTRY; FILM AB Films of piezoelectric PVDF and P(VDF-TrFE) were exposed to vacuum UV (115-300 nm VLTV) and gamma-radiation to investigate how these two forms of radiation affect the chemical, morphological, and piezoelectric properties of the polymers. The extent of crosslinking was almost identical in both polymers after gamma-irradiation, but surprisingly, was significantly higher for the TrFE copolymer after VUV-irradiation. Changes in the melting behavior were also more significant in the TrFE copolymer after VLTV-irradiation due to both surface and bulk crosslinking, compared with only surface crosslinking for the PVDF films. The piezoelectric properties (measured using d(33) piezoelectric coefficients and D-E hysteresis loops) were unchanged in the PVDF homopolymer, while the TrFE copolymer exhibited more narrow D-E loops after exposure to either gamma- or VUV-radiation. The more severe damage to the TrFE copolymer in comparison with the PVDF homopolymer after VUV-irradiation is explained by different energy deposition characteristics. The short wavelength, highly energetic photons are undoubtedly absorbed in the surface layers of both polymers, and we propose that while the longer wavelength components of the VLTV radiation are absorbed by the bulk of the TrFE copolymer causing crosslinking, they are transmitted harmlessly in the PVDF homopolymer. (c) 2006 Wiley Periodicals, Inc. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Dargaville, TR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mccelin@sandia.gov OI Dargaville, Tim/0000-0003-4665-9508 NR 31 TC 9 Z9 9 U1 3 U2 15 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-6266 J9 J POLYM SCI POL PHYS JI J. Polym. Sci. Pt. B-Polym. Phys. PD NOV 15 PY 2006 VL 44 IS 22 BP 3253 EP 3264 DI 10.1002/polb.20966 PG 12 WC Polymer Science SC Polymer Science GA 101PY UT WOS:000241754000008 ER PT J AU Zhu, BL Angelici, RJ AF Zhu, Bolin Angelici, Robert J. TI Non-nanogold catalysis of carbon monoxide oxidative amination SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID GOLD CATALYSTS; CO OXIDATION; ALKYL ISOCYANIDES; SUPPORTED GOLD; POWDERED GOLD; ADSORPTION; COMPLEXES; NANOPARTICLES; LENGTH; OXYGEN C1 Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Angelici, RJ (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM angelici@iastate.edu NR 24 TC 55 Z9 55 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 15 PY 2006 VL 128 IS 45 BP 14460 EP 14461 DI 10.1021/ja065706t PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 103AX UT WOS:000241857200022 PM 17090020 ER PT J AU Black, JR Nyman, M Casey, WH AF Black, Jay R. Nyman, May Casey, William H. TI Rates of oxygen exchange between the [HxNb6O19]((aq))(8-x) Lindqvist ion and aqueous solutions SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID NUCLEAR MAGNETIC-RESONANCE; DECAVANADATE; DISSOLUTION; EQUILIBRIA; EVOLUTION; COMPLEX; WATER; DFT AB Oxygen-isotope-exchange rates were measured between sites in the Lindqvist-type [HxNb6O19](8-x)((aq)) polyoxoanion and aqueous solution as a function of pH and temperature. The ion has a central mu(6)-O that is inert to exchange, 12 mu(2)-O(H), and 6 eta-O. The potassium salt of this ion is recrystallized in O-17-enriched water to O-17-label the anion, which is then redissolved into isotopically normal water so that the O-17 NMR signals from structural oxygens can be followed as a function of time. Because the central mu(6)-O retains its 17O signal throughout the experiments, it is clear that the polyoxoanion remains intact during isotopic equilibration of the other structural oxygens. At pH conditions where the [HNb6O19](7)-ion predominates, the mu(2)-O(H) sites isotopically exchange with solution about an order of magnitude more rapidly than the eta-O sites. Yet, we observe that the terminal and bridging oxo sites react at nearly the same rates when the ion is coordinated to 2-3 protons and possibly when it is unprotonated. On the basis of molecular models and experimental kinetic data, we propose metastable polymorphs of the hexaniobate structure where four of the mu(2)-O(H) and eta-O sites are temporarily equivalent and bonded to a coordinatively unsaturated Nb(V). This hypothesized intermediate allows facile access to bulk water molecules for exchange but cannot fully explain the kinetic results and additional experiments on other Lindvist ions are required. C1 Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. Univ Calif Davis, Dept Geol, Davis, CA 95616 USA. Sandia Natl Labs, Geochem Div, Albuquerque, NM 87185 USA. RP Casey, WH (reprint author), Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. EM whcasey@ucdavis.edu RI Black, Jay/K-3705-2013 OI Black, Jay/0000-0003-1872-9345 NR 32 TC 52 Z9 52 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 15 PY 2006 VL 128 IS 45 BP 14712 EP 14720 DI 10.1021/ja065529w PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 103AX UT WOS:000241857200061 PM 17090059 ER PT J AU Loomis, E Peralta, P Swift, D Lim, CH Dickerson, R Dickerson, P AF Loomis, E. Peralta, P. Swift, D. Lim, C. H. Dickerson, R. Dickerson, P. TI Cross-sectional TEM studies of plastic wave attenuation in shock loaded NiAl SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE shock; NiAl; plasticity; TEM; cross-section ID SINGLE-CRYSTALS; MECHANICAL-PROPERTIES; RATE DEPENDENCE; STRAIN RATES; DEFORMATION; COMPRESSION; DISLOCATION; COPPER AB The role of plasticity and overall shear strength of metals subjected to weak and moderate shock waves is not well understood. The plastic response of shocked metals is known to vary with applied pressure although these variations are different for each material. Weakly shocked single crystals will tend to display plastic anisotropy and anisotropic Hugoniots at least up to the overdrive pressure. In the current study, cross-section transmission electron microscopy (XTEM) has been used to elucidate these effects in single crystals of nickel aluminide (NiAl). Single crystals of NiAl (5 mm diameter) were cut and polished down to 100-300 mu m along three loading directions (0 0 1), (1 10), (1 1 1). Each of the three samples was subjected to laser induced shocks of around 15 GPa. Cross-sectional transmission electron microscopy (XTEM) samples were extracted from shocked samples and were used to observe dislocation structures and lattice rotations with selected area diffraction patterns. Regions within 2 mu m of the drive surface exhibited lattice rotation gradients up to about 1400 degrees/mm in (I 10) samples. Following the first few microns, the lattice rotations were found to decay rapidly over the next 5 mu m. These trends were also seen in orientation imaging microscopy (OIM) data. The lattice rotation gradients correlated well with pressure decay from I D hydrodynamic calculations. (c) 2006 Published by Elsevier B.V. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Arizona State Univ, Dept Mech & Aerosp Engn, Tempe, AZ 85287 USA. Los Alamos Natl Lab, MST6, Los Alamos, NM 87545 USA. RP Loomis, E (reprint author), Los Alamos Natl Lab, P-24,MS E526, Los Alamos, NM 87545 USA. EM loomis@lanl.gov NR 21 TC 2 Z9 3 U1 1 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 15 PY 2006 VL 437 IS 2 BP 212 EP 221 DI 10.1016/j.msea.2006.07.116 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 103PI UT WOS:000241898800005 ER PT J AU Gazder, AA Li, S Dalla Torre, FH Beyerlein, IJ Gu, CF Davies, CHJ Pereloma, EV AF Gazder, A. A. Li, S. Dalla Torre, F. H. Beyerlein, I. J. Gu, C. F. Davies, C. H. J. Pereloma, E. V. TI Progressive texture evolution during equal channel angular extrusion SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE equal channel angular extrusion; visco-plastic self-consistent model; simple shear; texture; finite element analysis ID SEVERE PLASTIC-DEFORMATION; INITIAL TEXTURE; MODELING TEXTURE; PROCESSING ROUTE; BCC MATERIALS; SIMPLE SHEAR; FCC METALS; COPPER; STRAIN; ALUMINUM AB Progressive texture evolution during the second pass of equal channel angular extrusion (ECAE) of copper via route B-C was investigated by interrupting the extrusion and measuring the textures of seven sections starting within the entry channel, continuing through the die corner region, and ending within the exit channel. Experimental textures showed the development of {111}(u v w)(theta) and {h k l} (110)(theta) partial fibers; and that the most significant texture changes occurred near the die intersection plane. Consistent texture predictions were achieved by visco-plastic self-consistent modelling (VPSC) using finite element (FE)-predicted deformation history. The FE simulation from the center of the billet cross-section indicated that the deviation of ECAE deformation from simple shear at the intersection of the die channels was not significant. (c) 2006 Elsevier B.V. All rights reserved. C1 Monash Univ, Dept Mat Engn, Clayton, Vic 3800, Australia. Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Gazder, AA (reprint author), Monash Univ, Dept Mat Engn, Clayton, Vic 3800, Australia. EM Azdiar.Gazder@eng.monash.edu.au RI Davies, Chris/A-2391-2009; Li, Saiyi/J-3968-2012; Beyerlein, Irene/A-4676-2011 OI Davies, Chris/0000-0001-8910-7426; NR 33 TC 13 Z9 13 U1 1 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 15 PY 2006 VL 437 IS 2 BP 259 EP 267 DI 10.1016/j.msea.2006.07.142 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 103PI UT WOS:000241898800012 ER PT J AU Prilliman, SG Clark, SM Alivisatos, AP Karvankova, P Veprek, S AF Prilliman, Stephen G. Clark, Simon M. Alivisatos, A. Paul Karvankova, Pavla Veprek, Stan TI Strain and deformation in ultra-hard nanocomposites nc-TiN/a-BN under hydrostatic pressure SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE titanium nitride; superhard nanocomposites; nanocryatalline; composite; X-ray diffraction; compressibility; high pressure ID CDSE NANOCRYSTALS; SUPERHARD; COATINGS; TRANSITION; FILMS AB A high pressure diffraction study, from ambient to 50 GPa, has been carried out on nanocrystalline TiN/amorphous BN nanocomposite materials prepared by plasma chemical vapor deposition. The compressibilities of these materials were found not to be significantly different from TiN. A large amount of biaxial and isotropic strain was found to build up on pressurization which continued to exist after depressurization and annealing indicating a permanent deformation under high pressure. This permanent deformation is located in the grain boundaries and is reduced by the presence of amorphous BN. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Tech Univ Munich, Dept Chem, D-85747 Garching, Germany. RP Clark, SM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. EM smclark@lbl.gov RI Veprek, Stan/C-1248-2008; Alivisatos , Paul /N-8863-2015; Clark, Simon/B-2041-2013; OI Veprek, Stan/0000-0002-6016-3093; Alivisatos , Paul /0000-0001-6895-9048; Clark, Simon/0000-0002-7488-3438; Prilliman, Stephen/0000-0002-9699-3638 NR 24 TC 23 Z9 23 U1 1 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 15 PY 2006 VL 437 IS 2 BP 379 EP 387 DI 10.1016/j.msea.2006.07.126 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 103PI UT WOS:000241898800028 ER PT J AU Yao, XC George, JS AF Yao, Xin-Cheng George, John S. TI Dynamic neuroimaging of retinal light responses using fast intrinsic optical signals SO NEUROIMAGE LA English DT Article ID SPREADING DEPRESSION; SCATTERING CHANGES; NERVE; PHOTORECEPTORS; BIREFRINGENCE; TRANSMISSION; ACTIVATION AB Transient intrinsic optical responses associated with neural activation offer an attractive strategy for dynamic imaging of neural activity, and may provide a noninvasive methodology for imaging of retinal function. Here we demonstrate the feasibility of near infrared imaging of fast intrinsic optical changes in isolated frog retina activated by visible light. Using a photodiode detector in a transmitted light geometry, we routinely measured dynamic transmitted optical responses in single passes, at the level of one part in 10(4) of background light. Rapid CCD image sequences acquired with transmitted light (bright field) illumination disclosed larger fractional responses and showed evidence of multiple response components with both negative- and positive-going signals with different timecourses. Dark field imaging further enhanced the contrast and sensitivity of optical measures of neural activation. High-resolution imaging disclosed optical responses in single pixels often exceeding 5%, of background light, allowing dynamic imaging at the resolution of single cells, in single passes. Fast optical signals are closely related to identified response components of the electroretinogram. Optical responses showed complex but consistent spatial organization from frame to frame. Our experimental results and theoretical analysis suggest that the optical responses may result from dynamic volume changes corresponding to ion and water flow across the cell membrane, directly associated with the electrophysiological response. (c) 2006 Elsevier Inc. All rights reserved. C1 Los Alamos Natl Lab, Biol & Quantum Phys Grp, Los Alamos, NM 87545 USA. RP George, JS (reprint author), Los Alamos Natl Lab, Biol & Quantum Phys Grp, POB 1663,MS-D454, Los Alamos, NM 87545 USA. EM jsg@lanl.gov NR 27 TC 26 Z9 27 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1053-8119 J9 NEUROIMAGE JI Neuroimage PD NOV 15 PY 2006 VL 33 IS 3 BP 898 EP 906 DI 10.1016/j.neuroimage.2006.06.060 PG 9 WC Neurosciences; Neuroimaging; Radiology, Nuclear Medicine & Medical Imaging SC Neurosciences & Neurology; Radiology, Nuclear Medicine & Medical Imaging GA 101RW UT WOS:000241759200009 PM 17000120 ER PT J AU Aggouras, G Anassontzis, EG Ball, AEB Bourlis, G Chinowsky, W Fahrun, E Grammatikakis, G Green, C Grieder, P Katrivanos, P Koske, P Leisos, A Ludvig, J Markopoulos, E Minkowsky, P Nygren, D Papageorgiou, K Przybylski, G Resvanis, LK Siotis, I Sopher, J Staveris, T Tsagli, V Tsirigotis, A Zhukov, VA AF Aggouras, G. Anassontzis, E. G. Ball, A. E. Bourlis, G. Chinowsky, W. Fahrun, E. Grammatikakis, G. Green, C. Grieder, P. Katrivanos, P. Koske, P. Leisos, A. Ludvig, J. Markopoulos, E. Minkowsky, P. Nygren, D. Papageorgiou, K. Przybylski, G. Resvanis, L. K. Siotis, I. Sopher, J. Staveris, T. Tsagli, V. Tsirigotis, A. Zhukov, V. A. TI Recent results from NESTOR SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 2nd International Workshop on Very Large Volume Neutrino Telescopes CY NOV 08-11, 2005 CL Catania, ITALY SP INFN, Lab Nazl Sud, INFN, Sezione Catania ID NEUTRINO TELESCOPE AB A module of the NESTOR underwater neutrino telescope, was deployed, in March 2003, at a depth of 3800m in order to test the overall detector performance and particularly that of the data acquisition systems. A prolonged period of running under stable operating conditions made it. possible to measure the cosmic ray muon flux, I(0)cos(a)(0). (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Athens, Dept Phys, GR-10679 Athens, Greece. Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. Univ Bern, Inst Theoret Phys, CH-3012 Bern, Switzerland. CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. Hellen Open Univ, Sch Sci & Technol, Patras, Greece. Univ Kiel, Inst Expt & Appl Phys, D-24098 Kiel, Germany. Lawrence Berkeley Lab, Berkeley, CA USA. NCSR Demokritos, GR-15310 Athens, Greece. NESTOR, Inst Deep Sea Res Technol & Neutrino Astroparticl, Pylos, Greece. Russian Acad Sci, Inst Nucl Res, Moscow, Russia. RP Resvanis, LK (reprint author), Univ Athens, Dept Phys, GR-10679 Athens, Greece. EM L.Resvanis@cern.ch RI Grammatikakis, George/F-5620-2017 NR 26 TC 10 Z9 10 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 15 PY 2006 VL 567 IS 2 BP 452 EP 456 DI 10.1016/j.nima.2006.05.256 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 104XH UT WOS:000241993400009 ER PT J AU Aggouras, G Anassontzis, EG Ball, AE Chinowsky, W Fahrun, E Grammatikakis, G Green, C Grieder, P Katrivanos, P Koske, P Markopoulos, E Minkowsky, P Nygren, D Papageorgiou, K Przybylski, G Resvanis, LK Siotis, I Sopher, J Tsagli, V Zhukov, VA AF Aggouras, G. Anassontzis, E. G. Ball, A. E. Chinowsky, W. Fahrun, E. Grammatikakis, G. Green, C. Grieder, P. Katrivanos, P. Koske, P. Markopoulos, E. Minkowsky, P. Nygren, D. Papageorgiou, K. Przybylski, G. Resvanis, L. K. Siotis, I. Sopher, J. Tsagli, V. Zhukov, V. A. TI LAERTIS, a multidisciplinary station SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 2nd International Workshop on Very Large Volume Neutrino Telescopes CY NOV 08-11, 2005 CL Catania, ITALY SP INFN, Lab Nazl Sud, INFN, Sezione Catania DE LAERTIS; multidisciplinary station; NESTOR; deep-sea; telescope AB LAERTIS, designed to collect environmental data from the deep-sea, is operated since 1999 and has been deployed several time at 4000 in depth at the NESTOR site. Power and data were transferred through a 30-km electro-optical cable to the Shore Station. In this report, we describe briefly the LAERTIS instrumentation and present typical data that were collected successfully during those deployment demonstrating the importance of a deep-sea station permanently connected to shore. (c) 2006 Elsevier B.V. All rights reserved. C1 NESTOR, Inst Deep Sea Res, Pylos, Greece. Univ Athens, Dept Phys, GR-10679 Athens, Greece. CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. Lawrence Berkeley Lab, Berkeley, CA USA. Univ Kiel, Inst Expt & Appl Phys, D-24098 Kiel, Germany. Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. NCSR Demokritos, GR-15310 Athens, Greece. Univ Bern, Inst Theoret Phys, CH-3012 Bern, Switzerland. Russian Acad Sci, Inst Nucl Res, Moscow 117901, Russia. RP Anassontzis, EG (reprint author), Univ Athens, Fac Phys, Nucl & Particle Phys Dept, Panepistimioupolis, GR-15771 Athens, Greece. EM eanason@phys.uoa.gr RI Grammatikakis, George/F-5620-2017 NR 11 TC 2 Z9 2 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 15 PY 2006 VL 567 IS 2 BP 468 EP 473 DI 10.1016/j.nima.2006.05.173 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 104XH UT WOS:000241993400012 ER PT J AU Tsagli, S Aggouras, G Anassontzis, EG Ball, AE Chinowsky, W Fahrun, E Grammatikakis, G Green, C Grieder, P Katrivanos, P Koske, P Ludvig, J Markopoulos, E Minkowsky, P Nygren, D Papageorgiou, K Przybylski, G Resvanis, LK Siotis, I Sopher, J Staveris, T Tsagli, V Zhukov, VA AF Tsagli, S. Aggouras, G. Anassontzis, E. G. Ball, A. E. Chinowsky, W. Fahrun, E. Grammatikakis, G. Green, C. Grieder, P. Katrivanos, P. Koske, P. Ludvig, J. Markopoulos, E. Minkowsky, P. Nygren, D. Papageorgiou, K. Przybylski, G. Resvanis, L. K. Siotis, I. Sopher, J. Staveris, T. Tsagli, V. Zhukov, V. A. CA NESTOR Collaboration TI Recent measurements on the Hamamatsu 13 in., R8055, PhotoMultiplier Tubes SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 2nd International Workshop on Very Large Volume Neutrino Telescopes CY NOV 08-11, 2005 CL Catania, ITALY SP INFN, Lab Nazl Sud, INFN, Sezione Catania AB The key component of NESTOR, the deep-sea Cherenkov neutrino telescope, built in the Mediterranean, NW of Greece, is the optical module. The NESTOR Optical Module employs a PhotoMultiplier Tube (PMT) in a transparent glass pressure housing. The Hamamatsu PMT R8055-01, 13 in. photomultiplier was selected for NESTOR to replace the old 15" Hamamatsu PMTs (R2018-03). Extensive tests have been made on the sensitivity, uniformity, time resolution and noise rates of 162 R8055-01 13 in. PMTs (c) 2006 Elsevier B.V. All rights reserved. C1 NESTOR Inst, GR-24001 Pylos, Greece. Univ Athens, Dept Phys, GR-10679 Athens, Greece. Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. Univ Bern, Inst Theoret Phys, CH-3012 Bern, Switzerland. CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. Univ Crete, Dept Phys, Iraklion, Greece. Univ Kiel, Inst Expt & Appl Phys, D-24098 Kiel, Germany. Lawrence Berkeley Natl Lab, Berkeley, CA USA. NCSR Demokritos, Athens, Greece. NESTOR, Inst Deep Sea Res Technol & Neutrino Astroparticl, Pylos, Greece. Russian Acad Sci, Inst Nucl Res, Moscow, Russia. NESTOR Inst, GR-24001 Pylos, Greece. RP Tsagli, S (reprint author), NESTOR Inst, 111 Anagnostara, GR-24001 Pylos, Greece. EM tsagli@nestor.org.gr; eanason@phys.uoa.gr; L.Resvanis@cern.ch RI Grammatikakis, George/F-5620-2017 NR 0 TC 2 Z9 2 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 15 PY 2006 VL 567 IS 2 BP 511 EP 514 DI 10.1016/j.nima.2006.05.0176 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 104XH UT WOS:000241993400025 ER PT J AU Anassontzis, EG Aggouras, G Ball, AE Chinowsky, W Fahrun, E Grammatikakis, G Green, C AF Anassontzis, E. G. Aggouras, G. Ball, A. E. Chinowsky, W. Fahrun, E. Grammatikakis, G. Green, C. TI Towers and KM3NeT SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 2nd International Workshop on Very Large Volume Neutrino Telescopes CY NOV 08-11, 2005 CL Catania, ITALY SP INFN, Lab Nazl Sud, INFN, Sezione Catania DE NESTOR; towers; KM3NeT; deployment ID NEUTRINO TELESCOPE; OPERATION AB NESTOR Collaboration has deployed one NESTOR module of the deep-sea neutrino telescope at a depth of 4000m, 14km off the southwest coast of Greece. The deployment site provides excellent environmental data. Power and data were transferred through a 30 km electro-optical cable to the shore laboratory. In this report, we describe briefly the detector and the well-defined procedure for recovery and deployment of a detector attached to the electro-optical cable and we depict the deployment of several towers and complementary independent strings acoustically connected to the towers. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Athens, Dept Phys, GR-10679 Athens, Greece. Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. Univ Bern, Inst Theoret Phys, CH-3012 Bern, Switzerland. CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. Univ Kiel, Inst Expt & Appl Phys, D-24098 Kiel, Germany. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NCSR Demokritos, GR-15310 Athens, Greece. NESTOR Inst Deep Sea Res Technol & Neutrino Astro, Pylos, Greece. Russian Acad Sci, Inst Nucl Res, Moscow, Russia. RP Anassontzis, EG (reprint author), Univ Athens, Dept Phys, GR-10679 Athens, Greece. EM eanason@phys.uoa.gr RI Grammatikakis, George/F-5620-2017 NR 15 TC 3 Z9 3 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 15 PY 2006 VL 567 IS 2 BP 538 EP 544 DI 10.1016/j.nima.2006.05.183 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 104XH UT WOS:000241993400033 ER PT J AU Chadwick, R Spahr, E Squier, JA Durfee, CG Walker, BC Fittinghoff, DN AF Chadwick, Rebecca Spahr, Erik Squier, Jeff A. Durfee, Charles G. Walker, Barry C. Fittinghoff, David N. TI Fringe-free, background-free, collinear third-harmonic generation frequency-resolved optical gating measurements for multiphoton microscopy SO OPTICS LETTERS LA English DT Article ID FEMTOSECOND PULSES AB A background-free, fringe-free form of frequency-resolved optical gating using the third-harmonic signal generated from a glass coverslip is used to characterize 100 fs pulses at the focus of a 0.65 NA objective. (c) 2006 Optical Society of America C1 Colorado Sch Mines, Golden, CO 80401 USA. Univ Delaware, Newark, DE 19716 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Chadwick, R (reprint author), Colorado Sch Mines, Golden, CO 80401 USA. EM jsquier@mines.edu RI Walker, Barry/F-8532-2011 FU NIBIB NIH HHS [EB003832] NR 9 TC 13 Z9 13 U1 0 U2 6 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD NOV 15 PY 2006 VL 31 IS 22 BP 3366 EP 3368 DI 10.1364/OL.31.003366 PG 3 WC Optics SC Optics GA 102GT UT WOS:000241799700049 PM 17072425 ER PT J AU Silin, D Patzek, T AF Silin, Dmitriy Patzek, Tad TI Pore space morphology analysis using maximal inscribed spheres SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS LA English DT Article DE pore space morphology; connectivity; two-phase flow; capillary pressure ID 3D IMAGE-ANALYSIS; POROUS-MEDIA; PERCOLATION THEORY; NETWORK MODELS; MULTIPHASE FLOW; RECONSTRUCTION; PREDICTION; PERMEABILITY; DIMENSIONS; ALGORITHMS AB A new robust algorithm analyzing the geometry and connectivity of the pore space of sedimentary rock is based on fundamental concepts of mathematical morphology. The algorithm distinguishes between the "pore bodies" and "pore throats," and establishes their respective volumes and connectivity. The proposed algorithm also produces a stick-and-ball diagram of the rock pore space. The tests on a pack of equal spheres, for which the results are verifiable, confirm its stability. The impact of image resolution on the algorithm output is investigated on the images of computer-generated pore space. One of distinctive features of our approach is that no image thinning is applied. Instead, the information about the skeleton is stored through the maximal inscribed balls or spheres (MIS) associated with each voxel. These maximal balls retain information about the entire pore space. Comparison with the results obtained by a thinning procedure preserving some topological properties of the pore space shows that our method produces more realistic estimates of the number and shapes of pore bodies and pore throats, and the pore coordination numbers. The distribution of maximal inscribed spheres makes possible simulation of mercury injection and computation of the corresponding dimensionless capillary pressure curve. It turns out that the calculated capillary pressure curve is a robust descriptor of the pore space geometry and, in particular, can be used to determine the quality of computer-based rock reconstruction. (c) 2006 Published by Elsevier B.V. C1 Univ Calif Berkeley, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Patzek, T (reprint author), Univ Calif Berkeley, 425 Davis Hall, Berkeley, CA 94720 USA. EM dsilin@lbl.gov; patzek@patzek.berkeley.edu NR 62 TC 74 Z9 79 U1 2 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-4371 J9 PHYSICA A JI Physica A PD NOV 15 PY 2006 VL 371 IS 2 BP 336 EP 360 DI 10.1016/j.physa.2006.04.048 PG 25 WC Physics, Multidisciplinary SC Physics GA 093WC UT WOS:000241200000017 ER PT J AU Martin, S Carr, RD Faulon, JL AF Martin, S. Carr, R. D. Faulon, J. -L. TI Random removal of edges from scale free graphs SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS LA English DT Article DE scale-free graphs; power law; edge removal ID COMPLEX NETWORKS; INTERNET AB It has been discovered that many naturally occurring networks (the internet, the power grid of the western US, various biological networks, etc.) satisfy a power-law degree distribution. Such scale-free networks have many interesting properties, one of which is robustness to random damage. This problem has been analyzed from the point of view of node deletion and connectedness. Recently, it has also been considered from the point of view of node deletion and scale preservation. In this paper we consider the problem from the point of view of edge deletion and scale preservation. In agreement with the work on node deletion and scale preservation, we show that a scale-free graph should not be expected to remain scale free when edges are removed at random. (c) 2006 Elsevier B.V. All rights reserved. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Martin, S (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM smartin@sandia.gov NR 21 TC 15 Z9 15 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-4371 J9 PHYSICA A JI Physica A PD NOV 15 PY 2006 VL 371 IS 2 BP 870 EP 876 DI 10.1016/j.physa.2006.04.046 PG 7 WC Physics, Multidisciplinary SC Physics GA 093WC UT WOS:000241200000066 ER PT J AU Tian, W Stone, MB Mandrus, DG Sales, BC Jin, R Adroja, DT Nagler, SE AF Tian, W. Stone, M. B. Mandrus, D. G. Sales, B. C. Jin, R. Adroja, D. T. Nagler, S. E. TI Magnetic excitations in the orbitally degenerate triangular lattice LiVO2 SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 8th International Conference (ICNS 2005) CY NOV 27-DEC 02, 2005 CL Sydney, AUSTRALIA SP Australian Govt, Dept Educ, Sci & Training, Australian Nucl Sci & Technol Org, ISIS, Cooperat Res Ctr Polymers, INVAP S E, Inst Laue Langevin DE transition metal antiferromagnet; two-dimensional triangular lattice; orbital ordering ID PHASE-TRANSITION AB We report an inelastic-neutron scattering study of the magnetic excitations in LiVO2, a two-dimensional triangular lattice of V3+ (S = 1) ions with orbital ordering involving threefold degenerate t(2g) orbitals. At temperatures well below the phase transition temperature T-t approximate to 500 K, an excitation at similar to 58meV is observed which we identify as a candidate for the principal singlet-to-triplet magnetic transition. Additional excitations are also observed at lower and higher energies. Our results suggest that orbital degeneracy plays an important role in understanding the unusual magnetic properties of LiVO2. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. RP Tian, W (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM wtian@utk.edu RI Nagler, Stephen/B-9403-2010; Nagler, Stephen/E-4908-2010; Stone, Matthew/G-3275-2011; Tian, Wei/C-8604-2013; Mandrus, David/H-3090-2014 OI Nagler, Stephen/0000-0002-7234-2339; Stone, Matthew/0000-0001-7884-9715; Tian, Wei/0000-0001-7735-3187; NR 12 TC 2 Z9 3 U1 3 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 EI 1873-2135 J9 PHYSICA B JI Physica B PD NOV 15 PY 2006 VL 385 SI SI BP 50 EP 52 DI 10.1016/j.physb.2006.05.099 PN 1 PG 3 WC Physics, Condensed Matter SC Physics GA 120PF UT WOS:000243096400014 ER PT J AU Chapman, KW Hagen, M Kepert, CJ Manuel, P AF Chapman, Karena W. Hagen, Mark Kepert, Cameron J. Manuel, Pascal TI Low energy phonons in the NTE compounds Zn(CN)(2) and ZnPt(CN)(6) SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 8th International Conference (ICNS 2005) CY NOV 27-DEC 02, 2005 CL Sydney, AUSTRALIA SP Australian Govt, Dept Educ, Sci & Training, Australian Nucl Sci & Technol Org, ISIS, Cooperat Res Ctr Polymers, INVAP S E, Inst Laue Langevin DE negative thermal expansion; rigid unit modes; inelastic neutron scattering ID NEGATIVE THERMAL-EXPANSION; ZRW2O8; ORIGIN; CU AB The compounds Zn(CN)(2) and ZnPt(CN)(6) both display negative thermal expansion (NTE) properties, that is to say they undergo a volume contraction with increasing temperature. In the case of Zn(CN)(2) this volume contraction occurs over a temperature range from 25 to 375 K with a coefficient of thermal expansion alpha = -16.9(2) x 10(-6) K-(1) [A.L. Goodwin, C.J. Kepert, Phys. Rev. B 71 (2005) 14030]. This phenomenon is believed to be related to the presence of low energy rigid unit modes (RUMS) in the phonon dispersion relations of Zn(CN)(2) [A.L. Goodwin, C.J. Kepert, Phys. Rev. B 71 (2005) 14030]. We have examined the low energy part of the phonon density of states in Zn(CN)(2) and ZnPt(CN)(6) using time of flight inelastic neutron scattering from powder samples. In Zn(CN)(2) there is a strong peak in the density of states at 2 meV whose temperature dependence can be correlated with that of a. There is a similar peak in the density of states of ZnPt(CN)(6) at 7.5 meV, which correlates with the smaller NTE effect in this compound. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. Australian Nucl Sci & Technol Org, Bragg Inst, Menai, NSW 2234, Australia. Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. RP Hagen, M (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, POB 2008, Oak Ridge, TN 37831 USA. EM hagenme@ornl.gov RI Chapman, Karena/G-5424-2012; OI Kepert, Cameron/0000-0002-6105-9706 NR 11 TC 24 Z9 24 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD NOV 15 PY 2006 VL 385 SI SI BP 60 EP 62 DI 10.1016/j.physb.2006.05.102 PN 1 PG 3 WC Physics, Condensed Matter SC Physics GA 120PF UT WOS:000243096400017 ER PT J AU Andersen, NH Jensen, J Jensen, TBS Pinholt, R Zimmermann, MV Toft, KN Abrahamsen, AB Hedegard, P Vorderwisch, P Canfield, P AF Andersen, N. H. Jensen, J. Jensen, T. B. S. Pinholt, R. Zimmermann, M. V. Toft, K. Norgaard Abrahamsen, A. B. Hedegard, P. Vorderwisch, P. Canfield, P. TI Magnetic and quadrupolar ordering in TmNi2B2C SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 8th International Conference (ICNS 2005) CY NOV 27-DEC 02, 2005 CL Sydney, AUSTRALIA SP Australian Govt, Dept Educ, Sci & Training, Australian Nucl Sci & Technol Org, ISIS, Cooperat Res Ctr Polymers, INVAP S E, Inst Laue Langevin DE magnetic and quadrupolar ordering; TmNi2B2C; neutron and synchrotron X-ray diffraction; superconductivity ID NEUTRON-DIFFRACTION; LUNI2B2C AB We present neutron and high-energy synchrotron X-ray diffraction studies to show that the anomalous antiferromagnetic (AF) phase diagram of TmNi2B2C in an applied field along [100] is governed by a quadrupolar ordering of the Tm ions. The ordering is revealed by a distortion of the lattice with the Tin ions displaced along the c-axis and modulated with the same wave vector Q(A) = (0.484, 0, 0) as the AF phase induced by fields larger than approximate to 10 kOe. In zero field, the quadrupolar ordering temperature is T-Q congruent to 13.5 K but increases to about 20 K in a field of 100 kOe. The Tin displacements are also significantly enhanced, by a factor of 10 at 60 kOe. A model is presented that accounts for the quadrupolar as well as the low-field Q(F) = (0.94,0.94, 0) and high-field Q(A) = (0.483, 0, 0) AF ordering previously observed in this compound. (c) 2006 Elsevier B.V. All rights reserved. C1 Riso Natl Lab, Dept Mat Res, DK-4000 Roskilde, Denmark. Univ Copenhagen, Niels Bohr Inst, Orsted Lab, DK-2100 Copenhagen O, Denmark. DESY, HASYLAB, D-22603 Hamburg, Germany. Hahn Meitner Inst Berlin GmbH, Berlin Neutron Scattering Ctr BENSC, D-14109 Berlin, Germany. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Andersen, NH (reprint author), Riso Natl Lab, Dept Mat Res, DK-4000 Roskilde, Denmark. EM niels.hessel@risoe.dk RI Andersen, Niels/A-3872-2012; Jensen, Jens/C-7484-2015; Hedegard, Per/C-1954-2015 OI Jensen, Jens/0000-0002-7954-8073; Hedegard, Per/0000-0002-6328-7462 NR 10 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD NOV 15 PY 2006 VL 385 SI SI BP 63 EP 65 DI 10.1016/j.physb.2006.05.103 PN 1 PG 3 WC Physics, Condensed Matter SC Physics GA 120PF UT WOS:000243096400018 ER PT J AU Fernandez-Baca, JA Hagen, ME Dai, PC Ye, F Kulda, J Tomioka, Y Tokura, Y AF Fernandez-Baca, J. A. Hagen, M. E. Dai, Pengcheng Ye, F. Kulda, J. Tomioka, Y. Tokura, Y. TI Spin waves and phonons in the CMR ferromagnet La0.70Ca0.30MnO3 SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 8th International Conference (ICNS 2005) CY NOV 27-DEC 02, 2005 CL Sydney, AUSTRALIA SP Australian Govt, Dept Educ, Sci & Training, Australian Nucl Sci & Technol Org, ISIS, Cooperat Res Ctr Polymers, INVAP S E, Inst Laue Langevin DE CMR; magnon-phonon interaction AB The spin and lattice excitations in the CMR ferromagnet La0.70Ca0.30MnO3 (LCMO30) have been studied by the use of polarized inelastic neutron scattering. This work has been carried out on a large single crystal using the IN20 polarized triple axis spectrometer at the Institut Laue Langevin, Grenoble, France. The spin waves and the lowest lying optical phonons both show a considerable degree of broadening and the use of polarized neutrons has been essential in order to separate these two components of the scattering. (c) 2006 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Ctr Neutron Scattering, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Australian Nucl Sci & Technol Org, Bragg Inst, Menai, NSW 2234, Australia. Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. CERC, Tsukuba, Ibaraki 3050046, Japan. Univ Tokyo, Dept Appl Phys, Tokyo 1138656, Japan. RP Fernandez-Baca, JA (reprint author), Oak Ridge Associated Univ, Ctr Neutron Scattering, POB 2008, Oak Ridge, TN 37830 USA. EM jfn@ornl.gov RI Ye, Feng/B-3210-2010; Dai, Pengcheng /C-9171-2012; Tokura, Yoshinori/C-7352-2009; Fernandez-Baca, Jaime/C-3984-2014; Kulda, Jiri/G-8667-2016 OI Ye, Feng/0000-0001-7477-4648; Dai, Pengcheng /0000-0002-6088-3170; Fernandez-Baca, Jaime/0000-0001-9080-5096; Kulda, Jiri/0000-0002-0570-0570 NR 7 TC 4 Z9 4 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD NOV 15 PY 2006 VL 385 SI SI BP 66 EP 68 DI 10.1016/j.physb.2006.05.104 PN 1 PG 3 WC Physics, Condensed Matter SC Physics GA 120PF UT WOS:000243096400019 ER PT J AU McQueeney, RJ Yethiraj, M Montfrooij, W Gardner, JS Metcalf, P Honig, JM AF McQueeney, R. J. Yethiraj, M. Montfrooij, W. Gardner, J. S. Metcalf, P. Honig, J. M. TI Possible large spin-phonon coupling in magnetite SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 8th International Conference (ICNS 2005) CY NOV 27-DEC 02, 2005 CL Sydney, AUSTRALIA SP Australian Govt, Dept Educ, Sci & Training, Australian Nucl Sci & Technol Org, ISIS, Cooperat Res Ctr Polymers, INVAP S E, Inst Laue Langevin DE magnetite; spin waves; magnetoelastic coupling; Verwey transition ID VERWEY TRANSITION; LOW-TEMPERATURES AB Recent inelastic neutron scattering measurements on magnetite (Fe3O4) below the metal-insulator (Verwey) transition reveal a large gap (7 meV) forming in the middle of the acoustic spin wave branch at q = (0,0, 1/2) and E = 43 meV. The wavevector (0,0, 1/2) corresponds to the main superlattice reflection of the low symmetry monoclinic structure below T-V and has been described as a chargeordering wavevector. Detailed studies of Heisenberg models for the spin wave spectrum were performed assuming that the superexchange is modified to reflect crystallographic symmetry lowering due to either atomic distortions or charge ordering. None of the models studied introduced a significant gap in the acoustic spin wave branch. Another possible source is large spin-phonon coupling that results in the mixing of a phonon and spin wave near (0,0,1/2). We have evidence for the existence of such a phonon mode. Our results show a flat optical phonon branch that cuts through the acoustic spin wave precisely at the gap. The presence of strong spin-phonon coupling below the Verwey transition may further complicate our understanding of the Verwey problem. (c) 2006 Elsevier B.V. All rights reserved. C1 Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Oak Ridge Natl Lab, Ctr Neutron Scattering, Oak Ridge, TN 37831 USA. Univ Missouri, Dept Phys, Columbia, MO 65211 USA. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. RP McQueeney, RJ (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM mcqueeney@ameslab.gov RI Gardner, Jason/A-1532-2013; McQueeney, Robert/A-2864-2016 OI McQueeney, Robert/0000-0003-0718-5602 NR 11 TC 3 Z9 3 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD NOV 15 PY 2006 VL 385 SI SI BP 75 EP 78 DI 10.1016/j.physb.2006.05.107 PN 1 PG 4 WC Physics, Condensed Matter SC Physics GA 120PF UT WOS:000243096400022 ER PT J AU Bozin, ES Qiu, X Schmidt, M Paglia, G Mitchell, JF Radaelli, PG Proffen, T Billinge, SJL AF Bozin, E. S. Qiu, X. Schmidt, M. Paglia, G. Mitchell, J. F. Radaelli, P. G. Proffen, Th. Billinge, S. J. L. TI Local structural aspects of the orthorhombic to pseudo-cubic phase transformation in La1-xCaxMnO3 SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 8th International Conference (ICNS 2005) CY NOV 27-DEC 02, 2005 CL Sydney, AUSTRALIA SP Australian Govt, Dept Educ, Sci & Training, Australian Nucl Sci & Technol Org, ISIS, Cooperat Res Ctr Polymers, INVAP S E, Inst Laue Langevin DE local structure; manganites; Jahn-Teller distortion ID NEUTRON-DIFFRACTION; TRANSITION AB The local and intermediate structure of La1-xCaxMnO3 has been studied in the orthorhombic (O) and pseudo-cubic (O') phases, both as a function of temperature (x = 0.00), and as a function of Ca content (at 310K). Neutron powder diffraction-based high real space resolution atomic pair distribution function (PDF) analysis shows that the Jahn Teller distortion of the MnO6 octahedra persists locally deep in the O' phase in both cases studied, contrary to the average crystallographic view. The O to O' structural phase transformation does have a local structural signature evidenced as a dramatic change in a PDF peak at 10.3 angstrom sensitive to the rotations of the MnO6 octahedra, providing further evidence that the nature of the transformation is orbital order to disorder regardless of whether the phase boundary is crossed as a function of T or x. (c) 2006 Elsevier B.V. All rights reserved. C1 Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. Polish Acad Sci, Inst Mol Phys, PL-60179 Poznan, Poland. Argonne Natl Lab, Div Sci Mat, Argonne, IL 60439 USA. Los Alamos Natl Lab, LANSCE12, Los Alamos, NM 87545 USA. RP Bozin, ES (reprint author), Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. EM bozin@pa.msu.edu RI Radaelli, Paolo/C-2952-2011; Bozin, Emil/E-4679-2011; Lujan Center, LANL/G-4896-2012; Proffen, Thomas/B-3585-2009 OI Radaelli, Paolo/0000-0002-6717-035X; Proffen, Thomas/0000-0002-1408-6031 NR 13 TC 9 Z9 9 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 EI 1873-2135 J9 PHYSICA B JI Physica B PD NOV 15 PY 2006 VL 385 SI SI BP 110 EP 112 DI 10.1016/j.physb.2006.05.137 PN 1 PG 3 WC Physics, Condensed Matter SC Physics GA 120PF UT WOS:000243096400033 ER PT J AU Matsuura, M Hirota, K Gehring, PM Chen, W Ye, ZG Shirane, G AF Matsuura, M. Hirota, K. Gehring, P. M. Chen, W. Ye, Z. -G. Shirane, G. TI Composition dependence of the diffuse scattering in the relaxor (1-x)Pb(Mg1/3Nb2/3)O-3-xPbTiO(3) (x=0 and 0.10) SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 8th International Conference (ICNS 2005) CY NOV 27-DEC 02, 2005 CL Sydney, AUSTRALIA SP Australian Govt, Dept Educ, Sci & Training, Australian Nucl Sci & Technol Org, ISIS, Cooperat Res Ctr Polymers, INVAP S E, Inst Laue Langevin DE relaxor; diffuse scattering; neutron diffraction AB We have measured the neutron diffuse scattering in the relaxor (1 - x)Pb(Mg1/3Nb2/3)O-3-xPbTiO(3) single crystals with x = 0% and 10% around (110) and (100) to study the effect of Ti substitution on polar nanoregions (PNR). Both the x = 0% and 10% samples exhibit weak diffuse scattering extending along [110] at (110) above 500 K. In addition, we observed strong diffuse scattering below T = 500 K, which extends along [1 (1) over bar0] at (110) and [1 +/- 10] at (100). The correlation length derived from the low-T diffuse scattering indicates that the average size of the PNR is enlarged by the substitution of Ti++ for (Mg1/3Nb2/3)(++)- For PMN-10% PT, the high-T diffuse scattering, which extends along the longitudinal direction at 650 K, expands along the transverse direction on cooling. This change can be understood in terms of the soft mode condensation. As the temperature decreases below 500 K, the weak high-T diffuse scattering becomes almost isotropic, and the low-T diffuse scattering extending along the transverse direction becomes dominant. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan. Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. Simon Fraser Univ, Dept Chem, Burnaby, BC V5A 1S6, Canada. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Matsuura, M (reprint author), Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan. EM matsuura@issp.u-tokyo.ac.jp RI Hirota, Kazuma/C-6797-2008; Matsuura, Masato/C-2827-2013; OI Matsuura, Masato/0000-0003-4470-0271; Gehring, Peter/0000-0002-9236-2046 NR 13 TC 2 Z9 2 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD NOV 15 PY 2006 VL 385 SI SI BP 123 EP 125 DI 10.1016/j.physb.2006.05.294 PN 1 PG 3 WC Physics, Condensed Matter SC Physics GA 120PF UT WOS:000243096400037 ER PT J AU Larese, JZ Frazier, L Adams, MA Arnold, T Hinde, RJ Ramirez-Cuesta, A AF Larese, J. Z. Frazier, Lillian Adams, Mark A. Arnold, Thomas Hinde, Robert J. Ramirez-Cuesta, Anibal TI Direct observation of molecular hydrogen binding to magnesium oxide (100) surfaces SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 8th International Conference (ICNS 2005) CY NOV 27-DEC 02, 2005 CL Sydney, AUSTRALIA SP Australian Govt, Dept Educ, Sci & Training, Australian Nucl Sci & Technol Org, ISIS, Cooperat Res Ctr Polymers, INVAP S E, Inst Laue Langevin DE hydrogen; adsorption isotherm; neutron diffraction; inelastic neutron scattering; magnesium oxide ID MGO; ADSORPTION; METHANE AB Inelastic neutron scattering (INS) studies of the dynamical response of H-2 films adsorbed on MgO (100) surface are compared to and correlated with structural information from neutron diffraction measurements of equivalent D-2 films. At low coverage, a prominent peak, believed to be the para-ortho transition (usually observed at 14.7 meV in bulk H-2) is observed at similar to 11.2 meV. For film thicknesses between 0.8 and similar to 3 layers this peak becomes asymmetric with additional scattering on the high-energy transfer side of the peak. As molecules are added to the third layer we observe the concomitant growth of a peak at 14.7 meV. (c) 2006 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. RP Larese, JZ (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM jzl@utk.edu RI D20, Diffractometer/O-3123-2013; Ramirez-Cuesta, Timmy/A-4296-2010; OI D20, Diffractometer/0000-0002-1572-1367; Ramirez-Cuesta, Timmy/0000-0003-1231-0068; Arnold, Thomas/0000-0001-8295-3822; Hinde, Robert/0000-0003-3499-9222 NR 12 TC 8 Z9 9 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD NOV 15 PY 2006 VL 385 SI SI BP 144 EP 146 DI 10.1016/j.physb.2006.05.344 PN 1 PG 3 WC Physics, Condensed Matter SC Physics GA 120PF UT WOS:000243096400043 ER PT J AU Mittal, R Chaplot, SL Kolesnikov, AI Loong, CK Jayakumar, OD Kulshreshtha, SK AF Mittal, R. Chaplot, S. L. Kolesnikov, A. I. Loong, C. -K. Jayakumar, O. D. Kulshreshtha, S. K. TI Inelastic neutron scattering and lattice dynamics studies of AlPO4 and GaPO4 SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 8th International Conference (ICNS 2005) CY NOV 27-DEC 02, 2005 CL Sydney, AUSTRALIA SP Australian Govt, Dept Educ, Sci & Training, Australian Nucl Sci & Technol Org, ISIS, Cooperat Res Ctr Polymers, INVAP S E, Inst Laue Langevin DE inelastic neutron sacttering; lattice dynamics ID PHONON FREQUENCY-SHIFT; THERMAL-EXPANSION; HIGH-PRESSURE; PHASE-TRANSITION; ALPHA-ALPO4; BERLINITE AB The compounds AlPO4 and GaPO4 show phase transitions at high pressure depending on the compressibility of the constituent tetrahedra. Semi-empirical interatomic potentials are available for AlPO4 and GaPO4. Molecular dynamics simulations have been reported using these potentials to understand the nature of phase transitions in different polymorphs of these compounds. In order to check these potentials we have carried out lattice dynamical studies for AlPO4 and GaPO4. The phonon density of states measurements from the polycrystalline samples of low-cristobalite phase of AlPO4 and GaPO4 are carried out using High-Resolution Medium-Energy Chopper Spectrometer at ANL in the energy transfer range 0-160 meV. The calculated phonon spectra for both the compounds using the available potentials show fair agreement with the experimental data. However, the agreement between the two is improved by including the polarizibility of the oxygen atoms in the framework of the shell model. The lattice dynamical model is used for the calculation of specific heat and thermal expansion. (c) 2006 Elsevier B.V. All rights reserved. C1 Bhabha Atom Res Ctr, Div Solid State Phys, Bombay 400085, Maharashtra, India. Argonne Natl Lab, Div Intense Pulsed Neutron Source, Argonne, IL 60439 USA. Bhabha Atom Res Ctr, Novel Mat & Struct Chem Div, Bombay 400085, Maharashtra, India. RP Mittal, R (reprint author), Bhabha Atom Res Ctr, Div Solid State Phys, Bombay 400085, Maharashtra, India. EM rmittal@apsara.barc.ernet.in RI Kolesnikov, Alexander/I-9015-2012 OI Kolesnikov, Alexander/0000-0003-1940-4649 NR 22 TC 1 Z9 1 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD NOV 15 PY 2006 VL 385 SI SI BP 147 EP 149 DI 10.1016/j.physb.2006.05.306 PN 1 PG 3 WC Physics, Condensed Matter SC Physics GA 120PF UT WOS:000243096400044 ER PT J AU Winn, BL Kimura, H Argyriou, DN Aso, N Hirota, K Kofu, M Matsuura, M AF Winn, Barry L. Kimura, Hiroyuki Argyriou, Dimitri N. Aso, Naofumi Hirota, Kazuma Kofu, Maiko Matsuura, Masato TI Magnetic field-induced change of modulated antiferromagnetic correlations for La1.85Sr0.15Cu1-yZnyO4 with y=0.004, 0.02 SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 8th International Conference (ICNS 2005) CY NOV 27-DEC 02, 2005 CL Sydney, AUSTRALIA SP Australian Govt, Dept Educ, Sci & Training, Australian Nucl Sci & Technol Org, ISIS, Cooperat Res Ctr Polymers, INVAP S E, Inst Laue Langevin DE magnetic neutron scattering; high temperature superconductivity; impurity; magnetic field ID HIGH-TEMPERATURE SUPERCONDUCTOR; NEUTRON-SCATTERING AB In the high temperature superconductor La1.85Sr0.15Cu1-yZnyO4, we directly observed modulated antiferromagnetic correlations of Cu spin orientations via elastic (y = 0.02) and low energy inelastic (y = 0.004) magnetically scattered neutron intensity. A magnetic field was applied perpendicular to the CuO2 plane to change these correlations. For y = 0.02 we confirmed an earlier observation of elastic scattered intensity at 2 K and 0 T. The component of the magnetic moment perpendicular to the scattering vector is mu(perpendicular to Q) < 0.065 mu B, and is enhanced by 32% when a 5.5 T field is applied. For y = 0.004, we observed a 145% enhancement of 3 meV spin excitations when a 14.5 T magnetic field is applied at 1.6 K. However, we observed no elastic scattered intensity at either 0 or 14.5 T. (c) 2006 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Tohoku Univ, IMRAM, Sendai, Miyagi 9808577, Japan. Hahn Meitner Inst Berlin GmbH, BENSC, D-14109 Berlin, Germany. Univ Tokyo, ISSP, Tokai, Ibaraki 3191106, Japan. RP Winn, BL (reprint author), Oak Ridge Natl Lab, POB 2008,Bldg 7964-H, Oak Ridge, TN 37831 USA. EM bwinn@bnl.gov RI Hirota, Kazuma/C-6797-2008; Matsuura, Masato/C-2827-2013; Winn, Barry/A-5065-2016 OI Matsuura, Masato/0000-0003-4470-0271; Winn, Barry/0000-0001-6383-4318 NR 13 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD NOV 15 PY 2006 VL 385 SI SI BP 153 EP 155 DI 10.1016/j.physb.2006.05.308 PN 1 PG 3 WC Physics, Condensed Matter SC Physics GA 120PF UT WOS:000243096400046 ER PT J AU Arnold, T Cook, RE Chanaa, S Clarke, SM Farinelli, M Yaron, P Larese, JZ AF Arnold, Thomas Cook, Richard E. Chanaa, Sami Clarke, Stuart M. Farinelli, Michael Yaron, Peter Larese, J. Z. TI Neutron scattering and thermodynamic investigations of thin films of n-alkanes adsorbed on MgO(100) surfaces SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 8th International Conference (ICNS 2005) CY NOV 27-DEC 02, 2005 CL Sydney, AUSTRALIA SP Australian Govt, Dept Educ, Sci & Training, Australian Nucl Sci & Technol Org, ISIS, Cooperat Res Ctr Polymers, INVAP S E, Inst Laue Langevin DE alkane; adsorption isotherm; neutron diffraction; neutron vibrational spectroscopy; magnesium oxide ID GRAPHITE; METHANE; HEXANE; GROWTH AB Recent thermodynamic and neutron scattering measurements of thin films of normal-alkanes adsorbed on MgO (100) surfaces are reported. Neutron Diffraction and Neutron Vibrational Spectroscopy data are discussed with reference to a comprehensive set of high-precision volumetric isotherms for the alkanes. (c) 2006 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Univ Cambridge, BP Inst, Cambridge, England. Univ Cambridge, Dept Chem, Cambridge, England. RP Larese, JZ (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM jzl@utk.edu OI Arnold, Thomas/0000-0001-8295-3822 NR 12 TC 13 Z9 13 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD NOV 15 PY 2006 VL 385 SI SI BP 205 EP 207 DI 10.1016/j.physb.2006.05.189 PN 1 PG 3 WC Physics, Condensed Matter SC Physics GA 120PF UT WOS:000243096400062 ER PT J AU Williams, DJ Vogel, SC Daemen, LL AF Williams, D. J. Vogel, S. C. Daemen, L. L. TI Neutron diffraction study of cyanate ligand order/disorder in AgNCO at 300-50K SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 8th International Conference (ICNS 2005) CY NOV 27-DEC 02, 2005 CL Sydney, AUSTRALIA SP Australian Govt, Dept Educ, Sci & Training, Australian Nucl Sci & Technol Org, ISIS, Cooperat Res Ctr Polymers, INVAP S E, Inst Laue Langevin DE AgNCO; cyanate; neutron diffraction; order; disorder ID VIBRATIONAL SPECTRA; ISOCYANATE COMPLEXES; CRYSTAL-STRUCTURE AB The study of ordered/disordered cyanate ligands in AgNCO was carried out using the neutron powder diffractometers, high-pressure preferred orientation (HIPPO) and high-intensity powder diffractometer (HIPD), at LANSCE. Structural analysis was performed on AgNCO at five different temperatures (300, 200, 150, 100 and 50 K). AgNCO (No. 11, P2(1)/m, a = 5.4742(3) angstrom, b = 6.3784(2) angstrom, 3 c = 3.4170(l) angstrom, beta = 90.931(5), vol. = 119.298(8), density = 4.173 g/cm(3), and Z = 2) was found to have an ordered OCN ligand from 300 to 50 K. The bond lengths results from the analysis yielded Ag-N = 2.1483(14) angstrom, C-N = 1. 1708(33) angstrom and C-O = 1. 1829(3 5) angstrom. (c) 2006 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Williams, DJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Lujan Center, LANL/G-4896-2012; OI Vogel, Sven C./0000-0003-2049-0361 NR 22 TC 4 Z9 4 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD NOV 15 PY 2006 VL 385 SI SI BP 228 EP 230 DI 10.1016/j.ysb.2006.05.197 PN 1 PG 3 WC Physics, Condensed Matter SC Physics GA 120PF UT WOS:000243096400069 ER PT J AU Brown, CM Jacques, TL Hess, NJ Daemen, LL Mamontov, E Linehan, JC Stowe, AC Autrey, T AF Brown, Craig M. Jacques, Teresa L. Hess, Nancy J. Daemen, Luke L. Mamontov, Eugene Linehan, John C. Stowe, Ashley C. Autrey, Tom TI Dynamics of ammonia borane using neutron scattering SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 8th International Conference (ICNS 2005) CY NOV 27-DEC 02, 2005 CL Sydney, AUSTRALIA SP Australian Govt, Dept Educ, Sci & Training, Australian Nucl Sci & Technol Org, ISIS, Cooperat Res Ctr Polymers, INVAP S E, Inst Laue Langevin DE hydrogen storage; dynamics; neutron; quasielastic scattering; backscattering ID SPECTROMETER; BH3NH3; NIST AB We have used both the backscattering (HFBS) and time-of-flight (DCS) neutron spectrometers to investigate proton dynamics in ammonia borane, a compound of intense interest as a model for 'chemical hydrogen storage' materials. Results indicate that the deposition of ammonia borane on a mesoporous silicate results in longer proton residence times and lower energy barriers for proton motion compared to bulk ammonia borane. The reduced activation energy for proton motions may partly explain the improved thermolysis and lowering the activation barrier for the loss of the first equivalent of H-2. In addition, the phonon density of states for neat ammonia borane compares well with other spectroscopic results, with the intense peak at 22meV assigned to the librational NH3 and BH3 modes, whereas ammonia borane on MCM-41 displays a broad, featureless spectrum indicating a poorly crystalline material. Published by Elsevier B.V. C1 Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. Smith Coll, Dept Chem, Northampton, MA 01063 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. Pacific NW Natl Lab, Fundamental Sci Div, Richland, WA 99352 USA. RP Brown, CM (reprint author), Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. EM craig.brown@nist.gov RI Lujan Center, LANL/G-4896-2012; Brown, Craig/B-5430-2009; Mamontov, Eugene/Q-1003-2015; OI Brown, Craig/0000-0002-9637-9355; Mamontov, Eugene/0000-0002-5684-2675; Hess, Nancy/0000-0002-8930-9500 NR 12 TC 15 Z9 15 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD NOV 15 PY 2006 VL 385 SI SI BP 266 EP 268 DI 10.1016/j.physb.2006.05.063 PN 1 PG 3 WC Physics, Condensed Matter SC Physics GA 120PF UT WOS:000243096400081 ER PT J AU Kolesnikov, AI Loong, CK de Souza, NR Burnham, CJ Moravsky, AP AF Kolesnikov, A. I. Loong, C. -K. de Souza, N. R. Burnham, C. J. Moravsky, A. P. TI Anomalously soft dynamics of water in carbon nanotubes SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 8th International Conference (ICNS 2005) CY NOV 27-DEC 02, 2005 CL Sydney, AUSTRALIA SP Australian Govt, Dept Educ, Sci & Training, Australian Nucl Sci & Technol Org, ISIS, Cooperat Res Ctr Polymers, INVAP S E, Inst Laue Langevin DE water; carbon nanotubes; nanoscale confinement ID MOLECULAR MECHANISM; CHANNEL; ICE AB The structure and dynamics of water confined to the one-dimensional nanotube interior are found to be drastically altered with respect to bulk water. Neutron diffraction, inelastic and quasielastic neutron scattering measurements in parallel with MD simulations have clearly shown the entry of water into open-ended single-wall carbon nanotubes and identified an ice-shell plus central water-chain structure. The observed extremely soft dynamics of nanotube-water arises mainly from a qualitatively large reduction in the hydrogen-bond connectivity of the water chain. Anomalously enhanced thermal motions in the water chain, modeled by a low-barrier, flattened, highly anharmonic potential well, explain the large mean-square displacement of hydrogen and the fluid-like behavior of nanotube-water at temperatures far below the nominal freezing point. (c) 2006 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Div Intense Pulsed Neutron Source, Argonne, IL 60439 USA. Univ Houston, Dept Phys, Houston, TX 77204 USA. MER Corp, Tucson, AZ 85706 USA. RP Kolesnikov, AI (reprint author), Argonne Natl Lab, Div Intense Pulsed Neutron Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM akolesnikov@anl.gov RI de Souza, Nicolas/B-4257-2008; Kolesnikov, Alexander/I-9015-2012 OI Kolesnikov, Alexander/0000-0003-1940-4649 NR 9 TC 20 Z9 20 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD NOV 15 PY 2006 VL 385 SI SI BP 272 EP 274 DI 10.1016/j.physb.2006.05.065 PN 1 PG 3 WC Physics, Condensed Matter SC Physics GA 120PF UT WOS:000243096400083 ER EF