FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Candy, JV Chambers, DH Robbins, CL Guidry, BL Poggio, AJ Dowla, F Hertzog, CA AF Candy, James V. Chambers, David H. Robbins, Christopher L. Guidry, Brian L. Poggio, Andrew J. Dowla, Farid Hertzog, Claudia A. TI Wideband multichannel time-reversal processing for acoustic communications in highly reverberant environments SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article ID NONCOHERENT UNDERWATER COMMUNICATIONS; PHASE-CONJUGATION; SHALLOW-WATER; PULSE-COMPRESSION; OCEAN; CHANNELS AB The development of multichannel time-reversal (T/R) processing techniques continues to progress rapidly especially when the need to communicate in a reverberant environment is critical. The underlying T/R concept is based on time-reversing the Green's function characterizing the uncertain communications channel mitigating the deleterious dispersion and multipath effects. In this paper, attention is focused on two major objectives: (1) wideband communications leading to a time-reference modulation technique; and (2) multichannel acoustic communications in two waveguides: a stairwell and building corridors with many obstructions, multipath returns, severe background noise, disturbances, and long propagation paths (similar to 180 ft) including disruptions (bends). It is shown that T/R receivers are easily extended to wideband designs. Acoustic information signals are transmitted *With an eight-element array to two receivers with a significant loss in signal levels due to the propagation environment. The results of the new wideband T/R processor and modulation scheme demonstrate that the overall performance for both high (24-bit) and low (1-bit) bit level analog-to-digital converter designs. These results are validated by performing proof-of-principle acoustic communications experiments in air. It is shown that the resulting T/R receivers are capable of extracting the transmitted coded sequence from noisy microphone array measurements with zero-bit error. (c) 2006 Acoustical Society of America. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Candy, JV (reprint author), Univ Cambridge, Dept Engn, Signal Proc Grp, Trumpington Rd, Cambridge CB2 1PZ, England. EM tsoftware@aol.com NR 24 TC 7 Z9 7 U1 0 U2 3 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 EI 1520-8524 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD AUG PY 2006 VL 120 IS 2 BP 838 EP 851 DI 10.1121/1.2211588 PG 14 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA 074TT UT WOS:000239835400031 ER PT J AU Fritz, BG AF Fritz, Brad G. TI Aerosol entrainment from a sparged non-Newtonian slurry SO JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION LA English DT Article ID AERATION TANKS AB Previous bench-scale experiments have provided data necessary for the development of empirical models that describe aerosol entrainment from bubble bursting. However, previous work has not been extended to non-Newtonian liquid slurries. Design of a waste treatment plant on the Hanford Site in Washington required an evaluation of the applicability of these models outside of their intended range. For this evaluation, aerosol measurements were conducted above an air-sparged mixing tank filled with simulated waste slurry possessing Bingham plastic rheological properties. Three aerosol-size fractions were measured at three sampling heights and for three different sparging rates. The measured entrainment was compared with entrainment models. One model developed based on bench-scale air-water experiments agreed well with measured entrainment. Another model did not agree well with the measured entrainment. It appeared that the source of discrepancy between measured and modeled entrainment stemmed from application beyond the range of data used to develop the model. A possible separation in entrainment coefficients between air-water and steam-water systems was identified. A third entrainment model was adapted to match experimental conditions and fit a posted to the experimental data, resulting in a modified version that resulted in estimated entrainment rates similar to the first model. C1 Pacific NW Natl Lab, Richland, WA 99354 USA. RP Fritz, BG (reprint author), Pacific NW Natl Lab, POB 999,MS 6-75, Richland, WA 99354 USA. EM Bradley.Fritz@pnl.gov NR 14 TC 0 Z9 0 U1 0 U2 0 PU AIR & WASTE MANAGEMENT ASSOC PI PITTSBURGH PA ONE GATEWAY CENTER, THIRD FL, PITTSBURGH, PA 15222 USA SN 1047-3289 J9 J AIR WASTE MANAGE JI J. Air Waste Manage. Assoc. PD AUG PY 2006 VL 56 IS 8 BP 1108 EP 1114 PG 7 WC Engineering, Environmental; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 070WJ UT WOS:000239556300006 PM 16933643 ER PT J AU Fox, KM Hellmann, JR Dickey, EC Green, DJ Shelleman, DL Yeckley, RL AF Fox, K. M. Hellmann, J. R. Dickey, E. C. Green, D. J. Shelleman, D. L. Yeckley, R. L. TI Impression and compression creep of SiAlON ceramics SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID HIGH-TEMPERATURE CREEP; SILICON-NITRIDE CERAMICS; BEHAVIOR; MICROSTRUCTURE; TENSILE; RE; DEFORMATION; PERFORMANCE; COMPOSITES; STRENGTH AB Concurrent impression and uniaxial compression creep studies were performed on three Yb-SiAlON materials. Stress exponents were approximately 1 in compression and 2 in impression. The higher stress exponents were due to the complex stress field in the impression creep test, which caused microstructural dilation. The dilated multi-grain junctions also became filled with additional intergranular glassy phase. Focused ion beam milling and in situ lift-out specimen preparation combined with transmission electron microscopy was successful in identifying microstructural changes after creep testing. These observations have important implications in the design of creep-resistant materials in complex stress fields. C1 Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Fox, KM (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM kmf189@psu.edu RI Dickey, Elizabeth/A-3368-2011 OI Dickey, Elizabeth/0000-0003-4005-7872 NR 45 TC 8 Z9 8 U1 0 U2 4 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD AUG PY 2006 VL 89 IS 8 BP 2555 EP 2563 DI 10.1111/j.1551-2916.2006.01100.x PG 9 WC Materials Science, Ceramics SC Materials Science GA 063GI UT WOS:000239005900030 ER PT J AU McMahon, G Saint-Cyr, HF Lechene, C Unkefer, CJ AF McMahon, G. Saint-Cyr, H. Francois Lechene, C. Unkefer, C. J. TI CN- secondary ions form by recombination as demonstrated using multi-isotope mass spectrometry of C-13- and N-15-labeled polyglycine SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article AB We have studied the mechanism of formation CN- secondary ions under Cs+ primary ion bombardment. We have synthesized C-13 and N-15 labeled polyglycine samples with the distance between the two labels and the local atomic environment of the C-13 label systematically varied. We have measured four masses in parallel: C-12, C-13, and two Of (CN)-C-12-N-14, (CN)-C-13-N-14, (CN)-C-12-N-15, and (CN)-C-13-N-15. We have calculated the C-13/C-12 isotope ratio, and the different combinations of the CN isotope ratios ((CN)-C-27/(CN)-C-26, (CN)-C-28/(CN)-C-27, and (CN)-C-28/(CN)-C-26). We have measured a high (CN-)-C-13-N-15 secondary ion current from the C-13 and N-15 labeled polyglycines, even when the C-13 and N-15 labels are separated. By comparing the magnitude of the varied combinations of isotope ratios among the samples with different labeling positions, we conclude the following: CN- formation is in large fraction due to recombination of C and N; the C=O double bond decreases the extent of CN- formation compared to the case where carbon is singly bonded to two hydrogen atoms; and double-labeling with C-13 and N-15 allows us to detect with high sensitivity the molecular ion (CN-)-C-13-N-15. C1 Harvard Univ, Sch Med, NRIMS, Cambridge, MA 02139 USA. Brigham & Womens Hosp, Cambridge, MA USA. Los Alamos Natl Lab, Natl Stable Isotopes Resource, Los Alamos, NM USA. RP Lechene, C (reprint author), Harvard Univ, Sch Med, NRIMS, 65 Landsdowne St, Cambridge, MA 02139 USA. EM cpl@harvard.edu RI McMahon, Greg/C-3991-2013 FU NIBIB NIH HHS [5P41EB001974-05, P41 5P41EB002166]; NIDCD NIH HHS [5R01DC004179-03] NR 12 TC 23 Z9 23 U1 0 U2 4 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1044-0305 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD AUG PY 2006 VL 17 IS 8 BP 1181 EP 1187 DI 10.1016/j.jasms.2006.04.031 PG 7 WC Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Chemistry; Spectroscopy GA 071YI UT WOS:000239639400016 PM 16750387 ER PT J AU Huang, Y Zhang, F Hwang, KC Nix, WD Pharr, GM Feng, G AF Huang, Y Zhang, F Hwang, KC Nix, WD Pharr, GM Feng, G TI A model of size effects in nano-indentation SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE nano-indentation hardness; maximum allowable density of geometrically necessary dislocations; Taylor dislocation model; indenter tip radius ID STRAIN GRADIENT PLASTICITY; INDENTER TIP RADIUS; SINGLE-CRYSTALS; NANOINDENTATION HARDNESS; CONVENTIONAL THEORY; DEPENDENT HARDNESS; BILINEAR BEHAVIOR; THIN-FILMS; DEFORMATION; MICROINDENTATION AB The indentation hardness-depth relation established by Nix and Gao [1998. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411-425] agrees well with the micro-indentation but not nano-indentation hardness data. We establish an analytic model for nano-indentation hardness based on the maximum allowable density of geometrically necessary dislocations. The model gives a simple relation between indentation hardness and depth, which degenerates to Nix and Gao [1998. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411-425] for micro-indentation. The model agrees well with both micro- and nano-indentation hardness data of MgO and iridium. (c) 2006 Elsevier Ltd. All rights reserved. C1 Univ Illinois, Dept Mech & Ind Engn, Urbana, IL 61801 USA. Tsing Hua Univ, Dept Engn Mech, FML, Beijing 100084, Peoples R China. Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. RP Huang, Y (reprint author), Univ Illinois, Dept Mech & Ind Engn, Urbana, IL 61801 USA. EM huang9@uiuc.edu RI Feng, Gang/B-8453-2008; HWANG, Keh-Chih/A-9989-2014; Huang, Yonggang/B-6998-2009 NR 42 TC 162 Z9 167 U1 4 U2 76 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD AUG PY 2006 VL 54 IS 8 BP 1668 EP 1686 DI 10.1016/j.jmps.2006.02.002 PG 19 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 058ME UT WOS:000238668300006 ER PT J AU Sullivan, TM Adams, J Blake, R AF Sullivan, Terry M. Adams, Jay Blake, Reginald TI Urban impacts of mercury emissions from coal-fired power plants SO JOURNAL OF URBAN TECHNOLOGY LA English DT Article ID LAKE C1 Brookhaven Natl Lab, Environm Res & Technol Div, Upton, NY 11973 USA. CUNY City Coll, Phys & Biol Sci Dept, New York, NY 10021 USA. RP Sullivan, TM (reprint author), Brookhaven Natl Lab, Environm Res & Technol Div, Upton, NY 11973 USA. NR 26 TC 1 Z9 1 U1 1 U2 2 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXFORDSHIRE, ENGLAND SN 1063-0732 J9 J URBAN TECHNOL JI J. Urban Technol. PD AUG PY 2006 VL 13 IS 2 BP 53 EP 70 DI 10.1080/10630730600872047 PG 18 WC Urban Studies SC Urban Studies GA 075ZA UT WOS:000239925200004 ER PT J AU Park, G Farrar, CR Rutherford, AC Robertson, AN AF Park, Gyuhae Farrar, Charles R. Rutherford, Amanda C. Robertson, Amy N. TI Piezoelectric active sensor self-diagnostics using electrical admittance measurements SO JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME LA English DT Article ID SMART BEAMS; IMPEDANCE; LAYER; ACTUATORS; PATCHES; COMPOSITES AB This paper presents a piezoelectric sensor self-diagnostic procedure that performs in situ monitoring of the operational status of piezoelectric materials used for sensors and actuators in structural health monitoring (SHM) applications. The sensor/actuator self-diagnostic procedure, where the sensors/actuators are confirmed to be functioning properly during operation, is a critical component to successfully complete the SHM process with large numbers of active sensors typically installed in a structure. The premise of this procedure is to track the changes in the capacitive value of piezoelectric materials resulting from the degradation of the mechanical/electrical properties and its attachment to a host structure, which is manifested in the imaginary part of the measured electrical admittances. This paper concludes with an experimental example to demonstrate the feasibility of the proposed procedure. C1 Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. RP Park, G (reprint author), Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. EM gpark@lanl.gov; farrar@lanl.gov; mandyr@lanl.gov; arobertson@hytecinc.com RI Farrar, Charles/C-6954-2012; OI Farrar, Charles/0000-0001-6533-6996 NR 28 TC 73 Z9 73 U1 0 U2 5 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 1048-9002 J9 J VIB ACOUST JI J. Vib. Acoust.-Trans. ASME PD AUG PY 2006 VL 128 IS 4 BP 469 EP 476 DI 10.1115/1.2202157 PG 8 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA 073VT UT WOS:000239771400006 ER PT J AU Bernardin, F Herring, B Page-Shafer, K Kuiken, C Delwart, E AF Bernardin, F. Herring, B. Page-Shafer, K. Kuiken, C. Delwart, E. TI Absence of HCV viral recombination following superinfection SO JOURNAL OF VIRAL HEPATITIS LA English DT Article DE hepatitis C virus; recombination; superinfection ID HEPATITIS-C VIRUS; BLOOD MONONUCLEAR-CELLS; INJECTION-DRUG USERS; NATURAL-POPULATIONS; DENGUE VIRUS; MOLECULAR EPIDEMIOLOGY; MIXED INFECTION; ST-PETERSBURG; GENOTYPES; PREVALENCE AB We sought evidence of viral recombination in five recently hepatitis C virus (HCV) infected young injection drug users who became superinfected with a distinguishable strain of HCV. The entire open reading frame of plasma HCV genomes was reverse transcribed, polymerase chain reaction amplified in two fragments, and directly sequenced. In two cases of same subtype (1a > 1a) superinfections the initial and later strains were both sequenced and compared for evidence of recombination. In three cases of superinfection with strains of different genotype/subtype (3a > 1a, 1a > 3a, 1b > 1a), the later time point HCV genomes were sequenced and compared with representative genomes of the initial genotype/subtype. No evidence of intra- or inter-genotype/subtype recombination was detected using six different programs for detecting recombination. We conclude that the generation of viable recombinant HCV genomes able to dominate in the viral quasispecies is a rare event. C1 BSRI, San Francisco, CA 94118 USA. Univ Calif San Francisco, Dept Med, San Francisco, CA USA. Univ Calif San Francisco, Ctr AIDS Prevent Studies, San Francisco, CA USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. RP Delwart, E (reprint author), BSRI, 270 Masonic Ave, San Francisco, CA 94118 USA. EM delwarte@medicine.ucsf.edu RI Herring, Belinda/M-7252-2015; OI Page, Kimberly/0000-0002-7120-1673; Delwart, Eric/0000-0002-6296-4484 FU NHLBI NIH HHS [R01 HL076902-04]; NIDA NIH HHS [R01 DA016017, 2 R01 DA16017-03A1] NR 46 TC 15 Z9 15 U1 0 U2 0 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 1352-0504 J9 J VIRAL HEPATITIS JI J. Viral Hepatitis PD AUG PY 2006 VL 13 IS 8 BP 532 EP 537 DI 10.1111/j.1365-2893.2006.00722.x PG 6 WC Gastroenterology & Hepatology; Infectious Diseases; Virology SC Gastroenterology & Hepatology; Infectious Diseases; Virology GA 065WW UT WOS:000239191800005 PM 16901283 ER PT J AU Baccam, P Beauchemin, C Macken, CA Hayden, FG Perelson, AS AF Baccam, Prasith Beauchemin, Catherine Macken, Catherine A. Hayden, Frederick G. Perelson, Alan S. TI Kinetics of influenza A virus infection in humans SO JOURNAL OF VIROLOGY LA English DT Article ID HEPATITIS-C VIRUS; SERONEGATIVE ADULT VOLUNTEERS; DYNAMICS IN-VIVO; CYTOKINE RESPONSES; VIRAL DYNAMICS; INTERFERON-PRODUCTION; RESPIRATORY-TRACT; B-VIRUS; CLEARANCE; THERAPY AB Currently, little is known about the viral kinetics of influenza A during infection within an individual. We utilize a series of mathematical models of increasing complexity, which incorporate target cell limitation and the innate interferon response, to examine influenza A virus kinetics in the upper respiratory tracts of experimentally infected adults. The models were fit to data from an experimental H1N1 influenza A/Hong Kong/123/77 infection and suggest that it is important to include the eclipse phase of the viral life cycle in viral dynamic models. Doing so, we estimate that after a delay of similar to 6 h, infected cells begin producing influenza virus and continue to do so for similar to 5 h. The average lifetime of infected cells is similar to 11 h, and the half-life of free infectious virus is similar to 3 h. We calculated the basic reproductive number, R, which indicated that a single infected cell could produce similar to 22 new productive infections. This suggests that antiviral treatments have a large hurdle to overcome in moderating symptoms and limiting infectiousness and that treatment has to be initiated as early as possible. For about 50% of patients, the curve of viral titer versus time has two peaks. This bimodal behavior can be explained by incorporating the antiviral effects of interferon into the model. Our model also compared well to an additional data set on viral titer after experimental infection and treatment with the neuraminidase inhibitor zanamivir, which suggests that such models may prove useful in estimating the efficacies of different antiviral therapies for influenza A infection. C1 Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. Univ Alberta, Dept Phys, Edmonton, AB T6G 2J1, Canada. Univ Virginia, Sch Med, Dept Internal Med, Charlottesville, VA 22908 USA. RP Perelson, AS (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys Grp, MS-K710, Los Alamos, NM 87545 USA. EM asp@lanl.gov RI Beauchemin, Catherine/G-4619-2011 OI Beauchemin, Catherine/0000-0003-0599-0069 FU NCRR NIH HHS [RR 06555, R01 RR006555]; NIAID NIH HHS [AI 28433, N01 AI 50020, R37 AI028433, R01 AI028433, N01AI50020] NR 52 TC 205 Z9 211 U1 2 U2 24 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD AUG PY 2006 VL 80 IS 15 BP 7590 EP 7599 DI 10.1128/JVI.01623-05 PG 10 WC Virology SC Virology GA 065VX UT WOS:000239189100030 PM 16840338 ER PT J AU Su, D Lou, ZY Sun, F Zhai, YJ Yang, HT Zhang, RG Joachimiak, A Zhang, XJC Bartlam, M Rao, ZH AF Su, Dan Lou, Zhiyong Sun, Fei Zhai, Yujia Yang, Haitao Zhang, Rongguang Joachimiak, Andrzej Zhang, Xuejun C. Bartlam, Mark Rao, Zihe TI Dodecamer structure of severe acute respiratory syndrome coronavirus nonstructural protein nsp10 SO JOURNAL OF VIROLOGY LA English DT Article ID MOLECULAR-GRAPHICS PROJECT; SARS-CORONAVIRUS; REPLICASE; INSIGHTS; TRANSCRIPTION; SEQUENCE; PROGRAM AB The severe acute respiratory syndrome coronavirus (SARS-CoV) nonstructural proteins nsp1 to nsp16 have been implicated by genetic analysis in the assembly of a functional replication/transcription complex. We report the crystal structure of nsp10 from SARS-CoV at 2.1-angstrom resolution. The nsp10 structure has a novel fold, and 12 identical subunits assemble to form a unique spherical dodecameric architecture. Two zinc fingers have been identified from the nsp10 monomer structure with the sequence motifs C-(X)(2)-C-(X)(5)-H-(X)(6)-C and C-(X)(2)-C-(X)(7)-C-(X)-C. The nsp10 crystal structure is the first of a new class of zinc finger protein three-dimensional structures to be revealed experimentally. The zinc finger sequence motifs are conserved among all three coronavirus antigenic groups, implicating an essential function for nsp10 in all coronaviruses. Based on the structure, we propose that nsp10 is a transcription factor for coronavirus replication/transcription. C1 Tsing Hua Univ, Struct Biol Lab, Tsinghua IBP Joint Res, Beijing 100084, Peoples R China. Chinese Acad Sci, Natl Lab Biomacromol, Inst Biophys, Beijing 100101, Peoples R China. Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. Oklahoma Med Res Fdn, Crystallog Res Program, Oklahoma City, OK 73104 USA. RP Rao, ZH (reprint author), Tsing Hua Univ, Struct Biol Lab, Tsinghua IBP Joint Res, Life Sci Bldg, Beijing 100084, Peoples R China. EM raozh@xtal.tsinghua.edu.cn RI Yang, Haitao/G-9116-2012; OI Bartlam, Mark/0000-0001-5173-5080 NR 26 TC 45 Z9 53 U1 0 U2 5 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD AUG PY 2006 VL 80 IS 16 BP 7902 EP 7908 DI 10.1128/JVI.00483-06 PG 7 WC Virology SC Virology GA 070WV UT WOS:000239557700012 PM 16873247 ER PT J AU Xu, XL Zhai, YJ Sun, F Lou, ZY Su, D Xu, YY Zhang, RG Joachimiak, A Zhang, XJC Bartlam, M Rao, ZH AF Xu, Xiaoling Zhai, Yujia Sun, Fei Lou, Zhiyong Su, Dan Xu, Yuanyuan Zhang, Rongguang Joachimiak, Andrzej Zhang, Xuejun C. Bartlam, Mark Rao, Zihe TI New antiviral target revealed by the hexameric structure of mouse hepatitis virus nonstructural protein nsp15 SO JOURNAL OF VIROLOGY LA English DT Article ID MOLECULAR-GRAPHICS PROJECT; SARS-CORONAVIRUS; SPECTROSCOPIC RULER; CNS DEMYELINATION; ENERGY-TRANSFER; ENDORIBONUCLEASE; SEQUENCE; INSIGHTS; IDENTIFICATION; UNIQUE AB The unique coronavirus transcription/replication machinery comprised of multiple virus-encoded nonstructural proteins (nsp) plays a vital role during initial and intermediate phases of the viral life cycle. The crystal structure of mouse hepatitis virus strain A59 (MIIV-A59) nsp15 is reported at 2.15-angstrom resolution. nsp15 is an XendoU endoribonuclease and is the first one from this family to have its structure unveiled. The MRV-A59 nsp15 monomer structure has a novel protein fold. Two nsp15 trimers form a back-to-back hexamer that is believed to be the functional unit. The structure reveals the catalytic site including the highly conserved residues His262, His277, and Lys317, which is supported by mutagenesis analysis. Gel filtration and enzyme activity assays confirmed that the hexamer is the active form for nsp15 and demonstrate the specificity of nsp15 for uridylate. The high sequence conservation of nsp15 in coronaviruses, including that of severe acute respiratory syndrome, suggests that this protein may provide a new target for the design of antiviral therapeutics. C1 Tsing Hua Univ, Struct Biol Lab, IBP Joint Res, Beijing 100084, Peoples R China. Chinese Acad Sci, Natl Lab Biomacromol, Inst Biophys, Beijing 100101, Peoples R China. Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. Oklahoma Med Res Fdn, Crystallog Res Program, Oklahoma City, OK 73104 USA. RP Rao, ZH (reprint author), Tsing Hua Univ, Struct Biol Lab, IBP Joint Res, Life Sci Bldg, Beijing 100084, Peoples R China. EM raoz@xtal.tsinghua.edu.cn RI Sun, Fei/C-4190-2015; OI Sun, Fei/0000-0002-0351-5144; Bartlam, Mark/0000-0001-5173-5080 NR 33 TC 39 Z9 42 U1 0 U2 2 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD AUG PY 2006 VL 80 IS 16 BP 7909 EP 7917 DI 10.1128/JVI.00525-06 PG 9 WC Virology SC Virology GA 070WV UT WOS:000239557700013 PM 16873248 ER PT J AU Van der Loeff, MR Sarin, MM Baskaran, M Benitez-Nelson, C Buesseler, KO Charette, M Dai, M Gustafsson, O Masque, P Morris, PJ Orlandini, K Baena, ARY Savoye, N Schmidt, S Turnewitsch, R Voge, I Waples, JT AF Van der Loeff, Michiel Rutgers Sarin, Manmohan M. Baskaran, Mark Benitez-Nelson, Claudia Buesseler, Ken O. Charette, Matt Dai, Minhan Gustafsson, Orjan Masque, Pere Morris, Paul J. Orlandini, Kent Rodriguez Y Baena, Alessia Savoye, Nicolas Schmidt, Sabine Turnewitsch, Robert Voege, Ingrid Waples, James T. TI A review of present techniques and methodological advances in analyzing Th-234 in aquatic systems SO MARINE CHEMISTRY LA English DT Article; Proceedings Paper CT Workshop on the Future Applications of 234th in Aquatic Ecosystems (FATE) CY AUG, 2004 CL Woods Hole, MA SP Natl Sci Fdn Chem Oceanog Program, Sci Comm Oceanogr Res DE Th-234; methodology; sampling; analytical techniques; export ID PARTICULATE ORGANIC-CARBON; GULF-OF-MEXICO; ANTHROPOGENIC RADIONUCLIDE DISTRIBUTIONS; PARTICLE RESIDENCE TIMES; THORIUM ISOTOPES; ARCTIC-OCEAN; ARABIAN SEA; SCAVENGING RATES; SERIES NUCLIDES; ATLANTIC-OCEAN AB The short-lived thorium isotope Th-234 (half-life 24.1 days) has been used as a tracer for a variety of transport processes in aquatic systems. Its use as a tracer of oceanic export via sinking particles has stimulated a rapidly increasing number of studies that require analyses of Th-234 in both marine and freshwater systems. The original Th-234 method is labor intensive. Thus, there has been a quest for simpler techniques that require smaller sample volumes. Here, we review current methodologies in the collection and analysis of Th-234 from the water column, discuss their individual strengths and weaknesses, and provide an outlook on possible further improvements and future challenges. Also included in this review are recommendations on calibration procedures and the production of standard reference materials as well as a flow chart designed to help researchers find the most appropriate Th-234 analytical technique for a specific aquatic regime and known sampling constraints. (c) 2005 Elsevier B.V. All rights reserved. C1 Alfred Wegener Inst Polar & Marine Res, D-27570 Bremerhaven, Germany. Phys Res Lab, Ahmadabad 380009, Gujarat, India. Wayne State Univ, Dept Geol, Detroit, MI 48202 USA. Univ S Carolina, Dept Geol Sci, Marine Sci Program, Columbia, SC 29208 USA. Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 USA. Xiamen Univ, State Key Lab Marine Environm Sci, Xiamen 361005, Peoples R China. Stockholm Univ, Inst Appl Environm Res, S-10691 Stockholm, Sweden. Univ Autonoma Barcelona, Inst Ciencia & Tecnol Ambientals, Bellaterra 08193, Spain. Natl Oceanog Ctr, Southampton, Hants, England. Argonne Natl Lab, Div Environm Res, Argonne, IL 60439 USA. Univ Genoa, Dip Te Ris, I-16126 Genoa, Italy. IAEA, Marine Environm Lab, Monaco, Monaco. Free Univ Brussels, Dept Analyt & Environm Chem, B-1050 Brussels, Belgium. Univ Bordeaux 1, Dept Geol & Oceanog, F-33405 Talence, France. Univ Wisconsin, Great Lakes WATER Inst, Milwaukee, WI 53204 USA. RP Van der Loeff, MR (reprint author), Alfred Wegener Inst Polar & Marine Res, D-27570 Bremerhaven, Germany. EM mloeff@awi-bremerhaven.de RI Dai, Minhan/G-3343-2010; Charette, Matthew/I-9495-2012; Waples, James/A-6205-2013; Schmidt, Sabine/G-1193-2013; Masque, Pere/B-7379-2008; OI Dai, Minhan/0000-0003-0550-0701; Schmidt, Sabine/0000-0002-5985-9747; Masque, Pere/0000-0002-1789-320X; Rutgers van der Loeff, Michiel/0000-0003-1393-3742; Benitez-Nelson, Claudia/0000-0002-1004-5048; Baskaran, Mark/0000-0002-2218-4328 NR 107 TC 81 Z9 81 U1 1 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-4203 EI 1872-7581 J9 MAR CHEM JI Mar. Chem. PD AUG 1 PY 2006 VL 100 IS 3-4 BP 190 EP 212 DI 10.1016/j.marchem.2005.10.012 PG 23 WC Chemistry, Multidisciplinary; Oceanography SC Chemistry; Oceanography GA 049LC UT WOS:000238016800003 ER PT J AU Carter, RH Underwood, JH Swab, JJ Wereszczak, AA Leveritt, C Emerson, R Burton, L AF Carter, Robert H. Underwood, John H. Swab, Jeffery J. Wereszczak, Andy A. Leveritt, Charlie Emerson, Ryan Burton, Lawrence TI Material selection for ceramic gun tube liner SO MATERIALS AND MANUFACTURING PROCESSES LA English DT Article; Proceedings Paper CT Gun Barrel Materials and Manufaturing Symposium CY 2005 CL St Michaels, MD DE ceramics; erosion; gun tubes; liners; materials selection; wear AB The U.S. Army Research Laboratory is investigating the application of ceramics as bore materials in advanced gun systems. The lower mass and improved high temperature performance of ceramics over traditional gun steels could produce new barrels with improved service life and lower weight while enabling the use of new propellants. Several different ceramics have been researched into which material would best survive the interior ballistic conditions for a variety of different caliber systems. The candidate materials are commercially available monolithic ceramics. Alumina, zirconia, three silicon carbide compositions, two silicon nitride compositions, and a SiAlON material were initially selected. A coupled approach of modeling and experimental verification led to the downselection of the silicon nitride and SiAlON materials as the most capable of surviving the interior ballistic conditions and functioning as a barrel liner. This paper describes the tests, presents the results, and discusses the reasons for these selections. C1 USA, Res Lab, Aberdeen Proving Ground, MD 21005 USA. USA, Battelle Sci Serv, Armament RD&E Ctr, Benet Labs, Watervliet, NY USA. Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Carter, RH (reprint author), USA, Res Lab, Aberdeen Proving Ground, MD 21005 USA. EM rcarter@arl.army.miil RI Wereszczak, Andrew/I-7310-2016 OI Wereszczak, Andrew/0000-0002-8344-092X NR 17 TC 4 Z9 5 U1 0 U2 8 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1042-6914 J9 MATER MANUF PROCESS JI Mater. Manuf. Process. PD AUG PY 2006 VL 21 IS 6 BP 584 EP 590 DI 10.1080/10426910600602879 PG 7 WC Engineering, Manufacturing; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 068OG UT WOS:000239383700004 ER PT J AU Rivard, JDK Blue, CA Harper, DC Stiglich, JJ Ramachandran, G Champagne, VK AF Rivard, John D. K. Blue, Craig A. Harper, David C. Stiglich, Jacob J. Ramachandran, Gautham Champagne, Victor K., Jr. TI High-density infrared cladding of Ta on steel SO MATERIALS AND MANUFACTURING PROCESSES LA English DT Article; Proceedings Paper CT Gun Barrel Materials and Manufaturing Symposium CY 2005 CL St Michaels, MD DE high density infrared processing; steel; tantalum AB The addition of tantalum to the inside diameter of a gun barrel would reduce erosion during firing of medium and large caliber guns. In this work, chemical vapor deposited (CVD) Ta was bonded to A723 Steel. High-density infrared (HDI) heating was employed to bond Ta to steel at 1440 degrees C while maintaining bulk steel temperatures below the 357 degrees C threshold for retaining beneficial compressive stresses (autofrettage). Through-thickness temperature evolution modeling was performed. Metallographic evaluation of claddings is reported. Characterization of the interface showed that metallurgical bonding occurred while keeping bulk temperatures low. C1 Strateg Anal Inc, S&T Div, Arlington, VA 22201 USA. Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN USA. Adv Mat Associates, Breckenridge, CO USA. Ultramet Inc, Pacoima, CA USA. USA, Weap & Mat Res Directorate, Res Lab, Aberdeen Proving Ground, MD USA. RP Rivard, JDK (reprint author), Strateg Anal Inc, S&T Div, Arlington, VA 22201 USA. EM JRivard@sainc.com NR 8 TC 2 Z9 2 U1 0 U2 3 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1042-6914 J9 MATER MANUF PROCESS JI Mater. Manuf. Process. PD AUG PY 2006 VL 21 IS 6 BP 612 EP 617 DI 10.1080/10426910600609361 PG 6 WC Engineering, Manufacturing; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 068OG UT WOS:000239383700008 ER PT J AU Wu, YF Chiang, WC Chu, J Nieh, TG Kawamura, Y Wu, JK AF Wu, YF Chiang, WC Chu, J Nieh, TG Kawamura, Y Wu, JK TI Corrosion resistance of amorphous and crystalline Pd40Ni40P20 alloys in aqueous solutions SO MATERIALS LETTERS LA English DT Article DE Pd-based bulk metallic glasses; vacuum annealing; metal phosphide; potentiodynamic polarization measurement ID METALLIC SUPERCOOLED LIQUID; GLASS; BEHAVIOR; SUPERPLASTICITY; STABILIZATION; NICKEL; STATE; NI AB The corrosion behaviors of amorphous and crystalline Pd40Ni40P20 alloys in various aqueous solutions are reported in this paper. The corrosion resistance of crystalline (annealed) Pd40Ni40P20 is better than that of amorphous Pd40Ni40P20 in various corrosive solutions, due to crystalline Pd40Ni40P20 and mainly consists of inert Pd5P2, NI3P, Ni2Pd2P and noble Pd phases. These inert and noble properties result in a higher corrosion resistance in crystalline Pd40Ni40P20. (c) 2006 Elsevier B.V. All rights reserved. C1 Natl Taiwan Ocean Univ, Inst Mat Engn, Chilung 20224, Taiwan. Tech Univ Denmark, Dept Mfg Engn & Management, DK-2800 Lyngby, Denmark. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Kumamoto Univ, Dept Mech Engn & Mat Sci, Kumamoto 8608555, Japan. RP Wu, JK (reprint author), Natl Taiwan Ocean Univ, Inst Mat Engn, Chilung 20224, Taiwan. EM A0055@ntou.edu.tw RI Nieh, Tai-Gang/G-5912-2011 OI Nieh, Tai-Gang/0000-0002-2814-3746 NR 16 TC 15 Z9 15 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-577X J9 MATER LETT JI Mater. Lett. PD AUG PY 2006 VL 60 IS 19 BP 2416 EP 2418 DI 10.1016/j.matlet.2006.01.068 PG 3 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 055TB UT WOS:000238472200026 ER PT J AU Haller, EE AF Haller, E. E. TI Germanium: From its discovery to SiGe devices SO MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING LA English DT Article; Proceedings Paper CT Symposium on Germanium-Based Semiconductors from Materials to Devices held at the 2006 EMRS Spring Meeting CY MAY 29-JUN 02, 2006 CL Nice, FRANCE SP European Mat Res Soc DE germanium; semiconductors; isotopes; hydrogen; spectroscopy; diffusion; detectors ID HIGH-PURITY GERMANIUM; PURE GERMANIUM; RARE EVENTS; SEMICONDUCTORS; HYDROGEN; DIFFUSION; ACCEPTOR; IMPURITIES; DETECTORS; CRYSTALS AB Germanium, element #32, was discovered in 1886 by Clemens Winkler. Its first broad application was in the form of point contact Schottky diodes for radar reception during WWII. The addition of a closely spaced second contact led to the first all-solid-state electronic amplifier device, the transistor. The relatively low bandgap, the lack of a stable oxide and large surface state densities relegated germanium to the number 2 position behind silicon. The discovery of the lithium drift process, which made possible the formation of p-i-n diodes with fully depletable i-regions several centimeters thick, led germanium to new prominence as the premier gamma-ray detector. The development of ultra-pure germanium yielded highly stable detectors which have remained unsurpassed in their performance. New acceptors and donors were discovered and the electrically active role of hydrogen was clearly established several years before similar findings in silicon. Lightly doped germanium has found applications as far infrared detectors and heavily neutron transmutation doped (NTD) germanium is used in thermistor devices operating at a few milliKelvin. Recently germanium has been rediscovered by the silicon device community because of its superior electron and hole mobility and its ability to induce strains when alloyed with silicon. Germanium is again a mainstream electronic material. (C) 2006 Elsevier Ltd. All rights reserved. C1 Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Haller, EE (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM eehaller@lbl.gov NR 66 TC 32 Z9 34 U1 1 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1369-8001 J9 MAT SCI SEMICON PROC JI Mater. Sci. Semicond. Process PD AUG-OCT PY 2006 VL 9 IS 4-5 BP 408 EP 422 DI 10.1016/j.mssp.2006.08.063 PG 15 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Engineering; Materials Science; Physics GA 127GS UT WOS:000243574100002 ER PT J AU Berryman, JG AF Berryman, JG TI Measures of microstructure to improve estimates and bounds on elastic constants and transport coefficients in heterogeneous media SO MECHANICS OF MATERIALS LA English DT Article DE polycrystalline material; variational calculus; microstructures ID 2-COMPONENT COMPOSITE-MATERIAL; EFFECTIVE VISCOELASTIC MODULI; COMPLEX DIELECTRIC-CONSTANT; LONG-WAVELENGTH PROPAGATION; RIGOROUS BOUNDS; 2-PHASE MEDIA; POROUS-MEDIA; EFFECTIVE CONDUCTIVITY; BULK PROPERTIES; SHEAR MODULUS AB The most commonly discussed measures of microstructure in composite materials are the spatial correlation functions, which in a porous medium measure either the grain-to-grain correlations, or the pore-to-pore correlations in space. Improved bounds based on this information such as the Beran-Molyneux bounds for bulk modulus and the Beran bounds for conductivity are well-known. It is first shown how to make direct use of bounds and spatial correlation information to provide estimates that always lie between these upper and lower bounds for any microstructure whenever the microgeometry parameters are known. Then comparisons are made between these estimates, the bounds, and two new types of estimates. One new estimate for elastic constants makes use of the Peselnick-Meister bounds (based on Hashin-Shtrikman methods) for random polycrystals of laminates to generate self-consistent values that always lie between the bounds. A second new type of estimate for conductivity assumes that measurements of formation factors (of which there are at least two distinct types in porous media, associated respectively with pores and grains for either electrical and thermal conductivity) are available, and computes new bounds based-on this information. The paper compares and contrasts these various methods in order to clarify just what microstructural information-and how accurately that information-needs to be known in order to be useful for estimating material. constants in random and heterogeneous media. (C) 2005 Elsevier Ltd. All rights reserved. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Berryman, JG (reprint author), Lawrence Livermore Natl Lab, POB 808 L-200, Livermore, CA 94551 USA. EM berryman1@llnl.gov RI Berryman, James/A-9712-2008 NR 94 TC 13 Z9 13 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-6636 J9 MECH MATER JI Mech. Mater. PD AUG-OCT PY 2006 VL 38 IS 8-10 BP 732 EP 747 DI 10.1016/j.mechmat.2005.06.014 PG 16 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA 041PC UT WOS:000237467100005 ER PT J AU Duxbury, PM McGarrity, ES Holm, EA AF Duxbury, PM McGarrity, ES Holm, EA TI Critical manifolds in non-linear response of complex materials SO MECHANICS OF MATERIALS LA English DT Article DE non-linear random networks; grain boundary engineering; scaling laws; percolation; critical manifolds ID GRAIN-BOUNDARY MISORIENTATION; STRESS-CORROSION CRACKING; INTERGRANULAR CRACKING; COMPUTER-SIMULATION; DISORDERED-SYSTEMS; PERCOLATION THEORY; FRACTURE SURFACES; CRITICAL CURRENTS; SUPERCONDUCTORS; ROUGHNESS AB We describe two geometric structures, the shortest path and the minimum cut, and show that these structures emerge at special threshold points in the highly non-linear electrical response of complex networks. Algorithms which find the shortest path and the minimum cut directly as well as methods for finding the full non-linear response of complex networks are outlined. Scaling laws for the behavior of the shortest path and minimum cut in random networks are then surveyed. Finally, applications of the shortest path and minimum cut to grain boundary controlled polycrystalline materials are elucidated. (C) 2005 Elsevier Ltd. All rights reserved. C1 Michigan State Univ, Dept Phys & Astron, Ctr Fundamental Mat Res, E Lansing, MI 48824 USA. Sandia Natl Labs, Theoret & Computat Mat Modeling Dept, Albuquerque, NM 87185 USA. RP Duxbury, PM (reprint author), Michigan State Univ, Dept Phys & Astron, Ctr Fundamental Mat Res, E Lansing, MI 48824 USA. EM duxbury@pa.msu.edu RI Holm, Elizabeth/S-2612-2016 OI Holm, Elizabeth/0000-0003-3064-5769 NR 54 TC 6 Z9 6 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-6636 J9 MECH MATER JI Mech. Mater. PD AUG-OCT PY 2006 VL 38 IS 8-10 BP 757 EP 771 DI 10.1016/j.mechmat.2005.06.031 PG 15 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA 041PC UT WOS:000237467100007 ER PT J AU Xue, Q Gray, GT AF Xue, Q. Gray, G. T., III TI Development of adiabatic shear bands in annealed 316L stainless steel: Part I. Correlation between evolving microstructure and mechanical behavior SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID HIGH-STRAIN RATES; PLASTIC-DEFORMATION; LOCALIZATION; TEMPERATURE; EVOLUTION; PROPAGATION; INSTABILITY; TITANIUM; STRESS; COPPER AB Adiabatic shear localization in an annealed AISI 316L stainless steel was examined through a forced shear technique using a split Hopkinson pressure bar and hat-shaped specimens. A well-controlled forced shear technique provided the possibility of correlating the microstructural evolution of adiabatic shear localization to its transient mechanical behavior. The initiation of adiabatic shear bands occurred when the shear stress peaked after substantial work hardening. The work-hardening rate was found to play a dominant role in the formation of adiabatic shear localization. The stress drop presupposed the development of the localized deformation. A core structure of shear bands was generated within the shear band, which characterized a narrow-down process in the early stage of the shear band evolution. The continuous expansion of the shear band core to the entire width of the band was seen to correlate with the full development of shear localization. C1 Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Xue, Q (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM qxue@lanl.gov NR 49 TC 45 Z9 47 U1 3 U2 18 PU MINERALS METALS MATERIALS SOC PI WARRENDALE PA 184 THORN HILL RD, WARRENDALE, PA 15086 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD AUG PY 2006 VL 37A IS 8 BP 2435 EP 2446 DI 10.1007/BF02586217 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 070ME UT WOS:000239525900011 ER PT J AU Xue, Q Gray, GT AF Xue, Q. Gray, G. T., III TI Development of adiabatic shear bands in annealed 316L stainless steel: Part II. TEM studies of the evolution of microstructure during deformation localization SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID SEVERE PLASTIC-DEFORMATION; DYNAMIC RECRYSTALLIZATION; HIGH-STRAIN; GRAIN-SIZE; STEEL; TITANIUM; TEMPERATURE; ALLOY; MECHANISMS; STRESS AB The evolution of adiabatic shear localization in an annealed AISI 316L stainless steel has been investigated and was reported in Part I of this paper (Met. Trans. A, 2006, Vol. 37A, pp. 2435446). In the present research (Part 11), a comprehensive transmission electron microscopy (TEM) examination was conducted on the microstructural evolution of shear localization in this material at different loading stages. The TEM results indicate that elongated subgrain laths and an avalanche of dislocation cells are the major characteristics in an initiated band. Development of the substructures within shear bands is controlled by dynamic recovery and continuous dynamic recrystallization. The core of shear bands was found to consist of fine equiaxed subgrains. Well-developed shear bands are filled with a mixture of equiaxed, rectangular, and elongated subgrains. The equiaxed subgrains, with a typical size less than 100 nm, are postulated to result from either the breakdown and splitting of subgrain laths or the reconstruction of subcells. C1 Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Xue, Q (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM qxue@lanl.gov NR 43 TC 54 Z9 57 U1 4 U2 23 PU MINERALS METALS MATERIALS SOC PI WARRENDALE PA 184 THORN HILL RD, WARRENDALE, PA 15086 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD AUG PY 2006 VL 37A IS 8 BP 2447 EP 2458 DI 10.1007/BF02586218 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 070ME UT WOS:000239525900012 ER PT J AU Boyce, BL Reu, PL Robino, CV AF Boyce, B. L. Reu, P. L. Robino, C. V. TI The constitutive behavior of laser welds in 304L stainless steel determined by digital image correlation SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID RESISTANCE-SPOT-WELD; FRICTION STIR WELDS; HEAT-AFFECTED ZONE; MECHANICAL-PROPERTIES; DEFORMATION; AA2024 AB A digital image correlation (DIC) method has been used to characterize the constitutive tensile stress-strain response in 304L austenitic stainless steel weldments produced by both continuous-wave (CW) and pulsed-wave (PW) laser welding. The method provides quantitative two-dimensional (2-D) strain maps of the deformation field across the transverse weld samples throughout the tensile test. Local stress-strain response was extracted from regions within the fusion zone and compared to base metal response. The weldments were found to have a higher yield strength than the base metal. The metallurgical origin for the fusion zone strengthening was largely attributed to Hall-Petch and ferrite content effects. While failures localized in the fusion zone with little appreciable necking, the material within the fusion zone retained considerable local ductility: more than 45 pet strain at failure. Significant weld root porosity found in the PW condition and absent in the CW condition appeared to have no deleterious effect on the mechanical performance under the present test conditions in this very ductile, flaw-tolerant alloy. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Boyce, BL (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM blboyce@sandia.gov RI Boyce, Brad/H-5045-2012 OI Boyce, Brad/0000-0001-5994-1743 NR 28 TC 30 Z9 32 U1 3 U2 41 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD AUG PY 2006 VL 37A IS 8 BP 2481 EP 2492 DI 10.1007/BF02586221 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 070ME UT WOS:000239525900015 ER PT J AU Bland, PA Jackson, MD Coker, RF Cohen, BA Benedix, GK AF Bland, P. A. Jackson, M. D. Coker, R. F. Cohen, B. A. Benedix, G. K. TI Why asteroidal alteration was isochemical: High porosity not equal high permeability SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 69th Annual Meeting of the Meteoritical Society CY AUG 06-11, 2006 CL Zurich, SWITZERLAND SP Meteorit Soc, ETH Zurich, Swiss Natl Sci Fdn, Swiss Acad Nat Sci, Lunar & Planetary Inst, Barringer Crater Co, Meteorite Magazine, Planetary Studies Fdn, Jungfrau Railway Top Europe ID CHONDRITE PARENT BODIES; EARLY SOLAR-SYSTEM; WATER; FRACTIONATION; CONVECTION C1 Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, IARC, London SW7 2AZ, England. Nat Hist Museum, Dept Mineral, IARC, London SW7 5BD, England. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA. EM p.a.bland@ic.ac.uk RI Jackson, Matthew/N-5121-2014 NR 15 TC 2 Z9 2 U1 0 U2 0 PU METEORITICAL SOC PI FAYETTEVILLE PA DEPT CHEMISTRY/BIOCHEMISTRY, UNIV ARKANSAS, FAYETTEVILLE, AR 72701 USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD AUG PY 2006 VL 41 IS 8 SU S BP A22 EP A22 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 065PR UT WOS:000239172300025 ER PT J AU Brearley, AJ Weber, P Hutcheon, ID AF Brearley, Adrian J. Weber, Peter Hutcheon, Ian D. TI Trace element zoning in CM chondrite carbonates: Insights from compositional mapping using NanoSIMS SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 69th Annual Meeting of the Meteoritical-Society CY AUG 06-11, 2006 CL Zurich, SWITZERLAND SP Meteorit Soc, ETH Zurich, Swiss Natl Sci Fdn, Swiss Acad Nat Sci, Lunar & Planetary Inst, Barringer Crater Co, Meteorite Magazine, Planetary Studies Fdn, Jungfrau Railway Top Europe C1 Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM brearley@unm.edu NR 3 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD AUG PY 2006 VL 41 IS 8 SU S BP A29 EP A29 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 065PR UT WOS:000239172300038 ER PT J AU Busemann, H Alexander, CMO Nittler, LR Zega, TJ Stroud, RM Bajt, S Cody, GD Yabuta, H AF Busemann, H. Alexander, C. M. O'D. Nittler, L. R. Zega, T. J. Stroud, R. M. Bajt, S. Cody, G. D. Yabuta, H. TI Correlated analyses of D- and N-15-rich carbon grains from a CR2 chondrite EET 92042 SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 69th Annual Meeting of the Meteoritical Society CY AUG 06-11, 2006 CL Zurich, SWITZERLAND SP Meteorit Soc, ETH Zurich, Swiss Natl Sci Fdn, Swiss Acad Nat Sci, Lunar & Planetary Inst, Barringer Crater Co, Meteorite Magazine, Planetary Studies Fdn, Jungfrau Railway Top Europe C1 Carnegie Inst Washington, Dept Terr Magnetism, Washington, DC 20015 USA. USN, Res Lab, Washington, DC 20375 USA. Lawrence Livermore Natl Lab, Livermore, CA USA. Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. EM busemann@dtm.ciw.edu RI Bajt, Sasa/G-2228-2010 NR 5 TC 2 Z9 2 U1 0 U2 0 PU METEORITICAL SOC PI FAYETTEVILLE PA DEPT CHEMISTRY/BIOCHEMISTRY, UNIV ARKANSAS, FAYETTEVILLE, AR 72701 USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD AUG PY 2006 VL 41 IS 8 SU S BP A34 EP A34 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 065PR UT WOS:000239172300048 ER PT J AU Coker, RF Cohen, BA Bland, PA AF Coker, R. F. Cohen, B. A. Bland, P. A. TI The effects of permeability-driven water transport on the evolution of CM parent bodies SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 69th Annual Meeting of the Meteoritical Society CY AUG 06-11, 2006 CL Zurich, SWITZERLAND SP Meteorit Soc, ETH Zurich, Swiss Natl Sci Fdn, Swiss Acad Nat Sci, Lunar & Planetary Inst, Barringer Crater Co, Meteorite Magazine, Planetary Studies Fdn, Jungfrau Railway Top Europe ID CARBONACEOUS CHONDRITE C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ New Mexico, Albuquerque, NM 87131 USA. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. EM robc@lanl.gov NR 9 TC 0 Z9 0 U1 0 U2 0 PU METEORITICAL SOC PI FAYETTEVILLE PA DEPT CHEMISTRY/BIOCHEMISTRY, UNIV ARKANSAS, FAYETTEVILLE, AR 72701 USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD AUG PY 2006 VL 41 IS 8 SU S BP A39 EP A39 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 065PR UT WOS:000239172300059 ER PT J AU Cosaroinsky, M McKeegan, KD Hutcheon, ID Fallon, S AF Cosaroinsky, M. McKeegan, K. D. Hutcheon, I. D. Fallon, S. TI Mg isotopes fractionation in melilite in an allende type A inclusion: A high-precision, high-spatial resolution approach SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 69th Annual Meeting of the Meteoritical Society CY AUG 06-11, 2006 CL Zurich, SWITZERLAND SP Meteorit Soc, ETH Zurich, Swiss Natl Sci Fdn, Swiss Acad Nat Sci, Lunar & Planetary Inst, Barringer Crater Co, Meteorite Magazine, Planetary Studies Fdn, Jungfrau Railway Top Europe ID RICH INCLUSIONS C1 Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. Lawrence Livermore Natl Lab, Chem Biol & Nucl Sci Div, Livermore, CA 94551 USA. EM mariana@ess.ucla.edu RI Fallon, Stewart/G-6645-2011 OI Fallon, Stewart/0000-0002-8064-5903 NR 4 TC 0 Z9 0 U1 0 U2 0 PU METEORITICAL SOC PI FAYETTEVILLE PA DEPT CHEMISTRY/BIOCHEMISTRY, UNIV ARKANSAS, FAYETTEVILLE, AR 72701 USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD AUG PY 2006 VL 41 IS 8 SU S BP A41 EP A41 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 065PR UT WOS:000239172300062 ER PT J AU Heber, VS Wiens, RC Olinger, C Burnett, DS Baur, H Wiechert, U Wieler, R AF Heber, V. S. Wiens, R. C. Olinger, C. Burnett, D. S. Baur, H. Wiechert, U. Wieler, R. TI Mass-fractionation induced by the Genesis solar wind concentrator: Analysis of neon isotopes by UV laser ablation SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 69th Annual Meeting of the Meteoritical Society CY AUG 06-11, 2006 CL Zurich, SWITZERLAND SP Meteorit Soc, ETH Zurich, Swiss Natl Sci Fdn, Swiss Acad Nat Sci, Lunar & Planetary Inst, Barringer Crater Co, Meteorite Magazine, Planetary Studies Fdn, Jungfrau Railway Top Europe C1 ETH, Isotope Geol, CH-8092 Zurich, Switzerland. LANL, Space & Atmospher Sci, Los Alamos, NM 87544 USA. CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. FU Berlin, AG Geochem, D-12249 Berlin, Germany. EM heber@erdw.ethz.ch RI Wieler, Rainer/A-1355-2010 OI Wieler, Rainer/0000-0001-5666-7494 NR 3 TC 0 Z9 0 U1 0 U2 1 PU METEORITICAL SOC PI FAYETTEVILLE PA DEPT CHEMISTRY/BIOCHEMISTRY, UNIV ARKANSAS, FAYETTEVILLE, AR 72701 USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD AUG PY 2006 VL 41 IS 8 SU S BP A72 EP A72 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 065PR UT WOS:000239172300125 ER PT J AU Huber, H Ishii, HA Brennan, S AF Huber, H. Ishii, H. A. Brennan, S. TI Selenium and sulfur distribution in the anomalous CK chondrite EET 99430 SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 69th Annual Meeting of the Meteoritical Society CY AUG 06-11, 2006 CL Zurich, SWITZERLAND SP Meteorit Soc, ETH Zurich, Swiss Natl Sci Fdn, Swiss Acad Nat Sci, Lunar & Planetary Inst, Barringer Crater Co, Meteorite Magazine, Planetary Studies Fdn, Jungfrau Railway Top Europe C1 Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. EM hhuber@ucla.edu NR 4 TC 0 Z9 0 U1 0 U2 1 PU METEORITICAL SOC PI FAYETTEVILLE PA DEPT CHEMISTRY/BIOCHEMISTRY, UNIV ARKANSAS, FAYETTEVILLE, AR 72701 USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD AUG PY 2006 VL 41 IS 8 SU S BP A79 EP A79 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 065PR UT WOS:000239172300139 ER PT J AU Kearsley, AT Burchell, MJ Wozniakiewicz, P Cole, MJ Graham, GA Chater, RJ Dai, Z Teslich, N Horz, F Schwandt, C AF Kearsley, A. T. Burchell, M. J. Wozniakiewicz, P. Cole, M. J. Graham, G. A. Chater, R. J. Dai, Z. Teslich, N. Horz, F. Schwandt, C. TI Calibration for Stardust craters in aluminum foil: Interpretation of cometary particle properties by comparison with laboratory impacts of mineral, polymer, and glass grains SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 69th Annual Meeting of the Meteoritical Society CY AUG 06-11, 2006 CL Zurich, SWITZERLAND SP Meteorit Soc, ETH Zurich, Swiss Natl Sci Fdn, Swiss Acad Nat Sci, Lunar & Planetary Inst, Barringer Crater Co, Meteorite Magazine, Planetary Studies Fdn, Jungfrau Railway Top Europe ID HYPERVELOCITY IMPACT C1 Nat Hist Museum, London SW7 5BD, England. Univ Kent, Canterbury CT2 7NH, Kent, England. LLNL, Livermore, CA 94550 USA. Univ London Imperial Coll Sci Technol & Med, London SW7 2BP, England. NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. NR 5 TC 0 Z9 0 U1 0 U2 0 PU METEORITICAL SOC PI FAYETTEVILLE PA DEPT CHEMISTRY/BIOCHEMISTRY, UNIV ARKANSAS, FAYETTEVILLE, AR 72701 USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD AUG PY 2006 VL 41 IS 8 SU S BP A92 EP A92 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 065PR UT WOS:000239172300165 ER PT J AU Kracher, A AF Kracher, A. TI Selenium as possible indicator of asteroidal differentiation SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 69th Annual Meeting of the Meteoritical Society CY AUG 06-11, 2006 CL Zurich, SWITZERLAND SP Meteorit Soc, ETH Zurich, Swiss Natl Sci Fdn, Swiss Acad Nat Sci, Lunar & Planetary Inst, Barringer Crater Co, Meteorite Magazine, Planetary Studies Fdn, Jungfrau Railway Top Europe C1 Iowa State Univ, Ames Lab, Ames, IA 50010 USA. EM akracher@iastate.edu NR 2 TC 0 Z9 0 U1 0 U2 0 PU METEORITICAL SOC PI FAYETTEVILLE PA DEPT CHEMISTRY/BIOCHEMISTRY, UNIV ARKANSAS, FAYETTEVILLE, AR 72701 USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD AUG PY 2006 VL 41 IS 8 SU S BP A100 EP A100 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 065PR UT WOS:000239172300180 ER PT J AU Stadermann, FJ Stephan, T Lea, AS Floss, C AF Stadermann, F. J. Stephan, T. Lea, A. S. Floss, C. TI The distribution of inclusions in a single large presolar silicon carbide grain SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 69th Annual Meeting of the Meteoritical Society CY AUG 06-11, 2006 CL Zurich, SWITZERLAND SP Meteorit Soc, ETH Zurich, Swiss Natl Sci Fdn, Swiss Acad Nat Sci, Lunar & Planetary Inst, Barringer Crater Co, Meteorite Magazine, Planetary Studies Fdn, Jungfrau Railway Top Europe ID NANOSIMS; GRAPHITE C1 Washington Univ, Space Sci Lab, St Louis, MO 63130 USA. Univ Munster, Inst Planetol, D-48149 Munster, Germany. Pacific NW Natl Lab, Richland, WA 99352 USA. EM fjs@wustl.edu NR 8 TC 1 Z9 1 U1 0 U2 1 PU METEORITICAL SOC PI FAYETTEVILLE PA DEPT CHEMISTRY/BIOCHEMISTRY, UNIV ARKANSAS, FAYETTEVILLE, AR 72701 USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD AUG PY 2006 VL 41 IS 8 SU S BP A166 EP A166 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 065PR UT WOS:000239172300313 ER PT J AU Welten, KC Nishiizumi, K Hillegonds, DJ Caffee, MW AF Welten, K. C. Nishiizumi, K. Hillegonds, D. J. Caffee, M. W. TI The complex exposure history of a large L6 chondrite shower from Oman SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 69th Annual Meeting of the Meteoritical Society CY AUG 06-11, 2006 CL Zurich, SWITZERLAND SP Meteorit Soc, ETH Zurich, Swiss Natl Sci Fdn, Swiss Acad Nat Sci, Lunar & Planetary Inst, Barringer Crater Co, Meteorite Magazine, Planetary Studies Fdn, Jungfrau Railway Top Europe C1 Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. Lawrence Livermore Natl Lab, CAMS, Livermore, CA 94550 USA. Purdue Univ, PRIME Lab, W Lafayette, IN 47907 USA. EM kcwelten@berkeley.edu NR 2 TC 4 Z9 4 U1 0 U2 1 PU METEORITICAL SOC PI FAYETTEVILLE PA DEPT CHEMISTRY/BIOCHEMISTRY, UNIV ARKANSAS, FAYETTEVILLE, AR 72701 USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD AUG PY 2006 VL 41 IS 8 SU S BP A187 EP A187 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 065PR UT WOS:000239172300355 ER PT J AU Zolensky, M Bland, P Bradley, J Brearley, A Brennan, S Bridges, J Brownlee, D Buttervorth, A Dai, ZR Ebel, D Genge, M Gounelle, M Graham, G Grossman, J Grossman, L Harvey, R Ishii, H Kearsley, A Keller, L Krot, A Langenhorst, F Lanzirotti, A Leroux, H Matrajt, G Messenger, K Mikouchi, T Nakamura, T Ohsumi, K Okudaira, K Perronnet, M Rietmeijer, F Simon, S Stephan, T Stroud, R Taheri, M Tomeoka, K Toppani, A Tsou, P Tsuchiyama, A Velbel, M Weber, I Weisberg, M Westphal, A Yano, H Zega, T AF Zolensky, Michael Bland, Phil Bradley, John Brearley, Adrian Brennan, Sean Bridges, John Brownlee, Donald Buttervorth, Arma Dai, Zurong Ebel, Denton Genge, Matt Gounelle, Matthieu Graham, Giles Grossman, Jeff Grossman, Lawrence Harvey, Ralph Ishii, Hope Kearsley, Anton Keller, Lindsay Krot, Alexander Langenhorst, Falko Lanzirotti, Antonio Leroux, Hugues Matrajt, Graciela Messenger, Keiko Mikouchi, Takashi Nakamura, Tomoki Ohsumi, Kazumasa Okudaira, Kyoko Perronnet, Murielle Rietmeijer, Frans Simon, Steven Stephan, Thomas Stroud, Rhonda Taheri, Mitra Tomeoka, Kazu Toppani, Alice Tsou, Peter Tsuchiyama, Akira Velbel, Michael Weber, Iris Weisberg, Mike Westphal, Andrew Yano, Hajime Zega, Thomas CA Stardust Mineralogy Petrology TI Mineralogy and petrology of Comet Wild-2 nucleus samples - Final results of the preliminary examination team SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 69th Annual Meeting of the Meteoritical Society CY AUG 06-11, 2006 CL Zurich, SWITZERLAND SP Meteorit Soc, ETH Zurich, Swiss Natl Sci Fdn, Swiss Acad Nat Sci, Lunar & Planetary Inst, Barringer Crater Co, Meteorite Magazine, Planetary Studies Fdn, Jungfrau Railway Top Europe C1 NASA, JSC, Greenbelt, MD USA. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Lawrence Livermore Natl Lab, Livermore, CA USA. Univ New Mexico, Albuquerque, NM 87131 USA. Open Univ, Milton Keynes MK7 6AA, Bucks, England. Univ Washington, Seattle, WA 98195 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Amer Museum Nat Hist, New York, NY 10024 USA. Case Western Reserve Univ, Cleveland, OH 44106 USA. Univ Chicago, Chicago, IL 60637 USA. Univ Hawaii, Honolulu, HI 96822 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Univ Sci & Technol Lille, Lille, France. Univ Tokyo, Tokyo, Japan. Kyushu Univ, Fukuoka 812, Japan. Univ Munster, D-4400 Munster, Germany. Naval Res Lab, Washington, DC USA. Kobe Univ, Kobe, Hyogo, Japan. Osaka Univ, Suita, Osaka 565, Japan. US Geol Survey, Washington, DC 20242 USA. Michigan State Univ, E Lansing, MI 48824 USA. EM michael.e.zolensky@nasa.gov RI Dai, Zurong/E-6732-2010; Taheri, Mitra/F-1321-2011; Stroud, Rhonda/C-5503-2008 OI Stroud, Rhonda/0000-0001-5242-8015 NR 0 TC 1 Z9 1 U1 0 U2 6 PU METEORITICAL SOC PI FAYETTEVILLE PA DEPT CHEMISTRY/BIOCHEMISTRY, UNIV ARKANSAS, FAYETTEVILLE, AR 72701 USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD AUG PY 2006 VL 41 IS 8 SU S BP A167 EP A167 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 065PR UT WOS:000239172300314 ER PT J AU Gentry, TJ Wickham, GS Schadt, CW He, Z Zhou, J AF Gentry, T. J. Wickham, G. S. Schadt, C. W. He, Z. Zhou, J. TI Microarray applications in microbial ecology research SO MICROBIAL ECOLOGY LA English DT Review ID 16S RIBOSOMAL-RNA; NONEQUILIBRIUM DISSOCIATION APPROACH; SULFATE-REDUCING PROKARYOTES; FUNCTIONAL GENE MICROARRAYS; SECONDARY STRUCTURE MODEL; POLYMERASE-CHAIN-REACTION; OPTIMAL DNA OLIGOS; OLIGONUCLEOTIDE MICROARRAYS; DATABASE PROJECT; ENVIRONMENTAL APPLICATIONS AB Microarray technology has the unparalleled potential to simultaneously determine the dynamics and/or activities of most, if not all, of the microbial populations in complex environments such as soils and sediments. Researchers have developed several types of arrays that characterize the microbial populations in these samples based on their phylogenetic relatedness or functional genomic content. Several recent studies have used these microarrays to investigate ecological issues; however, most have only analyzed a limited number of samples with relatively few experiments utilizing the full high-throughput potential of microarray analysis. This is due in part to the unique analytical challenges that these samples present with regard to sensitivity, specificity, quantitation, and data analysis. This review discusses specific applications of microarrays to microbial ecology research along with some of the latest studies addressing the difficulties encountered during analysis of complex microbial communities within environmental samples. With continued development, microarray technology may ultimately achieve its potential for comprehensive, high-throughput characterization of microbial populations in near real time. C1 Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Zhou, J (reprint author), Univ Oklahoma, Inst Environm Genom, Dept Bot & Microbiol, 101 David L Boren Blvd, Norman, OK 73019 USA. EM jzhou@ou.edu RI Schadt, Christopher/B-7143-2008; He, Zhili/C-2879-2012 OI Schadt, Christopher/0000-0001-8759-2448; NR 117 TC 112 Z9 123 U1 1 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0095-3628 J9 MICROB ECOL JI Microb. Ecol. PD AUG PY 2006 VL 52 IS 2 BP 159 EP 175 DI 10.1007/s00248-006-9072-6 PG 17 WC Ecology; Marine & Freshwater Biology; Microbiology SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Microbiology GA 083TL UT WOS:000240481000001 PM 16897303 ER PT J AU Gentile, M Yan, T Tiquia, SM Fields, MW Nyman, J Zhou, J Criddle, CS AF Gentile, M. Yan, T. Tiquia, S. M. Fields, M. W. Nyman, J. Zhou, J. Criddle, C. S. TI Stability in a denitrifying fluidized bed reactor SO MICROBIAL ECOLOGY LA English DT Article ID MICROBIAL COMMUNITY STRUCTURE; RESTRICTION-FRAGMENT-LENGTH; WASTE-WATER; POLYMORPHISM ANALYSIS; ANAEROBIC DIGESTER; ACTIVATED-SLUDGE; DIVERSITY; DENITRIFICATION; ECOLOGY; RNA AB This study evaluates changes in the microbial community structure and function of a pilot-scale denitrifying fluidized bed reactor during periods of constant operating conditions and periods of perturbation. The perturbations consisted of a shutdown period without feed, two disturbances in which biofilms were mechanically sheared from carrier particles, and a twofold step increase in feed nitrate concentration. In the absence of perturbations, nitrate removal was stable and consistently greater than 99%. The structure and dynamics of the microbial community were studied using cloning and sequencing techniques and terminal restriction fragment length polymorphism (T-RFLP) of the SSU rRNA gene. Under unperturbed operating conditions, stable function was accompanied by high constancy and low variability of community structure with the majority of terminal restriction fragments (T-RFs) appearing throughout operation at consistent relative abundances. Several of the consistently present T-RFs correlated with clone sequences closely related to Acidovorax (98% similarity), Dechloromonas (99% similarity), and Zoogloea (98% similarity), genera recently identified by molecular analyses of similar systems. Significant changes in community structure and function were not observed after the shutdown period. In contrast, following the increase in loading rate and the mechanical disturbances, new T-RFs appeared. After both mechanical disturbances, function and community structure recovered. However, function was much more resilient than community structure. The similarity of response to the mechanical disturbances despite differences in community structure and operating conditions suggests that flexible community structure and potentially the activity of minor members under nonperturbation conditions promotes system recovery. C1 Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37830 USA. Univ Michigan, Dept Nat Sci, Dearborn, MI 48128 USA. Miami Univ, Dept Microbiol, Oxford, OH 45056 USA. Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. RP Criddle, CS (reprint author), Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. EM ccriddle@stanford.edu NR 47 TC 29 Z9 29 U1 4 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0095-3628 J9 MICROB ECOL JI Microb. Ecol. PD AUG PY 2006 VL 52 IS 2 BP 311 EP 321 DI 10.1007/s00248-006-9024-1 PG 11 WC Ecology; Marine & Freshwater Biology; Microbiology SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Microbiology GA 083TL UT WOS:000240481000015 PM 16874554 ER PT J AU Brim, H Osborne, JP Kostandarithes, HM Fredrickson, JK Wackett, LP Daly, MJ AF Brim, Hassan Osborne, Jeffrey P. Kostandarithes, Heather M. Fredrickson, James K. Wackett, Lawrence P. Daly, Michael J. TI Deinococcus radiodurans engineered for complete toluene degradation facilitates Cr(VI) reduction SO MICROBIOLOGY-SGM LA English DT Article ID MIXED WASTE ENVIRONMENTS; PSEUDOMONAS-PUTIDA F1; RADIATION-RESISTANCE; ESCHERICHIA-COLI; COMPARATIVE GENOMICS; VADOSE SEDIMENTS; EXPRESSION; BACTERIUM; GENES; BIOREMEDIATION AB Toluene and other fuel hydrocarbons are commonly found in association with radionuclides at numerous US Department of Energy sites, frequently occurring together with Cr(VI) and other heavy metals. In this study, the extremely radiation-resistant bacterium Deinococcus radiodurans, which naturally reduces Cr(VI) to the less mobile and less toxic Cr(III), was engineered for complete toluene degradation by cloned expression of tod and xyl genes of Pseudomonas putida. The recombinant Tod/Xyl strain showed incorporation of carbon from C-14-labelled toluene into cellular macromolecules and carbon dioxide, in the absence or presence of chronic ionizing radiation. The engineered bacteria were able to oxidize toluene under both minimal and complex nutrient conditions, and recombinant cells reduced Cr(VI) in sediment microcosms. As such, the Tod/Xyl strain could provide a model for examining the reduction of metals coupled to organic contaminant oxidation in aerobic radionuclide-contaminated sediments. C1 Uniformed Serv Univ Hlth Sci, Dept Pathol, Bethesda, MD 20814 USA. Howard Univ, Dept Microbiol, Washington, DC 20060 USA. Manchaester Coll, Dept Chem, N Manchester, IN 46962 USA. Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. Univ Minnesota, Dept Biochem, St Paul, MN 55108 USA. Howard Univ, Ctr Canc, Washington, DC 20060 USA. RP Daly, MJ (reprint author), Uniformed Serv Univ Hlth Sci, Dept Pathol, Rm B3153,4301 Jones Bridge Rd, Bethesda, MD 20814 USA. EM hbrim@howard.edu; mdaly@usuhs.mil NR 48 TC 28 Z9 31 U1 1 U2 15 PU SOC GENERAL MICROBIOLOGY PI READING PA MARLBOROUGH HOUSE, BASINGSTOKE RD, SPENCERS WOODS, READING RG7 1AG, BERKS, ENGLAND SN 1350-0872 J9 MICROBIOL-SGM JI Microbiology-(UK) PD AUG PY 2006 VL 152 BP 2469 EP 2477 DI 10.1099/mic.0.29009-0 PN 8 PG 9 WC Microbiology SC Microbiology GA 074PF UT WOS:000239823600024 PM 16849809 ER PT J AU Persson, C Dong, CL Vayssieres, L Augustsson, A Schmitt, T Mattesini, M Ahuja, R Nordgren, J Chang, CL da Silva, AF Guo, JH AF Persson, C. Dong, C. L. Vayssieres, L. Augustsson, A. Schmitt, T. Mattesini, M. Ahuja, R. Nordgren, J. Chang, C. L. Ferreira da Silva, A. Guo, J. -H. TI X-ray absorption and emission spectroscopy of ZnO nanoparticle and highly oriented ZnO microrod arrays SO MICROELECTRONICS JOURNAL LA English DT Article DE ZnO; nanostructure; X-ray; absorption; emission; d-state localization ID ROOM-TEMPERATURE; GAN; POLARIZATION AB The electronic structures of ZnO nanoparticles and microrod arrays are studied by 0 Is X-ray absorption spectroscopy (XAS) and O K alpha X-ray emission spectroscopy (XES). We show that the present LDA +U-SIC calculation approach is suitable to correct the LDA self-interaction error of the cation d-states. The atomic eigenstates of 3d in zinc and 2p in oxygen are energetically close, which induces strong Zn-3d-O-2p hybridization. This anomalous valence band cation-d-anion-p hybridization is affected when the localization of the Zn 3d-states is taken into account. Experimentally, the XES spectra show energy dependence in the spectral shape revealing selected excitations to the Zn 3d, 4s and 4p states, hybridized with 0 2p states. Strong anisotropic effects are observed for the highly oriented ZnO rods, but not for the isotropic spherical nanoparticles. The nanostructured ZnO has primarily bulk XAS and XES properties. (c) 2006 Elsevier Ltd. All rights reserved. C1 Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Tamkang Univ, Dept Phys, Tamsui, Taiwan. Nanomat & Biomat Res Lab, Ibaraki 3050044, Japan. Univ Uppsala, Dept Phys, SE-75121 Uppsala, Sweden. Univ Fed Bahia, Inst Fis, BR-40210340 Salvador, BA, Brazil. RP Persson, C (reprint author), Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden. EM clas.persson@kth.se RI Schmitt, Thorsten/A-7025-2010; Mattesini, Maurizio/B-8520-2009; OI Mattesini, Maurizio/0000-0002-7744-8626; Augustsson, Andreas/0000-0002-9463-3700; Chang, Ching-Lin/0000-0001-8547-371X NR 27 TC 28 Z9 28 U1 4 U2 31 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0026-2692 J9 MICROELECTRON J JI Microelectron. J. PD AUG PY 2006 VL 37 IS 8 BP 686 EP 689 DI 10.1016/j.mejo.2005.12.009 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology SC Engineering; Science & Technology - Other Topics GA 062BZ UT WOS:000238920700004 ER PT J AU Phinney, D AF Phinney, Douglas TI Quantitative analysis of microstructures by secondary ion mass spectrometry SO MICROSCOPY AND MICROANALYSIS LA English DT Article; Proceedings Paper CT 9th Workshop of the European-Microbeam-Analysis-Society CY MAY 22-26, 2005 CL Florence, ITALY SP European Microbeam Anal Soc DE SIMS; quantitation; microstructures; trace elements AB The focus of this review is on trace-element quantitation of microstructures in solids. This review is aimed at the nonspecialist who wants to know how secondary ion mass spectrometry (SIMS) quantitation is achieved. Despite 35 years of SIMS research and applications, SIMS quantitation remains a fundamentally empirical enterprise and is based on standards. The most used standards are "bulk standards"-solids with a homogeneous distribution of a trace element-and ion-implanted solids. The SIMS systematics of bulk standards and ion-implanted solids are reviewed. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Phinney, D (reprint author), Lawrence Livermore Natl Lab, POB 808,L-231, Livermore, CA 94551 USA. EM phinney1@llnl.gov NR 2 TC 2 Z9 2 U1 0 U2 3 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 J9 MICROSC MICROANAL JI Microsc. microanal. PD AUG PY 2006 VL 12 IS 4 BP 352 EP 355 DI 10.1017/S1431927606060399 PG 4 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA 069IK UT WOS:000239439400015 PM 16842652 ER PT J AU Rau, C Robinson, IK Richter, CP AF Rau, C. Robinson, I. K. Richter, C. -P. TI Visualizing soft tissue in the mammalian cochlea with coherent hard X-rays SO MICROSCOPY RESEARCH AND TECHNIQUE LA English DT Article DE hard X-rays; high-resolution imaging; coherence; synchrotron radiation; cochlea; in-line phase contrast; microscopy ID PHASE-CONTRAST; INNER-EAR; SYNCHROTRON-RADIATION; MICROSCOPY; MICROTOMOGRAPHY; TOMOGRAPHY; INTERFEROMETER; HEMICOCHLEA; MECHANICS AB This paper concerns an important aspect of current developments in medical and biological imaging: the possibility for imaging soft tissue at relatively high resolution in the micrometer range or better, without tedious and/or entirely destructive sample preparation. Structures with low absorption contrast have been visualized using in-line phase contrast imaging. The experiments have been performed at the Advanced Photon Source, a third generation source of synchrotron radiation. The source provides highly coherent X-ray radiation with high photon flux (>10(14) photons/s) at high photon energies (5-70 keV). Thick gerbil cochlear slices have been imaged and were compared with those obtained by light microscopy. Furthermore, intact gerbil cochleae have been imaged to identify the soft tissue structures involved in the hearing process. The present experimental approach was essential for visualizing the inner ear structures involved in the hearing process in an intact cochlea. C1 Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. UCL, Dept Phys & Astron, London, England. Northwestern Univ, Feinberg Sch Med, Dept Otolaryngol Head & Neck Surg, Chicago, IL 60611 USA. RP Rau, C (reprint author), Argonne Natl Lab, Adv Photon Source, UNICAT, 9700 S Cass, Argonne, IL 60439 USA. EM Rau@anl.gov NR 32 TC 24 Z9 26 U1 1 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1059-910X J9 MICROSC RES TECHNIQ JI Microsc. Res. Tech. PD AUG PY 2006 VL 69 IS 8 BP 660 EP 665 DI 10.1002/jemt.20336 PG 6 WC Anatomy & Morphology; Biology; Microscopy SC Anatomy & Morphology; Life Sciences & Biomedicine - Other Topics; Microscopy GA 074PK UT WOS:000239824100010 PM 16788978 ER PT J AU Adkins, JN Mottaz, HM Norbeck, AD Gustin, JK Rue, J Clauss, TRW Purvine, SO Rodland, KD Heffron, F Smith, RD AF Adkins, Joshua N. Mottaz, Heather M. Norbeck, Angela D. Gustin, Jean K. Rue, Joanne Clauss, Therese R. W. Purvine, Samuel O. Rodland, Karin D. Heffron, Fred Smith, Richard D. TI Analysis of the Salmonella typhimurium proteome through environmental response toward infectious conditions SO MOLECULAR & CELLULAR PROTEOMICS LA English DT Article ID ENTERICA SEROVAR TYPHIMURIUM; TANDEM MASS-SPECTROMETRY; PATHOGENICITY ISLAND 2; III SECRETION SYSTEM; MULTIDRUG-RESISTANT; VIRULENCE GENES; YEAST PROTEOME; UNITED-STATES; EXPRESSION; LT2 AB Salmonella enterica serovar Typhimurium (also known as Salmonella typhimurium) is a facultative intracellular pathogen that causes similar to 8,000 reported cases of acute gastroenteritis and diarrhea each year in the United States. Although many successful physiological, biochemical, and genetic approaches have been taken to determine the key virulence determinants encoded by this organism, the sheer number of uncharacterized reading frames observed within the S. enterica genome suggests that many more virulence factors remain to be discovered. We used a liquid chromatography-mass spectrometry-based "bottom-up" proteomic approach to generate a more complete picture of the gene products that S. typhimurium synthesizes under typical laboratory conditions as well as in culture media that are known to induce expression of virulence genes. When grown to logarithmic phase in rich medium, S. typhimurium is known to express many genes that are required for invasion of epithelial cells. Conversely stationary phase cultures of S. typhimurium express genes that are needed for both systemic infection and growth within infected macrophages. Lastly bacteria grown in an acidic, magnesium-depleted minimal medium (MgM) designed to mimic the phagocytic vacuole have been shown to up-regulate virulence gene expression. Initial comparisons of protein abundances from bacteria grown under each of these conditions indicated that the majority of proteins do not change significantly. However, we observed subsets of proteins whose expression was largely restricted to one of the three culture conditions. For example, cells grown in MgM had a higher abundance of Mg2+ transport proteins than found in other growth conditions. A second more virulent S. typhimurium strain (14028) was also cultured under these same growth conditions, and the results were directly compared with those obtained for strain LT2. This comparison offered a unique opportunity to contrast protein populations in these closely related bacteria. Among a number of proteins displaying a higher abundance in strain 14028 were the products of the pdu operon, which encodes enzymes required for propanediol utilization. These pdu operon proteins were validated in culture and during macrophage infection. Our work provides further support for earlier observations that suggest pdu gene expression contributes to S. typhimurium pathogenesis. C1 Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. Oregon Hlth & Sci Univ, Dept Mol Microbiol & Immunol, Portland, OR 97239 USA. RP Adkins, JN (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,MSIN K8-98, Richland, WA 99352 USA. RI Smith, Richard/J-3664-2012; Adkins, Joshua/B-9881-2013 OI Smith, Richard/0000-0002-2381-2349; Adkins, Joshua/0000-0003-0399-0700 NR 53 TC 85 Z9 87 U1 0 U2 16 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 1535-9476 J9 MOL CELL PROTEOMICS JI Mol. Cell. Proteomics PD AUG PY 2006 VL 5 IS 8 BP 1450 EP 1461 DI 10.1074/mcp.M600139-MCP200 PG 12 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 071UB UT WOS:000239627800008 PM 16684765 ER PT J AU Tsyusko, OV Smith, MH Oleksyk, TK Goryanaya, J Glenn, TC AF Tsyusko, Olga V. Smith, Michael H. Oleksyk, Taras K. Goryanaya, Julia Glenn, Travis C. TI Genetics of cattails in radioactively contaminated areas around Chornobyl SO MOLECULAR ECOLOGY LA English DT Article DE Chornobyl; genetic diversity; microsatellites; radiation; sexual and asexual reproduction; Typha ID TYPHA-LATIFOLIA; MICROSATELLITE MUTATIONS; POPULATION SUBDIVISION; CLONAL DIVERSITY; CLEANUP WORKERS; UNITED-STATES; GERMLINE; LOCI; DNA; ANGUSTIFOLIA AB Research on populations from radioactively contaminated areas around Chornobyl has produced ambiguous results for the presence of radiation effects. More studies are needed to provide information on whether radiation exposure at Chornobyl significantly affected genetic diversity in natural populations of various taxa. Eleven and nine variable microsatellite loci were used to test for differences in genetic diversity between reference and Chornobyl populations of two cattail species (Typha angustifolia and Typha latifolia, respectively) from Ukraine. Our purpose was to determine whether radiation had a significant impact on genetic diversities of the Chornobyl Typha populations, or if their genetic composition might be better explained by species demography and/or changes in population dynamics, mainly in sexual and asexual reproduction. Populations closest to the reactor had increased genetic diversities and high number of genets, which likely were due to factors other than radiation including increased gene flow among Chornobyl populations, enhanced sexual reproduction within populations, and/or origin of the genets from seed bank. Both Typha species also demonstrated small but significant effects associated with latitude, geographical regions, and watersheds. Typha's demography in Ukraine possibly varies with these three factors, and the small difference between Chornobyl and reference populations of T. latifolia detected after partitioning the total genetic variance between them is probably due primarily to these factors. However, the positive correlations of several genetic characteristics with radionuclide concentrations suggest that radiation may have also affected genetics of Chornobyl Typha populations but much less than was expected considering massive contamination of the Chornobyl area. C1 Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. NCI, Lab Genom Divers, Frederick, MD 21702 USA. Int Radioecol Lab, Slavutich, Ukraine. RP Tsyusko, OV (reprint author), Univ Georgia, Savannah River Ecol Lab, PO E, Aiken, SC 29802 USA. EM tsyusko@srel.edu RI Glenn, Travis/A-2390-2008; Taras, Oleksyk/J-8805-2013; OI Taras, Oleksyk/0000-0002-8148-3918; Tsyusko, Olga/0000-0001-8196-1062 NR 70 TC 5 Z9 5 U1 1 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0962-1083 EI 1365-294X J9 MOL ECOL JI Mol. Ecol. PD AUG PY 2006 VL 15 IS 9 BP 2611 EP 2625 DI 10.1111/j.1365-294X.2006.02939.x PG 15 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA 063HT UT WOS:000239010000025 PM 16842431 ER PT J AU McEntire, RS Shen, YL AF McEntire, R. S. Shen, Y. -L. TI An atomistic analysis of incipient metal plasticity during tensile loading SO MOLECULAR SIMULATION LA English DT Article DE atomistic simulation; plastic deformation; crystal; dislocation ID MOLECULAR-DYNAMICS SIMULATIONS; DISLOCATION NUCLEATION; COPPER; DEFORMATION; NANOINDENTATION; NANOWIRES; CRYSTALS; STRENGTH; STRESS; STRAIN AB Crystallographic slip at the beginning stages of plastic deformation is investigated via an atomistic (molecular statics) model. Attention is devoted to face-center-cubic metallic crystals in the form of a nanowire under uniaxial tensile loading. The simulation parameters employed in this work are such that dislocation slip behavior can be observed without the influence of surface stress and phase transformation. The incorporation of an initial embedded point defect in the model causes plastic deformation to be facilitated in a controlled manner. Two crystallographic orientations are studied, and , which result in, respectively, single slip and double slip at the onset of plastic yielding. Detailed mechanisms of dislocation evolution and their glide features are analyzed. C1 Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Shen, YL (reprint author), Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. EM shenyl@me.unm.edu RI Shen, Yu-Lin/C-1942-2008 NR 30 TC 4 Z9 4 U1 0 U2 3 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0892-7022 J9 MOL SIMULAT JI Mol. Simul. PD AUG-SEP PY 2006 VL 32 IS 10-11 BP 857 EP 867 DI 10.1080/08927020600925789 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 099HY UT WOS:000241585500010 ER PT J AU James, JB Davis, TM Schmidt, BP Kim, AG AF James, J. Berian Davis, Tamara M. Schmidt, Brian P. Kim, Alex G. TI Spectral diversity of type Ia supernovae SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE supernovae : general ID OPTICAL-SPECTRA; GALAXIES; 1999EE AB We use published spectroscopic and photometric data for eight Type Ia supernovae (SNe Ia) to construct a dispersion spectrum for this class of object, showing their diversity over the wavelength range 3700-7100 angstrom. We find that the B and V bands are the spectral regions with the least dispersion, while the U band below 4100 angstrom is more diverse. Some spectral features such as the Si line at 6150 angstrom are also highly diverse. We then construct two objective measures of 'peculiarity' by (i) using the deviation of individual objects from the average SN Ia spectrum compared to the typical dispersion and (ii) applying principal component analysis. We demonstrate these methods on several SNe Ia that have previously been classified as peculiar. C1 Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 0200, Australia. Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. RP James, JB (reprint author), Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 0200, Australia. EM jbjames@physics.usyd.edu.au; tammarad@mso.anu.edu.au; brian@mso.anu.edu.au; AGKim@lbl.gov RI Davis, Tamara/A-4280-2008; OI Davis, Tamara/0000-0002-4213-8783; Schmidt, Brian/0000-0001-6589-1287; Schmidt, Brian/0000-0002-8538-9195 NR 34 TC 13 Z9 13 U1 1 U2 2 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG 1 PY 2006 VL 370 IS 2 BP 933 EP 940 DI 10.1111/j.1365-2966.2006.10508.x PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 064VF UT WOS:000239117100029 ER PT J AU Lucon, O Painuly, JP Fifita, S Arvizu, DE Tsuchiya, H Wohlgemuth, N AF Lucon, Oswaldo Painuly, Jyoti Prasad Fifita, Solomone Arvizu, Dan E. Tsuchiya, Haruki Wohlgemuth, Norbert TI Is renewable energy cost-effective? SO NATURAL RESOURCES FORUM LA English DT Editorial Material C1 Sao Paulo State Environm Secretariat, Cabinet Off, Sao Paulo, Brazil. Risoe Natl Lab, URC, Roskilde, Denmark. Natl Renewable Energy Lab, Golden, CO USA. Univ Klagenfurt, Klagenfurt, Austria. RP Lucon, O (reprint author), Sao Paulo State Environm Secretariat, Cabinet Off, Sao Paulo, Brazil. NR 0 TC 2 Z9 2 U1 0 U2 1 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0165-0203 J9 NAT RESOUR FORUM JI Nat. Resour. Forum PD AUG PY 2006 VL 30 IS 3 BP 238 EP 240 DI 10.1111/j.1477-8947.2006.00110.x PG 3 WC Environmental Sciences; Environmental Studies SC Environmental Sciences & Ecology GA 088PN UT WOS:000240823700007 ER PT J AU D'haeseleer, P AF D'haeseleer, Patrik TI How does DNA sequence motif discovery work? SO NATURE BIOTECHNOLOGY LA English DT Article ID FACTOR-BINDING SITES; GENES AB How can we computationally extract an unknown motif from a set of target sequences? What are the principles behind the major motif discovery algorithms? Which of these should we use, and how do we know we've found a 'real' motif?. C1 Lawrence Livermore Natl Lab, Microbial Syst Div, Biosci Directorate, Livermore, CA 94551 USA. RP D'haeseleer, P (reprint author), Lawrence Livermore Natl Lab, Microbial Syst Div, Biosci Directorate, POB 808,7000 East Ave,L-448, Livermore, CA 94551 USA. EM patrikd@llnl.gov OI D'haeseleer, Patrik/0000-0003-0007-8150 NR 12 TC 44 Z9 46 U1 0 U2 4 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK STREET, 9TH FLOOR, NEW YORK, NY 10013-1917 USA SN 1087-0156 J9 NAT BIOTECHNOL JI Nat. Biotechnol. PD AUG PY 2006 VL 24 IS 8 BP 959 EP 961 DI 10.1038/nbt0806-959 PG 3 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 072VY UT WOS:000239702300036 PM 16900144 ER PT J AU Pfleger, BF Pitera, DJ D Smolke, C Keasling, JD AF Pfleger, Brian F. Pitera, Douglas J. D Smolke, Christina Keasling, Jay D. TI Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes SO NATURE BIOTECHNOLOGY LA English DT Article ID SMALL RNA REGULATORS; ESCHERICHIA-COLI; MESSENGER-RNA; SECONDARY STRUCTURES; TRANSLATION; SITES; DECAY AB Many applications of synthetic biology require the balanced expression of multiple genes. Although operons facilitate coordinated expression of multiple genes in prokaryotes and eukaryotes, coordinating the many post-transcriptional processes that determine the relative levels of gene expression in operons by a priori design remains a challenge. We describe a method for tuning the expression of multiple genes within operons by generating libraries of tunable intergenic regions (TIGRs), recombining various post-transcriptional control elements and screening for the desired relative expression levels. TIGRs can vary the relative expression of two reporter genes over a 100-fold range and balance expression of three genes in an operon that encodes a heterologous mevalonate biosynthetic pathway, resulting in a sevenfold increase in mevalonate production. This technology should be useful for optimizing the expression of multiple genes in synthetic operons, both in prokaryotes and eukaryotes. C1 Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Synthet Biol Dept, Phys Biosci Div, Berkeley, CA 94720 USA. RP Keasling, JD (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM keasling@berkeley.edu RI Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 NR 29 TC 264 Z9 288 U1 6 U2 96 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK STREET, 9TH FLOOR, NEW YORK, NY 10013-1917 USA SN 1087-0156 J9 NAT BIOTECHNOL JI Nat. Biotechnol. PD AUG PY 2006 VL 24 IS 8 BP 1027 EP 1032 DI 10.1038/nbt1226 PG 6 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 072VY UT WOS:000239702300044 PM 16845378 ER PT J AU Chesler, EJ Bystrykh, L de Haan, G Cooke, MP Su, A Manly, KF Williams, RW AF Chesler, Elissa J. Bystrykh, Leonid de Haan, Gerald Cooke, Michael P. Su, Andrew Manly, Kenneth F. Williams, Robert W. TI Normalization procedures and detection of linkage signal in genetical-genomics experiments - Reply SO NATURE GENETICS LA English DT Letter ID EXPRESSION; MODEL C1 Oak Ridge Natl Lab, Div Life Sci, Mammalian Genet & Genom Grp, Oak Ridge, TN 37831 USA. Univ Groningen, Med Ctr, Dept Cell Biol Stem Cell Biol, NL-9713 AV Groningen, Netherlands. Novartis Res Fdn, Genom Inst, San Diego, CA 92121 USA. Univ Tennessee, Ctr Hlth Sci, Ctr Genom & Bioinformat, Memphis, TN 38163 USA. RP Chesler, EJ (reprint author), Oak Ridge Natl Lab, Div Life Sci, Mammalian Genet & Genom Grp, POB 2008, Oak Ridge, TN 37831 USA. EM cheslerej@ornl.gov RI de Haan, Gerald/D-2081-2015; OI de Haan, Gerald/0000-0001-9706-0138; Williams, Robert/0000-0001-8924-4447 NR 10 TC 6 Z9 6 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK STREET, 9TH FLOOR, NEW YORK, NY 10013-1917 USA SN 1061-4036 J9 NAT GENET JI Nature Genet. PD AUG PY 2006 VL 38 IS 8 BP 856 EP 858 DI 10.1038/ng0806-856 PG 3 WC Genetics & Heredity SC Genetics & Heredity GA 067TO UT WOS:000239325700006 ER PT J AU Prada, JAH Haire, RN Allaire, M Jakoncic, J Stojanoff, V Cannon, JP Litman, GW Ostrov, DA AF Prada, Jose A. Hernandez Haire, Robert N. Allaire, Marc Jakoncic, Jean Stojanoff, Vivian Cannon, John P. Litman, Gary W. Ostrov, David A. TI Ancient evolutionary origin of diversified variable regions demonstrated by crystal structures of an immune-type receptor in amphioxus SO NATURE IMMUNOLOGY LA English DT Article ID CELL ANTIGEN RECEPTOR; PROTEIN STRUCTURES; ELECTRON-DENSITY; DOMAIN; SUPERFAMILY; COMPLEX; RECOGNITION; RESOLUTION; SYSTEM; GENES AB Although the origins of genes encoding the rearranging binding receptors remain obscure, it is predicted that their ancestral forms were nonrearranging immunoglobulin-type domains. Variable region-containing chitin-binding proteins (VCBPs) are diversified immune-type molecules found in amphioxus (Branchiostoma floridae), an invertebrate that diverged early in deuterostome phylogeny. To study the potential evolutionary relationships between VCBPs and vertebrate adaptive immune receptors, we solved the structures of both a single V-type domain (to 1.15 angstrom) and a pair of V-type domains (to 1.85 angstrom) from VCBP3. The deduced structures show integral features of the ancestral variable-region fold as well as unique features of variable-region pairing in molecules that may reflect characteristics of ancestral forms of diversified immune receptors found in modern-day vertebrates. C1 Univ Florida, Coll Med, Dept Pathol Immunol & Lab Med, Gainesville, FL 32610 USA. Univ S Florida, Coll Med, Childrens Res Inst, Dept Pediat, St Petersburg, FL 33701 USA. Brookhaven Natl Lab, Natl Synchrotron Light Source Dept, Upton, NY 11973 USA. H Lee Moffitt Canc Ctr & Res Inst, Program Immunol, Tampa, FL 33612 USA. All Childrens Hosp, Dept Mol Genet, St Petersburg, FL 33701 USA. RP Litman, GW (reprint author), Univ Florida, Coll Med, Dept Pathol Immunol & Lab Med, Gainesville, FL 32610 USA. EM litmang@allkids.org RI stojanoff, vivian /I-7290-2012 OI stojanoff, vivian /0000-0002-6650-512X NR 55 TC 32 Z9 33 U1 0 U2 2 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK STREET, 9TH FLOOR, NEW YORK, NY 10013-1917 USA SN 1529-2908 J9 NAT IMMUNOL JI Nat. Immunol. PD AUG PY 2006 VL 7 IS 8 BP 875 EP 882 DI 10.1038/ni1359 PG 8 WC Immunology SC Immunology GA 065GH UT WOS:000239147200024 ER PT J AU Levine, LE Larson, BC Yang, W Kassner, ME Tischler, JZ Delos-Reyes, MA Fields, RJ Liu, WJ AF Levine, Lyle E. Larson, Bennett C. Yang, Wenge Kassner, Michael E. Tischler, Jonathan Z. Delos-Reyes, Michael A. Fields, Richard J. Liu, Wenjun TI X-ray microbeam measurements of individual dislocation cell elastic strains in deformed single-crystal copper SO NATURE MATERIALS LA English DT Article ID RANGE INTERNAL-STRESSES; STRUCTURAL MICROSCOPY; PLASTIC-DEFORMATION; FLOW-STRESS; METALS; DIFFRACTION; RESOLUTION; DYNAMICS; FCC AB The distribution of elastic strains ( and thus stresses) at the submicrometre length scale within deformed metal single crystals has remarkably broad implications for our understanding of important physical phenomena. These include the evolution of the complex dislocation structures that govern mechanical behaviour within individual grains(1-3), the transport of dislocations through such structures(4-6), changes in mechanical properties that occur during reverse loading(7-9) ( for example, sheet-metal forming and fatigue), and the analyses of diffraction line profiles for microstructural studies of these phenomena(10-15). We present the first direct, spatially resolved measurements of the elastic strains within individual dislocation cells in copper single crystals deformed in tension and compression along < 001 > axes. Broad distributions of elastic strains are found, with important implications for theories of dislocation structure evolution(3,16-20), dislocation transport(4-6), and the extraction of dislocation parameters from X-ray line profiles(10-15,21-24). C1 Natl Inst Stand & Technol, Mat Sci & Engn Lab, Gaithersburg, MD 20899 USA. Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. Argonne Natl Lab, Adv Photon Source, HPCAT Carnegie Inst Washington, Argonne, IL 60439 USA. Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. RP Levine, LE (reprint author), Natl Inst Stand & Technol, Mat Sci & Engn Lab, Gaithersburg, MD 20899 USA. EM Lyle.Levine@nist.gov RI Yang, Wenge/H-2740-2012 NR 33 TC 89 Z9 89 U1 3 U2 40 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD AUG PY 2006 VL 5 IS 8 BP 619 EP 622 DI 10.1038/nmat1698 PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 069CP UT WOS:000239423200016 PM 16845413 ER PT J AU Orenstein, J AF Orenstein, Joe TI Josephson plasmons - The new wave SO NATURE PHYSICS LA English DT News Item C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Orenstein, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM JWOrenstein@lbl.gov RI Orenstein, Joseph/I-3451-2015 NR 8 TC 4 Z9 4 U1 0 U2 3 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD AUG PY 2006 VL 2 IS 8 BP 503 EP 504 DI 10.1038/nphys376 PG 2 WC Physics, Multidisciplinary SC Physics GA 075IO UT WOS:000239878400005 ER PT J AU Gambetta, A Manzoni, C Menna, E Meneghetti, M Cerullo, G Lanzani, G Tretiak, S Piryatinski, A Saxena, A Martin, RL Bishop, AR AF Gambetta, A. Manzoni, C. Menna, E. Meneghetti, M. Cerullo, G. Lanzani, G. Tretiak, S. Piryatinski, A. Saxena, A. Martin, R. L. Bishop, A. R. TI Real-time observation of nonlinear coherent phonon dynamics in single-walled carbon nanotubes SO NATURE PHYSICS LA English DT Article ID SPECTROSCOPY; ABSORPTION; EXCITONS AB Single-walled carbon nanotubes (SWNTs) are pi-conjugated, quasi-one-dimensional structures consisting of rolled-up graphene sheets that, depending on their chirality, behave as semiconductors or metals(1); owing to their unique properties, they enable groundbreaking applications in mechanics, nanoelectronics and photonics(2,3). In semiconducting SWNTs, medium-sized excitons (3-5 nm) with large binding energy and oscillator strength are the fundamental excitations(4-8); exciton wavefunction localization and one-dimensionality give rise to a strong electron-phonon coupling(9-11), the study of which is crucial for the understanding of their electronic and optical properties. Here we report on the use of resonant sub-10-fs visible pulses(12) to generate and detect, in the time domain, coherent phonons in SWNT ensembles. We observe vibrational wavepackets for the radial breathing mode (RBM) and the G mode, and in particular their anharmonic coupling, resulting in a frequency modulation of the G mode by the RBM. Quantum-chemical modelling(13) shows that this effect is due to a corrugation of the SWNT surface on photoexcitation, leading to a coupling between longitudinal and radial vibrations. C1 Politecn Milan, Dipartimento Fis, Natl Lab Ultrafast & Ultraintense Opt Sci, CNR INFM, I-20133 Milan, Italy. Univ Padua, Dept Chem Sci, I-35131 Padua, Italy. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Lanzani, G (reprint author), Politecn Milan, Dipartimento Fis, Natl Lab Ultrafast & Ultraintense Opt Sci, CNR INFM, Pza L da Vinci 32, I-20133 Milan, Italy. EM guglielmo.lanzani@fisi.polimi.it RI Menna, Enzo/A-5747-2008; Piryatinski, Andrei/B-5543-2009; Manzoni, Cristian/F-6669-2011; Cerullo, Giulio/F-6534-2011; Tretiak, Sergei/B-5556-2009; OI Menna, Enzo/0000-0002-9448-4776; Manzoni, Cristian/0000-0002-4169-8869; Tretiak, Sergei/0000-0001-5547-3647; Gambetta, Alessio/0000-0003-3026-1108; Cerullo, Giulio/0000-0002-9534-2702 NR 31 TC 119 Z9 119 U1 6 U2 63 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD AUG PY 2006 VL 2 IS 8 BP 515 EP 520 DI 10.1038/nphys345 PG 6 WC Physics, Multidisciplinary SC Physics GA 075IO UT WOS:000239878400012 ER PT J AU Achermann, M Bartko, AP Hollingsworth, JA Klimov, VI AF Achermann, Marc Bartko, Andrew P. Hollingsworth, Jennifer A. Klimov, Victor I. TI The effect of Auger heating on intraband carrier relaxation in semiconductor quantum rods SO NATURE PHYSICS LA English DT Article ID CDSE NANOCRYSTALS; PHONON BOTTLENECK; DOTS; DYNAMICS AB The rate at which excited charge carriers relax to their equilibrium state affects many aspects of the performance of nanoscale devices, including switching speed, carrier mobility and luminescence efficiency. A better understanding of the processes that govern carrier relaxation therefore has important technological implications. A significant increase in carrier-carrier interactions caused by strong spatial confinement of electronic excitations in semiconductor nanostructures leads to a considerable enhancement of Auger effects, which can further result in unusual, Auger-process-controlled recombination and energy relaxation regimes. Here, we report the first experimental observation of efficient Auger heating in CdSe quantum rods at high pump intensities, leading to a strong reduction of carrier cooling rates. In this regime, the carrier temperature is determined by the balance between energy outflow through phonon emission and energy inflow because of Auger heating. This equilibrium results in peculiar carrier cooling dynamics that closely correlate with recombination dynamics, an effect never seen before in bulk or nanoscale semiconductors. C1 Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Klimov, VI (reprint author), Los Alamos Natl Lab, Div Chem, C-PCS,MS-J567, Los Alamos, NM 87545 USA. EM klimov@lanl.gov RI Achermann, Marc/A-1849-2011; OI Achermann, Marc/0000-0002-3939-9309; Klimov, Victor/0000-0003-1158-3179 NR 20 TC 36 Z9 36 U1 1 U2 25 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD AUG PY 2006 VL 2 IS 8 BP 557 EP 561 DI 10.1038/nphys363 PG 5 WC Physics, Multidisciplinary SC Physics GA 075IO UT WOS:000239878400019 ER PT J AU Cabot, WH Cook, AW AF Cabot, William H. Cook, Andrew W. TI Reynolds number effects on Rayleigh-Taylor instability with possible implications for type-Ia supernovae SO NATURE PHYSICS LA English DT Article ID 3-DIMENSIONAL NUMERICAL SIMULATIONS; FLUID DYNAMICAL SIMULATIONS; SUBGRID SCALE-MODEL; MIXING TRANSITION; FLAMES; TURBULENCE; ASTROPHYSICS; PROPAGATION AB Spontaneous mixing of fluids at unstably stratified interfaces occurs in a wide variety of atmospheric, oceanic, geophysical and astrophysical flows. The Rayleigh-Taylor instability, a process by which fluids seek to reduce their combined potential energy, plays a key role in all types of fusion. Despite decades of investigation, fundamental questions regarding turbulent Rayleigh-Taylor flow persist, namely: does the flow forget its initial conditions, is the flow self-similar, what is the scaling constant, and how does mixing influence the growth rate? Here, we show results from a large direct numerical simulation addressing such questions. The simulated flow reaches a Reynolds number of 32,000, far exceeding that of all previous Rayleigh-Taylor simulations. We find that the scaling constant cannot be found by fitting a curve to the width of the mixing layer (as is common practice) but can be obtained by recourse to the similarity equation for the expansion rate of the turbulent region. Moreover, the ratio of kinetic energy to released potential energy is not constant, but exhibits a weak Reynolds number dependence, which might have profound consequences for flame propagation models in type-Ia supernova simulations. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Cabot, WH (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM cabot1@llnl.gov; awcook@llnl.gov NR 31 TC 159 Z9 160 U1 0 U2 19 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD AUG PY 2006 VL 2 IS 8 BP 562 EP 568 DI 10.1038/nphys361 PG 7 WC Physics, Multidisciplinary SC Physics GA 075IO UT WOS:000239878400020 ER PT J AU Clarey, MG Erzberger, JP Grob, P Leschziner, AE Berger, JM Nogales, E Botchan, M AF Clarey, Megan G. Erzberger, Jan P. Grob, Patricia Leschziner, Andres E. Berger, James M. Nogales, Eva Botchan, Michael TI Nucleotide-dependent conformational changes in the DnaA-like core of the origin recognition complex SO NATURE STRUCTURAL & MOLECULAR BIOLOGY LA English DT Article ID COLI CHROMOSOMAL ORIGIN; ESCHERICHIA-COLI; REPLICATION INITIATION; ATP-HYDROLYSIS; PROTEIN; BINDING; ORC; MCM2-7; RECONSTRUCTION; VISUALIZATION AB Structural details of initiator proteins for DNA replication have provided clues to the molecular events in this process. EM reconstructions of the Drosophila melanogaster origin recognition complex (ORC) reveal nucleotide-dependent conformational changes in the core of the complex. All five AAA+ domains in ORC contain a conserved structural element that, in DnaA, promotes formation of a right-handed helix, indicating that helical AAA+ substructures may be a feature of all initiators. A DnaA helical pentamer can be docked into ORC, and the location of Orc5 uniquely positions this core. The results suggest that ATP-dependent conformational changes observed in ORC derive from reorientation of the AAA+ domains. By analogy to the DNA-wrapping activity of DnaA, we posit that ORC together with Cdc6 prepares origin DNA for helicase loading through mechanisms related to the established pathway of prokaryotes. C1 Univ Calif Berkeley, Div Biochem & Mol Biol, Dept Mol & Cellular Biochem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Howard Hughes Med Inst, Dept Cell & Mol Biol, Berkeley, CA 94720 USA. RP Botchan, M (reprint author), Univ Calif Berkeley, Div Biochem & Mol Biol, Dept Mol & Cellular Biochem, 1 Barker Hall, Berkeley, CA 94720 USA. EM enogales@lbl.gov; mbotchan@berkeley.edu FU NCI NIH HHS [R39 CA 30490] NR 50 TC 60 Z9 61 U1 0 U2 3 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK STREET, 9TH FLOOR, NEW YORK, NY 10013-1917 USA SN 1545-9985 J9 NAT STRUCT MOL BIOL JI Nat. Struct. Mol. Biol. PD AUG PY 2006 VL 13 IS 8 BP 684 EP 690 DI 10.1038/nsmb1121 PG 7 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 070BB UT WOS:000239494200012 PM 16829958 ER PT J AU Minogue, EM Havrilla, GJ Taylor, TP Warner, BP Burrell, AK AF Minogue, Edel M. Havrilla, George J. Taylor, Tammy P. Warner, Benjamin P. Burrell, Anthony K. TI An ultra high throughput, double combinatorial screening method of peptide-metal binding SO NEW JOURNAL OF CHEMISTRY LA English DT Article ID CATALYST LIBRARIES; MASS-SPECTROMETRY; CHEMISTRY; FLUORESCENCE; SELECTION AB An effective ultra-high throughput, double combinatorial method of screening potential selective ligands based upon oligopeptides is described. This rapid screening of bead-based libraries by Micro X-ray Fluorescence (MXRF) was used to identify selective chelating agents for metals that may be found in radioactive dispersive devices (RDDs). The method has proven to be a powerful tool to rapidly and quantitatively screen metal-ligand interactions. It is a tag-free, sensitive technique, which in a combinatorial approach with peptide libraries (e.g. varying charge, length, hydrophobicity, ligand elements etc.), provides a rapid and quantitative means for identifying metal-ligand interactions. C1 Los Alamos Natl Lab, Div Chem, CSIC, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Chem, CCSE, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Nucl Nonproliferat Div, Los Alamos, NM 87545 USA. RP Burrell, AK (reprint author), Los Alamos Natl Lab, Div Chem, CSIC, MS J514, Los Alamos, NM 87545 USA. EM Burrell@lanl.gov OI Havrilla, George/0000-0003-2052-7152 NR 12 TC 2 Z9 2 U1 0 U2 1 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1144-0546 J9 NEW J CHEM JI New J. Chem. PD AUG PY 2006 VL 30 IS 8 BP 1145 EP 1148 DI 10.1039/b603347d PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 075ZN UT WOS:000239926900018 ER PT J AU Basunia, MS AF Basunia, M. S. TI Nuclear data sheets for A=237 SO NUCLEAR DATA SHEETS LA English DT Review ID SPONTANEOUSLY FISSIONING ISOMERS; MUON-INDUCED FISSION; SELF-CONSISTENT DESCRIPTION; SINGLE-PARTICLE STATES; ELECTRON-CAPTURE DECAY; ATOMIC MASS EVALUATION; GAMMA-RAY TRANSITIONS; ALPHA-DECAY; ENERGY-LEVELS; HALF-LIFE AB Evaluated spectroscopic data and level schemes from radioactive decay and nuclear reaction studies are presented for all nuclei with mass number A=237. This evaluation for A=237 supersedes the earlier one by Y. C1 Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Basunia, MS (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. NR 333 TC 17 Z9 17 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD AUG PY 2006 VL 107 IS 8 BP 2323 EP + DI 10.1016/j.nds.2006.07.001 PG 99 WC Physics, Nuclear SC Physics GA 072IU UT WOS:000239667900004 ER PT J AU Harvego, EA Reza, SMM Richards, A Shenoy, A AF Harvego, E. A. Reza, S. M. M. Richards, A. Shenoy, A. TI An evaluation of reactor cooling and coupled hydrogen production processes using the modular helium reactor SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 13th International Conference on Nuclear Energy (ICONE-13) CY MAY 16-20, 2005 CL Beijing, PEOPLES R CHINA AB The high-temperature characteristics of the modular helium reactor (MHR) make it a strong candidate for producing hydrogen using either thermochemical or high-temperature electrolysis (HTE) processes. Using heat from the MHR to drive a sulfur-iodine (SI) thermochemical hydrogen production process has been the subject of a U.S. Department of Energy sponsored Nuclear Engineering Research Initiative (NERI) project led by General Atomics, with participation from the Idaho National Laboratory (INL) and Texas A&M University. While the focus of much of the initial work was on the SI thermochemical production of hydrogen, recent activities included development of a preconceptual design for an integral HTE hydrogen production plant driven by the process heat and electricity produced by a 600 MW MHR. This paper describes ATHENA analyses performed to evaluate alternative primary system cooling configurations for the MHR to minimize peak reactor vessel and core temperatures while achieving core helium outlet temperatures in the range of 900-1000 degrees C that are needed for the efficient production of hydrogen using either the SI or HTE process. The cooling schemes investigated are intended to ensure peak fuel temperatures do not exceed specified limits under normal or transient upset conditions, and that reactor vessel temperatures do not exceed American Society of Mechanical Engineers (ASME) code limits for steady-state or transient conditions using standard light water reactor vessel materials. Preconceptual designs for SI and HTE hydrogen production plants driven by one or more 600 MW MHRs at helium outlet temperatures in the range of 900-1000 degrees C are described and compared. An initial SAPHIRE model to evaluate the reliability, maintainability, and availability of the SI hydrogen production plant is also described. Finally, a preliminary flowsheet for a conceptual design of an HTE hydrogen production plant coupled to a 600 MW modular helium reactor is presented and discussed. Published by Elsevier B.V. C1 Idaho Natl Engn Lab, Idaho Falls, ID 83415 USA. Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. Gen Atom Co, San Diego, CA 92186 USA. RP Harvego, EA (reprint author), Idaho Natl Engn Lab, POB 1625, Idaho Falls, ID 83415 USA. EM edwin.harvego@inl.gov NR 14 TC 9 Z9 9 U1 0 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD AUG PY 2006 VL 236 IS 14-6 BP 1481 EP 1489 DI 10.1016/j.nucengdes.2006.04.014 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 062JZ UT WOS:000238941700007 ER PT J AU Bell, MG Bell, RE Gates, DA Kaye, SM Kugel, H LeBlanc, BP Levinton, FM Maingi, R Menard, JE Raman, R Sabbagh, SA Stutman, D AF Bell, M. G. Bell, R. E. Gates, D. A. Kaye, S. M. Kugel, H. LeBlanc, B. P. Levinton, F. M. Maingi, R. Menard, J. E. Raman, R. Sabbagh, S. A. Stutman, D. CA NSTX Res Team TI New capabilities and results for the National Spherical Torus Experiment SO NUCLEAR FUSION LA English DT Article; Proceedings Paper CT Joint Meeting of the 3rd IAEA Technical Meeting on Spherical Tori/11th International Workshop on Spherical Tokamaks CY OCT 03-06, 2005 CL St Petersburg State Univ, St Petersburg, RUSSIA SP Govt Russian Federat, IAEA HO St Petersburg State Univ ID EXPERIMENT NSTX; PERFORMANCE; PLASMAS; CONFINEMENT; TRANSPORT; TOKAMAKS; MODES AB The National Spherical Torus Experiment (NSTX) produces plasmas with toroidal aspect ratio as low as 1.25, which can be heated by up to 6 MW high-harmonic fast waves and up to 7 MW of deuterium neutral beam injection. Using new poloidal field coils, plasmas with cross-section elongation up to 2.7, triangularity 0.8, plasma currents I-p up to 1.5 MA and normalized currents I-p/aB(T) up to 7.5 MA/m-T have been achieved. A significant extension of the plasma pulse length, to 1.5 s at a plasma current of 0.7 MA, has been achieved by exploiting the bootstrap and NBI-driven currents to reduce the dissipation of poloidal flux. Inductive plasma startup has been supplemented by coaxial helicity injection (CHI) and the production of persistent current on closed flux surfaces by CHI has now been demonstrated in NSTX. The plasma response to magnetic field perturbations with toroidal mode numbers n=1 or 3 and the effects on the plasma rotation have been investigated using three pairs of coils outside the vacuum vessel. Recent studies of both MHD stability and of transport benefitted from improved diagnostics, including measurements of the internal poloidal field using the motional Stark effect (MSE). In plasmas with a region of reversed magnetic shear in the core, now confirmed by the MSE data, improved electron confinement has been observed. C1 Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. Nova Photon, Princeton, NJ USA. Oak Ridge Natl Lab, Oak Ridge, TN USA. Univ Washington, Seattle, WA 98195 USA. Columbia Univ, New York, NY USA. Johns Hopkins Univ, Baltimore, MD USA. MIT, Cambridge, MA 02139 USA. Univ Calif San Diego, San Diego, CA 92103 USA. Gen Atom Co, San Diego, CA USA. Compx, Del Mar, CA USA. Univ Calif Irvine, Irvine, CA USA. Univ Calif Los Angeles, Los Angeles, CA USA. Univ Calif Davis, Davis, CA 95616 USA. Princeton Sci Inst, Princeton, NJ USA. Univ Colorado, Boulder, CO 80309 USA. Hiroshima Univ, Hiroshima, Japan. Lawrence Livermore Natl Lab, Livermore, CA USA. Johns Hopkins Univ, Baltimore, MD USA. Univ Tokyo, Tokyo, Japan. UKAEA Euratom Fus Assoc, Abingdon, Oxon, England. NYU, New York, NY USA. Korea Adv Inst Sci & Technol, Taejon 305701, South Korea. Los Alamos Natl Lab, Los Alamos, NM USA. Univ Rochester, Rochester, NY USA. Korea Basic Sci Inst, Taejon, South Korea. Kyushu Tokai Univ, Kumamoto, Japan. Himeji Inst Technol, Okayama, Japan. ENEA, Frascati, Italy. IV Kurchatov Atom Energy Inst, Moscow, Russia. Univ Wisconsin, Madison, WI 53706 USA. JAERI, Naka, Ibaraki, Japan. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bell, MG (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM MBell@pppl.gov RI Sabbagh, Steven/C-7142-2011; Choe, Wonho/C-1556-2011; Stutman, Dan/P-4048-2015; OI Menard, Jonathan/0000-0003-1292-3286 NR 20 TC 25 Z9 25 U1 0 U2 6 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2006 VL 46 IS 8 BP S565 EP S572 DI 10.1088/0029-5515/46/8/S01 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 081HB UT WOS:000240306700002 ER PT J AU Garstka, GD Unterberg, EA Diem, SJ Eidietis, NW Fonck, RJ Lewicki, BT Taylor, G Battaglia, DJ Bongard, MW Frost, MJ Kujak-Ford, BA Squires, BJ Winz, GR AF Garstka, G. D. Unterberg, E. A. Diem, S. J. Eidietis, N. W. Fonck, R. J. Lewicki, B. T. Taylor, G. Battaglia, D. J. Bongard, M. W. Frost, M. J. Kujak-Ford, B. A. Squires, B. J. Winz, G. R. TI The upgraded Pegasus Toroidal Experiment SO NUCLEAR FUSION LA English DT Article; Proceedings Paper CT Joint Meeting of the 3rd IAEA Technical Meeting on Spherical Tori/11th International Workshop on Spherical Tokamaks CY OCT 03-06, 2005 CL St Petersburg State Univ, St Petersburg, RUSSIA SP Govt Russian Federat, IAEA HO St Petersburg State Univ ID ELECTRON BERNSTEIN WAVES; SPHERICAL TORUS EXPERIMENT; IDEAL MHD STABILITY; HIGH-BETA; HELICITY INJECTION; W7-AS STELLARATOR; START-UP; PLASMA; TOKAMAK; EMISSION AB The Pegasus Toroidal Experiment was developed to explore the physics limits of plasma operation as the aspect ratio (A) approaches unity. Initial experiments on the device found that access to high normalized current and toroidal beta was limited by the presence of large-scale tearing modes. Major upgrades have been conducted of the facility to provide the control tools necessary to mitigate these resistive modes. The upgrades include new programmable power supplies, new poloidal field coils and increased, time-variable toroidal field. First ohmic operations with the upgraded system demonstrated position and current ramp-rate control, as well as improvement in ohmic flux consumption from 2.9 MA Wb(-1) to 4.2 MA Wb(-1). The upgraded experiment will be used to address three areas of physics interest. First, the kink and ballooning stability boundaries at low A and high normalized current will be investigated. Second, clean, high-current plasma sources will be studied as a helicity injection tool. Experiments with two such sources have produced toroidal currents three times greater than predicted by geometric field line following. Finally, the use of electron Bernstein waves to heat and drive current locally will be studied at the I MW level; initial modelling indicates that these experiments are feasible at a frequency of 2.45 GHz. C1 Univ Wisconsin, Madison, WI 53706 USA. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Garstka, GD (reprint author), Univ Wisconsin, 1500 Engn Dr, Madison, WI 53706 USA. EM garstka@engr.wisc.edu NR 46 TC 18 Z9 18 U1 0 U2 6 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2006 VL 46 IS 8 BP S603 EP S612 DI 10.1088/0029-5515/46/8/S06 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 081HB UT WOS:000240306700007 ER PT J AU Nakamura, Y Tobita, K Fukuyama, A Takei, N Takase, Y Ozeki, T Jardin, SC AF Nakamura, Y. Tobita, K. Fukuyama, A. Takei, N. Takase, Y. Ozeki, T. Jardin, S. C. TI A simulation study on inductive ITB control in reversed shear tokamak discharges SO NUCLEAR FUSION LA English DT Article; Proceedings Paper CT Joint Meeting of the 3rd IAEA Technical Meeting on Spherical Tori/11th International Workshop on Spherical Tokamaks CY OCT 03-06, 2005 CL St Petersburg State Univ, St Petersburg, RUSSIA SP Govt Russian Federat, IAEA HO St Petersburg State Univ ID INTERNAL TRANSPORT BARRIERS; IMPROVED CONFINEMENT; BOOTSTRAP CURRENT; L-MODE; PLASMAS; PHYSICS; JT-60U; REGIMES AB A self-consistent simulation, including a model for improved core energy confinement, demonstrates that externally applied, inductive current perturbations can be used to control both the location and strength of internal transport barriers (ITBs) in a fully non-inductive tokamak discharge. We find that ITB structures formed with broad non-inductive current sources such as LHCD are more readily controlled than those formed by localized sources such as ECCD. Through this external control of the magnetic shear profile, we can maintain the ITB strength which is otherwise prone to deteriorate when the bootstrap current increases. The inductive current perturbation, which can be implemented by a weak Ohmic power, offers steady-state, advanced tokamak reactors an external means of efficient ITB control for regulating the fusion-burn net output and spatial profile. C1 Japan Atom Energy Agcy, Naka Fus Inst, Naka, Ibaraki 3110193, Japan. Kyoto Univ, Dept Nucl Engn, Kyoto 6068317, Japan. Univ Tokyo, Dept Complex Sci & Engn, Chiba 2778561, Japan. Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Nakamura, Y (reprint author), Japan Atom Energy Agcy, Naka Fus Inst, 801-1 Mukoyama, Naka, Ibaraki 3110193, Japan. RI Jardin, Stephen/E-9392-2010 NR 21 TC 3 Z9 3 U1 2 U2 2 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2006 VL 46 IS 8 BP S645 EP S651 DI 10.1088/0029-5515/46/8/S10 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 081HB UT WOS:000240306700011 ER PT J AU Montag, C Bonati, R Brennan, JM Butler, J Cameron, P Ganetis, G He, P Hirzel, W Jia, LX Koello, P Louie, W McIntyre, G Nicoletti, A Rank, J Roser, T Satogata, T Schmalzle, J Sidi-Yekhlef, A Sondericker, J Tallerico, T AF Montag, C. Bonati, R. Brennan, J. M. Butler, J. Cameron, P. Ganetis, G. He, P. Hirzel, W. Jia, L. X. Koello, P. Louie, W. McIntyre, G. Nicoletti, A. Rank, J. Roser, T. Satogata, T. Schmalzle, J. Sidi-Yekhlef, A. Sondericker, J. Tallerico, T. TI Observation of helium flow induced beam orbit oscillations at RHIC SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE orbit jitter; superconducting magnets; helium flow AB Horizontal beam orbit jitter at frequencies around 10 Hz has been observed at RHIC for several years. The distinct frequencies of this jitter have been found at superconducting low-beta quadrupole triplet magnets around the ring, where they coincide with mechanical vibration modes of the cold masses. Recently, we have identified liquid helium flow as the driving force of these oscillations. (c) 2006 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Montag, C (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM montag@bnl.gov NR 10 TC 1 Z9 1 U1 2 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 1 PY 2006 VL 564 IS 1 BP 26 EP 31 DI 10.1016/j.nima.2006.03.030 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 072JK UT WOS:000239669500003 ER PT J AU Le Pimpec, F Kirby, RE King, FK Pivi, M AF Le Pimpec, F. Kirby, R. E. King, F. K. Pivi, M. TI The effect of gas ion bombardment on the secondary electron yield of TiN, TiCN and TiZrV coatings for suppressing collective electron effects in storage rings SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE thin film; multipacting; getter; electron cloud; secondary electron emission; ion conditioning ID EMISSION; FILMS AB In many accelerator storage rings running positively charged beams, multipactoring due to secondary electron emission (SEE) in the beam pipe will give rise to an electron cloud which can cause beam blow-up or loss of the circulating beam. A preventative measure that suppresses electron cloud formation is to ensure that the vacuum wall has a low secondary emission yield (SEY). The SEY of thin films of TiN, sputter deposited non-evaporable getters and a novel TiCN alloy were measured under a variety of conditions, including the effect of re-contamination from residual gas. (c) 2006 Elsevier B.V. All rights reserved. C1 Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. Paul Scherrer Inst, CH-5232 Villigen, Switzerland. RP Kirby, RE (reprint author), Stanford Linear Accelerator Ctr, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM rek@slac.stanford.edu NR 19 TC 8 Z9 8 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 1 PY 2006 VL 564 IS 1 BP 44 EP 50 DI 10.1016/j.nima.2006.03.041 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 072JK UT WOS:000239669500006 ER PT J AU Yatsu, Y Kuramoto, Y Kataoka, J Kotoku, J Saito, T Ikagawa, T Sato, R Kawai, N Kishimoto, S Mori, K Kamae, T Ishikawa, Y Kawabata, N AF Yatsu, Y. Kuramoto, Y. Kataoka, J. Kotoku, J. Saito, T. Ikagawa, T. Sato, R. Kawai, N. Kishimoto, S. Mori, K. Kamae, T. Ishikawa, Y. Kawabata, N. TI Study of avalanche photodiodes for soft X-ray detection below 20 keV SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE avalanche photodiode; X-ray detector ID SCINTILLATION DETECTION; PERFORMANCE; RADIATION; COUNTERS; READOUT; LIGHT AB The performance of the large area reach-through avalanche photodiode (APD), manufactured by Hamamatsu Photonics, K.K. as a high resolution X-ray detector is presented. The mentioned APD has an area of 3 mm 0, a fast time response for signal carrier collection and its thick depletion layer of 130 pm shows a potential to be used as an effective X-ray absorber below 20 keV. Having a capacitance of similar to 10 pF and a low dark current of 5 nA for a gain of 15, at room temperature, this APD had demonstrated one of the best energy resolutions within this kind of devices: 6.4% (FWHM) for 5.9 keV photons with a minimum detectable energy of 0.3 keV, measured at -20 degrees C. The experiments for the timing property were made in a synchrotron beam facility using an 8 keV X-ray beam; the reached count rate was above 108 counts/s, corresponding to a very short dead time of 4.5 ns/pulse. In order to test the radiation hardness of the APD, the device was irradiated at a Ring Cyclotron Facility with a 53.5 MeV proton beam. The total dose was of 11.3 krad and no fatal damage was found in the APD, although the dark current of the APD had shown an increase of one order of magnitude. Finally, the obtained results allow us to affirm that the reach-through APD has the potential to become an excellent X-ray detector, especially in the space mission application. (c) 2006 Elsevier B.V. All rights reserved. C1 Tokyo Inst Technol, Tokyo 152, Japan. Inst Mat Struct Sci, Photon Factory, Tsukuba, Ibaraki, Japan. Clear Pulse Co, Tokyo, Japan. Stanford Linear Accelerator Ctr, Menlo Pk, CA USA. Hamamatsu Photon KK, Shizuoka, Japan. RP Yatsu, Y (reprint author), Tokyo Inst Technol, Tokyo 152, Japan. EM yatsu@hp.phys.titech.ac.jp NR 30 TC 26 Z9 26 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 1 PY 2006 VL 564 IS 1 BP 134 EP 143 DI 10.1016/j.nima.2006.03.035 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 072JK UT WOS:000239669500018 ER PT J AU Beznosko, D Blazey, G Dyshkant, A Rykalin, V Schellpffer, J Zutshi, V AF Beznosko, D. Blazey, G. Dyshkant, A. Rykalin, V. Schellpffer, J. Zutshi, V. TI Modular design for narrow scintillating cells with MRS photodiodes in strong magnetic field for ILC detector SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE MRS photodiode; calorimeter; magnetic field; extruded scintillator; coincidence trigger; multi-channel ID DIGITAL HADRON CALORIMETER; LINEAR COLLIDER DETECTOR AB The experimental results for the narrow scintillating elements with effective area about 20 cm(2) are reported. The elements were formed from the single piece of scintillator and were read out via wavelength shifting (WLS) fibers with the Metal/Resistor/Semiconductor (MRS) photodiodes on both ends of each fiber. The count rates were obtained using radioactive source Sr-90, with threshold at about three photoelectrons in each channel and quad coincidences (double coincidences between sensors on each fiber and double coincidences between two neighboring fibers). The formation of the cells from the piece of scintillator by using grooves is discussed, and their performances were tested using the radioactive source by measuring the photomutiplier current using the same WLS fiber. Because effective cell area can be readily enlarged or reduced, this module may be used as an active element for calorimeter or muon system for the design of the future electron-positron linear collider detector. Experimental verification of the performance of the MRS photodiode in a strong magnetic field of 9 T, and the impact a magnet quench at 9.5 T are reported. The measurement method used is described. The results confirm the expectations that the MRS photodiode is insensitive to a strong magnetic field and therefore applicable to calorimetry in the presence of magnetic field. The overall result is of high importance for large multi-channel systems. (c) 2006 Elsevier B.V. All rights reserved. C1 No Illinois Univ, De Kalb, IL 60115 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Beznosko, D (reprint author), SUNY Stony Brook, 4107 47Ave 3D, Sunnyside, NY USA. EM dima@hitecht.us OI Beznosko, Dmitriy/0000-0003-4828-8659 NR 10 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 1 PY 2006 VL 564 IS 1 BP 178 EP 184 DI 10.1016/j.nima.2006.04.045 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 072JK UT WOS:000239669500023 ER PT J AU Rochman, D Haight, RC O'Donnell, JM Wender, SA Vieira, DJ Bond, EM Bredeweg, TA Wilhelmy, JB Granier, T Ethvignot, T Petit, M Danon, Y Romano, C AF Rochman, D. Haight, R. C. O'Donnell, J. M. Wender, S. A. Vieira, D. J. Bond, E. M. Bredeweg, T. A. Wilhelmy, J. B. Granier, T. Ethvignot, T. Petit, M. Danon, Y. Romano, C. TI Cross-section measurements for 239Pu(n,f) and 6Li(n,alpha) with a lead slowing-down spectrometer SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE neutron-induced reaction; lead slowing-down spectrometer; compensated fission chamber; compensated ionization chamber ID NEUTRON-INDUCED FISSION; ISOMER AB We present fission cross-section measurements with similar to 10 ng of Pu-239 performed using the LANSCE Lead Slowing-Down Spectrometer. Results of Li-6(n,alpha) measurements with a sample size of 760ng of Li-6 are also reported. This technical achievement demonstrates the feasibility of measuring neutron-induced fission cross-section on samples with 10 ng of fissile actinides that are available on ultra-small quantities. Furthermore, results on neutron-induced alpha emission show that measurements for astrophysics purposes are feasible with the LSDS. (c) 2006 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Commissariat Energie Atom, F-91680 Bruyeres Le Chatel, France. Rensselaer Polytech Inst, Troy, NY 12180 USA. RP Rochman, D (reprint author), Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. EM drochman@bnl.gov; haight@lanl.gov; odonnell@lanl.gov; wender@lanl.gov; vieira@lanl.gov; bond@lanl.gov; toddb@lanl.gov; j_wilhelmy@lanl.gov; granier@cea.fr; ethvignot@cea.fr; petit@cea.fr; danony@rpi.edu; romanc2@rpi.edu RI Danon, Yaron/B-5159-2009; OI Rochman, Dimitri/0000-0002-5089-7034; Wender, Stephen/0000-0002-2446-5115; Bond, Evelyn/0000-0001-7335-4086 NR 17 TC 10 Z9 10 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 1 PY 2006 VL 564 IS 1 BP 400 EP 404 DI 10.1016/j.nima.2006.03.032 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 072JK UT WOS:000239669500052 ER PT J AU Ito, TM Crawford, CB Greene, GL AF Ito, Takeyasu M. Crawford, Christopher B. Greene, Geoffrey L. TI Optimization of the ballistic guide design for the SNSFNPB 8.9 A neutron line SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE neutron beam line; ballistic guide; Monte Carlo simulation AB The optimization of the ballistic guide design for the SNS Fundamental Neutron Physics Beamline 8.9 A line is described. With a careful tuning of the shape of the curve for the tapered section and the width of the straight section, this optimization resulted in more than a 75% increase in the neutron flux exiting the 33 m long guide over a straight m = 3.5 guide with the same length. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Dept Phys, Oak Ridge, TN 37831 USA. RP Ito, TM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM ito@lani.gov NR 7 TC 3 Z9 3 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 1 PY 2006 VL 564 IS 1 BP 414 EP 423 DI 10.1016/j.nima.2006.04.070 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 072JK UT WOS:000239669500054 ER PT J AU Wen, LJ Cao, J Luk, KB Ma, YQ Wang, YF Yang, CG AF Wen, Liangjian Cao, Jun Luk, Kam-Biu Ma, Yuqian Wang, Yifang Yang, Changgen TI Measuring cosmogenic Li-9 background in a reactor neutrino experiment SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE neutrino oscillation; Li-9; reactor AB Cosmogenic isotopes Li-9 and He-8 produced in the detector are the most problematic background in the reactor neutrino experiments designed to determine precisely the neutrino mixing angle theta(13). The average time interval of cosmic-ray muons in the detector is often on the order of the lifetimes of the Li-9 and He-8 isotopes. We have developed a method for determining this kind of background from the distribution of time since last muon for muon rate up to about 20 Hz when the background-to-signal ratio is small, on the order of a few percents. (c) 2006 Elsevier B.V. All rights reserved. C1 Inst High Energy Phys, Beijing 100049, Peoples R China. Univ Sci & Technol China, Anhua 230026, Peoples R China. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Cao, J (reprint author), Inst High Energy Phys, Beijing 100049, Peoples R China. EM caoj@mail.ihep.ac.cn RI Cao, Jun/G-8701-2012; Wen, Liangjian/C-5113-2015 OI Cao, Jun/0000-0002-3586-2319; Wen, Liangjian/0000-0003-4541-9422 NR 13 TC 9 Z9 10 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 1 PY 2006 VL 564 IS 1 BP 471 EP 474 DI 10.1016/j.nima.2006.04.047 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 072JK UT WOS:000239669500060 ER PT J AU Kononov, VN Bokhovko, MV Kononov, OE Soloviev, NA Chu, WT Nigg, D AF Kononov, V. N. Bokhovko, M. V. Kononov, O. E. Soloviev, N. A. Chu, W. T. Nigg, D. TI Accelerator-based fast neutron sources for neutron therapy SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE accelerator neutron source for medicine; neutron production; dose distribution ID D,N REACTIONS AB The wide usage of neutron therapy in radio oncology could be provided by construction of economical and compact proton and deuteron accelerators with energy of 2-3 MeV, which could be installed at clinic. One goal of this work was to perform new neutron-yield measurements from different targets and derive consistent data on neutron sources. Based on this data, calculations were performed in-phantom dose rate distributions for three neutron sources. It is shown that more prospective for fast neutron therapy are sources based on the Li-7(d,n)2(4)He and Li-7(p,n)Be-7 reactions. Intensive neutron beams produced by this reaction look very similar to beams made at huge accelerators and nuclear reactors. (c) 2006 Elsevier B.V. All rights reserved. C1 Inst Phys & Power Engn, Obninsk, Russia. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Idaho Fall Natl Lab, Idaho Falls, ID USA. RP Kononov, OE (reprint author), Inst Phys & Power Engn, Obninsk, Russia. EM kononov@ippe.ru NR 12 TC 13 Z9 13 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 1 PY 2006 VL 564 IS 1 BP 525 EP 531 DI 10.1016/j.nima.2006.03.043 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 072JK UT WOS:000239669500069 ER PT J AU Wan, W Feng, J Padmore, HA AF Wan, W. Feng, J. Padmore, H. A. TI A new separator design for aberration corrected photoemission electron microscopes SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE XPEEM; aberration correction; beam separator; differential algebra ID BEAM SEPARATOR; SURFACE; SIMULATION; OUTLINE AB Aberration correction of photoemission electron microscopes (PEEM) by electron mirrors requires use of a magnetic beam separator. Due to the stringent requirement on aberrations, such a device is a complex integrated magnetic system. The one that has been installed at BESSY II is essentially fixed in its optical properties hence very susceptible to problems caused by mechanical or magnetic imperfections. Here we present a separate function design that is simple to construct and fully adjustable, which allows more relaxed tolerances on alignment errors and power supply ripples. The simulation with realistic lenses shows that this design gives as good, if not better, a performance as the existing design. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Wan, W (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM WWan@lbl.gov NR 31 TC 5 Z9 5 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 1 PY 2006 VL 564 IS 1 BP 537 EP 543 DI 10.1016/j.nima.2006.03.024 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 072JK UT WOS:000239669500071 ER PT J AU Zhang, Y Jensen, J Possnert, G Grove, DA McCready, DE Arey, BW Weber, WJ AF Zhang, Y. Jensen, J. Possnert, G. Grove, D. A. McCready, D. E. Arey, B. W. Weber, W. J. TI Electronic stopping forces of heavy ions in metal oxides SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 17th International Conference on Ion Beam Analysis CY JUN 26-JUL 01, 2005 CL Seville, SPAIN SP Univ Autonoma Madrid, Univ Sevilla, Junta Andalucia, Minist Educ & Ciencia, Consejo Superior Investigaciones Cient, Int Atomic Energy Agcy, European Act COST G8, Boem Phys Soc, High Voltage Engn Europa BV, Banco Santander Cent Hispano, Schering Espana DE electronic stopping force; time-of-flight energy elastic recoil detection analysis ID ENERGY-LOSS MEASUREMENTS; ALPHA-PARTICLES; CROSS-SECTIONS; SILICON; POWERS AB Electronic energy loss of charged particles in materials is a fundamental process responsible for the unique response of materials in applications of advanced nuclear power, radiation detectors and advanced processing of electronic devices. In this study, stopping forces for ions in metal oxides of ZrO2, Ta2O5 and Nb2O5 have been determined using a time-of-flight energy elastic recoil detection analysis (ToF-E ERDA) set-up. In transmission geometry, the energy loss of heavy ions in these thin metal oxide foils was measured over a continuous range of energies from a few 10 keV/nucleon to over a thousand keV/nucleon using the ToF data that was tagged by a Si detector with and without the stopping foils. Comparisons are made with the SRIM-2003 (The Stopping and Range of Ions in Matter) predictions. While SRIM predicts He stopping force well, varying degrees of agreement with the measured stopping data up to 7% are observed and deviations around stopping maximum are evident for heavy elements. (c) 2006 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. Uppsala Univ, Div Ion Phys, SE-75121 Uppsala, Sweden. Luxel Corp, Friday Harbor, WA 98250 USA. RP Zhang, Y (reprint author), Pacific NW Natl Lab, POB 999 MS K8-93, Richland, WA 99352 USA. EM Yanwen.Zhang@pnl.gov RI Weber, William/A-4177-2008 OI Weber, William/0000-0002-9017-7365 NR 29 TC 9 Z9 9 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD AUG PY 2006 VL 249 BP 18 EP 21 DI 10.1016/j.nimb.2006.03.013 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 070ST UT WOS:000239545000005 ER PT J AU Shao, L Wang, YQ Nastasi, M Mayer, JW AF Shao, Lin Wang, Y. Q. Nastasi, M. Mayer, J. W. TI Measurements of the stopping powers of He ions incident along the different channel axes and channel planes of Si SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 17th International Conference on Ion Beam Analysis CY JUN 26-JUL 01, 2005 CL Seville, SPAIN SP Univ Autonoma Madrid, Univ Sevilla, Junta Andalucia, Minist Educ & Ciencia, Consejo Superior Investigaciones Cient, Int Atomic Energy Agcy, European Act COST G8, Boem Phys Soc, High Voltage Engn Europa BV, Banco Santander Cent Hispano, Schering Espana DE Rutherford backscattering spectrometry; stopping power; silicon; energy loss ID ENERGY-LOSS; CRYSTALS AB One serious issue limiting the accuracy of Rutherford backscattering spectrometry (RBS) is that the stopping powers of channeled and non-channeled particles differ substantially. Consequently, it brings errors not only in the energy-depth conversion of RBS spectra, but also in the quantitative analysis of the disorder profile. In this study, we present measurements of the stopping powers of He-4(+) ions channeled along crystallographic axes of Si (100), (110), (111), and also along crystallographic planes of (100) and (110) in the energy region of 0.6-2 MeV. The aim of this study is to provide an accurate energy-depth conversion for channeling RBS data. (c) 2006 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. Arizona State Univ, Dept Chem & Mat Engn, Tempe, AZ 85287 USA. RP Shao, L (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, POB 1663, Los Alamos, NM 87545 USA. EM lshao@mailaps.org NR 10 TC 13 Z9 13 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD AUG PY 2006 VL 249 BP 51 EP 54 DI 10.1016/j.nimb.2006.03.021 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 070ST UT WOS:000239545000013 ER PT J AU Banks, JC Wampler, WR Browning, JF Doyle, BL AF Banks, James C. Wampler, William R. Browning, James F. Doyle, Barney L. TI Cross sections for 165 degrees backscattering of 8.0-11.7 MeV alpha from carbon SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 17th International Conference on Ion Beam Analysis CY JUN 26-JUL 01, 2005 CL Seville, SPAIN SP Univ Autonoma Madrid, Univ Sevilla, Junta Andalucia, Minist Educ & Ciencia, Consejo Superior Investigaciones Cient, Int Atomic Energy Agcy, European Act COST G8, Boem Phys Soc, High Voltage Engn Europa BV, Banco Santander Cent Hispano, Schering Espana DE carbon cross sections; backscattering spectrometry ID ENERGY-LEVELS; HELIUM-IONS; EXCITATION; O-16; HE-4 AB Non-Rutherford cross sections for carbon have been measured at the 165 degrees backscattering angle for a beam energies ranging from 8.0 to 11.7 MeV. Thin similar to 42(+/- 4) mu g/cm(2) amorphous freestanding carbon foils were measured at the 0 degrees tilt angle. Also, similar to 1.8 x 10(18) at/cm(2) C films e-beam deposited onto Mo substrates were measured at the 75 degrees tilt angle. The measured cross sections from these samples are discussed and compared with values from earlier work. The cross sections from all work are shown in graphic form and those not already available in tabular form will be submitted to the Ion Beam Analysis Nuclear Data Library (IBANDL). (c) 2006 Elsevier B.V. All rights reserved. C1 Sandia Natl Labs, Ion Beam Lab, Albuquerque, NM 87185 USA. RP Banks, JC (reprint author), Sandia Natl Labs, Ion Beam Lab, POB 5800,MS-1056, Albuquerque, NM 87185 USA. EM jcbanks@sandia.gov NR 17 TC 0 Z9 0 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD AUG PY 2006 VL 249 BP 101 EP 104 DI 10.1016/j.nimb.2006.03.090 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 070ST UT WOS:000239545000027 ER PT J AU Hamby, DW Lucca, DA Lee, JK Nastasi, M Kang, HS Lee, SY AF Hamby, D. W. Lucca, D. A. Lee, J. -K. Nastasi, M. Kang, H. S. Lee, S. Y. TI Effects of hydrogen implantation on the photoluminescence and carrier mobility of ZnO films SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 17th International Conference on Ion Beam Analysis CY JUN 26-JUL 01, 2005 CL Seville, SPAIN SP Univ Autonoma Madrid, Univ Sevilla, Junta Andalucia, Minist Educ & Ciencia, Consejo Superior Investigaciones Cient, Int Atomic Energy Agcy, European Act COST G8, Boem Phys Soc, High Voltage Engn Europa BV, Banco Santander Cent Hispano, Schering Espana DE ion implantation; defects; ZnO; photoluminescence; Hall mobility ID MOLECULAR-BEAM EPITAXY; EXCITON PHOTOLUMINESCENCE; BOUND-EXCITON; DONOR; CENTERS; GAN AB A study of the effects of H+ implantation on the photoluminescence (PL) and carrier mobility of ZnO thin films is presented. The 4.2 K PL of the as-grown films exhibits free-exciton luminescence at 3.3755 eV and strong bound-exciton luminescence between 3.33 and 3.37 eV including a peak observed at 3.3313 eV which is identified as the collapse of excitons bound to structural defects. While the implantation process results in a slight reduction of the overall PL intensity due to the introduction of nonradiative centers, the intensity of the 3.3313 eV bound-exciton peak is reduced by more than two orders of magnitude. We attribute this reduction to preferential interaction of hydrogen with structural defects, such as passivation or the formation of complex defects. Room temperature Hall measurements show that changes in the optical properties of H-implanted ZnO are also accompanied by an increased carrier concentration and decreased carrier mobility. (c) 2006 Elsevier B.V. All rights reserved. C1 Oklahoma State Univ, Sch Mech & Aerosp Engn, Stillwater, OK 74078 USA. Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. Yonsei Univ, Dept Elect & Elect Engn, Seoul 120749, South Korea. RP Lucca, DA (reprint author), Oklahoma State Univ, Sch Mech & Aerosp Engn, 218 Engn N, Stillwater, OK 74078 USA. EM lucca@ceat.okstate.edu NR 17 TC 4 Z9 4 U1 4 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD AUG PY 2006 VL 249 BP 196 EP 199 DI 10.1016/j.nimb.2006.03.113 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 070ST UT WOS:000239545000050 ER PT J AU Vizkelethy, G Brice, DK Doyle, BL AF Vizkelethy, Gyorgy Brice, David K. Doyle, Barney L. TI Heavy ion beam induced current/charge (IBIC) through insulating oxides SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 17th International Conference on Ion Beam Analysis CY JUN 26-JUL 01, 2005 CL Seville, SPAIN SP Univ Autonoma Madrid, Univ Sevilla, Junta Andalucia, Minist Educ & Ciencia, Consejo Superior Investigaciones Cient, Int Atomic Energy Agcy, European Act COST G8, Boem Phys Soc, High Voltage Engn Europa BV, Banco Santander Cent Hispano, Schering Espana ID CHARGE COLLECTION; DEVICES AB Model experiments were performed on MOS (metal-oxide semiconductor) capacitors to study ion beam induced charge generation in silicon-on-insulator (Sol) devices. Surprisingly large induced charge was found and a lateral non-uniformity of the induced charge was discovered across the top electrode of the capacitor. In this paper we will give a simple model for the charge induction in MOS structures and an explanation of the lateral changes in the amount of induced charge. (c) 2006 Elsevier B.V. All rights reserved. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Vizkelethy, G (reprint author), Sandia Natl Labs, POB 5800,MS 1056, Albuquerque, NM 87185 USA. EM gvizkel@sandia.gov NR 9 TC 4 Z9 4 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD AUG PY 2006 VL 249 BP 204 EP 208 DI 10.1016/j.nimb.2006.03.115 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 070ST UT WOS:000239545000052 ER PT J AU Shao, L Wang, YQ Nastasi, M Mayer, JW AF Shao, Lin Wang, Y. Q. Nastasi, M. Mayer, J. W. TI A technique to study the lattice location of light elements in silicon by channeling elastic recoil detection analysis SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 17th International Conference on Ion Beam Analysis CY JUN 26-JUL 01, 2005 CL Seville, SPAIN SP Univ Autonoma Madrid, Univ Sevilla, Junta Andalucia, Minist Educ & Ciencia, Consejo Superior Investigaciones Cient, Int Atomic Energy Agcy, European Act COST G8, Boem Phys Soc, High Voltage Engn Europa BV, Banco Santander Cent Hispano, Schering Espana DE hydrogen in silicon; channeling elastic recoil detection; angular scan ID CRYSTALLINE SILICON; HYDROGEN PASSIVATION; ACCEPTOR; BORON AB We reported an ion beam analysis technique to detect the lattice location of hydrogen in crystalline silicon by the method of channeling elastic recoil detection analysis. In this technique, the incident beam is introduced along low index channeling axes while the sample is tilted to an angle by which the forward-scattered H atoms can be detected. We have applied this technique to study the lattice location of H-1 trapped within a boron-doped Si layer. (c) 2006 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. Arizona State Univ, Dept Chem & Mat Engn, Tempe, AZ 85287 USA. RP Shao, L (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, MS G755,MST-8, Los Alamos, NM 87545 USA. EM lshao@mailaps.org NR 16 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD AUG PY 2006 VL 249 BP 230 EP 233 DI 10.1016/j.nimb.2006.04.004 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 070ST UT WOS:000239545000058 ER PT J AU Rossi, P Doyle, BL Auzelyte, V McDaniel, FD Mellon, M AF Rossi, P. Doyle, B. L. Auzelyte, V. McDaniel, F. D. Mellon, M. TI Performance of an alpha-IPEM SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 17th International Conference on Ion Beam Analysis CY JUN 26-JUL 01, 2005 CL Seville, SPAIN SP Univ Autonoma Madrid, Univ Sevilla, Junta Andalucia, Minist Educ & Ciencia, Consejo Superior Investigaciones Cient, Int Atomic Energy Agcy, European Act COST G8, Boem Phys Soc, High Voltage Engn Europa BV, Banco Santander Cent Hispano, Schering Espana DE ion photon emission microscopy; ion beam analysis; ion-luminescence; phosphors; micro-fabrication; proton beam lithography ID NUCLEAR MICROSCOPY; EMISSION AB The ion photon emission microscope, or IPEM, is the first device that allows scientists to microscopically study the effects of single ions in air on semiconductors, microchips and even biological cells without having to focus the beam. Reported here is a prototype, the size of a conventional optical microscope, developed at Sandia. The alpha-IPEM, that employs alpha particles from a radioactive source, represents the first example of IBA imaging without an accelerator. The IPEM resolution is currently limited to similar to 10 mu m, but we also report a gridded-phosphor approach that could improve this resolution to that of the optical microscope, or similar to 1 mu m. Finally, we propose that a simple adaptation of the alpha-IPEM could be the only way to maintain the high utility of radiation effects microscopy into the future. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Padua, Dept Phys, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Lund Techn Univ, Lund, Sweden. Sandia Natl Labs, Dept 1111, Albuquerque, NM 87185 USA. Univ N Texas, Ion Beam Modificat & Anal Lab, Denton, TX 76203 USA. Quantar Technol Inc, Santa Cruz, CA USA. RP Rossi, P (reprint author), Univ Padua, Dept Phys, Via Marzolo 8, I-35131 Padua, Italy. EM rossi@pd.infn.it NR 11 TC 6 Z9 6 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD AUG PY 2006 VL 249 BP 242 EP 245 DI 10.1016/j.nimb.2006.04.050 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 070ST UT WOS:000239545000061 ER PT J AU Shao, L Wang, YQ Nastasi, M AF Shao, Lin Wang, Y. Q. Nastasi, M. TI A new iterative process for accurate analysis of displaced atoms from channeling Rutherford backscattering spectrometry SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 17th International Conference on Ion Beam Analysis CY JUN 26-JUL 01, 2005 CL Seville, SPAIN SP Univ Autonoma Madrid, Univ Sevilla, Junta Andalucia, Minist Educ & Ciencia, Consejo Superior Investigaciones Cient, Int Atomic Energy Agcy, European Act COST G8, Boem Phys Soc, High Voltage Engn Europa BV, Banco Santander Cent Hispano, Schering Espana DE Rutherford backscattering spectrometry; damage; dechanneling; iteration ID CRYSTALS; SILICON; DEPTH AB We have developed an iterative process to distinguish the yield contribution of the channeled He ions directly backscattered by displaced atoms and the yield contribution from the dechanneled He ions backscattered by lattice displaced atoms in channeling Rutherford backscattering spectrometry (RBS). The iterative process is able to accurately calculate the dechanneled fraction, the directly backscattered fraction and the dechanneling cross-section. It can also improve the accuracy of quantitative analysis of disorder profiles in monocrystalline solids by using channeling RBS. We demonstrate this technique by applying it to the measurement of the disorders in Si induced by 60 keV H-1(+) ion implantation to a fluence of 7 x 10(16) cm(-2). (c) 2006 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Shao, L (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, MS G755,MST-8, Los Alamos, NM 87545 USA. EM lshao@mailaps.org NR 8 TC 1 Z9 1 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD AUG PY 2006 VL 249 BP 250 EP 252 DI 10.1016/j.nimb.2006.04.008 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 070ST UT WOS:000239545000063 ER PT J AU Zhang, Y Saraf, L Shutthanandan, V Hughes, KD Kuan, R Thevuthasan, S AF Zhang, Y. Saraf, L. Shutthanandan, V. Hughes, K. D. Kuan, R. Thevuthasan, S. TI Study of hydrogen stability in low-k dielectric films by ion beam techniques SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 17th International Conference on Ion Beam Analysis CY JUN 26-JUL 01, 2005 CL Seville, SPAIN SP Univ Autonoma Madrid, Univ Sevilla, Junta Andalucia, Minist Educ & Ciencia, Consejo Super Invest Cient, Int Atom Energy Agcy, European Act COST G8, Boem Phys Soc, High Voltage Engn Europa BV, Banco Santander Cent Hispano, Schering Espana DE low-k dielectric films; Rutherford backscattering spectroscopy; elastic recoil detection analysis ID CONSTANT; SILSESQUIOXANE; INTEGRATION; GLASS AB With shrinking device geometries into the 65 nm technology node, a transition to low-k dielectrics becomes increasingly attractive. Negative bias temperature instability, which is associated with hydrogen migration at elevated temperatures, becomes the main degradation mechanism of concern for conductivity breakdown in semiconductor devices. The possibility of hydrogen release during each of the fabrication process is, therefore, of great interest to the understanding of device reliability. In the current study, various low-k dielectric films were subjected to thermal annealing in N-2 ambient at temperatures that are generally used for device fabrication. Rutherford backscattering spectrometry (RBS) and elastic recoil detection analysis (ERDA) were used to investigate composition change and hydrogen redistribution of the dielectric films. The results indicate that organosilicate glass, silicon nitride and silicon oxynitride films were stable at temperatures up to 500 degrees C. In phosphorus doped silicon glass and plasma-enhanced tetraethylorthosilicate films, significant hydrogen release from the surface region was evident after heat treatment in N2 purged environment at 300 degrees C for 30 min, further hydrogen release is observed as temperature increases. (c) 2006 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. Texas Instruments Inc, Dallas, TX 75243 USA. RP Zhang, Y (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM Yanwen.Zhang@pnl.gov NR 15 TC 1 Z9 1 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD AUG PY 2006 VL 249 BP 335 EP 338 DI 10.1016/j.nimb.2006.04.022 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 070ST UT WOS:000239545000081 ER PT J AU Shutthanandan, V Thevuthasan, S Droubay, T Kaspar, TC Punnoose, A Hays, J Chambers, SA AF Shutthanandan, V. Thevuthasan, S. Droubay, T. Kaspar, T. C. Punnoose, A. Hays, J. Chambers, S. A. TI Quantification of dopant concentrations in dilute magnetic semiconductors using ion beam techniques SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 17th International Conference on Ion Beam Analysis CY JUN 26-JUL 01, 2005 CL Seville, SPAIN SP Univ Autonoma Madrid, Univ Sevilla, Junta Andalucia, Minist Educ & Ciencia, Consejo Superior Investigaciones Cient, Int Atomic Energy Agcy, European Act COST G8, Boem Phys Soc, High Voltage Engn Europa BV, Banco Santander Cent Hispano, Schering Espana DE RBS; PIXE; spintronics; implantation; MBE; wet chemical synthesis ID SPINTRONICS AB It has recently been demonstrated that magnetically doped TiO2 and SnO2 show ferromagnetism at room temperature and Curie temperatures above room temperature. However, accurate knowledge of dopant concentrations is necessary to quantify magnetic moments in these materials. Rutherford backscattering spectrometry (RBS) is one of the powerful techniques to quantify magnetic transition-metal dopant concentrations in these materials. However, in some cases, the interference of RBS signals for different dopants and substrate elements in these materials makes analysis difficult. In this work, we demonstrate that particle induced X-ray emission (PIXE) can be successfully used to quantify the magnetic transition-element dopants in several room temperature ferromagnetic materials synthesized using three different synthesis methods: oxygen plasma-assisted molecular-beam epitaxy, ion implantation and wet chemical synthesis. (c) 2006 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. Boise State Univ, Dept Phys, Boise, ID 83725 USA. RP Shutthanandan, V (reprint author), Pacific NW Natl Lab, MSIN K8-93,902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM shuttha@pnl.gov RI Droubay, Tim/D-5395-2016 OI Droubay, Tim/0000-0002-8821-0322 NR 12 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD AUG PY 2006 VL 249 BP 402 EP 405 DI 10.1016/j.nimb.2006.04.038 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 070ST UT WOS:000239545000099 ER PT J AU Yu, XK Shao, L Chen, QY Trombetta, L Wang, CY Dharmaiahgari, B Wang, XM Chen, H Ma, KB Liu, JR Chu, WK AF Yu, Xiangkun Shao, Lin Chen, Q. Y. Trombetta, L. Wang, Chunyu Dharmaiahgari, Bhanu Wang, Xuemei Chen, Hui Ma, K. B. Liu, Jiarui Chu, Wei-Kan TI MeV-Si ion irradiation effects on the electrical properties of HfO2 thin films on Si SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 17th International Conference on Ion Beam Analysis CY JUN 26-JUL 01, 2005 CL Seville, SPAIN SP Univ Autonoma Madrid, Univ Sevilla, Junta Andalucia, Minist Educ & Ciencia, Consejo Superior Investigaciones Cient, Int Atomic Energy Agcy, European Act COST G8, Boem Phys Soc, High Voltage Engn Europa BV, Banco Santander Cent Hispano, Schering Espana DE high energy ion implantation; C-V measurement; leakage current AB We studied the irradiation effect of 2-MeV Si ions on HfO2 films deposited on Si substrates. HfO2 films similar to 11 nm thick were deposited onto (100) Si substrates by chemical vapor deposition. The samples were then irradiated by 2-MeV Si ions at a fluence of 1 x 10(14) cm(-2) at room temperature, followed by rapid thermal annealing at 1000 degrees C for 10 s. After annealing, a layer of aluminum was deposited on the samples as the gate electrode to form metal-oxide-semiconductor (MOS) capacitor structures. Rutherford backscattering spectrometry and electrical measurement of both capacitance and current as a function of voltage were used to characterize the samples before and after annealing. Non-insulating properties of the HfO2 films deteriorated immediately after the ion irradiation, but rapid thermal annealing effectively repaired the irradiation damages, as reflected in improved capacitance versus voltage characteristics and significant reduction of leakage current in the MOS capacitors. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Houston, Dept Phys, Houston, TX USA. Univ Houston, Texas Ctr Superconduct, Houston, TX USA. Univ Houston, Dept Elect & Comp Engn, Houston, TX USA. Univ Houston, Dept Chem Engn, Houston, TX USA. RP Yu, XK (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM xyu5@mail.uh.edu NR 6 TC 8 Z9 8 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD AUG PY 2006 VL 249 BP 414 EP 416 DI 10.1016/j.nimb.2006.04.041 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 070ST UT WOS:000239545000102 ER PT J AU Joensson, CT Maximov, IA Whitlow, HJ Shutthanandan, V Saraf, L McCready, DE Arey, BW Zhang, Y Thevuthasan, S AF Joensson, C. T. Maximov, I. A. Whitlow, H. J. Shutthanandan, V. Saraf, L. McCready, D. E. Arey, B. W. Zhang, Y. Thevuthasan, S. TI Synthesis and characterization of cobalt silicide films on silicon SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 17th International Conference on Ion Beam Analysis CY JUN 26-JUL 01, 2005 CL Seville, SPAIN SP Univ Autonoma Madrid, Univ Sevilla, Junta Andalucia, Minist Educ & Ciencia, Consejo Superior Investigaciones Cient, Int Atomic Energy Agcy, European Act COST G8, Boem Phys Soc, High Voltage Engn Europa BV, Banco Santander Cent Hispano, Schering Espana DE cobalt silicide; magnetron sputtering; RBS; NRA ID COSI2; IMPLANTATION; INTERFACE; (100)SI; GROWTH; LAYERS AB Cobalt silicide has emerged as a leading contact material in silicon technology due to its low resistivity, high stability and small lattice mismatch. In this study, 0.2-0.4 mu m thick Co films were deposited on Si(100) wafers by RF magnetron sputtering at room temperature, and annealed at temperatures from 600 to 900 degrees C in vacuum. As-deposited and annealed samples were characterized by Rutherford backscattering spectrometry (RBS), nuclear reaction analysis (NRA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Although the Si substrates were sputter cleaned before the deposition, all the samples showed a thin oxide layer at the Si/Co interfaces. Annealing up to 700 degrees C did not alter the composition at the interface except small amount Co diffusion into Si. Annealing at 800 degrees C promotes the evaporation of the oxides from the interface and, as a result, clean CoSi2 films were formed. Although the interface appeared to be sharp within the RBS resolution after high temperature annealing, the surface topography was relatively rough with varying size of crystal grains. (c) 2006 Elsevier B.V. All rights reserved. C1 Lund Univ, Dept Phys, Div Solid State Phys, Lund, Sweden. Univ Jyvaskyla, Dept Phys, Jyvaskyla, Finland. Sch Technol & Safety, Malmo, Sweden. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Joensson, CT (reprint author), Lund Univ, Dept Phys, Div Solid State Phys, Solvegatan 14, Lund, Sweden. EM teidehigh@hotmail.com RI Maximov, Ivan/B-3042-2008 OI Maximov, Ivan/0000-0003-1944-4878 NR 9 TC 4 Z9 4 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD AUG PY 2006 VL 249 BP 532 EP 535 DI 10.1016/j.nimb.2006.03.046 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 070ST UT WOS:000239545000132 ER PT J AU Padmanabhan, K Harvey, NE Kurej, P Talagala, P Nalk, R Auner, GW Nalk, VM Suryanarayanan, R Thevuthasan, S Shutthanandan, V AF Padmanabhan, K. Harvey, N. E. Kurej, Parashu Talagala, P. Nalk, R. Auner, G. W. Nalk, V. M. Suryanarayanan, R. Thevuthasan, S. Shutthanandan, V. TI Structural studies of titanium oxide films deposited with metalorganic decomposition SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 17th International Conference on Ion Beam Analysis CY JUN 26-JUL 01, 2005 CL Seville, SPAIN SP Univ Autonoma Madrid, Univ Sevilla, Junta Andalucia, Minist Educ & Ciencia, Consejo Superior Investigaciones Cient, Int Atomic Energy Agcy, European Act COST G8, Boem Phys Soc, High Voltage Engn Europa BV, Banco Santander Cent Hispano, Schering Espana DE TiO2; thin films; metalorganic decomposition; channeling; epitaxy AB Films of TiO2 were deposited using an ethyl hexoxide based metalorganic solution on sapphire substrates by employing the MOD method. Rutherford backscattering spectrometry (RBS) used for composition and thickness analysis of the films indicated that the films were stoichiometric. XRD and Raman spectroscopy showed anatase and rutile phases could be formed with appropriate annealing temperatures of 550 degrees C and 700 degrees C. C-12(d,p)C-13 nuclear reaction analysis indicated the presence of residual C in the MOD films. Ion channeling analysis indicated epitaxial growth of the film on sapphire only for very thin films. Significant diffusion of Ti atoms was also observed from the channeling spectra. Preliminary magnetic measurements indicated the possibility of ferromagnetic activity in these films when doped with iron and cobalt. (c) 2006 Elsevier B.V. All rights reserved. C1 Wayne State Univ, Coll Sci, Dept Phys & Astron 364, Detroit, MI 48202 USA. Univ Michigan, Dept Nat Sci, Dearborn, MI 48128 USA. Univ Paris 11, Orsay, France. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Padmanabhan, K (reprint author), Wayne State Univ, Coll Sci, Dept Phys & Astron 364, Detroit, MI 48202 USA. EM padu@hal.physics.wayne.edu OI Naik, Vaman M/0000-0003-0022-2191 NR 10 TC 4 Z9 4 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD AUG PY 2006 VL 249 BP 540 EP 543 DI 10.1016/j.nimb.2006.03.048 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 070ST UT WOS:000239545000134 ER PT J AU Doyle, BL Provencio, PP Kotula, PG Antolak, AJ Ryan, CG Campbell, JL Barrett, K AF Doyle, B. L. Provencio, P. P. Kotula, P. G. Antolak, A. J. Ryan, C. G. Campbell, J. L. Barrett, K. TI PIXE-quantified AXSIA: Elemental mapping by multivariate spectral analysis SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 17th International Conference on Ion Beam Analysis CY JUN 26-JUL 01, 2005 CL Seville, SPAIN SP Univ Autonoma Madrid, Univ Sevilla, Junta Andalucia, Minist Educ & Ciencia, Consejo Superior Investigaciones Cient, Int Atomic Energy Agcy, European Act COST G8, Boem Phys Soc, High Voltage Engn Europa BV, Banco Santander Cent Hispano, Schering Espana DE proton induced X-ray emission; PIXE; multivariate spectral analysis; AXSIA ID NUCLEAR MICROPROBE; SOFTWARE PACKAGE; IMAGES AB Automated, nonbiased, multivariate statistical analysis techniques are useful for converting very large amounts of data into a smaller, more manageable number of chemical components (spectra and images) that are needed to describe the measurement. We report the first use of the multivariate spectral analysis program AXSIA (Automated eXpert Spectral Image Analysis) developed at Sandia National Laboratories to quantitatively analyze micro-PIXE data maps. AXSIA implements a multivariate curve resolution technique that reduces the spectral image data sets into a limited number of physically realizable and easily interpretable components (including both spectra and images). We show that the principal component spectra can be further analyzed using conventional PIXE programs to convert the weighting images into quantitative concentration maps. A common elemental data set has been analyzed using three different PIXE analysis codes and the results compared to the cases when each of these codes is used to separately analyze the associated AXSIA principal component spectral data. We find that these comparisons are in good quantitative agreement with each other. (c) 2006 Elsevier B.V. All rights reserved. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Sandia Natl Labs, Livermore, CA USA. CSIRO, Clayton, Vic 3168, Australia. Univ Guelph, Guelph, ON N1G 2W1, Canada. Primecore Syst, Albuquerque, NM USA. RP Doyle, BL (reprint author), Sandia Natl Labs, POB 5800,MS-1056, Albuquerque, NM 87185 USA. EM bldoyle@sandia.gov RI Ryan, Chris/A-6032-2011; Kotula, Paul/A-7657-2011 OI Ryan, Chris/0000-0003-2891-3912; Kotula, Paul/0000-0002-7521-2759 NR 11 TC 6 Z9 6 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD AUG PY 2006 VL 249 BP 828 EP 832 DI 10.1016/j.nimb.2006.03.184 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 070ST UT WOS:000239545000201 ER PT J AU Lucca, DA Shao, L Wetteland, CJ Misra, A Klopfstein, MJ Nastasi, M AF Lucca, D. A. Shao, L. Wetteland, C. J. Misra, A. Klopfstein, M. J. Nastasi, M. TI Subsurface damage in (100)ZnSe introduced by mechanical polishing SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 17th International Conference on Ion Beam Analysis CY JUN 26-JUL 01, 2005 CL Seville, SPAIN SP Univ Autonoma Madrid, Univ Sevilla, Junta Andalucia, Minist Educ & Ciencia, Consejo Superior Investigaciones Cient, Int Atomic Energy Agcy, European Act COST G8, Boem Phys Soc, High Voltage Engn Europa BV, Banco Santander Cent Hispano, Schering Espana DE ion channeling; cross-sectional transmission electron microscopy; subsurface damage; polishing; ZnSe AB Rutherford backscattering in the axial channeling configuration was used together with cross-sectional transmission electron microscopy (XTEM) to investigate the near surface damage introduced to (100) ZnSe by mechanical polishing. ZnSe surfaces were prepared by polishing with 1 mu m and 1/4 mu m diamond abrasive slurries, and by etching so as to provide a surface indicative of original crystalline quality. Channeling results identified two distinct regions of damage below the surface, (i) shallow damage resulting in direct backscatter and an enlarged surface peak, and (ii) deeper "distortion"-type damage resulting in an increased rate of dechanneling. XTEM observations of the 1/4 mu m diamond abrasive polished surface confirmed the presence of both intense near surface damage and sparse dislocations extending deep into the crystal. (c) 2006 Elsevier B.V. All rights reserved. C1 Oklahoma State Univ, Sch Mech & Aerosp Engn, Stillwater, OK 74078 USA. Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Lucca, DA (reprint author), Oklahoma State Univ, Sch Mech & Aerosp Engn, 218 Engn N, Stillwater, OK 74078 USA. EM lucca@ceat.okstate.edu RI Misra, Amit/H-1087-2012 NR 8 TC 5 Z9 6 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD AUG PY 2006 VL 249 BP 907 EP 910 DI 10.1016/j.nimb.2006.03.161 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 070ST UT WOS:000239545000219 ER PT J AU Miao, YB Fisher, DR Quinn, TP AF Miao, Yubin Fisher, Darrell R. Quinn, Thomas P. TI Reducing renal uptake of Y-90- and Lu-177-labeled alpha-melanocyte stimulating hormone peptide analogues SO NUCLEAR MEDICINE AND BIOLOGY LA English DT Article DE alpha-melanocyte stimulating hormone; radiolabeled peptide; renal uptake; radionuclide therapy of melanoma ID MONOCLONAL-ANTIBODY FRAGMENTS; TUMOR-TARGETING PROPERTIES; THERAPY; Y-90; METABOLISM; OCTREOTIDE; REDUCTION; RADIATION; MODEL; MSH AB Objective: The purpose of this study was to improve the tumor-to-kidney uptake ratios of Y-90- and Lu-177-[1,4,7, 10-tetraazacyclododecane 1,4,7, 1 0-tetraacetic acid-Re-Cys 3,4,10, D-Phe 7, Arg(11)]alpha-melanocyte stimulating hormone(3-13) {DOTA-Re(Arg(11))CCMSH} through coupling a negatively charged glutamic acid (Glu) to the peptide sequence. Methods: A new peptide of DOTA-Re(Glu 2, Arg(11))CCMSH was designed, synthesized and labeled with Y-90 and Lu-177. Pharmacokinetics of Y-90- and Lu-177-DOTA-Re(Glu(2), Arg(11))CCMSH was determined in B16/FI murine melanoma-bearing C57 mice. Results: Y-90- and Lu-177-DOTA-Re(Glu(2), Arg(11))CCMSH exhibited significantly (P <.05) less renal uptake values than Y-90- and Lu-177-DOTA-Re(Arg(11))CCMSH at 30 min and at 2, 4 and 24 h after dose administration. The renal uptake values of Y-90- and Lu-177-DOTA-Re(Glu(2), Arg(11))CCMSH were 28.16% and 28.81% of those of Y-90- and Lu-177-DOTA-Re(Arg(11))CCMSH, respectively, at 4 h postinjection. Y-90- and Lu-177-DOTA-Re(Glu(2), Arg(11))CCMSH displayed higher tumor-to-kidney uptake ratios than Y-90- and Lu-177-DOTA-Re(Arg(11))CCMSH at 30 min and at 2, 4 and 24 h after dose administration. The tumor-to-kidney uptake ratio of Y-90- and Lu-177-DOTA-Re(Glu 2, Arg(11))CCMSH was 2.28 and 1.69 times of Y-90- and Lu-177-DOTA-Re(Arg(11))CCMSH, respectively, at 4 h postinjection. The Y-90- and Lu-177-DOTA-Re(Glu(2), Arg(11))CCMSH activity accumulation was low in normal organs except for kidney. Conclusions: Coupling a negatively charged amino acid (Glu) to the CCMSH peptide sequence dramatically reduced the renal uptake values and increased the tumor-to-kidney uptake ratios of Y-90- and Lu-177-DOTA-Re(Glu(2), Arg(11))CCMSH, facilitating their potential applications as radiopharmaceuticals for targeted radionuclide therapy of melanoma. (c) 2006 Elsevier Inc. All rights reserved. C1 Univ Missouri, Dept Internal Med, Columbia, MO 65211 USA. Univ Missouri, Dept Dermatol, Columbia, MO 65211 USA. Harry S Truman Mem Vet Hosp, Columbia, MO 65201 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. Univ Missouri, Dept Biochem, Columbia, MO 65211 USA. Univ Missouri, Dept Radiol, Columbia, MO 65211 USA. RP Miao, YB (reprint author), Univ Missouri, Dept Internal Med & Dermatol, VA Res Serv A051, Columbia, MO 65201 USA. EM ymiao@salud.unm.edu FU NCI NIH HHS [P50-CA-10313-01] NR 38 TC 27 Z9 27 U1 0 U2 1 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0969-8051 J9 NUCL MED BIOL JI Nucl. Med. Biol. PD AUG PY 2006 VL 33 IS 6 BP 723 EP 733 DI 10.1016/j.nucmedbio.2006.06.005 PG 11 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 083FM UT WOS:000240441800006 PM 16934691 ER PT J AU Band, HR Hollar, J Tan, P Anulli, F Baldini, R Calcaterra, A de Sangro, R Finocchiaro, G Patteri, P Piccolo, M Zallo, A Cheng, CH Lange, DJ Wright, DM Messner, R Wisniewskit, WJ Pappagallo, M Andreotti, M Bettoni, D Calabrese, R Cibinetto, G Luppi, E Negrini, M Capra, R Contri, R LoVetere, M Monge, R Passaggio, S Robutti, E Tosi, S Cartaro, C De Nardo, G Fabozzi, F Lista, L Monorchio, D Piccolo, D Paolucci, P Covarelli, R Pioppi, M Carpinelli, M Forti, F Neri, N Paoloni, E Bellini, F Cavoto, G Di Marco, E D'Orazio, A del Re, D Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Pierini, M Piredda, G Voena, C Potter, C Sinev, N Strom, D Foulkes, S Wang, K AF Band, H. R. Hollar, J. Tan, P. Anulli, F. Baldini, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Patteri, P. Piccolo, M. Zallo, A. Cheng, C. H. Lange, D. J. Wright, D. M. Messner, R. Wisniewskit, W. J. Pappagallo, M. Andreotti, M. Bettoni, D. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Capra, R. Contri, R. LoVetere, M. Monge, R. Passaggio, S. Robutti, E. Tosi, S. Cartaro, C. De Nardo, G. Fabozzi, F. Lista, L. Monorchio, D. Piccolo, D. Paolucci, P. Covarelli, R. Pioppi, M. Carpinelli, M. Forti, F. Neri, N. Paoloni, E. Bellini, F. Cavoto, G. Di Marco, E. D'Orazio, A. del Re, D. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Pierini, M. Piredda, G. Voena, C. Potter, C. Sinev, N. Strom, D. Foulkes, S. Wang, K. TI Performance and aging studies of BaBar resistive plate chambers SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Article; Proceedings Paper CT 8th Workshop on Resistive Plate Chambers and Related Detectors CY OCT 10-12, 2005 CL Korea Univ, Seoul, SOUTH KOREA HO Korea Univ AB The BaBar detector is currently operating nearly 200 Resistive Plate Chambers (RPCs), constructed as part of an upgrade of the forward endcap, muon detector in 2002. Although the average RPC efficiency remains high, numerous changes in the RPC performance (increased currents and rates) have been observed. A few of the highest rate RPCs have suffered efficiency losses of more than 15%. Several types of efficiency loss have been observed. Tests with humidified gas have shown that some of the lost efficiency is recoverable. However, efficiency losses in the highest rate regions have not yet improved with humid gases. C1 Univ Wisconsin, Madison, WI 53706 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-80125 Naples, Italy. Lawrence Livermore Natl Lab, Livermore, CA USA. Stanford Linear Accelerator Ctr, Menlo Pk, CA USA. Univ Bari, Bari, Italy. INFN, Sez Bari, Bari, Italy. Univ Ferrara, I-44100 Ferrara, Italy. INFN Sez, Ferrara, Italy. Univ Genoa, Genoa, Italy. INFN Sez Genova, Genoa, Italy. Univ Naples Federico II, Naples, Italy. INFN Sez Napoli, Naples, Italy. Univ Perugia, I-06100 Perugia, Italy. INFN Sez Perugia, I-06100 Perugia, Italy. Univ Pisa, Pisa, Italy. INFN Sez Pisa, Pisa, Italy. Univ Roma La Sapienza, Rome, Italy. INFN Sez Roma, Rome, Italy. Univ Oregon, Eugene, OR 97403 USA. Univ Calif Riverside, Riverside, CA 92521 USA. RP Band, HR (reprint author), Univ Wisconsin, Madison, WI 53706 USA. EM hrb@slac.stanford.edu RI Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; de Sangro, Riccardo/J-2901-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Lo Vetere, Maurizio/J-5049-2012; Calcaterra, Alessandro/P-5260-2015 OI Cibinetto, Gianluigi/0000-0002-3491-6231; Covarelli, Roberto/0000-0003-1216-5235; Paoloni, Eugenio/0000-0001-5969-8712; Carpinelli, Massimo/0000-0002-8205-930X; Faccini, Riccardo/0000-0003-2613-5141; Cavoto, Gianluca/0000-0003-2161-918X; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; de Sangro, Riccardo/0000-0002-3808-5455; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Lo Vetere, Maurizio/0000-0002-6520-4480; Calcaterra, Alessandro/0000-0003-2670-4826 NR 5 TC 4 Z9 4 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD AUG PY 2006 VL 158 BP 139 EP 142 DI 10.1016/j.nuclphysbps.2006.07.027 PG 4 WC Physics, Particles & Fields SC Physics GA 099ZR UT WOS:000241637300027 ER PT J AU Mizia, RE Lister, TE Pinhero, PJ Trowbridge, TL Hurt, WL Robino, CV Stephens, JJ Dupont, JN AF Mizia, Ronald E. Lister, Tedd E. Pinhero, Patrick J. Trowbridge, Tammy L. Hurt, William L. Robino, Charles V. Stephens, John J., Jr. DuPont, John N. TI Development and testing of an advanced neutron-absorbing gadolinium alloy for spent nuclear fuel storage SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT ASTM International Subcommittee Seminar on Spent Fuel and High Level Waste CY JAN 27-28, 2005 CL Atlanta, GA SP ASTM DE neutron absorbing; gadolinium; spent fuel ID HIGHLY ENRICHED URANIUM AB The U.S. Department of Energy requires nuclear criticality control measures for storage of its highly enriched spent nuclear fuel. A new alloy based on the Ni-Cr-Mo alloy system with a gadolinium. addition has been developed. Gadolinium has been chosen as the neutron absorption alloying element because of its high thermal neutron absorption cross section. The metallurgical development, mechanical and physical properties, thermal neutron absorption properties, and accelerated corrosion-testing performance of this Ni-Cr-Mo-Gd alloy is described. A brief comparison is also included of the corrosion performance of this alloy as compared to borated stainless steel, which is commonly used as a neutron-absorbing, structural alloy. C1 Idaho Natl Engn Lab, Idaho Falls, ID 83415 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Lehigh Univ, Bethlehem, PA 18015 USA. RP Mizia, RE (reprint author), Idaho Natl Engn Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Ronald.Mizia@inl.gov NR 29 TC 2 Z9 2 U1 1 U2 3 PU AMER NUCLEAR SOCIETY PI LA GRANGE PK PA 555 N KENSINGTON AVENUE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD AUG PY 2006 VL 155 IS 2 BP 133 EP 148 PG 16 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 071AC UT WOS:000239568100003 ER PT J AU Pierce, EM McGrail, BP Valenta, MM Strachan, DM AF Pierce, E. M. McGrail, B. P. Valenta, M. M. Strachan, D. M. TI The accelerated weathering of a radioactive low-activity waste glass under hydraulically unsaturated conditions: Experimental results from a pressurized unsaturated flow test SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT ASTM International Subcommittee Seminar on Spent Fuel and High Level Waste CY JAN 27-28, 2005 CL Atlanta, GA SP ASTM DE immobilized low-activity waste glass; pressurized unsaturated flow system; accelerated weathering ID GIBBS FREE-ENERGIES; SOLUTION VOLUME; DISSOLUTION; URANOPHANE; HYDRATION AB To predict the long-term fate of low- and high-level waste forms in the subsurface over geologic timescales, it is important to understand how the formation of an alteration phase or phases will affect radionuclide release from the corroding waste forms under repository-relevant conditions. To generate data to conduct performance assessment calculations for the low-activity waste (LAW) integrated disposal facility at the Hanford Site in southeastern Washington state, accelerated weathering experiments are being conducted with the pressurized unsaturated flow (PUF) test method to evaluate the long-term release of radionuclides from immobilized LAW (ILAW) glasses. The radionuclide release rate is a key parameter affecting the overall performance of the LAW disposal facility. Currently, there are three other accelerated weathering test methods being used to evaluate the long-term durability of glasses: product consistency test, vapor hydration test, and unsaturated drip test. In contrast to these test methods, PUF tests mimic the hydraulically unsaturated open-flow and transport conditions expected in the near-field vadose zone environment, allow the corroding waste form to achieve its final reaction state, and accelerate the hydrolysis and aging processes by as much as 50 times over conventional static tests run at the same temperature. In this paper, we discuss the results of an accelerated weathering experiment conducted with the PUF apparatus to evaluate the corrosion rate of an ILAW glass, LAWAN102, made with actual Hanford waste taken from Tank 241-AN-102 (U). Results from this PUF test with LAWAN102 glass showed that after 1.5 yr of testing, the corrosion rate, based on B release, reached a steady-state release of 0.010 +/- 0.003 g m(-2) day(-1), which is approximately eight times lower than other glasses previously tested. These results indicate that Tc-99 is being released from the glass congruently, whereas U is being controlled by the formation of a solubility-limiting phase or phases. These results also highlight the importance of being able to predict, with some level of certainty, the alteration phase or phases that will form and how the formation of these phases may impact the release, retention, and transport of radionuclides from the glass under the hydraulically unsaturated open flow and transport conditions that are expected in the LAW integrated disposal facility. C1 Pacific NW Natl Lab, Environm Technol Directorate, Richland, WA 99352 USA. RP Pierce, EM (reprint author), Pacific NW Natl Lab, Environm Technol Directorate, POB 999,MS K6-81, Richland, WA 99352 USA. EM Eric.Pierce@pnl.gov RI Pierce, Eric/G-1615-2011 OI Pierce, Eric/0000-0002-4951-1931 NR 52 TC 6 Z9 6 U1 1 U2 7 PU AMER NUCLEAR SOCIETY PI LA GRANGE PK PA 555 N KENSINGTON AVENUE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD AUG PY 2006 VL 155 IS 2 BP 149 EP 165 PG 17 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 071AC UT WOS:000239568100004 ER PT J AU Wu, Y Wang, MQ Vyas, AD Wade, DC Taiwo, TA AF Wu, Ye Wang, Michael Q. Vyas, Anant D. Wade, David C. Taiwo, Temitope A. TI Well-to-wheels analysis of energy use and greenhouse gas emissions of hydrogen produced with nuclear energy SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT ASTM International Subcommittee Seminar on Spent Fuel and High Level Waste CY JAN 27-28, 2005 CL Atlanta, GA SP ASTM DE hydrogen; fuel cell vehicles; well-to-wheels analysis AB A fuel cycle model-called the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model-has been developed to evaluate well-to-wheels (WTW) energy and emission impacts of motor vehicle technologies fueled with various transportation fuels. The GREET model contains various hydrogen (H-2) production pathways for fuel cell vehicle (FCV) applications. In this study, the GREET model was expanded to include four nuclear H-2 production pathways: (a) H-2 production at refueling stations via electrolysis using light water reactor-generated electricity, (b) H-2 production in central plants via thermochemical water cracking using heat from a high-temperature gas-cooled reactor (HTGR), (c) H-2 production in central plants via high-temperature electrolysis using HTGR-generated electricity and steam, and (d) H-2 production at refueling stations via electrolysis using HTGR-generated electricity. The WTW analyses of these four options include these stages: uranium ore mining and milling, uranium yellowcake transportation, uranium conversion, uranium enrichment, uranium fuel fabrication, uranium fuel transportation, electricity or H-2 production in nuclear power plants, H-2 transportation, H-2 compression, and H-2 FCV operation. Our well-to-pump results show that significant reductions in fossil energy use and greenhouse gas (GHG) emissions are achieved by nuclear-based H-2 compared to natural gas-based H-2 production via steam methane reforming for a unit of H-2 delivered at refueling stations. When H-2 is applied to FCVs, the WTW results also show large benefits in reducing fossil energy use and GHG emissions. C1 Argonne Natl Lab, Ctr Transportat Res, Div Energy Syst, Argonne, IL 60439 USA. Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Wu, Y (reprint author), Argonne Natl Lab, Ctr Transportat Res, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ywu@anl.gov RI Wu, Ye/O-9779-2015 NR 29 TC 6 Z9 6 U1 0 U2 4 PU AMER NUCLEAR SOCIETY PI LA GRANGE PK PA 555 N KENSINGTON AVENUE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD AUG PY 2006 VL 155 IS 2 BP 192 EP 207 PG 16 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 071AC UT WOS:000239568100007 ER PT J AU Irwin, K Montano, D Kasprzyk, D Carlin, L Freeman, C Barnes, R Jain, N Christian, J Wolters, C AF Irwin, Kathleen Montano, Daniel Kasprzyk, Danuta Carlin, Linda Freeman, Crystal Barnes, Rheta Jain, Nidhi Christian, Jeanine Wolters, Charles TI Cervical cancer screening, abnormal cytology management, and counseling practices in the United States SO OBSTETRICS AND GYNECOLOGY LA English DT Article ID HUMAN-PAPILLOMAVIRUS INFECTION; WOMEN; NEOPLASIA; GYNECOLOGISTS; IMPACT; DNA; US AB OBJECTIVE: We assessed clinician knowledge and practices since the marketing of tests for sexually transmitted human papillomavirus (HPV) and the release of HPV testing guidelines for two indications: 1) as an adjunct to cytologic screening and 2) to guide colposcopic triage of patients with atypical squamous cells of undetermined significance (ASC-US) cytology results. METHODS: In mid-2004, we surveyed nationally representative, random samples of clinicians practicing specialties that provide cytologic screening. Mail surveys addressed HPV-related knowledge, screening, abnormal cytology management, HPV testing, and counseling practices. RESULTS: The overall adjusted response rate was 82%. Of the 2,980 (89%) clinicians providing cytologic screening, 99% knew that HPV infection increases cervical cancer risk, and 91% were aware of HPV tests. Of the 21% who reported ever using HPV tests as an adjunct to cytology, more reported usually testing patients aged less than 30 years (which guidelines do not recommend) than older patients (which guidelines do recommend). Of the 63% of clinicians who ever ordered HPV tests for abnormal cytology results, 84% usually ordered tests for ASC-US results and preferentially advised colposcopy if HPV tests were positive, as guidelines recommend. However, more than 60% usually ordered HPV tests for higher-grade abnormalities, which is not recommended for colposcopy triage. Although few sought HPV test consent, most discussed sexually transmitted HPV with patients with abnormal cytology or positive HPV tests despite potentially negative psychosocial consequences. CONCLUSION: New HPV tests and testing guidelines have transformed screening, abnormal cytology management, and counseling practices. Although many U.S. clinicians reported using HPV tests according to guidelines, many also reported inappropriate use. C1 Ctr Dis Control & Prevent, Div Sexually Transmitted Dis Prevent, Atlanta, GA USA. Battelle Ctr Publ Hlth Res, Seattle, WA USA. Battelle Ctr Evaluat, Seattle, WA USA. RP Irwin, K (reprint author), 207 Chemin Poussin, F-01280 Prevessin Moens, France. EM katyirwin@yahoo.com NR 29 TC 42 Z9 44 U1 1 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0029-7844 J9 OBSTET GYNECOL JI Obstet. Gynecol. PD AUG PY 2006 VL 108 IS 2 BP 397 EP 409 DI 10.1097/01.AOG.0000230258.07737.fa PG 13 WC Obstetrics & Gynecology SC Obstetrics & Gynecology GA 171XO UT WOS:000246768900023 PM 16880312 ER PT J AU Schwarz, J Ramsey, M Smith, I Headley, D Porter, J AF Schwarz, Jens Ramsey, Marc Smith, Ian Headley, Daniel Porter, John TI Low order adaptive optics on Z-Beamlet using a single actuator deformable mirror SO OPTICS COMMUNICATIONS LA English DT Article DE Nd : phosphate glass amplifiers; Petawatt laser; thermal lens; adaptive optics ID NATIONAL IGNITION FACILITY; LASER FACILITY; PROGRESS; PROJECT; SYSTEM; LMJ AB The Z-Beamlet laser at Sandia National Laboratories can perform a full system shot every 3-4 h. This shot rate is limited by thermal aberrations that result from the flashlamp pumped Nd:phosphate amplifier slabs. The lowest order as well as the strongest aberration is of cylindrical shape. Therefore, a single actuator deformable mirror assembly for correction of cylindrical aberration was developed. Mirror performance was modeled using finite element analysis and showed good agreement with derived analytical expressions. Quantitative measurements were performed with an interferometer and thermal lens compensation was achieved in the Z-Beamlet laser system leading to an increased shot rate of one in every 2 h. (c) 2006 Elsevier B.V. All rights reserved. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Comforce, Albuquerque, NM 87110 USA. ASAP, Albuquerque, NM 87123 USA. RP Schwarz, J (reprint author), Sandia Natl Labs, POB 5800,MS 1193, Albuquerque, NM 87185 USA. EM jschwar@sandia.gov RI Ramsey, Marc/E-6412-2011 OI Ramsey, Marc/0000-0002-2290-716X NR 33 TC 10 Z9 11 U1 2 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0030-4018 J9 OPT COMMUN JI Opt. Commun. PD AUG 1 PY 2006 VL 264 IS 1 BP 203 EP 212 DI 10.1016/j.optcom.2006.02.029 PG 10 WC Optics SC Optics GA 069VQ UT WOS:000239477300030 ER PT J AU Pfeifer, T Gallmann, L Abel, MJ Neumark, DM Leone, SR AF Pfeifer, Thomas Gallmann, Lukas Abel, Mark J. Neumark, Daniel M. Leone, Stephen R. TI Circular phase mask for control and stabilization of single optical filaments SO OPTICS LETTERS LA English DT Article ID CYCLE LASER-PULSES; GENERATION; AIR; INTENSE AB We experimentally demonstrate an efficient way to control and stabilize single optical filaments initiated by ultrashort laser pulses in a rare gas medium. This is done by the application of a stationary two-dimensional phase mask to the laser beam prior to focusing. Simple circular phase-step patterns of a given radius and relative phase are sufficient to stabilize the pointing of the filament output and to optimize the spectral bandwidth of the light without any resulting loss of input laser power. (c) 2006 Optical Society of America. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Pfeifer, T (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM tpfeifer@lbl.gov RI Neumark, Daniel/B-9551-2009; Gallmann, Lukas/E-5204-2014 OI Neumark, Daniel/0000-0002-3762-9473; Gallmann, Lukas/0000-0003-3167-8271 NR 12 TC 38 Z9 39 U1 0 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD AUG 1 PY 2006 VL 31 IS 15 BP 2326 EP 2328 DI 10.1364/OL.31.002326 PG 3 WC Optics SC Optics GA 065QB UT WOS:000239173300028 PM 16832474 ER PT J AU Zeng, Z Natesan, K AF Zeng, Z. Natesan, K. TI Initiation of metal-dusting pits and a method to mitigate metal-dusting corrosion SO OXIDATION OF METALS LA English DT Article DE metal-dusting; pit initiation; mitigation of metal dusting; oxidation; iron-base alloys; nickel-base alloys; spinel formation ID MECHANISM; ALLOYS; STEELS; IRON; H2S AB Initiation of metal dusting was studied by scanning-electron microscopy and Raman spectroscopy. A copper-indicator method was developed to identify locations that are easily attacked by metal dusting. The effect of surface scratches on metal dusting was investigated. Alloy 800 specimens from a hydrogen-reformer plant were analyzed. The alloy developed a nonprotective oxide scale in which the major phase was Fe1+xCr2-xO4 spinel with a high Fe content. The initiation of metal-dusting pits occurs when channels form. through the oxide scale for the transfer of carbon. The channels can be blocked by short exposure of the metal-dusted alloy surface to an oxidizing environment. Metal-dusting corrosion could be mitigated by selection of alloys with long incubation time and by minimizing and/or slowing the pit-growth rate using an intermediate oxidation treatment at an appropriate temperature and in an appropriate environment for a relatively short time. C1 Argonne Natl Lab, Div Energy Technol, Argonne, IL 60439 USA. RP Zeng, Z (reprint author), Argonne Natl Lab, Div Energy Technol, Argonne, IL 60439 USA. EM zeng@anl.gov NR 16 TC 7 Z9 7 U1 3 U2 13 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X J9 OXID MET JI Oxid. Met. PD AUG PY 2006 VL 66 IS 1-2 BP 1 EP 20 DI 10.1007/s11085-006-9032-z PG 20 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 103OK UT WOS:000241896400001 ER PT J AU Saha-Dasgupta, T Singh, DJ AF Saha-Dasgupta, Tanusri Singh, David J. TI Untitled SO PHASE TRANSITIONS LA English DT Editorial Material C1 SN Bose Ctr, Kolkata, India. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Saha-Dasgupta, T (reprint author), SN Bose Ctr, Kolkata, India. RI Singh, David/I-2416-2012 NR 0 TC 0 Z9 0 U1 0 U2 0 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0141-1594 EI 1029-0338 J9 PHASE TRANSIT JI Phase Transit. PD AUG PY 2006 VL 79 IS 8 BP 615 EP 615 DI 10.1080/01411590600828942 PG 1 WC Crystallography; Physics, Condensed Matter SC Crystallography; Physics GA 099ND UT WOS:000241600800001 ER PT J AU Wadati, H Yoshida, T Chikamatsu, A Kumigashira, H Oshima, M Eisaki, H Shen, ZX Mizokawa, T Fujimori, A AF Wadati, H. Yoshida, T. Chikamatsu, A. Kumigashira, H. Oshima, M. Eisaki, H. Shen, Z. -X. Mizokawa, T. Fujimori, A. TI Angle-resolved photoemission spectroscopy of perovskite-type transition-metal oxides and their analyses using tight-binding band structure SO PHASE TRANSITIONS LA English DT Article; Proceedings Paper CT Indo-US Conference on Novel and Complex Materials CY OCT 26-29, 2005 CL Calcutta, INDIA DE angle-resolved photoemission spectroscopy; transition-metal oxides; band-structure calculation; thin films ID ELECTRONIC-STRUCTURE; SPECTRAL-FUNCTION; ENERGY-BANDS; INSULATOR; SURFACE; LA1-XSRXMNO3; CA1-XSRXVO3; EVOLUTION; SRTIO3; GROWTH AB Nowadays it has become feasible to perform angle-resolved photoemission spectroscopy (ARPES) measurements of transition-metal oxides with three-dimensional perovskite structures owing to the availability of high-quality single crystals of bulk and epitaxial thin films. In this article, we review recent experimental results and interpretation of ARPES data using empirical tight-binding band-structure calculations. Results are presented for SrVO3 (SVO) bulk single crystals and La1-xSrxFeO3 (LSFO) and La1-xSrxMnO3 (LSMO) thin films. In the case of SVO, from comparison of the experimental results with calculated surface electronic structure, we concluded that the obtained band dispersions reflect the bulk electronic structure. The experimental band structures of LSFO and LSMO were analyzed assuming the G-type antiferromagnetic state and the ferromagnetic state, respectively. We also demonstrated that the intrinsic uncertainty of the electron momentum perpendicular to the crystal surface is important for the interpretation of the APRES results of three-dimensional materials. C1 Univ Tokyo, Dept Phys, Chiba 2778561, Japan. Univ Tokyo, Dept Complex Sci & Engn, Chiba 2778561, Japan. Univ Tokyo, Dept Appl Chem, Bunkyo Ku, Tokyo 1138656, Japan. Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3068568, Japan. Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. RP Wadati, H (reprint author), Univ Tokyo, Dept Phys, Chiba 2778561, Japan. EM wadati@wyvern.phys.s.u-tokyo.ac.jp RI CHIKAMATSU, AKIRA/G-4964-2014; Mizokawa, Takashi/E-3302-2015 OI CHIKAMATSU, AKIRA/0000-0003-0484-6356; Mizokawa, Takashi/0000-0002-7682-2348 NR 34 TC 18 Z9 18 U1 3 U2 33 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0141-1594 J9 PHASE TRANSIT JI Phase Transit. PD AUG PY 2006 VL 79 IS 8 BP 617 EP 635 DI 10.1080/01411590600826672 PG 19 WC Crystallography; Physics, Condensed Matter SC Crystallography; Physics GA 099ND UT WOS:000241600800002 ER PT J AU Osetsky, YN Matsukawa, Y Stoller, RE Zinkle, SJ AF Osetsky, Y. N. Matsukawa, Y. Stoller, R. E. Zinkle, S. J. TI On the features of dislocation-obstacle interaction in thin films: large-scale atomistic simulation SO PHILOSOPHICAL MAGAZINE LETTERS LA English DT Article ID STACKING-FAULT TETRAHEDRON; COPPER; IRRADIATION; COLLAPSE AB Large-scale atomistic modelling has demonstrated that the dynamic interactions of dislocations in thin films have a number of remarkable features. A particular example is the interaction between a screw dislocation and a stacking fault tetrahedron (SFT) in Cu, which can be directly compared with in situ observations of quenched or irradiated fcc metals. If the specimen is thin, the dislocation velocity is slow, and the temperature is high enough, a segment of the original SFT can be transported towards the surface via a double cross-slip mechanism and fast glide of an edge dislocation segment formed during the interaction. The mechanisms observed in the simulations provide an explanation for the results of in situ straining experiments and the differences between bulk and thin film experiments. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Osetsky, YN (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM osetskiyyn@ornl.gov RI Matsukawa, Yoshitaka/C-2274-2011; Stoller, Roger/H-4454-2011; OI Matsukawa, Yoshitaka/0000-0002-7888-3478; Zinkle, Steven/0000-0003-2890-6915; Osetskiy, Yury/0000-0002-8109-0030 NR 16 TC 23 Z9 23 U1 1 U2 17 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0950-0839 J9 PHIL MAG LETT JI Philos. Mag. Lett. PD AUG PY 2006 VL 86 IS 8 BP 511 EP 519 DI 10.1080/09500830600908988 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 074UE UT WOS:000239836500006 ER PT J AU Daninthe, H Foteinopoulou, S Soukoulis, CM AF Daninthe, H. Foteinopoulou, S. Soukoulis, C. M. TI Omni-reflectance and enhanced resonant tunneling from multilayers containing left-handed materials SO PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS LA English DT Article DE left-handed materials; backwards wave; omnigap; multilayers; tunneling ID NEGATIVE-INDEX; PHOTONIC CRYSTALS; GAP; PROPAGATION AB We study the oblique transmission through a one-dimensional photonic crystal consisting of alternating slabs made of ordinary and negative refractive index materials, the latter being dispersive. We investigate the angular dependence of the band gap for this multilayer medium. Our results suggest, unlike a conventional Bragg gap, this type of gap exhibits a rather versatile behavior with varying angle of incidence. We find the angle-dependent characteristics for this type of gap can be quite different for different structural parameters of the constituents. Thus, multilayer structures involving left-handed components are very good candidates for band gap engineering. Specifically, we demonstrate for a certain experimentally realizable structure, the existence of a gap region for each individual polarization which survives for incident angles as high as 85 degrees. Moreover, we show how this structure can also function as a highly efficient polarization splitter. Finally, we investigate the multilayer medium when acting as single or double electromagnetic barrier. We study the tunneling properties of such systems for both types of individual barrier layers-right- and left-handed, respectively. We observe the double barrier exhibits resonant tunneling that depends on the "rightness" of the individual barrier layers. (c) 2006 Elsevier B.V. All rights reserved. C1 US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Cergy Pontoise Univ, CNRS, UMR 8089, Theoret Phys & Modelizat Lab, F-95031 Cergy Pontoise, France. Fac Univ Notre Dame Paix, Lab Phys Solide, B-5000 Namur, Belgium. RP Foteinopoulou, S (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM sfoteino@fundp.ac.be RI Soukoulis, Costas/A-5295-2008 NR 26 TC 53 Z9 55 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1569-4410 EI 1569-4429 J9 PHOTONIC NANOSTRUCT JI Photonics Nanostruct. PD AUG PY 2006 VL 4 IS 3 BP 123 EP 131 DI 10.1016/j.photonics.2006.01.001 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA 078QR UT WOS:000240118800001 ER PT J AU LaViolette, RA Beyeler, WE Glass, RJ Stamber, KL Link, H AF LaViolette, Randall A. Beyeler, W. E. Glass, R. J. Stamber, K. L. Link, Hamilton TI Sensitivity of the resilience of congested random networks to rolloff and offset in truncated power-law degree distributions SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS LA English DT Article DE networks; congestion; scale-free; betweenness ID COMPLEX NETWORKS; GRAPH AB Random networks were generated with the random configuration model with prescribed truncated power-law degree distributions, parameterized by an exponent, an offset, and an exponential rolloff. As a model of an attack, each network had exactly one of its highest degree nodes removed, with the result that in some cases, one or more remaining nodes became congested with the reassignment of the load. The congested nodes were then removed, and the "cascade failure" process continued until all nodes were uncongested. The ratio of the number of nodes of the largest remaining cluster to the number of nodes in the original network was taken to be a measure of the network's resiliency to highest-degree node removal. We found that the resiliency is sensitive to both rolloff and offset (but not to cutoff) in the degree distribution, and that rolloff tends to decrease resiliency while offset tends to increase it. (c) 2006 Elsevier B.V. All rights reserved. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP LaViolette, RA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ralavio@sandia.gov NR 23 TC 3 Z9 3 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-4371 J9 PHYSICA A JI Physica A PD AUG 1 PY 2006 VL 368 IS 1 BP 287 EP 293 DI 10.1016/j.physa.2005.12.049 PG 7 WC Physics, Multidisciplinary SC Physics GA 055MK UT WOS:000238454600030 ER PT J AU Simmons, J Lilly, M AF Simmons, Jerry Lilly, Mike CA EP2DS-16 Organizing Committee TI Proceedings of the 16th International Conference on Electronic Properties of Two-Dimensional Systems (EP2DS-16) - Preface SO PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES LA English DT Editorial Material C1 Sandia Corp, Albuquerque, NM 87185 USA. RP Simmons, J (reprint author), Sandia Corp, POB 5800,Mail Stop 0601, Albuquerque, NM 87185 USA. EM ep2ds-16@sandia.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1386-9477 J9 PHYSICA E JI Physica E PD AUG PY 2006 VL 34 IS 1-2 BP VII EP VIII DI 10.1016/j.physe.2006.02.008 PG 2 WC Nanoscience & Nanotechnology; Physics, Condensed Matter SC Science & Technology - Other Topics; Physics GA 075RP UT WOS:000239903200001 ER PT J AU Lai, K Pan, W Tsui, DC Lyon, S Muhlberger, M Schaffler, F AF Lai, K. Pan, W. Tsui, D. C. Lyon, S. Muhlberger, M. Schaffler, F. TI Quantum Hall ferromagnetism in a two-valley strained Si quantum well SO PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES LA English DT Article; Proceedings Paper CT 16th International Conference on the Electronic Properties of Two-Dimensional Systems (EP2DS-16) CY JUL 10-15, 2005 CL Albuquerque, NM SP Sandia Natl Labs DE quantum Hall ferromagnetism; valley degeneracy; Si quantum well ID EFFECT REGIME; TRANSITIONS AB Tilted field magnetotransport study was performed in a two-valley strained Si quantum well and hysteretic diagonal resistance spikes were observed near the coincidence angles. The spike around filling factor v = 3 develops into a giant feature when it moves to the high-field edge of the quantum Hall (QH) state and quenches for higher tilt angles. When the spike is most prominent, its peak resistance is temperature independent from T similar to 20 mK up to 0.3 K, which is different from the critical behavior previously reported near the Curie temperature of the QH ferromagnet in AlAs quantum wells. Our data suggest a strong interplay between spins and valleys near the coincidence. (c) 2006 Elsevier B.V. All rights reserved. C1 Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Univ Linz, Inst Halbleiterphys, A-4040 Linz, Austria. RP Lai, K (reprint author), Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. EM klai@princeton.edu RI Muhlberger, Michael/A-6586-2010; Schaffler, Friedrich/C-7026-2017; OI Schaffler, Friedrich/0000-0002-7093-2554; Muhlberger, Michael/0000-0001-7542-8552 NR 14 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1386-9477 J9 PHYSICA E JI Physica E PD AUG PY 2006 VL 34 IS 1-2 BP 176 EP 178 DI 10.1016/j.physe.2006.03.009 PG 3 WC Nanoscience & Nanotechnology; Physics, Condensed Matter SC Science & Technology - Other Topics; Physics GA 075RP UT WOS:000239903200042 ER PT J AU Dani, KM Tignon, J Breit, M Chemla, DS Kavousanaki, EG Perakis, IE AF Dani, Keshav M. Tignon, Jerome Breit, Michael Chemla, Daniel S. Kavousanaki, Eleftheria G. Perakis, Ilias E. TI Dynamics of the collective excitations of the quantum Hall system SO PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES LA English DT Article; Proceedings Paper CT 16th International Conference on the Electronic Properties of Two-Dimensional Systems (EP2DS-16) CY JUL 10-15, 2005 CL Albuquerque, NM SP Sandia Natl Labs DE non linear spectroscopy; quantum wells; two-dimensional electron gas AB Using the non linear optical technique of 3-pulse 4-wave mixing, we study the dynamics of the collective excitations of the quantum Hall system. We excite the system with 100 fs pulses propagating in directions k(1) and k(3) and then probe its time evolution with a delayed pulse k(2). We measure the non-linear optical response from the lowest Landau level along the direction k(1) + k(2)-k(3). As function of the time delay of pulse k2, this signal shows striking beats for short time delays (similar to 500 fs), followed by a rise (similar to 20 ps) and then a decay (similar to 100ps). We identify the microscopic origin of this dynamics by extending the standard theory of ultra fast nonlinear optics to include the effects of the correlations. (c) 2006 Published by Elsevier B.V. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, EO Lawrence Berkeley Lab, Mat Sci Div, Berkeley, CA 94720 USA. Ecole Normale Super, Lab Pierre Aigrain, F-75005 Paris, France. Fdn Res & Technol Hellas, Inst Elect Struct & Laser, Iraklion, Greece. Univ Crete, Dept Phys, Iraklion, Greece. RP Dani, KM (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM KMDani@lbl.gov RI Perakis, Ilias/G-9186-2011; Kavousanaki, Eleftheria/D-5712-2015; Dani, Keshav/B-7490-2015 OI Kavousanaki, Eleftheria/0000-0003-1805-6638; Dani, Keshav/0000-0003-3917-6305 NR 13 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1386-9477 J9 PHYSICA E JI Physica E PD AUG PY 2006 VL 34 IS 1-2 BP 206 EP 209 DI 10.1016/j.physe.2006.03.113 PG 4 WC Nanoscience & Nanotechnology; Physics, Condensed Matter SC Science & Technology - Other Topics; Physics GA 075RP UT WOS:000239903200050 ER PT J AU Lyon, SK Bielejec, E Seamons, JA Reno, JL Lilly, MP Shim, YP AF Lyon, S. K. Bielejec, E. Seamons, J. A. Reno, J. L. Lilly, M. P. Shim, Yun-pil TI Nonlinear resonant tunneling in low-dimensional systems in a magnetic field: Energy dispersion SO PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES LA English DT Article; Proceedings Paper CT 16th International Conference on the Electronic Properties of Two-Dimensional Systems (EP2DS-16) CY JUL 10-15, 2005 CL Albuquerque, NM SP Sandia Natl Labs DE tunneling; low dimensions; magnetic field; energy dispersion AB We study two-dimensional to two-dimensional (2D-2D) tunneling between two electron layers separated by a wide barrier in an in-plane magnetic field B. The electron gases are separately in equilibrium with their chemical potentials displaced by the bias energy V. We show for a general electronic structure that the tunneling current shows a "fish-like" domain shape on the Delta k - V plane where Delta k proportional to B is the B-induced wave number displacement. The domain shape is determined by the Fermi energies and wave numbers. The boundaries between the high-, low-,. and zero-current regions are sharp, representing the high differential conductance and are made of a combination of regular, inverted, and shifted energy-dispersion curves. This result is also valid for 2D-1D and 1D-1D tunneling. The observed data for the 2D-2D tunneling currents as well as the differential conductance in GaAs/AlxGa1-xAs double quantum wells yield good agreement with the predicted domain shape. (c) 2006 Elsevier B.V. All rights reserved. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Univ Texas, Austin, TX 78712 USA. RP Lyon, SK (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM sklyo@sandia.gov RI Shim, Yun-Pil/C-6603-2012 OI Shim, Yun-Pil/0000-0002-5836-7847 NR 10 TC 4 Z9 4 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1386-9477 J9 PHYSICA E JI Physica E PD AUG PY 2006 VL 34 IS 1-2 BP 425 EP 428 DI 10.1016/j.physe.2006.03.014 PG 4 WC Nanoscience & Nanotechnology; Physics, Condensed Matter SC Science & Technology - Other Topics; Physics GA 075RP UT WOS:000239903200107 ER PT J AU Bielejec, E Seamons, JA Reno, JL Lyo, SK Lilly, MP AF Bielejec, E. Seamons, J. A. Reno, J. L. Lyo, S. K. Lilly, M. P. TI Tunneling and nonlinear transport in a low-dimensional vertically coupled GaAs/AlGaAs system SO PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES LA English DT Article; Proceedings Paper CT 16th International Conference on the Electronic Properties of Two-Dimensional Systems (EP2DS-16) CY JUL 10-15, 2005 CL Albuquerque, NM SP Sandia Natl Labs DE quantum wire; tunnelling; nonlinear transport; quantum wells ID SPECTROSCOPY; WIRES AB We report low-dimensional tunneling in an independently contacted vertically coupled quantum wire system. This nanostructure is fabricated in a high-quality GaAs/AlGaAs parallel double quantum well heterostructure. Using a novel flip chip technique to align top and bottom split gates to form low-dimensional constrictions in each of the independently contacted quantum wells we explicitly control the subband occupation of the individual wires. Our designed geometry includes simultaneous measurement of both the 2D-2D and 1D-1D tunneling regimes. In addition to the expected 2D-2D tunneling results, we have found additional tunneling features that are related to the ID quantum wires. (c) 2006 Elsevier B.V. All rights reserved. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bielejec, E (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM esbiele@sandia.gov NR 14 TC 3 Z9 3 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1386-9477 J9 PHYSICA E JI Physica E PD AUG PY 2006 VL 34 IS 1-2 BP 433 EP 436 DI 10.1016/j.physe.2006.03.109 PG 4 WC Nanoscience & Nanotechnology; Physics, Condensed Matter SC Science & Technology - Other Topics; Physics GA 075RP UT WOS:000239903200109 ER PT J AU Kavousanaki, EG Dani, KM Tignon, J Chemla, DS Perakis, IE AF Kavousanaki, E. G. Dani, K. M. Tignon, J. Chemla, D. S. Perakis, I. E. TI Correlation effects in the ultrafast dynamics of the Quantum Hall system close to nu=1 SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article; Proceedings Paper CT 8th International Workshop on Nonlinear Optics and Excitation Kinetics In Semiconductors (NOEKS 8) CY FEB 20-24, 2006 CL Munster, GERMANY ID SEMICONDUCTORS; STATES; HIERARCHY; DENSITY; REGIME AB We present a many-body theory of the non-linear optical response of the Quantum Hall system. This theory describes the role of the cold, strongly correlated, two-dimensional electron gas (2DEG) in the ultrafast dynamics. We discuss the manifestations of intraband and interband coherences induced by the collective 2DEG excitations in the coupled photocarrier-Quantum Hall system. We compare to transient three-pulse four-wave-mixing experiments. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. C1 Univ Crete, Dept Phys, Iraklion, Crete, Greece. Fdn Res & Technol Hellas, Inst Elect Struct & Laser, Iraklion, Crete, Greece. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Ecole Normale Super, Lab Pierre Aigrain, F-75005 Paris, France. RP Perakis, IE (reprint author), Univ Crete, Dept Phys, Iraklion, Crete, Greece. EM ilias@physics.uoc.gr RI Perakis, Ilias/G-9186-2011; Kavousanaki, Eleftheria/D-5712-2015; Dani, Keshav/B-7490-2015 OI Kavousanaki, Eleftheria/0000-0003-1805-6638; Dani, Keshav/0000-0003-3917-6305 NR 28 TC 2 Z9 2 U1 1 U2 2 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD AUG PY 2006 VL 243 IS 10 BP 2397 EP 2404 DI 10.1002/pssb.200668076 PG 8 WC Physics, Condensed Matter SC Physics GA 076BP UT WOS:000239932300032 ER PT J AU Kaindl, RA Huber, R Schmid, BA Carnahan, MA Hagele, D Chemla, DS AF Kaindl, R. A. Huber, R. Schmid, B. A. Carnahan, M. A. Haegele, D. Chemla, D. S. TI Ultrafast THz spectroscopy of correlated electrons: from excitons to Cooper pairs SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article; Proceedings Paper CT 8th International Workshop on Nonlinear Optics and Excitation Kinetics In Semiconductors (NOEKS 8) CY FEB 20-24, 2006 CL Munster, GERMANY ID QUANTUM-WELLS; INFRARED-ABSORPTION; DYNAMICS; CU2O; SEMICONDUCTORS; GAAS AB Insulating, conducting, and superconducting phases can be identified through their characteristic low-energy response. We discuss experiments that employ ultrashort coherent THz pulses and direct field-resolved detection to probe time-varying correlations of charge carriers in semiconductors and superconductors. These experiments detect 1s-2p intra-exciton resonances of photoexcited e-h gases in GaAs quantum wells. Stimulated emission from intra-excitonic transitions is observed in Cu2O, between 3p and 2s exciton states. Finally, we discuss the formation kinetics of Cooper pairs from nonequilibrium quasiparticles as observed in the transient THz response of the high-T-C superconductor Bi-2212. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinbeim. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, EO Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Kaindl, RA (reprint author), Univ Calif Berkeley, Dept Phys, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM RAKaindl@lbl.gov NR 37 TC 6 Z9 6 U1 1 U2 6 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD AUG PY 2006 VL 243 IS 10 BP 2414 EP 2422 DI 10.1002/pssb.200668077 PG 9 WC Physics, Condensed Matter SC Physics GA 076BP UT WOS:000239932300035 ER PT J AU Bennink, RS Liu, Y Earl, DD Grice, WP AF Bennink, Ryan S. Liu, Yun Earl, D. Duncan Grice, Warren P. TI Spatial distinguishability of photons produced by spontaneous parametric down-conversion with a focused pump SO PHYSICAL REVIEW A LA English DT Article ID ENTANGLED PHOTONS; QUANTUM; COMPLEMENTARITY AB It is known that photons produced by spontaneous parametric down-conversion can be coupled into optical fibers more efficiently by focusing the pump field. We find that focusing the pump in type-II down-conversion causes photons of ordinary and extraordinary polarization to acquire very different angular spreads, which amounts to spatial information that distinguishes between the polarization states. Numerical studies predict that the photons collected by a detector or quantum channel will be of predominantly one polarization and that the degree of polarization entanglement will be lessened in some cases. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Bennink, RS (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM benninkrs@ornl.gov RI Grice, Warren/L-8466-2013; OI Grice, Warren/0000-0003-4266-4692 NR 20 TC 27 Z9 27 U1 1 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG PY 2006 VL 74 IS 2 AR 023802 DI 10.1103/PhysRevA.74.023802 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 080HK UT WOS:000240238300123 ER PT J AU Dalvit, DAR Lombardo, FC Mazzitelli, FD Onofrio, R AF Dalvit, D. A. R. Lombardo, F. C. Mazzitelli, F. D. Onofrio, R. TI Exact Casimir interaction between eccentric cylinders SO PHYSICAL REVIEW A LA English DT Article ID CARBON NANOTUBES; MU-M; FORCE; FRAGMENTATION AB The Casimir force is the ultimate background in ongoing searches for extragravitational forces in the micrometer range. Eccentric cylinders offer favorable experimental conditions for such measurements as spurious gravitational and electrostatic effects can be minimized. Here we report on the evaluation of the exact Casimir interaction between perfectly conducting eccentric cylinders using a mode summation technique, and study different limiting cases of relevance for Casimir force measurements, with potential implications for the understanding of mechanical properties of nanotubes. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis JJ Giambiagi, RA-1428 Buenos Aires, DF, Argentina. Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. RP Dalvit, DAR (reprint author), Los Alamos Natl Lab, Div Theoret, MS B213, Los Alamos, NM 87545 USA. NR 32 TC 74 Z9 74 U1 1 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG PY 2006 VL 74 IS 2 AR 020101 DI 10.1103/PhysRevA.74.020101 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 080HK UT WOS:000240238300001 ER PT J AU Ostrovsky, VN Vrinceanu, D Flannery, MR AF Ostrovsky, V. N. Vrinceanu, D. Flannery, M. R. TI Equivalent multipole operators for degenerate Rydberg states SO PHYSICAL REVIEW A LA English DT Article ID INTRASHELL TRANSITIONS; CLASSICAL-THEORY; MAGNETIC-FIELDS; ATOM; COLLISIONS; IONS AB As shown by Pauli, [Z. Phys. 36, 336 (1926)], the electric dipole operator r can be replaced by the Runge-Lenz vector A when operating within the n(2) degenerate manifold of hydrogenic states of principal quantum number n. We seek to develop similar rules for higher multipole operators by expressing equivalent operators in terms only of the two vector constants of motion-the orbital angular momentum L and the Runge-Lenz vector A-appropriate to the degenerate hydrogenic shell. Equivalence of two operators means here that they yield identical matrix elements within a subspace of Hilbert space that corresponds to fixed n. Such equivalent-operator techniques permit direct algebraic calculation of perturbations of Rydberg atoms by external fields and often exact analytical results for transition probabilities. Explicit expressions for equivalent quadrupole and octupole operators are derived, examples are provided, and general aspects of the problem are discussed. C1 St Petersburg State Univ, V Fock Inst Phys, St Petersburg 198904, Russia. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. RP Ostrovsky, VN (reprint author), St Petersburg State Univ, V Fock Inst Phys, St Petersburg 198904, Russia. NR 31 TC 2 Z9 2 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG PY 2006 VL 74 IS 2 AR 022720 DI 10.1103/PhysRevA.74.022720 PG 12 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 080HK UT WOS:000240238300081 ER PT J AU Robbins, DL Beiersdorfer, P Faenov, AY Pikuz, TA Thorn, DB Chen, H Reed, KJ Smith, AJ Boyce, KR Brown, GV Kelley, RL Kilbourne, CA Porter, FS AF Robbins, D. L. Beiersdorfer, P. Faenov, A. Ya. Pikuz, T. A. Thorn, D. B. Chen, H. Reed, K. J. Smith, A. J. Boyce, K. R. Brown, G. V. Kelley, R. L. Kilbourne, C. A. Porter, F. S. TI Polarization measurements of the Lyman-alpha(1) x-ray emission lines of hydrogenlike Ar17+ and Fe25+ at high electron-impact energies SO PHYSICAL REVIEW A LA English DT Article ID BEAM ION-TRAP; CHARGED IONS; HE-LIKE; SPECTROMETER; PLASMA; SPECTROPOLARIMETRY; SPECTROSCOPY; TRANSITIONS; EXCITATION; SUBLEVELS AB We have measured the polarization of the 2p(3/2)-> 1s(1/2) Lyman-alpha(1) x-ray line of hydrogenlike Ar17+ and Fe25+ at electron-impact energies ranging from 7 to 25 threshold units. The highly charged argon and iron ions were produced using the Lawrence Livermore National Laboratory SuperEBIT electron beam ion trap. A combination of two crystal spectrometers and a microcalorimeter were used to record the Lyman-alpha x-ray emission of Ar17+ and Fe25+ and to infer the polarization of the Lyman-alpha(1) line. Our results show a systematic discrepancy with the predictions of distorted-wave calculations. C1 Morehouse Coll, Dept Phys, Atlanta, GA 30314 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. VNIIFTRI, Multicharged Ions Spectra Data Ctr, Mendeleyevsk 141570, Moscow Region, Russia. NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Robbins, DL (reprint author), Morehouse Coll, Dept Phys, Atlanta, GA 30314 USA. RI Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012 OI Porter, Frederick/0000-0002-6374-1119; NR 27 TC 41 Z9 41 U1 1 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG PY 2006 VL 74 IS 2 AR 022713 DI 10.1103/PhysRevA.74.022713 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 080HK UT WOS:000240238300074 ER PT J AU Wang, JL Yang, ML Jellinek, J Wang, GH AF Wang, Jinlan Yang, Mingli Jellinek, Julius Wang, Guanghou TI Dipole polarizabilities of medium-sized gold clusters SO PHYSICAL REVIEW A LA English DT Article ID DENSITY-FUNCTIONAL CALCULATIONS; ION MOBILITY MEASUREMENTS; SIMPLE METAL-CLUSTERS; CARBON-MONOXIDE; MOLECULES; CHEMISTRY; NANOCLUSTERS; TRANSITION; FULLERENE; OXIDATION AB The dipole polarizabilities of two families of low-lying structures, cage, and space filling, of the medium-sized Au-N (N=32,38,44,50,56) clusters are studied using gradient-corrected density functional theory and finite field method. Both dipole moments and polarizabilities exhibit clear shape-dependent features and the cage structures have systematically smaller dipole moments and larger polarizabilities than the space-filling isomers. The mean polarizability per atom increases with cluster size for the cage structures, but it decreases slowly and tends to approach a constant for the space-filling structures. A linearly correlation between polarizability and cluster volume is noted, complying with the jellium model prediction for spherical metal clusters. The electronic effects including HOMO-LUMO gap and ionization energy on polarizabilities are also explored. The geometric effects play a dominant role on the determination of the polarizability of the cluster over the electronic effects. C1 Southeast Univ, Dept Phys, Nanjing 210096, Peoples R China. Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China. RP Wang, JL (reprint author), Southeast Univ, Dept Phys, Nanjing 210096, Peoples R China. EM jlwang@seu.edu.cn RI Wang, Jinlan/B-3507-2012; Yang, Mingli/E-9983-2012; Wang, Jinlan/B-3503-2012 OI Yang, Mingli/0000-0001-8590-8840; Wang, Jinlan/0000-0002-4529-874X NR 46 TC 27 Z9 27 U1 0 U2 10 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG PY 2006 VL 74 IS 2 AR 023202 DI 10.1103/PhysRevA.74.023202 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 080HK UT WOS:000240238300084 ER PT J AU Adiga, SP Zapol, P Curtiss, LA AF Adiga, S. P. Zapol, P. Curtiss, L. A. TI Atomistic simulations of amorphous alumina surfaces SO PHYSICAL REVIEW B LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; LAYER DEPOSITION; SILICA SURFACES; AL2O3; OXIDE; ALPHA-AL2O3(0001); OXIDATION; MEMBRANES; FILMS; MODEL AB The surface structure of amorphous Al2O3 has been studied using atomistic molecular dynamics simulations. The density profiles indicate that oxygen is preferred at the surface causing Al enrichment just below (< 2 A) the surface. Distributions of coordination numbers, bondlengths and bond angles indicate that edge sharing Al tetrahedra configurations are more preferred at the surface than in the bulk. Structural differences of amorphous and crystalline alumina surfaces are discussed. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Zapol, P (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM zapol@anl.gov RI Adiga, Shashishekar/A-8353-2008; Zapol, Peter/G-1810-2012 OI Zapol, Peter/0000-0003-0570-9169 NR 31 TC 39 Z9 39 U1 1 U2 21 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 6 AR 064204 DI 10.1103/PhysRevB.74.064204 PG 8 WC Physics, Condensed Matter SC Physics GA 080HM UT WOS:000240238500030 ER PT J AU Arena, DA Vescovo, E Kao, CC Guan, Y Bailey, WE AF Arena, D. A. Vescovo, E. Kao, C. -C. Guan, Y. Bailey, W. E. TI Weakly coupled motion of individual layers in ferromagnetic resonance SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIZATION DYNAMICS; MULTILAYERS AB We demonstrate a layer- and time-resolved measurement of ferromagnetic resonance (FMR) in a Ni(81)Fe(19)/Cu/Co(93)Zr(7) trilayer structure. Time-resolved x-ray magnetic circular dichroism has been developed in transmission, with resonant field excitation at a FMR frequency of 2.3 GHz. Small-angle (to 0.2 degrees), time-domain magnetization precession could be observed directly, and resolved to individual layers through elemental contrast at Ni, Fe, and Co edges. The phase sensitivity allowed direct measurement of relative phase lags in the precessional oscillations of individual elements and layers. A weak ferromagnetic coupling, difficult to ascertain in conventional FMR measurements, is revealed in the phase and amplitude response of individual layers across resonance. C1 Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. Columbia Univ, Dept Appl Phys, Mat Sci Program, New York, NY 10027 USA. RP Arena, DA (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. NR 24 TC 36 Z9 36 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 6 AR 064409 DI 10.1103/PhysRevB.74.064409 PG 7 WC Physics, Condensed Matter SC Physics GA 080HM UT WOS:000240238500045 ER PT J AU Arnold, T Chanaa, S Clarke, SM Cook, RE Larese, JZ AF Arnold, T. Chanaa, S. Clarke, S. M. Cook, R. E. Larese, J. Z. TI Structure of an n-butane monolayer adsorbed on magnesium oxide (100) SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-DIFFRACTION; NEUTRON-SCATTERING; SUBMONOLAYER COVERAGES; CRYSTALLINE-STRUCTURES; BINARY-MIXTURES; GRAPHITE; ADSORPTION; OCTANE; SURFACES; ALKANES AB Neutron diffraction has been used to characterize the structure of the solid phase of the completed monolayer of n butane on the MgO(100) surface at low temperature. The monolayer is found to adopt a commensurate (7 root 2 x root 2R45 degrees) structure with lattice constants a=29.47 angstrom and b=4.21 angstrom, P-2gg symmetry and four molecules in the unit cell. Excellent agreement with the experimental diffraction pattern is realized, using a Lorenztian profile to describe the line shape. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Univ Cambridge, BP Inst, Cambridge CB2 1TN, England. Univ Cambridge, Dept Chem, Cambridge CB2 1TN, England. RP Arnold, T (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. RI D20, Diffractometer/O-3123-2013; OI D20, Diffractometer/0000-0002-1572-1367; Arnold, Thomas/0000-0001-8295-3822 NR 26 TC 16 Z9 16 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 8 AR 085421 DI 10.1103/PhysRevB.74.085421 PG 5 WC Physics, Condensed Matter SC Physics GA 080HQ UT WOS:000240238900093 ER PT J AU Belonoshko, AB Davis, S Rosengren, A Ahuja, R Johansson, B Simak, SI Burakovsky, L Preston, DL AF Belonoshko, A. B. Davis, S. Rosengren, A. Ahuja, R. Johansson, B. Simak, S. I. Burakovsky, L. Preston, D. L. TI Xenon melting: Density functional theory versus diamond anvil cell experiments SO PHYSICAL REVIEW B LA English DT Article ID MOLECULAR-DYNAMICS; EARTHS CORE; CORRESPONDING STATES; HIGH-PRESSURES; MGO; IRON; KRYPTON; PHASE; TEMPERATURES; SIMULATIONS AB We performed two-phase ab initio density functional theory based molecular dynamics simulations of Xe melting and demonstrated that, contrary to claims in the recent literature, the pressure dependence of the Xe melting curve is consistent with the corresponding-states theory as well as with the melting curve obtained earlier from classical molecular dynamics with a Xe pair potential. While at low pressure the calculated melting curve is in perfect agreement with reliable experiments, our calculated melting temperatures at higher pressures are inconsistent with those from the most recent diamond anvil cell experiment. We discuss a possible explanation for this inconsistency. C1 Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden. Royal Inst Technol, AlbaNova Univ Ctr, Dept Theoret Phys, SE-10691 Stockholm, Sweden. Uppsala Univ, Dept Phys, Condensed Matter Theory Grp, SE-75121 Uppsala, Sweden. Linkoping Univ, Dept Phys Chem & Biol, SE-58183 Linkoping, Sweden. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Belonoshko, AB (reprint author), Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden. RI Davis, Sergio/F-3415-2011; Simak, Sergei/C-3030-2014 OI Belonoshko, Anatoly/0000-0001-7531-3210; Davis, Sergio/0000-0003-2757-332X; Simak, Sergei/0000-0002-1320-389X NR 35 TC 24 Z9 24 U1 1 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 5 AR 054114 DI 10.1103/PhysRevB.74.054114 PG 4 WC Physics, Condensed Matter SC Physics GA 080HL UT WOS:000240238400030 ER PT J AU Bester, G Zunger, A Wu, XF Vanderbilt, D AF Bester, Gabriel Zunger, Alex Wu, Xifan Vanderbilt, David TI Effects of linear and nonlinear piezoelectricity on the electronic properties of InAs/GaAs quantum dots SO PHYSICAL REVIEW B LA English DT Article ID NANOSTRUCTURES AB The existence of enormous strain fields in self-assembled quantum dots has led to the expectation of dramatic effects of piezoelectricity. However, only linear piezoelectric tensors were used in all previous calculations. We calculate the piezoelectric properties of self-assembled quantum dots using the linear and quadratic piezoelectric tensors derived from first-principles density functional theory. We find that the previously ignored quadratic term has similar magnitude as the linear term and the two terms tend to cancel each other. We show the effect of piezoelectricity on electron and hole energy levels and wave functions as well as on correlated absorption spectra. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Bester, G (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Bester, Gabriel/I-4414-2012; Zunger, Alex/A-6733-2013; OI Bester, Gabriel/0000-0003-2304-0817; Vanderbilt, David/0000-0002-2465-9091 NR 14 TC 85 Z9 85 U1 0 U2 13 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 8 AR 081305 DI 10.1103/PhysRevB.74.081305 PG 4 WC Physics, Condensed Matter SC Physics GA 080HQ UT WOS:000240238900008 ER PT J AU Bouchard, LS AF Bouchard, Louis-S. TI Unidirectional magnetic-field gradients and geometric-phase errors during Fourier encoding using orthogonal ac fields SO PHYSICAL REVIEW B LA English DT Article ID ZERO-FIELD; TIME-REVERSAL; NMR-SPECTROSCOPY; SPIN COUPLINGS; RESONANCE; SEQUENCES; PULSES; DEVICE; MOUSE; MRI AB Nuclear magnetic resonance and imaging in very low fields is fundamentally limited by untruncated concomitant gradients, which cause severe distortions in image acquisition and volume selection if the gradient fields are strong compared to the static field. In this paper, it is shown that gradient fields oscillating in quadrature can be used for spatial encoding in low fields and provide substantial improvements over conventional encoding methods using static gradients. In particular, cases where the maximum applied gradient field Delta B-max is comparable to or higher than the static field B-0 over the field of view, i.e., Delta B-max/B-0 > 1, are examined. With these gradients, undistorted volume selection and image encoding is possible because smaller geometric phase errors are introduced during cyclic motion of the Hamiltonian. In the low field limit, slice selection is achieved with a combination of soft pulse segments and a coherent train of hard pulses to average out concomitant fields over the fast scale of the Hamiltonian. C1 Univ Calif Berkeley, Div Mat Sci, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Bouchard, LS (reprint author), Univ Calif Berkeley, Div Mat Sci, Lawrence Berkeley Lab, 1 Cyclotron Rd Bldg 11-D64, Berkeley, CA 94720 USA. EM lsbouchard@waugh.cchem.berkeley.edu NR 48 TC 6 Z9 6 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 5 AR 054103 DI 10.1103/PhysRevB.74.054103 PG 11 WC Physics, Condensed Matter SC Physics GA 080HL UT WOS:000240238400019 ER PT J AU Buchanan, KS Roy, PE Grimsditch, M Fradin, FY Guslienko, KY Bader, SD Novosad, V AF Buchanan, K. S. Roy, P. E. Grimsditch, M. Fradin, F. Y. Guslienko, K. Yu. Bader, S. D. Novosad, V. TI Magnetic-field tunability of the vortex translational mode in micron-sized permalloy ellipses: Experiment and micromagnetic modeling SO PHYSICAL REVIEW B LA English DT Article ID DYNAMICS AB A magnetic vortex confined in a magnetically soft ferromagnet with micron-sized dimensions possesses a characteristic dynamic excitation known as a translational mode that corresponds to spiral-like precession of the vortex core around its equilibrium position. We report micromagnetic modeling and experimental detection using a microwave reflection technique of the magnetic field tunability of this mode in 40 nm thick, 3x1.5 mu m(2) and 2x1 mu m(2) permalloy ellipses. At remanence the translational modes are detected at 77 and 118 MHz. The frequency shows a strongly anisotropic dependence on magnetic field applied in the plane of the ellipse. The frequencies more than double when a static field is applied along the hard (short) axis, whereas they are almost field-independent when the field is aligned with the easy (long) axis. Micromagnetic calculations reveal that the observed behavior is governed by the shape of the energy potential well that is influenced mainly by magnetostatic and Zeeman energies. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. Angstrom Lab, Dept Engn Sci, SE-75121 Uppsala, Sweden. RP Novosad, V (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM novosad@anl.gov RI Bader, Samuel/A-2995-2013; Novosad, Valentyn/C-2018-2014; Novosad, V /J-4843-2015; OI Buchanan, Kristen/0000-0003-0879-0038 NR 20 TC 49 Z9 49 U1 0 U2 13 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 6 AR 064404 DI 10.1103/PhysRevB.74.064404 PG 5 WC Physics, Condensed Matter SC Physics GA 080HM UT WOS:000240238500040 ER PT J AU Burin, AL Shklovskii, BI Kozub, VI Galperin, YM Vinokur, V AF Burin, A. L. Shklovskii, B. I. Kozub, V. I. Galperin, Y. M. Vinokur, V. TI Many electron theory of 1/f noise in hopping conductivity SO PHYSICAL REVIEW B LA English DT Article ID LOW-FREQUENCY NOISE; DISORDERED SYSTEMS; AMORPHOUS SOLIDS; COULOMB GAP AB We show that 1/f noise in the variable-range hopping regime is related to transitions of many-electrons clusters (fluctuators) between two almost-degenerate states. Giant fluctuation times necessary for 1/f noise are provided by a slow rate of simultaneous tunneling of many localized electrons and by large activation barriers for their consecutive rearrangements. The Hooge constant steeply grows with decreasing temperature because it is easier to find a slow fluctuator at lower temperatures. Our conclusions qualitatively agree with the low-temperature observations of 1/f noise in p-type silicon and GaAs. C1 Tulane Univ, Dept Chem, New Orleans, LA 70118 USA. Univ Minnesota, Sch Phys & Astron, William P Fine Inst Theoret Phys, Minneapolis, MN 55455 USA. Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Oslo, Dept Phys, N-0316 Oslo, Norway. RP Burin, AL (reprint author), Tulane Univ, Dept Chem, New Orleans, LA 70118 USA. RI Galperin, Yuri/A-1851-2008; Kozub, Veniamin/E-4017-2014 OI Galperin, Yuri/0000-0001-7281-9902; NR 29 TC 29 Z9 29 U1 2 U2 8 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 7 AR 075205 DI 10.1103/PhysRevB.74.075205 PG 8 WC Physics, Condensed Matter SC Physics GA 080HP UT WOS:000240238800048 ER PT J AU Cuevas, J Kevrekidis, PG Frantzeskakis, DJ Bishop, AR AF Cuevas, J. Kevrekidis, P. G. Frantzeskakis, D. J. Bishop, A. R. TI Existence of bound states of a polaron with a breather in soft potentials SO PHYSICAL REVIEW B LA English DT Article ID DISCRETE BREATHERS; HOLSTEIN MODEL; MOVING BREATHERS; LATTICES; RESONANCES; STABILITY; VACANCIES; DYNAMICS; SOLITONS; MOTION AB We consider polarons in models of coupled electronic and vibrational degrees of freedom, in the presence of a soft nonlinear substrate potential (Morse potential). In particular, we focus on a bound state of a polaron with a breather, a so-called "polarobreather." We analyze the existence of these states based on frequency resonance conditions and illustrate their stability using Floquet spectrum techniques. Multisite solutions of this type are also obtained both in the stationary case (bond-centered and twisted polarons) and in the breathing case (bond-centered and twisted polarobreathers). For all the branches examined, the dynamical evolution of instabilities pertinent to the corresponding solutions are also briefly discussed. Finally, a different branch of so-called phantom polarobreathers is also demonstrated. C1 Escuela Univ Politecn, Dept Fis Aplicada 1, Grp Fis No Lineal, Seville 41011, Spain. Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. Univ Athens, Dept Phys, Athens 15784, Greece. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Cuevas, J (reprint author), Escuela Univ Politecn, Dept Fis Aplicada 1, Grp Fis No Lineal, C Virgen Africa 7, Seville 41011, Spain. RI Cuevas-Maraver, Jesus/A-1255-2008 OI Cuevas-Maraver, Jesus/0000-0002-7162-5759 NR 41 TC 6 Z9 8 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 6 AR 064304 DI 10.1103/PhysRevB.74.064304 PG 12 WC Physics, Condensed Matter SC Physics GA 080HM UT WOS:000240238500035 ER PT J AU Engelhardt, L Luban, M Schroder, C AF Engelhardt, Larry Luban, Marshall Schroeder, Christian TI Finite quantum Heisenberg spin models and their approach to the classical limit SO PHYSICAL REVIEW B LA English DT Article ID MAGNETISM; CLUSTER AB We determine the temperature range over which classical Heisenberg spin models closely reproduce the zero-field susceptibility of the corresponding quantum Heisenberg models for a finite number N of interacting quantum spins s. Using mostly quantum and classical Monte Carlo methods, as well as analytical methods where applicable, we have explored a variety of geometries, including polygons, open chains, and all Platonic and several Archimedean polytopes. These systems range in size from N=2 to 120, and we have considered values of s from 1/2 to 50 for both antiferromagnetic and ferromagnetic exchange. Particular attention is devoted to quantifying the slow convergence of the large s quantum data to the limiting classical data. This is motivated by the desire to define conditions where classical Monte Carlo methods can provide useful predictions for finite quantum Heisenberg spin systems. C1 Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Univ Appl Sci Bielefeld, Dept Elect Engn & Comp Sci, D-33602 Bielefeld, Germany. Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. RP Engelhardt, L (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM lengelhardt@fmarion.edu NR 18 TC 13 Z9 13 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 5 AR 054413 DI 10.1103/PhysRevB.74.054413 PG 8 WC Physics, Condensed Matter SC Physics GA 080HL UT WOS:000240238400056 ER PT J AU Han, SH Persson, C Hasoon, FS Al-Thani, HA Hermann, AM Levi, DH AF Han, Sung-Ho Persson, Clas Hasoon, Falah S. Al-Thani, Hamda A. Hermann, Allen M. Levi, Dean H. TI Optical properties and electronic structures of (4CuInSe(2))(y)(CuIn5Se8)(1-y) SO PHYSICAL REVIEW B LA English DT Article ID DENSITY-FUNCTIONAL THEORY; ABC2 CHALCOPYRITE SEMICONDUCTORS; CU(IN,GA)SE-2 THIN-FILMS; SPECTROSCOPIC ELLIPSOMETRY; SOLAR-CELLS; TEMPERATURE-DEPENDENCE; ABSORPTION-EDGE; PHASE-RELATIONS; SURFACE-LAYER; CUINSE2 AB Spectroscopic ellipsometric measurements of thin polycrystalline (4CuInSe(2))(y)(CuIn5Se8)(1-y) films reveal that there are important differences in optical properties and electronic structures between alpha-phase CuInSe2 and Cu-poor CuInSe2. We report the optical functions of thin-film polycrystalline (4CuInSe(2))(y)(CuIn5Se8)(1-y) and describe how they change depending on the degree of Cu deficiency. We find a reduction in the absorption strength in the spectral region of 1-3 eV for Cu-poor CuInSe2. This reduction can be explained in terms of density of the Cu 3d states in CuInSe2. Cu-poor CuInSe2 samples show an increase in band gap due to reduced p-d interaction. We find that the reduction in the amplitudes of E-0(A,B,C) transitions at the Gamma point and E-1(A,B) transitions at the N point are due to Cu deficiency. Local density approximation calculations with a modeled on-site self-interaction correction of the absorption coefficients of Cu8In8Se16 (CuInSe2), Cu5In9Se16 (CuIn3Se5-like), and Cu2In10Se16 (CuIn5Se8) are in good agreement with those of thin-film polycrystalline CuInSe2 samples with 24.1, 15.6, and 9.1 at. % Cu, respectively. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. Univ Colorado, Dept Phys, Boulder, CO 80309 USA. Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden. RP Han, SH (reprint author), Univ Calif San Diego, Dept Phys, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM han@physics.ucsd.edu RI Han, Sung-Ho/B-7678-2008 NR 61 TC 23 Z9 23 U1 0 U2 10 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 8 AR 085212 DI 10.1103/PhysRevB.74.085212 PG 10 WC Physics, Condensed Matter SC Physics GA 080HQ UT WOS:000240238900045 ER PT J AU Hucker, M von Zimmermann, M Klingeler, R Kiele, S Geck, J Bakehe, SN Zhang, JZ Hill, JP Revcolevschi, A Buttrey, DJ Buchner, B Tranquada, JM AF Huecker, M. von Zimmermann, M. Klingeler, R. Kiele, S. Geck, J. Bakehe, S. N. Zhang, J. Z. Hill, J. P. Revcolevschi, A. Buttrey, D. J. Buechner, B. Tranquada, J. M. TI Unidirectional diagonal order and three-dimensional stacking of charge stripes in orthorhombic Pr1.67Sr0.33NiO4 and Nd1.67Sr0.33NiO4 SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-DIFFRACTION; MAGNETIC CORRELATIONS; NEUTRON-DIFFRACTION; CRYSTAL-STRUCTURE; PHASE-TRANSITION; EXCESS-OXYGEN; SUPERCONDUCTIVITY; LA5/3SR1/3NIO4; LA2NIO4+DELTA; PR2NIO4+DELTA AB The interplay between crystal symmetry and charge stripe order in Pr1.67Sr0.33NiO4 and Nd1.67Sr0.33NiO4 has been studied by means of single crystal x-ray diffraction. In contrast to tetragonal La1.67Sr0.33NiO4, these crystals are orthorhombic. The corresponding distortion of the NiO2 planes is found to dictate the direction of the charge stripes, similar to the case of diagonal spin stripes in the insulating phase of La2-xSrxCuO4. In particular, diagonal stripes seem to always run along the short a axis, which is the direction of the octahedral tilt axis. In contrast, no influence of the crystal symmetry on the charge stripe ordering temperature itself was observed, with T-CO similar to 240 K for La, Pr, and Nd. The coupling between lattice and stripe degrees of freedom allows one to produce macroscopic samples with unidirectional stripe order. In samples with stoichiometric oxygen content and a hole concentration of exactly 1/3, charge stripes exhibit a staggered stacking order with a period of three NiO2 layers, previously only observed with electron microscopy in domains of mesoscopic dimensions. Remarkably, this stacking order starts to melt about 40 K below T-CO. The melting process can be described by mixing the ground state, which has a three-layer stacking period, with an increasing volume fraction with a two-layer stacking period. C1 Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. Deuetsch Eletronen Synchrotron, Hamburger Synchrontronstschlungslab HASYLAB, D-22603 Hamburg, Germany. IFW Dresden, Leibniz Inst Solid State & Mat Res, D-01171 Dresden, Germany. Univ Cologne, Inst Phys 2, D-50937 Cologne, Germany. Cornell Univ, Ithaca, NY 14850 USA. Univ Paris 11, Lab Physicochim Etat Solide, F-91405 Orsay, France. Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA. RP Hucker, M (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RI Hill, John/F-6549-2011; Tranquada, John/A-9832-2009; Buchner, Bernd/E-2437-2016; Klingeler, Rudiger/E-5941-2010 OI Tranquada, John/0000-0003-4984-8857; Buchner, Bernd/0000-0002-3886-2680; Klingeler, Rudiger/0000-0002-8816-9614 NR 61 TC 21 Z9 21 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 8 AR 085112 DI 10.1103/PhysRevB.74.085112 PG 12 WC Physics, Condensed Matter SC Physics GA 080HQ UT WOS:000240238900027 ER PT J AU Huq, A Stephens, PW AF Huq, Ashfia Stephens, Peter W. TI Crystal structure of Rb4C60 under pressure: X-ray diffraction experiments SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-PROPERTIES; ORIENTATIONAL ORDER; DOPED FULLERENES; TRANSITION; FULLERIDES; CS4C60 AB We show that Rb4C60 transforms from its orientationally disordered tetragonal structure at ambient pressure to an orthorhombic phase in the neighborhood of 0.4 GPa. Lattice parameters, interfullerene distances, and closest Rb-C distances evolve continuously up to 2.2 GPa. Rietveld refinements establish that the high pressure phase is isostructural to Cs4C60. The previously observed conducting phase at 0.8 GPa is therefore structurally distinct from the ambient pressure insulator. C1 Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Huq, A (reprint author), Argonne Natl Lab, Intense Pulsed Neutron Source, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Huq, Ashfia/J-8772-2013 OI Huq, Ashfia/0000-0002-8445-9649 NR 20 TC 9 Z9 9 U1 0 U2 6 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 7 AR 075424 DI 10.1103/PhysRevB.74.075424 PG 4 WC Physics, Condensed Matter SC Physics GA 080HP UT WOS:000240238800110 ER PT J AU Izquierdo, M Megtert, S Albouy, JP Avila, J Valbuena, MA Gu, G Abell, JS Yang, G Asensio, MC Comes, R AF Izquierdo, M. Megtert, S. Albouy, J. P. Avila, J. Valbuena, M. A. Gu, G. Abell, J. S. Yang, G. Asensio, M. C. Comes, R. TI X-ray diffuse scattering experiments from bismuth-based high-T-c superconductors SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; SINGLE-CRYSTALS; TRANSITION-TEMPERATURE; NEUTRON-SCATTERING; PHASE-SEPARATION; STRIPE ORDER; BI2SR2CACU2O8+DELTA; YBA2CU3O7-DELTA; LA2-XSRXNIO4; YBA2CU3O6+X AB A detailed study, by x-ray diffuse scattering, of the recently found two-dimensional (2D) displacive short-range-order (2DSRO) superstructure, with doubled periodicity along the orthorhombic a(o) direction and perpendicular to the known long-range structural modulation, from the high-T-c superconductor Bi2Sr2CaCu2O8+delta (Bi-2212) is reported. The investigation has been extended to high and low temperatures for optimally doped crystals, to crystals with different doping levels, and to the one layer compound Bi2Sr2CaCu2O6+delta (Bi-2201). The results show that the 2DSRO is present at room temperature, for all studied crystals and with the same commensurate 2a(o) periodicity; significant differences in intensity and in the extent of the 2DSRO are however observed. The most striking feature is that both, the intensity of the diffuse scattering and the extent of the 2DSRO goes through a maximum for the optimal doped crystals and decreases for overdoped and underdoped samples, they are also smaller for the one layer Bi-2201 which has a lower T-c. The reversible temperature dependence reveals that the diffuse scattering is unchanged between 35 K and 300 K, but starts washing out for higher temperatures and vanishes around 450 K, temperature above which another scattering, one dimensional in character, is found. This one-dimensional (1D) short-range order (1DSRO) corresponds to linear correlated displacements along the pseudotetragonal directions of the Cu-O-Cu chains. These findings tend to show that these short-range ordering features may be of importance for a better understanding of high-T-c materials, at least those from the bismuth-based family. C1 Univ Paris 11, LURE, F-91898 Orsay, France. Lorme Merisiers, Synchrotron SOLEIL, F-91192 Gif Sur Yvette, France. Univ Paris 11, Lab Phys Solides, F-91405 Orsay, France. CSIC, Inst Ciencia Mat, Madrid 28049, Spain. Brookhaven Natl Lab, Phys Dept, Upton, NY 11975 USA. Univ Birmingham, Sch Met & Mat Sci, Birmingham B15 2TT, W Midlands, England. RP Izquierdo, M (reprint author), Univ Paris 11, LURE, Bat 209D,BP 34, F-91898 Orsay, France. NR 53 TC 7 Z9 7 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 5 AR 054512 DI 10.1103/PhysRevB.74.054512 PG 12 WC Physics, Condensed Matter SC Physics GA 080HL UT WOS:000240238400090 ER PT J AU Kakazei, GN Pogorelov, YG Costa, MD Mewes, T Wigen, PE Hammel, PC Golub, VO Okuno, T Novosad, V AF Kakazei, G. N. Pogorelov, Yu. G. Costa, M. D. Mewes, T. Wigen, P. E. Hammel, P. C. Golub, V. O. Okuno, T. Novosad, V. TI Origin of fourfold anisotropy in square lattices of circular ferromagnetic dots SO PHYSICAL REVIEW B LA English DT Article ID CONFIGURATIONAL ANISOTROPY; INPLANE MAGNETIZATION; ARRAYS AB We discuss the fourfold anisotropy of the in-plane ferromagnetic resonance field H-r, found in a square lattice of circular Permalloy dots when the interdot distance a becomes comparable to the dot diameter d. The minimum H-r along the lattice < 11 > axes and the maximum along the < 10 > axes differ by similar to 50 Oe at a/d=1.1. This anisotropy, not expected in uniformly magnetized dots, is explained by a mechanism of nonuniform magnetization m(r) in a dot in response to dipolar forces in the patterned magnetic structure under strong enough applied field. It is well described by an iterative solution of a continuous variational procedure. C1 Natl Acad Sci Ukraine, Inst Magnetism, UA-03142 Kiev, Ukraine. Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. Univ Porto, Dept Fis, IFIMUP, P-4169 Oporto, Portugal. Univ Porto, Dept Fis, CFP, P-4169 Oporto, Portugal. Univ Alabama, Dept Phys & Astron, MINT, Tuscaloosa, AL 35487 USA. Kyoto Univ, Inst Chem Res, Kyoto 6110011, Japan. Argonne Natl Lab, Div Sci Mat, Argonne, IL 60439 USA. RP Kakazei, GN (reprint author), Natl Acad Sci Ukraine, Inst Magnetism, 36B Vernadskogo Blvd, UA-03142 Kiev, Ukraine. RI Kakazei, Gleb/A-5106-2008; Dias Costa, Miguel/A-6968-2008; Mewes, Tim/B-4796-2009; Golub, Vladimir/K-8647-2012; Novosad, Valentyn/C-2018-2014; Hammel, P Chris/O-4845-2014; Novosad, V /J-4843-2015 OI Kakazei, Gleb/0000-0001-7081-581X; Dias Costa, Miguel/0000-0001-8859-5763; Mewes, Tim/0000-0001-6166-9427; Golub, Vladimir/0000-0002-7550-3978; Hammel, P Chris/0000-0002-4138-4798; NR 19 TC 39 Z9 39 U1 0 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 6 AR 060406 DI 10.1103/PhysRevB.74.060406 PG 4 WC Physics, Condensed Matter SC Physics GA 080HM UT WOS:000240238500008 ER PT J AU Kang, JS Olson, CG Kwon, YS Shim, JH Min, BI AF Kang, J. -S. Olson, C. G. Kwon, Y. S. Shim, J. H. Min, B. I. TI Charge-density wave gap and Ce 4f states in CeTe2 observed by photoemission spectroscopy SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE; MAGNETIC-PROPERTIES; CRYSTAL-STRUCTURE; FERMI-SURFACE; ABSORPTION; TRANSPORT; CERIUM AB The electronic structure of an f-electron charge-density-wave (CDW) system, CeTe2, has been investigated using high-resolution angle-resolved photoemission spectroscopy (ARPES). Two gaps of similar to 100 and similar to 500 meV have been observed both along Gamma X and Gamma Y, implying the 2x2 lattice deformation in the Te(1) sheets with the CDW gap of approximate to 100 meV. By employing the fine-structure (FS) resonance, the experimental Ce 4f ARPES spectra have been measured. The FS resonance ARPES shows a typical two-peak structure with the peaks at similar to-4 and similar to-1 eV, and the weight shift in the latter peak in contrast to the traditional giant resonance. The Ce 4f states have the negligibly small intensity near E-F, reflecting the minor contribution from Ce 4f electrons to the metallic ground state of CeTe2. This study reveals that the carriers near E-F should have mainly the Te(1) 5p and Ce 5d character, but that only the Ce 5d bands cross E-F. C1 Catholic Univ Korea, Dept Phys, Puchon 420743, South Korea. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea. RP Kang, JS (reprint author), Catholic Univ Korea, Dept Phys, Puchon 420743, South Korea. RI Shim, Ji Hoon/F-5375-2013 NR 24 TC 11 Z9 11 U1 2 U2 12 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 8 AR 085115 DI 10.1103/PhysRevB.74.085115 PG 5 WC Physics, Condensed Matter SC Physics GA 080HQ UT WOS:000240238900030 ER PT J AU Kim, YH Zhang, SB Yu, Y Xu, LF Gu, CZ AF Kim, Yong-Hyun Zhang, S. B. Yu, Yang Xu, L. F. Gu, C. Z. TI Dihydrogen bonding, p-type conductivity, and origin of change in work function of hydrogenated diamond (001) surfaces SO PHYSICAL REVIEW B LA English DT Article ID SEMICONDUCTORS; 1ST-PRINCIPLES; INSULATORS; MECHANISM; FILMS AB First-principles study of hydride molecule adsorption on C(001):H reveals unexpected dihydrogen bonding. It implies that H is more electronegative than C, despite that the contrary has been widely used to explain the observed diamond work function reduction due to surface hydrogenation. We resolve this paradox by showing that the replacement of loosely bonded surface pi electrons by more tightly bonded sigma electrons is the real cause for the work function reduction. An interfacial atomistic model based on the dihydrogen bonding is also proposed to explain the observed surface p-type conductivity. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100080, Peoples R China. RP Kim, YH (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Kim, Yong-Hyun/C-2045-2011; Krausnick, Jennifer/D-6291-2013; Zhang, Shengbai/D-4885-2013 OI Kim, Yong-Hyun/0000-0003-4255-2068; Zhang, Shengbai/0000-0003-0833-5860 NR 24 TC 7 Z9 7 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 7 AR 075329 DI 10.1103/PhysRevB.74.075329 PG 4 WC Physics, Condensed Matter SC Physics GA 080HP UT WOS:000240238800080 ER PT J AU Krishnamurthy, VV Singh, DJ Kawamura, N Suzuki, M Ishikawa, T AF Krishnamurthy, V. V. Singh, D. J. Kawamura, N. Suzuki, M. Ishikawa, T. TI Composition-dependent induced spin and orbital magnetic moments of Ir in Co-Ir alloys from x-ray magnetic circular dichroism SO PHYSICAL REVIEW B LA English DT Article ID MAGNETOCRYSTALLINE ANISOTROPY; MODULATION TECHNIQUE; NI/PT MULTILAYERS; PHASE RETARDER; ABSORPTION; IMPURITIES; METAL; FE; NICKEL; COBALT AB X-ray magnetic circular dichroism measurements with the photon helicity modulation technique at Ir L-2,L-3 absorption edges and sum rule analysis show that Ir develops a composition-dependent induced spin and orbital magnetic moments in hcp Co100-xIrx (x=5,17,25,32) alloys. The total moment per Ir is found to be in the range of 0.39 mu(B)-0.1 mu(B)-i.e., decreasing with the increase of x. The spin and orbital moments of Ir in the alloys are found to be aligned antiparallel, showing the violation of the third Hund's rule at these compositions. Electronic structure calculations of Co and Ir magnetic moments in Co100-xIrx at x=25 within the local spin density approximation illustrate that significant 3d-5d hybridization results in the formation of an induced moments at the Ir sites, with the spin moments on the order of 0.2 mu(B)-0.3 mu(B) that are antiparallel to the Ir orbital moment concomitant with a reduced moment on the neighboring Co sites. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. JASRI, SPring8, Mikazuki, Hyogo 6795198, Japan. RIKEN, Harima Inst, Mikazuki, Hyogo 6795148, Japan. RP Krishnamurthy, VV (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Singh, David/I-2416-2012; Ishikawa, Tetsuya/I-4775-2012 OI Ishikawa, Tetsuya/0000-0002-6906-9909 NR 46 TC 9 Z9 9 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 6 AR 064411 DI 10.1103/PhysRevB.74.064411 PG 7 WC Physics, Condensed Matter SC Physics GA 080HM UT WOS:000240238500047 ER PT J AU Li, J Vaknin, D Bud'ko, SL Canfield, PC Pal, D Eskildsen, MR Islam, Z Kogan, VG AF Li, J. Vaknin, D. Bud'ko, S. L. Canfield, P. C. Pal, D. Eskildsen, M. R. Islam, Z. Kogan, V. G. TI Magnetic-field-induced orientation of superconducting MgB2 crystallites determined by x-ray diffraction SO PHYSICAL REVIEW B LA English DT Article ID POINT-CONTACT SPECTROSCOPY; SINGLE-CRYSTALS AB X-ray diffraction studies of fine polycrystalline samples of MgB2 in the superconducting state reveal that crystals orient with their c axis in a plane normal to the direction of the applied magnetic field. The MgB2 samples were thoroughly ground to obtain average grain size 5-10 mu m in order to increase the population of free single crystal grains in the powder. By monitoring Bragg reflections in a plane normal to an applied magnetic field we find that the powder is textured with significantly stronger (0,0,l) reflections in comparison to (h,k,0), which remain essentially unchanged. The orientation of the crystals with the ab plane parallel to the magnetic field at all temperatures below T-c demonstrates that the sign of the torque under magnetic field does not alter, in disagreement with current theoretical predictions. C1 Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Li, J (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM vaknin@ameslab.gov RI Eskildsen, Morten/E-7779-2011; Canfield, Paul/H-2698-2014; Vaknin, David/B-3302-2009 OI Vaknin, David/0000-0002-0899-9248 NR 23 TC 1 Z9 1 U1 1 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 6 AR 064502 DI 10.1103/PhysRevB.74.064502 PG 4 WC Physics, Condensed Matter SC Physics GA 080HM UT WOS:000240238500067 ER PT J AU Li, J Wei, SH Li, SS Xia, JB AF Li, Jingbo Wei, Su-Huai Li, Shu-Shen Xia, Jian-Bai TI Design of shallow acceptors in ZnO: First-principles band-structure calculations SO PHYSICAL REVIEW B LA English DT Article ID P-TYPE ZNO; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; II-VI; ROOM-TEMPERATURE; THIN-FILMS; SEMICONDUCTORS; FABRICATION; DEFECTS; DEVICES AB p-type doping is a great challenge for the full utilization of ZnO as short-wavelength optoelectronic material. Due to a large electronegative characteristic of oxygen, the ionization energy of acceptors in ZnO is usually too high. By analyzing the defect wave-function character, we propose several approaches to lower the acceptor ionization energy by codoping acceptors with donor or isovalent atoms. Using the first-principles band-structure method, we show that the acceptor transition energies of V-Zn-O-O can be reduced by introducing F-O next to V-Zn to reduce electronic potential, whereas the acceptor transition energy of N-O-nZn(Zn) (n=1-4) can be reduced if we replace Zn by isovalent Mg or Be to reduce the anion and cation kinetic p-d repulsion, as well as the electronic potential. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstrcut, Beijing 100083, Peoples R China. RP Li, J (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. NR 37 TC 172 Z9 179 U1 7 U2 74 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 8 AR 081201 DI 10.1103/PhysRevB.74.081201 PG 4 WC Physics, Condensed Matter SC Physics GA 080HQ UT WOS:000240238900002 ER PT J AU Ma, YZ Spataru, CD Valkunas, L Louie, SG Fleming, GR AF Ma, Ying-Zhong Spataru, Catalin D. Valkunas, Leonas Louie, Steven G. Fleming, Graham R. TI Spectroscopy of zigzag single-walled carbon nanotubes: Comparing femtosecond transient absorption spectra with ab initio calculations SO PHYSICAL REVIEW B LA English DT Article ID QUASI-PARTICLE ENERGIES; OPTICAL-SPECTRA; 1ST PRINCIPLES; PHOTOLUMINESCENCE; EXCITATIONS AB Femtosecond transient absorption spectroscopy was applied to map out the electronic transition energies of a selected semiconducting zigzag carbon nanotube, the (11,0) tube. The experiment was performed by resonant excitation of the lowest electronic transition with spectrally narrow pump pulses, ensuring predominant selection of the desired tube type from a mixture of various species. We found that the lowest and the second electronic transitions are characterized by induced transmission bands peaking at 1042 and 741 nm, respectively. The association of the resolved spectral bands to the two lowest electronic transitions of the (11,0) tube was further verified by examining the corresponding kinetic profiles. Results of ab initio calculations are also presented for comparing the transition energies and for explaining the transient absorption kinetics detected at different wavelengths. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA. Inst Phys, LT-02300 Vilnius, Lithuania. Vilnius State Univ, Fac Phys, Dept Theoret Phys, LT-10222 Vilnius, Lithuania. RP Fleming, GR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM GRFleming@lbl.gov RI Ma, Yingzhong/L-6261-2016 OI Ma, Yingzhong/0000-0002-8154-1006 NR 42 TC 28 Z9 29 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 8 AR 085402 DI 10.1103/PhysRevB.74.085402 PG 9 WC Physics, Condensed Matter SC Physics GA 080HQ UT WOS:000240238900074 ER PT J AU Macridin, A Jarrell, M Maier, T AF Macridin, A. Jarrell, M. Maier, Th. TI Phase separation in the Hubbard model using the dynamical cluster approximation SO PHYSICAL REVIEW B LA English DT Article ID T-J MODEL; COPPER-OXIDE SUPERCONDUCTORS; CORRELATED ELECTRON-SYSTEMS; COULOMB INTERACTION; GROUND-STATE; HOLES; BI2SR2CACU2O8+DELTA; ORDER; SPINS AB Phase separation in the Hubbard model is investigated with the dynamical cluster approximation. We find that it is present in the paramagnetic solution for values of filling smaller than 1 and at finite temperature when a positive next-nearest-neighbor hopping is considered. The phase-separated region is characterized by a mixture of a strongly correlated metallic and Mott insulating phases. Our results indicate that phase separation is driven by the formation of doped regions with strong antiferromagnetic correlations and low kinetic energy. C1 Univ Cincinnati, Cincinnati, OH 45221 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Macridin, A (reprint author), Univ Cincinnati, Cincinnati, OH 45221 USA. RI Maier, Thomas/F-6759-2012 OI Maier, Thomas/0000-0002-1424-9996 NR 42 TC 33 Z9 33 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 8 AR 085104 DI 10.1103/PhysRevB.74.085104 PG 5 WC Physics, Condensed Matter SC Physics GA 080HQ UT WOS:000240238900019 ER PT J AU Narvaez, GA Bester, G Zunger, A AF Narvaez, Gustavo A. Bester, Gabriel Zunger, Alex TI Carrier relaxation mechanisms in self-assembled (In,Ga)As/GaAs quantum dots: Efficient P -> S Auger relaxation of electrons SO PHYSICAL REVIEW B LA English DT Article ID TEMPERATURE-DEPENDENCE; SEMICONDUCTOR NANOCRYSTALS; PSEUDOPOTENTIAL THEORY; INTRABAND ABSORPTION; ENERGY RELAXATION; PHONON BOTTLENECK; DYNAMICS; CAPTURE; TIME; DECAY AB We calculate the P-shell-to-S-shell decay lifetime tau (P -> S) of electrons in lens-shaped self-assembled (In,Ga)As/GaAs dots due to Auger electron-hole scattering within an atomistic pseudopotential-based approach. We find that this relaxation mechanism leads to fast decay of tau (P -> S)similar to 1-7 ps for dots of different sizes. Our calculated Auger-type P-shell-to-S-shell decay lifetimes tau (P -> S) compare well to data in (In,Ga)As/GaAs dots, showing that as long as both electrons and holes are present there is no need for an alternative polaron mechanism. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Narvaez, GA (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM g_a_narvaez@hotmail.com; alex_zunger@nrel.gov RI Bester, Gabriel/I-4414-2012; Zunger, Alex/A-6733-2013 OI Bester, Gabriel/0000-0003-2304-0817; NR 54 TC 63 Z9 63 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 7 AR 075403 DI 10.1103/PhysRevB.74.075403 PG 7 WC Physics, Condensed Matter SC Physics GA 080HP UT WOS:000240238800089 ER PT J AU Orlikowski, D Soderlind, P Moriarty, JA AF Orlikowski, Daniel Soderlind, Per Moriarty, John A. TI First-principles thermoelasticity of transition metals at high pressure: Tantalum prototype in the quasiharmonic limit SO PHYSICAL REVIEW B LA English DT Article ID GENERALIZED PSEUDOPOTENTIAL THEORY; DENSITY-FUNCTIONAL FORMULATION; INTERATOMIC POTENTIALS; ELASTIC-MODULI; ATOMISTIC SIMULATION; CONSTITUTIVE MODEL; DISLOCATIONS; TEMPERATURE; DERIVATIVES; MOLYBDENUM AB The thermoelastic properties of tantalum have been investigated over its theoretical high-pressure bcc solid phase (up to 26 000 K at 10 Mbar) using an advanced first-principles approach that accurately accounts for cold, electron-thermal, and ion-thermal contributions in materials where anharmonic effects are small. Specifically, we have combined ab initio full-potential linear-muffin-tin-orbital electronic-structure calculations for the cold and electron-thermal contributions to the elastic moduli with phonon contributions for the ion-thermal part calculated using model generalized pseudopotential theory. For the latter, a summation of terms over the Brillouin zone is performed within the quasiharmonic approximation, where each term is composed of a strain derivative of the phonon frequency at a particular k point. At ambient pressure, the resulting temperature dependence of the Ta elastic moduli is in excellent agreement with ultrasonic measurements. The experimentally observed anomalous behavior of C(44) at low temperatures is shown to originate from the electron-thermal contribution. At higher temperatures, the main contribution to the temperature dependence of the elastic moduli comes from thermal expansion, but inclusion of the electron- and ion-thermal contributions is essential to obtain quantitative agreement with experiment. In addition, the pressure dependence of the moduli at ambient temperature compares well with recent diamond-anvil-cell measurements to 1.05 Mbar. Moreover, the calculated longitudinal and bulk sound velocities in polycrystalline Ta at higher pressure and temperature in the vicinity of shock melting (similar to 3 Mbar) agree well with data obtained from shock experiments. However, at high temperatures along the melt curve above 1 Mbar, the B(') shear modulus becomes negative, indicating the onset of unexpectedly strong anharmonic effects. Finally, the assumed temperature dependence of the Steinberg-Guinan strength model obtained from scaling with the bulk shear modulus is examined at ambient pressure. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Orlikowski, D (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. NR 39 TC 38 Z9 38 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 5 AR 054109 DI 10.1103/PhysRevB.74.054109 PG 10 WC Physics, Condensed Matter SC Physics GA 080HL UT WOS:000240238400025 ER PT J AU Peralta, JE Heyd, J Scuseria, GE Martin, RL AF Peralta, Juan E. Heyd, Jochen Scuseria, Gustavo E. Martin, Richard L. TI Spin-orbit splittings and energy band gaps calculated with the Heyd-Scuseria-Ernzerhof screened hybrid functional SO PHYSICAL REVIEW B LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; HARTREE-FOCK; EXCHANGE; PSEUDOPOTENTIALS; MOLECULES; SOLIDS; CORE; SILICON; ALLOYS; MODEL AB We assess the Heyd-Scuseria-Ernzerhof (HSE) screened Coulomb hybrid density functional for the calculation of spin-orbit (SO) splittings and energy band gaps. We have employed a set of 23 semiconductors with available experimental data, including group IV elements, and group III-V, II-VI, and IB-VII compounds. The spin-orbit interaction is included in the calculations using relativistic effective core potentials within a second-variation approximation. HSE errrors are similar to those obtained previously without including SO in the calculation and using a weighted average of the SO split bands for the reference value [J. Chem. Phys. 123, 174101 (2005)]. Here we explicitly show that the same good agreement remains after explicitly including SO interaction in the calculations and comparing directly to experimental energy band gaps. C1 Rice Univ, Dept Chem, Houston, TX 77005 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Seaborg Inst Transactinium Sci, Los Alamos, NM 87545 USA. RP Peralta, JE (reprint author), Rice Univ, Dept Chem, Houston, TX 77005 USA. RI Peralta, Juan/C-2631-2008; Peralta, Juan/C-3978-2008; Scuseria, Gustavo/F-6508-2011 OI Peralta, Juan/0000-0003-2849-8472; Peralta, Juan/0000-0003-2849-8472; NR 42 TC 91 Z9 91 U1 0 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 7 AR 073101 DI 10.1103/PhysRevB.74.073101 PG 4 WC Physics, Condensed Matter SC Physics GA 080HP UT WOS:000240238800001 ER PT J AU Ramallo-Lopez, JM Giovanetti, LJ Requejo, FG Isaacs, SR Shon, YS Salmeron, M AF Ramallo-Lopez, J. M. Giovanetti, L. J. Requejo, F. G. Isaacs, S. R. Shon, Y. S. Salmeron, M. TI Molecular conformation changes in alkylthiol ligands as a function of size in gold nanoparticles: X-ray absorption studies SO PHYSICAL REVIEW B LA English DT Article ID PD NANOPARTICLES; CLUSTERS; MONOLAYERS; CATALYSTS AB The bonding of hexanethiols to gold nanoparticles of 1.5, 2.0, and 3 nm was studied using x-ray absorption near-edge spectroscopy (XANES) and extended x-ray absorption fine structure (EXAFS). The XANES spectra revealed that a substantial fraction of weakly bound hexanethiol molecules are present in addition to those forming covalent bonds with Au atoms. The weakly bound molecules can be removed by washing in dichloromethane. After removal of the weakly bound molecules the S K-edge XANES reveals peaks due to S-Au and S-C bonds with intensities that change as a function of particle size. Au L-3-edge EXAFS results indicate that these changes follow the changes in coordination number of Au to the S atoms at the surface of the particles. C1 Univ Nacl La Plata, Dept Fis FCE, RA-1900 La Plata, Argentina. Consejo Nacl Invest Cient & Tecn, INIFTA, IFLP, RA-1900 La Plata, Argentina. Western Kentucky Univ, Dept Chem, Bowling Green, KY 42101 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Ramallo-Lopez, JM (reprint author), Univ Nacl La Plata, Dept Fis FCE, RA-1900 La Plata, Argentina. EM requejo@fisica.unlp.edu.ar RI Ramallo-Lopez, Jose/N-1757-2016; Requejo, Felix/O-2260-2016; OI Ramallo-Lopez, Jose/0000-0002-8233-2644; Requejo, Felix/0000-0003-4439-864X; Shon, Young-Seok/0000-0003-4765-6130; Giovanetti, Lisandro/0000-0001-5286-3463 NR 22 TC 13 Z9 13 U1 0 U2 7 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 7 AR 073410 DI 10.1103/PhysRevB.74.073410 PG 4 WC Physics, Condensed Matter SC Physics GA 080HP UT WOS:000240238800026 ER PT J AU Schnell, I Jones, MD Rudin, SP Albers, RC AF Schnell, I. Jones, M. D. Rudin, S. P. Albers, R. C. TI Tight-binding calculations of the elastic constants and phonons of hcp Zr: Complications due to anisotropic stress and long-range forces SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; TRANSITION-METALS; ZIRCONIUM; PHASE; DISPERSIONS; PRESSURE; SURFACES AB We have calculated the phonons and elastic constants of zirconium in the hexagonal-close-packed (hcp) crystal structure using the Naval Research Laboratory (NRL) empirical tight-binding (TB) approach; the tight-binding parameters are obtained by fitting to ab initio density-functional theory-generalized gradient approximation energy bands and total energies for many different structures and volumes. We address difficulties involved with the fitting procedure and give results for elastic constants, force constants, quasiharmonic phonons, and specific heat. Because the predicted TB lattice constants at the zero-temperature energy minimum are slightly different from those experimentally observed at room temperature, our TB model has an anisotropic stress at the experimental lattice constants. We correct for these stresses in our calculations of the elastic constants and sound speeds. Such techniques are also useful for calculating such properties for arbitrary c/a. Our phonon calculations were done by the direct-force method in real space using calculated force constants; these fall off quite slowly with distance, which causes problems with the calculated phonon spectrum due to the slow convergence with increasing supercell size. This long-range behavior could play a large role in determining the unusually anharmonic and anomalous physical properties of Zr. We show that similar, although less severe, problems should arise for other metals. These considerations suggest that the direct-force method for calculating phonons may be problematic for many metals. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. SUNY Buffalo, Ctr Computat Res, Buffalo, NY 14260 USA. RP Schnell, I (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. NR 39 TC 8 Z9 8 U1 1 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 5 AR 054104 DI 10.1103/PhysRevB.74.054104 PG 12 WC Physics, Condensed Matter SC Physics GA 080HL UT WOS:000240238400020 ER PT J AU Shytov, AV Allen, PB AF Shytov, A. V. Allen, P. B. TI Electronic polarity of nanoclusters: Quantum and many-body effects SO PHYSICAL REVIEW B LA English DT Article ID ALKALI-HALIDE CLUSTERS; POLARIZABILITIES; MOLECULES; SINGLE; C-60 AB Interesting electrical polarity in nanoclusters usually requires the polarizability to exceed the value R-3 of the classical sphere of radius R. We clarify how this occurs naturally in single electron quantum systems, and relate it to the giant polarizability of Na14F13, and to spontaneous dipole formation on niobium clusters. Many-body effects generally reduce the polarizability through screening. The usual random phase approximation (RPA) treatment retrieves the classical answer, but it significantly overestimates screening in few-electron systems. The system of two electrons on the surface of a sphere is solved numerically, to account for the Coulomb repulsion. At high densities, numerical results agree with the RPA model with properly subtracted self-interaction effects. At low densities, the system performs quantum oscillations around the classical ground state. We calculate the lowest anharmonic correction to the polarizability, which also agrees well with numerical evaluation of the polarizability. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Shytov, AV (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 27 TC 4 Z9 4 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 7 AR 075419 DI 10.1103/PhysRevB.74.075419 PG 6 WC Physics, Condensed Matter SC Physics GA 080HP UT WOS:000240238800105 ER PT J AU Stehr, D Helm, M Metzner, C Wanke, MC AF Stehr, D. Helm, M. Metzner, C. Wanke, M. C. TI Microscopic theory of impurity states in coupled quantum wells and superlattices SO PHYSICAL REVIEW B LA English DT Article ID MULTIPLE-SCATTERING APPROACH; INFRARED-SPECTROSCOPY; DOPED SEMICONDUCTORS; BAND; TRANSITIONS; ENERGY; DONORS AB We present a theory of impurity states in quantum wells and superlattices which treats the confining heterostructure potential and the random impurity potential on the same footing. The relevant three-dimensional Hamiltonian is diagonalized in the low-doping regime. The results are used to calculate infrared absorption spectra which contain contributions of impurity and intersubband transitions. We mainly discuss the excited impurity states, which are pinned to higher subbands and are resonant states in the continuum. After a detailed analysis of a coupled quantum well system, we study the transition to a superlattice. In particular, we are able to explain existing experimental data on a quadruple quantum well. C1 Forschungszentrum Rossendorf EV, Inst Ion Beam Phys & Mat Res, D-01314 Dresden, Germany. Univ Erlangen Nurnberg, Biophys Grp, Crt Med Phys & Technol, D-91052 Erlangen, Germany. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Stehr, D (reprint author), Forschungszentrum Rossendorf EV, Inst Ion Beam Phys & Mat Res, POB 510119, D-01314 Dresden, Germany. RI Helm, Manfred/B-2284-2009; Stehr, Dominik/D-1001-2009; Metzner, Claus/D-9707-2013 NR 27 TC 9 Z9 9 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 8 AR 085311 DI 10.1103/PhysRevB.74.085311 PG 8 WC Physics, Condensed Matter SC Physics GA 080HQ UT WOS:000240238900056 ER PT J AU Tomita, T Schilling, JS Chen, L Veal, BW Claus, H AF Tomita, T. Schilling, J. S. Chen, L. Veal, B. W. Claus, H. TI Pressure-induced enhancement of the critical current density in superconducting YBa2Cu3Ox bicrystalline rings SO PHYSICAL REVIEW B LA English DT Article ID T-C SUPERCONDUCTORS; GRAIN-BOUNDARIES; HYDROSTATIC-PRESSURE; THIN-FILMS; DEPENDENCE; TRANSPORT; SUSCEPTIBILITY; SYSTEM; BULK AB The dependence of the critical current density J(c)(T) on hydrostatic He-gas pressure to 0.6 GPa is determined for nearly optimally doped and strongly underdoped melt-textured YBa2Cu3Ox bicrystalline rings containing single [001]-tilt grain boundaries (GBs) with mismatch angles theta from 0 degrees to 31 degrees. For all samples with theta > 0 degrees, J(c) is found to increase rapidly under pressure, the rate of increase lying predominantly in the range +20 to +50 % GPa(-1). Within a simple tunneling model, this rate of increase is far too large to be accounted for by a decrease in the GB width W alone. Large oxygen relaxation phenomena in the GB are observed for all rings with finite theta, particularly if they are underdoped. A diagnostic method is introduced (pressure-induced J(c) relaxation) which reveals a significant concentration of vacant oxygen sites in the GB region. A concerted effort to fill such sites with oxygen anions, as well as to chemically compress the GB itself, should lead to significant enhancements in J(c) under ambient conditions. C1 Washington Univ, Dept Phys, St Louis, MO 63130 USA. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Tomita, T (reprint author), Washington Univ, Dept Phys, CB 1105,1 Brookings Dr, St Louis, MO 63130 USA. NR 43 TC 13 Z9 14 U1 1 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 6 AR 064517 DI 10.1103/PhysRevB.74.064517 PG 15 WC Physics, Condensed Matter SC Physics GA 080HM UT WOS:000240238500082 ER PT J AU Turchi, PEA Drchal, V Kudrnovsky, J AF Turchi, P. E. A. Drchal, V. Kudrnovsky, J. TI Stability and ordering properties of fcc alloys based on Rh, Ir, Pd, and Pt SO PHYSICAL REVIEW B LA English DT Article ID THERMODYNAMIC PROPERTIES; BINARY-ALLOYS; PLATINUM METALS; PT ALLOYS; PALLADIUM; RHODIUM; SYSTEM; STATE AB Stability properties and ordering trends for the six face-centered cubic binary combinations of the four transition metals Rh, Ir, Pd, and Pt are examined in the context of electronic structure calculations. The method is based on a Green's function description of the electronic structure of random alloys. Configurational order is treated within the generalized perturbation method. On one hand, the three alloys Pd-Rh, Pd-Ir, and Pt-Ir that have been studied experimentally are confirmed to behave like phase-separating systems. On the other hand, the other three mixtures Pd-Pt, Rh-Ir, and Pt-Rh, for which phase-separating trends have been inferred from experiments, are found to display chemical order with ordering of the (1 0 0) and (1 1/2 0) family types and a mixture of both, respectively. The origin of these results is discussed in terms of electronic structure properties. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Acad Sci Czech Republ, Inst Phys, CZ-18221 Prague 8, Czech Republic. RP Turchi, PEA (reprint author), Lawrence Livermore Natl Lab, POB 808,L-372, Livermore, CA 94551 USA. RI KUDRNOVSKY, Josef/G-5581-2014; Drchal, Vaclav/G-6259-2014 OI KUDRNOVSKY, Josef/0000-0002-9968-6748; Drchal, Vaclav/0000-0002-6628-7417 NR 48 TC 20 Z9 20 U1 2 U2 14 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 6 AR 064202 DI 10.1103/PhysRevB.74.064202 PG 12 WC Physics, Condensed Matter SC Physics GA 080HM UT WOS:000240238500028 ER PT J AU van Veenendaal, M AF van Veenendaal, Michel TI Competition between screening channels in core-level x-ray photoemission as a probe of changes in the ground-state properties of transition-metal compounds SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE; DOUBLE EXCHANGE; SPECTROSCOPY; LIMIT; PHOTOELECTRON; DIHALIDES; SPECTRA; FIELD AB Core-level x-ray photoemission spectra (XPS) for copper, manganese, and ruthenium compounds are calculated. A strong dependence of the spectral line shape on electron and/or hole doping, magnetic and orbital ordering is observed. The changes can be explained in terms of the competition between local and nonlocal screening effects. In contrast to earlier claims, we find that the changes do not result from additional quasiparticle states at the Fermi level but from a strong coupling of the different screening channels to changes in the ground state. The strong sensitivity of core-level XPS on the surrounding transition-metal atoms enables the study of temperature- and doping-induced changes in orbital occupation and ordering. C1 No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP van Veenendaal, M (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. NR 26 TC 30 Z9 30 U1 1 U2 6 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 8 AR 085118 DI 10.1103/PhysRevB.74.085118 PG 6 WC Physics, Condensed Matter SC Physics GA 080HQ UT WOS:000240238900033 ER PT J AU Venturini, EL Grubbs, RK Samara, GA Bing, Y Ye, ZG AF Venturini, E. L. Grubbs, R. K. Samara, G. A. Bing, Y. Ye, Z. -G. TI Ferroelectric and relaxor properties of Pb(Sc0.5Nb0.5)O-3: Influence of pressure and biasing electric field SO PHYSICAL REVIEW B LA English DT Article ID LEAD SCANDIUM NIOBATE; PHASE-TRANSITION; PEROVSKITES PB(SC1/2NB1/2)O3; DISORDERED PB(SC1/2NB1/2)O-3; NEUTRON-DIFFRACTION; ORDER; CERAMICS; PB(SC1/2TA1/2)O3; CROSSOVER; BEHAVIOR AB The influences of hydrostatic pressure and biasing electric field on the dielectric properties and phase behavior of a single crystal of the perovskite compound Pb(Sc0.5Nb0.5)O-3, (PSN) have been investigated. On cooling from high temperatures, the crystal first enters a relaxor (R) state and then spontaneously transforms to a ferroelectric (FE) phase at a temperature, T-c, substantially below the peak temperature, T-m, in the dielectric susceptibility. Based on earlier work on ceramic samples, this behavior suggests substantial chemical (Sc and Nb) disorder at the B sites. Pressure enhances the R state with strong indications that the FE phase should vanish at a pressure somewhat higher than the highest pressure reached in the experiments, making the R state the ground state of the crystal at reduced volume. A significant feature of the temperature (T)-pressure (P) phase diagram is the finding that the T-c(P) phase line should terminate at a pressure between 10 and 15 kbar in a manner akin to a critical point; however, in the case of PSN this feature represents a FE-to-R crossover. Such behavior suggests that a path can be defined that takes the crystal from the FE phase to the R state without crossing a phase boundary. A biasing electric field favors the FE phase over the R state, and the results indicate that the R state vanishes at >= 5 kV/cm. The magnitudes of both the high T Curie-Weiss constant, C, and the change in entropy (or latent heat) at T-c are found to be comparable to those of simple displacive perovskite oxides such as BaTiO3 and PbTiO3. C1 Sandia Natl Labs, Albuquerque, NM 87175 USA. Simon Fraser Univ, Dept Chem, Burnaby, BC V5A 1S6, Canada. RP Venturini, EL (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87175 USA. NR 25 TC 28 Z9 28 U1 2 U2 23 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 6 AR 064108 DI 10.1103/PhysRevB.74.064108 PG 9 WC Physics, Condensed Matter SC Physics GA 080HM UT WOS:000240238500017 ER PT J AU Wakimoto, S Samara, GA Grubbs, RK Venturini, EL Boatner, LA Xu, G Shirane, G Lee, SH AF Wakimoto, S. Samara, G. A. Grubbs, R. K. Venturini, E. L. Boatner, L. A. Xu, G. Shirane, G. Lee, S. -H. TI Dielectric properties and lattice dynamics of Ca-doped K0.95Li0.05TaO3 SO PHYSICAL REVIEW B LA English DT Article ID INELASTIC-NEUTRON-SCATTERING; RAMAN-SCATTERING; PHASE-TRANSITION; LI; K1-XLIXTAO3; KTAO3 AB Relaxor behavior and lattice dynamics have been studied by employing dielectric measurements and neutron-scattering methods for a single crystal of K1-xLixTaO3 (x=0.05), where a small amount of a Ca impurity (similar to 15 ppm) was incorporated during the single-crystal growth procedure. The dielectric constant epsilon(')(omega,T) shows qualitatively similar behavior to that of Ca-free KLT with x=0.043 with both compositions exhibiting relaxational properties with no evidence for a ferroelectric transition. The absolute value of epsilon(')(omega,T=0) for the present crystal is larger by an order of magnitude than that of the Ca-free sample due to charge carriers induced by the Ca doping. This large value is shown to be due to a Maxwell-Wagner relaxation process associated with the low temperature (< 8 K) activation of frozen electronic carriers. The dielectric loss tangent tan delta reveals three Debye-type relaxations with Arrhenius activation energies of 80, 135, and 240 meV that are assigned to Li+ dipoles, Ca2+-related relaxation, and the Li+-Li+ dipolar pairs, respectively. In the neutron scattering results, diffuse scattering ridges appear around the nuclear Bragg peaks along the [100] direction below similar to 150 K and phonon line broadening features start to appear at even higher temperatures suggesting that polar nanoregions (PNRs) start to form at these temperatures. These results are supported by the dielectric data that reveal relaxor behavior starting at similar to 200 K on cooling. From analyses of the diffuse intensities at different zones, we have derived atomic displacements in the PNRs. The results suggest that the displacements include a uniform phase shift of all of the atoms in addition to the atomic displacements corresponding to a polarization vector of the transverse-optic soft-ferroelectric-mode, a finding that is analogous to that in the prototypical relaxor material Pb(Mg1/3Nb2/3)O-3. C1 Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Tokai, Ibaraki 3191195, Japan. Sandia Natl Labs, Albuquerque, NM 87185 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. RP Wakimoto, S (reprint author), Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Tokai, Ibaraki 3191195, Japan. EM wakimoto.shuichi@jaea.go.jp RI Xu, Guangyong/A-8707-2010; Boatner, Lynn/I-6428-2013 OI Xu, Guangyong/0000-0003-1441-8275; Boatner, Lynn/0000-0002-0235-7594 NR 38 TC 18 Z9 18 U1 1 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 5 AR 054101 DI 10.1103/PhysRevB.74.054101 PG 12 WC Physics, Condensed Matter SC Physics GA 080HL UT WOS:000240238400017 ER PT J AU Yablonskikh, MV Braun, J Kuchel, MT Postnikov, AV Denlinger, JD Shreder, EI Yarmoshenko, YM Neumann, M Moewes, A AF Yablonskikh, M. V. Braun, J. Kuchel, M. T. Postnikov, A. V. Denlinger, J. D. Shreder, E. I. Yarmoshenko, Y. M. Neumann, M. Moewes, A. TI X-ray 2p photoelectron and L-alpha resonant x-ray emission spectra of the 3d metals in Ni(2)MnZ (Z=In,Sn,Sb) Heusler alloys SO PHYSICAL REVIEW B LA English DT Article ID MULTIPLE-SCATTERING THEORY; ELECTRONIC-STRUCTURE; SPIN INJECTION; BAND THEORY; FERROMAGNETS; SPECTROSCOPY; SYSTEMS; DIFFRACTION; POTENTIALS; ELEMENT AB Magnetic and chemical bonding effects in Heusler alloys Ni2MnIn, Ni2MnSn, and Ni2MnSb were studied by soft x-ray spectroscopy. Exchange splitting detected in Mn 2p core-level x-ray photoelectron spectra and an increase of the Mn L-beta/L-alpha intensity ratio in nonresonant x-ray emission spectra show that atomic magnetic moment at Mn is higher than that of pure metal. Spin polarized density of states calculations and comparative analysis of Mn and Ni L-alpha resonant x-ray emission spectra (RXES) demonstrate that the spin splitting in Mn 3d shell is larger than in Ni 3d shell. The d-d transitions observed in L-alpha RXES of Mn and Ni are suggested to be more intensive for Mn than for Ni valence electrons when initiated by off-resonant excitations. Experimental findings are supported by photoelectron spectra calculations and developed two-step model of resonant x-ray emission. The interplay between Mn L-alpha RXES and calculated magnetic moments of Mn atoms in alloys as a function of the type of Z element is discussed. C1 Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada. Russian Acad Sci, Inst Met Phys, Ural Div, Ekaterinburg 620219, Russia. Univ Munster, Inst Phys, D-48149 Munster, Germany. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Osnabruck, Dept Phys, D-49069 Osnabruck, Germany. RP Yablonskikh, MV (reprint author), Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada. RI Yarmoshenko, Yuri/E-9531-2011; Shreder, Elena/J-3537-2013 OI Yarmoshenko, Yuri/0000-0001-8971-2052; Shreder, Elena/0000-0001-6408-9719 NR 64 TC 7 Z9 7 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 8 AR 085103 DI 10.1103/PhysRevB.74.085103 PG 11 WC Physics, Condensed Matter SC Physics GA 080HQ UT WOS:000240238900018 ER PT J AU Zhang, XC Martin, I Jiang, HW AF Zhang, X. C. Martin, I. Jiang, H. W. TI Landau level anticrossing manifestations in the phase-diagram topology of a two-subband system SO PHYSICAL REVIEW B LA English DT Article ID 2-DIMENSIONAL ELECTRON-GAS; QUANTUM HALL FERROMAGNETS; MAGNETIC-FIELD; INSTABILITY; TRANSITIONS AB In a two-subband GaAs/AlGaAs two-dimensional electron system, the phase diagram of longitudinal resistivity rho(xx) in density and magnetic field plane exhibits an intriguing structure centered at filling factor nu=4 which is strikingly different from the ringlike structures at lower magnetic fields. Thermal activation measurements reveal an anticrossing gap on each boundary of the structure where intersubband Landau levels with parallel or antiparallel spin are brought into degeneracy. While the physics of the anticrossing can be ascribed to the pseudospin quantum Hall ferromagnetism, as reported earlier by Muraki , the mapping and modeling of the phase-diagram topology allow us to establish a more complete picture of the consequences of real spin/pseudospin interactions for the two-subband system. C1 Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Zhang, XC (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, 405 Hilgard Ave, Los Angeles, CA 90095 USA. NR 13 TC 17 Z9 17 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 7 AR 073301 DI 10.1103/PhysRevB.74.073301 PG 4 WC Physics, Condensed Matter SC Physics GA 080HP UT WOS:000240238800008 ER PT J AU Zhou, CG Landau, DP Schulthess, TC AF Zhou, Chenggang Landau, D. P. Schulthess, T. C. TI Hidden zero-temperature bicritical point in the two-dimensional anisotropic Heisenberg model: Monte Carlo simulations and proper finite-size scaling SO PHYSICAL REVIEW B LA English DT Article ID RENORMALIZATION-GROUP; EPSILON-DIMENSIONS; PHASE-TRANSITIONS; SPIN SYSTEMS; TETRACRITICAL POINTS; RECURSION RELATIONS; CRITICAL-BEHAVIOR; ANTI-FERROMAGNET; RANDOM-FIELDS; HEAT BATH AB By considering the appropriate finite-size effect, we explain the connection between Monte Carlo simulations of two-dimensional anisotropic Heisenberg antiferromagnet in a field and the early renormalization group calculation for the bicritical point in 2+epsilon dimensions. We found that the long-length-scale physics of the Monte Carlo simulations is indeed captured by the anisotropic nonlinear sigma model. Our Monte Carlo data and analysis confirm that the bicritical point in two dimensions is Heisenberg-like and occurs at T=0; therefore the uncertainty in the phase diagram of this model is removed. C1 Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. Univ Georgia, Ctr Simulat Phys, Athens, GA 30602 USA. RP Zhou, CG (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, POB 2008, Oak Ridge, TN 37831 USA. NR 28 TC 11 Z9 12 U1 0 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2006 VL 74 IS 6 AR 064407 DI 10.1103/PhysRevB.74.064407 PG 9 WC Physics, Condensed Matter SC Physics GA 080HM UT WOS:000240238500043 ER PT J AU Adler, SS Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Al-Jamel, A Alexander, J Aoki, K Aphecetche, L Armendariz, R Aronson, SH Averbeck, R Awes, TC Babintsev, V Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Bathe, S Batsouli, S Baublis, V Bauer, F Bazilevsky, A Belikov, S Bjorndal, MT Boissevain, JG Borel, H Brooks, ML Brown, DS Bruner, N Bucher, D Buesching, H Bumazhnov, V Bunce, G Burward-Hoy, JM Butsyk, S Camard, X Chand, P Chang, WC Chernichenko, S Chi, CY Chiba, J Chiu, M Choi, IJ Choudhury, RK Chujo, T Cianciolo, V Cobigo, Y Cole, BA Comets, MP Constantin, P Csanad, M Csorgo, T Cussonneau, JP d'Enterria, D Das, K David, G Deak, F Delagrange, H Denisov, A Deshpande, A Desmond, EJ Devismes, A Dietzsch, O Drachenberg, JL Drapier, O Drees, A Durum, A Dutta, D Dzhordzhadze, V Efremenko, YV En'yo, H Espagnon, B Esumi, S Fields, DE Finck, C Fleuret, F Fokin, SL Fox, BD Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fukao, Y Fung, SY Gadrat, S Germain, M Glenn, A Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gustafsson, HA Hachiya, T Haggerty, JS Hamagaki, H Hansen, AG Hartouni, EP Harvey, M Hasuko, K Hayano, R He, X Heffner, M Hemmick, TK Heuser, JM Hidas, P Hiejima, H Hill, JC Hobbs, R Holzmann, W Homma, K Hong, B Hoover, A Horaguchi, T Ichihara, T Ikonnikov, VV Imai, K Inaba, M Inuzuka, M Isenhower, D Isenhower, L Ishihara, M Issah, M Isupov, A Jacak, BV Jia, J Jinnouchi, O Johnson, BM Johnson, SC Joo, KS Jouan, D Kajihara, F Kametani, S Kamihara, N Kaneta, M Kang, JH Katou, K Kawabata, T Kazantsev, AV Kelly, S Khachaturov, B Khanzadeev, A Kikuchi, J Kim, DJ Kim, E Kim, GB Kim, HJ Kinney, E Kiss, A Kistenev, E Kiyomichi, A Klein-Boesing, C Kobayashi, H Kochenda, L Kochetkov, V Kohara, R Komkov, B Konno, M Kotchetkov, D Kozlov, A Kroon, PJ Kuberg, CH Kunde, GJ Kurita, K Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lajoie, JG Le Bornec, Y Lebedev, A Leckey, S Lee, DM Leitch, MJ Leite, MAL Li, XH Lim, H Litvinenko, A Liu, MX Maguire, CF Makdisi, YI Malakhov, A Manko, VI Mao, Y Martinez, G Masui, H Matathias, F Matsumoto, T McCain, MC McGaughey, PL Miake, Y Miller, TE Milov, A Mioduszewski, S Mishra, GC Mitchell, JT Mohanty, AK Morrison, DP Moss, JM Mukhopadhyay, D Muniruzzaman, M Nagamiya, S Nagle, JL Nakamura, T Newby, J Nyanin, AS Nystrand, J O'Brien, E Ogilvie, CA Ohnishi, H Ojha, ID Okada, H Okada, K Oskarsson, A Otterlund, I Oyama, K Ozawa, K Pal, D Palounek, APT Pantuev, V Papavassiliou, V Park, J Park, WJ Pate, SF Pei, H Penev, V Peng, JC Pereira, H Peresedov, V Pierson, A Pinkenburg, C Pisani, RP Purschke, ML Purwar, AK Qualls, JM Rak, J Ravinovich, I Read, KF Reuter, M Reygers, K Riabov, V Riabov, Y Roche, G Romana, A Rosati, M Rosendahl, SSE Rosnet, P Rykov, VL Ryu, SS Saito, N Sakaguchi, T Sakai, S Samsonov, V Sanfratello, L Santo, R Sato, HD Sato, S Sawada, S Schutz, Y Semenov, V Seto, R Shea, TK Shein, I Shibata, TA Shigaki, K Shimomura, M Sickles, A Silva, CL Silvermyr, D Sim, KS Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Sullivan, JP Takagi, S Takagui, EM Taketani, A Tanaka, KH Tanaka, Y Tanida, K Tannenbaum, MJ Taranenko, A Tarjan, P Thomas, TL Togawa, M Tojo, J Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Tydesjo, H Tyurin, N Uam, TJ van Hecke, HW Velkovska, J Velkovsky, M Veszpremi, V Vinogradov, AA Volkov, MA Vznuzdaev, E Wang, XR Watanabe, Y White, SN Willis, N Wohn, FK Woody, CL Xie, W Yanovich, A Yokkaichi, S Young, GR Yushmanov, IE Zajc, WA Zhang, C Zhou, S Zimanyi, J Zolin, L Zong, X AF Adler, S. S. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Al-Jamel, A. Alexander, J. Aoki, K. Aphecetche, L. Armendariz, R. Aronson, S. H. Averbeck, R. Awes, T. C. Babintsev, V. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Bathe, S. Batsouli, S. Baublis, V. Bauer, F. Bazilevsky, A. Belikov, S. Bjorndal, M. T. Boissevain, J. G. Borel, H. Brooks, M. L. Brown, D. S. Bruner, N. Bucher, D. Buesching, H. Bumazhnov, V. Bunce, G. Burward-Hoy, J. M. Butsyk, S. Camard, X. Chand, P. Chang, W. C. Chernichenko, S. Chi, C. Y. Chiba, J. Chiu, M. Choi, I. J. Choudhury, R. K. Chujo, T. Cianciolo, V. Cobigo, Y. Cole, B. A. Comets, M. P. Constantin, P. Csanad, M. Csorgo, T. Cussonneau, J. P. d'Enterria, D. Das, K. David, G. Deak, F. Delagrange, H. Denisov, A. Deshpande, A. Desmond, E. J. Devismes, A. Dietzsch, O. Drachenberg, J. L. Drapier, O. Drees, A. Durum, A. Dutta, D. Dzhordzhadze, V. Efremenko, Y. V. En'yo, H. Espagnon, B. Esumi, S. Fields, D. E. Finck, C. Fleuret, F. Fokin, S. L. Fox, B. D. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fukao, Y. Fung, S. -Y. Gadrat, S. Germain, M. Glenn, A. Gonin, M. Gosset, J. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gustafsson, H. -A. Hachiya, T. Haggerty, J. S. Hamagaki, H. Hansen, A. G. Hartouni, E. P. Harvey, M. Hasuko, K. Hayano, R. He, X. Heffner, M. Hemmick, T. K. Heuser, J. M. Hidas, P. Hiejima, H. Hill, J. C. Hobbs, R. Holzmann, W. Homma, K. Hong, B. Hoover, A. Horaguchi, T. Ichihara, T. Ikonnikov, V. V. Imai, K. Inaba, M. Inuzuka, M. Isenhower, D. Isenhower, L. Ishihara, M. Issah, M. Isupov, A. Jacak, B. V. Jia, J. Jinnouchi, O. Johnson, B. M. Johnson, S. C. Joo, K. S. Jouan, D. Kajihara, F. Kametani, S. Kamihara, N. Kaneta, M. Kang, J. H. Katou, K. Kawabata, T. Kazantsev, A. V. Kelly, S. Khachaturov, B. Khanzadeev, A. Kikuchi, J. Kim, D. J. Kim, E. Kim, G. -B. Kim, H. J. Kinney, E. Kiss, A. Kistenev, E. Kiyomichi, A. Klein-Boesing, C. Kobayashi, H. Kochenda, L. Kochetkov, V. Kohara, R. Komkov, B. Konno, M. Kotchetkov, D. Kozlov, A. Kroon, P. J. Kuberg, C. H. Kunde, G. J. Kurita, K. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lajoie, J. G. Le Bornec, Y. Lebedev, A. Leckey, S. Lee, D. M. Leitch, M. J. Leite, M. A. L. Li, X. H. Lim, H. Litvinenko, A. Liu, M. X. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Manko, V. I. Mao, Y. Martinez, G. Masui, H. Matathias, F. Matsumoto, T. McCain, M. C. McGaughey, P. L. Miake, Y. Miller, T. E. Milov, A. Mioduszewski, S. Mishra, G. C. Mitchell, J. T. Mohanty, A. K. Morrison, D. P. Moss, J. M. Mukhopadhyay, D. Muniruzzaman, M. Nagamiya, S. Nagle, J. L. Nakamura, T. Newby, J. Nyanin, A. S. Nystrand, J. O'Brien, E. Ogilvie, C. A. Ohnishi, H. Ojha, I. D. Okada, H. Okada, K. Oskarsson, A. Otterlund, I. Oyama, K. Ozawa, K. Pal, D. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Park, W. J. Pate, S. F. Pei, H. Penev, V. Peng, J. -C. Pereira, H. Peresedov, V. Pierson, A. Pinkenburg, C. Pisani, R. P. Purschke, M. L. Purwar, A. K. Qualls, J. M. Rak, J. Ravinovich, I. Read, K. F. Reuter, M. Reygers, K. Riabov, V. Riabov, Y. Roche, G. Romana, A. Rosati, M. Rosendahl, S. S. E. Rosnet, P. Rykov, V. L. Ryu, S. S. Saito, N. Sakaguchi, T. Sakai, S. Samsonov, V. Sanfratello, L. Santo, R. Sato, H. D. Sato, S. Sawada, S. Schutz, Y. Semenov, V. Seto, R. Shea, T. K. Shein, I. Shibata, T. -A. Shigaki, K. Shimomura, M. Sickles, A. Silva, C. L. Silvermyr, D. Sim, K. S. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Sullivan, J. P. Takagi, S. Takagui, E. M. Taketani, A. Tanaka, K. H. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Taranenko, A. Tarjan, P. Thomas, T. L. Togawa, M. Tojo, J. Torii, H. Towell, R. S. Tram, V-N. Tserruya, I. Tsuchimoto, Y. Tydesjo, H. Tyurin, N. Uam, T. J. van Hecke, H. W. Velkovska, J. Velkovsky, M. Veszpremi, V. Vinogradov, A. A. Volkov, M. A. Vznuzdaev, E. Wang, X. R. Watanabe, Y. White, S. N. Willis, N. Wohn, F. K. Woody, C. L. Xie, W. Yanovich, A. Yokkaichi, S. Young, G. R. Yushmanov, I. E. Zajc, W. A. Zhang, C. Zhou, S. Zimanyi, J. Zolin, L. Zong, X. CA PHENIX Collaboration TI Nuclear effects on hadron production in d plus Au collisions at root S-NN=200 GeV revealed by comparison with p plus p data SO PHYSICAL REVIEW C LA English DT Article ID LARGE TRANSVERSE-MOMENTUM; ROOT-S=200 GEV; BARYON NUMBER; ENERGY; PROTON; QCD AB PHENIX has measured the centrality dependence of midrapidity pion, kaon, and proton transverse momentum distributions in d+Au and p+p collisions at root s(NN) = 200 GeV. The p+p data provide a reference for nuclear effects in d+Au and previously measured Au+Au collisions. Hadron production is enhanced in d+Au, relative to independent nucleon-nucleon scattering, as was observed in lower energy collisions. The nuclear modification factor for (anti)protons is larger than that for pions. The difference increases with centrality but is not sufficient to account for the abundance of baryon production observed in central Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC). The centrality dependence in d+Au shows that the nuclear modification factor increases gradually with the number of collisions encountered by each participant nucleon. We also present comparisons with lower energy data as well as with parton recombination and other theoretical models of nuclear effects on particle production. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. Abilene Christian Univ, Abilene, TX 79699 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. Univ Calif Riverside, Riverside, CA 92521 USA. China Inst Atom Energy, Beijing, Peoples R China. Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. Univ Colorado, Boulder, CO 80309 USA. Nevis Labs, Irvington, NY 10533 USA. CEA Saclay, DAPNIA, F-91191 Gif Sur Yvette, France. Univ Debrecen, H-4010 Debrecen, Hungary. Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. Florida State Univ, Tallahassee, FL 32306 USA. Georgia State Univ, Atlanta, GA 30303 USA. Hiroshima Univ, Higashihiroshima 7398526, Japan. IHEP Protvino, State Res Ctr Russian Federat, Inst High Energy Phys, RU-142281 Protvino, Russia. Univ Illinois, Urbana, IL 61801 USA. Iowa State Univ Sci & Technol, Ames, IA 50011 USA. Joint Nucl Res Inst, RU-141980 Dubna, Moscow, Russia. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. Hungarian Acad Sci, KFKI, Res Inst Particle & Nucl Phys, MTA,RMKI, H-1525 Budapest 114, Hungary. Korea Univ, Seoul 136701, South Korea. IV Kurchatov Atom Energy Inst, Russian Res Ctr, Moscow 123182, Russia. Kyoto Univ, Kyoto 6068502, Japan. Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, F-91128 Palaiseau, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Clermont Ferrand, LPC, CNRS, IN2P3, F-63177 Clermont Ferrand, France. Lund Univ, Dept Phys, SE-22100 Lund, Sweden. Univ Munster, Inst Kernphys, D-48149 Munster, Germany. Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. Univ New Mexico, Albuquerque, NM 87131 USA. New Mexico State Univ, Las Cruces, NM 88003 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Paris 11, IPN, CNRS, IN2P3, F-91406 Orsay, France. Peking Univ, Beijing 100871, Peoples R China. Petersburg Nucl Phys Inst, RU-188300 Gatchina, Leningrad, Russia. RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. Brookhaven Natl Lab, RIKEN, BNL, Res Ctr, Upton, NY 11973 USA. Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. Seoul Natl Univ, Syst Elect Lab, Seoul, South Korea. SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Univ Nantes, SUBATECH, Ecole Mines Nantes, CNRS,IN2P3, F-44307 Nantes, France. Univ Tennessee, Knoxville, TN 37996 USA. Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. Vanderbilt Univ, Nashville, TN 37235 USA. Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. Weizmann Inst Sci, IL-76100 Rehovot, Israel. Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Adler, SS (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM zajc@nevis.columbia.edu RI seto, richard/G-8467-2011; Csanad, Mate/D-5960-2012; Taketani, Atsushi/E-1803-2017; Semenov, Vitaliy/E-9584-2017; Csorgo, Tamas/I-4183-2012; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017 OI Taketani, Atsushi/0000-0002-4776-2315; Hayano, Ryugo/0000-0002-1214-7806; Sorensen, Soren /0000-0002-5595-5643; NR 46 TC 74 Z9 74 U1 6 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2006 VL 74 IS 2 AR 024904 DI 10.1103/PhysREvC.74.024904 PG 13 WC Physics, Nuclear SC Physics GA 080HS UT WOS:000240239100048 ER PT J AU Back, BB Baker, MD Barton, DS Betts, RR Ballintijn, M Bickley, AA Bindel, R Budzanowski, A Busza, W Carroll, A Decowski, MP Garcia, E George, N Gulbrandsen, K Gushue, S Halliwell, C Hamblen, J Heintzelman, GA Henderson, C Hofman, DJ Hollis, RS Holynski, R Holzman, B Iordanova, A Johnson, E Kane, JL Katzy, J Khan, N Kucewicz, W Kulinich, P Kuo, CM Lin, WT Manly, S McLeod, D Michalowski, J Mignerey, AC Nouicer, R Olszewski, A Pak, R Park, IC Pernegger, H Reed, C Remsberg, LP Reuter, M Roland, C Roland, G Rosenberg, L Sagerer, J Sarin, P Sawicki, P Skulski, W Steadman, SG Steinberg, P Stephans, GSF Stodulski, M Sukhanov, A Tang, JL Teng, R Trzupek, A Vale, C van Nieuwenhuizen, GJ Verdier, R Veres, GI Wadsworth, B Wolfs, FLH Wosiek, B Wozniak, K Wuosmaa, AH Wyslouch, B AF Back, B. B. Baker, M. D. Barton, D. S. Betts, R. R. Ballintijn, M. Bickley, A. A. Bindel, R. Budzanowski, A. Busza, W. Carroll, A. Decowski, M. P. Garcia, E. George, N. Gulbrandsen, K. Gushue, S. Halliwell, C. Hamblen, J. Heintzelman, G. A. Henderson, C. Hofman, D. J. Hollis, R. S. Holynski, R. Holzman, B. Iordanova, A. Johnson, E. Kane, J. L. Katzy, J. Khan, N. Kucewicz, W. Kulinich, P. Kuo, C. M. Lin, W. T. Manly, S. McLeod, D. Michalowski, J. Mignerey, A. C. Nouicer, R. Olszewski, A. Pak, R. Park, I. C. Pernegger, H. Reed, C. Remsberg, L. P. Reuter, M. Roland, C. Roland, G. Rosenberg, L. Sagerer, J. Sarin, P. Sawicki, P. Skulski, W. Steadman, S. G. Steinberg, P. Stephans, G. S. F. Stodulski, M. Sukhanov, A. Tang, J. -L. Teng, R. Trzupek, A. Vale, C. van Nieuwenhuizen, G. J. Verdier, R. Veres, G. I. Wadsworth, B. Wolfs, F. L. H. Wosiek, B. Wozniak, K. Wuosmaa, A. H. Wyslouch, B. CA PHOBOS Collaboration TI Centrality and energy dependence of charged-particle multiplicities in heavy ion collisions in the context of elementary reactions SO PHYSICAL REVIEW C LA English DT Article ID MULTIPARTICLE PRODUCTION; DISTRIBUTIONS; PHYSICS; QCD AB The PHOBOS experiment at the BNL Relativistic Heavy Ion Collider has measured the total multiplicity of primary charged particles as a function of collision centrality in Au+Au collisions at root s(NN) = 19.6, 130, and 200 GeV. An approximate independence of < N-ch >/< N-part/2 > on the number of participating nucleons is observed, reminiscent of "wounded nucleon" scaling (N-ch proportional to N-part) observed in proton-nucleus collisions. Unlike p+A, the constant of proportionality does not seem to be set by the pp/pp data at the same energy. Rather, there seems to be a surprising correspondence with the total multiplicity measured in e(+)e(-) annihilations, as well as the rapidity shape measured over a large range. The energy dependence of the integrated multiplicity per participant pair shows that e(+)e(-) and A+A data agree over a large range of center-of-mass energies (root s > 20 GeV), and pp/pp data can be brought to agree approximately with the e(+)e(-) data by correcting for the typical energy taken away by leading particles. This is suggestive of a mechanism for soft particle production that depends mainly on the amount of available energy. It is conjectured that the dominant distinction between A+A and p+p collisions is the multiple collisions per participant, which appears to be sufficient to substantially reduce the energy taken away by leading particles. C1 Argonne Natl Lab, Argonne, IL 60439 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. PAN, Inst Nucl Phys, Krakow, Poland. MIT, Cambridge, MA 02139 USA. Natl Cent Univ, Chungli 32054, Taiwan. Univ Illinois, Chicago, IL 60607 USA. Univ Maryland, College Pk, MD 20742 USA. Univ Rochester, Rochester, NY 14627 USA. RP Back, BB (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Decowski, Patrick/A-4341-2011; Mignerey, Alice/D-6623-2011; OI Holzman, Burt/0000-0001-5235-6314 NR 26 TC 33 Z9 33 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2006 VL 74 IS 2 AR 021902 DI 10.1103/PhysRevC.74.021902 PG 4 WC Physics, Nuclear SC Physics GA 080HS UT WOS:000240239100007 ER PT J AU Back, BB Baker, MD Ballintijn, M Barton, DS Betts, RR Bickley, AA Bindel, R Busza, W Carroll, A Chai, Z Decowski, MP Garcia, E Gburek, T George, N Gulbrandsen, K Halliwell, C Hamblen, J Hauer, M Henderson, C Hofman, DJ Hollis, RS Holynski, R Holzman, B Iordanova, A Johnson, E Kane, JL Khan, N Kulinich, P Kuo, CM Lin, WT Manly, S Mignerey, AC Nouicer, R Olszewski, A Pak, R Reed, C Roland, C Roland, G Sagerer, J Seals, H Sedykh, I Smith, CE Stankiewicz, MA Steinberg, P Stephans, GSF Sukhanov, A Tonjes, MB Trzupek, A Vale, C van Nieuwenhuizen, GJ Vaurynovich, SS Verdier, R Veres, GI Wenger, E Wolfs, FLH Wosiek, B Wozniak, K Wyslouch, B AF Back, B. B. Baker, M. D. Ballintijn, M. Barton, D. S. Betts, R. R. Bickley, A. A. Bindel, R. Busza, W. Carroll, A. Chai, Z. Decowski, M. P. Garcia, E. Gburek, T. George, N. Gulbrandsen, K. Halliwell, C. Hamblen, J. Hauer, M. Henderson, C. Hofman, D. J. Hollis, R. S. Holynski, R. Holzman, B. Iordanova, A. Johnson, E. Kane, J. L. Khan, N. Kulinich, P. Kuo, C. M. Lin, W. T. Manly, S. Mignerey, A. C. Nouicer, R. Olszewski, A. Pak, R. Reed, C. Roland, C. Roland, G. Sagerer, J. Seals, H. Sedykh, I. Smith, C. E. Stankiewicz, M. A. Steinberg, P. Stephans, G. S. F. Sukhanov, A. Tonjes, M. B. Trzupek, A. Vale, C. van Nieuwenhuizen, G. J. Vaurynovich, S. S. Verdier, R. Veres, G. I. Wenger, E. Wolfs, F. L. H. Wosiek, B. Wozniak, K. Wyslouch, B. CA PHOBOS Collaboration TI Charged-particle pseudorapidity distributions in Au plus Au collisions at root S-NN=62.4 GeV SO PHYSICAL REVIEW C LA English DT Article ID MULTIPLICITY; ENERGIES AB The charged-particle pseudorapidity density for Au+Au collisions at root s(NN)=62.4 GeV has been measured over a wide range of impact parameters and compared to results obtained at other energies. As a function of collision energy, the pseudorapidity distribution grows systematically both in height and width. The midrapidity density is found to grow approximately logarithmically between BNL Alternating Gradient Synchrotron (AGS) energies and the top BNL Relativistic Heavy Ion Collider (RHIC) energy. There is also an approximate factorization of the centrality and energy dependence of the midrapidity yields. The new results at root s(NN)=62.4 GeV confirm the previously observed phenomenon of "extended longitudinal scaling" in the pseudorapidity distributions when viewed in the rest frame of one of the colliding nuclei. It is also found that the evolution of the shape of the distribution with centrality is energy independent, when viewed in this reference frame. As a function of centrality, the total charged particle multiplicity scales linearly with the number of participant pairs as it was observed at other energies. C1 Argonne Natl Lab, Argonne, IL 60439 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. PAN, Inst Nucl Phys, Krakow, Poland. MIT, Cambridge, MA 02139 USA. Natl Cent Univ, Chungli 32054, Taiwan. Univ Illinois, Chicago, IL 60607 USA. Univ Maryland, College Pk, MD 20742 USA. Univ Rochester, Rochester, NY 14627 USA. RP Back, BB (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Decowski, Patrick/A-4341-2011; Mignerey, Alice/D-6623-2011 NR 22 TC 95 Z9 96 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2006 VL 74 IS 2 AR 021901 DI 10.1103/PhysRevC.74.021901 PG 5 WC Physics, Nuclear SC Physics GA 080HS UT WOS:000240239100006 ER PT J AU Burke, JT Vetter, PA Freedman, SJ Fujikawa, BK Winter, WT AF Burke, J. T. Vetter, P. A. Freedman, S. J. Fujikawa, B. K. Winter, W. T. TI Half-life of O-14 SO PHYSICAL REVIEW C LA English DT Article AB We have measured the half-life of O-14, a superallowed (0(+)-> 0(+)) beta decay isotope. The O-14 was produced by the C-12(He-3,n)O-14 reaction using a carbon aerogel target. A low-energy ion beam of O-14 was mass separated and implanted in a thin beryllium foil. The beta particles were counted with plastic scintillator detectors. We find t(1/2)=70.696 +/- 0.052 s. This result is 1.5 sigma higher than an average value from six earlier experiments, but agrees more closely with the most recent previous measurement. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Ernest Orlando Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Burke, JT (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 13 TC 12 Z9 12 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2006 VL 74 IS 2 AR 025501 DI 10.1103/PhysRevC.74.025501 PG 5 WC Physics, Nuclear SC Physics GA 080HS UT WOS:000240239100059 ER PT J AU Domingo-Pardo, C Abbondanno, U Aerts, G Alvarez-Pol, H Alvarez-Velarde, F Andriamonje, S Andrzejewski, J Assimakopoulos, P Audouin, L Badurek, G Baumann, P Becvar, F Berthoumieux, E Calvino, F Cano-Ott, D Capote, R de Albornoz, AC Cennini, P Chepel, V Chiaveri, E Colonna, N Cortes, G Couture, A Cox, J Dahlfors, M David, S Dillman, I Dolfini, R Dridi, W Duran, I Eleftheriadis, C Embid-Segura, M Ferrant, L Ferrari, A Ferreira-Marques, R Fitzpatrick, L Frais-Koelbl, H Fujii, K Furman, W Gallino, R Goncalves, I Gonzalez-Romero, E Goverdovski, A Gramegna, F Griesmayer, E Guerrero, C Gunsing, F Haas, B Haight, R Heil, M Herrera-Martinez, A Igashira, M Isaev, S Jericha, E Kadi, Y Kappeler, F Karamanis, D Karadimos, D Kerveno, M Ketlerov, V Koehler, P Konovalov, V Kossionides, E Krticka, M Lamboudis, C Leeb, H Lindote, A Lopes, I Lozano, M Lukic, S Marganiec, J Marques, L Marrone, S Mastinu, P Mengoni, A Milazzo, PM Moreau, C Mosconi, M Neves, F Oberhummer, H Oshima, M O'Brien, S Pancin, J Papachristodoulou, C Papadopoulos, C Paradela, C Patronis, N Pavlik, A Pavlopoulos, P Perrot, L Plag, R Plompen, A Plukis, A Poch, A Pretel, C Quesada, J Rauscher, T Reifarth, R Rosetti, M Rubbia, C Rudolf, G Rullhusen, P Salgado, J Sarchiapone, L Savvidis, I Stephan, C Tagliente, G Tain, JL Tassan-Got, L Tavora, L Terlizzi, R Vannini, G Vaz, P Ventura, A Villamarin, D Vincente, MC Vlachoudis, V Vlastou, R Voss, F Walter, S Wendler, H Wiescher, M Wisshak, K AF Domingo-Pardo, C. Abbondanno, U. Aerts, G. Alvarez-Pol, H. Alvarez-Velarde, F. Andriamonje, S. Andrzejewski, J. Assimakopoulos, P. Audouin, L. Badurek, G. Baumann, P. Becvar, F. Berthoumieux, E. Calvino, F. Cano-Ott, D. Capote, R. de Albornoz, A. Carrillo Cennini, P. Chepel, V. Chiaveri, E. Colonna, N. Cortes, G. Couture, A. Cox, J. Dahlfors, M. David, S. Dillman, I. Dolfini, R. Dridi, W. Duran, I. Eleftheriadis, C. Embid-Segura, M. Ferrant, L. Ferrari, A. Ferreira-Marques, R. Fitzpatrick, L. Frais-Koelbl, H. Fujii, K. Furman, W. Gallino, R. Goncalves, I. Gonzalez-Romero, E. Goverdovski, A. Gramegna, F. Griesmayer, E. Guerrero, C. Gunsing, F. Haas, B. Haight, R. Heil, M. Herrera-Martinez, A. Igashira, M. Isaev, S. Jericha, E. Kadi, Y. Kappeler, F. Karamanis, D. Karadimos, D. Kerveno, M. Ketlerov, V. Koehler, P. Konovalov, V. Kossionides, E. Krticka, M. Lamboudis, C. Leeb, H. Lindote, A. Lopes, I. Lozano, M. Lukic, S. Marganiec, J. Marques, L. Marrone, S. Mastinu, P. Mengoni, A. Milazzo, P. M. Moreau, C. Mosconi, M. Neves, F. Oberhummer, H. Oshima, M. O'Brien, S. Pancin, J. Papachristodoulou, C. Papadopoulos, C. Paradela, C. Patronis, N. Pavlik, A. Pavlopoulos, P. Perrot, L. Plag, R. Plompen, A. Plukis, A. Poch, A. Pretel, C. Quesada, J. Rauscher, T. Reifarth, R. Rosetti, M. Rubbia, C. Rudolf, G. Rullhusen, P. Salgado, J. Sarchiapone, L. Savvidis, I. Stephan, C. Tagliente, G. Tain, J. L. Tassan-Got, L. Tavora, L. Terlizzi, R. Vannini, G. Vaz, P. Ventura, A. Villamarin, D. Vincente, M. C. Vlachoudis, V. Vlastou, R. Voss, F. Walter, S. Wendler, H. Wiescher, M. Wisshak, K. CA Collaboration, NT TI New measurement of neutron capture resonances in Bi-209 SO PHYSICAL REVIEW C LA English DT Article ID GALACTIC CHEMICAL EVOLUTION; CROSS-SECTION; S-PROCESS; CHRONOMETERS; ABUNDANCES; FACILITY; DETECTOR; ELEMENTS; SYSTEM; STARS AB The neutron capture cross section of Bi-209 has been measured at the CERN n_TOF facility by employing the pulse-height-weighting technique. Improvements over previous measurements are mainly because of an optimized detection system, which led to a practically negligible neutron sensitivity. Additional experimental sources of systematic error, such as the electronic threshold in the detectors, summing of gamma-rays, internal electron conversion, and the isomeric state in bismuth, have been taken into account. gamma-Ray absorption effects inside the sample have been corrected by employing a nonpolynomial weighting function. Because Bi-209 is the last stable isotope in the reaction path of the stellar s-process, the Maxwellian averaged capture cross section is important for the recycling of the reaction flow by alpha decays. In the relevant stellar range of thermal energies between kT=5 and 8 keV our new capture rate is about 16% higher than the presently accepted value used for nucleosynthesis calculations. At this low temperature an important part of the heavy Pb-Bi isotopes are supposed to be synthesized by the s-process in the He shells of low mass, thermally pulsing asymptotic giant branch stars. With the improved set of cross sections we obtain an s-process fraction of 19 +/- 3% of the solar bismuth abundance, resulting in an r-process residual of 81 +/- 3%. The present (n,gamma) cross-section measurement is also of relevance for the design of accelerator driven systems based on a liquid metal Pb/Bi spallation target. C1 Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain. Ist Nazl Fis Nucl, Trieste, Italy. CEA Saclay, DSM, Gif Sur Yvette, France. Univ Santiago de Compostela, Santiago De Compostela, Spain. Ctr Invest Energet Medioambientales & Technol, Madrid, Spain. Univ Lodz, PL-90131 Lodz, Poland. Univ Ioannina, GR-45110 Ioannina, Greece. Tech Univ Vienna, Atominst Osterr Univ, Vienna, Austria. CNRS, IN2P3, IReS, Strasbourg, France. Charles Univ, Prague, Czech Republic. Univ Politecn Catalunya, Barcelona, Spain. IAEA, NAPC Nucl Data Sect, Vienna, Austria. Univ Sevilla, Seville, Spain. ITN, Lisbon, Portugal. CERN, Geneva, Switzerland. Univ Coimbra, LIP Coimbra, Coimbra, Portugal. Univ Coimbra, Dept Fis, P-3000 Coimbra, Portugal. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Univ Notre Dame, Notre Dame, IN 46556 USA. CNRS, IPN, IN2P3, Orsay, France. Univ Pavia, I-27100 Pavia, Italy. Aristotle Univ Thessaloniki, GR-54006 Thessaloniki, Greece. Joint Inst Nucl Res, Frank Lab Neutron Phys, Dubna, Russia. Univ Turin, Dipartimento Fis, Turin, Italy. Sez INFN, Turin, Italy. Inst Phys & Power Engn, Obninsk, Russia. Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy. CNRS, IN2P3, CENBG, Bordeaux, France. Los Alamos Natl Lab, Los Alamos, NM USA. Tokyo Inst Technol, Tokyo 152, Japan. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. NCSR, Athens, Greece. Japan Atom Energy Res Inst, Tokai, Ibaraki 31911, Japan. Natl Tech Univ Athens, Athens, Greece. Univ Vienna, Inst Isotopenforsch & Kernphys, Vienna, Austria. Pole Univ Leonard De Vinci, Paris, France. CEC, JRC, IRMM, Geel, Belgium. Univ Basel, Dept Phys & Astron, Basel, Switzerland. ENEA, Bologna, Italy. Univ Bologna, Dipartimento Fis, Bologna, Italy. Sez INFN, Bologna, Italy. RP Domingo-Pardo, C (reprint author), Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain. EM Cesar.Domingo.Pardo@cern.ch RI Patronis, Nikolaos/A-3836-2008; Rauscher, Thomas/D-2086-2009; Jericha, Erwin/A-4094-2011; Ventura, Alberto/B-9584-2011; Lindote, Alexandre/H-4437-2013; Neves, Francisco/H-4744-2013; Vaz, Pedro/K-2464-2013; Lopes, Isabel/A-1806-2014; Tain, Jose L./K-2492-2014; Cano Ott, Daniel/K-4945-2014; Quesada Molina, Jose Manuel/K-5267-2014; Guerrero, Carlos/L-3251-2014; Gonzalez Romero, Enrique/L-7561-2014; Pretel Sanchez, Carme/L-8287-2014; Capote Noy, Roberto/M-1245-2014; Duran, Ignacio/H-7254-2015; Alvarez Pol, Hector/F-1930-2011; Paradela, Carlos/J-1492-2012; Gramegna, Fabiana/B-1377-2012; Calvino, Francisco/K-5743-2014; Mengoni, Alberto/I-1497-2012; OI Rauscher, Thomas/0000-0002-1266-0642; Jericha, Erwin/0000-0002-8663-0526; Ventura, Alberto/0000-0001-6748-7931; Lindote, Alexandre/0000-0002-7965-807X; Neves, Francisco/0000-0003-3635-1083; Vaz, Pedro/0000-0002-7186-2359; Lopes, Isabel/0000-0003-0419-903X; Cano Ott, Daniel/0000-0002-9568-7508; Quesada Molina, Jose Manuel/0000-0002-2038-2814; Guerrero, Carlos/0000-0002-2111-546X; Gonzalez Romero, Enrique/0000-0003-2376-8920; Capote Noy, Roberto/0000-0002-1799-3438; Alvarez Pol, Hector/0000-0001-9643-6252; Gramegna, Fabiana/0000-0001-6112-0602; Calvino, Francisco/0000-0002-7198-4639; Mengoni, Alberto/0000-0002-2537-0038; Domingo-Pardo, Cesar/0000-0002-2915-5466 NR 34 TC 27 Z9 27 U1 1 U2 16 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2006 VL 74 IS 2 AR 025807 DI 10.1103/PhysRevC.74.025807 PG 10 WC Physics, Nuclear SC Physics GA 080HS UT WOS:000240239100068 ER PT J AU Gade, A Janssens, RVF Bazin, D Broda, R Brown, BA Campbell, CM Carpenter, MP Cook, JM Deacon, AN Dinca, DC Fornal, B Freeman, SJ Glasmacher, T Hansen, PG Kay, BP Mantica, PF Mueller, WF Terry, JR Tostevin, JA Zhu, S AF Gade, A. Janssens, R. V. F. Bazin, D. Broda, R. Brown, B. A. Campbell, C. M. Carpenter, M. P. Cook, J. M. Deacon, A. N. Dinca, D. -C. Fornal, B. Freeman, S. J. Glasmacher, T. Hansen, P. G. Kay, B. P. Mantica, P. F. Mueller, W. F. Terry, J. R. Tostevin, J. A. Zhu, S. TI Cross-shell excitation in two-proton knockout: Structure of Ca-52 SO PHYSICAL REVIEW C LA English DT Article ID NEUTRON-RICH NUCLEI; MODEL; ENERGIES; SECTIONS; ISOTOPES; MATTER AB The two-proton knockout reaction Be-9(Ti-54,Ca-52+gamma) has been studied at 72 MeV/nucleon. Besides the strong feeding of the Ca-52 ground state, the only other sizeable cross section proceeds to a 3(-) level at 3.9 MeV. There is no measurable direct yield to the first excited 2(+) state at 2.6 MeV. The results illustrate the potential of such direct reactions for exploring cross-shell proton excitations in neutron-rich nuclei and confirms the doubly-magic nature of Ca-52. C1 Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. Polish Acad Sci, Inst Phys Nucl, PL-31342 Krakow, Poland. Univ Manchester, Schuster Lab, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. Univ Surrey, Dept Phys, Sch Elect & Phys Sci, Guildford GU2 7XH, Surrey, England. RP Gade, A (reprint author), Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. RI Gade, Alexandra/A-6850-2008; Glasmacher, Thomas/C-4462-2008; Campbell, Christopher/B-9429-2008; Freeman, Sean/B-1280-2010; Kay, Benjamin/F-3291-2011; Glasmacher, Thomas/H-9673-2014; Carpenter, Michael/E-4287-2015 OI Gade, Alexandra/0000-0001-8825-0976; Freeman, Sean/0000-0001-9773-4921; Kay, Benjamin/0000-0002-7438-0208; Glasmacher, Thomas/0000-0001-9436-2448; Carpenter, Michael/0000-0002-3237-5734 NR 36 TC 59 Z9 59 U1 1 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2006 VL 74 IS 2 AR 021302 DI 10.1103/PhysRevC.74.021302 PG 4 WC Physics, Nuclear SC Physics GA 080HS UT WOS:000240239100002 ER PT J AU Gould, CR Sharapov, EI Lamoreaux, SK AF Gould, C. R. Sharapov, E. I. Lamoreaux, S. K. TI Time variability of alpha from realistic models of Oklo reactors SO PHYSICAL REVIEW C LA English DT Article ID FINE-STRUCTURE CONSTANT; FUNDAMENTAL CONSTANTS; FISSION REACTORS; GABON AB We reanalyze Oklo Sm-149 data using realistic models of the natural nuclear reactors. Disagreements among recent Oklo determinations of the time evolution of alpha, the electromagnetic fine structure constant, are shown to be due to different reactor models, which led to different neutron spectra used in the calculations. We use known Oklo reactor epithermal spectral indices as criteria for selecting realistic reactor models. Two Oklo reactors, RZ2 and RZ10, were modeled with MCNP. The resulting neutron spectra were used to calculate the change in the Sm-149 effective neutron capture cross section as a function of a possible shift in the energy of the 97.3-meV resonance. We independently deduce ancient Sm-149 effective cross sections and use these values to set limits on the time variation of alpha. Our study resolves a contradictory situation with previous Oklo alpha results. Our suggested 2 sigma bound on a possible time variation of alpha over 2 billion years is stringent: -0.11 <=Delta alpha/alpha <= 0.24, in units of 10(-7), but model dependent in that it assumes only alpha has varied over time. C1 N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. Triangle Univ, Nucl Lab, Durham, NC 27708 USA. Joint Inst Nucl Res, Dubna 141980, Russia. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Gould, CR (reprint author), N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. EM chris_gould@ncsu.edu RI Gould, Christopher/M-7676-2013 NR 24 TC 70 Z9 70 U1 0 U2 7 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2006 VL 74 IS 2 AR 024607 DI 10.1103/PhysRevC.74.024607 PG 10 WC Physics, Nuclear SC Physics GA 080HS UT WOS:000240239100043 ER PT J AU Gour, JR Piecuch, P Hjorth-Jensen, M Wloch, M Dean, DJ AF Gour, J. R. Piecuch, P. Hjorth-Jensen, M. Wloch, M. Dean, D. J. TI Coupled-cluster calculations for valence systems around O-16 SO PHYSICAL REVIEW C LA English DT Review ID SYMMETRY-ADAPTED-CLUSTER; MODEL-OPERATOR APPROACH; MANY-BODY PROBLEM; DEGENERATE ELECTRONIC STATES; CONNECTED TRIPLE EXCITATIONS; SHORT-RANGE CORRELATIONS; NUCLEAR SHELL-MODEL; SAC CI THEORIES; EXCITED-STATES; WAVE-FUNCTION AB We study the ground and low-lying excited states of O-15, O-17, N-15, and F-17 using modern two-body nucleon-nucleon interactions and the suitably designed variants of the ab initio equation-of-motion coupled-cluster theory aimed at an accurate description of systems with valence particles and holes. A number of properties of O-15, O-17, N-15, and F-17, including ways the energies of ground and excited states of valence systems around O-16 change as functions of the number of nucleons, are correctly reproduced by the equation-of-motion coupled-cluster calculations performed in up to eight major-oscillator shells. Certain disagreements with experiment are in part because of the degrees of freedom such as three-body interactions not accounted for in our effective two-body Hamiltonians. In particular, the calculated binding energies of O-15/N-15 and O-17/F-17 enable us to rationalize the discrepancy between the experimental and recently published [Phys. Rev. Lett. 94, 212501 (2005)] equation-of-motion coupled-cluster excitation energies for the J(pi)=3(-) state of O-16. Our calculations demonstrate the feasibility of the equation-of-motion coupled-cluster methods to deal with valence systems around closed-shell nuclei and to provide results for systems beyond A=16. C1 Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. Univ Oslo, Dept Phys, N-0316 Oslo, Norway. Univ Oslo, Ctr Math Applicat, N-0316 Oslo, Norway. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Gour, JR (reprint author), Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. RI Hjorth-Jensen, Morten/B-1417-2008; Piecuch, Piotr/C-4435-2011 NR 151 TC 49 Z9 49 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2006 VL 74 IS 2 AR 024310 DI 10.1103/PhysRevC.74.024310 PG 18 WC Physics, Nuclear SC Physics GA 080HS UT WOS:000240239100019 ER PT J AU Kaneko, K Hasegawa, M Agvaanluvsan, U Algin, E Chankova, R Guttormsen, M Larsen, AC Mitchell, GE Rekstad, J Schiller, A Siem, S Voinov, A AF Kaneko, K. Hasegawa, M. Agvaanluvsan, U. Algin, E. Chankova, R. Guttormsen, M. Larsen, A. C. Mitchell, G. E. Rekstad, J. Schiller, A. Siem, S. Voinov, A. TI Breaking of nucleon Cooper pairs at finite temperature in Mo93-98 SO PHYSICAL REVIEW C LA English DT Article ID THERMODYNAMICAL PROPERTIES AB The S shape of the canonical heat-capacity curve is known as a signature of the pairing transition, and along an isotopic chain it is significantly more pronounced for nuclei with an even number of neutrons than for those with an odd number. Although the heat capacities extracted from experimental level densities in Mo93-98 exhibit a clear S shape, they do not show such an odd-even staggering. To understand the underlying physics, we analyze thermal quantities evaluated from the partition function calculated using the static-path plus random-phase approximation (SPA+RPA) in a monopole pairing model with number-parity projection. The calculated level densities reproduce very well the experimental data, and they also agree with estimates made using the back-shifted Fermi-gas model. We clarify the reason why the heat capacities for Mo isotopes do not show odd-even staggering of the S shape. We also discuss thermal odd-even mass differences in Mo94-97 that were calculated using the three-, four-, and five-point formulas. These thermal mass differences are regarded as indicators of pairing correlations at finite temperature. C1 Kyushu Sangyo Univ, Dept Phys, Fukuoka 8138503, Japan. Fukuoka Dent Coll, Lab Phys, Fukuoka 8140193, Japan. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. N Carolina State Univ, Raleigh, NC 27695 USA. Triangle Univ Nucl Lab, Durham, NC 27708 USA. Osmangazi Univ, Dept Phys, TR-26480 Meselik, Eskisehir, Turkey. Univ Oslo, Dept Phys, N-0316 Oslo, Norway. Michigan State Univ, NSCL, E Lansing, MI 48824 USA. Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. RP Kaneko, K (reprint author), Kyushu Sangyo Univ, Dept Phys, Fukuoka 8138503, Japan. RI Larsen, Ann-Cecilie/C-8742-2014 OI Larsen, Ann-Cecilie/0000-0002-2188-3709 NR 21 TC 15 Z9 15 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2006 VL 74 IS 2 AR 024325 DI 10.1103/PhysRevC.74.024325 PG 6 WC Physics, Nuclear SC Physics GA 080HS UT WOS:000240239100034 ER PT J AU Luo, YX Hamilton, JH Rasmussen, JO Ramayya, AV Stefanescu, I Hwang, JK Che, XL Zhu, SJ Gore, PM Jones, EF Fong, D Wu, SC Lee, IY Ginter, TN Ma, WC Ter-Akopian, GM Daniel, AV Stoyer, MA Donangelo, R Gelberg, A AF Luo, Y. X. Hamilton, J. H. Rasmussen, J. O. Ramayya, A. V. Stefanescu, I. Hwang, J. K. Che, X. L. Zhu, S. J. Gore, P. M. Jones, E. F. Fong, D. Wu, S. C. Lee, I. Y. Ginter, T. N. Ma, W. C. Ter-Akopian, G. M. Daniel, A. V. Stoyer, M. A. Donangelo, R. Gelberg, A. TI Nuclear shape and structure in neutron-rich Tc-110,Tc-111 SO PHYSICAL REVIEW C LA English DT Article ID HIGH-SPIN STRUCTURE; ROTATIONAL BANDS; ISOTOPES; TRIAXIALITY; FISSION; REGION; STATES; IDENTIFICATION; QUASIPARTICLE; DEFORMATION AB The high-spin nuclear structure of Tc isotopes is extended to more neutron-rich regions based on the measurements of prompt gamma rays from the spontaneous fission of Cf-252 at the Gammasphere. The high-spin level scheme of N=67 neutron-rich Tc-110 (Z=43) is established for the first time, and that of Tc-111 is extended and expanded. The ground band of Tc-111 reaches the band-crossing region, and the new observation of the weakly populated alpha=-1/2 member of the band provides important information on signature splitting. The systematics of band crossings in the isotopic and isotonic chains and a CSM calculation suggest that the band crossing of the ground band of Tc-111 is due to alignment of a pair of h(11/2) neutrons. The best fit to signature splitting, branching ratios, and excitations of the ground band of Tc-111 by the rigid triaxial rotor plus particle model calculations result in a shape of epsilon(2)=0.32 and gamma=-26(degrees) for this nucleus. Its triaxiality is larger than that of Tc-107,Tc-109, which indicates increasing triaxiality in Tc isotopes with increasing neutron number. The identification of the weakly populated K+2 satellite band provides strong evidence for the large triaxiality of Tc-111. In Tc-110, the four lowest-lying levels observed are very similar to those in Tc-108. At an excitation of 478.9 keV above the lowest state observed, ten states of a Delta I=1 band are observed. This band of Tc-110 is very analogous to the Delta I=1 bands in Tc-106,Tc-108, but it has greater and reversal signature splitting at higher spins. C1 Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Katholieke Univ Leuven, Inst Kern & Stralingsfys, B-3001 Louvain, Belgium. Tsing Hua Univ, Dept Phys, Beijing 100084, Peoples R China. Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. Natl Tsing Hua Univ, Dept Phys, Hsinchu, Taiwan. Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. Mississippi State Univ, Mississippi State, MS 39762 USA. Joint Inst Nucl Res Dubna, Flerov Lab Nucl React, Dubna, Russia. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Fed Rio de Janeiro, BR-68528 Rio De Janeiro, Brazil. Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany. RP Luo, YX (reprint author), Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. NR 29 TC 21 Z9 25 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2006 VL 74 IS 2 AR 024308 DI 10.1103/PhysRevC.74.024308 PG 12 WC Physics, Nuclear SC Physics GA 080HS UT WOS:000240239100017 ER PT J AU Maruhn, JA Reinhard, PG Stevenson, PD Strayer, MR AF Maruhn, J. A. Reinhard, P-G. Stevenson, P. D. Strayer, M. R. TI Spin-excitation mechanisms in Skyrme-force time-dependent Hartree-Fock calculations SO PHYSICAL REVIEW C LA English DT Article ID MEAN-FIELD CALCULATIONS; HEAVY-ION COLLISIONS; NUCLEAR-STRUCTURE; FUSION; PARAMETRIZATION; MODELS AB We investigate the role of odd-odd (with respect to time inversion) couplings in the Skyrme force on collisions of light nuclei, employing a fully three-dimensional numerical treatment without any symmetry restrictions and with modern Skyrme functionals. We demonstrate the necessity of these couplings to suppress spurious spin excitations owing to the spin-orbit force in free translational motion of a nucleus but show that in a collision situation there is a strong spin excitation even in spin-saturated systems which persists in the departing fragments. The energy loss is considerably increased by the odd-odd terms. C1 Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany. Univ Erlangen Nurnberg, Inst Theoret Phys 2, D-91058 Erlangen, Germany. Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Maruhn, JA (reprint author), Univ Frankfurt, Inst Theoret Phys, Max Von Laue Str 1, D-60438 Frankfurt, Germany. RI Stevenson, Paul/B-9016-2012 OI Stevenson, Paul/0000-0003-2645-2569 NR 24 TC 50 Z9 51 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2006 VL 74 IS 2 AR 027601 DI 10.1103/PhysRevC.74.027601 PG 4 WC Physics, Nuclear SC Physics GA 080HS UT WOS:000240239100076 ER PT J AU Ozawa, A Matsuta, K Nagatomo, T Mihara, M Yamada, K Yamaguchi, T Ohtsubo, T Momota, S Izumikawa, T Sumikama, T Nakashima, Y Fujiwara, H Kumashiro, S Matsumiya, R Ota, M Shinojima, D Tanaka, H Yasuno, T Nakajima, S Suzuki, T Yoshida, K Muranaka, K Maemura, T Chiba, A Utsuno, Y Fukuda, M Tanaka, K Tanihata, I Nojiri, Y Minamisono, T Alonso, JR Krebs, GF Symons, TJM AF Ozawa, A. Matsuta, K. Nagatomo, T. Mihara, M. Yamada, K. Yamaguchi, T. Ohtsubo, T. Momota, S. Izumikawa, T. Sumikama, T. Nakashima, Y. Fujiwara, H. Kumashiro, S. Matsumiya, R. Ota, M. Shinojima, D. Tanaka, H. Yasuno, T. Nakajima, S. Suzuki, T. Yoshida, K. Muranaka, K. Maemura, T. Chiba, A. Utsuno, Y. Fukuda, M. Tanaka, K. Tanihata, I. Nojiri, Y. Minamisono, T. Alonso, J. R. Krebs, G. F. Symons, T. J. M. TI Measurement of the spin and magnetic moment of Al-23 SO PHYSICAL REVIEW C LA English DT Article ID INTERACTION CROSS-SECTIONS; NEUTRON-RICH NUCLEI; B-8; HALO; ENERGIES; STATE; BEAMS; MODEL AB For the first time, we obtained the g factor for the ground state of Al-23 by use of a beta-NMR measurement. Al-23 has a small proton separation energy and is a potential proton-halo candidate. The obtained g factor, vertical bar g vertical bar=1.557 +/- 0.088, clearly shows the spin and parity, J(pi)=5/2(+), for Al-23, which is the same as that of its mirror partner, Ne-23. The possible nuclear structure of Al-23 is also discussed. C1 Univ Tsukuba, Inst Phys, Ibaraki 3058571, Japan. Osaka Univ, Grad Sch Sci, Osaka 560, Japan. Niigata Univ, Dept Phys, Niigata 950218, Japan. Kochi Inst Technol, Kochi 7828502, Japan. Niigata Univ, Radioisotope Ctr, Niigata 9518510, Japan. Japan Atom Energy Agcy, Adv Sci Res Ctr, Ibaraki 3191106, Japan. TRIUMF, Vancouver, BC V6T 2A3, Canada. Fukui Univ Technol, Fukui 9108505, Japan. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Ozawa, A (reprint author), Univ Tsukuba, Inst Phys, Ibaraki 3058571, Japan. NR 32 TC 32 Z9 33 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2006 VL 74 IS 2 AR 021301 DI 10.1103/PhysRevC.74.021301 PG 4 WC Physics, Nuclear SC Physics GA 080HS UT WOS:000240239100001 ER PT J AU Perajarvi, K Fu, CB Rogachev, GV Chubarian, G Goldberg, VZ Guo, FQ Lee, D Moltz, DM Powell, J Skorodumov, BB Tabacaru, G Tang, XD Tribble, RE Brown, BA Volya, A Cerny, J AF Perajarvi, K. Fu, Changbo Rogachev, G. V. Chubarian, G. Goldberg, V. Z. Guo, F. Q. Lee, D. Moltz, D. M. Powell, J. Skorodumov, B. B. Tabacaru, G. Tang, X. D. Tribble, R. E. Brown, B. A. Volya, A. Cerny, Joseph TI Structure of N-12 using C-11+p resonance scattering SO PHYSICAL REVIEW C LA English DT Article ID RADIOACTIVE ION-BEAMS; STATES; BEARS AB The level structure of N-12 has been investigated from 2.2 to 11.0 MeV in excitation energy using a C-11+p resonance interaction with thick targets and inverse kinematics. Excitation functions were fitted using an R-matrix approach. Sixteen levels in N-12 were included in the analysis, several of them are new. Spin-parity assignments, excitation energies and widths are proposed for these levels. C1 Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Michigan State Univ, E Lansing, MI 48824 USA. RP Perajarvi, K (reprint author), Univ Jyvaskyla, Dept Phys, Jyvaskyla, Finland. RI Volya, Alexander/I-9457-2012; Chubarian, Grigor/H-2519-2014; Fu, Changbo/O-1550-2015; Tang, Xiaodong /F-4891-2016 OI Volya, Alexander/0000-0002-1765-6466; NR 24 TC 9 Z9 9 U1 0 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2006 VL 74 IS 2 AR 024306 DI 10.1103/PhysRevC.74.024306 PG 11 WC Physics, Nuclear SC Physics GA 080HS UT WOS:000240239100015 ER PT J AU Pervin, M Roberts, W Capstick, S AF Pervin, Muslema Roberts, W. Capstick, Simon TI Semileptonic decays of heavy Omega baryons in a quark model SO PHYSICAL REVIEW C LA English DT Article ID FORM-FACTORS; MESONS; QCD AB The semileptonic decays of Omega(c) and Omega(b) are treated in the framework of a constituent quark model developed in a previous article on the semileptonic decays of heavy Lambda baryons. Analytic results for the form factors for the decays to ground states and a number of excited states are evaluated. For Omega(b) to Omega(c) the form factors obtained are shown to satisfy the relations predicted at leading order in the heavy-quark effective theory at the nonrecoil point. A modified fit of nonrelativistic and semirelativistic Hamiltonians generates configuration-mixed baryon wave functions from the known masses and the measured Lambda(+)(c)->Lambda e(+)nu rate, with wave functions expanded in both harmonic oscillator and Sturmian bases. Decay rates of Omega(b) to pairs of ground and excited Omega(c) states related by heavy-quark symmetry calculated using these configuration-mixed wave functions are in the ratios expected from heavy-quark effective theory to a good approximation. Our predictions for the semileptonic elastic branching fraction of Omega(Q) vary minimally within the models we use. We obtain an average value of (84 +/- 2%) for the fraction of Omega(c)->Xi((*)) decays to ground states and 91% for the fraction of Omega(c)->Omega((*)) decays to the ground state Omega. The elastic fraction of Omega(b)->Omega(c) ranges from about 50% calculated with the two harmonic-oscillator models to about 67% calculated with the two Sturmian models. C1 Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. Off Nucl Phys, Dept Energy, Germantown, MD 20874 USA. RP Pervin, M (reprint author), Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. NR 25 TC 10 Z9 10 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2006 VL 74 IS 2 AR 025205 DI 10.1103/PhysRevC.74.025205 PG 31 WC Physics, Nuclear SC Physics GA 080HS UT WOS:000240239100057 ER PT J AU Sorensen, P Dong, X AF Sorensen, P. Dong, X. TI Suppression of nonphotonic electrons from enhancement of charm baryons in heavy ion collisions SO PHYSICAL REVIEW C LA English DT Article ID NUMBER AB In Au+Au collisions at 2 < p(T)< 6 GeV/c baryon production is enhanced compared to p+p collisions. Since charm baryon decays produce electrons less frequently than charm meson decays, the nonphotonic electron spectrum is sensitive to the Lambda(c)/D ratio. In this report we study the dependence of the nonphotonic electron spectrum on the baryon-to-meson ratio for charm hadrons. As an example, we take the Lambda(c)/D ratio to have the same form as the Lambda/K-S(0) ratio. In this case, even if the total charm quark yield in Au+Au collisions scales with the number of binary nucleon-nucleon collisions (N-bin), the electron spectrum at 2 < p(T)< 5 GeV/c is suppressed by as much as 20% relative to N-bin scaled p+p collisions. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. Univ Sci & Technol China, Hifei 230026, Anhui, Peoples R China. RP Sorensen, P (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. RI Dong, Xin/G-1799-2014; OI Dong, Xin/0000-0001-9083-5906; Sorensen, Paul/0000-0001-5056-9391 NR 38 TC 29 Z9 29 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2006 VL 74 IS 2 AR 024902 DI 10.1103/PhysRevC.74.024902 PG 4 WC Physics, Nuclear SC Physics GA 080HS UT WOS:000240239100046 ER PT J AU Torrieri, G Jeon, S Rafelski, J AF Torrieri, Giorgio Jeon, Sangyong Rafelski, Johann TI Particle yield fluctuations and chemical nonequilibrium in Au-Au collisions at root(NN)-N-S=100 GeV SO PHYSICAL REVIEW C LA English DT Article ID QUARK-GLUON PLASMA; STATISTICAL HADRONIZATION; NUCLEAR COLLISIONS; MULTIPLICITIES; STRANGENESS; RESONANCES; SIGNATURE AB We study charge fluctuations within the statistical hadronization model. Considering both the particle yield ratios and the charge fluctuations we show that it is possible to differentiate between chemical equilibrium and non-equilibrium freeze-out conditions. As an example of the procedure we show quantitatively how the relative yield ratio Lambda/K- together with the normalized net charge fluctuation v(Q)=<(Delta Q)(2)>/< N-ch > constrain the chemical conditions at freeze-out. We also discuss the influence of the limited detector acceptance on fluctuation measurements, and show how this can be accounted for within a quantitative analysis. C1 McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. Brookhaven Natl Lab, Res Ctr, RIKEN, Upton, NY 11973 USA. Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. RP Torrieri, G (reprint author), McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. RI Rafelski, Johann/E-4678-2013; Torrieri, Giorgio/H-1776-2014 OI Torrieri, Giorgio/0000-0002-0611-766X NR 43 TC 25 Z9 25 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2006 VL 74 IS 2 AR 024901 DI 10.1103/PhysRevC.74.024901 PG 8 WC Physics, Nuclear SC Physics GA 080HS UT WOS:000240239100045 ER PT J AU Wheldon, C Valiente-Dobon, JJ Regan, PH Pearson, CJ Wu, CY Smith, JF Macchiavelli, AO Cline, D Chakrawarthy, RS Chapman, R Cromaz, M Fallon, P Freeman, SJ Gelletly, W Gorgen, AG Hayes, AB Hua, H Langdown, SD Lee, IY Liang, X Podolyak, Z Sletten, G Teng, R Ward, D Warner, DD Yamamoto, AD AF Wheldon, C. Valiente-Dobon, J. J. Regan, P. H. Pearson, C. J. Wu, C. Y. Smith, J. F. Macchiavelli, A. O. Cline, D. Chakrawarthy, R. S. Chapman, R. Cromaz, M. Fallon, P. Freeman, S. J. Gelletly, W. Goergen, A. G. Hayes, A. B. Hua, H. Langdown, S. D. Lee, I. Y. Liang, X. Podolyak, Zs. Sletten, G. Teng, R. Ward, D. Warner, D. D. Yamamoto, A. D. TI Observation of an isomeric state in Au-197 SO PHYSICAL REVIEW C LA English DT Article AB A medium-spin isomer in Au-197 is identified with t(1/2)=150(5) ns following a multinucleon transfer reaction between an 850-MeV Xe-136 beam and a Pt-198 target. The transitions identified here are considered and possible configurations for the associated levels discussed. In addition, a newly observed out-of-beam transition in Au-195 is briefly reported. C1 Hahn Meitner Inst Berlin GmbH, SF7, D-14109 Berlin, Germany. Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06520 USA. Univ Rochester, Dept Phys, Rochester, NY 14627 USA. Univ Manchester, Dept Phys & Astron, Schuster Lab, Manchester M13 9PL, Lancs, England. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Paisley, Sch ICT, Paisley PA1 2BE, Renfrew, Scotland. Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. CCLRC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England. RP Wheldon, C (reprint author), Hahn Meitner Inst Berlin GmbH, SF7, Glienicker Str 100, D-14109 Berlin, Germany. EM wheldon@hmi.de RI Freeman, Sean/B-1280-2010; Wheldon, Carl/F-9203-2013 OI Freeman, Sean/0000-0001-9773-4921; NR 13 TC 7 Z9 7 U1 1 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2006 VL 74 IS 2 AR 027303 DI 10.1103/PhysRevC.74.027303 PG 4 WC Physics, Nuclear SC Physics GA 080HS UT WOS:000240239100074 ER PT J AU Yurkewicz, KL Bazin, D Brown, BA Enders, J Gade, A Glasmacher, T Hansen, PG Maddalena, V Navin, A Sherrill, BM Tostevin, JA AF Yurkewicz, K. L. Bazin, D. Brown, B. A. Enders, J. Gade, A. Glasmacher, T. Hansen, P. G. Maddalena, V. Navin, A. Sherrill, B. M. Tostevin, J. A. TI One-neutron knockout from Ni-57 SO PHYSICAL REVIEW C LA English DT Article ID SINGLE-PARTICLE STRUCTURE; NUCLEAR SHELL-MODEL; EXOTIC NUCLEI; FRAGMENTATION; SPECTROSCOPY; EXCITATION; BEAMS AB The single-particle structure of Ni-57 and level structure of Ni-56 were investigated with the Be-9 (Ni-57,Ni-56+gamma)X reaction at 73 MeV/nucleon. An inclusive cross section of 41.4(12) mb was obtained for the reaction, compared to a theoretical prediction of 85.4 mb, hence only 48(2)% of the theoretical cross section is exhausted. This reduction in the observed spectroscopic strength is consistent with that found for lighter well-bound nuclei. One-neutron removal spectroscopic factors of 0.58(11) to the ground state and 3.7(2) to all excited states of Ni-56 were deduced. C1 Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. Univ Surrey, Sch Elect & Phys Sci, Dept Phys, Guildford GU2 7XH, Surrey, England. RP Yurkewicz, KL (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM glasmacher@nscl.msu.edu RI Gade, Alexandra/A-6850-2008; Glasmacher, Thomas/C-4462-2008; Sherrill, Bradley/B-4098-2009; Enders, Joachim/B-5501-2009; Sherrill, Bradley/B-3378-2011; Glasmacher, Thomas/H-9673-2014 OI Gade, Alexandra/0000-0001-8825-0976; Enders, Joachim/0000-0002-8441-378X; Glasmacher, Thomas/0000-0001-9436-2448 NR 38 TC 15 Z9 15 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2006 VL 74 IS 2 AR 024304 DI 10.1103/PhysRevC.74.024304 PG 6 WC Physics, Nuclear SC Physics GA 080HS UT WOS:000240239100013 ER PT J AU Zhang, WN Ren, YY Wong, CY AF Zhang, Wei-Ning Ren, Yan-Yu Wong, Cheuk-Yin TI Analysis of pion elliptic flow and Hanbury-Brown-Twiss interferometry in a granular quark-gluon plasma droplet model SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; QCD PHASE-TRANSITION; RELATIVISTIC NUCLEAR COLLISIONS; COLLECTIVE FLOW; INTENSITY INTERFEROMETRY; MULTIPLE-SCATTERING; INTERFACE TENSION; QUENCHED QCD; DYNAMICS; MATTER AB In many simulations of high-energy heavy-ion collisions on an event-by-event analysis, it is known that the initial energy density distribution in the transverse plane is highly fluctuating. Subsequent longitudinal expansion will lead to many longitudinal tubes of quark-gluon plasma that have tendencies to break up into many spherical droplets because of sausage instabilities. We are therefore motivated to use a model of quark-gluon plasma granular droplets that evolve hydrodynamically to investigate pion elliptic flows and Hanbury-Brown-Twiss (HBT) interferometry. We find that the data of pion transverse momentum spectra, elliptic flows, and HBT radii in root s(NN) = 200 GeV Au+Au collisions at the BNL Relativistic Heavy Ion Collider can be described well by an expanding source of granular droplets with an anisotropic velocity distribution. C1 Dalian Univ Technol, Dept Phys, Dalian 116024, Liaoning, Peoples R China. Harbin Inst Technol, Dept Phys, Harbin 150006, Heilongjiang, Peoples R China. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Zhang, WN (reprint author), Dalian Univ Technol, Dept Phys, Dalian 116024, Liaoning, Peoples R China. OI Wong, Cheuk-Yin/0000-0001-8223-0659 NR 85 TC 21 Z9 22 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2006 VL 74 IS 2 AR 024908 DI 10.1103/PhysRevC.74.024908 PG 8 WC Physics, Nuclear SC Physics GA 080HS UT WOS:000240239100052 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Berntzon, L Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borcherding, F Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Calvet, S Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Claes, D Clement, B Clement, C Coadou, Y Coenen, J Cooke, M Cooper, WE Coppage, D Corcoran, M Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D Cwiok, M Da Motta, H Das, A Das, M Davies, B Davies, G Davis, GA De, K De Jong, P De Jong, SJ De la Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Estrada, J Evans, H Evdokimov, A Evdokimov, VN Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Gounder, K Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jenkins, A Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, JM Kalk, JR Kappler, S Karmanov, D Kasper, J Katsanos, I Kau, D Kaur, R Kehoe, R Kermiche, S Kesisoglou, S Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Kryemadhi, A Krzywdzinski, S Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lager, S Lammers, S Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Leonidopoulos, C Lesne, V Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Z Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK McCarthy, R McCroskey, R Meder, D Melnitchouk, A Mendes, A Mendoza, L Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Millet, T Mitrevski, J Molina, J Mondal, NK Monk, J Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundim, L Mutaf, YD Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Oguri, V Oliveira, N Oshima, N Otec, R Garzon, GJOY Owen, M Padley, P Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Peters, K Petroff, P Petteni, M Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG Popov, AV da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rani, KJ Ranjan, K Rapidis, PA Ratoff, PN Renkel, P Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Siccardi, V Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tiller, B Titov, M Tokmenin, VV Tomoto, M Toole, T Torchiani, I Towers, S Trefzger, T Trincaz-Duvoid, S Tsybychev, D Tuchming, B Tully, C Turcot, AS Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vlimant, JR Von Toerne, E Voutilainen, M Vreeswijk, M Wahl, HD Wang, L Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Womersley, J Wood, DR Wyatt, TR Xie, Y Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, C Yu, J Yurkewicz, A Zatserklyaniy, A Zeitnitz, C Zhang, D Zhao, T Zhao, Z Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Agelou, M. Agram, J. -L. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Bargassa, P. Baringer, P. Barnes, C. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Berntzon, L. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Binder, M. Biscarat, C. Black, K. M. Blackler, I. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Blumenschein, U. Boehnlein, A. Boeriu, O. Bolton, T. A. Borcherding, F. Borissov, G. Bos, K. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Burdin, S. Burke, S. Burnett, T. H. Busato, E. Buszello, C. P. Butler, J. M. Calvet, S. Cammin, J. Caron, S. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chapin, D. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Claes, D. Clement, B. Clement, C. Coadou, Y. Coenen, J. Cooke, M. Cooper, W. E. Coppage, D. Corcoran, M. Cousinou, M. -C. Cox, B. Crepe-Renaudin, S. Cutts, D. Cwiok, M. Da Motta, H. Das, A. Das, M. Davies, B. Davies, G. Davis, G. A. De, K. De Jong, P. De Jong, S. J. De la Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Demine, P. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Doidge, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Edwards, T. Ellison, J. Elmsheuser, J. Elvira, V. D. Eno, S. Ermolov, P. Estrada, J. Evans, H. Evdokimov, A. Evdokimov, V. N. Fatakia, S. N. Feligioni, L. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fleck, I. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gardner, J. Gavrilov, V. Gay, A. Gay, P. Gele, D. Gelhaus, R. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Gounder, K. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grunendahl, S. Grunewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hong, S. J. Hooper, R. Houben, P. Hu, Y. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jenkins, A. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kafer, D. Kahn, S. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kalk, J. R. Kappler, S. Karmanov, D. Kasper, J. Katsanos, I. Kau, D. Kaur, R. Kehoe, R. Kermiche, S. Kesisoglou, S. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Klima, B. Kohli, J. M. Konrath, J. -P. Kopal, M. Korablev, V. M. Kotcher, J. Kothari, B. Koubarovsky, A. Kozelov, A. V. Kozminski, J. Kryemadhi, A. Krzywdzinski, S. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lager, S. Lammers, S. Landsberg, G. Lazoflores, J. Le Bihan, A. -C. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Leonidopoulos, C. Lesne, V. Leveque, J. Lewis, P. Li, J. Li, Q. Z. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Lounis, A. Love, P. Lubatti, H. J. Lynker, M. Lyon, A. L. Maciel, A. K. A. Madaras, R. J. Mattig, P. Magass, C. Magerkurth, A. Magnan, A. -M. Makovec, N. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martens, M. Mattingly, S. E. K. McCarthy, R. McCroskey, R. Meder, D. Melnitchouk, A. Mendes, A. Mendoza, L. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Michaut, M. Miettinen, H. Millet, T. Mitrevski, J. Molina, J. Mondal, N. K. Monk, J. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundim, L. Mutaf, Y. D. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Nelson, S. Neustroev, P. Noeding, C. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Oguri, V. Oliveira, N. Oshima, N. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Perea, P. M. Perez, E. Peters, K. Petroff, P. Petteni, M. Piegaia, R. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Pompos, A. Pope, B. G. Popov, A. V. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rani, K. J. Ranjan, K. Rapidis, P. A. Ratoff, P. N. Renkel, P. Reucroft, S. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Royon, C. Rubinov, P. Ruchti, R. Rud, V. I. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schmitt, C. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sengupta, S. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shephard, W. D. Shivpuri, R. K. Shpakov, D. Siccardi, V. Sidwell, R. A. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smith, R. P. Snow, G. R. Snow, J. Snyder, S. Soldner-Rembold, S. Song, X. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stevenson, K. Stolin, V. Stone, A. Stoyanova, D. A. Strandberg, J. Strang, M. A. Strauss, M. Strohmer, R. Strom, D. Strovink, M. Stutte, L. Sumowidagdo, S. Sznajder, A. Talby, M. Tamburello, P. Taylor, W. Telford, P. Temple, J. Tiller, B. Titov, M. Tokmenin, V. V. Tomoto, M. Toole, T. Torchiani, I. Towers, S. Trefzger, T. Trincaz-Duvoid, S. Tsybychev, D. Tuchming, B. Tully, C. Turcot, A. S. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vartapetian, A. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vlimant, J. -R. Von Toerne, E. Voutilainen, M. Vreeswijk, M. Wahl, H. D. Wang, L. Warchol, J. Watts, G. Wayne, M. Weber, M. Weerts, H. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Womersley, J. Wood, D. R. Wyatt, T. R. Xie, Y. Xuan, N. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, C. Yu, J. Yurkewicz, A. Zatserklyaniy, A. Zeitnitz, C. Zhang, D. Zhao, T. Zhao, Z. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zutshi, V. Zverev, E. G. TI Search for the rare decay B-s(0)->phi mu(+)mu(-) with the D0 detector SO PHYSICAL REVIEW D LA English DT Article AB We present a search for the flavor-changing neutral current decay B-s(0)->phi mu(+)mu(-) using about 0.45 fb(-1) of data collected in p (p) over bar collisions at root s=1.96 TeV with the D0 detector at the Fermilab Tevatron Collider. We find an upper limit on the branching ratio of this decay normalized to B-s(0)-> J/psi phi of B(B-s(0)->phi mu(+)mu(-))/B(B-s(0)-> J/psi phi)< 4.4x10(-3) at the 95% C.L. Using the central value of the world average branching fraction of B-s(0)-> J/psi phi, the limit corresponds to B(B-s(0)->phi mu(+)mu(-))< 4.1x10(-6) at the 95% C.L., the most stringent upper bound to date. C1 Joint Nucl Res Inst, Dubna 141980, Russia. Univ Buenos Aires, RA-1053 Buenos Aires, DF, Argentina. Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. Univ Estado Rio de Janeirao, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Univ Alberta, Edmonton, AB T6G 2M7, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. York Univ, Toronto, ON M3J 2R7, Canada. McGill Univ, Montreal, PQ H3A 2T5, Canada. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ Prague, Ctr Particle Phys, CR-11636 Prague 1, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, F-38041 Grenoble, France. Univ Aix Marseille 2, CNRS, IN2P3, CPPM, Marseille, France. CNRS, Inst Natl Phys Nucl & Phys Particules, Accelerateur Lineaire Lab, IN2P3, F-91405 Orsay, France. Univ Paris 06, CNRS, IN2P3, LPNHE, F-75252 Paris 05, France. Univ Paris 07, CNRS, IN2P3, LPNHE, F-75221 Paris 05, France. CEA, DAPNIA, Serv Phys Particules, Saclay, France. Univ Strasbourg, CNRS, IN2P3, IReS, F-67070 Strasbourg, France. Univ Haute Alsace, Mulhouse, France. Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. Rhein Westfal TH Aachen, Phys Inst A 3, D-5100 Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, D-7800 Freiburg, Germany. Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Inst Phys, Munich, Germany. Berg Univ Wuppertal, Fachbereich Phys, D-42097 Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Director Lab, Seoul 136701, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. NIKHEF H, FOM Inst, NL-1009 DB Amsterdam, Netherlands. Univ Amsterdam, NIKHEF, NL-1012 WX Amsterdam, Netherlands. Radboud Univ Nijmegen, NIKHEF, Nijmegen, Netherlands. Joint Inst Nucl Res, Dubna, Russia. Inst Theoret & Expt Phys, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Lund Univ, S-22100 Lund, Sweden. Royal Inst Technol, Stockholm, Sweden. Univ Stockholm, S-10691 Stockholm, Sweden. Uppsala Univ, S-75105 Uppsala, Sweden. Univ Zurich, Inst Phys, CH-8006 Zurich, Switzerland. Univ Lancaster, Lancaster LA1 4YW, England. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Purdue Univ Calumet, Hammond, IN 46323 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. SUNY Buffalo, Buffalo, NY 14260 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Oklahoma State Univ, Stillwater, OK 74078 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Nucl Res Inst, Dubna 141980, Russia. RI Telford, Paul/B-6253-2011; Coenen, Jan Willem/K-7802-2013; Nomerotski, Andrei/A-5169-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mundim, Luiz/A-1291-2012; Coenen, Jan/C-5626-2008; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Oguri, Vitor/B-5403-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016 OI Coenen, Jan Willem/0000-0002-8579-908X; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Coenen, Jan/0000-0002-8579-908X; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108 NR 18 TC 10 Z9 10 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 3 AR 031107 DI 10.1103/PhysRevD.74.031107 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HU UT WOS:000240239300007 ER PT J AU Abouzaid, E Arenton, M Barker, AR Bellantoni, L Bellavance, A Blucher, E Bock, GJ Cheu, E Coleman, R Corcoran, MD Corti, G Cox, B Erwin, AR Escobar, CO Glazov, A Golossanov, A Gomes, RA Gouffon, P Hanagaki, K Hsiung, YB Huang, H Jensen, DA Kessler, R Kotera, K Ledovskoy, A McBride, PL Monnier, E Nelson, KS Nguyen, H Niclasen, R Phillips, DG Ping, H Ramberg, EJ Ray, RE Ronquest, M Santos, E Shields, J Slater, W Smith, D Solomey, N Swallow, EC Toale, PA Tschirhart, R Velissaris, C Wah, YW Wang, J White, HB Whitmore, J Wilking, M Winstein, B Winston, R Worcester, ET Worcester, M Yamanaka, T Zimmerman, ED Zukanovich, RF AF Abouzaid, E. Arenton, M. Barker, A. R. Bellantoni, L. Bellavance, A. Blucher, E. Bock, G. J. Cheu, E. Coleman, R. Corcoran, M. D. Corti, G. Cox, B. Erwin, A. R. Escobar, C. O. Glazov, A. Golossanov, A. Gomes, R. A. Gouffon, P. Hanagaki, K. Hsiung, Y. B. Huang, H. Jensen, D. A. Kessler, R. Kotera, K. Ledovskoy, A. McBride, P. L. Monnier, E. Nelson, K. S. Nguyen, H. Niclasen, R. Phillips, D. G., II Ping, H. Ramberg, E. J. Ray, R. E. Ronquest, M. Santos, E. Shields, J. Slater, W. Smith, D. Solomey, N. Swallow, E. C. Toale, P. A. Tschirhart, R. Velissaris, C. Wah, Y. W. Wang, J. White, H. B. Whitmore, J. Wilking, M. Winstein, B. Winston, R. Worcester, E. T. Worcester, M. Yamanaka, T. Zimmerman, E. D. Zukanovich, R. F. TI Measurement of direct photon emission in the K-L ->pi(+)pi(-)gamma decay mode SO PHYSICAL REVIEW D LA English DT Article ID CP VIOLATION; KL0->PI&PI-GAMMA AB In this paper the KTeV collaboration reports the analysis of 112.1x10(3) candidate K-L ->pi(+)pi(-)gamma decays including a background of 671 +/- 41 events with the objective of determining the photon production mechanisms intrinsic to the decay process. These decays have been analyzed to extract the relative contributions of the CP violating bremsstrahlung process and the CP conserving M1 and CP violating E1 direct photon emission processes. The M1 direct photon emission amplitude and its associated vector form factor parameterized as vertical bar(g) over tilde (M1)vertical bar(1+a(1)/a(2)/(M-rho(2)-M-K(2))+2M(K)E(gamma)) have been measured to be vertical bar g(M1)vertical bar=1.198 +/- 0.035(stat)+/- 0.086(syst) and a(1)/a(2)=-0.738 +/- 0.007(stat)+/- 0.018(syst) GeV2/c(2) respectively. An upper limit for the CP violating E1 direct emission amplitude vertical bar g(E1)vertical bar <= 0.21 (90%CL) has been found. The overall ratio of direct photon emission (DE) to total photon emission including the bremsstrahlung process (IB) has been determined to be DE/(DE+IB)=0.689 +/- 0.021 for E-gamma >= 20 MeV. C1 Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Univ Arizona, Tucson, AZ 85721 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Univ Estadual Campinas, BR-13083970 Campinas, SP, Brazil. Univ Colorado, Boulder, CO 80309 USA. Elmhurst Coll, Elmhurst, IL 60126 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Osaka Univ, Toyonaka, Osaka 5600043, Japan. Rice Univ, Houston, TX 77005 USA. Univ Sao Paulo, BR-05315970 Sao Paulo, Brazil. Univ Virginia, Charlottesville, VA 22901 USA. Univ Wisconsin, Madison, WI 53706 USA. RP Monnier, E (reprint author), Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. RI Gomes, Ricardo/B-6899-2008; Zukanovich Funchal, Renata/C-5829-2013; Gouffon, Philippe/I-4549-2012; Inst. of Physics, Gleb Wataghin/A-9780-2017 OI Gomes, Ricardo/0000-0003-0278-4876; Zukanovich Funchal, Renata/0000-0001-6749-0022; Gouffon, Philippe/0000-0001-7511-4115; NR 18 TC 9 Z9 9 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 3 AR 032004 DI 10.1103/PhysRevD.74.032004 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HU UT WOS:000240239300015 ER PT J AU Abulencia, A Acosta, D Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arguin, JF Arisawa, T Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Bachacou, H Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Belloni, A Ben Haim, E Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carron, S Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chapman, J Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Chu, PH Chuang, SH Chung, K Chung, WH Chung, YS Ciljak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Cresciolo, F Cruz, A Almenar, CC Cuevas, J Culbertson, R Cyr, D DaRonco, S D'Auria, S D'Onofrio, M Dagenhart, D de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G Dell'Orso, M Paoli, FD Demers, S Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Dionisi, C Dittmann, JR DiTuro, P Dorr, C Donati, S Donega, M Dong, P Donini, J Dorigo, T Dube, S Ebina, K Efron, J Ehlers, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Flores-Castillo, LR Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Sciveres, MG Garfinkel, AF Gay, C Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, A Gibson, K Ginsburg, C Giokaris, N Giolo, K Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Gotra, Y Goulianos, K Gresele, A Griffiths, M Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Hahn, K Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, M Harper, S Harr, RF Harris, RM Hatakeyama, K Hauser, J Hays, C Heijboer, A Heinemann, B Heinrich, J Herndon, M Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Huston, J Incandela, J Introzzi, G Iori, M Ishizawa, Y Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jensen, H Jeon, EJ Jindariani, S Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Kang, J Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kobayashi, H Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kovalev, A Kraan, A Kraus, J Kravchenko, I Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kuhlmann, SE Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Lindgren, M Lipeles, E Liss, TM Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Maki, T Maksimovic, P Malde, S Manca, G Margaroli, F Marginean, R Marino, C Martin, A Martin, V Martinez, M Maruyama, T Mastrandrea, P Matsunaga, H Mattson, ME Mazini, R Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A von der Mey, M Miao, T Miladinovic, N Miles, J Miller, R Miller, JS Mills, C Milnik, M Miquel, R Mitra, A Mitselmakher, G Miyamoto, A Moggi, N Mohr, B Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Nachtman, J Naganoma, J Nahn, S Nakano, I Napier, A Naumov, D Necula, V Neu, C Neubauer, MS Nielsen, J Nigmanov, T Nodulman, L Norniella, O Nurse, E Ogawa, T Oh, SH Oh, YD Okusawa, T Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Paoletti, R Papadimitriou, V Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Rakitin, A Rappoccio, S Ratnikov, F Reisert, B Rekovic, V Van Remortel, N Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robertson, WJ Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Rott, C Ruiz, A Russ, J Rusu, V Saarikko, H Sabik, S Safonov, A Sakumoto, WK Salamanna, G Salto, O Saltzberg, D Sanchez, C Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfiligoi, I Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Sjolin, J Skiba, A Slaughter, AJ Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spezziga, M Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Staveris-Polykalas, A St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sumorok, K Sun, H Suzuki, T Taffard, A Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tanimoto, N Tecchio, M Teng, PK Terashi, K Tether, S Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Tonnesmann, M Torre, S Torretta, D Tourneur, S Trischuk, W Tsuchiya, R Tsuno, S Turini, N Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vaiciulis, A Vallecorsa, S Varganov, A Vataga, E Velev, G Veramendi, G Veszpremi, V Vidal, R Vila, I Vilar, R Vine, T Vollrath, I Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, W Wallny, R Walter, T Wan, Z Wang, SM Warburton, A Waschke, S Waters, D Iii, WCW Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zetti, F Zhang, X Zhou, J Zucchelli, S AF Abulencia, A. Acosta, D. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Ambrose, D. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arguin, J. -F. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Bachacou, H. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Bedeschi, F. Behari, S. Belforte, S. Bellettini, G. Bellinger, J. Belloni, A. Ben Haim, E. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carron, S. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chapman, J. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Chu, P. H. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciljak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Cresciolo, F. Cruz, A. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cyr, D. DaRonco, S. D'Auria, S. D'Onofrio, M. Dagenhart, D. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. Dell'Orso, M. Paoli, F. Delli Demers, S. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Dionisi, C. Dittmann, J. R. DiTuro, P. Dorr, C. Donati, S. Donega, M. Dong, P. Donini, J. Dorigo, T. Dube, S. Ebina, K. Efron, J. Ehlers, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Flores-Castillo, L. R. Foland, A. Forrester, S. Foster, G. W. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Sciveres, M. Garcia Garfinkel, A. F. Gay, C. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, A. Gibson, K. Ginsburg, C. Giokaris, N. Giolo, K. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Gotra, Y. Goulianos, K. Gresele, A. Griffiths, M. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Hahn, K. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hatakeyama, K. Hauser, J. Hays, C. Heijboer, A. Heinemann, B. Heinrich, J. Herndon, M. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ishizawa, Y. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jensen, H. Jeon, E. J. Jindariani, S. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Kang, J. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kobayashi, H. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kovalev, A. Kraan, A. Kraus, J. Kravchenko, I. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kuhlmann, S. E. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Liss, T. M. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Loverre, P. Lu, R. -S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Maki, T. Maksimovic, P. Malde, S. Manca, G. Margaroli, F. Marginean, R. Marino, C. Martin, A. Martin, V. Martinez, M. Maruyama, T. Mastrandrea, P. Matsunaga, H. Mattson, M. E. Mazini, R. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. von der Mey, M. Miao, T. Miladinovic, N. Miles, J. Miller, R. Miller, J. S. Mills, C. Milnik, M. Miquel, R. Mitra, A. Mitselmakher, G. Miyamoto, A. Moggi, N. Mohr, B. Moore, R. Morello, M. Fernandez, P. Movilla Mulmenstadt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Nachtman, J. Naganoma, J. Nahn, S. Nakano, I. Napier, A. Naumov, D. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nigmanov, T. Nodulman, L. Norniella, O. Nurse, E. Ogawa, T. Oh, S. H. Oh, Y. D. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Paoletti, R. Papadimitriou, V. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Rakitin, A. Rappoccio, S. Ratnikov, F. Reisert, B. Rekovic, V. Van Remortel, N. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robertson, W. J. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Rott, C. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Sabik, S. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Saltzberg, D. Sanchez, C. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfiligoi, I. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Sjolin, J. Skiba, A. Slaughter, A. J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spezziga, M. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. St. Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sumorok, K. Sun, H. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Takikawa, K. Tanaka, M. Tanaka, R. Tanimoto, N. Tecchio, M. Teng, P. K. Terashi, K. Tether, S. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Tonnesmann, M. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tsuchiya, R. Tsuno, S. Turini, N. Ukegawa, F. Unverhau, T. Uozumi, S. Usynin, D. Vaiciulis, A. Vallecorsa, S. Varganov, A. Vataga, E. Velev, G. Veramendi, G. Veszpremi, V. Vidal, R. Vila, I. Vilar, R. Vine, T. Vollrath, I. Volobouev, I. Volpi, G. Wurthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wallny, R. Walter, T. Wan, Z. Wang, S. M. Warburton, A. Waschke, S. Waters, D. Iii, W. C. Wester Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zetti, F. Zhang, X. Zhou, J. Zucchelli, S. CA CDF Collaboration TI Top quark mass measurement from dilepton events at CDF II with the matrix-element method SO PHYSICAL REVIEW D LA English DT Article ID ELECTROMAGNETIC CALORIMETER; FERMILAB TEVATRON; DETECTOR; PHYSICS AB We describe a measurement of the top quark mass using events with two charged leptons collected by the CDF II detector from p (p) over bar collisions with root s=1.96 TeV at the Fermilab Tevatron. The likelihood in top quark mass is calculated for each event by convoluting the leading order matrix element describing q (q) over bar -> t (t) over bar -> bl nu(l)(b) over barl(')nu(l) with detector resolution functions. The presence of background events in the data sample is modeled using similar calculations involving the matrix elements for major background processes. In a data sample with integrated luminosity of 340 pb(-1), we observe 33 candidate events and measure M-top=165.2 +/- 6.1(stat.)+/- 3.4(syst.) GeV/c(2). This measurement represents the first application of this method to events with two charged leptons and is the most precise single measurement of the top quark mass in this channel. C1 Univ Illinois, Urbana, IL 61801 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. Baylor Univ, Waco, TX 76798 USA. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva 4, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Dept Phys, Div High Energy Phys, Helsinki, Finland. Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Ernest Orlando Lawrence Berkeley Natl, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. CIEMAT, E-28040 Madrid, Spain. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Inst Theoret & Expt Phys, Moscow 117259, Russia. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Paris 06, CNRS, LPNHE, IN2P3,UMR 7585, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl, Siena, Italy. Scuola Normale Super Pisa, I-56127 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Abulencia, A (reprint author), Univ Illinois, Urbana, IL 61801 USA. RI Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Lazzizzera, Ignazio/E-9678-2015; Chiarelli, Giorgio/E-8953-2012; Grinstein, Sebastian/N-3988-2014; OI Robson, Aidan/0000-0002-1659-8284; Gallinaro, Michele/0000-0003-1261-2277; Salamanna, Giuseppe/0000-0002-0861-0052; Torre, Stefano/0000-0002-7565-0118; Turini, Nicola/0000-0002-9395-5230; Miquel, Ramon/0000-0002-6610-4836; Osterberg, Kenneth/0000-0003-4807-0414; Goldstein, Joel/0000-0003-1591-6014; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Rott, Carsten/0000-0002-6958-6033; Chu, Pinghan/0000-0003-1372-2910; Lazzizzera, Ignazio/0000-0001-5092-7531; Lami, Stefano/0000-0001-9492-0147; Chiarelli, Giorgio/0000-0001-9851-4816; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Margaroli, Fabrizio/0000-0002-3869-0153; Latino, Giuseppe/0000-0002-4098-3502; Group, Robert/0000-0002-4097-5254; iori, maurizio/0000-0002-6349-0380; Grinstein, Sebastian/0000-0002-6460-8694; Lancaster, Mark/0000-0002-8872-7292; Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271 NR 44 TC 27 Z9 27 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 3 AR 032009 DI 10.1103/PhysRevD.74.032009 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HU UT WOS:000240239300020 ER PT J AU Abulencia, A Acosta, D Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arguin, JF Arisawa, T Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Bachacou, H Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Belloni, A Ben Haim, E Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carron, S Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chapman, J Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Chu, PH Chuang, SH Chung, K Chung, WH Chung, YS Ciljak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Cresciolo, F Cruz, A Almenar, CC Cuevas, J Culbertson, R Cyr, D DaRonco, S D'Auria, S D'Onofrio, M Dagenhart, D de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G Dell'Orso, M Paoli, FD Demers, S Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Dionisi, C Dittmann, JR DiTuro, P Dorr, C Donati, S Donega, M Dong, P Donini, J Dorigo, T Dube, S Ebina, K Efron, J Ehlers, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Flores-Castillo, LR Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Sciveres, MG Garfinkel, AF Gay, C Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, A Gibson, K Ginsburg, C Giokaris, N Giolo, K Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Gotra, Y Goulianos, K Gresele, A Griffiths, M Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Hahn, K Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, M Harper, S Harr, RF Harris, RM Hatakeyama, K Hauser, J Hays, C Heijboer, A Heinemann, B Heinrich, J Herndon, M Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Huston, J Incandela, J Introzzi, G Iori, M Ishizawa, Y Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jensen, H Jeon, EJ Jindariani, S Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Kang, J Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kobayashi, H Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kovalev, A Kraan, A Kraus, J Kravchenko, I Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kuhlmann, SE Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Maki, T Maksimovic, P Malde, S Manca, G Margaroli, F Marginean, R Marino, C Martin, A Martin, V Martinez, M Maruyama, T Matsunaga, H Mattson, ME Mazini, R Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A von der Mey, M Miao, T Miladinovic, N Miles, J Miller, R Miller, JS Mills, C Milnik, M Miquel, R Mitra, A Mitselmakher, G Miyamoto, A Moggi, N Mohr, B Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Nachtman, J Naganoma, J Nahn, S Nakano, I Napier, A Naumov, D Necula, V Neu, C Neubauer, MS Nielsen, J Nigmanov, T Nodulman, L Norniella, O Nurse, E Ogawa, T Oh, SH Oh, YD Okusawa, T Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Paoletti, R Papadimitriou, V Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Rakitin, A Rappoccio, S Ratnikov, F Reisert, B Rekovic, V van Remortel, N Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robertson, WJ Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Rott, C Ruiz, A Russ, J Rusu, V Saarikko, H Sabik, S Safonov, A Sakumoto, WK Salamanna, G Salto, O Saltzberg, D Sanchez, C Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfiligoi, I Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Sjolin, J Skiba, A Slaughter, AJ Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spezziga, M Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Staveris-Polykalas, A Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sumorok, K Sun, H Suzuki, T Taffard, A Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tanimoto, N Tecchio, M Teng, PK Terashi, K Tether, S Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Tonnesmann, M Torre, S Torretta, D Tourneur, S Trischuk, W Tsuchiya, R Tsuno, S Turini, N Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vaiciulis, A Vallecorsa, S Varganov, A Vataga, E Velev, G Veramendi, G Veszpremi, V Vidal, R Vila, I Vilar, R Vine, T Vollrath, I Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, W Wallny, R Walter, T Wan, Z Wang, SM Warburton, A Waschke, S Waters, D Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zetti, F Zhang, X Zhou, J Zucchelli, S AF Abulencia, A. Acosta, D. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Ambrose, D. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arguin, J. -F. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Bachacou, H. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Bedeschi, F. Behari, S. Belforte, S. Bellettini, G. Bellinger, J. Belloni, A. Ben Haim, E. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carron, S. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chapman, J. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Chu, P. H. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciljak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Cresciolo, F. Cruz, A. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cyr, D. DaRonco, S. D'Auria, S. D'Onofrio, M. Dagenhart, D. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. Dell'Orso, M. Paoli, F. Delli Demers, S. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Dionisi, C. Dittmann, J. R. DiTuro, P. Dorr, C. Donati, S. Donega, M. Dong, P. Donini, J. Dorigo, T. Dube, S. Ebina, K. Efron, J. Ehlers, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Flores-Castillo, L. R. Foland, A. Forrester, S. Foster, G. W. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Sciveres, M. Garcia Garfinkel, A. F. Gay, C. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, A. Gibson, K. Ginsburg, C. Giokaris, N. Giolo, K. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Gotra, Y. Goulianos, K. Gresele, A. Griffiths, M. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Hahn, K. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hatakeyama, K. Hauser, J. Hays, C. Heijboer, A. Heinemann, B. Heinrich, J. Herndon, M. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ishizawa, Y. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jensen, H. Jeon, E. J. Jindariani, S. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Kang, J. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kobayashi, H. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kovalev, A. Kraan, A. Kraus, J. Kravchenko, I. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kuhlmann, S. E. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Loverre, P. Lu, R. -S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Maki, T. Maksimovic, P. Malde, S. Manca, G. Margaroli, F. Marginean, R. Marino, C. Martin, A. Martin, V. Martinez, M. Maruyama, T. Matsunaga, H. Mattson, M. E. Mazini, R. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. von der Mey, M. Miao, T. Miladinovic, N. Miles, J. Miller, R. Miller, J. S. Mills, C. Milnik, M. Miquel, R. Mitra, A. Mitselmakher, G. Miyamoto, A. Moggi, N. Mohr, B. Moore, R. Morello, M. Fernandez, P. Movilla Mulmenstadt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Nachtman, J. Naganoma, J. Nahn, S. Nakano, I. Napier, A. Naumov, D. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nigmanov, T. Nodulman, L. Norniella, O. Nurse, E. Ogawa, T. Oh, S. H. Oh, Y. D. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Paoletti, R. Papadimitriou, V. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Rakitin, A. Rappoccio, S. Ratnikov, F. Reisert, B. Rekovic, V. van Remortel, N. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robertson, W. J. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Rott, C. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Sabik, S. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Saltzberg, D. Sanchez, C. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfiligoi, I. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Sjolin, J. Skiba, A. Slaughter, A. J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spezziga, M. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sumorok, K. Sun, H. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Takikawa, K. Tanaka, M. Tanaka, R. Tanimoto, N. Tecchio, M. Teng, P. K. Terashi, K. Tether, S. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Tonnesmann, M. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tsuchiya, R. Tsuno, S. Turini, N. Ukegawa, F. Unverhau, T. Uozumi, S. Usynin, D. Vaiciulis, A. Vallecorsa, S. Varganov, A. Vataga, E. Velev, G. Veramendi, G. Veszpremi, V. Vidal, R. Vila, I. Vilar, R. Vine, T. Vollrath, I. Volobouev, I. Volpi, G. Wurthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wallny, R. Walter, T. Wan, Z. Wang, S. M. Warburton, A. Waschke, S. Waters, D. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zetti, F. Zhang, X. Zhou, J. Zucchelli, S. TI Measurement of the ratio of branching fractions B(D-0 -> K+pi(-))/B(D-0 -> K-pi(+)) using the CDF II detector SO PHYSICAL REVIEW D LA English DT Article ID DECAY D-0; SEARCH; K+PI(-) AB We present a measurement of RB, the ratio of the branching fraction for the rare decay D-0 -> K+pi(-) to that for the Cabibbo-favored decay D-0 -> K-pi(+). Charge-conjugate decays are implicitly included. A signal of 2005 +/- 104 events for the decay D-0 -> K+pi(-) is obtained using the CDF II detector at the Fermilab Tevatron collider. The data set corresponds to an integrated luminosity of 0.35 fb(-1) produced in (p) over barp collisions at root s>=1.96 TeV. Assuming no mixing, we find R-E=[4.05 +/- 0.21(stat)+/- 0.11(syst)]x10(-3). This measurement is consistent with the world average, and comparable in accuracy with the best measurements from other experiments. C1 Univ Illinois, Urbana, IL 61801 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. Baylor Univ, Waco, TX 76798 USA. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva 4, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7Z3, Merseyside, England. UCL, London WC1E 6BT, England. Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Inst Theoret & Expt Phys, Moscow 117259, Russia. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Paris 06, LPNHE, F-75005 Paris, France. UMR7585, F-75005 Paris, France. CNRS, IN2P3, F-75700 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl, Siena, Italy. Scuola Normale Super Pisa, Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Abulencia, A (reprint author), Univ Illinois, Urbana, IL 61801 USA. RI Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Chiarelli, Giorgio/E-8953-2012; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Introzzi, Gianluca/K-2497-2015; Muelmenstaedt, Johannes/K-2432-2015; Gorelov, Igor/J-9010-2015; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013 OI Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Chiarelli, Giorgio/0000-0001-9851-4816; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Latino, Giuseppe/0000-0002-4098-3502; iori, maurizio/0000-0002-6349-0380; Lancaster, Mark/0000-0002-8872-7292; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Muelmenstaedt, Johannes/0000-0003-1105-6678; Gorelov, Igor/0000-0001-5570-0133; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315 NR 19 TC 11 Z9 11 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 3 AR 031109 DI 10.1103/PhysRevD.74.031109 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HU UT WOS:000240239300009 ER PT J AU Abulencia, A Acosta, D Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arguin, JF Arisawa, T Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Bachacou, H Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Belloni, A Ben Haim, E Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carron, S Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chapman, J Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Chu, PH Chuang, SH Chung, K Chung, WH Chung, YS Ciljak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Cresciolo, F Cruz, A Almenar, CC Cuevas, J Culbertson, R Cyr, D DaRonco, S D'Auria, S D'Onofrio, M Dagenhart, D de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G Dell'Orso, M Paoli, FD Demers, S Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Dionisi, C Dittmann, JR DiTuro, P Dorr, C Donati, S Donega, M Dong, P Donini, J Dorigo, T Dube, S Ebina, K Efron, J Ehlers, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Flores-Castillo, LR Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Sciveres, MG Garfinkel, AF Gay, C Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, A Gibson, K Ginsburg, C Giokaris, N Giolo, K Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Gotra, Y Goulianos, K Gresele, A Griffiths, M Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Hahn, K Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, M Harper, S Harr, RF Harris, RM Hatakeyama, K Hauser, J Hays, C Heijboer, A Heinemann, B Heinrich, J Herndon, M Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Huston, J Incandela, J Introzzi, G Iori, M Ishizawa, Y Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jensen, H Jeon, EJ Jindariani, S Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Kang, J Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kobayashi, H Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kovalev, A Kraan, A Kraus, J Kravchenko, I Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kuhlmann, SE Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Lindgren, M Lipeles, E Liss, TM Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Maki, T Maksimovic, P Malde, S Manca, G Margaroli, F Marginean, R Marino, C Martin, A Martin, V Martinez, M Maruyama, T Matsunaga, H Mattson, ME Mazini, R Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A von der Mey, M Miao, T Miladinovic, N Miles, J Miller, R Miller, JS Mills, C Milnik, M Miquel, R Mitra, A Mitselmakher, G Miyamoto, A Moggi, N Mohr, B Moore, R Morello, M Fernandez, PM Mulmenstaat, J Mukherjee, A Muller, T Mumford, R Murat, P Nachtman, J Naganoma, J Nahn, S Nakano, I Napier, A Naumov, D Necula, V Neu, C Neubauer, MS Nielsen, J Nigmanov, T Nodulman, L Norniella, O Nurse, E Ogawa, T Oh, SH Oh, YD Okusawa, T Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Paoletti, R Papadimitriou, V Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Rakitin, A Rappoccio, S Ratnikov, F Reisert, B Rekovic, V Remortel, NV Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robertson, WJ Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Rott, C Ruiz, A Russ, J Rusu, V Saarikko, H Sabik, S Safonov, A Sakumoto, WK Salamanna, G Salto, O Saltzberg, D Sanchez, C Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfiligoi, I Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Sjolin, J Skiba, A Slaughter, AJ Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spezziga, M Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Staveris-Polykalas, A St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sumorok, K Sun, H Suzuki, T Taffard, A Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tanimoto, N Tecchio, M Teng, PK Terashi, K Tether, S Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Tonnesmann, M Torre, S Torretta, D Tourneur, S Trischuk, W Tsuchiya, R Tsuno, S Turini, N Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vaiciulis, A Vallecorsa, S Varganov, A Vataga, E Velev, G Veramendi, G Veszpremi, V Vidal, R Vila, I Vilar, R Vine, T Vollrath, I Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, W Wallny, R Walter, T Wan, Z Wang, SM Warburton, A Waschke, S Waters, D Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zetti, F Zhang, X Zhou, J Zucchelli, S AF Abulencia, A. Acosta, D. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Ambrose, D. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arguin, J. -F. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Bachacou, H. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Bedeschi, F. Behari, S. Belforte, S. Bellettini, G. Bellinger, J. Belloni, A. Ben Haim, E. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carron, S. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chapman, J. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Chu, P. H. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciljak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Cresciolo, F. Cruz, A. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cyr, D. DaRonco, S. D'Auria, S. D'Onofrio, M. Dagenhart, D. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. Dell'Orso, M. Paoli, F. Delli Demers, S. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Dionisi, C. Dittmann, J. R. DiTuro, P. Doerr, C. Donati, S. Donega, M. Dong, P. Donini, J. Dorigo, T. Dube, S. Ebina, K. Efron, J. Ehlers, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Flores-Castillo, L. R. Foland, A. Forrester, S. Foster, G. W. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Sciveres, M. Garcia Garfinkel, A. F. Gay, C. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, A. Gibson, K. Ginsburg, C. Giokaris, N. Giolo, K. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Gotra, Y. Goulianos, K. Gresele, A. Griffiths, M. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Hahn, K. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hatakeyama, K. Hauser, J. Hays, C. Heijboer, A. Heinemann, B. Heinrich, J. Herndon, M. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ishizawa, Y. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jensen, H. Jeon, E. J. Jindariani, S. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Kang, J. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kobayashi, H. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kovalev, A. Kraan, A. Kraus, J. Kravchenko, I. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kuhlmann, S. E. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Liss, T. M. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Loverre, P. Lu, R. -S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Maki, T. Maksimovic, P. Malde, S. Manca, G. Margaroli, F. Marginean, R. Marino, C. Martin, A. Martin, V. Martinez, M. Maruyama, T. Matsunaga, H. Mattson, M. E. Mazini, R. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. von der Mey, M. Miao, T. Miladinovic, N. Miles, J. Miller, R. Miller, J. S. Mills, C. Milnik, M. Miquel, R. Mitra, A. Mitselmakher, G. Miyamoto, A. Moggi, N. Mohr, B. Moore, R. Morello, M. Fernandez, P. Movilla Mulmenstadt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Nachtman, J. Naganoma, J. Nahn, S. Nakano, I. Napier, A. Naumov, D. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nigmanov, T. Nodulman, L. Norniella, O. Nurse, E. Ogawa, T. Oh, S. H. Oh, Y. D. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Paoletti, R. Papadimitriou, V. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Rakitin, A. Rappoccio, S. Ratnikov, F. Reisert, B. Rekovic, V. Remortel, N. vVan Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robertson, W. J. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Rott, C. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Sabik, S. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Saltzberg, D. Sanchez, C. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfiligoi, I. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Sjolin, J. Skiba, A. Slaughter, A. J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spezziga, M. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. St. Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sumorok, K. Sun, H. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Takikawa, K. Tanaka, M. Tanaka, R. Tanimoto, N. Tecchio, M. Teng, P. K. Terashi, K. Tether, S. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Tonnesmann, M. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tsuchiya, R. Tsuno, S. Turini, N. Ukegawa, F. Unverhau, T. Uozumi, S. Usynin, D. Vaiciulis, A. Vallecorsa, S. Varganov, A. Vataga, E. Velev, G. Veramendi, G. Veszpremi, V. Vidal, R. Vila, I. Vilar, R. Vine, T. Vollrath, I. Volobouev, I. Volpi, G. Wurthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wallny, R. Walter, T. Wan, Z. Wang, S. M. Warburton, A. Waschke, S. Waters, D. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zetti, F. Zhang, X. Zhou, J. Zucchelli, S. CA CDF Collaboration TI Measurement of the b jet cross section in events with a Z boson in pp(-) collisions at root s 1. 96 TeV SO PHYSICAL REVIEW D LA English DT Article ID H1 VERTEX DETECTOR; YAN K-FACTOR; DRELL-YAN; ELECTROMAGNETIC CALORIMETER; PARTON DISTRIBUTIONS; FIXED-TARGET; CDF; ENERGIES; ORDER; Q(2) AB A measurement of the inclusive bottom jet cross section is presented for events containing a Z boson in p (p) over bar collisions at root s=1.96 TeV using the Collider Detector at Fermilab. Z bosons are identified in their electron and muon decay modes, and b jets with E-T > 20 GeV and vertical bar eta vertical bar < 1.5 are identified by reconstructing a secondary decay vertex. The measurement is based on an integrated luminosity of about 330 pb(-1). A cross section times branching ratio of sigma(Z+b jets)xB(Z ->center dot(+)center dot(-))=0.93 +/- 0.36 pb is found, where B(Z ->center dot(+)center dot(-)) is the branching ratio of the Z boson or gamma(*) into a single flavor dilepton pair (e or mu) in the mass range between 66 and 116 GeV/c(2). The ratio of b jets to the total number of jets of any flavor in the Z sample, within the same kinematic range as the b jets, is 2.36 +/- 0.92%. Here, the uncertainties are the quadratic sum of statistical and systematic uncertainties. Predictions made with next-to-leading order QCD agree, within experimental and theoretical uncertainties, with these measurements. C1 Univ Illinois, Urbana, IL 61801 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. Baylor Univ, Waco, TX 76798 USA. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, Inst Fis, CSIC, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva 4, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. CIEMAT, E-28040 Madrid, Spain. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Inst Theoret & Expt Phys, Moscow 117259, Russia. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Paris 06, LPNHE, CNRS, IN2P3,UMR 7585, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Scuola Normale Super Pisa, I-56127 Pisa, Italy. Univ Pisa, Ist Nazl Fis Nucl, Siena, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Abulencia, A (reprint author), Univ Illinois, Urbana, IL 61801 USA. RI Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Lysak, Roman/H-2995-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014 OI Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Gallinaro, Michele/0000-0003-1261-2277; Salamanna, Giuseppe/0000-0002-0861-0052; Turini, Nicola/0000-0002-9395-5230; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Warburton, Andreas/0000-0002-2298-7315; NR 57 TC 17 Z9 17 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 3 AR 032008 DI 10.1103/PhysRevD.74.032008 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HU UT WOS:000240239300019 ER PT J AU Adams, J Aggarwal, MM Ahammed, Z Amonett, J Anderson, BD Anderson, M Arkhipkin, D Averichev, GS Bai, Y Balewski, J Barannikova, O Barnby, LS Baudot, J Bekele, S Belaga, VV Bellingeri-Laurikainen, A Bellwied, R Benedosso, F Bezverkhny, BI Bhardwaj, S Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Bland, LC Blyth, CO Blyth, SL Bonner, BE Botje, M Bouchet, J Brandin, AV Bravar, A Bystersky, M Cadman, RV Cai, XZ Caines, H Sanchez, MCDL Castillo, J Catu, O Cebra, D Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, Y Cheng, J Cherney, M Chikanian, A Choi, HA Christie, W Coffin, JP Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Das, S Daugherity, M de Moura, MM Dedovich, TG DePhillips, M Derevschikov, AA Didenko, L Dietel, T Djawotho, P Dogra, SM Dong, WJ Dong, X Draper, JE Du, F Dunin, VB Dunlop, JC Mazumdar, MRD Eckardt, V Edwards, WR Efimov, LG Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Fachini, P Fatemi, R Fedorisin, J Filimonov, K Filip, P Finch, E Fine, V Fisyak, Y Fu, J Gagliardi, CA Gaillard, L Gans, J Ganti, MS Ghazikhanian, V Ghosh, P Gonzalez, JE Gorbunov, YG Gos, H Grebenyuk, O Grosnick, D Guertin, SM Guimaraes, KSFF Guo, Y Gupta, N Gutierrez, TD Haag, B Hallman, TJ Hamed, A Harris, JW He, W Heinz, M Henry, TW Hepplemann, S Hippolyte, B Hirsch, A Hjort, E Hoffmann, GW Horner, MJ Huang, HZ Huang, SL Hughes, EW Humanic, TJ Igo, G Jacobs, P Jacobs, WW Jakl, P Jia, F Jiang, H Jones, PG Judd, EG Kabana, S Kang, K Kapitan, J Kaplan, M Keane, D Kechechyan, A Khodyrev, VY Kim, BC Kiryluk, J Kisiel, A Kislov, EM Klein, SR Koetke, DD Kollegger, T Kopytine, M Kotchenda, L Kouchpil, V Kowalik, KL Kramer, M Kravtsov, P Kravtsov, VI Krueger, K Kuhn, C Kulikov, AI Kumar, A Kuznetsov, AA Lamont, MAC Landgraf, JM Lange, S LaPointe, S Laue, F Lauret, J Lebedev, A Lednicky, R Lee, CH Lehocka, S LeVine, MJ Li, C Li, Q Li, Y Lin, G Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Liu, L Liu, Z Ljubicic, T Llope, WJ Long, H Longacre, RS Lopez-Noriega, M Love, WA Lu, Y Ludlam, T Lynn, D Ma, GL Ma, JG Ma, YG Magestro, D Mahapatra, DP Majka, R Mangotra, LK Manweiler, R Margetis, S Markert, C Martin, L Matis, HS Matulenko, YA McClain, CJ McShane, TS Melnick, Y Meschanin, A Miller, ML Minaev, NG Mioduszewski, S Mironov, C Mischke, A Mishra, DK Mitchell, J Mohanty, B Molnar, L Moore, CF Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Netrakanti, PK Nikitin, VA Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okorokov, V Oldenburg, M Olson, D Pachr, M Pal, SK Panebratsev, Y Panitkin, SY Pavlinov, AI Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Petrov, VA Phatak, SC Picha, R Planinic, M Pluta, J Poljak, N Porile, N Porter, J Poskanzer, AM Potekhin, M Potrebenikova, E Potukuchi, BVKS Prindle, D Pruneau, C Putschke, J Rakness, G Raniwala, R Raniwala, S Ray, RL Razin, SV Reinnarth, J Relyea, D Retiere, F Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Sahoo, R Sakrejda, I Salur, S Sandweiss, J Sarsour, M Sazhin, PS Schambach, J Scharenberg, RP Schmitz, N Schweda, K Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shen, WQ Shimanskiy, SS Sichtermann, E Simon, F Singaraju, RN Smirnov, N Snellings, R Sood, G Sorensen, P Sowinski, J Speltz, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Stock, R Stolpovsky, A Strikhanov, M Stringfellow, B Suaide, AAP Sugarbaker, E Sumbera, M Sun, Z Surrow, B Swanger, M Symons, TJM de Toledo, AS Tai, A Takahashi, J Tang, AH Tarnowsky, T Thein, D Thomas, JH Timmins, AR Timoshenko, S Tokarev, M Trainor, TA Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van der Kolk, N van Leeuwen, M Vander Molen, AM Varma, R Vasilevski, IM Vasiliev, AN Vernet, R Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Waggoner, WT Wang, F Wang, G Wang, JS Wang, XL Wang, Y Watson, JW Webb, JC Westfall, GD Wetzler, A Whitten, C Wieman, H Wissink, SW Witt, R Wood, J Wu, J Xu, N Xu, QH Xu, Z Yepes, P Yoo, IK Yurevich, VI Zhan, W Zhang, H Zhang, WM Zhang, Y Zhang, ZP Zhao, Y Zhong, C Zoulkarneev, R Zoulkarneeva, Y Zubarev, AN Zuo, JX AF Adams, J. Aggarwal, M. M. Ahammed, Z. Amonett, J. Anderson, B. D. Anderson, M. Arkhipkin, D. Averichev, G. S. Bai, Y. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Bekele, S. Belaga, V. V. Bellingeri-Laurikainen, A. Bellwied, R. Benedosso, F. Bezverkhny, B. I. Bhardwaj, S. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Bland, L. C. Blyth, C. O. Blyth, S-L. Bonner, B. E. Botje, M. Bouchet, J. Brandin, A. V. Bravar, A. Bystersky, M. Cadman, R. V. Cai, X. Z. Caines, H. de la Barca Sanchez, M. Calderon Castillo, J. Catu, O. Cebra, D. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, Y. Cheng, J. Cherney, M. Chikanian, A. Choi, H. A. Christie, W. Coffin, J. P. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Das, S. Daugherity, M. de Moura, M. M. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. Didenko, L. Dietel, T. Djawotho, P. Dogra, S. M. Dong, W. J. Dong, X. Draper, J. E. Du, F. Dunin, V. B. Dunlop, J. C. Mazumdar, M. R. Dutta Eckardt, V. Edwards, W. R. Efimov, L. G. Emelianov, V. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Fachini, P. Fatemi, R. Fedorisin, J. Filimonov, K. Filip, P. Finch, E. Fine, V. Fisyak, Y. Fu, J. Gagliardi, C. A. Gaillard, L. Gans, J. Ganti, M. S. Ghazikhanian, V. Ghosh, P. Gonzalez, J. E. Gorbunov, Y. G. Gos, H. Grebenyuk, O. Grosnick, D. Guertin, S. M. Guimaraes, K. S. F. F. Guo, Y. Gupta, N. Gutierrez, T. D. Haag, B. Hallman, T. J. Hamed, A. Harris, J. W. He, W. Heinz, M. Henry, T. W. Hepplemann, S. Hippolyte, B. Hirsch, A. Hjort, E. Hoffmann, G. W. Horner, M. J. Huang, H. Z. Huang, S. L. Hughes, E. W. Humanic, T. J. Igo, G. Jacobs, P. Jacobs, W. W. Jakl, P. Jia, F. Jiang, H. Jones, P. G. Judd, E. G. Kabana, S. Kang, K. Kapitan, J. Kaplan, M. Keane, D. Kechechyan, A. Khodyrev, V. Yu. Kim, B. C. Kiryluk, J. Kisiel, A. Kislov, E. M. Klein, S. R. Koetke, D. D. Kollegger, T. Kopytine, M. Kotchenda, L. Kouchpil, V. Kowalik, K. L. Kramer, M. Kravtsov, P. Kravtsov, V. I. Krueger, K. Kuhn, C. Kulikov, A. I. Kumar, A. Kuznetsov, A. A. Lamont, M. A. C. Landgraf, J. M. Lange, S. LaPointe, S. Laue, F. Lauret, J. Lebedev, A. Lednicky, R. Lee, C-H. Lehocka, S. LeVine, M. J. Li, C. Li, Q. Li, Y. Lin, G. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Liu, L. Liu, Z. Ljubicic, T. Llope, W. J. Long, H. Longacre, R. S. Lopez-Noriega, M. Love, W. A. Lu, Y. Ludlam, T. Lynn, D. Ma, G. L. Ma, J. G. Ma, Y. G. Magestro, D. Mahapatra, D. P. Majka, R. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Martin, L. Matis, H. S. Matulenko, Yu. A. McClain, C. J. McShane, T. S. Melnick, Yu. Meschanin, A. Miller, M. L. Minaev, N. G. Mioduszewski, S. Mironov, C. Mischke, A. Mishra, D. K. Mitchell, J. Mohanty, B. Molnar, L. Moore, C. F. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Netrakanti, P. K. Nikitin, V. A. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okorokov, V. Oldenburg, M. Olson, D. Pachr, M. Pal, S. K. Panebratsev, Y. Panitkin, S. Y. Pavlinov, A. I. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Petrov, V. A. Phatak, S. C. Picha, R. Planinic, M. Pluta, J. Poljak, N. Porile, N. Porter, J. Poskanzer, A. M. Potekhin, M. Potrebenikova, E. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Putschke, J. Rakness, G. Raniwala, R. Raniwala, S. Ray, R. L. Razin, S. V. Reinnarth, J. Relyea, D. Retiere, F. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Sahoo, R. Sakrejda, I. Salur, S. Sandweiss, J. Sarsour, M. Sazhin, P. S. Schambach, J. Scharenberg, R. P. Schmitz, N. Schweda, K. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shen, W. Q. Shimanskiy, S. S. Sichtermann, E. Simon, F. Singaraju, R. N. Smirnov, N. Snellings, R. Sood, G. Sorensen, P. Sowinski, J. Speltz, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Stock, R. Stolpovsky, A. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Sugarbaker, E. Sumbera, M. Sun, Z. Surrow, B. Swanger, M. Symons, T. J. M. de Toledo, A. Szanto Tai, A. Takahashi, J. Tang, A. H. Tarnowsky, T. Thein, D. Thomas, J. H. Timmins, A. R. Timoshenko, S. Tokarev, M. Trainor, T. A. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van der Kolk, N. van Leeuwen, M. Vander Molen, A. M. Varma, R. Vasilevski, I. M. Vasiliev, A. N. Vernet, R. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Waggoner, W. T. Wang, F. Wang, G. Wang, J. S. Wang, X. L. Wang, Y. Watson, J. W. Webb, J. C. Westfall, G. D. Wetzler, A. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wood, J. Wu, J. Xu, N. Xu, Q. H. Xu, Z. Yepes, P. Yoo, I-K. Yurevich, V. I. Zhan, W. Zhang, H. Zhang, W. M. Zhang, Y. Zhang, Z. P. Zhao, Y. Zhong, C. Zoulkarneev, R. Zoulkarneeva, Y. Zubarev, A. N. Zuo, J. X. TI Multiplicity dependence of inclusive p(t) spectra from p-p collisions at root s=200 GeV SO PHYSICAL REVIEW D LA English DT Article ID TRANSVERSE-MOMENTUM DISTRIBUTIONS; QCD JETS; D+AU COLLISIONS; HADRON; PARTICLE; P+P; FRAGMENTATION; EQUILIBRATION; PHYSICS; PROTON AB We report measurements of transverse momentum p(t) spectra for ten event multiplicity classes of p-p collisions at root s=200 GeV. By analyzing the multiplicity dependence we find that the spectrum shape can be decomposed into a part with amplitude proportional to multiplicity and described by a Levy distribution on transverse mass m(t), and a part with amplitude proportional to multiplicity squared and described by a Gaussian distribution on transverse rapidity y(t). The functional forms of the two parts are nearly independent of event multiplicity. The two parts can be identified with the soft and hard components of a two-component model of p-p collisions. This analysis then provides the first isolation of the hard component of the p(t) spectrum as a distribution of simple form on y(t). C1 Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Brookhaven Natl Lab, Upton, NY 11973 USA. CALTECH, Pasadena, CA 91125 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Creighton Univ, Omaha, NE 68178 USA. Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. Joint Inst Nucl Res, Lab High Energy, Dubna, Russia. Joint Inst Nucl Res, Phys Particules Lab, Dubna, Russia. Goethe Univ Frankfurt, D-6000 Frankfurt, Germany. Inst Phys, Bhubaneswar 751005, Orissa, India. Indian Inst Technol, Bombay, Maharashtra, India. Indiana Univ, Bloomington, IN 47408 USA. Inst Rech Subatom, Strasbourg, France. Univ Jammu, Jammu 180001, India. Kent State Univ, Kent, OH 44242 USA. Inst Modern Phys, Lanzhou, Peoples R China. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. MIT, Cambridge, MA 02139 USA. Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. Michigan State Univ, E Lansing, MI 48824 USA. Moscow Engn Phys Inst, Moscow 115409, Russia. CUNY City Coll, New York, NY 10031 USA. NIKHEF H, NL-1009 DB Amsterdam, Netherlands. Univ Utrecht, Amsterdam, Netherlands. Ohio State Univ, Columbus, OH 43210 USA. Panjab Univ, Chandigarh 160014, India. Penn State Univ, University Pk, PA 16802 USA. Inst High Energy Phys, Protvino, Russia. Purdue Univ, W Lafayette, IN 47907 USA. Pusan Natl Univ, Pusan 609735, South Korea. Univ Rajasthan, Jaipur 302004, Rajasthan, India. Rice Univ, Houston, TX 77251 USA. Univ Sao Paulo, Sao Paulo, Brazil. Univ Sci & Technol China, Anhua 230026, Peoples R China. Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. SUBATECH, Nantes, France. Texas A&M Univ, College Stn, TX 77843 USA. Univ Texas, Austin, TX 78712 USA. Tsinghua Univ, Beijing 100084, Peoples R China. Valparaiso Univ, Valparaiso, IN 46383 USA. Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. Warsaw Univ Technol, PL-00661 Warsaw, Poland. Univ Washington, Seattle, WA 98195 USA. Wayne State Univ, Detroit, MI 48201 USA. HZNU, CCNU, Inst Particle Phys, Wuhan 430079, Peoples R China. Yale Univ, New Haven, CT 06520 USA. Univ Zagreb, HR-10002 Zagreb, Croatia. RP Adams, J (reprint author), Univ Birmingham, Birmingham B15 2TT, W Midlands, England. RI Barnby, Lee/G-2135-2010; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Chen, Yu/E-3788-2012; Planinic, Mirko/E-8085-2012; Peitzmann, Thomas/K-2206-2012; Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014; Dogra, Sunil /B-5330-2013; Witt, Richard/H-3560-2012; Voloshin, Sergei/I-4122-2013; Lednicky, Richard/K-4164-2013; Cosentino, Mauro/L-2418-2014; Fornazier Guimaraes, Karin Silvia/H-4587-2016; Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Suaide, Alexandre/L-6239-2016; van der Kolk, Naomi/M-9423-2016; Castillo Castellanos, Javier/G-8915-2013; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013 OI Barnby, Lee/0000-0001-7357-9904; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405; Cosentino, Mauro/0000-0002-7880-8611; Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Nattrass, Christine/0000-0002-8768-6468; Suaide, Alexandre/0000-0003-2847-6556; van der Kolk, Naomi/0000-0002-8670-0408; Castillo Castellanos, Javier/0000-0002-5187-2779; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900 NR 47 TC 45 Z9 45 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 3 AR 032006 DI 10.1103/PhysRevD.74.032006 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HU UT WOS:000240239300017 ER PT J AU Anchordoqui, LA Cooper-Sarkar, AM Hooper, D Sarkar, S AF Anchordoqui, Luis A. Cooper-Sarkar, Amanda M. Hooper, Dan Sarkar, Subir TI Probing low-x QCD with cosmic neutrinos at the Pierre Auger Observatory SO PHYSICAL REVIEW D LA English DT Article ID HIGH-ENERGY NEUTRINOS; DEEP-INELASTIC SCATTERING; CROSS-SECTION; AIR-SHOWERS AB The sources of the observed ultrahigh energy cosmic rays must also generate ultrahigh energy neutrinos. Deep inelastic scattering of these neutrinos with nucleons on Earth probe center-of-mass energies root s similar to 100 TeV, well beyond those attainable at terrestrial colliders. By comparing the rates for two classes of observable events, any departure from the benchmark (unscreened perturbative QCD) neutrino-nucleon cross section can be constrained. Using the projected sensitivity of the Pierre Auger Observatory to quasihorizontal showers and Earth-skimming tau neutrinos, we show that a "super-Auger" detector can thus provide an unique probe of strong interaction dynamics. C1 Northeastern Univ, Dept Phys, Boston, MA 02115 USA. Univ Wisconsin, Dept Phys, Milwaukee, WI 53201 USA. Univ Oxford, Denys Wilkinson Lab, Oxford OX1 3RH, England. Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England. RP Anchordoqui, LA (reprint author), Northeastern Univ, Dept Phys, Boston, MA 02115 USA. RI Sarkar, Subir/G-5978-2011 OI Sarkar, Subir/0000-0002-3542-858X NR 38 TC 31 Z9 31 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 4 AR 043008 DI 10.1103/PhysRevD.74.043008 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HW UT WOS:000240239500012 ER PT J AU Aoki, S Bar, O AF Aoki, Sinya Baer, Oliver TI Automatic O(a) improvement for twisted mass QCD in the presence of spontaneous symmetry breaking SO PHYSICAL REVIEW D LA English DT Article ID CHIRAL PERTURBATION-THEORY; LATTICE QCD; U(1) PROBLEM; CONTINUUM-LIMIT; WILSON FERMIONS; PHASE-STRUCTURE; QUARKS AB In this paper we present a proof for automatic O(a) improvement in twisted mass lattice QCD at maximal twist, which uses only the symmetries of the leading part in the Symanzik effective action. In the process of the proof we clarify that the twist angle is dynamically determined by vacuum expectation values in the Symanzik theory. For maximal twist according to this definition, we show that scaling violations of all quantities which have nonzero values in the continuum limit are even in a. In addition, using Wilson chiral perturbation theory, we investigate this definition for maximal twist and compare it to other definitions which were already employed in actual simulations. C1 Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. Brookhaven Natl Lab, Riken BNL, Res Ctr, Upton, NY 11973 USA. Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. RP Aoki, S (reprint author), Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. OI Baer, Oliver/0000-0002-7480-6467 NR 45 TC 13 Z9 13 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 3 AR 034511 DI 10.1103/PhysRevD.74.034511 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HU UT WOS:000240239300074 ER PT J AU Aubert, B Barate, R Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Pappagallo, M Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Best, DS Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Brown, CL Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Kelly, MP Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Willocq, SY Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Potter, CT Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G del Re, D Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Mayer, B Vasseur, G Yeche, C Zito, M Park, W Purohit, MV Weidemann, AW Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Boyarski, AM Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Li, S Libby, J Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Mohapatra, AK Pan, Y Pierini, M Prepost, R Tan, P Wu, SL Yu, Z Neal, H AF Aubert, B. Barate, R. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Pappagallo, M. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Day, C. T. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Oddone, P. J. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Goetzen, K. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Best, D. S. Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dvoretskii, A. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Andreassen, R. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Petzold, A. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Grenier, P. Latour, E. Thiebaux, Ch. Verderi, M. Bard, D. J. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Capra, R. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Gaillard, J. R. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Brown, C. L. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Kelly, M. P. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Willocq, S. Y. Cowan, R. Koeneke, K. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Patel, P. M. Potter, C. T. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Reidy, J. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. del Re, D. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. Bulten, H. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Pulliam, T. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Galeazzi, F. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Chauveau, J. David, P. Del Buono, L. Vaissiere, Ch. de la Hamon, O. Hartfiel, B. L. John, M. J. J. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Behera, P. K. Gladney, L. Panetta, J. Biasini, M. Covarelli, R. Pioppi, M. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Mayer, B. Vasseur, G. Yeche, Ch. Zito, M. Park, W. Purohit, M. V. Weidemann, A. W. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Boyarski, A. M. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dong, D. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Libby, J. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Kitayama, I. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Grancagnolo, S. Lanceri, L. Vitale, L. Azzolini, V. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Eichenbaum, A. M. Flood, K. T. Hollar, J. J. Johnson, J. R. Kutter, P. E. Li, H. Liu, R. Mellado, B. Mihalyi, A. Mohapatra, A. K. Pan, Y. Pierini, M. Prepost, R. Tan, P. Wu, S. L. Yu, Z. Neal, H. CA BABAR Collaboration TI Study of the D*(sJ)(2317)(+) and D-sJ(2460)(+) mesons in inclusive cc(-) production near root s=10.6 GeV SO PHYSICAL REVIEW D LA English DT Article ID HEAVY-QUARK SYMMETRY AB A study of the D-sJ(*)(2317)(+) and D-sJ(2460)(+) mesons in inclusive c (c) over bar production is presented using 232 fb(-1) of data collected by the BABAR experiment near root s=10.6 GeV. Final states consisting of a D-s(+) meson along with one or more pi(0), pi(+/-), or gamma particles are considered. Estimates of the mass and limits on the width are provided for both mesons and for the D-s1(2536)(+) meson. A search is also performed for neutral and doubly charged partners of the D-sJ(*)(2317)(+) meson. C1 Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept Fis, ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Univ Bari, Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-8027 Dresden, Germany. Ecole Polytech, LLR, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Univ Ferrara, Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Univ Genoa, Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Univ London, Queen Mary, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Univ Milan, Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Univ Naples Federico II, Ist Nazl Fis Nucl, I-80126 Naples, Italy. Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Univ Padua, Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Perugia, Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Scuola Normale Super, Dipartimento Fis, I-56127 Pisa, Italy. Univ Pisa, Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Univ Roma La Sapienza, Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Univ Turin, Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Univ Trieste, Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. RI Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Peters, Klaus/C-2728-2008; Negrini, Matteo/C-8906-2014; de Groot, Nicolo/A-2675-2009; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Cavallo, Nicola/F-8913-2012; Saeed, Mohammad Alam/J-7455-2012; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Grancagnolo, Sergio/J-3957-2015; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016 OI Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Peters, Klaus/0000-0001-7133-0662; Negrini, Matteo/0000-0003-0101-6963; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Grancagnolo, Sergio/0000-0001-8490-8304; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288 NR 21 TC 26 Z9 26 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 3 AR 032007 DI 10.1103/PhysRevD.74.032007 PG 31 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HU UT WOS:000240239300018 ER PT J AU Aubert, B Barate, R Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Pappagallo, M Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Best, DS Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Gritsan, AV Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Fritsch, M Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, VE Bukin, AD Buzykaev, A Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Del Re, D Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dubois-Felsmann, GP Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Spaan, B Brandt, T Klose, V Lacker, HM Nogowski, R Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Piemontese, L Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mader, WF Mallik, U Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Petersen, TC Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Brown, CL Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Kelly, MP Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Kovalskyi, D Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Willocq, SY Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Potter, CT Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Mayer, B Vasseur, G Yeche, C Zito, M Park, W Purohit, MV Weidemann, AW Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Boyarski, AM Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Libby, J Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Bona, M Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Panvini, RS Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Graham, MT Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Mohapatra, AK Pan, Y Pierini, M Prepost, R Tan, P Wu, SL Yu, Z Neal, H AF Aubert, B. Barate, R. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Pappagallo, M. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Best, D. S. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Day, C. T. Gill, M. S. Gritsan, A. V. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Oddone, P. J. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Fritsch, M. Goetzen, K. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Buzykaev, A. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. del Re, D. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dubois-Felsmann, G. P. Dvoretskii, A. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Andreassen, R. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Nogowski, R. Petzold, A. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Grenier, P. Latour, E. Thiebaux, Ch. Verderi, M. Bard, D. J. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Piemontese, L. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Capra, R. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Gaillard, J. R. Nash, J. A. Nikolich, M. B. Panduro Vazquez, W. Chai, X. Charles, M. J. Mader, W. F. Mallik, U. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Petersen, T. C. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Brown, C. L. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Kelly, M. P. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Kovalskyi, D. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Willocq, S. Y. Cowan, R. Koeneke, K. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Patel, P. M. Potter, C. T. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Reidy, J. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. Bulten, H. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Pulliam, T. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Galeazzi, F. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. John, M. J. J. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Behera, P. K. Gladney, L. Panetta, J. Biasini, M. Covarelli, R. Pioppi, M. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Schroeder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Mayer, B. Vasseur, G. Yeche, Ch. Zito, M. Park, W. Purohit, M. V. Weidemann, A. W. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Boyarski, A. M. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dong, D. Dorfan, J. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Libby, J. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schwitters, R. F. Izen, J. M. Kitayama, I. Lou, X. C. Ye, S. Bianchi, F. Bona, M. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Grancagnolo, S. Lanceri, L. Vitale, L. Azzolini, V. Martinez-Vidal, F. Panvini, R. S. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Eichenbaum, A. M. Flood, K. T. Graham, M. T. Hollar, J. J. Johnson, J. R. Kutter, P. E. Li, H. Liu, R. Mellado, B. Mihalyi, A. Mohapatra, A. K. Pan, Y. Pierini, M. Prepost, R. Tan, P. Wu, S. L. Yu, Z. Neal, H. TI Measurement of (B)over-bar(0)-> D-(*()0)(K)over-bar(()*()0) branching fractions SO PHYSICAL REVIEW D LA English DT Article ID CP-VIOLATION; DECAYS AB We present a study of the decays (B) over bar (0)-> D-(*)0(K) over bar ((*)0) using a sample of 226x10(6) Upsilon(4S)-> B (B) over bar decays collected with the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) collider at SLAC. We report evidence for the decay of B-0 and (B) over bar (0) mesons to the (DKS0)-K-*0 final state with an average branching fraction B(B-0 ->(DK0)-K-*0)equivalent to(B((B) over bar (0)-> D-*0(K) over bar (0))+B(B-0 ->(DK0)-K-*0))/2=(3.6 +/- 1.2 +/- 0.3)x10(-5). Similarly, we measure B(B-0 ->(DK0)-K-0)equivalent to(B((B) over bar (0)-> D-0(K) over bar (0))+B(B-0 ->(DK0)-K-0))/2=(5.3 +/- 0.7 +/- 0.3)x10(-5) for the (DKS0)-K-0 final state. We measure B((K) over bar (0)-> D-0(K) over bar (*0))=(4.0 +/- 0.7 +/- 0.3)x10(-5) and set a 90% confidence level upper limit B((B) over bar (0)->(D) over bar (0)(K) over bar (*0))< 1.1x10(-5). We determine the upper limit for the decay amplitude ratio vertical bar A((B) over bar (0)->(D) over bar (0)(K) over bar (*0))/A((B) over bar (0)-> D-0(K) over bar (*0))vertical bar to be less than 0.4 at the 90% confidence level. C1 Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. Univ Paris Sud 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, F-75252 Paris, France. Univ Paris 07, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Vanderbilt Univ, Nashville, TN 37235 USA. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Johns Hopkins Univ, Baltimore, MD 21218 USA. Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Basilicata, I-85100 Potenza, Italy. RP Aubert, B (reprint author), Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Kolomensky, Yury/I-3510-2015; Monge, Maria Roberta/G-9127-2012; Martinez Vidal, F*/L-7563-2014; Cavallo, Nicola/F-8913-2012; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Di Lodovico, Francesca/L-9109-2016; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Della Ricca, Giuseppe/B-6826-2013; Mir, Lluisa-Maria/G-7212-2015; Grancagnolo, Sergio/J-3957-2015; M, Saleem/B-9137-2013; Roe, Natalie/A-8798-2012; Oyanguren, Arantza/K-6454-2014; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Peters, Klaus/C-2728-2008; de Groot, Nicolo/A-2675-2009; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Neri, Nicola/G-3991-2012; de Sangro, Riccardo/J-2901-2012; Patrignani, Claudia/C-5223-2009; Rotondo, Marcello/I-6043-2012; Saeed, Mohammad Alam/J-7455-2012; Lo Vetere, Maurizio/J-5049-2012; Negrini, Matteo/C-8906-2014; Forti, Francesco/H-3035-2011 OI Kolomensky, Yury/0000-0001-8496-9975; Monge, Maria Roberta/0000-0003-1633-3195; Martinez Vidal, F*/0000-0001-6841-6035; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Di Lodovico, Francesca/0000-0003-3952-2175; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Della Ricca, Giuseppe/0000-0003-2831-6982; Mir, Lluisa-Maria/0000-0002-4276-715X; Grancagnolo, Sergio/0000-0001-8490-8304; Oyanguren, Arantza/0000-0002-8240-7300; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Raven, Gerhard/0000-0002-2897-5323; Peters, Klaus/0000-0001-7133-0662; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; de Sangro, Riccardo/0000-0002-3808-5455; Patrignani, Claudia/0000-0002-5882-1747; Rotondo, Marcello/0000-0001-5704-6163; Saeed, Mohammad Alam/0000-0002-3529-9255; Lo Vetere, Maurizio/0000-0002-6520-4480; Negrini, Matteo/0000-0003-0101-6963; Forti, Francesco/0000-0001-6535-7965 NR 24 TC 14 Z9 14 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 3 AR 031101 DI 10.1103/PhysRevD.74.031101 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HU UT WOS:000240239300001 ER PT J AU Aubert, B Barate, R Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Pappagallo, M Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Best, DS Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A De Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Brown, CL Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Kelly, MP Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Willocq, SY Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Potter, CT Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G Del Re, D Fabozzi, F Gatto, C Lista, L Monorchio, D Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Mayer, B Vasseur, G Yeche, C Zito, M Park, W Purohit, MV Weidemann, AW Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Boyarski, AM Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Li, S Libby, J Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Mohapatra, AK Pan, Y Pierini, M Prepost, R Tan, P Wu, SL Yu, Z Neal, H AF Aubert, B. Barate, R. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Pappagallo, M. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Day, C. T. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Oddone, P. J. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Goetzen, K. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Best, D. S. Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dvoretskii, A. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Andreassen, R. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Petzold, A. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Grenier, P. Latour, E. Thiebaux, Ch. Verderi, M. Bard, D. J. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. De Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Capra, R. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Gaillard, J. R. Nash, J. A. Nikolich, M. B. Panduro Vazquez, W. Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Brown, C. L. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Kelly, M. P. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Willocq, S. Y. Cowan, R. Koeneke, K. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Patel, P. M. Potter, C. T. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Reidy, J. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. Del Re, D. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Piccolo, D. Sciacca, C. Baak, M. Bulten, H. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Pulliam, T. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Galeazzi, F. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. John, M. J. J. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Behera, P. K. Gladney, L. Panetta, J. Biasini, M. Covarelli, R. Pioppi, M. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Safai Tehrani, F. Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Gaidot, A. Ganzhur, S. F. Hamel de Monchenault, G. Kozanecki, W. Legendre, M. Mayer, B. Vasseur, G. Yeche, Ch. Zito, M. Park, W. Purohit, M. V. Weidemann, A. W. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Boyarski, A. M. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dong, D. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Libby, J. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Kitayama, I. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Grancagnolo, S. Lanceri, L. Vitale, L. Azzolini, V. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Eichenbaum, A. M. Flood, K. T. Hollar, J. J. Johnson, J. R. Kutter, P. E. Li, H. Liu, R. Mellado, B. Mihalyi, A. Mohapatra, A. K. Pan, Y. Pierini, M. Prepost, R. Tan, P. Wu, S. L. Yu, Z. Neal, H. CA BABAR Collaboration TI Measurement of branching fractions in radiative B decays to eta K gamma and search for B decays to eta K-'gamma SO PHYSICAL REVIEW D LA English DT Article ID CP VIOLATION AB We present measurements of the B ->eta K gamma branching fractions and upper limits for the B ->eta K-'gamma branching fractions. For B+->eta K+gamma we also measure the time-integrated charge asymmetry. The data sample, collected with the BABAR detector at the Stanford Linear Accelerator Center, represents 232x10(6) produced B (B) over bar pairs. The results for branching fractions and upper limits at 90% confidence level in units of 10(-6) are: B(B-0 ->eta K-0 gamma)=11.3(-2.6)(+2.8)+/- 0.6, B(B+->eta K+gamma)=10.0 +/- 1.3 +/- 0.5, B(B-0 ->eta K-'(0)gamma)< 6.6, B(B+->eta K-'(+)gamma)< 4.2. The charge asymmetry in the decay B+->eta K+gamma is A(ch)=-0.09 +/- 0.12 +/- 0.01. The first errors are statistical and the second systematic. C1 Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, LLR, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, Lab Accelerateur Lineaire, IN2P3, F-91898 Orsay, France. Univ Paris Sud 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10128 Turin, Italy. Ist Nazl Fis Nucl, I-10128 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Basilicata, I-85100 Potenza, Italy. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. RI Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Lista, Luca/C-5719-2008; Cavallo, Nicola/F-8913-2012; Bellini, Fabio/D-1055-2009; Patrignani, Claudia/C-5223-2009; Calabrese, Roberto/G-4405-2015; Lusiani, Alberto/N-2976-2015; de Groot, Nicolo/A-2675-2009; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Della Ricca, Giuseppe/B-6826-2013; M, Saleem/B-9137-2013; Peters, Klaus/C-2728-2008; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Grancagnolo, Sergio/J-3957-2015; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; OI Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Bellini, Fabio/0000-0002-2936-660X; Patrignani, Claudia/0000-0002-5882-1747; Calabrese, Roberto/0000-0002-1354-5400; Lusiani, Alberto/0000-0002-6876-3288; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Della Ricca, Giuseppe/0000-0003-2831-6982; Peters, Klaus/0000-0001-7133-0662; Raven, Gerhard/0000-0002-2897-5323; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Grancagnolo, Sergio/0000-0001-8490-8304; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Egede, Ulrik/0000-0001-5493-0762 NR 28 TC 20 Z9 20 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 3 AR 031102 DI 10.1103/PhysRevD.74.031102 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HU UT WOS:000240239300002 ER PT J AU Aubert, B Barate, R Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Pappagallo, M Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Best, DS Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangrp, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Brown, CL Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Kelly, MP Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Willocq, SY Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Potter, CT Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G del Re, D Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Mayer, B Vasseur, G Yeche, C Zito, M Park, W Purohit, MV Weidemann, AW Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Boyarski, AM Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Li, S Libby, J Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Mohapatra, AK Pan, Y Pierini, M Prepost, R Tan, P Wu, SL Yu, Z Neal, H AF Aubert, B. Barate, R. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Pappagallo, M. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Day, C. T. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Oddone, P. J. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Goetzen, K. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Best, D. S. Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dvoretskii, A. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Andreassen, R. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Petzold, A. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Grenier, P. Latour, E. Thiebaux, Ch. Verderi, M. Bard, D. J. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangrp, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Capra, R. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Gaillard, J. R. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Brown, C. L. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Kelly, M. P. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Willocq, S. Y. Cowan, R. Koeneke, K. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Patel, P. M. Potter, C. T. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Reidy, J. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. del Re, D. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. Bulten, H. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Pulliam, T. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Galeazzi, F. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch Hamon, O. Hartfiel, B. L. John, M. J. J. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Behera, P. K. Gladney, L. Panetta, J. Biasini, M. Covarelli, R. Pioppi, M. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Mayer, B. Vasseur, G. Yeche, Ch. Zito, M. Park, W. Purohit, M. V. Weidemann, A. W. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Boyarski, A. M. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dong, D. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Libby, J. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Kitayama, I. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Grancagnolo, S. Lanceri, L. Vitale, L. Azzolini, V. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Eichenbaum, A. M. Flood, K. T. Hollar, J. J. Johnson, J. R. Kutter, P. E. Li, H. Liu, R. Mellado, B. Mihalyi, A. Mohapatra, A. K. Pan, Y. Pierini, M. Prepost, R. Tan, P. Wu, S. L. Yu, Z. Neal, H. TI Study of B ->(DDs(J)(*))-D-(*) decays and measurement of D-s(-) and D-sJ(2460)(-) branching fractions SO PHYSICAL REVIEW D LA English DT Article ID FACTORIZATION AB We present branching fraction measurements of 12 B meson decays of the form B ->(DDs(J)(*))-D-(*). The results are based on Upsilon(4S) decays in B (B) over bar pairs. One of the B mesons is fully reconstructed and the other decays to two charm mesons, of which one is reconstructed, and the mass and momentum of the other is inferred by kinematics. Combining these results with previous exclusive branching fraction measurements, we determine B(D-s(-)->phi pi(-))=(4.62 +/- 0.36(stat.)+/- 0.51(syst.))%, B(D-sJ(2460)(-)-> D-s(*-)pi(0))=(56 +/- 13(stat.)+/- 9(syst.))% and B(D-sJ(2460)(-)-> D-s(-)gamma)=(16 +/- 4(stat.)+/- 3(syst.))%. C1 Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Dept Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, LLR, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. Univ Paris Sud 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. Natl Inst Nucl Phys & High Enrgy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, F-75252 Paris, France. Univ Paris 07, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. Univ Basilicata, I-85100 Potenza, Italy. Phys Corpusculaire Lab, Clermont Ferrand, France. RP Aubert, B (reprint author), Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. RI Rizzo, Giuliana/A-8516-2015; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; dong, liaoyuan/A-5093-2015; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Peters, Klaus/C-2728-2008; de Groot, Nicolo/A-2675-2009; Negrini, Matteo/C-8906-2014; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; Della Ricca, Giuseppe/B-6826-2013; Cavallo, Nicola/F-8913-2012; Saeed, Mohammad Alam/J-7455-2012 OI Galeazzi, Fulvio/0000-0002-6830-9982; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Paoloni, Eugenio/0000-0001-5969-8712; Faccini, Riccardo/0000-0003-2613-5141; Cavoto, Gianluca/0000-0003-2161-918X; Barlow, Roger/0000-0002-8295-8612; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Peters, Klaus/0000-0001-7133-0662; Negrini, Matteo/0000-0003-0101-6963; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; Della Ricca, Giuseppe/0000-0003-2831-6982; Saeed, Mohammad Alam/0000-0002-3529-9255 NR 14 TC 28 Z9 28 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 3 AR 031103 DI 10.1103/PhysRevD.74.031103 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HU UT WOS:000240239300003 ER PT J AU Aubert, B Barate, R Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, P Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Pappagallo, M Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Best, DS Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, M Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Hitlin, ADDG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, H Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A De Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Buzzo, AZA Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Brown, CL Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Kelly, MP Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Willocq, SY Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Potter, CT Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G Del Re, D Fabozzi, F Gatto, C Lista, L Monorchio, D Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J David, P Del Buono, L Re, CDLV Hamon, O Hartfiel, BL John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Der, HS Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Emery, S Gaidot, A Ganzhur, SF De Monchenault, GH Kozanecki, W Legendre, M Mayer, B Vasseur, G Che, CY Zito, M Park, W Purohit, MV Weidemann, AW Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Boyarski, AM Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Li, S Libby, J Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Mohapatra, AK Pan, Y Pierini, M Prepost, R Tan, P Wu, SL Yu, Z Neal, H AF Aubert, B. Barate, R. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Pappagallo, M. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Day, C. T. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Oddone, P. J. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Goetzen, K. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Best, D. S. Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Hitlin, A. Dvoretskii D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Andreassen, R. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Petzold, A. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Grenier, P. Latour, E. Thiebaux, Ch. Verderi, M. Bard, D. J. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. De Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Buzzo, A. Zallo A. Capra, R. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Gaillard, J. R. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Brown, C. L. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Kelly, M. P. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Willocq, S. Y. Cowan, R. Koeneke, K. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Patel, P. M. Potter, C. T. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Reidy, J. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. Del Re, D. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Piccolo, D. Sciacca, C. Baak, M. Bulten, H. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Pulliam, T. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Galeazzi, F. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Chauveau, J. David, P. Del Buono, L. Re, Ch. De la Vaissie Hamon, O. Hartfiel, B. L. John, M. J. J. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Behera, P. K. Gladney, L. Panetta, J. Biasini, M. Covarelli, R. Pioppi, M. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Ebert, M. Der, H. Schro Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Gaidot, A. Ganzhur, S. F. De Monchenault, G. Hamel Kozanecki, W. Legendre, M. Mayer, B. Vasseur, G. Che, Ch. Ye Zito, M. Park, W. Purohit, M. V. Weidemann, A. W. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Boyarski, A. M. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dong, D. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Libby, J. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Kitayama, I. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Grancagnolo, S. Lanceri, L. Vitale, L. Azzolini, V. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Eichenbaum, A. M. Flood, K. T. Hollar, J. J. Johnson, J. R. Kutter, P. E. Li, H. Liu, R. Mellado, B. Mihalyi, A. Mohapatra, A. K. Pan, Y. Pierini, M. Prepost, R. Tan, P. Wu, S. L. Yu, Z. Neal, H. TI Dalitz plot analysis of the decay B-+/-->(KKK -/+)-K-+/--K-+/- SO PHYSICAL REVIEW D LA English DT Article ID GEV/C AB We analyze the three-body charmless decay B-+/-->(KKK -/+)-K-+/--K-+/- using a sample of 226.0 +/- 2.5 million B (B) over bar pairs collected by the BABAR detector. We measure the total branching fraction and CP asymmetry to be B=(35.2 +/- 0.9 +/- 1.6)x10(-6) and A(CP)=(-1.7 +/- 2.6 +/- 1.5)%. We fit the Dalitz plot distribution using an isobar model and measure the magnitudes and phases of the decay coefficients. We find no evidence of CP violation for the individual components of the isobar model. The decay dynamics is dominated by the K+K- S-wave, for which we perform a partial-wave analysis in the region m(K+K-)< 2 GeV/c(2). Significant production of the f(0)(980) resonance, and of a spin zero state near 1.55 GeV/c(2) are required in the isobar model description of the data. The partial-wave analysis supports this observation. C1 Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Phys Expt, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, LLR, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. Ctr Sci Orsay, CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Univ London, Queen Mary, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Scuola Normale Super, Dipartimento Fis, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. RI Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Grancagnolo, Sergio/J-3957-2015; Lusiani, Alberto/N-2976-2015; Toki, Hiroshi/P-8516-2015; de Sangro, Riccardo/J-2901-2012; M, Saleem/B-9137-2013; Cavallo, Nicola/F-8913-2012; Saeed, Mohammad Alam/J-7455-2012; Peters, Klaus/C-2728-2008; de Groot, Nicolo/A-2675-2009; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; Rizzo, Giuliana/A-8516-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; dong, liaoyuan/A-5093-2015 OI Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Grancagnolo, Sergio/0000-0001-8490-8304; Lusiani, Alberto/0000-0002-6876-3288; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Peters, Klaus/0000-0001-7133-0662; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; Pacetti, Simone/0000-0002-6385-3508; Galeazzi, Fulvio/0000-0002-6830-9982; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Paoloni, Eugenio/0000-0001-5969-8712; Faccini, Riccardo/0000-0003-2613-5141; Cavoto, Gianluca/0000-0003-2161-918X; Barlow, Roger/0000-0002-8295-8612; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050 NR 31 TC 44 Z9 44 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 3 AR 032003 DI 10.1103/PhysRevD.74.032003 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HU UT WOS:000240239300014 ER PT J AU Aubert, B Barate, R Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Sanchez, PD Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Best, DS Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Petzold, A Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Willocq, SY Cowan, R Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G del Re, D Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Potter, CT Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Boyarski, AM Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Cheng, B Dasu, S Datta, M Flood, KT Hollar, JJ Kutter, PE Mellado, B Mihalyi, A Pan, Y Pierini, M Prepost, R Wu, SL Yu, Z Neal, H AF Aubert, B. Barate, R. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Oddone, P. J. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Sanchez, P. del Amo Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Goetzen, K. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Best, D. S. Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dvoretskii, A. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Andreassen, R. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Petzold, A. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Grenier, P. Latour, E. Thiebaux, Ch. Verderi, M. Bard, D. J. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Capra, R. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Willocq, S. Y. Cowan, R. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. del Re, D. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Lu, M. Potter, C. T. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Galeazzi, F. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. John, M. J. J. Malcles, J. Ocariz, J. Roos, L. Therin, G. Behera, P. K. Gladney, L. Panetta, J. Biasini, M. Covarelli, R. Pioppi, M. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Rizzo, G. Walsh, J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Ebert, M. Schroder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Boyarski, A. M. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Kitayama, I. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Grancagnolo, S. Lanceri, L. Vitale, L. Azzolini, V. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Flood, K. T. Hollar, J. J. Kutter, P. E. Mellado, B. Mihalyi, A. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Yu, Z. Neal, H. CA BaBar Collaboration TI Search for the decay B-0 ->(KSKSKL0)-K-0-K-0 SO PHYSICAL REVIEW D LA English DT Article ID CP-VIOLATION; PHYSICS AB We present the first search for the decay B-0 ->(KSKSKL0)-K-0-K-0 using a data sample of 232x10(6) B (B) over bar pairs. We find no statistically significant evidence for the nonresonant component of this decay. Our central value for the branching fraction, assuming the true Dalitz distribution is uniform and excluding the phi resonance, is B(B-0 ->(KSKSKL0)-K-0-K-0)=(2.4(-2.5)(+2.7)+/- 0.6)x10(-6) where the errors are statistical and systematic, respectively. We set a single-sided Bayesian upper limit of B(B-0 ->(KSKSKL0)-K-0-K-0)< 7.4x10(-6) at 90% confidence level using a uniform prior probability for physical values. Assuming the worst-case true Dalitz distribution, where the signal is entirely in the region of lowest efficiency, the 90% confidence level upper limit is B(B-0 ->(KSKSKL0)-K-0-K-0)< 16x10(-6). C1 Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Univ Bari, Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, LLR, F-91198 Gif Sur Yvette, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Nazl Frascati Lab, Ist Nazl Fis Nucl, I-00014 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Univ Genoa, Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Inst Expt Kernphys, D-76021 Karlsruhe, Germany. Ctr Sci Orsay, CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. Univ Paris 11, Lab Accelerateur Lineaire, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Univ London, Queen Mary, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Univ Milan, Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Univ Naples Federico II, Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF H, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Perugia, Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Scuola Normale Super, Dipartimento Fis, I-56127 Pisa, Italy. Univ Pisa, Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Torinol, Dipartimento Fis Sperimentale, Turin, Italy. Univ Torinol, Ist Nazl Fis Nucl, Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Univ Trieste, Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. RI Rizzo, Giuliana/A-8516-2015; Peters, Klaus/C-2728-2008; de Groot, Nicolo/A-2675-2009; Cavallo, Nicola/F-8913-2012; Saeed, Mohammad Alam/J-7455-2012; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; M, Saleem/B-9137-2013; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; dong, liaoyuan/A-5093-2015; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016 OI Pacetti, Simone/0000-0002-6385-3508; Galeazzi, Fulvio/0000-0002-6830-9982; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Faccini, Riccardo/0000-0003-2613-5141; Cavoto, Gianluca/0000-0003-2161-918X; Barlow, Roger/0000-0002-8295-8612; Peters, Klaus/0000-0001-7133-0662; Saeed, Mohammad Alam/0000-0002-3529-9255; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288 NR 24 TC 1 Z9 1 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 3 AR 032005 DI 10.1103/PhysRevD.74.032005 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HU UT WOS:000240239300016 ER PT J AU Aubert, B Barate, R Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Pappagallo, M Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Best, DS Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Brown, CL Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Kelly, MP Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Willocq, SY Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Potter, CT Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G del Re, D Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Mayer, B Vasseur, G Yeche, C Zito, M Park, W Purohit, MV Weidemann, AW Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Boyarski, AM Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Li, S Libby, J Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Mohapatra, AK Pan, Y Pierini, M Prepost, R Tan, P Wu, SL Yu, Z Neal, H AF Aubert, B. Barate, R. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Pappagallo, M. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Day, C. T. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Oddone, P. J. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Goetzen, K. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Best, D. S. Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dvoretskii, A. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Andreassen, R. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Petzold, A. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Grenier, P. Latour, E. Thiebaux, Ch. Verderi, M. Bard, D. J. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Capra, R. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Gaillard, J. R. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Brown, C. L. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Kelly, M. P. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Willocq, S. Y. Cowan, R. Koeneke, K. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Patel, P. M. Potter, C. T. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Reidy, J. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. del Re, D. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. Bulten, H. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Pulliam, T. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Galeazzi, F. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. John, M. J. J. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Behera, P. K. Gladney, L. Panetta, J. Biasini, M. Covarelli, R. Pioppi, M. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Ebert, M. Schroder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Mayer, B. Vasseur, G. Yeche, Ch. Zito, M. Park, W. Purohit, M. V. Weidemann, A. W. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Boyarski, A. M. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dong, D. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Libby, J. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Kitayama, I. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Grancagnolo, S. Lanceri, L. Vitale, L. Azzolini, V. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Eichenbaum, A. M. Flood, K. T. Hollar, J. J. Johnson, J. R. Kutter, P. E. Li, H. Liu, R. Mellado, B. Mihalyi, A. Mohapatra, A. K. Pan, Y. Pierini, M. Prepost, R. Tan, P. Wu, S. L. Yu, Z. Neal, H. CA BABAR Collaboration TI Search for the decay B-0 -> a(1)(+/-)rho(-/+) SO PHYSICAL REVIEW D LA English DT Article ID PHYSICS AB We present a search for the rare B-meson decay B-0 -> a(1)(+/-)rho(-/+) with a(1)(+/-)->pi(+)pi(-)pi(+/-). We use (110 +/- 1.2)x10(6) Upsilon(4S)-> B (B) over bar decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We obtain an upper limit of 30x10(-6) (90%C.L.) for the branching fraction product B(B-0 -> a(1)(+/-)rho(-/+))B(a(1)(+/-)->pi(+)pi(-)pi(+/-)), where we assume that the a(1)(+/-) decays exclusively to rho(0)pi(+/-). C1 Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-8027 Dresden, Germany. Ecole Polytech, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Univ Ferrara, Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ Sci & Technol, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, IN2P3, Accelerateur Lineaire Lab, Ctr Sci Orsay, F-91898 Orsay, France. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Univ London, Queen Mary, London E1 4NS, England. Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Scuola Normale Super, Dipartimento Fis, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. RI Morandin, Mauro/A-3308-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Grancagnolo, Sergio/J-3957-2015; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Saeed, Mohammad Alam/J-7455-2012; Peters, Klaus/C-2728-2008; de Groot, Nicolo/A-2675-2009; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; M, Saleem/B-9137-2013; Cavallo, Nicola/F-8913-2012 OI Morandin, Mauro/0000-0003-4708-4240; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Egede, Ulrik/0000-0001-5493-0762; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Grancagnolo, Sergio/0000-0001-8490-8304; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Saeed, Mohammad Alam/0000-0002-3529-9255; Peters, Klaus/0000-0001-7133-0662; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; NR 19 TC 7 Z9 7 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 3 AR 031104 DI 10.1103/PhysRevD.74.031104 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HU UT WOS:000240239300004 ER PT J AU Aubert, B Barate, R Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Best, DS Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Brown, CL Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Kelly, MP Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Willocq, SY Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Pellegrini, R Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G del Re, D Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Potter, CT Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Vasseur, G Yeche, C Zito, M Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Boyarski, AM Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Li, S Libby, J Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perl, M Perazzo, A Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Hollar, JJ Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Mohapatra, AK Pan, Y Pierini, M Prepost, R Tan, P Wu, SL Yu, Z Neal, H AF Aubert, B. Barate, R. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Oddone, P. J. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Goetzen, K. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Best, D. S. Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dvoretskii, A. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Andreassen, R. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Petzold, A. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Grenier, P. Latour, E. Thiebaux, Ch. Verderi, M. Bard, D. J. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Capra, R. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Gaillard, J. R. Nash, J. . A. Nikolich, M. B. Vazquez, W. Panduro Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Brown, C. L. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Kelly, M. P. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Willocq, S. Y. Cowan, R. Koeneke, K. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Pellegrini, R. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Reidy, J. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. del Re, D. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. Bulten, H. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Pulliam, T. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Lu, M. Potter, C. T. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Galeazzi, F. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. John, M. J. J. Malcles, J. Ocariz, J. Roos, L. Therin, G. Behera, P. K. Gladney, L. Panetta, J. Biasini, M. Covarelli, R. Pioppi, M. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Rizzo, G. Walsh, J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Vasseur, G. Yeche, Ch. Zito, M. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Boyarski, A. M. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dong, D. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Libby, J. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perl, M. Perazzo, A. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Kitayama, I. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Grancagnolo, S. Lanceri, L. Vitale, L. Azzolini, V. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Eichenbaum, A. M. Flood, K. T. Hollar, J. J. Kutter, P. E. Li, H. Liu, R. Mellado, B. Mihalyi, A. Mohapatra, A. K. Pan, Y. Pierini, M. Prepost, R. Tan, P. Wu, S. L. Yu, Z. Neal, H. TI Search for B meson decays to eta(')eta K-' SO PHYSICAL REVIEW D LA English DT Article ID CP-VIOLATION AB We describe searches for decays of B mesons to the charmless final states eta(')eta K-'. The data consist of 228x10(6) B ($) over barB pairs produced in e(+)e(-) annihilation, collected with the BABAR detector at the Stanford Linear Accelerator Center. The 90% confidence level upper limits for the branching fractions are B(B-0 ->eta(')eta K-'(0))< 31x10(-6) and B(B+->eta(')eta K-'(+))< 25x10(-6). C1 Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Phys Expt, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, LLR, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. Ctr Sci Orsay, CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Univ London, Queen Mary, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF H, Natl Inst Nucl & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Scuola Normale Super, Dipartimento Fis, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, IFIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. RI Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; de Sangro, Riccardo/J-2901-2012; Della Ricca, Giuseppe/B-6826-2013; Cavallo, Nicola/F-8913-2012; Saeed, Mohammad Alam/J-7455-2012; Peters, Klaus/C-2728-2008; de Groot, Nicolo/A-2675-2009; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Grancagnolo, Sergio/J-3957-2015; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016 OI Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Cristinziani, Markus/0000-0003-3893-9171; Salvatore, Fabrizio/0000-0002-3709-1554; Wilson, Robert/0000-0002-8184-4103; Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Egede, Ulrik/0000-0001-5493-0762; Ebert, Marcus/0000-0002-3014-1512; Hamel de Monchenault, Gautier/0000-0002-3872-3592; Lanceri, Livio/0000-0001-8220-3095; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; de Sangro, Riccardo/0000-0002-3808-5455; Della Ricca, Giuseppe/0000-0003-2831-6982; Saeed, Mohammad Alam/0000-0002-3529-9255; Peters, Klaus/0000-0001-7133-0662; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Grancagnolo, Sergio/0000-0001-8490-8304; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288 NR 20 TC 3 Z9 3 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 3 AR 031105 DI 10.1103/PhysRevD.74.031105 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HU UT WOS:000240239300005 ER PT J AU Aubin, C Christ, NH Dawson, C Laiho, JW Noaki, J Li, S Soni, A AF Aubin, C. Christ, N. H. Dawson, C. Laiho, J. W. Noaki, J. Li, S. Soni, A. TI Systematic effects of the quenched approximation on the strong penguin contribution to epsilon(')/epsilon SO PHYSICAL REVIEW D LA English DT Article ID DIRECT CP VIOLATION; CHIRAL PERTURBATION-THEORY; STAGGERED FERMIONS; DECAYS; EPSILON'/EPSILON; QCD AB We discuss the implementation and properties of the quenched approximation in the calculation of the left-right, strong penguin contributions (i.e. Q(6)) to epsilon(')/epsilon. The coefficient of the new chiral logarithm, discovered by Golterman and Pallante, which appears at leading order in quenched chiral perturbation theory is evaluated using both the method proposed by those authors and by an improved approach which is free of power divergent corrections. The result implies a large quenching artifact in the contribution of Q(6) to epsilon(')/epsilon. This failure of the quenched approximation affects only the strong penguin operators and so does not affect the Q(8) contribution to epsilon'/epsilon nor ReA(0), ReA(2) and thus, the Delta I=1/2 rule at tree level in chiral perturbation theory. C1 Columbia Univ, Dept Phys, New York, NY 10027 USA. Brookhaven Natl Lab, RIKEN BNL, Res Ctr, Upton, NY 11973 USA. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. RP Aubin, C (reprint author), Columbia Univ, Dept Phys, New York, NY 10027 USA. NR 25 TC 2 Z9 2 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 3 AR 034510 DI 10.1103/PhysRevD.74.034510 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HU UT WOS:000240239300073 ER PT J AU Bashinsky, S AF Bashinsky, Sergei TI Gravity of cosmological perturbations in the CMB SO PHYSICAL REVIEW D LA English DT Article ID MICROWAVE-ANISOTROPY-PROBE; ISOTHERMAL DENSITY PERTURBATIONS; INFLATIONARY UNIVERSE; BACKGROUND ANISOTROPIES; NEWTONIAN DYNAMICS; WMAP OBSERVATIONS; ANALYTIC APPROACH; SCALAR FIELD; DARK-MATTER; FLUCTUATIONS AB We, first, attempt to single out the measures of cosmological perturbations that are least afflicted by gauge artifacts and directly connect inhomogeneous large-scale evolution with microscopic kinetics and interactions. We seek perturbation measures (i) whose dynamics is completely specified by the physics within the local Hubble volume and (ii) which are practically applicable on microscopic scales and retain their microscopic physical meaning on all scales in any homogeneous and isotropic geometry. We identify such natural measures for linear perturbations of species' density, and for nonlinear perturbations of phase-space distribution and radiation intensity. When these measures are applied to linear evolution in the Newtonian gauge, the equations acquire an explicit Cauchy structure and nonsingular superhorizon limit, while their solutions simplify. We prove that all measures of linear overdensity that satisfy (i) and (ii) coincide in the superhorizon limit. We then show that, contrary to the prevailing view, the perturbations of the cosmic microwave background (CMB) are not resonantly boosted by their self-gravity at horizon entry in the radiation era. This explains the mildness of the CMB signatures caused by the dark species which may be abundant in the radiation era, e.g. neutrinos or early quintessence. Such species can still be well constrained due to their characteristic nondegenerate signatures on scales l greater than or similar to 200, where the cosmic variance is low. We find, on the other hand, that the dark matter inhomogeneities in the matter era gravitationally suppress large-angle CMB anisotropy by an order of magnitude stronger than previously stated. (In a cosmology dominated by pressureless matter, the suppression of CMB temperature autocorrelation C(l) is 25-fold.) Hence, despite the larger cosmic variance at the affected l less than or similar to 200, the CMB anisotropy on these scales is a useful probe of the dark sectors in the matter era. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Int Ctr Theoret Phys, Trieste, Italy. RP Bashinsky, S (reprint author), Los Alamos Natl Lab, Div Theoret, T-8, Los Alamos, NM 87545 USA. NR 98 TC 1 Z9 1 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 4 AR 043007 DI 10.1103/PhysRevD.74.043007 PG 23 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HW UT WOS:000240239500011 ER PT J AU Bauer, CW Rothstein, IZ Stewart, IW AF Bauer, Christian W. Rothstein, Ira Z. Stewart, Iain W. TI Soft collinear effective theory analysis of B -> K pi, B -> K(K)over-bar, and B ->pi pi decays SO PHYSICAL REVIEW D LA English DT Review ID B-MESON DECAYS; CHARMING PENGUIN CONTRIBUTIONS; PION DISTRIBUTION AMPLITUDE; LIGHT FORM-FACTORS; SUM-RULE ESTIMATE; QCD FACTORIZATION; CP ASYMMETRIES; HEAVY-QUARK; PERTURBATIVE QCD; LARGE RECOIL AB B -> K pi and related decays are studied in the heavy quark limit of QCD using the soft collinear effective theory (SCET). We focus on results that follow solely from integrating out the scale m(b), without expanding the amplitudes for the physics at smaller scales such as alpha(s)(root E-pi Lambda(QCD)). The reduction in the number of hadronic parameters in SCET leads to multiple predictions without the need of SU(3). We find that the CP-asymmetry in B-->pi K-0(-) should have a similar magnitude and the same sign as the well measured asymmetry in B-0 ->pi K-+(-). Our prediction for Br(K+pi(-)) exceeds the current experimental value at the 2 sigma level. We also use our results to determine the corrections to the Lipkin and CP-asymmetry sum rules in the standard model and find them to be quite small, thus sharpening their utility as a tool to look for new physics. C1 Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. MIT, Ctr Phys Theor, Nucl Sci Lab, Cambridge, MA 02139 USA. RP Bauer, CW (reprint author), Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RI Rothstein, Ira/O-2747-2014 OI Rothstein, Ira/0000-0002-3374-4212 NR 116 TC 71 Z9 71 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 3 AR 034010 DI 10.1103/PhysRevD.74.034010 PG 23 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HU UT WOS:000240239300046 ER PT J AU Berger, CF Bern, Z Dixon, LJ Forde, D Kosower, DA AF Berger, Carola F. Bern, Zvi Dixon, Lance J. Forde, Darren Kosower, David A. TI Bootstrapping one-loop QCD amplitudes with general helicities SO PHYSICAL REVIEW D LA English DT Review ID SUPER-YANG-MILLS; GAUGE-THEORY AMPLITUDES; MULTI-GLUON SCATTERING; CROSS-SECTIONS; COLLINEAR LIMITS; TREE AMPLITUDES; TWISTOR SPACE; MHV VERTICES; UNITARITY; ORDER AB The recently developed on-shell bootstrap for computing one-loop amplitudes in nonsupersymmetric theories such as QCD combines the unitarity method with loop-level on-shell recursion. For generic helicity configurations, the recursion relations may involve undetermined contributions from nonstandard complex singularities or from large values of the shift parameter. Here we develop a strategy for sidestepping difficulties through the use of pairs of recursion relations. To illustrate the strategy, we present sets of recursion relations needed for obtaining n-gluon amplitudes in QCD. We give a recursive solution for the one-loop n-gluon QCD amplitudes with three or four color-adjacent gluons of negative helicity and the remaining ones of positive helicity. We provide an explicit analytic formula for the QCD amplitude A(6;1)(1(-),2(-),3(-),4(+),5(+),6(+)), as well as numerical results for A(7;1)(1(-),2(-),3(-),4(+),5(+),6(+),7(+)), A(8;1)(1(-),2(-),3(-),4(+),5(+),6(+),7(+),8(+)), and A(8;1)(1(-),2(-),3(-),4(-),5(+),6(+),7(+),8(+)). We expect the on-shell bootstrap approach to have widespread applications to phenomenological studies at colliders. C1 Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. CEA Saclay, Serv Phys Theor, F-91191 Gif Sur Yvette, France. RP Berger, CF (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. NR 121 TC 104 Z9 104 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 3 AR 036009 DI 10.1103/PhysRevD.74.036009 PG 39 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HU UT WOS:000240239300099 ER PT J AU Bousso, R Freivogel, B Lippert, M AF Bousso, Raphael Freivogel, Ben Lippert, Matthew TI Probabilities in the landscape: The decay of nearly flat space SO PHYSICAL REVIEW D LA English DT Article ID FALSE VACUUM; UNIVERSE; FATE AB We discuss aspects of the problem of assigning probabilities in eternal inflation. In particular, we investigate a recent suggestion that the lowest energy de Sitter vacuum in the landscape is effectively stable. The associated proposal for probabilities would relegate lower energy vacua to unlikely excursions of a high entropy system. We note that it would also imply that the string theory landscape is experimentally ruled out. However, we extensively analyze the structure of the space of Coleman-De Luccia solutions, and we present analytic arguments, as well as numerical evidence, that the decay rate varies continuously as the false vacuum energy goes through zero. Hence, low-energy de Sitter vacua do not become anomalously stable; negative and zero-cosmological constant regions cannot be neglected. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Ctr Theoret Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Kentucky, Lexington, KY 40506 USA. Univ Louisville, Louisville, KY 40292 USA. RP Bousso, R (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM bousso@lbl.gov; freivogel@berkeley.edu; lippert@pa.uky.edu NR 55 TC 29 Z9 29 U1 0 U2 6 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 4 AR 046008 DI 10.1103/PhysRevD.74.046008 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HW UT WOS:000240239500126 ER PT J AU Chen, MC Dawson, S Krupovnickas, T AF Chen, Mu-Chun Dawson, Sally Krupovnickas, Tadas TI Higgs triplets and limits from precision measurements SO PHYSICAL REVIEW D LA English DT Article ID RADIATIVE-CORRECTIONS; MODELS; SYMMETRY; PHYSICS AB In this article, we present our results on a global fit to precision electroweak data in a Higgs triplet model. In models with a triplet Higgs boson, a consistent renormalization scheme differs from that of the standard model and the global fit shows that a light Higgs boson with mass of 100-200 GeV is preferred. Triplet Higgs bosons arise in many extensions of the standard model, including the left-right model and the Little Higgs models. Our result demonstrates the importance of the scalar loops when there is a large mass splitting between the heavy scalars. It also indicates the significance of the global fit. C1 Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Chen, MC (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, POB 500, Batavia, IL 60510 USA. OI Chen, Mu-Chun/0000-0002-5749-2566; Dawson, Sally/0000-0002-5598-695X NR 36 TC 35 Z9 35 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 3 AR 035001 DI 10.1103/PhysRevD.74.035001 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HU UT WOS:000240239300078 ER PT J AU De Vita, R Battaglieri, M Kubarovsky, V Baltzell, NA Bellis, M Goett, J Guo, L Mutchler, GS Stoler, P Ungaro, M Weygand, DP Amaryan, MJ Ambrozewicz, P Anghinolfi, M Asryan, G Avakian, H Bagdasaryan, H Baillie, N Ball, JP Batourine, V Bedlinskiy, I Benmouna, N Berman, BL Biselli, AS Boiarinov, S Bouchigny, S Bradford, R Branford, D Briscoe, WJ Brooks, WK Bultmann, S Burkert, VD Butuceanu, C Calarco, JR Careccia, SL Carman, DS Chen, S Clinton, E Cole, PL Collins, P Coltharp, P Crabb, D Crannell, H Crede, V Cummings, JP Dale, D De Masi, R De Sanctis, E Degtyarenko, PV Deur, A Dharmawardane, KV Djalali, C Dodge, GE Donnelly, J Doughty, D Dugger, M Dzyubak, OP Egiyan, H Egiyan, KS El Fassi, L Elouadrhiri, L Eugenio, P Fedotov, G Funsten, H Gabrielyan, MY Gan, L Garcon, M Gasparian, A Gavalian, G Gilfoyle, GP Giovanetti, KL Girod, FX Glamazdin, O Goetz, JT Golovach, E Gonenc, A Gordon, CIO Gothe, RW Griffioen, KA Guidal, M Guler, N Gyurjyan, V Hadjidakis, C Hafidi, K Hakobyan, H Hakobyan, RS Hardie, J Hersman, FW Hicks, K Hleiqawi, I Holtrop, M Hyde-Wright, CE Ilieva, Y Ireland, DG Ishkhanov, BS Isupov, EL Ito, MM Jenkins, D Jo, HS Joo, K Juengst, HG Kellie, JD Khandaker, M Kim, W Klein, A Klein, FJ Klimenko, AV Kossov, M Kramer, LH Kuhn, J Kuhn, SE Kuleshov, SV Lachniet, J Laget, JM Langheinrich, J Lawrence, D Lee, T Li, J Livingston, K Lu, HY MacCormick, M Markov, N McKinnon, B Mecking, BA Melone, JJ Mestayer, MD Meyer, CA Mibe, T Mikhailov, K Minehart, R Mirazita, M Miskimen, R Mochalov, V Mokeev, V Morand, L Morrow, SA Moteabbed, M Nadel-Turonski, P Nakagawa, I Nasseripour, R Niccolai, S Niculescu, G Niculescu, I Niczyporuk, BB Niroula, MR Niyazov, RA Nozar, M Osipenko, M Ostrovidov, AI Park, K Pasyuk, E Paterson, C Pierce, J Pivnyuk, N Pocanic, D Pogorelko, O Pozdniakov, S Price, JW Prok, Y Protopopescu, D Raue, BA Riccardi, G Ricco, G Ripani, M Ritchie, BG Ronchetti, F Rosner, G Rossi, P Sabatie, F Salgado, C Santoro, JP Sapunenko, V Schumacher, RA Serov, VS Sharabian, YG Shvedunov, NV Smith, ES Smith, LC Sober, DI Stavinsky, A Stepanyan, SS Stepanyan, S Stokes, BE Strakovsky, II Strauch, S Taiuti, M Tedeschi, DJ Teymurazyan, A Thoma, U Tkabladze, A Tkachenko, S Todor, L Tur, C Vineyard, MF Vlassov, AV Watts, DP Weinstein, LB Williams, M Wolin, E Wood, MH Yegneswaran, A Zana, L AF De Vita, R. Battaglieri, M. Kubarovsky, V. Baltzell, N. A. Bellis, M. Goett, J. Guo, L. Mutchler, G. S. Stoler, P. Ungaro, M. Weygand, D. P. Amaryan, M. J. Ambrozewicz, P. Anghinolfi, M. Asryan, G. Avakian, H. Bagdasaryan, H. Baillie, N. Ball, J. P. Batourine, V. Bedlinskiy, I. Benmouna, N. Berman, B. L. Biselli, A. S. Boiarinov, S. Bouchigny, S. Bradford, R. Branford, D. Briscoe, W. J. Brooks, W. K. Bultmann, S. Burkert, V. D. Butuceanu, C. Calarco, J. R. Careccia, S. L. Carman, D. S. Chen, S. Clinton, E. Cole, P. L. Collins, P. Coltharp, P. Crabb, D. Crannell, H. Crede, V. Cummings, J. P. Dale, D. De Masi, R. De Sanctis, E. Degtyarenko, P. V. Deur, A. Dharmawardane, K. V. Djalali, C. Dodge, G. E. Donnelly, J. Doughty, D. Dugger, M. Dzyubak, O. P. Egiyan, H. Egiyan, K. S. El Fassi, L. Elouadrhiri, L. Eugenio, P. Fedotov, G. Funsten, H. Gabrielyan, M. Y. Gan, L. Garcon, M. Gasparian, A. Gavalian, G. Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Glamazdin, O. Goetz, J. T. Golovach, E. Gonenc, A. Gordon, C. I. O. Gothe, R. W. Griffioen, K. A. Guidal, M. Guler, N. Gyurjyan, V. Hadjidakis, C. Hafidi, K. Hakobyan, H. Hakobyan, R. S. Hardie, J. Hersman, F. W. Hicks, K. Hleiqawi, I. Holtrop, M. Hyde-Wright, C. E. Ilieva, Y. Ireland, D. G. Ishkhanov, B. S. Isupov, E. L. Ito, M. M. Jenkins, D. Jo, H. S. Joo, K. Juengst, H. G. Kellie, J. D. Khandaker, M. Kim, W. Klein, A. Klein, F. J. Klimenko, A. V. Kossov, M. Kramer, L. H. Kuhn, J. Kuhn, S. E. Kuleshov, S. V. Lachniet, J. Laget, J. M. Langheinrich, J. Lawrence, D. Lee, T. Li, Ji Livingston, K. Lu, H. Y. MacCormick, M. Markov, N. McKinnon, B. Mecking, B. A. Melone, J. J. Mestayer, M. D. Meyer, C. A. Mibe, T. Mikhailov, K. Minehart, R. Mirazita, M. Miskimen, R. Mochalov, V. Mokeev, V. Morand, L. Morrow, S. A. Moteabbed, M. Nadel-Turonski, P. Nakagawa, I. Nasseripour, R. Niccolai, S. Niculescu, G. Niculescu, I. Niczyporuk, B. B. Niroula, M. R. Niyazov, R. A. Nozar, M. Osipenko, M. Ostrovidov, A. I. Park, K. Pasyuk, E. Paterson, C. Pierce, J. Pivnyuk, N. Pocanic, D. Pogorelko, O. Pozdniakov, S. Price, J. W. Prok, Y. Protopopescu, D. Raue, B. A. Riccardi, G. Ricco, G. Ripani, M. Ritchie, B. G. Ronchetti, F. Rosner, G. Rossi, P. Sabatie, F. Salgado, C. Santoro, J. P. Sapunenko, V. Schumacher, R. A. Serov, V. S. Sharabian, Y. G. Shvedunov, N. V. Smith, E. S. Smith, L. C. Sober, D. I. Stavinsky, A. Stepanyan, S. S. Stepanyan, S. Stokes, B. E. Strakovsky, I. I. Strauch, S. Taiuti, M. Tedeschi, D. J. Teymurazyan, A. Thoma, U. Tkabladze, A. Tkachenko, S. Todor, L. Tur, C. Vineyard, M. F. Vlassov, A. V. Watts, D. P. Weinstein, L. B. Williams, M. Wolin, E. Wood, M. H. Yegneswaran, A. Zana, L. CA CLAS Collaboration TI Search for the Theta(+) pentaquark in the reactions gamma p ->(K)over-bar(0)K(+)n and gamma p ->(K)over-bar(0)K(0)p SO PHYSICAL REVIEW D LA English DT Article ID PENTAQUARK SEARCHES; POSITIVE-STRANGENESS; BARYON RESONANCE; CLAS; PHOTOPRODUCTION; THETA(+); PROTON; STATE; COLLISIONS; DETECTOR AB The exclusive reactions gamma p ->(K) over bar (0)K(+)n and gamma p ->(K) over bar (0)K(0)p have been studied in the photon energy range 1.6-3.8 GeV, searching for evidence of the exotic baryon Theta(+)(1540) in the decays Theta(+)-> nK(+) and Theta(+)-> pK(0). Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. The integrated luminosity was about 70 pb(-1). The reactions have been isolated by detecting the K+ and proton directly, the neutral kaon via its decay to K-S ->pi(+)pi(-) and the neutron or neutral kaon via the missing mass technique. The mass and width of known hyperons such as Sigma(+), Sigma(-) and Lambda(1116) were used as a check of the mass determination accuracy and experimental resolution. Approximately 100 000 Lambda(*)(1520)'s and 150 000 phi's were observed in the (K) over bar (0)K(+)n and (K) over bar (0)K(0)p final state, respectively. No evidence for the Theta(+) pentaquark was found in the nK(+) or pK(S) invariant mass spectra. Upper limits were set on the production cross section of the reaction gamma p ->(K) over bar (0)Theta(+) as functions of center-of-mass angle, nK(+) and pK(S) masses. Combining the results of the two reactions, the 95% C.L. upper limit on the total cross section for a resonance peaked at 1540 MeV was found to be 0.7 nb. Within most of the available theoretical models, this corresponds to an upper limit on the Theta(+) width, Gamma(+)(Theta), ranging between 0.01 and 7 MeV. C1 Univ Genoa, Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Rensselaer Polytech Inst, Troy, NY 12180 USA. Univ S Carolina, Columbia, SC 29208 USA. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. Rice Univ, Houston, TX 77005 USA. Univ Connecticut, Storrs, CT 06269 USA. Argonne Natl Lab, Tempe, AZ 85287 USA. Arizona State Univ, Tempe, AZ 85287 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Calif State Univ Dominguez Hills, Carson, CA 90747 USA. Catholic Univ Amer, Washington, DC 20064 USA. CEA Saclay, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. Christopher Newport Univ, Newport News, VA 23606 USA. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Fairfield Univ, Fairfield, CT 06824 USA. Florida Int Univ, Miami, FL 33199 USA. Florida State Univ, Tallahassee, FL 32306 USA. George Washington Univ, Washington, DC 20052 USA. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Idaho State Univ, Pocatello, ID 83209 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Inst Nucl Phys, Orsay, France. Inst High Energy Phys, Protvino 142281, Russia. Inst Theoret & Expt Phys, Moscow 117259, Russia. James Madison Univ, Harrisonburg, VA 22807 USA. Kharkov Phys & Technol Inst, UA-61108 Kharkov, Ukraine. Kyungpook Natl Univ, Taegu 702701, South Korea. Univ Massachusetts, Amherst, MA 01003 USA. Moscow MV Lomonosov State Univ, Gen Nucl Phys Inst, Moscow 119899, Russia. Univ New Hampshire, Durham, NH 03824 USA. Norfolk State Univ, Norfolk, VA 23504 USA. Ohio Univ, Athens, OH 45701 USA. Old Dominion Univ, Norfolk, VA 23529 USA. Univ Richmond, Richmond, VA 23173 USA. Union Coll, Schenectady, NY 12308 USA. Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. Univ Virginia, Charlottesville, VA 22901 USA. Coll William & Mary, Williamsburg, VA 23187 USA. Yerevan Phys Inst, Yerevan 375036, Armenia. Univ Kentucky, Lexington, KY 40506 USA. Univ N Carolina, Wilmington, NC 28403 USA. N Carolina Agr & Tech State Univ, Greensboro, NC 27455 USA. RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. RP De Vita, R (reprint author), Univ Genoa, Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. RI Meyer, Curtis/L-3488-2014; Sabatie, Franck/K-9066-2015; Osipenko, Mikhail/N-8292-2015; Kuleshov, Sergey/D-9940-2013; Ireland, David/E-8618-2010; Schumacher, Reinhard/K-6455-2013; Lu, Haiyun/B-4083-2012; Goett, Johnny/D-1277-2012; Protopopescu, Dan/D-5645-2012; riccardi, gabriele/A-9269-2012; Zana, Lorenzo/H-3032-2012; Isupov, Evgeny/J-2976-2012; Ishkhanov, Boris/E-1431-2012; Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013 OI Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975; Osipenko, Mikhail/0000-0001-9618-3013; Kuleshov, Sergey/0000-0002-3065-326X; Ireland, David/0000-0001-7713-7011; Schumacher, Reinhard/0000-0002-3860-1827; Zhao, Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570 NR 60 TC 53 Z9 53 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 3 AR 032001 DI 10.1103/PhysRevD.74.032001 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HU UT WOS:000240239300012 ER PT J AU Friedland, A Lunardini, C AF Friedland, Alexander Lunardini, Cecilia TI Two modes of searching for new neutrino interactions at MINOS SO PHYSICAL REVIEW D LA English DT Article ID WATER CHERENKOV DETECTOR; ELECTROWEAK PARAMETERS; SCATTERING; MATTER AB The Super-Kamiokande atmospheric neutrino measurements leave substantial room for nonstandard interactions (NSI) of neutrinos with matter in the nu(e)-nu(tau) sector. Large values of the NSI couplings are accommodated if the vacuum oscillation parameters are changed from their standard values. Short and medium baseline neutrino beams can break this degeneracy by measuring the true vacuum oscillation parameters with the nu(mu) disappearance mode, for which the matter effects are negligible or subdominant. These experiments can also search for the nu(e)-nu(tau) flavor-changing effects directly, by looking for nu(mu)-nu(e) conversion caused by the intervening matter. We discuss both of these methods for the case of MINOS. We find that, while the present MINOS data on nu(mu) disappearance induce only minor changes on the constraints on the NSI parameters, the situation will improve markedly with the planned increase of the statistics by an order of magnitude. In that case, the precision will be enough to distinguish certain presently allowed NSI scenarios from the no-NSI case. NSI per quark of about 10% the size of the standard weak interaction could give a nu(mu)-nu(e) conversion probability of the order similar to 10(-2), measurable by MINOS in the same high statistics scenario. In this nu(mu)-nu(e) channel, the small effects of NSI could be comparable or larger than the vacuum contribution of the small angle theta(13). The expected theta(13) bound at MINOS should be more properly interpreted as a bound in the theta(13)-NSI parameter space. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Univ Washington, Seattle, WA 98195 USA. Inst Nucl Theory, Seattle, WA 98195 USA. RP Friedland, A (reprint author), Los Alamos Natl Lab, Div Theoret, T8,MS B285, Los Alamos, NM 87545 USA. EM friedland@lanl.gov; lunardi@phys.washington.edu NR 33 TC 41 Z9 41 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 3 AR 033012 DI 10.1103/PhysRevD.74.033012 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HU UT WOS:000240239300032 ER PT J AU Harnik, R Kribs, GD Perez, G AF Harnik, Roni Kribs, Graham D. Perez, Gilad TI A universe without weak interactions SO PHYSICAL REVIEW D LA English DT Article ID COSMOLOGICAL CONSTANT; BROWN DWARFS; MODEL AB A universe without weak interactions is constructed that undergoes big-bang nucleosynthesis, matter domination, structure formation, and star formation. The stars in this universe are able to burn for billions of years, synthesize elements up to iron, and undergo supernova explosions, dispersing heavy elements into the interstellar medium. These definitive claims are supported by a detailed analysis where this hypothetical "weakless universe" is matched to our Universe by simultaneously adjusting standard model and cosmological parameters. For instance, chemistry and nuclear physics are essentially unchanged. The apparent habitability of the weakless universe suggests that the anthropic principle does not determine the scale of electroweak breaking, or even require that it be smaller than the Planck scale, so long as technically natural parameters may be suitably adjusted. Whether the multiparameter adjustment is realized or probable is dependent on the ultraviolet completion, such as the string landscape. Considering a similar analysis for the cosmological constant, however, we argue that no adjustments of other parameters are able to allow the cosmological constant to raise up even remotely close to the Planck scale while obtaining macroscopic structure. The fine-tuning problems associated with the electroweak breaking scale and the cosmological constant therefore appear to be qualitatively different from the perspective of obtaining a habitable universe. C1 Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Dept Phys, Stanford, CA 94305 USA. Univ Oregon, Dept Phys, Eugene, OR 97403 USA. Univ Oregon, Inst Theoret Sci, Eugene, OR 97403 USA. Univ Calif Berkeley, Ernest Orlando Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Harnik, R (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. NR 33 TC 33 Z9 33 U1 1 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 3 AR 035006 DI 10.1103/PhysRevD.74.035006 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HU UT WOS:000240239300083 ER PT J AU Hosaka, J Ishihara, K Kameda, J Koshio, Y Minamino, A Mitsuda, C Miura, M Moriyama, S Nakahata, M Namba, T Obayashi, Y Shiozawa, M Suzuki, Y Takeda, A Takeuchi, Y Yamada, S Higuchi, I Ishitsuka, M Kajita, T Kaneyuki, K Mitsuka, G Nakayama, S Nishino, H Okada, A Okumura, K Saji, C Takenaga, Y Clark, S Desai, S Kearns, E Likhoded, S Stone, JL Sulak, LR Wang, W Goldhaber, M Casper, D Cravens, JP Kropp, WR Liu, DW Mine, S Regis, C Smy, MB Sobel, HW Sterner, CW Vagins, MR Ganezer, KS Hill, JE Keig, WE Jang, JS Kim, JY Lim, IT Scholberg, K Walter, CW Wendell, R Ellsworth, RW Tasaka, S Guillian, E Kibayashi, A Learned, JG Matsuno, S Messier, MD Hayato, Y Ichikawa, AK Ishida, T Ishii, T Iwashita, T Kobayashi, T Nakadaira, T Nakamura, K Nitta, K Oyama, Y Totsuka, Y Suzuki, AT Hasegawa, M Kato, I Maesaka, H Nakaya, T Nishikawa, K Sasaki, T Sato, H Yamamoto, S Yokoyama, M Haines, TJ Dazeley, S Hatakeyama, S Svoboda, R Blaufuss, E Goodman, JA Sullivan, GW Turcan, D Cooley, J Habig, A Fukuda, Y Sato, T Itow, Y Jung, CK Kato, T Kobayashi, K Malek, M Mauger, C McGrew, C Sarrat, A Yanagisawa, C Tamura, N Sakuda, M Kuno, Y Yoshida, M Kim, SB Yoo, J Ishizuka, T Okazawa, H Choi, Y Seo, HK Gando, Y Hasegawa, T Inoue, K Shirai, J Suzuki, A Nishijima, K Ishino, H Watanabe, Y Koshiba, M Kielczewska, D Zalipska, J Berns, HG Gran, R Shiraishi, KK Stachyra, A Washburn, K Wilkes, RJ AF Hosaka, J. Ishihara, K. Kameda, J. Koshio, Y. Minamino, A. Mitsuda, C. Miura, M. Moriyama, S. Nakahata, M. Namba, T. Obayashi, Y. Shiozawa, M. Suzuki, Y. Takeda, A. Takeuchi, Y. Yamada, S. Higuchi, I. Ishitsuka, M. Kajita, T. Kaneyuki, K. Mitsuka, G. Nakayama, S. Nishino, H. Okada, A. Okumura, K. Saji, C. Takenaga, Y. Clark, S. Desai, S. Kearns, E. Likhoded, S. Stone, J. L. Sulak, L. R. Wang, W. Goldhaber, M. Casper, D. Cravens, J. P. Kropp, W. R. Liu, D. W. Mine, S. Regis, C. Smy, M. B. Sobel, H. W. Sterner, C. W. Vagins, M. R. Ganezer, K. S. Hill, J. E. Keig, W. E. Jang, J. S. Kim, J. Y. Lim, I. T. Scholberg, K. Walter, C. W. Wendell, R. Ellsworth, R. W. Tasaka, S. Guillian, E. Kibayashi, A. Learned, J. G. Matsuno, S. Messier, M. D. Hayato, Y. Ichikawa, A. K. Ishida, T. Ishii, T. Iwashita, T. Kobayashi, T. Nakadaira, T. Nakamura, K. Nitta, K. Oyama, Y. Totsuka, Y. Suzuki, A. T. Hasegawa, M. Kato, I. Maesaka, H. Nakaya, T. Nishikawa, K. Sasaki, T. Sato, H. Yamamoto, S. Yokoyama, M. Haines, T. J. Dazeley, S. Hatakeyama, S. Svoboda, R. Blaufuss, E. Goodman, J. A. Sullivan, G. W. Turcan, D. Cooley, J. Habig, A. Fukuda, Y. Sato, T. Itow, Y. Jung, C. K. Kato, T. Kobayashi, K. Malek, M. Mauger, C. McGrew, C. Sarrat, A. Yanagisawa, C. Tamura, N. Sakuda, M. Kuno, Y. Yoshida, M. Kim, S. B. Yoo, J. Ishizuka, T. Okazawa, H. Choi, Y. Seo, H. K. Gando, Y. Hasegawa, T. Inoue, K. Shirai, J. Suzuki, A. Nishijima, K. Ishino, H. Watanabe, Y. Koshiba, M. Kielczewska, D. Zalipska, J. Berns, H. G. Gran, R. Shiraishi, K. K. Stachyra, A. Washburn, K. Wilkes, R. J. CA Super-Kamiokande Collaboration TI Three flavor neutrino oscillation analysis of atmospheric neutrinos in Super-Kamiokande SO PHYSICAL REVIEW D LA English DT Article ID LONG-BASE-LINE; MASS HIERARCHY; SEARCH; MATTER AB We report on the results of a three-flavor oscillation analysis using Super-Kamiokande I atmospheric neutrino data, with the assumption of one mass scale dominance (Delta m(12)(2)=0). No significant flux change due to matter effect, which occurs when neutrinos propagate inside the Earth for theta(13)not equal 0, has been seen either in a multi-GeV nu(e)-rich sample or in a nu(mu)-rich sample. Both normal and inverted mass hierarchy hypotheses are tested and both are consistent with observation. Using Super-Kamiokande data only, 2-dimensional 90% confidence allowed regions are obtained: mixing angles are constrained to sin(2)theta(13)< 0.14 and 0.37 < sin(2)theta(23)< 0.65 for the normal mass hierarchy. Weaker constraints, sin(2)theta(13)< 0.27 and 0.37 < sin(2)theta(23)< 0.69, are obtained for the inverted mass hierarchy case. C1 Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Gifu 5061205, Japan. Univ Tokyo, Inst Cosm Ray Res, Res Ctr Cosm Nutr, Kashiwa, Chiba 2778582, Japan. Boston Univ, Dept Phys, Boston, MA 02215 USA. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. Calif State Univ Dominguez Hills, Dept Phys, Carson, CA 90747 USA. Chonnam Natl Univ, Dept Phys, Kwangju 500757, South Korea. Duke Univ, Dept Phys, Durham, NC 27708 USA. George Mason Univ, Dept Phys, Fairfax, VA 22030 USA. Gifu Univ, Dept Phys, Gifu, Gifu 5011193, Japan. Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan. Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87544 USA. Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. Univ Maryland, Dept Phys, College Pk, MD 20742 USA. MIT, Dept Phys, Cambridge, MA 02139 USA. Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. Miyagi Univ Educ, Dept Phys, Sendai, Miyagi 9800845, Japan. Nagoya Univ, Solar Terrestrial Environm Lab, Nagoya, Aichi 4648601, Japan. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Niigata Univ, Dept Phys, Niigata, Niigata 9502181, Japan. Okayama Univ, Dept Phys, Okayama 7008530, Japan. Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan. Seoul Natl Univ, Dept Phys, Seoul 151742, South Korea. Shizuoka Univ, Dept Syst Engn, Hamamatsu, Shizuoka 4328561, Japan. Shizuoka Univ Welf, Dept Informat Social Welf, Yaizu, Shizuoka 4258611, Japan. Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. Tohoku Univ, Res Ctr Neutrino Sci, Sendai, Miyagi 9808578, Japan. Tokai Univ, Dept Phys, Hiratsuka, Kanagawa 2591292, Japan. Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. Univ Tokyo, Tokyo 1130033, Japan. Warsaw Univ, Inst Expt Phys, PL-00681 Warsaw, Poland. Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Hosaka, J (reprint author), Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Gifu 5061205, Japan. RI Obayashi, Yoshihisa/A-4472-2011; Yoo, Jonghee/K-8394-2016; Yokoyama, Masashi/A-4458-2011; Takeuchi, Yasuo/A-4310-2011; Nakamura, Kenzo/F-7174-2010; Sobel, Henry/A-4369-2011; Suzuki, Yoichiro/F-7542-2010; Wilkes, R.Jeffrey/E-6011-2013; Kim, Soo-Bong/B-7061-2014; Ishino, Hirokazu/C-1994-2015; Koshio, Yusuke/C-2847-2015; Kibayashi, Atsuko/K-7327-2015 OI Yokoyama, Masashi/0000-0003-2742-0251; Ishino, Hirokazu/0000-0002-8623-4080; Koshio, Yusuke/0000-0003-0437-8505; NR 28 TC 145 Z9 145 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 3 AR 032002 DI 10.1103/PhysRevD.74.032002 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HU UT WOS:000240239300013 ER PT J AU Mihaila, B Dawson, JF Cooper, F AF Mihaila, Bogdan Dawson, John F. Cooper, Fred TI Forward cone quantization of the Dirac field in "longitudinal boost-invariant" coordinates with cylindrical symmetry SO PHYSICAL REVIEW D LA English DT Article ID CENTRAL RAPIDITY REGION; PARTICLE-PRODUCTION; SEPARATION; VARIABLES; SPACE; HYPERBOLOIDS; COLLISIONS; EQUATIONS; MODEL AB We obtain a complete set of free-field solutions of the Dirac equation in a (longitudinal) boost-invariant geometry with azimuthal symmetry and use these solutions to perform the canonical quantization of a free Dirac field of mass M. This coordinate system which uses the 1+1 dimensional fluid rapidity eta=1/2ln[(t-z)/(t+z)] and the fluid proper time tau=(t(2)-z(2))(1/2) is relevant for understanding particle production of quarks and antiquarks following an ultrarelativistic collision of heavy ions, as it incorporates the (approximate) longitudinal "boost invariance" of the distribution of outgoing particles. We compare two approaches to solving the Dirac equation in curvilinear coordinates, one directly using Vierbeins, and one using a "diagonal" Vierbein representation. C1 Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. Santa Fe Inst, Santa Fe, NM 87501 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Mihaila, B (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM bmihaila@lanl.gov; john.dawson@unh.edu; cooper@santafe.edu RI Mihaila, Bogdan/D-8795-2013 OI Mihaila, Bogdan/0000-0002-1489-8814 NR 33 TC 5 Z9 5 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 3 AR 036006 DI 10.1103/PhysRevD.74.036006 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HU UT WOS:000240239300096 ER PT J AU Miocinovic, P Field, RC Gorham, PW Guillian, E Milincic, R Saltzberg, D Walz, D Williams, D AF Miocinovic, P. Field, R. C. Gorham, P. W. Guillian, E. Milincic, R. Saltzberg, D. Walz, D. Williams, D. TI Time-domain measurement of broadband coherent Cherenkov radiation SO PHYSICAL REVIEW D LA English DT Article ID EMISSION; CHARGE AB We report on further analysis of coherent microwave Cherenkov impulses emitted via the Askaryan mechanism from high-energy electromagnetic showers produced at the Stanford Linear Accelerator Center (SLAC). In this report, the time-domain based analysis of the measurements made with a broadband (nominally 1-18 GHz) log periodic dipole array antenna is described. The theory of a transmit-receive antenna system based on time-dependent effective height operator is summarized and applied to fully characterize the measurement antenna system and to reconstruct the electric field induced via the Askaryan process. The observed radiation intensity and phase as functions of frequency were found to agree with expectations from 0.75-11.5 GHz within experimental errors on the normalized electric field magnitude and the relative phase; sigma(R|E|)=0.039 mu V/MHz/TeV and sigma(phi)=17 degrees. This is the first time this agreement has been observed over such a broad bandwidth, and the first measurement of the relative phase variation of an Askaryan pulse. The importance of validation of the Askaryan mechanism is significant since it is viewed as the most promising way to detect cosmogenic neutrino fluxes at E-nu greater than or similar to 10(15) eV. C1 Univ Hawaii Manoa, Dept Phys & Astron, Honolulu, HI 96822 USA. Stanford Univ, Stanford Linear Accelerator Ctr, Menlo Pk, CA USA. Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90024 USA. RP Miocinovic, P (reprint author), Penn State Univ, State Coll, PA 16802 USA. EM predrag@phys.hawaii.edu NR 22 TC 22 Z9 22 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 4 AR 043002 DI 10.1103/PhysRevD.74.043002 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HW UT WOS:000240239500006 ER PT J AU Oswald, M Pisarski, RD AF Oswald, Michaela Pisarski, Robert D. TI beta-functions for a SU(2) matrix model in 2+epsilon dimensions SO PHYSICAL REVIEW D LA English DT Review ID LATTICE GAUGE-THEORY; RENORMALIZED POLYAKOV LOOP; PRINCIPAL CHIRAL FIELD; FINITE-TEMPERATURE QCD; LINEAR SIGMA-MODELS; T-HOOFT LOOP; HOT QCD; PHASE-TRANSITION; INTERFACE TENSION; SYMMETRIC-SPACES AB To investigate the nonperturbative, electric sector of a deconfined gauge theory at nonzero temperature, we consider a SU(2) matrix model. We compute beta-functions to one loop order for the simplest extension of the O(4) nonlinear sigma model, which involves three coupling constants. Computing in the ultraviolet limit in 2+epsilon dimensions, we find that at least one coupling is not asymptotically free. C1 Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Oswald, M (reprint author), Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. NR 133 TC 10 Z9 10 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 4 AR 045029 DI 10.1103/PhysRevD.74.045029 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HW UT WOS:000240239500114 ER PT J AU Romatschke, P Venugopalan, R AF Romatschke, Paul Venugopalan, Raju TI The unstable glasma SO PHYSICAL REVIEW D LA English DT Article ID HEAVY-ION COLLISIONS; NUCLEUS-NUCLEUS COLLISIONS; QUARK-GLUON PLASMA; WEIZSACKER-WILLIAMS FIELD; TRANSVERSE-MOMENTUM; BOLTZMANN-EQUATION; INITIAL-STAGE; SMALL-X; THERMALIZATION; EQUILIBRATION AB We discuss results from 3+1-D numerical simulations of SU(2) Yang-Mills equations for an unstable glasma expanding into the vacuum after a high energy heavy-ion collision. We expand on our earlier work on a non-Abelian Weibel instability in such a system and study the behavior of the instability in greater detail on significantly larger lattices than previously. We establish the time scale for the onset of the instability and demonstrate that the growth rate is robust as one approaches the continuum limit. For large violations of boost invariance, non-Abelian effects cause the growth of soft modes to saturate. At late times, we observe significant creation of longitudinal pressure and a systematic trend towards isotropy. These time scales however are significantly larger than those required for early thermalization in heavy-ion collisions. We discuss additional effects in the produced glasma that may speed up thermalization. C1 Univ Bielefeld, Fak Phys, D-33501 Bielefeld, Germany. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Romatschke, P (reprint author), Univ Bielefeld, Fak Phys, Postfach 8640, D-33501 Bielefeld, Germany. NR 65 TC 145 Z9 145 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 4 AR 045011 DI 10.1103/PhysRevD.74.045011 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HW UT WOS:000240239500096 ER PT J AU Sullivan, Z Berger, EL AF Sullivan, Zack Berger, Edmond L. TI Missing heavy flavor backgrounds to Higgs boson production SO PHYSICAL REVIEW D LA English DT Article ID QUARK PRODUCTION; QCD CORRECTIONS; COLLISIONS AB We investigate characteristics of the signal and backgrounds for Higgs boson decay into WW at the Fermilab Tevatron and CERN Large Hadron Collider. In the lepton-pair-plus-missing-energy final state, we show that the background receives an important contribution from semileptonic decays of heavy flavors. Lepton isolation cuts provide too little suppression of these heavy flavor contributions, and an additional 4 to 8 orders-of-magnitude suppression must come from physics cuts. We demonstrate that an increase of the minimum transverse momentum of nonleading leptons in multilepton events is one effective way to achieve the needed suppression, without appreciable loss of the Higgs boson signal. Such a cut would impact the efficiency of searches for supersymmetry as well. We emphasize the importance of direct measurement of the lepton background from heavy flavor production. C1 Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Sullivan, Z (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. NR 18 TC 12 Z9 12 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 3 AR 033008 DI 10.1103/PhysRevD.74.033008 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HU UT WOS:000240239300028 ER PT J AU Yokokawa, K Sasaki, S Hatsuda, T Hayashigaki, A AF Yokokawa, Kazuo Sasaki, Shoichi Hatsuda, Tetsuo Hayashigaki, Arata TI First lattice study of low-energy charmonium-hadron interaction SO PHYSICAL REVIEW D LA English DT Article ID SHORT-DISTANCE ANALYSIS; HEAVY-QUARK SYSTEMS; SCATTERING LENGTHS; J/PSI; QCD; STATES; SCALE AB We study the scattering lengths of charmonia (J/psi and eta(c)) with light hadrons (pi, rho, and N) by the quenched lattice QCD simulations on 24(3)x48, 32(3)x48, and 48(3)x48 lattices with the lattice spacing a similar or equal to 0.068 fm. The scattering length is extracted by using the Luscher's phase-shift formula together with the measurement of the energy shift Delta E of two hadrons on the lattice. We find that there exist attractive interactions in all channels, J/psi(eta(c))-pi, J/psi(eta(c))-rho, and J/psi(eta(c))-N: The s-wave J/psi-pi (eta(c)-pi) scattering length is determined as 0.0119 +/- 0.0039 fm (0.0113 +/- 0.0035 fm) and the corresponding elastic cross section at the threshold becomes 0.018(-0.010)(+0.013) mb (0.016(-0.008)(+0.011) mb). Also, the J/psi-N (eta(c)-N) spin-averaged scattering length is 0.71 +/- 0.48 fm (0.70 +/- 0.66 fm), which is at least an order of magnitude larger than the charmonium-pion scattering length. The volume dependence of the energy shifts is also investigated to check the expected 1/L-3 behavior of Delta E at a large spatial size L. C1 Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. Brookhaven Natl Lab, RIKEN BNL, Res Ctr, Upton, NY 11973 USA. Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany. RP Yokokawa, K (reprint author), Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. RI Hatsuda, Tetsuo/C-2901-2013 NR 35 TC 25 Z9 25 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2006 VL 74 IS 3 AR 034504 DI 10.1103/PhysRevD.74.034504 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080HU UT WOS:000240239300067 ER PT J AU Cucchietti, FM Lewenkopf, CH Pastawski, HM AF Cucchietti, F. M. Lewenkopf, C. H. Pastawski, H. M. TI Decay of the Loschmidt echo in a time-dependent environment SO PHYSICAL REVIEW E LA English DT Article ID NUCLEAR-MAGNETIC-RESONANCE; QUANTUM MOTION; DECOHERENCE; STABILITY; DYNAMICS; SYSTEMS; PARTICLE; DOTS AB We study the decay rate of the Loschmidt echo or fidelity in a chaotic system under a time-dependent perturbation V(q,t) with typical strength h/tau(V). The perturbation represents the action of an uncontrolled environment interacting with the system, and is characterized by a correlation length xi(0) and a correlation time tau(0). For small perturbation strengths or rapid fluctuating perturbations, the Loschmidt echo decays exponentially with a rate predicted by the Fermi "golden rule," 1/tau=tau(c)/tau(2)(V), where tau(c)similar to min[tau(0),xi(0)/v] and v is the typical particle velocity. Whenever the rate 1/tau is larger than the Lyapunov exponent of the system, a perturbation independent Lyapunov decay regime arises. We also find that by speeding up the fluctuations (while keeping the perturbation strength fixed) the fidelity decay becomes slower, and hence one can protect the system against decoherence. C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. Univ Estado Rio de Janeiro, Inst Fis, BR-20559900 Rio De Janeiro, Brazil. Univ Nacl Cordoba, Fac Matemat Astron & Fis, RA-5000 Cordoba, Argentina. RP Cucchietti, FM (reprint author), Los Alamos Natl Lab, Div Theory, T-4,MS B213, Los Alamos, NM 87545 USA. RI Lewenkopf, Caio/A-1791-2014; Cucchietti, Fernando/C-7765-2016 OI Lewenkopf, Caio/0000-0002-2053-2798; Cucchietti, Fernando/0000-0002-9027-1263 NR 44 TC 6 Z9 6 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD AUG PY 2006 VL 74 IS 2 AR 026207 DI 10.1103/PhysRevE.74.026207 PN 2 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 080HJ UT WOS:000240238200032 PM 17025525 ER PT J AU Gregori, G Glenzer, SH Landen, OL AF Gregori, G. Glenzer, S. H. Landen, O. L. TI Generalized x-ray scattering cross section from nonequilibrium plasmas SO PHYSICAL REVIEW E LA English DT Article ID DENSE MATTER; 2-COMPONENT PLASMAS; THOMSON SCATTERING; ELECTRON-GAS; DIFFRACTION; TEMPERATURE; TRANSPORT; LIQUID; STATE AB We propose a modified x-ray form factor that describes the scattering cross section in warm dense matter valid for both the plasma and the solid (crystalline) state. Our model accounts for the effect of lattice correlations on the electron-electron dynamic structure, as well as provides a smooth transition between the solid and the plasma scattering cross sections. In addition, we generalize the expression of the dynamic structure in the case of a two-temperature system (with different electron and ion temperatures). This work provides a unified description of the x-ray scattering processes in warm and dense matter, as the one encountered in inertial confinement fusion, laboratory astrophysics, material science, and high-energy density physics and it can be used to verify temperature relaxation mechanisms in such environments. C1 Rutherford Appleton Lab, CCLRC, Didcot OX11 0QX, Oxon, England. Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Gregori, G (reprint author), Rutherford Appleton Lab, CCLRC, Didcot OX11 0QX, Oxon, England. NR 49 TC 40 Z9 40 U1 0 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD AUG PY 2006 VL 74 IS 2 AR 026402 DI 10.1103/PhysRevE.74.026402 PN 2 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 080HJ UT WOS:000240238200052 PM 17025545 ER PT J AU Michel, P Schroeder, CB Shadwick, BA Esarey, E Leemans, WP AF Michel, P. Schroeder, C. B. Shadwick, B. A. Esarey, E. Leemans, W. P. TI Radiative damping and electron beam dynamics in plasma-based accelerators SO PHYSICAL REVIEW E LA English DT Article ID LASER; EMISSION; FIELDS; MOTION AB The effects of radiation reaction on electron beam dynamics are studied in the context of plasma-based accelerators. Electrons accelerated in a plasma channel undergo transverse betatron oscillations due to strong focusing forces. These oscillations lead to emission by the electrons of synchrotron radiation, with a corresponding energy loss that affects the beam properties. An analytical model for the single particle orbits and beam moments including the classical radiation reaction force is derived and compared to the results of a particle transport code. Since the betatron amplitude depends on the initial transverse position of the electron, the resulting radiation can increase the relative energy spread of the beam to significant levels (e.g., several percent). This effect can be diminished by matching the beam into the channel, which could require micron sized beam radii for typical values of the beam emittance and plasma density. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Michel, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RI Michel, Pierre/J-9947-2012; OI Schroeder, Carl/0000-0002-9610-0166 NR 21 TC 37 Z9 38 U1 0 U2 7 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD AUG PY 2006 VL 74 IS 2 AR 026501 DI 10.1103/PhysRevE.74.026501 PN 2 PG 14 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 080HJ UT WOS:000240238200057 PM 17025550 ER PT J AU Nukala, PKVV Zapperi, S Simunovic, S AF Nukala, Phani Kumar V. V. Zapperi, Stefano Simunovic, Srdan TI Crack surface roughness in three-dimensional random fuse networks SO PHYSICAL REVIEW E LA English DT Article ID FRACTURE SURFACES; WIDTH DISTRIBUTION; DISORDERED MEDIA; BRITTLE-FRACTURE; INTERFACES; BREAKDOWN; MODELS; WOOD AB Using large system sizes with extensive statistical sampling, we analyze the scaling properties of crack roughness and damage profiles in the three-dimensional random fuse model. The analysis of damage profiles indicates that damage accumulates in a diffusive manner up to the peak load, and localization sets in abruptly at the peak load, starting from a uniform damage landscape. The global crack width scales as W similar to L-0.5 and is consistent with the scaling of localization length xi similar to L-0.5 used in the data collapse of damage profiles in the postpeak regime. This consistency between the global crack roughness exponent and the postpeak damage profile localization length supports the idea that the postpeak damage profile is predominantly due to the localization produced by the catastrophic failure, which at the same time results in the formation of the final crack. Finally, the crack width distributions can be collapsed for different system sizes and follow a log-normal distribution. C1 Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. Univ Roma La Sapienza, Dipartimento Fis, CNR, INFM, I-00185 Rome, Italy. RP Nukala, PKVV (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RI Zapperi, Stefano/C-9473-2009 OI Zapperi, Stefano/0000-0001-5692-5465 NR 54 TC 7 Z9 7 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD AUG PY 2006 VL 74 IS 2 AR 026105 DI 10.1103/PhysRevE.74.026105 PN 2 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 080HJ UT WOS:000240238200008 PM 17025501 ER PT J AU Ofer, E Sloutskin, E Tamam, L Ocko, BM Deutsch, M AF Ofer, E. Sloutskin, E. Tamam, L. Ocko, B. M. Deutsch, M. TI Surface freezing in binary alkane-alcohol mixtures SO PHYSICAL REVIEW E LA English DT Article ID X-RAY-SCATTERING; LIQUID NORMAL-ALKANES; CHAIN MOLECULES; PHASE-TRANSITIONS; MONOLAYERS; TEMPERATURE; NUCLEATION; ICE AB Surface freezing was detected and studied in mixtures of alcohol and alkane molecules, using surface tensiometry and surface-specific x-ray scattering methods. Considering that surface freezing in pure alkanes forms an ordered monolayer and in alcohols it forms an ordered bilayer, the length mismatch repulsion was minimized by varying the carbon number of the alkane component around 2n, where n is the carbon number of the alcohol molecule. A solutionlike behavior was found for all mixtures, where the ideal liquid mixture phase-separates upon freezing both in the bulk and the surface. The solid exhibits a herringbone crystalline phase below an alkane mole fraction phi(t)approximate to 0.8 and a rotator phase above it. The surface frozen film below phi(t) is an alkane monolayer exhibiting a next-nearest neighbor molecular tilt of a composition-dependent magnitude. Above phi(t), no diffraction peaks were observed. This could be explained by the intrinsically shorter-range order of the rotator phase and a possible proliferation of defects. C1 Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel. Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Deutsch, M (reprint author), Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel. EM deutsch@mail.biu.ac.il NR 43 TC 1 Z9 1 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD AUG PY 2006 VL 74 IS 2 AR 021602 DI 10.1103/PhysRevE.74.021602 PN 1 PG 12 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 080HI UT WOS:000240238100062 PM 17025441 ER PT J AU Rycroft, CH Grest, GS Landry, JW Bazant, MZ AF Rycroft, Chris H. Grest, Gary S. Landry, James W. Bazant, Martin Z. TI Analysis of granular flow in a pebble-bed nuclear reactor SO PHYSICAL REVIEW E LA English DT Article ID PACKED-BEDS; ANTIGRANULOCYTES FLOW; SEGREGATION; SPHERES; MODEL; REVERSE; GRAVITY; PACKING; SILO; WALL AB Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a major impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440 000 frictional, viscoelastic 6-cm-diam spheres draining in a cylindrical vessel of diameter 3.5 m and height 10 m with bottom funnels angled at 30 degrees or 60 degrees. We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow. C1 MIT, Dept Math, Cambridge, MA 02139 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. MIT, Lincoln Lab, Lexington, MA 02420 USA. RP Rycroft, CH (reprint author), MIT, Dept Math, Cambridge, MA 02139 USA. OI Rycroft, Chris/0000-0003-4677-6990 NR 50 TC 126 Z9 128 U1 0 U2 29 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD AUG PY 2006 VL 74 IS 2 AR 021306 DI 10.1103/PhysRevE.74.021306 PN 1 PG 16 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 080HI UT WOS:000240238100039 PM 17025418 ER PT J AU Mihalcea, D Bohn, CL Happek, U Piot, P AF Mihalcea, D. Bohn, C. L. Happek, U. Piot, P. TI Longitudinal electron bunch diagnostics using coherent transition radiation SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID CHARGED-PARTICLE BUNCH; SHAPE AB The longitudinal charge distribution of electron bunches in the Fermilab/NICADD photoinjector was determined using the coherent transition radiation produced by electrons passing through a thin metallic foil. The autocorrelation of the transition radiation signal was measured with a Michelson-type interferometer. The response function of the interferometer was determined from measured and simulated intensity spectra for low electron bunch charge and maximum longitudinal compression. Both pyroelectric and Golay detectors were used for these measurements. A Kramers-Kronig technique was used to determine longitudinal charge distribution. Measurements were performed for electron bunch lengths in the range from 0.3 to 2 ps (rms). To test the accuracy of this interferometric method, the longitudinal charge distribution was measured for double-peaked electron bunches with known distance between the two pulses. The agreement between measured bunch length and simulation is within 30%. C1 No Illinois Univ, De Kalb, IL 60115 USA. Univ Georgia, Athens, GA 30602 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Mihalcea, D (reprint author), No Illinois Univ, De Kalb, IL 60115 USA. NR 21 TC 15 Z9 15 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG PY 2006 VL 9 IS 8 AR 082801 DI 10.1103/PhysRevSTAB.9.082801 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 097GK UT WOS:000241435000005 ER PT J AU Daniel, AV Hamilton, JH Ramayya, AV Fomichev, AS Oganessian, YT Popeko, GS Rodin, AM Ter-Akopian, GM Hwang, JK Fong, D Goodin, C Li, K Rasmussen, JO Seweryniak, D Carpenter, M Lister, CJ Zhu, S Janssens, RVF Batchelder, J Kliman, J Krupa, L Ma, WC Zhu, SJ Chaturvedi, L Cole, JD AF Daniel, A. V. Hamilton, J. H. Ramayya, A. V. Fomichev, A. S. Oganessian, Yu. Ts. Popeko, G. S. Rodin, A. M. Ter-Akopian, G. M. Hwang, J. K. Fong, D. Goodin, C. Li, K. Rasmussen, J. O. Seweryniak, D. Carpenter, M. Lister, C. J. Zhu, Sh. Janssens, R. V. F. Batchelder, J. Kliman, J. Krupa, L. Ma, W. -C. Zhu, S. J. Chaturvedi, L. Cole, J. D. TI Experiment aimed at the study of Cf-252 binary and ternary fission SO PHYSICS OF ATOMIC NUCLEI LA English DT Article; Proceedings Paper CT National Conference on Nuclear Physics CY JUN 28-JUL 01, 2005 CL St Petersburg State Univ, St Petersburg, RUSSIA HO St Petersburg State Univ ID FRAGMENT PAIRS; YIELDS AB A new experiment devoted to the fission of Cf-252 is described. It continued a series of our experiments based on correlation measurements of gamma rays emitted by fission fragment pairs. The measurements of gamma-gamma and gamma-gamma-gamma coincidences were done at Gammasphere with closed Cf-252 sources. The open source was used for the first time in the last experiment. Fission fragment detectors were arranged in the center hole of Gammasphere. Correlations between fission fragment masses, total kinetic energy, and gamma rays were observed. The first, preliminary results of data analysis are discussed. C1 Joint Inst Nucl Res, Flerov Lab Nucl React, Dubna 141980, Moscow Oblast, Russia. Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Oak Ridge Natl Lab, Oak Ridge, TN USA. Slovak Acad Sci, Dept Nucl Phys, Bratislava, Slovakia. Mississippi State Univ, Dept Phys, Mississippi State, MS 39762 USA. Tsing Hua Univ, Beijing 100084, Peoples R China. Banaras Hindu Univ, Varanasi 221005, Uttar Pradesh, India. Idaho Natl Lab, Idaho Falls, ID USA. RP Daniel, AV (reprint author), Joint Inst Nucl Res, Flerov Lab Nucl React, Dubna 141980, Moscow Oblast, Russia. EM daniel@jinr.ru RI Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 NR 7 TC 2 Z9 2 U1 3 U2 4 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7788 J9 PHYS ATOM NUCL+ JI Phys. Atom. Nuclei PD AUG PY 2006 VL 69 IS 8 BP 1405 EP 1408 DI 10.1134/S1063778806080199 PG 4 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 078MI UT WOS:000240107500019 ER PT J AU Chen, YT Chen, HJ Zhang, JS Zhang, BZ AF Chen, Yitung Chen, Huajun Zhang, Jinsuo Zhang, Benzhao TI Viscoelastic flow in rotating curved pipes SO PHYSICS OF FLUIDS LA English DT Article ID CONVECTIVE HEAT-TRANSFER; FLUID-FLOW; SECONDARY FLOWS; TUBE AB Fully developed viscoelastic flows in rotating curved pipes with circular cross section are investigated theoretically and numerically employing the Oldroyd-B fluid model. Based on Dean's approximation, a perturbation solution up to the secondary order is obtained. The governing equations are also solved numerically by the finite volume method. The theoretical and numerical solutions agree with each other very well. The results indicate that the rotation, as well as the curvature and elasticity, plays an important role in affecting the friction factor, the secondary flow pattern and intensity. The co-rotation enhances effects of curvature and elasticity on the secondary flow. For the counter-rotation, there is a critical rotational number R-Omega', which can make the effect of rotation counteract the effect of curvature and elasticity. Complicated flow behaviors are found at this value. For the relative creeping flow, R-Omega' can be estimated according to the expression R-Omega'=-4We delta. Effects of curvature and elasticity at different rotational numbers on both relative creeping flow and inertial flow are also analyzed and discussed. (c) 2006 American Institute of Physics. C1 Univ Nevada, Dept Mech Engn, Las Vegas, NV 89154 USA. Los Alamos Natl Lab, Nucl Design & Risk Anal Grp, Los Alamos, NM 87545 USA. RP Chen, HJ (reprint author), Univ Nevada, Dept Mech Engn, Las Vegas, NV 89154 USA. EM huajunc@nscee.edu RI Zhang, Jinsuo/H-4717-2012 OI Zhang, Jinsuo/0000-0002-3412-7769 NR 38 TC 11 Z9 11 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD AUG PY 2006 VL 18 IS 8 AR 083103 DI 10.1063/1.2336454 PG 17 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 080HB UT WOS:000240237400012 ER PT J AU Cotrell, DL McFadden, GB AF Cotrell, David L. McFadden, G. B. TI Axial flow effects on the stability of circular Couette flow with viscous heating SO PHYSICS OF FLUIDS LA English DT Article ID RADIAL TEMPERATURE-GRADIENT; SPIRAL POISEUILLE FLOW; ROTATING CYLINDERS; LINEAR-STABILITY; THERMAL SENSITIVITY; VARIABLE DENSITY; FLUID; INSTABILITY; CENTRIFUGAL; MOTION AB We consider flow between concentric circular cylinders driven jointly by a constant axial pressure gradient and rotation of one or both cylinder walls. In this work we account for viscous heating effects with a temperature-dependent viscosity, and have computed critical values with a radius ratio eta equivalent to R-i/R-o=0.827 and rotation rate ratio kappa equivalent to Omega(o)/Omega(i)=0 as used in the recent zero axial flow experiments of White and Muller [J. Fluid Mech. 462, 133 (2002)], where R-i and R-o are the inner and outer cylinder radii, respectively, and Omega(i) and Omega(o) are the corresponding (signed) angular velocities. The effects of gravity are neglected, whereas conductivity, the volumetric coefficient of thermal expansion, density, and constant pressure specific heat are taken to be constant. The analysis extends previous results with no axial flow, and accounts for arbitrary disturbances of infinitesimal amplitude. Results show that over the entire range of axial flow rates considered, stability boundaries differ significantly from those found for the zero axial flow case. Consistent with the isothermal results of Cotrell, Rani, and Pearlstein [J. Fluid Mech. 509, 353 (2004)] and the nonisothermal results of Cotrell and McFadden [Physics of Fluids 17, 114102 (2005)], the critical disturbance is axisymmetric only over a finite range of Reynolds numbers beginning at zero, beyond which the critical disturbance becomes nonaxisymmetric. (c) 2006 American Institute of Physics. C1 Natl Inst Stand & Technol, Math & Computat Sci Div, Gaithersburg, MD 20899 USA. RP Cotrell, DL (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. RI McFadden, Geoffrey/A-7920-2008 OI McFadden, Geoffrey/0000-0001-6723-2103 NR 39 TC 0 Z9 0 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD AUG PY 2006 VL 18 IS 8 AR 084106 DI 10.1063/1.2210938 PG 21 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 080HB UT WOS:000240237400026 ER PT J AU Dimonte, G Tipton, R AF Dimonte, Guy Tipton, Robert TI K-L turbulence model for the self-similar growth of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities SO PHYSICS OF FLUIDS LA English DT Article ID RADIATIVELY DRIVEN SHOCKS; VARIABLE ACCELERATION; NUMERICAL-SIMULATION; ISOTROPIC TURBULENCE; NONLINEAR EVOLUTION; LAYER; LASER; DEPENDENCE; TRANSPORT; SCHEME AB A turbulence model is developed to described the self-similar growth of the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities. The model describes the dominant eddies in the mixing zone with evolutionary equations for their characteristic dimension L and energy per unit mass K equivalent to V-2/2. The equations are based on the successful buoyancy-drag models for RT and RM flows, but constructed only with local parameters so that it can be applied to multidimensional flows with multiple shells of materials. The model has several unknown coefficients that are determined by comparing analytical and numerical solutions with RT and RM experiments. (c) 2006 American Institute of Physics. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Dimonte, G (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM dimonte@lanl.gov NR 74 TC 53 Z9 55 U1 0 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD AUG PY 2006 VL 18 IS 8 AR 085101 DI 10.1063/1.2219768 PG 22 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 080HB UT WOS:000240237400027 ER PT J AU Austin, ME Burrell, KH Gentle, KW Gohil, P Greenfield, CM Groebner, RJ Heidbrink, WW Luo, Y Kinsey, JE Makowski, MA McKee, GR Nazikian, R Petty, CC Prater, R Rhodes, TL Shafer, MW Van Zeeland, MA AF Austin, M. E. Burrell, K. H. Gentle, K. W. Gohil, P. Greenfield, C. M. Groebner, R. J. Heidbrink, W. W. Luo, Y. Kinsey, J. E. Makowski, M. A. McKee, G. R. Nazikian, R. Petty, C. C. Prater, R. Rhodes, T. L. Shafer, M. W. Van Zeeland, M. A. TI Core barrier formation near integer q surfaces in DIII-D SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 47th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY OCT 24-28, 2005 CL Denver, CO SP Amer Phys Soc, Div Plasma Phys ID INTERNAL TRANSPORT BARRIER; MAGNETIC SHEAR; GYROKINETIC SIMULATIONS; TOKAMAK PLASMAS; TURBULENCE; CONFINEMENT; DISCHARGES; ELECTRON; SYSTEM AB Recent DIII-D experiments have significantly improved the understanding of internal transport barriers (ITBs) that are triggered close to the time when an integer value of the minimum in q is crossed. While this phenomenon has been observed on many tokamaks, the extensive transport and fluctuation diagnostics on DIII-D have permitted a detailed study of the generation mechanisms of q-triggered ITBs as pertaining to turbulence suppression dynamics, shear flows, and energetic particle modes. In these discharges, the evolution of the q profile is measured using motional Stark effect polarimetry and the integer q(min) crossings are further pinpointed in time by the observation of Alfven cascades. High time resolution measurements of the ion and electron temperatures and the toroidal rotation show that the start of improved confinement is simultaneous in all three channels, and that this event precedes the traversal of integer q(min) by 5-20 ms. There is no significant low-frequency magnetohydrodynamic activity prior to or just after the crossing of the integer q(min) and hence magnetic reconnection is determined not to be the precipitant of the confinement change. Instead, results from the GYRO code point to the effects of zonal flows near low order rational q values as playing a role in ITB triggering. A reduction in local turbulent fluctuations is observed at the start of the temperature rise and, concurrently, an increase in turbulence poloidal flow velocity and flow shear is measured with the beam emission spectroscopy diagnostic. For the case of a transition to an enduring internal barrier the fluctuation level remains at a reduced amplitude. The timing and nature of the temperature, rotation, and fluctuation changes leading to internal barriers suggests transport improvement due to increased shear flow arising from the zonal flow structures. (c) 2006 American Institute of Physics. C1 Univ Texas, Austin, TX 78712 USA. Gen Atom Co, San Diego, CA 92186 USA. Univ Calif Irvine, Irvine, CA 92612 USA. Lehigh Univ, Bethlehem, PA 18015 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Wisconsin, Madison, WI 53706 USA. Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. Calif State Univ Los Angeles, Los Angeles, CA 90032 USA. Oak Ridge Inst Sci Educ, Oak Ridge, TN 37831 USA. RP Austin, ME (reprint author), Univ Texas, Austin, TX 78712 USA. OI Shafer, Morgan/0000-0001-9808-6305 NR 28 TC 43 Z9 43 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2006 VL 13 IS 8 AR 082502 DI 10.1063/1.2245579 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 080HE UT WOS:000240237700027 ER PT J AU del-Castillo-Negrete, D AF del-Castillo-Negrete, D. TI Fractional diffusion models of nonlocal transport SO PHYSICS OF PLASMAS LA English DT Article ID PARTIAL-DIFFERENTIAL-EQUATIONS; ANOMALOUS DIFFUSION; PLASMA TURBULENCE; MAGNETIC-FIELD; RANDOM-WALKS; TOKAMAK; ENERGY; PARADIGM; KINETICS AB A class of nonlocal models based on the use of fractional derivatives (FDs) is proposed to describe nondiffusive transport in magnetically confined plasmas. FDs are integro-differential operators that incorporate in a unified framework asymmetric non-Fickian transport, non-Markovian ("memory") effects, and nondiffusive scaling. To overcome the limitations of fractional models in unbounded domains, we use regularized FDs that allow the incorporation of finite-size domain effects, boundary conditions, and variable diffusivities. We present an alpha-weighted explicit/implicit numerical integration scheme based on the Grunwald-Letnikov representation of the regularized fractional diffusion operator in flux conserving form. In sharp contrast with the standard diffusive model, the strong nonlocality of fractional diffusion leads to a linear in time response for a decaying pulse at short times. In addition, an anomalous fractional pinch is observed, accompanied by the development of an uphill transport region where the "effective" diffusivity becomes negative. The fractional flux is in general asymmetric and, for steady states, it has a negative (toward the core) component that enhances confinement and a positive component that increases toward the edge and leads to poor confinement. The model exhibits the characteristic anomalous scaling of the confinement time, tau, with the system's size, L, tau similar to L-alpha, of low-confinement mode plasma where 1 80 degrees C) extractable AO levels decreased rapidly and faster than the concurrent loss in mechanical properties. While extractable AO concentrations decrease quickly, the material is able to maintain some useful mechanical properties, perhaps via non-extractable or grafted AO species formed during degradation providing additional protection. At lower aging temperatures extractable or free AO levels decreased more slowly than the mechanical properties. Therefore, for condition monitoring purposes a universal correlation between AO levels and aging state or material condition could not be established. Most importantly, however, loss of mechanical properties and oxidative degradation is observed at lower temperatures despite significant levels of free antioxidant in the material. The antioxidant appears to be limited in its effectiveness to completely prevent degradation reactions, or only fractions of the total AO available are actually involved in the inhibition process. (c) 2005 Elsevier Ltd. All rights reserved. C1 Sandia Natl Labs, Dept 1821, Albuquerque, NM 87185 USA. RP Celina, M (reprint author), Sandia Natl Labs, Dept 1821, POB 5800,MS 1411, Albuquerque, NM 87185 USA. EM mccelin@sandia.gov NR 46 TC 13 Z9 14 U1 1 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-3910 J9 POLYM DEGRAD STABIL JI Polym. Degrad. Stabil. PD AUG PY 2006 VL 91 IS 8 BP 1870 EP 1879 DI 10.1016/j.polymdegradstab.2005.11.006 PG 10 WC Polymer Science SC Polymer Science GA 055MR UT WOS:000238455300029 ER PT J AU Labouriau, A Taylor, D Stephens, TS Pasternak, M AF Labouriau, A Taylor, D Stephens, TS Pasternak, M TI Mossbauer and NMR characterization of tin octoate: Neat and residues in RTV foams SO POLYMER DEGRADATION AND STABILITY LA English DT Article DE polysiloxane foams; tin octoate; Mossbauer spectroscopy; NMR spectroscopy ID VULCANIZED POLYSILOXANE RUBBERS; TIN(II); IMPACT AB We have investigated hydrolysis and oxidation effects on tin octoate and on tin-octoate residues in RTV polysiloxane foams by means of Nuclear Magnetic Resonance (NMR) and Mossbauer spectroscopy (MS). Sn-119 NMR showed the presence of various tin species whereas Sn-119 MS detected the presence of two oxidation states: Sn(II) and Sn(IV). The relative abundance of Sn(IV) increased as both the tin octoate and the foam aged. Foams were also solvent extracted and no selective extraction of one tin oxidation state was observed; both oxidation states were detected. C-13 NMR indicated that octanoic acid is present in the tin octoate and in the foams as a residue. MS data showed that aging treatments of the foams and of the neat catalyst have a great effect on the tin oxidation state. The two spectroscopic methods complement each other in following the effects of hydrolysis and oxidation. (c) 2005 Elsevier Ltd. All rights reserved. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. RP Labouriau, A (reprint author), Los Alamos Natl Lab, Mail Stop J569, Los Alamos, NM 87545 USA. EM andrea@lanl.gov RI Stephens, Thomas/D-9512-2012; OI Labouriau, Andrea/0000-0001-8033-9132 NR 11 TC 13 Z9 13 U1 0 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-3910 J9 POLYM DEGRAD STABIL JI Polym. Degrad. Stabil. PD AUG PY 2006 VL 91 IS 8 BP 1896 EP 1902 DI 10.1016/j.polymdegradstab.2005.11.014 PG 7 WC Polymer Science SC Polymer Science GA 055MR UT WOS:000238455300032 ER PT J AU Bauer, WF Stone, ML Orme, CJ Harrup, MK Luther, TA AF Bauer, William F. Stone, Mark L. Orme, Christopher J. Harrup, Mason K. Luther, Thomas A. TI Infrared spectroscopic measurement of water permeability in polymer films exposed to liquid water SO POLYMER TESTING LA English DT Article DE FTIR; permeability; water vapor transport ID HUMIDITY SENSORS AB The details of a method for measuring the water vapor transport rate through polymer films utilizing Fourier transform infrared spectroscopy (FTIR) are given. Water flows across one side of the membrane and a nitrogen sweep gas carries the water vapor into the flow-through cell of the spectrometer for measurement. The method was used to test two polymers that have literature values and four new polymers. The resulting FTIR data was analyzed with a partial least-squares method. Experimentally the method is easy to apply and very accurate. (C) 2006 Elsevier Ltd. All rights reserved. C1 Idaho Natl Engn Lab, Idaho Falls, ID 83415 USA. RP Bauer, WF (reprint author), Idaho Natl Engn Lab, Idaho Falls, ID 83415 USA. EM William.Bauer@inl.gov RI Bauer, William/B-8357-2016 OI Bauer, William/0000-0002-7190-9700 NR 7 TC 2 Z9 2 U1 1 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-9418 J9 POLYM TEST JI Polym. Test PD AUG PY 2006 VL 25 IS 5 BP 642 EP 649 DI 10.1016/j.polymertesting.2006.04.001 PG 8 WC Materials Science, Characterization & Testing; Polymer Science SC Materials Science; Polymer Science GA 075EO UT WOS:000239866700010 ER PT J AU Guo, XF Myers, M Xiao, SX Lefenfeld, M Steiner, R Tulevski, GS Tang, JY Baumert, J Leibfarth, F Yardley, JT Steigerwald, ML Kim, P Nuckolls, C AF Guo, Xuefeng Myers, Matthew Xiao, Shengxiong Lefenfeld, Michael Steiner, Rachel Tulevski, George S. Tang, Jinyao Baumert, Julian Leibfarth, Frank Yardley, James T. Steigerwald, Michael L. Kim, Philip Nuckolls, Colin TI Chemoresponsive monolayer transistors SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE chemistry; electronic materials; nanoscience; self-assembly ID FIELD-EFFECT TRANSISTORS; THIN-FILM TRANSISTORS; SELF-ASSEMBLED MONOLAYERS; WALLED CARBON NANOTUBES; ORGANIC TRANSISTORS; TRANSPORT; MOBILITY; ELECTRODES; SENSORS; LAYERS AB This work details a method to make efficacious field-effect transistors from monolayers of polycyclic aromatic hydrocarbons that are able to sense and respond to their chemical environment. The molecules used in this study are functionalized so that they assemble laterally into columns and attach themselves to the silicon oxide surface of a silicon wafer. To measure the electrical properties of these monolayers, we use ultrasmall point contacts that are separated by only a few nanometers as the source and drain electrodes. These contacts are formed through an oxidative cutting of an individual metallic single-walled carbon nanotube that is held between macroscopic metal leads. The molecules assemble in the gap and form transistors with large current modulation and high gate efficiency. Because these devices are formed from an individual stack of molecules, their electrical properties change significantly when exposed to electron-deficient molecules such as tetracyanoquinodimethane (TCNQ), forming the basis for new types of environmental and molecular sensors. C1 Columbia Univ, Dept Chem, New York, NY 10027 USA. Columbia Univ, Dept Phys, New York, NY 10027 USA. Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. Columbia Univ, Dept Elect Engn, New York, NY 10027 USA. Columbia Univ, Ctr Elect Mol Nanostruct, New York, NY 10027 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Nuckolls, C (reprint author), Columbia Univ, Dept Chem, New York, NY 10027 USA. EM cn37@columbia.edu RI Tang, Jinyao/I-3851-2012; Kim, Philip/N-1886-2013; Myers, Matthew/B-8867-2015; Xiao, Shengxiong/C-6156-2009 OI Myers, Matthew/0000-0002-5889-4196; Xiao, Shengxiong/0000-0002-9151-9558 NR 33 TC 100 Z9 100 U1 1 U2 23 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD AUG 1 PY 2006 VL 103 IS 31 BP 11452 EP 11456 DI 10.1073/pnas.0601675103 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 071QJ UT WOS:000239616400007 PM 16855049 ER PT J AU Mohagheghi, A Ruth, M Schell, DJ AF Mohagheghi, A Ruth, M Schell, DJ TI Conditioning hemicellulose hydrolysates for fermentation: Effects of overliming pH on sugar and ethanol yields SO PROCESS BIOCHEMISTRY LA English DT Article DE lime; gypsum; conditioning; corn stover; Zymomonas mobilis; mass balance ID CORN STOVER HYDROLYSATE; ZYMOMONAS-MOBILIS; PACHYSOLEN-TANNOPHILUS; PICHIA-STIPITIS; FUEL ETHANOL; DETOXIFICATION; XYLOSE; LIGNOCELLULOSE; IDENTIFICATION; HYDROLYZATE AB Overliming is an effective way of conditioning to reduce the toxicity of hydrolysates generated from pretreatment of lignicellulosic biomass for ethanol production. In this work, a range of target overliming pH values from 9 to 11 was studied, and xylose fermenting Zymomonas mobilis strain 8b was used to evaluate the fermentability of overlimed corn stover hemicellulose hydrolysate. pH 11 overlimed hydrolysate was highly fermentable, but xylose losses were the greatest at this condition. Based on ethanol yield and fermentative xylose conversion, pH 10-conditioned hydrolysate produced the best results, 75% xylose utilization and 76% ethanol yield. This condition also produces the highest overall ethanol yield based on total sugars available in the unconditioned hydrolysate, 70%. Overall mass balance closures were very good averaging between 97 and 100% for all experiments. Calcium and sulfur mass balance closures ranged from 75 to 90% and indicated that approximately 50% of the calcium ends up in the gypsum cake, which is calculated to be approximately 63% gypsum. Overall result shows that the pH of the overliming process is the key factor for improving hydrolysate fermentability but too high a pH destroys some of the available sugars and reduces overall ethanol yield. Thus, it is critical to keep the overliming pH as low as possible while making the hydrolysate fermentable. (c) 2006 Elsevier Ltd. All rights reserved. C1 Natl Bioenergy Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Mohagheghi, A (reprint author), Natl Bioenergy Ctr, Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM ali_mohagheghi@nrel.gov NR 26 TC 55 Z9 58 U1 3 U2 18 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1359-5113 J9 PROCESS BIOCHEM JI Process Biochem. PD AUG PY 2006 VL 41 IS 8 BP 1806 EP 1811 DI 10.1016/j.procbio.2006.03.028 PG 6 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Engineering, Chemical SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Engineering GA 054SD UT WOS:000238398000014 ER PT J AU Green, MA Emery, K King, DL Hishikawa, Y Warta, W AF Green, Martin A. Emery, Keith King, David L. Hishikawa, Yoshihiro Warta, Wilhelm TI Solar cell efficiency tables (version 28) SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE solar cell efficiency; photovoltaic efficiency; energy conversion efficiency AB Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined and new entries since January, 2006 are reviewed. Copyright (C) 2006 John Wiley & Sons, Ltd. C1 Univ New S Wales, Ctr Photovoltaic Engn, Sydney, NSW 2052, Australia. Natl Renewable Energy Lab, Golden, CO 80401 USA. Sandia Natl Labs, Albuquerque, NM 87123 USA. Natl Inst Adv Ind Sci & Technol, RCPV, Tsukuba, Ibaraki, Japan. Fraunhofer Inst Solar Energy Syst, Dept Solar Cells Mat & Technol, D-79110 Freiburg, Germany. RP Green, MA (reprint author), Univ New S Wales, Ctr Photovoltaic Engn, Sydney, NSW 2052, Australia. EM m.green@unsw.edu.au NR 55 TC 89 Z9 89 U1 2 U2 16 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1062-7995 J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD AUG PY 2006 VL 14 IS 5 BP 455 EP 461 DI 10.1002/pip.720 PG 7 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 066IJ UT WOS:000239222600007 ER PT J AU Souers, PC Ault, S Avara, R Bahl, KL Boat, R Cunningham, B Gidding, D Janzen, J Kuklo, D Lee, R Lauderbach, L Weingart, RC Wu, B Winer, K AF Souers, P. Clark Ault, Stan Avara, Rex Bahl, Kerry L. Boat, Ron Cunningham, Bruce Gidding, Doug Janzen, Jim Kuklo, Denise Lee, Ron Lauderbach, Lisa Weingart, Richard C. Wu, Ben Winer, Kris TI Air gap effects in LX-17 SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE gap; crack; jets; roughness; jet velocity AB Three experiments done over twenty years on gaps in LX-17 are described. For the detonation front moving parallel to the gaps, jets of gas products were seen coming from the gaps at velocities 2 to 3 times greater than the detonation velocity. A case can be made that the jet velocity increased with gap thickness but the data are scattered. For the detonation front moving transverse to the gap, time delays were seen. The delays roughly increase with gap width, going from 0-70 ns at "zero gap" to around 300 ns at 0.5-1 mm gap. Larger gaps of up to 6 mm width almost certainly stopped the detonation, but this was not proved. Real-time resolution of the parallel jets and determination of the actual re-detonation or failure in the transverse case needs to be achieved in future experiments. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Souers, PC (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM souers1@llnl.gov NR 7 TC 1 Z9 1 U1 0 U2 0 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0721-3115 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD AUG PY 2006 VL 31 IS 4 BP 294 EP 298 DI 10.1002/prep.200600040 PG 5 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 081ZQ UT WOS:000240356500007 ER PT J AU Dreesen, TD Adamson, AW Tekle, M Tang, CR Cho, HP Clarke, SD Gettys, TW AF Dreesen, Thomas D. Adamson, Aaron W. Tekle, Michael Tang, Chongren Cho, Hyekung P. Clarke, Steven D. Gettys, Thomas W. TI A newly discovered member of the fatty acid desaturase gene family: A non-coding, antisense RNA gene to Delta 5-desaturase SO PROSTAGLANDINS LEUKOTRIENES AND ESSENTIAL FATTY ACIDS LA English DT Article ID BINDING PROTEIN-1 EXPRESSION; DELTA-6 DESATURASE; TERM INFANTS; ELEMENT; IDENTIFICATION; TRANSCRIPTION; MECHANISM; CLONING; NERVE; DIET AB The rate limiting steps in the conversion of 18-carbon unsaturated fatty acids to 20- and 22-carbon products are catalyzed by two desaturase enzymes (Delta 5-desaturase and Delta 6-desaturase) found within a lipid desaturase gene cluster. Careful examination of this cluster revealed the existence of a conventionally spliced (human) and an intronless (mouse and rat) non-coding RNA gene, reverse Delta 5-desaturase, which is transcribed from the opposite strand of the Delta 5-desaturase gene. The 654 bp human reverse Delta 5-desaturase transcript contains 269 nucleotides that are complementary to exon 1 and intron 1 of the Delta 5-desaturase transcript, and the 3'-end of this sequence contains a 143 nucleotide stretch that is 100% complementary to the 5'-end of the Delta 5-desaturase. The rat and mouse transcripts are 1355 and 690 bp long and complementary to a portion of the first intron and the entire first exon of their respective Delta 5-desaturases. All reverse Delta 5-desaturase transcripts contain several stop codons in all frames suggesting that they do not encode a peptide. Reverse Delta 5-desaturase RNA was detected in all rat tissues where Delta 5-desaturase is expressed, and the transition between fasting and refeeding produced a significant increase in reverse Delta 5-desaturase RNA relative to Delta 5-desaturase mRNA. Transient expression of reverse Delta 5-desaturase in CHO cells stably transformed with Delta 5-desaturase produced a modest decrease in Delta 5-desaturase mRNA (30%), but lowered Delta 5-desaturase enzymatic activity by > 70%. More importantly, a diet enriched in fish oil produced a reciprocal increase in reverse Delta 5-desaturase mRNA and decrease in Delta 5-desaturase mRNA that was accompanied by a 56-fold decrease in Delta 5-desaturase enzyme activity. These findings support a significant role for reverse Delta 5-desaturase as a natural antisense regulator of Delta 5-desaturase. (c) 2006 Elsevier Ltd. All rights reserved. C1 Louisiana State Univ, Pennington Biomed Res Ctr, Baton Rouge, LA 70803 USA. Univ Washington, Dept Med, Div Metab Endocrinol & Nutr, Seattle, WA 98195 USA. Oak Ridge Natl Lab, Div Life Sci, Funct Genom Grp, Oak Ridge, TN USA. McNeil Nutrit, New Brunswick, NJ USA. RP Gettys, TW (reprint author), Louisiana State Univ, Pennington Biomed Res Ctr, Baton Rouge, LA 70803 USA. EM gettystw@pbrc.edu FU NIDDK NIH HHS [DK-053872, DK-064156] NR 28 TC 9 Z9 10 U1 0 U2 2 PU CHURCHILL LIVINGSTONE PI EDINBURGH PA JOURNAL PRODUCTION DEPT, ROBERT STEVENSON HOUSE, 1-3 BAXTERS PLACE, LEITH WALK, EDINBURGH EH1 3AF, MIDLOTHIAN, SCOTLAND SN 0952-3278 J9 PROSTAG LEUKOTR ESS JI Prostaglandins Leukot. Essent. Fatty Acids PD AUG PY 2006 VL 75 IS 2 BP 97 EP 106 DI 10.1016/j.plefa.2006.05.001 PG 10 WC Biochemistry & Molecular Biology; Cell Biology; Endocrinology & Metabolism SC Biochemistry & Molecular Biology; Cell Biology; Endocrinology & Metabolism GA 086TS UT WOS:000240696500006 PM 16846730 ER PT J AU Krumpe, LRH Atkinson, AJ Smythers, GW Kandel, A Schumacher, KM McMahon, JB Makowski, L Mori, T AF Krumpe, Lauren R. H. Atkinson, Andrew J. Smythers, Gary W. Kandel, Andrea Schumacher, Kathryn M. McMahon, James B. Makowski, Lee Mori, Toshiyuki TI T7 lytic phage-displayed peptide libraries exhibit less sequence bias than M13 filamentous phage-displayed peptide libraries SO PROTEOMICS LA English DT Article DE bioinformatics; diversity; peptide; phage display; T7 phage ID PROTEIN-BINDING PEPTIDES; STREP-TAG; AFFINITY; STREPTAVIDIN; LIGAND; DIVERSITY; RECEPTOR AB We investigated whether the T7 system of phage display could produce peptide libraries of greater diversity than the M13 system of phage display due to the differing processes of lytic and filamentous phage morphogenesis. Using a bioinformatics-assisted computational approach, collections of random peptide sequences obtained from a T7 12-mer library (X-12) and a T7 7-mer disulfide-constrained library (CX7C) were analyzed and compared with peptide populations obtained from New England BioLabs' M13 Ph.D.-12 (TM) and Ph.D.-C7C (TM) libraries. Based on this analysis, peptide libraries constructed with the T7 system have fewer amino acid biases, increased peptide diversity, and more normal distributions of peptide net charge and hydropathy than the M13 libraries. The greater diversity of T7-displayed libraries provides a potential resource of novel binding peptides for new as well as previously studied molecular targets. To demonstrate their utility, several of the T7-displayed peptide libraries were screened for streptavidin- and neutravidin-binding phage. Novel binding motifs were identified for each protein. C1 Takeda Pharmaceut Co Ltd, Biomed Res Labs, Div Pharmaceut Res, Osaka 5328686, Japan. SAIC Frederick Inc, Basic Res Program, Frederick, MD USA. SAIC Frederick Inc, Adv Biomed Comp Ctr, Frederick, MD USA. NCI, Werner H Kirsten Student Internship Program, Ctr Canc Res, Frederick, MD 21701 USA. NCI, Mol Targets Dev Program, Ctr Canc Res, Frederick, MD 21701 USA. Argonne Natl Lab, Argonne, IL 60439 USA. RP Mori, T (reprint author), Takeda Pharmaceut Co Ltd, Biomed Res Labs, Div Pharmaceut Res, 2-17-85 Yodogawa Ku, Osaka 5328686, Japan. EM Mori_Toshiyuki2@takeda.co.jp FU Intramural NIH HHS; NCI NIH HHS [N01-CO-12400] NR 26 TC 67 Z9 71 U1 1 U2 11 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1615-9853 J9 PROTEOMICS JI Proteomics PD AUG PY 2006 VL 6 IS 15 BP 4210 EP 4222 DI 10.1002/pmic.200500606 PG 13 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 075EX UT WOS:000239867600001 PM 16819727 ER PT J AU Zhang, WW Gritsenko, MA Moore, RJ Culley, DE Nie, L Petritis, K Strittmatter, EF Camp, DG Smith, RD Brockman, FJ AF Zhang, Weiwen Gritsenko, Marina A. Moore, Ronald J. Culley, David E. Nie, Lei Petritis, Konstantinos Strittmatter, Eric F. Camp, David G., II Smith, Richard D. Brockman, Fred J. TI A proteomic view of Desulfovibrio vulgaris metabolism as determined by liquid chromatography coupled with tandem mass spectrometry SO PROTEOMICS LA English DT Article DE Desulfovibrio vulgaris; mass spectrometry; metabolism ID HIGHLY EXPRESSED GENES; AMINO-ACID-SEQUENCES; ESCHERICHIA-COLI; SHOTGUN PROTEOMICS; PROTEIN DATABASE; HILDENBOROUGH; IDENTIFICATION; OXIDOREDUCTASE; PEPTIDES; BACTERIA AB Direct LC-MS/MS was used to examine the proteins extracted from exponential or stationary phase Desulfovibrio vulgaris cells that had been grown on a minimal medium containing either lactate or formate as the primary carbon source. Across all four growth conditions, 976 gene products were identified with high confidence, which is equal to approximately 28% of all predicted proteins in the D. vulgaris genome. Bioinformatic analysis showed that the proteins identified were distributed among almost all functional classes, with the energy metabolism category containing the greatest number of identified proteins. At least 154 ORFs originally annotated as hypothetical proteins were found to encode the expressed proteins, which provided verification for the authenticity of these hypothetical proteins. Proteomic analysis showed that proteins potentially involved in ATP biosynthesis using the proton gradient across membrane, such as ATPase, alcohol dehydrogenases, heterodisulfide reductases, and [NiFe] hydrogenase (HynAB-1) of the hydrogen cycling were highly expressed in all four growth conditions, suggesting they may be the primary pathways for ATP synthesis in D. vulgaris. Most of the enzymes involved in substrate-level phosphorylation were also detected in all tested conditions. However, no enzyme involved in CO cycling or formate cycling was detected, suggesting that they are not the primary ATP-biosynthesis pathways under the tested conditions. This study provides the first proteomic overview of the cellular metabolism of D. vulgaris. The complete list of proteins identified in this study and their abundances (peptide hits) is provided in Supplementary Table 1. C1 Pacific NW Natl Lab, Microbiol Grp, Richland, WA 99352 USA. Pacific NW Natl Lab, Biol Syst Anal & Mass Spectrometry Grp, Richland, WA 99352 USA. Georgetown Univ, Dept Biostat Biomath & Bioinformat, Washington, DC USA. RP Zhang, WW (reprint author), Pacific NW Natl Lab, Microbiol Grp, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM Weiwen.Zhang@pnl.gov RI Petritis, Konstantinos/F-2156-2010; Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 NR 34 TC 32 Z9 33 U1 1 U2 10 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1615-9853 J9 PROTEOMICS JI Proteomics PD AUG PY 2006 VL 6 IS 15 BP 4286 EP 4299 DI 10.1002/pmic.200500930 PG 14 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 075EX UT WOS:000239867600009 PM 16819729 ER PT J AU Babnigg, G Giometti, CS AF Babnigg, Gyorgy Giometti, Carol S. TI A database of unique protein sequence identifiers for proteome studies SO PROTEOMICS LA English DT Article DE protein sequence identification; SEGUID database ID MEMBRANE-PROTEINS; INFORMATION; IDENTIFICATION; PREDICTION; RESOURCE; SYSTEMS; GENOMES AB in proteome studies, identification of proteins requires searching protein sequence databases. The public protein sequence databases (e.g., NCBInr, UniProt) each contain millions of entries, and private databases add thousands more. Although much of the sequence information in these databases is redundant, each database uses distinct identifiers for the identical protein sequence and often contains unique annotation information. Users of one database obtain a database-specific sequence identifier that is often difficult to reconcile with the identifiers from a different database. When multiple databases are used for searches or the databases being searched are updated frequently, interpreting the protein identifications and associated annotations can be problematic. We have developed a database of unique protein sequence identifiers called Sequence Globally Unique Identifiers (SEGUID) derived from primary protein sequences. These identifiers serve as a common link between multiple sequence databases and are resilient to annotation changes in either public or private databases throughout the lifetime of a given protein sequence. The SEGUID Database can be downloaded (http://bioinformatics.anl.gov/ SEGUID/) or easily generated at any site with access to primary protein sequence databases. Since SEGUIDs are stable, predictions based on the primary sequence information (e.g., pI, M(r)) can be calculated just once; we have generated approximately 500 different calculations for more than 2.5 million sequences. SEGUIDs are used to integrate MS and 2-DE data with bioinformatics information and provide the opportunity to search multiple protein sequence databases, thereby providing a higher probability of finding the most valid protein identifications. C1 Argonne Natl Lab, Div Biosci, Prot Mapping Grp, Argonne, IL 60439 USA. RP Giometti, CS (reprint author), Argonne Natl Lab, Div Biosci, Prot Mapping Grp, 9700 S Cass Ave, Argonne, IL 60439 USA. EM csgiometti@anl.gov NR 22 TC 13 Z9 14 U1 1 U2 3 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1615-9853 J9 PROTEOMICS JI Proteomics PD AUG PY 2006 VL 6 IS 16 BP 4514 EP 4522 DI 10.1002/pmic.200600032 PG 9 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 077NJ UT WOS:000240036100009 PM 16858731 ER PT J AU Trivillin, VA Heber, EM Nigg, DW Itoiz, ME Calzetta, O Blaumann, H Longhino, J Schwint, AE AF Trivillin, Veronica A. Heber, Elisa M. Nigg, David W. Itoiz, Maria E. Calzetta, Osvaldo Blaumann, Herman Longhino, Juan Schwint, Amanda E. TI Therapeutic success of boron neutron capture therapy (BNCT) mediated by a chemically non-selective boron agent in an experimental model of oral cancer: A new paradigm in BNCT radiobiology SO RADIATION RESEARCH LA English DT Article ID HAMSTER-CHEEK POUCH; BRAIN TUMOR-MODELS; PARA-BORONOPHENYLALANINE; GLIOBLASTOMA-MULTIFORME; PHOTODYNAMIC THERAPY; SELECTIVE DELIVERY; BIODISTRIBUTION; MELANOMA; CELLS; TRIAL AB The hypothesis of boron neutron capture therapy (BNCT) research has been that the short-range, high-linear energy transfer radiation produced by the capture of thermal neutrons by (10)B will potentially control tumor and spare normal tissue only if the boron compound selectively targets tumor tissue within the treatment volume. In a previous in vivo study of low-dose BNCT mediated by GB-10 (Na(2)(10)B(10)H(10)) alone or combined with boronophenylalanine (BPA) in the hamster cheek pouch oral cancer model that was primarily designed to evaluate safety and feasibility, we showed therapeutic effects but no associated normal tissue radiotoxicity. In the present study, we evaluated the response of tumor, precancerous and normal tissue to high-dose BNCT mediated by GB-10 alone or combined with BPA. Despite the fact that GB-10 does not target hamster cheek pouch tumors selectively, GB-10-BNCT induced a 70% overall tumor response with no damage to normal tissue. (GB-10+BPA)-BNCT induced a 93% overall tumor response with no normal tissue radiotoxicity. Light microscope analysis showed that GB-10-BNCT selectively damages tumor blood vessels, sparing precancerous and normal tissue vessels. In this case, selective tumor lethality would thus result from selective blood vessel damage rather than from selective uptake of the boron compound. (c) 2006 by Radiation Research Society C1 Natl Atom Energy Commiss, Dept Radiobiol, San Martin, Buenos Aires, Argentina. Constituyentes Atom Ctr, Dept Radiobiol, Buenos Aires, DF, Argentina. Idaho Natl Lab, Idaho Falls, ID USA. Univ Buenos Aires, Fac Dent, Dept Oral Pathol, Buenos Aires, DF, Argentina. RP Schwint, AE (reprint author), Natl Atom Energy Commiss, Dept Radiobiol, Ave Gen Paz 1499,B1650KNA, San Martin, Buenos Aires, Argentina. EM schwint@cnea.gov.ar NR 48 TC 36 Z9 36 U1 0 U2 2 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD AUG PY 2006 VL 166 IS 2 BP 387 EP 396 DI 10.1667/RR3592.1 PG 10 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 067IB UT WOS:000239294000009 PM 16881740 ER PT J AU Izumi, N Barbee, TW Koch, JA Mancini, RC Welser, LA AF Izumi, N. Barbee, T. W. Koch, J. A. Mancini, R. C. Welser, L. A. TI Reconstruction of quasimonochromatic images for multispectral x-ray imaging with a pinhole array and a flat Bragg mirror SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID LASER; IMPLOSIONS; OMEGA AB We have developed a software package for reconstruction of quasimonochromatic images from a multiple monochromatic x-ray imager for inertial confinement fusion implosions. The instrument consists of a pinhole array, a multilayer Bragg mirror, and an image detector. The pinhole array projects hundreds of images onto the detector after reflection off the multilayer Bragg mirror, which introduces spectral dispersion along the reflection axis. The quasimonochromatic images of line emissions and continuum emissions can be used for measurement of temperature and density maps of implosion plasmas. In this article, we describe a computer-aided processing technique for systematic reconstruction of quasimonochromatic images from raw data. This technique provides flexible spectral bandwidth selection and allows systematic subtraction of continuum emission from line emission images. (c) 2006 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Nevada, Dept Phys, Reno, NV 89557 USA. RP Izumi, N (reprint author), Lawrence Livermore Natl Lab, PO Box 808, Livermore, CA 94550 USA. RI IZUMI, Nobuhiko/J-8487-2016 OI IZUMI, Nobuhiko/0000-0003-1114-597X NR 13 TC 10 Z9 12 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2006 VL 77 IS 8 AR 083504 DI 10.1063/1.2336194 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 077NH UT WOS:000240035800041 ER PT J AU McDonald, RD Singleton, J Goddard, PA Harrison, N Mielke, CH AF McDonald, R. D. Singleton, J. Goddard, P. A. Harrison, N. Mielke, C. H. TI A photonic band-gap resonator to facilitate GHz-frequency conductivity experiments in pulsed magnetic fields SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ORGANIC SUPERCONDUCTORS; MILLIMETER; CONDUCTORS; MICROWAVE; BEAMS AB We describe instrumentation designed to perform millimeter-wave conductivity measurements in pulsed high magnetic fields at low temperatures. The main component of this system is an entirely nonmetallic microwave resonator. The resonator utilizes periodic dielectric arrays (photonic band-gap structures) to confine the radiation, such that the resonant modes have a high Q factor, and the system possesses sufficient sensitivity to measure small samples within the duration of a magnet pulse. As well as measuring the sample conductivity to probe orbital physics in metallic systems, this technique can detect the sample permittivity and permeability allowing measurement of spin physics in insulating systems. We demonstrate the system performance in pulsed magnetic fields with both electron paramagnetic resonance experiments and conductivity measurements of correlated electron systems. (c) 2006 American Institute of Physics. C1 Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. RP McDonald, RD (reprint author), Los Alamos Natl Lab, Natl High Magnet Field Lab, MS-E536, Los Alamos, NM 87545 USA. EM rmcd@lanl.gov RI McDonald, Ross/H-3783-2013; Goddard, Paul/A-8638-2015; OI McDonald, Ross/0000-0002-0188-1087; Goddard, Paul/0000-0002-0666-5236; Harrison, Neil/0000-0001-5456-7756; Mcdonald, Ross/0000-0002-5819-4739 NR 31 TC 2 Z9 2 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2006 VL 77 IS 8 AR 084702 DI 10.1063/1.2336761 PG 13 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 077NH UT WOS:000240035800021 ER PT J AU Strand, OT Goosman, DR Martinez, C Whitworth, TL Kuhlow, WW AF Strand, O. T. Goosman, D. R. Martinez, C. Whitworth, T. L. Kuhlow, W. W. TI Compact system for high-speed velocimetry using heterodyne techniques SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB We have built a high-speed velocimeter that has proven to be compact, simple to operate, and fairly inexpensive. This diagnostic is assembled using off-the-shelf components developed for the telecommunications industry. The main components are fiber lasers, high-bandwidth high-sample-rate digitizers, and fiber optic circulators. The laser is a 2 W cw fiber laser operating at 1550 nm. The digitizers have 8 GHz bandwidth and can digitize four channels simultaneously at 20 GS/s. The maximum velocity of this system is similar to 5000 m/s and is limited by the bandwidth of the electrical components. For most applications, the recorded beat frequency is analyzed using Fourier transform methods, which determine the time response of the final velocity time history. Using the Fourier transform method of analysis allows multiple velocities to be observed simultaneously. We have obtained high-quality data on many experiments such as explosively driven surfaces and gas gun assemblies. (c) 2006 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Bechtel Nevada, Las Vegas, NV 89030 USA. RP Strand, OT (reprint author), Lawrence Livermore Natl Lab, POB 5508, Livermore, CA 94550 USA. NR 4 TC 243 Z9 271 U1 2 U2 55 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2006 VL 77 IS 8 AR 083108 DI 10.1063/1.2336749 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 077NH UT WOS:000240035800008 ER PT J AU Xu, SJ Rochester, SM Yashchuk, VV Donaldson, MH Budker, D AF Xu, Shoujun Rochester, Simon M. Yashchuk, Valeriy V. Donaldson, Marcus H. Budker, Dmitry TI Construction and applications of an atomic magnetic gradiometer based on nonlinear magneto-optical rotation SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID LASER; MRI; NMR; FIELDS; VAPOR AB We report on the design, characterization, and applications of a sensitive atomic magnetic gradiometer. The device is based on nonlinear magneto-optical rotation in alkali-metal (Rb-87) vapor and uses frequency-modulated laser light. The magnetic field produced by a sample is detected by measuring the frequency of a resonance in optical rotation that arises when the modulation frequency equals twice the Larmor precession frequency of the Rb atoms. The gradiometer consists of two atomic magnetometers. The rotation of light polarization in each magnetometer is detected with a balanced polarimeter. The sensitivity of the gradiometer is 0.8 nG/Hz(1/2) for near-dc (0.1 Hz) magnetic fields, with a base line of 2.5 cm. For applications in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI), a long solenoid that pierces the magnetic shields provides an similar to 0.5 G leading field for the nuclear spins in the sample. Our apparatus is particularly suited for remote detection of NMR and MRI. We demonstrate a point-by-point free induction decay measurement and a spin echo reconstructed with a pulse sequence similar to the Carr-Purcell-Meiboom-Gill pulse. Additional applications and future improvements are also discussed. (c) 2006 American Institute of Physics. C1 Univ Calif Berkeley, Mat Sci Div, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Adv Light Source, Berkeley, CA 94720 USA. Univ Calif Berkeley, Nucl Sci Div, Berkeley, CA 94720 USA. RP Xu, SJ (reprint author), Univ Calif Berkeley, Mat Sci Div, Berkeley, CA 94720 USA. RI Budker, Dmitry/F-7580-2016 OI Budker, Dmitry/0000-0002-7356-4814 NR 25 TC 30 Z9 31 U1 3 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2006 VL 77 IS 8 AR 083106 DI 10.1063/1.2336087 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 077NH UT WOS:000240035800006 ER PT J AU Sunwoo, AJ Becker, R Goto, DM Orzechowski, TJ Springer, HK Syn, CK Zhou, J AF Sunwoo, AJ Becker, R Goto, DM Orzechowski, TJ Springer, HK Syn, CK Zhou, J TI Adiabatic shear band formation in explosively driven Fe-Ni-Co alloy cylinders SO SCRIPTA MATERIALIA LA English DT Article DE AerMet-100 alloy; dynamic phenomena; shear bands; fracture; nanoindentation ID METALS; STEEL AB AerMet-100 alloy cylinders were explosively driven to fragmentation. Soft-captured fragments were studied to characterize the deformation induced by high explosive loading. The characterization of the fragments reveals that the dominant failure mechanism appears to be dynamic fracture along adiabatic shear bands. These shear bands differ in size and morphology depending on the heat-treated conditions. Nanoindentation measurements of the adiabatic shear bands in either material condition indicate higher hardness in the bands compared to the matrix regions of the fragments. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Sunwoo, AJ (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. EM sunwoo1@llnl.gov RI Becker, Richard/I-1196-2013 NR 21 TC 8 Z9 9 U1 2 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD AUG PY 2006 VL 55 IS 3 BP 247 EP 250 DI 10.1016/j.scriptamat.2006.04.010 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 056LO UT WOS:000238524600011 ER PT J AU Xu, HT Pharr, GM AF Xu, Haitao Pharr, G. M. TI An improved relation for the effective elastic compliance of a film/substrate system during indentation by a flat cylindrical punch SO SCRIPTA MATERIALIA LA English DT Article DE nanoindentation; elastic modulus; thin films; finite element analysis ID FILM MECHANICAL-PROPERTIES; THIN-FILMS; NANOINDENTATION; SUBSTRATE AB Measurement of the mechanical properties of thin films on substrates by load and depth sensing indentation methods such as nanoindentation often requires accurate descriptions for the effective elastic compliance of the film/substrate system. Here, a simple modification of the commonly used solution derived by Gao et al. [H. Gao, C. H. Chiu, J. Lee, Int. J. Solids Struct. (1992) 247 1] is presented, that significantly improves its accuracy and range of applicability, as demonstrated by comparison with finite element simulations. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. RP Pharr, GM (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM pharr@utk.edu NR 11 TC 42 Z9 42 U1 2 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD AUG PY 2006 VL 55 IS 4 BP 315 EP 318 DI 10.1016/j.scriptamat.2006.04.037 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 060QD UT WOS:000238815800009 ER PT J AU Ferguson, JW Houk, RS AF Ferguson, Jill Wisnewski Houk, R. S. TI High resolution studies of the origins of polyatomic ions in inductively coupled plasma-mass spectrometry, Part I. Identification methods and effects of neutral gas density assumptions, extraction voltage, and cone material SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE ICP-MS; dissociation reaction; kinetic gas temperature; polyatomic ions; spectral interferences; extraction voltage; sampler and skimmer cones; neutral density ID ISOTOPE RATIO MEASUREMENTS; ICP-MS; SPECTRAL INTERFERENCES; ARGON PLASMA; TEMPERATURE; REDUCTION; INTERFACE; DISSOCIATION; ALLEVIATION; ATTENUATION AB Common polyatomic ions (ArO+, NO+, H2O+, H3O+, Ar-2(+), ArN+, OH+, ArH+, O-2(+)) in inductively coupled plasma-mass spectrometry (ICP-MS) are identified using high mass resolution and studied using kinetic gas temperatures (T-gas) determined from a dissociation reaction approach. Methods for making accurate mass measurements, confirming ion identifications, and correcting for mass bias are discussed. The effects of sampler and skimmer cone composition and extraction voltage on polyatomic ion formation are also explored. Neutral species densities at several locations in the extraction interface are estimated and the corresponding effects of the T-gas, value are calculated. The results provide information about the origins of background ions and indicate possible locations for their formation or removal. (c) 2006 Elsevier B.V. All rights reserved. C1 Iowa State Univ Sci & Technol, Ames Lab, Dept Chem, US DOE, Ames, IA 50011 USA. RP Houk, RS (reprint author), Iowa State Univ Sci & Technol, Ames Lab, Dept Chem, US DOE, Ames, IA 50011 USA. EM rshouk@iastate.edu RI Ferguson, Jill/B-6910-2008 NR 43 TC 19 Z9 19 U1 2 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD AUG PY 2006 VL 61 IS 8 BP 905 EP 915 DI 10.1016/j.sab.2006.07.001 PG 11 WC Spectroscopy SC Spectroscopy GA 111TJ UT WOS:000242477300002 ER PT J AU Jernstrom, J Eriksson, M Simon, R Tamborini, G Bildstein, O Marquez, RC Kehl, SR Hamilton, TF Ranebo, Y Betti, M AF Jernstrom, J. Eriksson, M. Simon, R. Tamborini, G. Bildstein, O. Marquez, R. Carlos Kehl, S. R. Hamilton, T. F. Ranebo, Y. Betti, M. TI Characterization and source term assessments of radioactive particles from Marshall Islands using non-destructive analytical techniques SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE radioactive environmental particle; Marshall Islands; source term; SEM-EDX-WDX; SIMS; synchrotron radiation ID X-RAY-FLUORESCENCE; ION MASS-SPECTROMETRY; ENEWETAK ATOLL; PLUTONIUM; URANIUM; IDENTIFICATION; SAMPLES; SOILS AB Six plutonium-containing particles stemming from Runit Island soil (Marshall Islands) were characterized by non-destructive analytical and microanalytical methods. Composition and elemental distribution in the particles were studied with synchrotron radiation based micro X-ray fluorescence spectrometry. Scanning electron microscope equipped with energy dispersive X-ray detector and with wavelength dispersive system as well as a secondary ion mass spectrometer were used to examine particle surfaces. Based on the elemental composition the particles were divided into two groups: particles with pure Pu matrix, and particles where the plutonium is included in Si/O-rich matrix being more heterogenously distributed. All of the particles were identified as nuclear fuel fragments of exploded weapon components. As containing plutonium with low Pu-240/Pu-239 atomic ratio, less than 0.065, which corresponds to weapons-grade plutonium or a detonation with low fission yield, the particles were identified to originate from the safety test and low-yield tests conducted in the history of Runit Island. The Si/O-rich particles contained traces of (CS)-C-137 (Pu239+240/Cs-137 activity ratio higher than 2500), which indicated that a minor fission process occurred during the explosion. The average Am-241/Pu-239 atomic ratio in the six particles was 3.7 x 10(-3) +/- 0.2 x 10(-3) (February 2006), which indicated that plutonium in the different particles had similar age. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Helsinki, Dept Chem, Lab Radiochem, FI-00014 Helsinki, Finland. IAEA, MEL, MC-98000 Monaco, Monaco. Forschungszentrum Karlsruhe, Inst Synchrotron Radiat, D-76021 Karlsruhe, Germany. Commiss European Communities, Joint Res Ctr, Inst Transuranium Elements, D-76125 Karlsruhe, Germany. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Jernstrom, J (reprint author), Univ Helsinki, Dept Chem, Lab Radiochem, POB 55, FI-00014 Helsinki, Finland. EM jussi.jernstrom@helsinki.fi; maria.betti@ec.europa.eu NR 30 TC 10 Z9 13 U1 1 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD AUG PY 2006 VL 61 IS 8 BP 971 EP 979 DI 10.1016/j.sab.2006.09.002 PG 9 WC Spectroscopy SC Spectroscopy GA 111TJ UT WOS:000242477300011 ER PT J AU Berman, HM Burley, SK Chiu, W Sali, A Adzhubei, A Bourne, PE Bryant, SH Dunbrack, RL Fidelis, K Frank, J Godzik, A Henrick, K Joachimiak, A Heymann, B Jones, D Markley, JL Moult, J Montelione, GT Orengo, C Rossmann, MG Rost, B Saibil, H Schwede, T Standley, DM Westbrook, JD AF Berman, Helen M. Burley, Stephen K. Chiu, Wah Sali, Andrej Adzhubei, Alexel Bourne, Philip E. Bryant, Stephen H. Dunbrack, Roland L., Jr. Fidelis, Krzysztof Frank, Joachim Godzik, Adam Henrick, Kim Joachimiak, Andrzej Heymann, Bernard Jones, David Markley, John L. Moult, John Montelione, Gaetano T. Orengo, Christine Rossmann, Michael G. Rost, Burkhard Saibil, Helen Schwede, Torsten Standley, Daron M. Westbrook, John D. TI Outcome of a workshop on archiving structural models of biological macromolecules SO STRUCTURE LA English DT Editorial Material ID PROTEIN-STRUCTURE PREDICTION; DATA-BANK; CRYOELECTRON MICROSCOPY; ELECTRON CRYOMICROSCOPY; FOLD RECOGNITION; E-SCIENCE; MATURATION; DATABASE; VIRUS; REFINEMENT C1 Rutgers State Univ, Res Collaboratory Struct Bioinformat Prot Data Ba, Piscataway, NJ 08854 USA. SGX Pharmaceut Inc, San Diego, CA 92121 USA. Baylor Coll Med, Dept Biochem & Mol Biol, Natl Ctr Macromol Imaging, Houston, TX 77030 USA. Univ Calif San Francisco, Dept Biopharmaceut Sci, San Francisco, CA 94143 USA. Univ Oslo, Biotechnol Ctr Oslo, N-0317 Oslo, Norway. Univ Calif San Diego, Res Collaboratory Struct Bioinformat Prot Data Ba, San Diego Supercomp Ctr, La Jolla, CA 92093 USA. Natl Lib Med, Natl Ctr Biotechnol Informat, NIH, Bethesda, MD 20894 USA. Fox Chase Canc Ctr, Inst Canc Res, Philadelphia, PA 19111 USA. Univ Calif Davis, Genome & Biomed Sci Facil, Davis, CA 95616 USA. New York State Dept Hlth, Wadsworth Ctr, Dept Biomed Sci, Howard Hughes Med Inst, Albany, NY 12201 USA. Burnham Inst Med Res, Bioinformat & Syst Biol Program, La Jolla, CA 92037 USA. EMBL Outstn Hinxton, European Bioinformat Inst, Cambridge CB10 1SD, England. Argonne Natl Lab, Dept Struct Biol Ctr, Argonne, IL 60439 USA. NIAMSD, Struct Biol Res Lab, NIH, Bethesda, MD 20892 USA. UCL, Dept Comp Sci, Bioinformat Unit, London WC1E 6BT, England. Univ Wisconsin, Dept Biochem, BioMagResBank, Madison, WI 53706 USA. Univ Maryland, Inst Biotechnol, Ctr Adv Res Biotechnol, Rockville, MD 20850 USA. Rutgers State Univ, Dept Mol Biol & Biochem, Ctr Adv Res Biotechnol, Piscataway, NJ 08854 USA. UCL, Dept Biochem & Mol Biol, Biomol Struct & Modeling Unit, London WC1E 6BT, England. Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. Columbia Univ, Dept Biochem & Mol Biophys, New York, NY 10032 USA. Univ London Birkbeck Coll, Dept Crystallog, Bloomsbury Ctr Struct Biol, London WC1E 7HX, England. Univ Basel, Biozentrum, Div Bioinformat, CH-4056 Basel, Switzerland. Osaka Univ, Inst Prot Res, Prot Data Bank Japan, Osaka 5650871, Japan. RP Berman, HM (reprint author), Rutgers State Univ, Res Collaboratory Struct Bioinformat Prot Data Ba, Piscataway, NJ 08854 USA. EM berman@rcsb.rutgers.edu RI Schwede, Torsten/A-4650-2008; Bourne, Philip/C-2073-2008; Standley, Daron/D-2343-2009; Godzik, Adam/A-7279-2009; OI Schwede, Torsten/0000-0003-2715-335X; Godzik, Adam/0000-0002-2425-852X; Westbrook, John/0000-0002-6686-5475; Moult, John/0000-0002-3012-2282; Heymann, Bernard/0000-0002-8872-5326; Dunbrack, Roland/0000-0001-7674-6667 NR 53 TC 26 Z9 29 U1 0 U2 1 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD AUG PY 2006 VL 14 IS 8 BP 1211 EP 1217 DI 10.1016/j.str.2006.06.005 PG 7 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 076HD UT WOS:000239946700003 PM 16955948 ER PT J AU Xu, Y Lei, CH Ma, B Evans, H Efstathiadis, H Rane, M Massey, M Balachandran, U Bhattacharya, R AF Xu, Y. Lei, C. H. Ma, B. Evans, H. Efstathiadis, H. Rane, M. Massey, M. Balachandran, U. Bhattacharya, R. TI Growth of textured MgO through e-beam evaporation and inclined substrate deposition SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID CRITICAL-CURRENT-DENSITY; YBCO-COATED CONDUCTORS; OXIDE BUFFER LAYERS; THIN-FILMS; SUPERCONDUCTING TAPES; PERFORMANCE; FABRICATION; DEPENDENCE AB Long length textured MgO template on Hastelloy C276(TM)(HC) has been successfully deposited in a reel-to-reel (R2R) electron beam (e-beam) evaporation system by inclined substrate deposition (ISD). High deposition rate up to 10 nm s(-1) with exposure length of 7 cm has been realized. The MgO template showed good in-plane texture of 9.5 degrees- 11.5 degrees measured from the ( 002) phi scans. Experimental results reveal that MgO in-plane texture is formed by the preferred growth direction of [11n] parallel to substrate normal and one of the MgO {200} planes rotates to the in-flux direction. A new expression, termed the 'two-thirds relationship', between the inclination angle a and the tilted angle of the (00l) plane from the substrate normal, beta, has been summarized. YBa2Cu3O7-delta (YBCO) film deposited by pulsed laser deposition (PLD) on strontium ruthenate (SRO) buffered ISD MgO showed T-c of 91 K with transition width of 1 K. Critical current measurement indicated an I-c of 110 A cm(-1) at 77 K in self-field for 0.68 mu m YBCO film, corresponding to a J(c) of 1.6 MA cm(-2). C1 Universal Energy Syst Inc, Mat Res Lab, Dayton, OH 45432 USA. Univ Illinois, Dept MSE, Urbana, IL 61801 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Albany Nanotech, Albany, NY 12203 USA. Univ Albany, Coll Nanoscale Sci & Engn, Albany, NY 12203 USA. RP Xu, Y (reprint author), Universal Energy Syst Inc, Mat Res Lab, Dayton, OH 45432 USA. RI Ma, Beihai/I-1674-2013 OI Ma, Beihai/0000-0003-3557-2773 NR 31 TC 22 Z9 22 U1 1 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD AUG PY 2006 VL 19 IS 8 BP 835 EP 843 DI 10.1088/0953-2048/19/8/026 PG 9 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 063NM UT WOS:000239025600030 ER PT J AU Wee, SH Goyal, A Martin, PM Heatherly, L AF Wee, S. H. Goyal, A. Martin, P. M. Heatherly, L. TI High in-field critical current densities in epitaxial NdBa2Cu3O7-delta films on RABiTS by pulsed laser deposition SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID THIN-FILMS; YBA2CU3O7-DELTA FILMS; COLUMNAR DEFECTS; SINGLE-CRYSTALS; DEPENDENCE; CONDUCTOR AB We report the epitaxial growth and superconducting properties for NdBa2Cu3O7-delta (NdBCO) films grown on rolling-assisted, biaxially-textured substrates (RABiTS) by pulsed laser deposition. At the optimum deposition temperature of 760 degrees C, the critical current densities, J(c), at 77 K, self-field, of NdBCO films ranging in thickness from 0.13 to 0.25 mu m were found to be in the range 2.2 - 3.4 MA cm(-2), with a lower thickness corresponding to a higher J(c). Compared to epitaxial YBa2Cu3O7-delta (YBCO) films, these NdBCO samples are found to have superior field and angular dependences of J(c). In an applied field of 1 T, NdBCO of the same thickness has more than twice the J(c) of YBCO films with a significantly enhanced J(c) peak for a field applied parallel to the c-axis. These results suggest the presence of an increased density of c-axis correlated pinning centres within NdBCO films compared to YBCO films. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Wee, SH (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM wees@ornl.gov NR 17 TC 14 Z9 14 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD AUG PY 2006 VL 19 IS 8 BP 865 EP 868 DI 10.1088/0953-2048/19/8/031 PG 4 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 063NM UT WOS:000239025600035 ER PT J AU Godeke, A AF Godeke, A. TI A review of the properties of Nb3Sn and their variation with A15 composition, morphology and strain state SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Review ID BRONZE-PROCESSED NB3SN; UPPER CRITICAL-FIELD; TEMPERATURE T-C; NB-SN SYSTEM; SUPERCONDUCTING TRANSITION-TEMPERATURE; HIGH MAGNETIC-FIELDS; NIOBIUM-TIN; MARTENSITIC-TRANSFORMATION; STRUCTURAL TRANSFORMATION; MULTIFILAMENTARY NB3SN AB Significant efforts can be found throughout the literature to optimize the current-carrying capacity of Nb3Sn superconducting wires. The achievable transport current density in wires depends on the A15 composition, morphology and strain state. The A15 sections in wires contain, due to compositional inhomogeneities resulting from solid-state diffusion A15 formation reactions, a distribution of superconducting properties. The A15 grain size can be different from wire to wire, and is also not necessarily homogeneous across the A15 regions. Strain is always present in composite wires, and the strain state changes as a result of thermal contraction differences and Lorentz forces in magnet systems. To optimize the transport properties, it is thus required to identify how composition, grain size and strain state influence the superconducting properties. This is not possible accurately in inhomogeneous and spatially complex systems such as wires. This article therefore gives an overview of the available literature on simplified, well-defined (quasi-) homogeneous laboratory samples. After more than 50 years of research on superconductivity in Nb3Sn, a significant amount of results are available, but these are scattered over a multitude of publications. Two reviews exist on the basic properties of A15 materials in general, but no specific review for Nb3Sn is available. This article is intended to provide such an overview. It starts with a basic description of the niobium - tin intermetallic. After that, it maps the influence of Sn content on the electron - phonon interaction strength and on the field - temperature phase boundary. The literature on the influence of Cu, Ti and Ta additions will then be summarized briefly. This is followed by a review of the effects of grain size and strain. The article concludes with a summary of the main results. C1 Univ Twente, Fac Sci & Technol, Low Temp Div, NL-7500 AE Enschede, Netherlands. Univ Wisconsin, Ctr Appl Superconduct, Madison, WI 53706 USA. RP Godeke, A (reprint author), Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM agodeke@lbl.gov NR 106 TC 79 Z9 79 U1 4 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD AUG PY 2006 VL 19 IS 8 BP R68 EP R80 DI 10.1088/0953-2048/19/8/R02 PG 13 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 063NM UT WOS:000239025600004 ER PT J AU Prozorov, R Giannetta, RW AF Prozorov, Ruslan Giannetta, Russell W. TI Magnetic penetration depth in unconventional superconductors SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Review ID HIGH-TEMPERATURE SUPERCONDUCTORS; D-WAVE SUPERCONDUCTORS; T-C SUPERCONDUCTORS; DOPED CUPRATE SUPERCONDUCTORS; ANDREEV BOUND-STATES; DENSITY-OF-STATES; II SUPERCONDUCTORS; ORDER-PARAMETER; SURFACE IMPEDANCE; FIELD PENETRATION AB This topical review summarizes various features of magnetic penetration depth in unconventional superconductors. Precise measurements of the penetration depth as a function of temperature, magnetic field and crystal orientation can provide detailed information about the pairing state. Examples are given of unconventional pairing in hole- and electron-doped cuprates, organic and heavy fermion superconductors. The ability to apply an external magnetic field adds a new dimension to measurements of penetration depth. We discuss how field-dependent measurements can be used to study surface Andreev bound states, nonlinear Meissner effects, magnetic impurities, magnetic ordering, proximity effects and vortex motion. We also discuss how measurements of penetration depth as a function of orientation can be used to explore superconductors with more than one gap and with anisotropic gaps. Details relevant to the analysis of penetration depth data in anisotropic samples are also discussed. C1 Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Univ Illinois, Dept Phys, Urbana, IL 61801 USA. RP Prozorov, R (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Prozorov, Ruslan/A-2487-2008 OI Prozorov, Ruslan/0000-0002-8088-6096 NR 219 TC 150 Z9 150 U1 4 U2 27 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD AUG PY 2006 VL 19 IS 8 BP R41 EP R67 DI 10.1088/0953-2048/19/8/R01 PG 27 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 063NM UT WOS:000239025600003 ER PT J AU Dhawan, J Deng, HF Gatley, SJ Makriyannis, A Akinfeleye, T Bruneus, M Dimaio, AA Gifford, AN AF Dhawan, J Deng, HF Gatley, SJ Makriyannis, A Akinfeleye, T Bruneus, M Dimaio, AA Gifford, AN TI Evaluation of the in vivo receptor occupancy for the behavioral effects. of Cannabinoids using a radiolabeled cannabinoid receptor agonist, R-[I-125/131]AM2233 SO SYNAPSE LA English DT Article DE CB1 receptor; cannabinoids; receptor occupancy; in vivo binding; agonist affinity states ID CB1 RECEPTORS; BRAIN; ANALOGS; BINDING; RADIOLIGANDS; ANTAGONIST; DOPAMINE; POTENT; DELTA(9)-TETRAHYDROCANNABINOL; AMINOALKYLINDOLES AB G-protein coupled receptors exist in both high and low agonist affinity conformations, with tracer levels of agonist radioligands preferentially binding to the former. The goal of the present study was to characterize the in vivo binding of the aminoalkyindole-based, CB1 receptor agonist, R-[I-125/131]AM2233 ((2-I-[125/131]iodo-phenyl)-[1-(1-methyl-piperidin-2-yl-methyl)-1H-indol-3-yl]-methanone), and to use this radiotracer to selectively measure the receptor occupancy by the related CB1 receptor agonist, WIN55212-2, to the agonist-preferring affinity state of the receptor. In mouse locomotor assays, both WIN55212-2 and AM2233 (racemic) produced an similar to 60% reduction in activity at 1 mg/kg, (i.v.) and completely inhibited activity at 3 mg/kg, confirming their agonist nature. In ex vivo autoradiography, preferential uptake of R-[I-131]AM2233 was apparent in CB1 receptor-rich areas, including globus pallidus, substantia nigra, striatum, cerebellum, and hippocampus. Overall brain uptake of R-[I-131]AM2233 was 1.3% injected activity/g at 5 min in mice. Coinjection of 3 mg/kg (i.v.) SR141716A, a CB1 receptor antagonist, with R-[I-125]AM2233 inhibited the radiotracer binding almost to nonspecific levels in the striatum, globus pallidus, and substantia nigra, although residual binding to a non-CB1 receptor remained in the hippocampus. In contrast to the effect of SR141716A, coinjection of 10 mg/kg (i.v.) WIN55212-2, a high dose that produced an immediate and profound immobility and catalepsy in the mice, reduced CB1 receptor-specific binding of R-[I-125]AM2233 in CB1 receptor-rich areas by only 21-43%. These observations suggest that the behavioral effects of CB1 receptor agonists are manifested with a relatively small fraction of the agonist-preferring affinity state of the receptor occupied. C1 Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. Northeastern Univ, Dept Pharmaceut Sci, Ctr Drug Discovery, Boston, MA 02115 USA. RP Gifford, AN (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. EM gifforda@bnl.gov FU NIDA NIH HHS [DA3801, DA12412, DA9158] NR 30 TC 16 Z9 16 U1 0 U2 2 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-4476 J9 SYNAPSE JI Synapse PD AUG PY 2006 VL 60 IS 2 BP 93 EP 101 DI 10.1002/syn.20277 PG 9 WC Neurosciences SC Neurosciences & Neurology GA 052MT UT WOS:000238238500001 PM 16715483 ER PT J AU Rosso, KM Dupuis, M AF Rosso, Kevin M. Dupuis, Michel TI Electron transfer in environmental systems: a frontier for theoretical chemistry SO THEORETICAL CHEMISTRY ACCOUNTS LA English DT Review DE electron transfer; iron; manganese; polaron; electronic coupling matrix element; reorganization energy ID TRANSFER MATRIX-ELEMENTS; TRANSITION-METAL-COMPLEXES; CHARGE-TRANSFER PROCESSES; MOLECULAR-OXYGEN; AQUEOUS-SOLUTION; SELF-EXCHANGE; IRON-OXIDES; AB-INITIO; HEMATITE ALPHA-FE2O3; IONIC INTERACTIONS AB The advances in understanding the kinetic behavior of certain environmental electron transfer (ET) systems are presented. Emphasis is placed on the homogeneous ET chemistry of transition metals, particularly the Fe-II/III system, in various relevant forms. In the context of modern ET theory, we examine the utility of computational chemistry methods for the calculation of ET quantities such as the reorganization energy and electronic coupling matrix element. We discuss successful application of the methods to topics of homogeneous oxidation of dissolved metal ions by molecular oxygen in aqueous solution, as well as the prediction of electron mobility in solid phase iron oxide crystals. The examples illustrate the significant potential for many more advances in understanding environmental ET systems through the combination of ET theory and computational chemistry. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Rosso, KM (reprint author), Pacific NW Natl Lab, POB 999,K8-96, Richland, WA 99352 USA. EM kevin.rosso@pnl.gov NR 119 TC 37 Z9 37 U1 3 U2 54 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 1432-881X J9 THEOR CHEM ACC JI Theor. Chem. Acc. PD AUG PY 2006 VL 116 IS 1-3 BP 124 EP 136 DI 10.1007/s00214-005-0016-x PG 13 WC Chemistry, Physical SC Chemistry GA 076LF UT WOS:000239958600011 ER PT J AU Kathmann, SM AF Kathmann, Shawn M. TI Understanding the chemical physics of nucleation SO THEORETICAL CHEMISTRY ACCOUNTS LA English DT Review ID VAPOR-PHASE NUCLEATION; MONTE-CARLO-SIMULATION; LENNARD-JONES SYSTEM; GAS-LIQUID TRANSITION; CRITICAL CLUSTER-SIZE; SULFURIC ACID-WATER; FREE-ENERGY CHANGES; HOMOGENEOUS NUCLEATION; MOLECULAR-DYNAMICS; ATMOSPHERIC PARTICLES AB Observation and theory have steadily progressed our understanding of nucleation phenomena over the past 280 years. However, even more questions remain concerning the governing processes and mechanisms. The inherent instability and sensitivity of nucleation places a high premium on theoretical accuracy and experimental purity and similarly makes interpretation of both more challenging. The objective of the present paper is to contribute to the understanding of nucleation kinetics and thermodynamics with emphasis on cluster chemical physics within the context of Dynamical Nucleation Theory. Our hope is to share some insights that we have gained over the past several years concerning rate constants, molecular interactions, statistical mechanics and their consequences on nucleation. C1 Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. RP Kathmann, SM (reprint author), Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. EM shawn.kathmann@pnl.gov NR 118 TC 16 Z9 17 U1 0 U2 29 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 1432-881X J9 THEOR CHEM ACC JI Theor. Chem. Acc. PD AUG PY 2006 VL 116 IS 1-3 BP 169 EP 182 DI 10.1007/s00214-005-0018-8 PG 14 WC Chemistry, Physical SC Chemistry GA 076LF UT WOS:000239958600015 ER PT J AU Bylaska, EJ AF Bylaska, Eric J. TI Estimating the thermodynamics and kinetics of chlorinated hydrocarbon degradation SO THEORETICAL CHEMISTRY ACCOUNTS LA English DT Review DE chlorinated hydrocarbons; CCl4; DDT; PCE; TCE; DDT; isodesmic reactions; dissociative electron attachment reactions ID DISSOCIATIVE ELECTRON-TRANSFER; CORRELATED MOLECULAR CALCULATIONS; GAUSSIAN-BASIS SETS; CONFIGURATION-INTERACTION CALCULATIONS; HALOGENATED ALIPHATIC-COMPOUNDS; POLARIZABLE CONTINUUM MODEL; POTENTIAL-ENERGY CURVES; CARBON-TETRACHLORIDE; AB-INITIO; WAVE-FUNCTIONS AB Many different degradation reactions of chlorinated hydrocarbons are possible in natural groundwaters. In order to identify which degradation reactions are important, a large number of possible reaction pathways must be sorted out. Recent advances in ab initio electronic structure methods have the potential to help identify relevant environmental degradation reactions by characterizing the thermodynamic properties of all relevant contaminant species and intermediates for which experimental data are usually not available, as well as provide activation energies for relevant pathways. In this paper, strategies based on ab initio electronic structure methods for estimating thermochemical and kinetic properties of reactions with chlorinated hydrocarbons are presented. Particular emphasis is placed on strategies that are computationally fast and can be used for large organochlorine compounds such as 4,4'-DDT. C1 Pacific NW Natl Lab, Fundamental Sci Div, Richland, WA 99352 USA. RP Bylaska, EJ (reprint author), Pacific NW Natl Lab, Fundamental Sci Div, POB 999, Richland, WA 99352 USA. EM Eric.bylaska@pnl.gov NR 119 TC 8 Z9 8 U1 4 U2 21 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1432-881X EI 1432-2234 J9 THEOR CHEM ACC JI Theor. Chem. Acc. PD AUG PY 2006 VL 116 IS 1-3 BP 281 EP 296 DI 10.1007/s00214-005-0042-8 PG 16 WC Chemistry, Physical SC Chemistry GA 076LF UT WOS:000239958600025 ER PT J AU Boore, JL AF Boore, Jeffrey L. TI The use of genome-level characters for phylogenetic reconstruction SO TRENDS IN ECOLOGY & EVOLUTION LA English DT Review ID MITOCHONDRIAL GENE ORDER; TRANSFER-RNA GENES; MOLECULAR EVIDENCE; COMPLETE SEQUENCE; SINE INSERTIONS; EVOLUTION; DNA; REARRANGEMENTS; ARRANGEMENTS; ELEMENTS AB Now that large-scale genome-sequencing projects are sampling many organismal lineages, it is becoming possible to compare large data sets of not only DNA and protein sequences, but also genome-level features, such as gene arrangements and the positions of mobile genetic elements. Although it is unlikely that comparisons of such features will address a large number of evolutionary branch points across the broad tree of life owing to the infeasibility of such sampling, they have great potential for resolving many crucial, contested relationships for which no other data seem promising. Here, I discuss the advancements, advantages, methods, and problems of the use of genome-level characters for reconstructing evolutionary relationships. C1 US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. Lawrence Berkeley Lab, Walnut Creek, CA 94598 USA. Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA. Genome Project Solut, Hercules, CA 94547 USA. RP Boore, JL (reprint author), US DOE, Joint Genome Inst, 2800 Mitchell Dr, Walnut Creek, CA 94598 USA. EM jlboore@berkeley.edu NR 61 TC 115 Z9 121 U1 1 U2 19 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0169-5347 J9 TRENDS ECOL EVOL JI Trends Ecol. Evol. PD AUG PY 2006 VL 21 IS 8 BP 439 EP 446 DI 10.1016/j.tree.2006.05.009 PG 8 WC Ecology; Evolutionary Biology; Genetics & Heredity SC Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity GA 076TT UT WOS:000239981400009 PM 16762445 ER PT J AU Kim, HI Lince, JR Eryilmaz, OL Erdemir, A AF Kim, H. I. Lince, J. R. Eryilmaz, O. L. Erdemir, A. TI Environmental effects on the friction of hydrogenated DLC films (c) SO TRIBOLOGY & LUBRICATION TECHNOLOGY LA English DT Article DE friction mechanisms; diamond-like carbon; coatings; friction-reducing; unlubricated friction; vapor phase lubrication; water ID DIAMOND-LIKE CARBON; SUPERLOW FRICTION; RELATIVE-HUMIDITY; WEAR PROPERTIES; BEHAVIOR; PRESSURE; VACUUM AB We have investigated environmental effects on hydrogenated diamond-like carbon (H-DLC) films under various pressures of H2O,02, and N-2 by ultrahigh vacuum (UHV) tribometry. The H-DLC film exhibits an ultralow coeffcient of friction (mu = 0.004 in UHV). The mu value increases with increasing pressure of H(2)o and O-2. Specifcally, y increases up to 0.07 under 10 Torr of H2O, and up to 0.03 under 150 Torr of O-2; these are typical H2O and O-2 contents, respectively in ambient air. Our results are consistent with similar environmental effects previously reported. But we have also discovered that these friction changes are reversible, returning to the ultralow value when UHV is restored. The reversibility of the friction behavior in both environments, coupled with the lack of evidence of tribochemical changes by Auger electron spectroscopy, suggest that the observed friction changes are due to the weakly adsorbed gas molecules that infuence the friction property by physically separating the H-DLC interface. Speed-dependent tribometry also supports this argument. In addition, two DLC films with different hydrogen contents and with widely different friction coeffcients in UHV are shown to exhibit identical mu values under humid environments, further demonstrating that the frictional properties of these DLC films are essentially determined by the surface layer of adsorbed gas molecules. C1 Aerosp Corp, Tribol Sect, El Segundo, CA USA. Argonne Natl Labs, Argonne, IL USA. RP Kim, HI (reprint author), Aerosp Corp, Tribol Sect, El Segundo, CA USA. RI Lince, Jeffrey/N-1437-2013 OI Lince, Jeffrey/0000-0002-6545-6346 NR 20 TC 1 Z9 1 U1 0 U2 6 PU SOC TRIBOLOGISTS & LUBRICATION ENGINEERS PI PARK RIDGE PA 840 BUSSE HIGHWAY, PARK RIDGE, IL 60068 USA SN 0024-7154 J9 TRIBOL LUBR TECHNOL JI Tribol. Lubr. Technol. PD AUG PY 2006 VL 62 IS 8 BP 38 EP 42 PG 5 WC Engineering, Mechanical SC Engineering GA 075TZ UT WOS:000239909400010 ER PT J AU Kaiser, M Doytcheva, M Verheijen, M de Jonge, N AF Kaiser, Monia Doytcheva, Maya Verheijen, Marcel de Jonge, Niels TI In situ transmission electron microscopy observations of individually selected freestanding carbon nanotubes during field emission SO ULTRAMICROSCOPY LA English DT Article DE carbon nanotubes; transmission electron microscopy; electron emission; in situ ID FULLERENE NANOTUBES; GROWTH; TIPS AB For the successful application of carbon nanotubes (CNTs) as electron sources in various applications it is important to understand the relation between the morphology of the CNT and its emission properties. A method was developed to study individual, freestanding and pre-selected CNTs with high-resolution transmission electron microscopy (TEM). The technique provided important parameters of the CNT, such as the number of carbon walls and the nature of its apex. The resolution with which the freestanding apices were imaged depended linearly on the ratio of the length and the radius. CNTs were,also imaged in situ in the TEM while emitting electrons. It was found that the structure of a CNT was highly stable below a certain threshold emission current of typically 2 mu A, while various structural changes occurred above the threshold, leading to either damaging or repair of the structure at the apex of the CNT. (c) 2006 Elsevier B.V. All rights reserved. C1 Philips Res Labs, NL-5656 AE Eindhoven, Netherlands. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Kaiser, M (reprint author), Philips Res Labs, High Tech Campus 11, NL-5656 AE Eindhoven, Netherlands. EM m.kaiser@philips.com RI de Jonge, Niels/B-5677-2008 NR 36 TC 3 Z9 3 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD AUG-SEP PY 2006 VL 106 IS 10 BP 902 EP 908 DI 10.1016/j.ultramic.2006.04.003 PG 7 WC Microscopy SC Microscopy GA 082OW UT WOS:000240397200002 PM 16737778 ER PT J AU Vrugt, JA Neuman, SP AF Vrugt, Jasper A. Neuman, Shlomo P. TI Introduction to the special section in Vadose Zone Journal: Parameter identification and uncertainty assessment in the unsaturated zone SO VADOSE ZONE JOURNAL LA English DT Editorial Material ID MODEL; FLOW C1 Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. RP Vrugt, JA (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, POB 1663, Los Alamos, NM 87545 USA. EM vrugt@lanl.gov RI Vrugt, Jasper/C-3660-2008 NR 9 TC 2 Z9 2 U1 0 U2 2 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD AUG PY 2006 VL 5 IS 3 BP 915 EP 916 DI 10.2136/vzj2006.0098 PG 2 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 107NP UT WOS:000242178600011 ER PT J AU Kwicklis, EM Wolfsberg, AV Stauffer, PH Walvoord, MA Sully, MJ AF Kwicklis, Edward M. Wolfsberg, Andrew V. Stauffer, Philip H. Walvoord, Michelle A. Sully, Michael J. TI Multiphase, multicomponent parameter estimation for liquid and vapor fluxes in deep arid systems using hydrologic data and natural environmental tracers SO VADOSE ZONE JOURNAL LA English DT Article ID STABLE-ISOTOPE COMPOSITIONS; UNITED-STATES; GREAT-BASIN; MODERN PRECIPITATION; UNSATURATED ZONE; SOUTHERN NEVADA; WATER-MOVEMENT; MOJAVE DESERT; HYDRODYNAMICS; PROFILES AB Multiphase, multicomponent numerical models of long-term unsaturated-zone liquid and vapor movement were created for a thick alluvial basin at the Nevada Test Site to predict present-day liquid and vapor fluxes. The numerical models are based on recently developed conceptual models of unsaturated-zone moisture movement in thick alluvium that explain present-day water potential and tracer profiles in terms of major climate and vegetation transitions that have occurred during the past 10 000 yr or more. The numerical models were calibrated using borehole hydrologic and environmental tracer data available from a low-level radioactive waste management site located in a former nuclear weapons testing area. The environmental tracer data used in the model calibration includes tracers that migrate in both the liquid and vapor phases (delta D, delta O-18) and tracers that migrate solely as dissolved solutes (Cl), thus enabling the estimation of some gas-phase as well as liquid-phase transport parameters. Parameter uncertainties and correlations identified during model calibration were used to generate parameter combinations for a set of Monte Carlo simulations to more fully characterize the uncertainty in liquid and vapor fluxes. The calculated background liquid and vapor fluxes decrease as the estimated time since the transition to the present-day arid climate increases. However, on the whole, the estimated fluxes display relatively little variability because correlations among parameters tend to create parameter sets for which changes in some parameters offset the effects of others in the set. Independent estimates on the timing since the climate transition established from packrat midden data were essential for constraining the model calibration results. The study demonstrates the utility of environmental tracer data in developing numerical models of liquid- and gas-phase moisture movement and the importance of considering parameter correlations when using Monte Carlo analysis to characterize the uncertainty in moisture fluxes. C1 Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. Denver Fed Ctr, USGS, Lakewood, CO 80225 USA. Neptune & Co Inc, Los Alamos, NM 87544 USA. RP Wolfsberg, AV (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, POB 1663, Los Alamos, NM 87545 USA. EM awolf@lanl.gov OI Stauffer, Philip/0000-0002-6976-221X NR 35 TC 20 Z9 20 U1 1 U2 6 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD AUG PY 2006 VL 5 IS 3 BP 934 EP 950 DI 10.2136/vzj2006.0021 PG 17 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 107NP UT WOS:000242178600013 ER PT J AU Elam, JW Libera, JA Pellin, MJ Zinovev, AV Greene, JP Nolen, JA AF Elam, J. W. Libera, J. A. Pellin, M. J. Zinovev, A. V. Greene, J. P. Nolen, J. A. TI Atomic layer deposition of W on nanoporous carbon aerogels SO APPLIED PHYSICS LETTERS LA English DT Article ID QUARTZ-CRYSTAL MICROBALANCE; SOL-GEL POLYMERIZATION; ANODIC ALUMINA; FORMALDEHYDE; GROWTH; NANOPARTICLES; NUCLEATION; ELECTRODES; SI2H6; SIZE AB In this study, the authors demonstrate the ability to apply precise, conformal W coatings onto all surfaces of nanoporous carbon aerogels using atomic layer deposition (ALD). The resulting material has a filamentous structure in which the W completely encapsulates the carbon aerogel strands. The material mass increases nonlinearly with W coating, achieving a tenfold increase following ten ALD cycles. The aerogel surface area increases by nearly a factor of 2 after ten W ALD cycles. This conformal metal coating of extremely high aspect ratio nanoporous materials by ALD represents a unique route to forming metal functionalized high surface area materials. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Elam, JW (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jelam@anl.gov RI Pellin, Michael/B-5897-2008 OI Pellin, Michael/0000-0002-8149-9768 NR 33 TC 29 Z9 29 U1 0 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 31 PY 2006 VL 89 IS 5 AR 053124 DI 10.1063/1.2245216 PG 3 WC Physics, Applied SC Physics GA 070KH UT WOS:000239520200096 ER PT J AU Kucheyev, SO Hayes, JR Biener, J Huser, T Talley, CE Hamza, AV AF Kucheyev, S. O. Hayes, J. R. Biener, J. Huser, T. Talley, C. E. Hamza, A. V. TI Surface-enhanced Raman scattering on nanoporous Au SO APPLIED PHYSICS LETTERS LA English DT Article ID ACTIVE-SITES; NANOPARTICLES; SPECTROSCOPY; JUNCTIONS; MOLECULES; FILMS AB Colloidal solutions of metal nanoparticles are currently among the most studied substrates for sensors based on surface-enhanced Raman scattering (SERS). However, such substrates often suffer from not being cost-effective, reusable, or stable. Here, we develop nanoporous Au as a highly active, tunable, stable, biocompatible, and reusable SERS substrate. Nanoporous Au is prepared by a facile process of free corrosion of AgAu alloys followed by annealing. Results show that nanofoams with average pore widths of similar to 250 nm exhibit the largest SERS signal for 632.8 nm excitation. This is attributed to the electromagnetic SERS enhancement mechanism with additional field localization within pores. (c) 2006 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Kucheyev, SO (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM kucheyev@llnl.gov RI Huser, Thomas/H-1195-2012 OI Huser, Thomas/0000-0003-2348-7416 NR 21 TC 125 Z9 127 U1 8 U2 55 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 31 PY 2006 VL 89 IS 5 AR 053102 DI 10.1063/1.2260828 PG 3 WC Physics, Applied SC Physics GA 070KH UT WOS:000239520200074 ER PT J AU Liu, Y Liu, CT George, EP Wang, XZ AF Liu, Y. Liu, C. T. George, E. P. Wang, X. Z. TI Thermal diffusion and compositional inhomogeneity in cast Zr50Cu50 bulk metallic glass SO APPLIED PHYSICS LETTERS LA English DT Article ID CU AB Macroscale compositional inhomogeneity was found in Zr50Cu50 (at. %) bulk metallic glass castings prepared by rapid solidification. The variation of composition in the castings from surface to interior is attributed to the Soret effect induced by a large temperature gradient during cooling. Copper exhibits a positive Soret coefficient, and its concentration increases with temperature gradient. The Soret effect was detected up to a depth of 250 mu m and its magnitude depended on the size of the casting. The compositional inhomogeneity resulting from the Soret effect has a significant influence on the nucleation of crystallization phases in the Zr50Cu50 metallic glass. (c) 2006 American Institute of Physics. C1 Cent S Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China. Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Liu, Y (reprint author), Cent S Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China. EM yliu31@gmail.com RI George, Easo/L-5434-2014 NR 12 TC 14 Z9 14 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 31 PY 2006 VL 89 IS 5 AR 051919 DI 10.1063/1.2335380 PG 3 WC Physics, Applied SC Physics GA 070KH UT WOS:000239520200038 ER PT J AU Lu, JG Ye, ZZ Yuan, GD Zeng, YJ Zhuge, F Zhu, LP Zhao, BH Zhang, SB AF Lu, J. G. Ye, Z. Z. Yuan, G. D. Zeng, Y. J. Zhuge, F. Zhu, L. P. Zhao, B. H. Zhang, S. B. TI Electrical characterization of ZnO-based homojunctions SO APPLIED PHYSICS LETTERS LA English DT Article ID P-TYPE ZNO; LIGHT-EMITTING DIODE; N HOMOJUNCTIONS; OHMIC CONTACTS; THIN-FILMS; CONDUCTIVITY; FABRICATION; JUNCTIONS AB Electrical characteristics have been studied for ZnO p-n and p-i-n homojunctions, with optimization of device structures for improved performance. Capacitance-voltage measurements confirm the formation of abrupt junctions. The current-voltage characteristics exhibit their inherent electrical rectification behavior. The p-ZnO:(N,Al)/n-ZnO:Al homojunctions fabricated on sapphire substrates combining with the intrinsic ZnO buffer layer have acceptable p-n diode characteristics, with the forward turn-on voltage of 1.4 V and the reverse breakdown voltage of 5.3 V. By introduction of an intrinsic (Zn,Cd)O layer, the resultant p-ZnO:(N,Al)/i-(Zn,Cd)O/n-ZnO:Al homojunction exhibits a high reverse breakdown voltage of similar to 18 V. C1 Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China. Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Lu, JG (reprint author), Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China. EM lujianguo@zju.edu.cn; yezz@cmsce.zju.edu.cn RI Krausnick, Jennifer/D-6291-2013; Zhang, Shengbai/D-4885-2013; yuan, guodong/B-6314-2015; Lu, Jia Grace/I-7435-2015; Zeng, Yujia/F-5221-2016 OI Zhang, Shengbai/0000-0003-0833-5860; yuan, guodong/0000-0001-9627-0934; Lu, Jia Grace/0000-0001-9908-4061; NR 18 TC 47 Z9 49 U1 1 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 31 PY 2006 VL 89 IS 5 AR 053501 DI 10.1063/1.2245221 PG 3 WC Physics, Applied SC Physics GA 070KH UT WOS:000239520200100 ER PT J AU Shibata, N Painter, GS Becher, PF Pennycook, SJ AF Shibata, Naoya Painter, Gayle S. Becher, Paul F. Pennycook, Stephen J. TI Atomic ordering at an amorphous/crystal interface SO APPLIED PHYSICS LETTERS LA English DT Article ID SILICON-NITRIDE CERAMICS; INTERGRANULAR FILMS; GRAIN-BOUNDARIES; GLASSES AB In this study, the authors report atomic-resolution images that illustrate the transition from a crystalline Si3N4 grain across the interface into an amorphous Lu-Si-Mg-N-O glassy phase. The interface is not atomically abrupt, but is comprised of sub-nanometer-scale ordered regions that resemble a LuN-like structure. These ordered clusters bind to the prismatic surface of the Si3N4 grains at specific low energy positions for Lu adsorption as predicted by first-principles calculations. The ordered regions are filamentary in nature, extending for at least two atomic layers into the amorphous pockets at multigrain junctions before disappearing. (c) 2006 American Institute of Physics. C1 Univ Tokyo, Inst Engn Innovat, Bunkyo Ku, Tokyo 1138656, Japan. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Shibata, N (reprint author), Univ Tokyo, Inst Engn Innovat, Bunkyo Ku, Tokyo 1138656, Japan. EM shibata@sigma.t.u-tokyo.ac.jp RI Shibata, Naoya/E-5327-2013 NR 16 TC 21 Z9 21 U1 6 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 31 PY 2006 VL 89 IS 5 AR 051908 DI 10.1063/1.2245212 PG 3 WC Physics, Applied SC Physics GA 070KH UT WOS:000239520200027 ER PT J AU Wang, CZ Li, J Ho, KM Yip, S AF Wang, Cai-Zhuang Li, Ju Ho, Kai-Ming Yip, Sidney TI Undissociated screw dislocation in Si: Glide or shuffle set? SO APPLIED PHYSICS LETTERS LA English DT Article ID SILICON; DIAMOND; TEMPERATURES; PLASTICITY; TRANSITION; ENERGY AB In diamond and zinc blende crystals, the competition between glide and shuffle-set slips has been intensively studied. In particular, the undissociated screw dislocation in Si seen at low temperature about five years ago was generally believed to be shuffle set. In this letter, the authors have performed tight-binding and density functional theory calculations that show that a glide-set C core has lower energy than the shuffle-set A core after period-doubling reconstruction. Since the C core can cross slip between two glide-set planes, it satisfies all the experimental observations to date, and may play important roles in dislocation cross slip and ductile-to-brittle transition in these materials. (c) 2006 American Institute of Physics. C1 Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. Iowa State Univ, Dept Phys, Ames, IA 50011 USA. Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA. MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. RP Wang, CZ (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. EM wangcz@ameslab.gov RI Li, Ju/A-2993-2008 OI Li, Ju/0000-0002-7841-8058 NR 23 TC 26 Z9 26 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 31 PY 2006 VL 89 IS 5 AR 051910 DI 10.1063/1.2236620 PG 3 WC Physics, Applied SC Physics GA 070KH UT WOS:000239520200029 ER PT J AU Zhou, JK Hsiung, LL AF Zhou, Jikou Hsiung, Luke L. TI Biomolecular origin of the rate-dependent deformation of prismatic enamel SO APPLIED PHYSICS LETTERS LA English DT Article ID MECHANICAL-PROPERTIES AB Penetration deformation of columnar prismatic enamel was investigated using instrumented nanoindentation testing that was carried out at three constant strain rates (0.05, 0.005, and 0.0005 s(-1)). Enamel demonstrated better resistance to penetration deformation and greater elastic modulus values were measured at higher strain rates. The origin of rate-dependent deformation was rationalized to be the shear deformation of nanoscale protein matrix surrounding each hydroxyapatite crystal rod. The shear modulus of protein matrix was determined. It depends on strain rate in a format G(p)=0.213+0.021 ln epsilon. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Zhou, JK (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM zhou5@llnl.gov NR 18 TC 27 Z9 27 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 31 PY 2006 VL 89 IS 5 AR 051904 DI 10.1063/1.2245439 PG 3 WC Physics, Applied SC Physics GA 070KH UT WOS:000239520200023 ER PT J AU Getova, VT Bontchev, RP Mehandjiev, DR Bontchev, PR AF Getova, V. T. Bontchev, R. P. Mehandjiev, D. R. Bontchev, P. R. TI Complexes of 1-[2-[2-hydroxy-3-(propylamino)propoxy]phenyl]-3-phenyl-1-propanone (propafenone) with copper(II): Crystal structure of the mononuclear Cu(II) complex with propafenone SO POLYHEDRON LA English DT Article DE Cu(II) complexes; propafenone; X-ray data; magnetochemical properties ID RAT-LIVER; LIGAND AB Two new copper(II) complexes with the antiarrythmic drug propafenone (HPr) have been synthesized: the mononuclear complex CuPr2 (1) and the binuclear one Cu2Pr2Cl2 (2) and have been studied using electronic, IR and EPR spectra, magnetochemical, thermogravimetric and single-crystal X-ray diffraction methods. In the mononuclear complex 1, copper(II) is coordinated bidentately with the NH and deprotonated OH groups of two drug molecules forming a nearly square-planar structure of the type CuL2, with a CuN2O2 chromophore. In complex 2 each copper atom is coordinated with one N atom from one ligand, one terminal chlorine atom and two oxygen atoms from two different ligand molecules which serve as bridges in the formation of the binuclear complex 2. Measurable antiferromagnetic interactions between the two paramagnetic Cu(II) centers are responsible for some interesting magnetic properties. (C) 2006 Elsevier Ltd. All rights reserved. C1 Bulgarian Acad Sci, Inst Gen & Inorgan Chem, BU-1113 Sofia, Bulgaria. Sandia Natl Labs, Albuquerque, NM 87185 USA. Univ Sofia, Fac Chem, Sofia 1164, Bulgaria. RP Bontchev, PR (reprint author), Bulgarian Acad Sci, Inst Gen & Inorgan Chem, Acad G Bontchev Str,Bl 11, BU-1113 Sofia, Bulgaria. EM prbontchev@chem.uni-sofia.bg RI Bontchev, Panayot/A-4001-2008 NR 37 TC 5 Z9 5 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-5387 J9 POLYHEDRON JI Polyhedron PD JUL 31 PY 2006 VL 25 IS 11 BP 2254 EP 2260 DI 10.1016/j.poly.2006.01.027 PG 7 WC Chemistry, Inorganic & Nuclear; Crystallography SC Chemistry; Crystallography GA 067FP UT WOS:000239287500009 ER PT J AU Cota, GF Cooper, LW Darby, DA Larsen, IL AF Cota, Glenn F. Cooper, Lee W. Darby, Dennis A. Larsen, I. L. TI Unexpectedly high radioactivity burdens in ice-rafted sediments from the Canadian Arctic Archipelago SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE radioactive; (CS)-C-137; sediment; sea ice; Arctic; Canada ID SEA-ICE; YENISEY RIVERS; NOVAYA-ZEMLYA; KARA SEA; TRANSPORT; OCEAN; PU-239,PU-240; RADIONUCLIDES; PLUTONIUM; CS-137 AB Unexpectedly high specific activities of Cs-137 (1800-2000 Bq kg(-1) dry weight) have been detected in fine-grained sediments entrained in multi-year sea ice floes grounded in Resolute Bay near the center of the Northwest Passage through the Canadian Arctic Archipelago. These results are remarkable because: (1) the specific activities are about two orders of magnitude higher than average specific activities detected in previous studies of sea ice rafted sediments from the Arctic Ocean, (2) two independent observations of these unexpectedly high specific activities were made several years apart, (3) the sampling site is on the opposite side of the Arctic basin from potential radioactive sources such as disposal and weapons testing sites of the former Soviet Union and nuclear fuel reprocessing sites in western Europe, and (4) the closest compositional match to known geologic source regions is Banks Island, on the western edge of the Arctic Archipelago, although a smaller number of grains from one of the two samples were mineralogically matched to sediments in the Laptev Sea. Consequently, the sediments are probably not from a single distinct source and were likely mixed during sea ice transport. Coupled with previous observations of higher radionuclide specific activities in some sea ice rafted sediments relative to bottom sediments, these new observations indicate that comparatively high as well as variable radioactive contaminant burdens in ice rafted sediments must be common and geographically independent of proximity to known contaminant sources. The mechanisms that would facilitate these unexpected high radionuclide burdens in sea ice are not known and require additional study, as well as investigations of the implications for the transport and fate of contaminants in Arctic sea ice. (c) 2005 Elsevier B.V. All rights reserved. C1 Old Dominion Univ, Dept Ocean Earth & Atmospher Sci, Ctr Coastal Phys Oceanog, Norfolk, VA 23508 USA. Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA. Old Dominion Univ, Dept Oean Earth & Atomospher Sci, Norfolk, VA 23529 USA. Oak Ridge Natl Lab, Environm Sci Div, Oak Ridge, TN 37831 USA. RP Cooper, LW (reprint author), Old Dominion Univ, Dept Ocean Earth & Atmospher Sci, Ctr Coastal Phys Oceanog, Norfolk, VA 23508 USA. EM lcooper1@utk.edu RI Cooper, Lee/E-5251-2012; Darby, Dennis/A-9219-2010 OI Cooper, Lee/0000-0001-7734-8388; Darby, Dennis/0000-0002-3112-9072 NR 31 TC 1 Z9 1 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD JUL 31 PY 2006 VL 366 IS 1 BP 253 EP 261 DI 10.1016/j.scitotenv.2005.08.021 PG 9 WC Environmental Sciences SC Environmental Sciences & Ecology GA 070CZ UT WOS:000239499200025 PM 16197983 ER PT J AU King, BV Moore, JF Calaway, WF Veryovkin, IV Pellin, MJ AF King, B. V. Moore, J. F. Calaway, W. F. Veryovkin, I. V. Pellin, M. J. TI Sputtering of clusters from nickel-aluminium SO APPLIED SURFACE SCIENCE LA English DT Article; Proceedings Paper CT 15th International Conference on Secondary Ion Mass Spectrometry (SIMS XV) CY SEP 12-16, 2005 CL Univ Manchester, Manchester, ENGLAND HO Univ Manchester DE sputtering; laser SNMS; NiAl ID ENERGY-DISTRIBUTIONS; METAL-CLUSTERS; EUTECTIC ALLOY; ATOMS; BOMBARDMENT; EMISSION; YIELDS AB A NiAl(111) single crystal was bombarded with 15 keV Ar+, and the resulting secondary neutrals were analysed by laser postionisation secondary neutral mass spectrometry. By measuring the individual cluster photoion intensity as a function of laser power, the sputter yields of 33 individual clusters were determined. The yield of Al-n clusters sputtered from NiAl falls with increasing cluster nuclearity as n(-8.7) while Ni-n and Alm-nNin yields are proportional to n(-5.9) and n(-5.2) respectively. The distribution of thee yields of mixed Alm-nNin clusters with n and m is found to diverge significantly from the expected distribution based on a random combinatorial approach, indicating that the energetics due to the chemical bonding in the clusters plays a significant role during cluster formation in the sputtering process. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Newcastle, Callaghan, NSW 2308, Australia. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP King, BV (reprint author), Univ Newcastle, Callaghan, NSW 2308, Australia. EM bruce.king@newcastle.edu.au RI Pellin, Michael/B-5897-2008 OI Pellin, Michael/0000-0002-8149-9768 NR 23 TC 8 Z9 8 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD JUL 30 PY 2006 VL 252 IS 19 SI SI BP 6426 EP 6428 DI 10.1016/j.apsusc.2006.02.090 PG 3 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 085ND UT WOS:000240609900008 ER PT J AU Zhu, ZM Kelley, MJ AF Zhu, Zhengmao Kelley, Michael J. TI ToF-SIMS analysis of a fluorocarbon-grafted PET with a gold cluster ion source SO APPLIED SURFACE SCIENCE LA English DT Article; Proceedings Paper CT 15th International Conference on Secondary Ion Mass Spectrometry (SIMS XV) CY SEP 12-16, 2005 CL Univ Manchester, Manchester, ENGLAND HO Univ Manchester DE SIMS; cluster ion; polymer; monolayer; surface analysis; sputter cross-section ID 172 NM IRRADIATION; MOLECULAR-DYNAMICS; BOMBARDMENT; POLY(ETHYLENE-TEREPHTHALATE); SIMULATIONS; EMISSION; PROJECTILES; SURFACES; IMPACTS; BEAM AB Cluster ions have been recognized as a superb primary species in time of flight secondary ion mass spectroscopy (ToF-SIMS) compared with monatomic primary ions, as they significantly enhance the secondary ion yields from bulk samples. Self-assembled monolayers provide an important system for studying the fundamental mechanism involved in the yield enhancement. We used a gold cluster ion source to analyze a new type of self-assembled monolayer: a fluorocarbon-grafted polyethylene terephthalate. In addition to the structure details, which helped to understand the grafting mechanism, ToF-SIMS analysis revealed that fluorocarbon secondary ion yield enhancements by cluster ions were due to the enhanced sputter efficiency. A larger information depth may also be expected from the enhancement. Both mathematical definitions of damage cross-section and disappearance cross-section were revisited under a new context. Another cross-section parameter, sputter cross-section, was introduced to differentiate the beam induced sputter process from damage process. (c) 2006 Elsevier B.V. All rights reserved. C1 Coll William & Mary, Dept Appl Sci, Appl Res Ctr 601, Newport News, VA 23606 USA. Thomas Jefferson Natl Accelerator Facil, Free Electron Laser Dept, Newport News, VA 23606 USA. RP Kelley, MJ (reprint author), Coll William & Mary, Dept Appl Sci, Appl Res Ctr 601, 12050 Jefferson Ave, Newport News, VA 23606 USA. EM mkelley@jlab.org NR 21 TC 5 Z9 5 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD JUL 30 PY 2006 VL 252 IS 19 SI SI BP 6619 EP 6623 DI 10.1016/j.apsusc.2006.02.088 PG 5 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 085ND UT WOS:000240609900055 ER PT J AU Hanley, L Edirisinghe, PD Calaway, WF Veryovkin, IV Pellin, MJ Moore, JF AF Hanley, L. Edirisinghe, P. D. Calaway, W. F. Veryovkin, I. V. Pellin, M. J. Moore, J. F. TI 7.87 eV postionization of peptides containing tryptophan or derivatized with fluorescein SO APPLIED SURFACE SCIENCE LA English DT Article; Proceedings Paper CT 15th International Conference on Secondary Ion Mass Spectrometry (SIMS XV) CY SEP 12-16, 2005 CL Univ Manchester, Manchester, ENGLAND HO Univ Manchester DE vacuum ultraviolet; postionization; peptides; laser desorption; ToF MS; derivatization ID PHOTOIONIZATION MASS-SPECTROMETRY; SINGLE-PHOTON IONIZATION; SURFACE-ANALYSIS; DISTRIBUTIONS; MECHANISM; SPECTRA; IONS AB Chemical tags such as anthracene can be attached to a molecular analyte and serve as chromophores for 7.87 eV laser postionization by lowering the overall ionization potential of the tagged molecular complex. Fluorescein and tryptophan are demonstrated as two new tags for 7.87 eV laser postionization of various amino acids and peptides. Other molecular species that are efficient fluorescence probes should also serve as tags for 7.87 eV postionization since they display highest occupied molecular orbitals with extended pi-conjugation that lead to ionization potentials below this photon energy and an ability to stabilize the net positive charge of the radical cations. This technique is demonstrated here for laser desorbed species, but is also applicable to keV ion sputtered neutrals. Overall, 7.87 eV laser postionization of derivatized species promises to expand the capabilities of mass spectrometric surface analysis. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Illinois, Dept Chem, Chicago, IL 60607 USA. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Hanley, L (reprint author), Univ Illinois, Dept Chem, MC 111, Chicago, IL 60607 USA. EM lhanley@uic.edu RI Pellin, Michael/B-5897-2008 OI Pellin, Michael/0000-0002-8149-9768 NR 19 TC 12 Z9 12 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD JUL 30 PY 2006 VL 252 IS 19 SI SI BP 6723 EP 6726 DI 10.1016/j.apsusc.2006.02.156 PG 4 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 085ND UT WOS:000240609900082 ER PT J AU Kraft, ML Fishel, SF Marxer, CG Weber, PK Hutcheon, ID Boxer, SG AF Kraft, Mary L. Fishel, Simon Foster Marxer, Carine Galli Weber, Peter K. Hutcheon, Ian D. Boxer, Steven G. TI Quantitative analysis of supported membrane composition using the NanoSIMS SO APPLIED SURFACE SCIENCE LA English DT Article; Proceedings Paper CT 15th International Conference on Secondary Ion Mass Spectrometry (SIMS XV) CY SEP 12-16, 2005 CL Univ Manchester, Manchester, ENGLAND HO Univ Manchester DE lipid; bilayer; SIMS; NanoSIMS; mixture; gradient; compositional analysis ID ION MASS-SPECTROMETRY; LIPID-BILAYER; TOF-SIMS; PROTEINS; CELLS; TRANSPORT; SURFACE; FLUORESCENCE; MICROSCOPY; DOMAINS AB We have improved methods reported earlier [11 for sample preparation, imaging and quantifying components in supported lipid bilayers using high-resolution secondary ion mass spectrometry performed with the NanoSIMS 50. By selectively incorporating a unique stable isotope into each component of interest, a component-specific image is generated from the location and intensity of the unique secondary ion signals exclusively produced by each molecule. Up to five species can be simultaneously analyzed. Homogeneous supported lipid bilayers that systematically varied in their isotopic enrichment levels were freeze-dried and analyzed with the NanoSIMS 50. The molecule-specific secondary ion signal intensities had an excellent linear correlation to the isotopically labeled lipid content. Statistically indistinguishable calibration curves were obtained using different sample sets analyzed months apart. Fluid bilayers can be patterned using lithographic methods and the composition of each corralled region varied systematically by simple microfluidic methods. The resulting composition variations can be imaged and quantified. This approach opens the possibility of imaging and quantifying the composition of microdomains within membranes, including protein components, without using bulky labels and with very high lateral resolution and sensitivity. (c) 2006 Elsevier B.V. All rights reserved. C1 Stanford Univ, Dept Chem, Stanford, CA 94305 USA. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Boxer, SG (reprint author), Stanford Univ, Dept Chem, Stanford, CA 94305 USA. EM sboxer@stanford.edu NR 40 TC 21 Z9 21 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD JUL 30 PY 2006 VL 252 IS 19 SI SI BP 6950 EP 6956 DI 10.1016/j.apsusc.2006.02.116 PG 7 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 085ND UT WOS:000240609900126 ER PT J AU Gerlach, DC Cliff, JB Hurley, DE Reid, BD Little, WW Meriwether, GH Wickham, AJ Simmons, TA AF Gerlach, D. C. Cliff, J. B. Hurley, D. E. Reid, B. D. Little, W. W. Meriwether, G. H. Wickham, A. J. Simmons, T. A. TI Secondary ionization mass spectrometric analysis of impurity element isotope ratios in nuclear reactor materials SO APPLIED SURFACE SCIENCE LA English DT Article; Proceedings Paper CT 15th International Conference on Secondary Ion Mass Spectrometry (SIMS XV) CY SEP 12-16, 2005 CL Univ Manchester, Manchester, ENGLAND HO Univ Manchester DE SIMS; isotope ratios; nuclear reactors; graphite ID BORON AB During reactor operations and fuel burn up, some isotopic abundances change due to nuclear reactions and provide sensitive indicators of neutron fluence and fuel burnup. Secondary ion mass spectrometry (SIMS) analysis has been used to measure isotope ratios of selected impurity elements in irradiated nuclear reactor graphite. Direct SIMS measurements were made in graphite samples, following shaping and surface cleaning. Models predicting local fuel burnup based on isotopic measurements of B and Li isotopes by SIMS agreed well with U and Pu isotopic measurements obtained by thermal ionization mass spectrometry (TIMS). (c) 2006 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Gerlach, DC (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM david.gerlach@pnl.gov RI Cliff, John/C-7696-2011 OI Cliff, John/0000-0002-7395-5604 NR 2 TC 9 Z9 9 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD JUL 30 PY 2006 VL 252 IS 19 SI SI BP 7041 EP 7044 DI 10.1016/j.apsusc.2006.02.221 PG 4 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 085ND UT WOS:000240609900145 ER PT J AU Belykh, SF Palitsin, V Veryovkin, IV Kovarsky, AP Chang, RJH Adriaens, A Dowsett, M Adams, F AF Belykh, S. F. Palitsin, V. Veryovkin, I. V. Kovarsky, A. P. Chang, R. J. H. Adriaens, A. Dowsett, M. Adams, F. TI Caesium sputter ion source compatible with commercial SIMS instruments SO APPLIED SURFACE SCIENCE LA English DT Article; Proceedings Paper CT 15th International Conference on Secondary Ion Mass Spectrometry (SIMS XV) CY SEP 12-16, 2005 CL Univ Manchester, Manchester, ENGLAND HO Univ Manchester DE caesium sputter ion source; non-additive sputtering; atomic and cluster ion bombardment; depth profiling; floating low energy ion gun; cluster-solid interaction ID CLUSTER IONS; BOMBARDMENT; BEAMS AB A simple design for a caesium sputter cluster ion source compatible with commercially available secondary ion mass spectrometers is reported. This source has been tested with the Cameca IMS 4f instrument using the cluster Si-n(-) and Cu-n(-) ions, and will shortly be retrofitted to the floating low energy ion gun (FLIG) of the type used on the Cameca 4500/4550 quadruple instruments. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of analytical capabilities of the SIMS instrument due to the non-additive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ions with the same impact energy. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. Univ Ghent, Dept Analyt Chem, B-9000 Ghent, Belgium. Univ Antwerp, Dept Chem, B-2610 Antwerp, Belgium. RP Belykh, SF (reprint author), Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. EM S.Belikh@warwick.ac.uk RI Adriaens, Annemie/F-2520-2013 OI Adriaens, Annemie/0000-0003-4034-1881 NR 9 TC 2 Z9 2 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD JUL 30 PY 2006 VL 252 IS 19 SI SI BP 7321 EP 7325 DI 10.1016/j.apsusc.2006.02.172 PG 5 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 085ND UT WOS:000240609900219 ER PT J AU Chapline, G AF Chapline, George TI Quantum phase transitions and event horizons: Condensed matter analogies SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B LA English DT Article; Proceedings Paper CT 12th International Conference on Recent Progress in Many-Body Theories CY AUG 23-27, 2004 CL Santa Fe, NM DE event horizon; quantum phase transition ID CLASSICAL GENERAL-RELATIVITY AB Although it has been generally believed that classical general relativity is always correct for macroscopic length scales, certain predictions such as event horizons and closed time-like curves are inconsistent with ordinary quantum mechanics. It has recently been pointed out that the event horizon problem can be resolved if space-time undergoes a quantum phase transition as one approaches the surface where general relativity predicts that the redshift becomes infinite. Indeed a thought experiment involving a superfluuid with a critical point makes such a suggestion appear plausible. Furthermore the behavior of space-time near an event horizon may resemble quantum phase transitions that have been observed in the laboratory. For example, the phenomenology of metamagnetic quantum critical points in heavy fermion materials resembles the behavior expected, both in terms of time standing still and the behavior of quantum correlation functions. Martensitic transformations accompanied by non-adiabatic changes in the electronic wave function are also interesting in this connection. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Chapline, G (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 4 TC 0 Z9 0 U1 1 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-9792 J9 INT J MOD PHYS B JI Int. J. Mod. Phys. B PD JUL 30 PY 2006 VL 20 IS 19 BP 2647 EP 2650 DI 10.1142/S0217979206035126 PG 4 WC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical SC Physics GA 075GQ UT WOS:000239872800011 ER PT J AU Reddy, S AF Reddy, Sanjay TI Matter at extreme density and its role in neutron stars and supernova SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B LA English DT Article; Proceedings Paper CT 12th International Conference on Recent Progress in Many-Body Theories CY AUG 23-27, 2004 CL Santa Fe, NM DE neutron stars; supernova; dense matter; superconductivity ID SUPERCONDUCTING QUARK MATTER; RX J185635-3754; EVOLUTION; SYSTEM; PHASE; MASS; QCD AB We discuss observable aspects of neutron stars and supernova that are influenced by the properties of matter at extreme density. In particular, we explore the possible role phase transitions to quark matter phases at supra nuclear density. The competition between the strange quark mass and the pairing energy in quark matter, and show that it leads to a rich phase structure at densities of relevance to neutron stars. The equation of state and transport properties of quark matter is shown to be strongly influenced by pairing correlations at the Fermi surface. C1 Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA. RP Reddy, S (reprint author), Los Alamos Natl Lab, Theoret Div, POB 1663, Los Alamos, NM 87545 USA. EM reddy@lanl.gov NR 41 TC 0 Z9 0 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-9792 EI 1793-6578 J9 INT J MOD PHYS B JI Int. J. Mod. Phys. B PD JUL 30 PY 2006 VL 20 IS 19 BP 2704 EP 2713 DI 10.1142/S0217979206035205 PG 10 WC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical SC Physics GA 075GQ UT WOS:000239872800019 ER PT J AU Somma, R Barnum, H Knill, E Ortiz, G Viola, L AF Somma, Rolando Barnum, Howard Knill, Emanuel Ortiz, Gerardo Viola, Lorenzo TI Generalized entanglement and quantum phase transitions SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B LA English DT Article; Proceedings Paper CT 12th International Conference on Recent Progress in Many-Body Theories CY AUG 23-27, 2004 CL Santa Fe, NM DE entanglement; quantum information science; quantum phase transitions ID MODEL AB Quantum phase transitions in matter are characterized by qualitative changes in some correlation functions of the system, which are ultimately related to entanglement. In this work, we study the second-order quantum phase transitions present in models of relevance to condensed-matter physics by exploiting the notion of generalized entanglement (Barnum et al., Phys. Rev. A 68, 032308 (2003)]. In particular, we focus on the illustrative case of a one-dimensional spin-1/2 Ising model in the presence of a transverse magnetic field. Our approach leads to tools useful for distinguishing between the ordered and disordered phases in the case of broken-symmetry quantum phase transitions. Possible extensions to the study of other kinds of phase transitions as well as of the relationship between generalized entanglement and computational efficiency are also discussed. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NIST, Math & Computat Sci Div, Boulder, CO 80305 USA. Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. RP Somma, R (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM somma@lanl.gov; barnum@lanl.gov; knill@boulder.nist.gov; ortiz@viking.lanl.gov; Lorenza.Viola@Dartmouth.EDU NR 20 TC 1 Z9 1 U1 0 U2 2 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-9792 J9 INT J MOD PHYS B JI Int. J. Mod. Phys. B PD JUL 30 PY 2006 VL 20 IS 19 BP 2760 EP 2769 DI 10.1142/S0217979206035266 PG 10 WC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical SC Physics GA 075GQ UT WOS:000239872800025 ER PT J AU Hruska, M Bulaevskii, L Shnirman, A Smith, D AF Hruska, Marina Bulaevskii, Lev Shnirman, Alexander Smith, Darryl TI Effects of a single quantum spin on Josephson oscillations SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B LA English DT Article; Proceedings Paper CT 12th International Conference on Recent Progress in Many-Body Theories CY AUG 23-27, 2004 CL Santa Fe, NM DE spin dynamics; Josephson effect AB We consider a single localized spin-1/2 placed between singlet superconducting leads of a Josephson junction inserted in a superconducting ring, subject to a dc magnetic field B parallel to z. Turning on the tunneling or a time-dependent flux in a superconducting ring, induces oscillations of the Josephson current, with an amplitude sensitive to the initial value of the z-component of the spin, Sz = +/- 1/2, which allows for a measurement of the initial spin state. At low temperatures when effects of quasiparticles are negligible, this procedure realizes a quantum-non-demolition (QND) measurement of S-z. C1 Los Alamos Natl Lab, Theoret Div, Grp T 11, Los Alamos, NM 87544 USA. Univ Karlsruhe, Inst Theoet Festkorperphys, D-76128 Karlsruhe, Germany. RP Hruska, M (reprint author), Los Alamos Natl Lab, Theoret Div, Grp T 11, MS B262, Los Alamos, NM 87544 USA. EM hruska@viking.lanl.gov NR 6 TC 0 Z9 0 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-9792 J9 INT J MOD PHYS B JI Int. J. Mod. Phys. B PD JUL 30 PY 2006 VL 20 IS 19 BP 2779 EP 2784 DI 10.1142/S021797920603528X PG 6 WC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical SC Physics GA 075GQ UT WOS:000239872800027 ER PT J AU Zhang, KN Wu, YS Pan, LH AF Zhang, Keni Wu, Yu-Shu Pan, Lehua TI Temporal damping effect of the Yucca Mountain fractured unsaturated rock on transient infiltration pulses SO JOURNAL OF HYDROLOGY LA English DT Article DE unsaturated zone; damping effect; Yucca Mountain; episodic infiltration; model ID CAPILLARY BARRIERS; SCALE MODEL; FLOW; ZONE; TRANSPORT; NEVADA; DIVERSION; FLUID; TUFFS AB Performance assessment of the Yucca Mountain unsaturated zone (UZ) as the site for an underground repository of high-level radioactive waste relies on the crucial assumption that water percolation processes in the unsaturated zone can be approximated as a steady-state condition. Justification of such an assumption is based on temporal damping effects of several geological units within the unsaturated tuff formation. In particular, the nonwelded tuff of the Painbrush Group (PTn unit) at Yucca Mountain, because of its highly porous physical properties, has been conceptualized to have a significant capacity for temporally damping transient percolation fluxes. The objective of this study is to investigate these damping effects, using a three-dimensional (3-D) mountain-scale model as well as several one-dimensional (1-D) models. The 3-D model incorporates a wide variety of the updated field data for the highly heterogeneous unsaturated formation at Yucca Mountain The model is first run to steady state and caiibrated using field-measured data and then transient pulse infiltrations are applied to the model top boundary. Subsequent changes in percolation fluxes at the bottom of and within the PTn unit are examined under episodic infiltration boundary conditions. The 1-D model is used to examine the long-term response of the flow system to higher infiltration pulses, while the damping effect is also investigated through modeling tracer transport in the UZ under episodic infiltration condition. Simulation results show the existence of damping effects within the PTn unit and also indicate that the assumption of steady-state flow conditions below the PTn unit is reasonable. However, the study also finds that some fast flow paths along faults exist, causing vertical-flux quick responses at the PTn bottom to the episodic infiltration at the top boundary. (c) 2005 Elsevier B.V. All rights reserved. C1 Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Zhang, KN (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, MS 90-1116,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM Kzhang@lbl.gov RI Wu, Yu-Shu/A-5800-2011; Pan, Lehua/G-2439-2015 NR 31 TC 3 Z9 3 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 J9 J HYDROL JI J. Hydrol. PD JUL 30 PY 2006 VL 327 IS 1-2 BP 235 EP 248 DI 10.1016/j.jhydrol.2005.11.023 PG 14 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA 072KG UT WOS:000239671700019 ER PT J AU Wang, HC Liu, YD Huai, Q Cai, JW Zoraghi, R Francis, SH Corbin, JD Robinson, H Xin, ZC Lin, GT Ke, H AF Wang, Huanchen Liu, Yudong Huai, Qing Cai, Jiwen Zoraghi, Roya Francis, Sharron H. Corbin, Jackie D. Robinson, Howard Xin, Zhongcheng Lin, Guiting Ke, Hengming TI Multiple conformations of phosphodiesterase-5 - Implications for enzyme function and drug development SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID CYCLIC-NUCLEOTIDE PHOSPHODIESTERASES; CRYSTAL-STRUCTURE; INHIBITOR SELECTIVITY; CATALYTIC DOMAIN; PDE4; CGMP; CAMP; SILDENAFIL; BINDING; SPECIFICITY AB Phosphodiesterase-5 (PDE5) is the target for sildenafil, vardenafil, and tadalafil, which are drugs for treatment of erectile dysfunction and pulmonary hypertension. We report here the crystal structures of a fully active catalytic domain of unliganded PDE5A1 and its complexes with sildenafil or icarisid II. These structures together with the PDE5A1-isobutyl-1-methylxanthine complex show that the H-loop ( residues 660-683) at the active site of PDE5A1 has four different conformations and migrates 7-35 angstrom upon inhibitor binding. In addition, the conformation of sildenafil reported herein differs significantly from those in the previous structures of chimerically hybridized or almost inactive PDE5. Mutagenesis and kinetic analyses confirm that the H-loop is particularly important for substrate recognition and that invariant Gly(659), which immediately precedes the H-loop, is critical for optimal substrate affinity and catalytic activity. C1 Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA. Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA. Sun Yat Sen Univ, Sch Pharmaceut Sci, Guangzhou 510080, Guangdong, Peoples R China. Vanderbilt Univ, Sch Med, Dept Physiol & Mol Biophys, Nashville, TN 37232 USA. Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. Peking Univ, Hosp 1, Androl Ctr, Beijing 100034, Peoples R China. Univ Calif San Francisco, Dept Urol, San Francisco, CA 94143 USA. RP Ke, H (reprint author), Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA. EM hke@med.unc.edu FU NIDDK NIH HHS [DK58277, DK40029]; NIGMS NIH HHS [GM59791] NR 50 TC 75 Z9 80 U1 0 U2 7 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD JUL 28 PY 2006 VL 281 IS 30 BP 21469 EP 21479 DI 10.1074/jbc.M512527200 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 065VF UT WOS:000239187300082 PM 16735511 ER PT J AU Benitez, JJ Salmeron, M AF Benitez, J. J. Salmeron, M. TI The influence of chain length and ripening time on the self-assembly of alkylamines on mica SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR PACKING CHANGES; MONOLAYERS; OCTADECYLAMINE; PRESSURE; GOLD; STABILITY; AU(111); FILMS AB The influence of chain length and ripening time on the self-assembly of tetradecyl (C-14), hexadecyl (C-16), and octadecylamine (C-16) on mica has been studied by atomic force microscopy. The overall process can be described in three stages characterized by different time scales. First, alkylamine molecules adsorb in a process controlled by water mediated interactions of the NH2 head groups and mica. Second, surface diffusion and aggregation into islands takes place, driven by energy interactions between alkyl chains. The third stage consists of a progressive tilt of the self-assembled molecules towards the surface, driven by relaxation of the electrostatic repulsion between protonated amino groups due to water uptake from atmosphere. (c) 2006 American Institute of Physics. C1 Univ Sevilla, CSIC, Ctr Mixto, Inst Ciencia Mat Sevilla, Seville 41092, Spain. Univ Calif Berkeley, Div Sci Mat, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Benitez, JJ (reprint author), Univ Sevilla, CSIC, Ctr Mixto, Inst Ciencia Mat Sevilla, Ave Americo Vespuccio 49, Seville 41092, Spain. EM benitez@icmse.csic.es; mbsalmeron@lbl.gov RI Benitez, Jose J/K-5662-2014 OI Benitez, Jose J/0000-0002-3222-0564 NR 15 TC 11 Z9 11 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 28 PY 2006 VL 125 IS 4 AR 044708 DI 10.1063/1.2221692 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 069CS UT WOS:000239423600048 PM 16942175 ER PT J AU Elles, CG Jailaubekov, AE Crowell, RA Bradforth, SE AF Elles, Christopher G. Jailaubekov, Askat E. Crowell, Robert A. Bradforth, Stephen E. TI Excitation-energy dependence of the mechanism for two-photon ionization of liquid H2O and D2O from 8.3 to 12.4 eV SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID GEMINATE RECOMBINATION; HYDRATED ELECTRONS; MULTIPHOTON IONIZATION; SOLVATED ELECTRONS; AQUEOUS-SOLUTIONS; CROSS-SECTIONS; BULK WATER; PHOTOIONIZATION; THERMALIZATION; DYNAMICS AB Transient absorption measurements monitor the geminate recombination kinetics of solvated electrons following two-photon ionization of liquid water at several excitation energies in the range from 8.3 to 12.4 eV. Modeling the kinetics of the electron reveals its average ejection length from the hydronium ion and hydroxyl radical counterparts and thus provides insight into the ionization mechanism. The electron ejection length increases monotonically from roughly 0.9 nm at 8.3 eV to nearly 4 nm at 12.4 eV, with the increase taking place most rapidly above 9.5 eV. We connect our results with recent advances in the understanding of the electronic structure of liquid water and discuss the nature of the ionization mechanism as a function of excitation energy. The isotope dependence of the electron ejection length provides additional information about the ionization mechanism. The electron ejection length has a similar energy dependence for two-photon ionization of liquid D2O, but is consistently shorter than in H2O by about 0.3 nm across the wide range of excitation energies studied. (c) 2006 American Institute of Physics. C1 Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Elles, CG (reprint author), Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. EM rob_crowell@anl.gov; bradfort@usc.edu RI Bradforth, Stephen/B-5186-2008; Elles, Christopher/C-3906-2008 OI Bradforth, Stephen/0000-0002-6164-3347; NR 63 TC 54 Z9 54 U1 3 U2 35 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 28 PY 2006 VL 125 IS 4 AR 044515 DI 10.1063/1.2217738 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 069CS UT WOS:000239423600037 PM 16942164 ER PT J AU Goldman, N Fried, LE AF Goldman, Nir Fried, Laurence E. TI First principles simulation of a superionic phase of hydrogen fluoride (HF) at high pressures and temperatures SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; AB-INITIO; WANNIER FUNCTIONS; DENSITY; ENERGY; APPROXIMATION; TRANSITION; DIFFUSION; SPECTRUM; BEHAVIOR AB We have conducted ab initio molecular dynamics simulations of hydrogen fluoride (HF) at pressures of 5-66 GPa along the 900 K isotherm. We predict a superionic phase at 33 GPa, where the fluorine atoms are fixed in a bcc lattice while the hydrogen atoms diffuse rapidly with a diffusion constant between 2x10(-5) and 5x10(-5)cm(2)/s. We find that a transformation from asymmetric to symmetric hydrogen bonding occurs in HF at 66 GPa and 900 K. With superionic HF we have discovered a model system where symmetric hydrogen bonding occurs at experimentally achievable conditions. Given previous results on superionic H2O [Goldman , Phys. Rev. Lett. 94, 217801 (2005)] and NH3 [Cavazzoni , Science 283, 44 (1999)], we conclude that high P, T superionic phases of electronegative element hydrides could be common. (c) 2006 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Goldman, N (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. EM goldman14@llnl.gov RI Fried, Laurence/L-8714-2014 OI Fried, Laurence/0000-0002-9437-7700 NR 33 TC 14 Z9 14 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 28 PY 2006 VL 125 IS 4 AR 044501 DI 10.1063/1.2220036 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 069CS UT WOS:000239423600023 PM 16942150 ER PT J AU Kimmel, GA Petrik, NG Dohnalek, Z Kay, BD AF Kimmel, Greg A. Petrik, Nikolay G. Dohnalek, Zdenek Kay, Bruce D. TI Layer-by-layer growth of thin amorphous solid water films on Pt(111) and Pd(111) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID CRYSTALLIZATION KINETICS; MOLECULAR-BEAMS; CONFINED WATER; ICE FILMS; X-RAY; 150 K; ADSORPTION; SURFACE; DESORPTION; MORPHOLOGY AB The growth of amorphous solid water (ASW) films on Pt(111) is investigated using rare gas (e.g., Kr) physisorption. Temperature programmed desorption of Kr is sensitive to the structure of thin water films and can be used to assess the growth modes of these films. At all temperatures that are experimentally accessible (20-155 K), the first layer of water wets Pt(111). Over a wide temperature range (20-120 K), ASW films wet the substrate and grow approximately layer by layer for at least the first three layers. In contrast to the ASW films, crystalline ice films do not wet the water monolayer on Pt(111). Virtually identical results were obtained for ASW films on epitaxial Pd(111) films grown on Pt(111). The desorption rates of thin ASW and crystalline ice films suggest that the relative free energies of the films are responsible for the different growth modes. However, at low temperatures, surface relaxation or "transient mobility" is primarily responsible for the relative smoothness of the films. A simple model of the surface relaxation semiquantitatively accounts for the observations. (c) 2006 American Institute of Physics. C1 Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. RP Kimmel, GA (reprint author), Pacific NW Natl Lab, Div Chem Sci, Mail Stop K8-88,POB 999, Richland, WA 99352 USA. EM gregory.kimmel@pnl.gov RI Petrik, Nikolay/G-3267-2015; OI Petrik, Nikolay/0000-0001-7129-0752; Kimmel, Greg/0000-0003-4447-2440; Dohnalek, Zdenek/0000-0002-5999-7867 NR 64 TC 32 Z9 32 U1 1 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 28 PY 2006 VL 125 IS 4 AR 044713 DI 10.1063/1.2218844 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 069CS UT WOS:000239423600053 PM 16942180 ER PT J AU Knickelbein, MB AF Knickelbein, Mark B. TI Magnetic moments of bare and benzene-capped cobalt clusters SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TRANSITION-METAL CLUSTERS; RARE-EARTH CLUSTERS; NICKEL CLUSTERS; FERROMAGNETIC CLUSTERS; ORGANOMETALLIC CLUSTERS; ELECTRONIC-PROPERTIES; GADOLINIUM CLUSTERS; SPIN RELAXATION; MOLECULAR-BEAM; IRON CLUSTERS AB Magnetic moments of bare cobalt clusters Co-n (n=7-32) and benzene-capped cobalt clusters Co-n(bz)(m) have been measured at temperatures ranging from 54 to 150 K using a molecular beam deflection method. It was observed that Co12-32 produced at temperatures greater than similar to 100 K display high-field-seeking behavior at all temperatures in the range investigated, indicating that they are superparamagnetic species. At temperatures below similar to 100 K, the field-on beam profiles of Co7-11 and some larger clusters displayed substantial symmetric broadening, indicating that some fraction of the clusters in the beam were no longer superparamagnetic, but rather were in a blocked (locked-moment) state. In the superparamagnetic regime (T=150 K) Co-n clusters in the n=7-32 size range were found to possess per-atom moments ranging from 1.96 +/- 0.04 mu(b)(Co-24) to 2.53 +/- 0.04 mu(b)(Co-16), significantly above the bulk value of 1.72 mu(b). Locked-moment isomers were found to display moments of similar to 1 mu(b) per atom. Cobalt clusters containing a layer of adsorbed benzene molecules were found to possess significantly lower moments per cobalt atom than the corresponding bare cobalt clusters. (c) 2006 American Institute of Physics. C1 Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Knickelbein, MB (reprint author), Argonne Natl Lab, Div Chem, 9700 S Cass Ave, Argonne, IL 60439 USA. EM knickelbein@anl.gov NR 57 TC 58 Z9 58 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 28 PY 2006 VL 125 IS 4 AR 044308 DI 10.1063/1.2217951 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 069CS UT WOS:000239423600016 PM 16942143 ER PT J AU Topgaard, D Sakellariou, D AF Topgaard, Daniel Sakellariou, Dimitris TI Diffusion damping during adiabatic z-rotation pulses for NMR spectroscopy in inhomogeneous magnetic fields SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID GRADIENT SPIN-ECHO; SINGLE-SIDED SENSOR; SELF-DIFFUSION; RESTRICTED DIFFUSION; TRANSLATIONAL DIFFUSION; SUPERCONDUCTING MAGNETS; SURFACE RELAXATION; POROUS-MEDIA; FRINGE-FIELD; BROAD-BAND AB High-resolution nuclear magnetic resonance spectra from samples located in inhomogeneous static and radio frequency magnetic fields can be obtained by applying a train of z-rotation radio frequency pulses to repeatedly refocus the inhomogeneous broadening during signal detection. z-rotation pulses based on an adiabatic double passage are effective over wide bandwidths using a limited amount of radio frequency power at the expense of being time consuming and, consequently, sensitive to motion of the spin bearing molecules. The signal damping resulting from molecular self-diffusion during the pulse was studied experimentally and using Brownian dynamics simulations. The results show that the analytical expression for diffusion damping during a double spin echo is a reasonable approximation for the signal decay during an adiabatic z-rotation pulse. Methods to alleviate the effects of diffusion are discussed. (c) 2006 American Institute of Physics. C1 Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Topgaard, D (reprint author), Lund Univ, POB 124, SE-22100 Lund, Sweden. EM daniel.topgaard@fkem1.lu.se RI Sakellariou, Dimitrios/F-2846-2010 OI Sakellariou, Dimitrios/0000-0001-7424-5543 NR 39 TC 1 Z9 1 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 28 PY 2006 VL 125 IS 4 AR 044503 DI 10.1016/1.2219438 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 069CS UT WOS:000239423600025 PM 16942152 ER PT J AU Wickstrom, L Okur, A Song, K Hornak, V Raleigh, DP Simmerling, CL AF Wickstrom, Lauren Okur, Asim Song, Kun Hornak, Viktor Raleigh, Daniel P. Simmerling, Carlos L. TI The unfolded state of the villin headpiece helical subdomain: Computational studies of the role of locally stabilized structure SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE molecular dynamics; replica exchange; villin headpiece; denatured state; protein folding ID FREE-ENERGY LANDSCAPE; MOLECULAR-DYNAMICS SIMULATIONS; DIFFUSION-COLLISION MODEL; POLYPROLINE II HELIX; DENATURED STATE; BETA-HAIRPIN; FORCE-FIELD; BIOLOGICAL MOLECULES; FOLDING INTERMEDIATE; SECONDARY STRUCTURE AB The 36 residue villin headpiece helical subdomain (HP36) is one of the fastest cooperatively folding proteins, folding on the microsecond timescale. HP36's simple three helix topology, fast folding and small size have made it an attractive model system for computational and experimental studies of protein folding. Recent experimental studies have explored the denatured state of HP36 using fragment analysis coupled with relatively low-resolution spectroscopic techniques. These studies have shown that there is apparently only a small tendency to form locally stabilized secondary structure. Here, we complement the experimental studies by using replica exchange molecular dynamics with explicit solvent to investigate the structural features of these peptide models of unfolded HP36. To ensure convergence, two sets of simulations for each fragment were performed with different initial structures, and simulations were continued until these generated very similar final ensembles. These simulations reveal low populations of native-like structure and early folding events that cannot be resolved by experiment. For each fragment, calculated J-coupling constants and helical propensities are in good agreement with experimental trends. HP-1, corresponding to residues 41 to 53 and including the first alpha-helix, contains the highest helical population. HP-3, corresponding to residues 62 through 75 and including the third alpha-helix, contains a small population of helical turn residing at the N terminus while HP-2, corresponding to residues 52 through 61 and including the second alpha-helix, formed little to no structure in isolation. Overall, HP-1 was the only fragment to adopt a native-like conformation, but the low population suggests that formation of significant structure only occurs after formation of specific tertiary interactions. (c) 2006 Elsevier Ltd. All rights reserved. C1 SUNY Stony Brook, Biochem & Struct Biol Program, Stony Brook, NY 11794 USA. SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. SUNY Stony Brook, Ctr Struct Biol, Stony Brook, NY 11794 USA. SUNY Stony Brook, Grad Program Biophys, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. RP Raleigh, DP (reprint author), SUNY Stony Brook, Biochem & Struct Biol Program, Stony Brook, NY 11794 USA. EM draleigh@notes.cc.sunysb.edu; carlos.simmerling@stonybrook.edu FU NIGMS NIH HHS [GM6167803, R01 GM054233, R01 GM061678, R01 GM061678-06A1, R29 GM054233] NR 70 TC 38 Z9 38 U1 1 U2 6 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD JUL 28 PY 2006 VL 360 IS 5 BP 1094 EP 1107 DI 10.1016/j.jmb.2006.04.070 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 072JR UT WOS:000239670200015 PM 16797585 ER PT J AU Ponomarenko, SA Sherrill, ME Kilcrease, DP Csanak, G AF Ponomarenko, S. A. Sherrill, M. E. Kilcrease, D. P. Csanak, G. TI Statistical mean-field theory of finite quantum systems: canonical ensemble formulation SO JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL LA English DT Article ID BOSE-EINSTEIN CONDENSATION; TRANSITION; DENSITY; NUCLEAR; HOT; APPROXIMATION; PARTICLES; SPECTRA; PLASMA; GASES AB We develop a statistical mean-field theory of finite quantum systems in thermal equilibrium. Our formulation employs the canonical ensemble of statistical mechanics, and it enables us to analytically determine the occupation number distributions of interacting particles obeying Bose-Einstein or Fermi-Dirac statistics. We have also developed a numerical procedure that enables us to obtain a universal scaled occupation number distribution that, for a given total number of interacting particles in a finite system, makes it possible to determine the occupation number distribution for any temperature. The developed mean-field theory is applicable to a wide range of atomic, nuclear and condensed matter systems for which finite-size effects can play an important role. In particular, the present approach makes it possible to formulate a finite temperature mean-field theory for a specific ion in a dense plasma. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Dalhousie Univ, Dept Elect & Comp Engn, Halifax, NS B3J 1Z1, Canada. Univ Nevada, Dept Phys, Reno, NV 89557 USA. RP Ponomarenko, SA (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663,T-4,MS B-283, Los Alamos, NM 87545 USA. EM manolo@lanl.gov OI Kilcrease, David/0000-0002-2319-5934 NR 25 TC 1 Z9 1 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0305-4470 J9 J PHYS A-MATH GEN JI J. Phys. A-Math. Gen. PD JUL 28 PY 2006 VL 39 IS 30 BP L499 EP L505 DI 10.1088/0305-4470/39/30/L03 PG 7 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 062WZ UT WOS:000238978400003 ER PT J AU Kalinin, SV Jesse, S Rodriguez, BJ Shin, J Baddorf, AP Lee, HN Borisevich, A Pennycook, SJ AF Kalinin, S. V. Jesse, S. Rodriguez, B. J. Shin, J. Baddorf, A. P. Lee, H. N. Borisevich, A. Pennycook, S. J. TI Spatial resolution, information limit, and contrast transfer in piezoresponse force microscopy SO NANOTECHNOLOGY LA English DT Article ID IMAGE-RECONSTRUCTION; THIN-FILMS; ELECTRON-MICROSCOPE; NANOELECTROMECHANICS; POLARIZATION; ILLUMINATION; CRYSTALS; DOMAINS AB Scanning probe-based ferroelectric domain imaging and patterning has attracted broad attention for use in the characterization of ferroelectric materials, ultrahigh density data storage, and nanofabrication. The viability of these applications is limited by the minimal domain size that can be fabricated and reliably detected by scanning probe microscopy. Here, the contrast transfer mechanism in piezoresponse force microscopy (PFM) of ferroelectric materials is analysed in detail. A consistent definition of resolution is developed both for the writing and the imaging processes, and the concept of an information limit in PFM is established. Experimental determination of the object transfer function and the subsequent reconstruction of an 'ideal image' is demonstrated. This contrast transfer theory provides a quantitative basis for image interpretation and allows for the comparison of different instruments in PFM. It is shown that experimentally observed domain sizes can be limited by the resolution of the scanning probe microscope to the order of tens of nanometres even though smaller domains, of the order of several nanometres, can be created. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov RI Borisevich, Albina/B-1624-2009; Kalinin, Sergei/I-9096-2012; Lee, Ho Nyung/K-2820-2012; Rodriguez, Brian/A-6253-2009; Jesse, Stephen/D-3975-2016; Baddorf, Arthur/I-1308-2016 OI Borisevich, Albina/0000-0002-3953-8460; Kalinin, Sergei/0000-0001-5354-6152; Lee, Ho Nyung/0000-0002-2180-3975; Rodriguez, Brian/0000-0001-9419-2717; Jesse, Stephen/0000-0002-1168-8483; Baddorf, Arthur/0000-0001-7023-2382 NR 54 TC 47 Z9 47 U1 6 U2 34 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD JUL 28 PY 2006 VL 17 IS 14 BP 3400 EP 3411 DI 10.1088/0957-4484/17/14/010 PG 12 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 062UH UT WOS:000238969700011 PM 19661582 ER PT J AU Crocker, NA Peebles, WA Kubota, S Fredrickson, ED Kaye, SM LeBlanc, BP Menard, JE AF Crocker, N. A. Peebles, W. A. Kubota, S. Fredrickson, E. D. Kaye, S. M. LeBlanc, B. P. Menard, J. E. TI Three-wave interactions between fast-ion modes in the national spherical torus experiment SO PHYSICAL REVIEW LETTERS LA English DT Article ID DIII-D; PLASMAS; NSTX; TOKAMAK; PHYSICS; FUSION AB Simultaneous bursts of energetic particle mode (EPM) and toroidicity-induced Alfven eigenmode (TAE) activity that correlate with significant fast-ion loss are observed in beam heated plasmas. Three-wave interactions between these modes are conclusively identified, indicating fixed phase relationships. This nonlinear coupling concentrates the energy of the TAEs into a toroidally localized perturbation frozen in the frame of a rigid, toroidally rotating structure formed by the EPMs. This redistribution of energy is significant because it will modify the effect of the TAEs on fast-ion loss. C1 Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Crocker, NA (reprint author), Univ Calif Los Angeles, Los Angeles, CA 90095 USA. OI Menard, Jonathan/0000-0003-1292-3286 NR 18 TC 28 Z9 28 U1 1 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 28 PY 2006 VL 97 IS 4 AR 045002 DI 10.1103/PhysRevLett.97.045002 PG 4 WC Physics, Multidisciplinary SC Physics GA 068MF UT WOS:000239377500029 PM 16907581 ER PT J AU DiMasi, E Kwak, SY Amos, FF Olszta, MJ Lush, D Gower, LB AF DiMasi, Elaine Kwak, Seo-Young Amos, Fairland F. Olszta, Matthew J. Lush, Debra Gower, Laurie B. TI Complementary control by additives of the kinetics of amorphous CaCO3 mineralization at an organic interface: In-situ synchrotron x-ray observations SO PHYSICAL REVIEW LETTERS LA English DT Article ID CALCIUM-CARBONATE; PRECURSOR; BIOMINERALIZATION; CRYSTALLIZATION; MORPHOLOGIES; MONOLAYERS; CRYSTALS; GROWTH; PHASE; STEPS AB The kinetics of biomimetic mineralization at a fatty acid monolayer interface have been measured in situ by synchrotron x-ray reflectivity. The formation of biologically relevant amorphous calcium carbonate films is affected by soluble macromolecules, supersaturation rate of change, and Mg cations. We find that these solution conditions influence mineral film formation in a complementary fashion. Poly(sodium acrylate) extends the lifetime of metastable amorphous calcium carbonate, solution saturation controls the mineral film growth rate, and Mg cations create a longer induction time. This is the first quantification of potentially competitive biomineralization mechanisms that addresses nucleation and growth of the amorphous mineral phases, which are important in biomineralization. C1 Brookhaven Natl Lab, Natl Synchrotron Light Source Dept, Upton, NY 11973 USA. Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. RP DiMasi, E (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source Dept, Upton, NY 11973 USA. EM dimasi@bnl.gov RI Gower, Laurie/A-5947-2008 OI Gower, Laurie/0000-0003-2927-5406 FU NIDDK NIH HHS [R01 DK59765-01] NR 21 TC 29 Z9 29 U1 2 U2 24 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 28 PY 2006 VL 97 IS 4 AR 045503 DI 10.1103/PhysRevLett.97.045503 PG 4 WC Physics, Multidisciplinary SC Physics GA 068MF UT WOS:000239377500037 PM 16907589 ER PT J AU Dodelson, S Melchiorri, A Slosar, A AF Dodelson, Scott Melchiorri, Alessandro Slosar, Anze TI Is cosmology compatible with sterile neutrinos? SO PHYSICAL REVIEW LETTERS LA English DT Article ID DIGITAL SKY SURVEY; BACKGROUND POWER SPECTRUM; LY-ALPHA FOREST; DATA SET; OSCILLATIONS; SEARCH; GALAXIES AB By combining data from cosmic microwave background experiments (including the recent WMAP third year results), large scale structure, and Lyman-alpha forest observations, we constrain the hypothesis of a fourth, sterile, massive neutrino. For the 3 massless+1 massive neutrino case, we bound the mass of the sterile neutrino to m(s)< 0.26 eV (0.44 eV) at 95% (99.9%) C.L., which excludes at high significance the sterile neutrino hypothesis as an explanation of the LSND anomaly. We generalize the analysis to account for active neutrino masses and the possibility that the sterile abundance is not thermal. In the latter case, the contraints in the (mass,density) plane are nontrivial. For a mass of > 1 or < 0.05 eV, the cosmological energy density in sterile neutrinos is always constrained to be omega(nu)< 0.003 at 95% C.L., but for a mass of similar to 0.25 eV, omega(nu) can be as large as 0.01. C1 Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. Univ Roma La Sapienza, Sez INFN, I-00185 Rome, Italy. Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. RP Dodelson, S (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. OI Melchiorri, Alessandro/0000-0001-5326-6003 NR 36 TC 31 Z9 31 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 28 PY 2006 VL 97 IS 4 AR 041301 DI 10.1103/PhysRevLett.97.041301 PG 4 WC Physics, Multidisciplinary SC Physics GA 068MF UT WOS:000239377500011 PM 16907563 ER PT J AU Dudiy, SV Zunger, A AF Dudiy, S. V. Zunger, Alex TI Searching for alloy configurations with target physical properties: Impurity design via a genetic algorithm inverse band structure approach SO PHYSICAL REVIEW LETTERS LA English DT Article ID SEMICONDUCTOR ALLOYS; GAP; NITROGEN; OPTIMIZATION; CLUSTERS; ENERGY; GAASN; PAIRS AB The ability to artificially grow different configurations of semiconductor alloys-random structures, spontaneously ordered and layered superlattices-raises the issue of how different alloy configurations may lead to new and different alloy physical properties. We address this question in the context of nitrogen impurities in GaP, which form deep levels in the gap whose energy and optical absorption sensitively depend on configuration. We use the "inverse band structure" approach in which we first specify a desired target physical property (such as the deepest nitrogen level, or lowest strain configuration), and then we search, via genetic algorithm, for the alloy atomic configurations that have this property. We discover the essential structural motifs leading to such target properties. This strategy opens the way to efficient alloy design. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Zunger, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM alex_zunger@nrel.gov RI Zunger, Alex/A-6733-2013 NR 28 TC 40 Z9 40 U1 1 U2 14 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 28 PY 2006 VL 97 IS 4 AR 046401 DI 10.1103/PhysRevLett.97.046401 PG 4 WC Physics, Multidisciplinary SC Physics GA 068MF UT WOS:000239377500044 PM 16907596 ER PT J AU Franceschetti, A Dudiy, SV Barabash, SV Zunger, A Xu, J van Schilfgaarde, M AF Franceschetti, A. Dudiy, S. V. Barabash, S. V. Zunger, A. Xu, J. van Schilfgaarde, M. TI First-principles combinatorial design of transition temperatures in multicomponent systems: The case of Mn in GaAs SO PHYSICAL REVIEW LETTERS LA English DT Article ID DILUTED MAGNETIC SEMICONDUCTORS; 1ST PRINCIPLES; EXCHANGE INTERACTIONS; FERROMAGNETISM; (GA,MN)AS AB The transition temperature T(C) of multicomponent systems-ferromagnetic, superconducting, or ferroelectric-depends strongly on the atomic arrangement, but an exhaustive search of all configurations for those that optimize T(C) is difficult, due to the astronomically large number of possibilities. Here we address this problem by parametrizing the T(C) of a set of similar to 50 input configurations, calculated from first principles, in terms of configuration variables ("cluster expansion"). Once established, this expansion allows us to search almost effortlessly the transition temperature of arbitrary configurations. We apply this approach to search for the configuration of Mn dopants in GaAs having the highest ferromagnetic Curie temperature. Our general approach of cluster expanding physical properties opens the way to design based on exploring a large space of configurations. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. Arizona State Univ, Dept Chem & Mat Engn, Tempe, AZ 85287 USA. RP Franceschetti, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Zunger, Alex/A-6733-2013 NR 25 TC 34 Z9 34 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 28 PY 2006 VL 97 IS 4 AR 047202 DI 10.1103/PhysRevLett.97.047202 PG 4 WC Physics, Multidisciplinary SC Physics GA 068MF UT WOS:000239377500057 PM 16907609 ER PT J AU Mackinnon, AJ Patel, PK Borghesi, M Clarke, RC Freeman, RR Habara, H Hatchett, SP Hey, D Hicks, DG Kar, S Key, MH King, JA Lancaster, K Neely, D Nikkro, A Norreys, PA Notley, MM Phillips, TW Romagnani, L Snavely, RA Stephens, RB Town, RPJ AF Mackinnon, A. J. Patel, P. K. Borghesi, M. Clarke, R. C. Freeman, R. R. Habara, H. Hatchett, S. P. Hey, D. Hicks, D. G. Kar, S. Key, M. H. King, J. A. Lancaster, K. Neely, D. Nikkro, A. Norreys, P. A. Notley, M. M. Phillips, T. W. Romagnani, L. Snavely, R. A. Stephens, R. B. Town, R. P. J. TI Proton radiography of a laser-driven implosion SO PHYSICAL REVIEW LETTERS LA English DT Article ID NATIONAL IGNITION FACILITY AB Protons accelerated by a picosecond laser pulse have been used to radiograph a 500 mu m diameter capsule, imploded with 300 J of laser light in 6 symmetrically incident beams of wavelength 1.054 mu m and pulse length 1 ns. Point projection proton backlighting was used to characterize the density gradients at discrete times through the implosion. Asymmetries were diagnosed both during the early and stagnation stages of the implosion. Comparison with analytic scattering theory and simple Monte Carlo simulations were consistent with a 3 +/- 1 g/cm(3) core with diameter 85 +/- 10 mu m. Scaling simulations show that protons > 50 MeV are required to diagnose asymmetry in ignition scale conditions. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Queens Univ Belfast, Belfast BT7 1NN, Antrim, North Ireland. Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. Gen Atom, San Diego, CA 92121 USA. RP Mackinnon, AJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Kar, Satyabrata/E-5220-2010; Patel, Pravesh/E-1400-2011; Borghesi, Marco/K-2974-2012; Hicks, Damien/B-5042-2015; MacKinnon, Andrew/P-7239-2014; OI Hicks, Damien/0000-0001-8322-9983; MacKinnon, Andrew/0000-0002-4380-2906; Stephens, Richard/0000-0002-7034-6141 NR 18 TC 75 Z9 82 U1 1 U2 17 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 28 PY 2006 VL 97 IS 4 AR 045001 DI 10.1103/PhysRevLett.97.045001 PG 4 WC Physics, Multidisciplinary SC Physics GA 068MF UT WOS:000239377500028 PM 16907580 ER PT J AU Mutka, H Ehlers, G Payen, C Bono, D Stewart, JR Fouquet, P Mendels, P Mevellec, JY Blanchard, N Collin, G AF Mutka, H. Ehlers, G. Payen, C. Bono, D. Stewart, J. R. Fouquet, P. Mendels, P. Mevellec, J. Y. Blanchard, N. Collin, G. TI Neutron spin-echo investigation of slow spin dynamics in kagome-bilayer frustrated magnets as evidence for phonon assisted relaxation in SrCr9xGa12-9xO19 SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-RESOLUTION; SRCR8GA4O19; SYSTEMS; LATTICE; GLASS AB A neutron spin-echo investigation of the low temperature spin dynamics in two well-characterized kagome bilayer compounds SrCr9xGa12-9xO19 (x=0.95, SCGO) and Ba2Sn2ZnCr7xGa10-7xO22 (x=0.97, BSZCGO) reveals two novel features. One is the slowing down of the relaxation rate without critical behavior at T-g, where a macroscopic spin-glass-like freezing occurs. The second is, in SCGO at 4 K (approximate to T-g)< T < 7 K, the relaxation rate activation energy E-a=7 +/- 0.4 meV, equal to the energy of a phonon mode, pointing out the role of spin-lattice coupling. C1 Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. Univ Nantes, UMR 6502, Inst Mat Jean Rouxel, F-44322 Nantes, France. Univ Paris 11, UMR 8502, Phys Solides Lab, F-91405 Orsay, France. CEA Saclay, CNRS, CEA, Leon Brillouin Lab, F-91191 Gif Sur Yvette, France. Oak Ridge Natl Lab, SNS Project, Oak Ridge, TN 37830 USA. RP Mutka, H (reprint author), Inst Max Von Laue Paul Langevin, Boite Postale 156X, F-38042 Grenoble 9, France. RI Fouquet, Peter/B-5212-2008; Stewart, Ross/C-4194-2008; Ehlers, Georg/B-5412-2008 OI Fouquet, Peter/0000-0002-5542-0059; Stewart, Ross/0000-0003-0053-0178; Ehlers, Georg/0000-0003-3513-508X NR 28 TC 17 Z9 17 U1 1 U2 7 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 28 PY 2006 VL 97 IS 4 AR 047203 DI 10.1103/PhysRevLett.97.047203 PG 4 WC Physics, Multidisciplinary SC Physics GA 068MF UT WOS:000239377500058 PM 16907610 ER PT J AU Pittler, J Bu, W Vaknin, D Travesset, A McGillivray, DJ Loesche, M AF Pittler, J. Bu, W. Vaknin, D. Travesset, A. McGillivray, D. J. Loesche, M. TI Charge inversion at minute electrolyte concentrations SO PHYSICAL REVIEW LETTERS LA English DT Article ID SURFACE MONOLAYERS; INTERFACES; MEMBRANES; IONS AB Anionic dimyristoylphosphatidic acid monolayers spread on LaCl3 solutions reveal strong cation adsorption and a sharp transition to surface overcharging at unexpectedly low bulk salt concentrations. We determine the surface accumulation of La3+ with anomalous x-ray reflectivity and find that La3+ compensates the lipid surface charge by forming a Stern layer with approximate to 1 La3+ ion per 3 lipids below a critical bulk concentration, c(t)approximate to 500 nM. Above c(t), the surface concentration of La3+ increases to a saturation level with approximate to 1 La3+ per lipid, thus implying that the total electric charge of the La3+ exceeds the surface charge. This overcharge is observed at approximate to 4 orders of magnitude lower concentration than predicted in ion-ion correlation theories. We suggest that transverse electrostatic correlations between mobile ions and surface charges (interfacial Bjerrum pairing) may contribute to the charge inversion. C1 Univ Leipzig, Inst Expt Phys 1, D-04103 Leipzig, Germany. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. NIST, CNBT Consortium, Ctr Neutron Res, Gaithersburg, MD 20899 USA. Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. RP Pittler, J (reprint author), Univ Leipzig, Inst Expt Phys 1, D-04103 Leipzig, Germany. RI Losche, Mathias/J-2986-2013; McGillivray, Duncan/B-9819-2009; Vaknin, David/B-3302-2009; Bu, Wei/Q-1390-2016 OI Losche, Mathias/0000-0001-6666-916X; McGillivray, Duncan/0000-0003-2127-8792; Vaknin, David/0000-0002-0899-9248; Bu, Wei/0000-0002-9996-3733 NR 21 TC 38 Z9 38 U1 0 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 28 PY 2006 VL 97 IS 4 AR 046102 DI 10.1103/PhysRevLett.97.046102 PG 4 WC Physics, Multidisciplinary SC Physics GA 068MF UT WOS:000239377500042 PM 16907594 ER PT J AU Sabbagh, SA Bell, RE Menard, JE Gates, DA Sontag, AC Bialek, JM LeBlanc, BP Levinton, FM Tritz, K Yuh, H AF Sabbagh, S. A. Bell, R. E. Menard, J. E. Gates, D. A. Sontag, A. C. Bialek, J. M. LeBlanc, B. P. Levinton, F. M. Tritz, K. Yuh, H. TI Active stabilization of the resistive-wall mode in high-beta, low-rotation plasmas SO PHYSICAL REVIEW LETTERS LA English DT Article ID DIII-D; FEEDBACK; NSTX; PERFORMANCE; TOKAMAK; ITER AB The resistive-wall mode is actively stabilized in the National Spherical Torus Experiment in high-beta plasmas rotating significantly below the critical rotation speed for passive stability and in the range predicted for the International Thermonuclear Experimental Reactor. Variation of feedback stabilization parameters shows mode excitation or suppression. Stabilization of toroidal mode number unity did not lead to instability of toroidal mode number two. The mode can become unstable by deforming poloidally, an important consideration for stabilization system design. C1 Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. Princeton Univ, Nova Photon, Princeton, NJ 08543 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. RP Sabbagh, SA (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. RI Sabbagh, Steven/C-7142-2011; OI Menard, Jonathan/0000-0003-1292-3286 NR 22 TC 91 Z9 92 U1 0 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 28 PY 2006 VL 97 IS 4 AR 045004 DI 10.1103/PhysRevLett.97.045004 PG 4 WC Physics, Multidisciplinary SC Physics GA 068MF UT WOS:000239377500031 PM 16907583 ER PT J AU Schreiber, J Bell, F Gruner, F Schramm, U Geissler, M Schnurer, M Ter-Avetisyan, S Hegelich, BM Cobble, J Brambrink, E Fuchs, J Audebert, P Habs, D AF Schreiber, J. Bell, F. Gruener, F. Schramm, U. Geissler, M. Schnuerer, M. Ter-Avetisyan, S. Hegelich, B. M. Cobble, J. Brambrink, E. Fuchs, J. Audebert, P. Habs, D. TI Analytical model for ion acceleration by high-intensity laser pulses SO PHYSICAL REVIEW LETTERS LA English DT Article ID SOLID INTERACTIONS; PROTON GENERATION; PLASMA; BEAMS; EMISSION; TARGETS; TRANSPORT; ELECTRON; DRIVEN AB We present a general expression for the maximum ion energy observed in experiments with thin foils irradiated by high-intensity laser pulses. The analytical model is based on a radially confined surface charge set up by laser accelerated electrons on the target rear side. The only input parameters are the properties of the laser pulse and the target thickness. The predicted maximum ion energy and the optimal laser pulse duration are supported by dedicated experiments for a broad range of different ions. C1 Univ Munich, Dept Phys, D-8046 Garching, Germany. Max Planck Inst Quantum Opt, Garching, Germany. Max Born Inst, Berlin, Germany. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Paris 06, Ecole Polytech, CNRS, CEA,UMR 7605,Lab Utilisat Lasers Intenses, Palaiseau, France. RP Schreiber, J (reprint author), Univ Munich, Dept Phys, D-8046 Garching, Germany. EM joerg.schreiber@mpq.mpg.de RI Schramm, Ulrich/C-9393-2012; Fuchs, Julien/D-3450-2016; Gruner, Florian/M-1212-2016 OI Schramm, Ulrich/0000-0003-0390-7671; Fuchs, Julien/0000-0001-9765-0787; Gruner, Florian/0000-0001-8382-9225 NR 30 TC 112 Z9 112 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 28 PY 2006 VL 97 IS 4 AR 045005 DI 10.1103/PhysRevLett.97.045005 PG 4 WC Physics, Multidisciplinary SC Physics GA 068MF UT WOS:000239377500032 PM 16907584 ER PT J AU Truesdell, R Mammoli, A Vorobieff, P van Swol, F Brinker, CJ AF Truesdell, Richard Mammoli, Andrea Vorobieff, Peter van Swol, Frank Brinker, C. Jeffrey TI Drag reduction on a patterned superhydrophobic surface SO PHYSICAL REVIEW LETTERS LA English DT Article ID SLIP; MICROCHANNELS; FLOW; WALL AB We present an experimental study of a low-Reynolds number shear flow between two surfaces, one of which has a regular grooved texture augmented with a superhydrophobic coating. The combination reduces the effective fluid-surface contact area, thereby appreciably decreasing the drag on the surface and effectively changing the macroscopic boundary condition on the surface from no slip to limited slip. We measure the force on the surface and the velocity field in the immediate vicinity on the surface (and thus the wall shear) simultaneously. The latter facilitates a direct assessment of the effective slip length associated with the drag reduction. C1 Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Truesdell, R (reprint author), Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. RI Vorobieff, Peter/B-3376-2011; OI Vorobieff, Peter/0000-0003-0631-7263 NR 17 TC 156 Z9 165 U1 9 U2 98 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 28 PY 2006 VL 97 IS 4 AR 044504 DI 10.1103/PhysRevLett.97.044504 PG 4 WC Physics, Multidisciplinary SC Physics GA 068MF UT WOS:000239377500026 PM 16907578 ER PT J AU Zhang, DZ Ma, X Rauenzahn, RM AF Zhang, D. Z. Ma, X. Rauenzahn, R. M. TI Interspecies stress in momentum equations for dense binary particulate systems SO PHYSICAL REVIEW LETTERS LA English DT Article ID FLOWS AB For two-species particulate systems, ensemble averaged continuity and momentum equations for each species are derived based on the Liouville equation of the system. The ensemble average used is species specific. It is found that the interaction between species results in not only the interspecies force but also a stress in the momentum equations. In the limit that particles of one of the species can be considered as a continuum, the existence of the interspecies stress enables us to reduce the derived equations to the familiar form for dispersed two-phase flows. C1 Los Alamos Natl Lab, Div Theoret, Fluid Dynam Grp T3B216, Los Alamos, NM 87545 USA. RP Zhang, DZ (reprint author), Los Alamos Natl Lab, Div Theoret, Fluid Dynam Grp T3B216, Los Alamos, NM 87545 USA. NR 10 TC 6 Z9 6 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 28 PY 2006 VL 97 IS 4 AR 048301 DI 10.1103/PhysRevLett.97.048301 PG 4 WC Physics, Multidisciplinary SC Physics GA 068MF UT WOS:000239377500065 PM 16907617 ER PT J AU Rafi, SB Cui, GL Song, K Cheng, XL Tonge, PJ Simmerling, C AF Rafi, Salma B. Cui, Guanglei Song, Kun Cheng, Xiaolin Tonge, Peter J. Simmerling, Carlos TI Insight through molecular mechanics Poisson-Boltzmann surface area calculations into the binding affinity of triclosan and three analogues for FabI, the E-coli enoyl reductase SO JOURNAL OF MEDICINAL CHEMISTRY LA English DT Article ID FATTY-ACID SYNTHESIS; FREE-ENERGY CALCULATIONS; PARTICLE MESH EWALD; MYCOBACTERIUM-TUBERCULOSIS; CONTINUUM SOLVENT; CONFORMATIONAL ENERGIES; DYNAMICS SIMULATIONS; RESP MODEL; INHIBITION; TARGET AB Keeping pace with emerging drug resistance in clinically important pathogens will be greatly aided by inexpensive yet reliable computational methods that predict the binding affinities of ligands for drug targets. We present results using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method to calculate the affinity of a series of triclosan analogues for the E. coli enoyl reductase FabI, spanning a 450000-fold range of binding affinities. Significantly, a high correlation is observed between the calculated binding energies and those determined experimentally. Further examination indicates that the van der Waals energies are the most correlated component of the total affinity (r(2) = 0.74), indicating that the shape of the inhibitor is very important in defining the binding energies for this system. The validation of MM-PBSA for the E coli FabI system serves as a platform for inhibitor design efforts focused on the homologous enzyme in Staphylococcus aureues and Mycobacterium tuberculosis. C1 SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. SUNY Stony Brook, Biochem & Struct Biol Grad Program, Stony Brook, NY 11794 USA. SUNY Stony Brook, Ctr Struct Biol, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. RP Simmerling, C (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM carlos.simmerling@stonybrook.edu RI Tonge, Peter/A-7443-2009 FU NIGMS NIH HHS [R01 GM061678-06A1, GM6167803, R01 GM061678] NR 41 TC 25 Z9 25 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-2623 J9 J MED CHEM JI J. Med. Chem. PD JUL 27 PY 2006 VL 49 IS 15 BP 4574 EP 4580 DI 10.1021/jm060222t PG 7 WC Chemistry, Medicinal SC Pharmacology & Pharmacy GA 065EF UT WOS:000239141500015 PM 16854062 ER PT J AU Lian, R Oulianov, DA Crowell, RA Shkrob, IA Chen, XY Bradforth, SE AF Lian, Rui Oulianov, Dmitri A. Crowell, Robert A. Shkrob, Ilya A. Chen, Xiyi Bradforth, Stephen E. TI Electron photodetachment from aqueous anions. 3. Dynamics of geminate pairs derived from photoexcitation of mono- vs polyatomic anions SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID QUANTUM MOLECULAR-DYNAMICS; UV SOLUTION SPECTROSCOPY; TO-SOLVENT SPECTRA; LIQUID WATER; HYDRATED ELECTRON; COMPUTER-SIMULATION; ULTRAFAST DYNAMICS; SOLVATED ELECTRONS; CHLORIDE-ION; RELAXATION DYNAMICS AB Photostimulated electron detachment from aqueous inorganic anions is the simplest example of solvent-mediated electron transfer reaction. As such, this photoreaction became the subject of many ultrafast studies. Most of these studied focused on the behavior of halide anions, in particular, iodide, that is readily accessible in the UV. In this study, we contrast the behavior of these halide anions with that of small polyatomic anions, such as pseudohalide anions ( e. g., HS-) and common polyvalent anions ( e. g., SO32-). Geminate recombination dynamics of hydrated electrons generated by 200 nm photoexcitation of aqueous anions (I-, Br-, OH-, HS-, CNS,- CO32-, SO32-, and Fe(CN)(6)(4-)) have been studied. Prompt quantum yields for the formation of solvated, thermalized electrons and quantum yields for free electrons were determined. Pump-probe kinetics for 200 nm photoexcitation were compared with kinetics obtained at lower photoexcitation energy ( 225 or 242 nm) for the same anions, where possible. Free diffusion and mean force potential models of geminate recombination dynamics were used to analyze these kinetics. These analyses suggest that for polyatomic anions ( including all polyvalent anions studied) the initial electron distribution has a broad component, even at relatively low photoexcitation energy. There seems to be no well-defined threshold energy below which the broadening of this electron distribution does not occur, as is the case for halide anions. The constancy of (near-unity) prompt quantum yields vs the excitation energy as the latter is scanned across the lowest charge-transfer-to-solvent band of the anion is observed for halide anions but not for other anions: the prompt quantum yields are considerably less than unity and depend strongly on the excitation energy. Our study suggests that halide anions are in the class of their own; electron photodetachment from polyatomic, especially polyvalent, anions exhibits qualitatively different behavior. C1 Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. RP Shkrob, IA (reprint author), Argonne Natl Lab, Div Chem, 9700 S Cass Ave, Argonne, IL 60439 USA. EM shkrob@anl.gov RI Bradforth, Stephen/B-5186-2008 OI Bradforth, Stephen/0000-0002-6164-3347 NR 71 TC 28 Z9 28 U1 4 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUL 27 PY 2006 VL 110 IS 29 BP 9071 EP 9078 DI 10.1021/jp0610113 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 065EG UT WOS:000239141600007 PM 16854017 ER PT J AU Hester, KC Strobel, TA Sloan, ED Koh, CA Huq, A Schultz, AJ AF Hester, Keith C. Strobel, Timothy A. Sloan, E. Dendy Koh, Carolyn A. Huq, Ashfia Schultz, Arthur J. TI Molecular hydrogen occupancy in binary THF-H-2 clathrate hydrates by high resolution neutron diffraction SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID POWDER DIFFRACTION; METHANE-HYDRATE; AB-INITIO; TETRAHYDROFURAN; STORAGE; PRESSURE; CLUSTERS AB We have determined the time-space average filling of hydrogen molecules in a binary tetrahydrofuran (THF)-d(8) + D-2 sII clathrate hydrate using high resolution neutron diffraction. The filling of hydrogen in the lattice of a THF-d(8) clathrate hydrate occurred upon pressurization. The hydrogen molecules were localized in the small dodecahedral cavities at 20 K, with nuclear density from the hydrogen approximately spherically distributed and centered in the small cavity. With a formation pressure of 70 MPa, molecular hydrogen was found to only singly occupy the sII small cavity. This result helps explain discrepancies about the hydrogen occupancy in the THF binary hydrate system. C1 Colorado Sch Mines, Ctr Hydrate Res, Golden, CO 80401 USA. Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA. RP Koh, CA (reprint author), Colorado Sch Mines, Ctr Hydrate Res, Golden, CO 80401 USA. EM ckoh@mines.edu RI Huq, Ashfia/J-8772-2013 OI Huq, Ashfia/0000-0002-8445-9649 NR 27 TC 78 Z9 79 U1 2 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUL 27 PY 2006 VL 110 IS 29 BP 14024 EP 14027 DI 10.1021/jp063164w PG 4 WC Chemistry, Physical SC Chemistry GA 065EI UT WOS:000239141800005 PM 16854093 ER PT J AU Chen, P Xiong, ZT Yang, LF Wu, GT Luo, WF AF Chen, Ping Xiong, Zhitao Yang, Lefu Wu, Guotao Luo, Weifang TI Mechanistic investigations on the heterogeneous solid-state reaction of magnesium amides and lithium hydrides SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID N-H SYSTEM; HYDROGEN STORAGE-SYSTEM; KINETICS; IMIDES; BONDS; LIH AB Isothermal and non-isothermal kinetic measurements on the chemical reaction between Mg(NH2)(2) and LiH, as well as the thermal decomposition of Mg( NH2) 2, give apparent activation energies of 88.1 and 130 kJ/mol, respectively, which reveal that the thermal decomposition of Mg( NH2) 2 is unlikely to be an elementary step in the chemical reaction of Mg(NH2)(2) and 2LiH. The H-D exchange between H delta+ in Mg(NH2) (2) and D delta- in LiD gives evidence for the coordinated interaction between amide and hydride. The observed linear and nonlinear kinetic growth in the reaction of Mg(NH2)(2)- 2LiH indicates that the reaction rate is controlled by the interface reaction in the early stage of the reaction and by mass transport through the imide layer in the later stage. Both particle size and degree of mixing of the reacting species affect the overall kinetics of the reactions. C1 Natl Univ Singapore, Fac Sci, Dept Phys, Singapore 117542, Singapore. Sandia Natl Labs, MS 9403, Livermore, CA 94550 USA. RP Chen, P (reprint author), Natl Univ Singapore, Fac Sci, Dept Phys, 10 Kent Ridge Crescent, Singapore 117542, Singapore. EM phychenp@nus.edu.sg OI Yang, Shuman/0000-0002-9638-0890 NR 26 TC 86 Z9 90 U1 3 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUL 27 PY 2006 VL 110 IS 29 BP 14221 EP 14225 DI 10.1021/jp061496v PG 5 WC Chemistry, Physical SC Chemistry GA 065EI UT WOS:000239141800035 PM 16854123 ER PT J AU Sui, HX Downing, KH AF Sui, Haixin Downing, Kenneth H. TI Molecular architecture of axonemal microtubule doublets revealed by cryo-electron tomography SO NATURE LA English DT Article ID DYNEIN-REGULATORY-COMPLEX; INTERMEDIATE-FILAMENT PROTEINS; URCHIN SPERM FLAGELLA; CHLAMYDOMONAS-FLAGELLA; COMPONENTS; TUBULIN; TEKTINS; ARMS; HETEROGENEITY; MUTATIONS AB The axoneme, which forms the core of eukaryotic flagella and cilia, is one of the largest macromolecular machines, with a structure that is largely conserved from protists to mammals(1). Microtubule doublets are structural components of axonemes that contain a number of proteins besides tubulin, and are usually found in arrays of nine doublets arranged around two singlet microtubules. Coordinated sliding of adjacent doublets, which involves a host of other proteins in the axoneme, produces periodic beating movements of the axoneme. We have obtained a three-dimensional density map of intact microtubule doublets using cryo-electron tomography and image averaging. Our map, with a resolution of about 3 nm, provides insights into locations of particular proteins within the doublets and the structural features of the doublets that define their mechanical properties. We identify likely candidates for several of these non-tubulin components of the doublets. This work offers insight on how tubulin protofilaments and accessory proteins attach together to form the doublets and provides a structural basis for understanding doublet function in axonemes. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Downing, KH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. EM khdowning@lbl.gov OI Sui, Haixin/0000-0002-5560-4325 NR 30 TC 87 Z9 90 U1 3 U2 15 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUL 27 PY 2006 VL 442 IS 7101 BP 475 EP 478 DI 10.1038/nature04816 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 067CI UT WOS:000239278900048 PM 16738547 ER PT J AU Vitev, I AF Vitev, Ivan TI Testing the theory of QGP-induced energy loss at RHIC and the LHC SO PHYSICS LETTERS B LA English DT Article ID JET TOMOGRAPHY; PLUS AU AB We compare an analytic model of jet quenching, based on the GLV non-Abelian energy loss formalism, to numerical results for the centrality dependent suppression of hadron cross sections in Au + An and Cu + Cu collisions at RHIC. Simulations of neutral pion quenching versus the size of the colliding nuclear system are presented to high transverse momentum, PT. At low and moderate PT, We Study the contribution of medium-induced gluon bremsstrahlung to single inclusive hadron production. In Pb + Pb collisions at the LHC, the redistribution of the lost energy is shown to play a critical role in yielding nuclear suppression that does not violate the participant scaling limit. (c) 2006 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Vitev, I (reprint author), Los Alamos Natl Lab, Div Theoret, Mail Stop H846, Los Alamos, NM 87545 USA. EM ivitev@lanl.gov NR 31 TC 62 Z9 62 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUL 27 PY 2006 VL 639 IS 1 BP 38 EP 45 DI 10.1016/j.physletb.2006.05.083 PG 8 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 064ZE UT WOS:000239128400006 ER PT J AU Rhee, YM DiStasio, RA Lochan, RC Head-Gordon, M AF Rhee, Young Min DiStasio, Robert A., Jr. Lochan, Rohini C. Head-Gordon, Martin TI Analytical gradient of restricted second-order Moller-Plesset correlation energy with the resolution of the identity approximation, applied to the TCNE dimer anion complex SO CHEMICAL PHYSICS LETTERS LA English DT Article ID FOCK PERTURBATION-THEORY; OPEN-SHELL; BASIS-SETS; DERIVATIVES; RI-MP2 AB The evaluation of the analytical gradient of restricted open shell second-order Moller-Plesset (RMP2) correlation energy for restricted open-shell systems is discussed within the framework of the resolution of the identity (RI) approximation. The theory can be feasibly implemented on the basis of an existing unrestricted MP2 (UMP2) algorithm. The method is applied to characterize the structure of a dimer formed by tetracyanoethylene and its anion. It is shown that the optimized dimer structure in RMP2 theory (twisted) is markedly different compared to the UMP2 structure (parallel). This difference is explained as a consequence of spin-contamination in the UMP2 model. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Head-Gordon, M (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM ymrhee@berkeley.edu; mhg@bastille.cchem.berkeley.edu RI Rhee, Young/E-9940-2012 NR 29 TC 27 Z9 28 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUL 26 PY 2006 VL 426 IS 1-3 BP 197 EP 203 DI 10.1016/j.cplett.2006.05.092 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 067AM UT WOS:000239272400039 ER PT J AU Dreuw, A Head-Gordon, M AF Dreuw, Andreas Head-Gordon, Martin TI Comment on: 'Failure of time-dependent density functional methods for excitations in spatially separated systems' by Wolfgang Hieringer and Andreas Gorling SO CHEMICAL PHYSICS LETTERS LA English DT Editorial Material ID TRANSFER EXCITED-STATES; AB-INITIO; EXCHANGE AB Hieringer and Gorling [W. Hieringer, A. Gorling, Chem. Phys. Lett. 419 (2006) 557] have identified failures of time-dependent density functional theory (TDDFT) with standard spatially local functionals for symmetric systems with non-overlapping entities where zero net charge-transfer occurs. We clarify that this particular failure is a direct consequence of the general problem of charge-transfer nevertheless, in the special case of an exact degeneracy. The role of exact and accidental degeneracies in large systems treated by present-day TDDFT is briefly discussed. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Frankfurt, Inst Phys & Theoret Chem, D-60439 Frankfurt, Germany. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Dreuw, A (reprint author), Univ Frankfurt, Inst Phys & Theoret Chem, Marie Curie Str 11, D-60439 Frankfurt, Germany. EM andreas.dreuw@theochem.uni-frankfurt.de RI Fachbereich14, Dekanat/C-8553-2015 NR 12 TC 36 Z9 36 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUL 26 PY 2006 VL 426 IS 1-3 BP 231 EP 233 DI 10.1016/j.cplett.2006.05.077 PG 3 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 067AM UT WOS:000239272400048 ER PT J AU Borovsky, JE Denton, MH AF Borovsky, Joseph E. Denton, Michael H. TI Differences between CME-driven storms and CIR-driven storms SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Review ID CORONAL MASS EJECTIONS; HIGH-SPEED STREAMS; TRANSPOLAR POTENTIAL SATURATION; SOLAR ENERGETIC PARTICLES; SUPERPOSED EPOCH ANALYSIS; PC5 WAVE POWER; GEOSYNCHRONOUS ORBIT; GEOMAGNETIC STORMS; RING CURRENT; RELATIVISTIC ELECTRONS AB [ 1] Twenty one differences between CME-driven geomagnetic storms and CIR-driven geomagnetic storms are tabulated. (CME-driven includes driving by CME sheaths, by magnetic clouds, and by ejecta; CIR-driven includes driving by the associated recurring high-speed streams.) These differences involve the bow shock, the magnetosheath, the radiation belts, the ring current, the aurora, the Earth's plasma sheet, magnetospheric convection, ULF pulsations, spacecraft charging in the magnetosphere, and the saturation of the polar cap potential. CME-driven storms are brief, have denser plasma sheets, have strong ring currents and Dst, have solar energetic particle events, and can produce great auroras and dangerous geomagnetically induced currents; CIR-driven storms are of longer duration, have hotter plasmas and stronger spacecraft charging, and produce high fluxes of relativistic electrons. Further, the magnetosphere is more likely to be preconditioned with dense plasmas prior to CIR-driven storms than it is prior to CME-driven storms. CME-driven storms pose more of a problem for Earth-based electrical systems; CIR-driven storms pose more of a problem for space-based assets. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Southampton, Dept Phys & Astron, Southampton, Hants, England. RP Borovsky, JE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jborovsky@lanl.gov OI Denton, Michael/0000-0002-1748-3710 NR 122 TC 192 Z9 195 U1 2 U2 25 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 26 PY 2006 VL 111 IS A7 AR A07S08 DI 10.1029/2005JA011447 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 070AE UT WOS:000239491500004 ER PT J AU Zhang, J Liemohn, MW Thomsen, MF Kozyra, JU Denton, MH Borovsky, JE AF Zhang, Jichun Liemohn, Michael W. Thomsen, Michelle F. Kozyra, Janet U. Denton, Michael H. Borovsky, Joseph E. TI A statistical comparison of hot-ion properties at geosynchronous orbit during intense and moderate geomagnetic storms at solar maximum and minimum SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PLASMA SHEET ACCESS; INTERPLANETARY MAGNETIC FIELD; LATITUDE BOUNDARY-LAYER; NEAR-EARTH MAGNETOTAIL; RING CURRENT; GEOTAIL OBSERVATIONS; MAGNETOSPHERE; WIND; DYNAMICS; PHASE AB [ 1] Hot-ion measurements at geosynchronous orbit from the Los Alamos Magnetospheric Plasma Analyzer (MPA) instrument during geomagnetic storms at solar maximum ( July 1999 - June 2002) and at solar minimum ( July 1994 - June 1997) are collected, categorized, and analyzed through the superposed epoch technique. To investigate this source of the storm-time ring current, the local time ( LT) and universal time ( UT) dependence of the average variations of hot-ion fluxes ( at the energies of similar to 30, similar to 17, similar to 8, and similar to 1 keV), density, temperature, entropy, and temperature anisotropy are examined and compared among four storm categories, i.e., 44 intense storms and 120 moderate storms, defined by the pressure corrected Dst (Dst*), at the two solar extrema. All the hot-ion parameters are highly disturbed around Dst*(min); they show distinct peaks or minima and display obvious increase or decrease regions, whose locations do not change much with levels of geomagnetic activity and solar activity. It is also found that intense storms at solar minimum always have the highest ( lowest) average peak value ( minimum) in each hot-ion parameter. Around Dst*(min) in each storm category, hot ions are clearly denser near dawn than those near dusk. On the nightside and in the afternoon sector, temperature and entropy during solar minimum storms are usually higher than those during solar maximum storms; there is actually no clear temperature and entropy enhancement during solar maximum storms. During each type of storm, hot ions are isotropic on the nightside but anisotropic (T-per/T-par > 1) close to noon. C1 Univ Michigan, Space Phys Res Lab, Ann Arbor, MI 48109 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Zhang, J (reprint author), Univ Michigan, Space Phys Res Lab, 2455 Hayward St,1424, Ann Arbor, MI 48109 USA. EM jichunz@umich.edu RI Zhang, Jichun/A-6648-2009; Liemohn, Michael/H-8703-2012; OI Liemohn, Michael/0000-0002-7039-2631; Denton, Michael/0000-0002-1748-3710 NR 68 TC 20 Z9 20 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 26 PY 2006 VL 111 IS A7 AR A07206 DI 10.1029/2005JA011559 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 070AE UT WOS:000239491500008 ER PT J AU Rosolankova, K Wark, JS Bringa, EM Hawreliak, J AF Rosolankova, K. Wark, J. S. Bringa, E. M. Hawreliak, J. TI Measuring stacking fault densities in shock-compressed FCC crystals using in situ x-ray diffraction SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID WAVE COMPRESSION; DEFORMATION; SILICON; METALS AB A method is presented of in situ measurements of stacking fault densities in shocked face-centred-cubic (FCC) crystals using x-ray diffraction. Using results from both the second and fourth diffraction orders, wherein shifts in the Bragg peaks due to faulting are accounted for, we calculated fault densities present in a molecular dynamics ( MD) simulation of shocked single crystal of copper. The results are in good quantitative agreement with dislocation density measurements inferred directly from the MD simulation. The x-ray diffraction method thus presents a real possibility for experimental determination in real time of dislocation densities in crystals during shock wave passage. C1 Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Rosolankova, K (reprint author), Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. RI Bringa, Eduardo/F-8918-2011 NR 20 TC 14 Z9 14 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUL 26 PY 2006 VL 18 IS 29 BP 6749 EP 6757 DI 10.1088/0953-8984/18/29/014 PG 9 WC Physics, Condensed Matter SC Physics GA 062UM UT WOS:000238970200015 ER PT J AU Ottenwaelder, X Rudd, DJ Corbett, MC Hodgson, KO Hedman, B Stack, TDP AF Ottenwaelder, Xavier Rudd, Deanne Jackson Corbett, Mary C. Hodgson, Keith O. Hedman, Britt Stack, T. Daniel P. TI Reversible O-O bond cleavage in copper-dioxygen isomers: Impact of anion basicity SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID COMPLEXES; REACTIVITY; LIGAND; CORE; MU-ETA(2)-ETA(2)-PEROXO; SPECTROSCOPY; TYROSINASE; COMPOUND; PEROXO C1 Stanford Univ, Dept Chem, Stanford, CA 94305 USA. Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. RP Hodgson, KO (reprint author), Stanford Univ, Dept Chem, Stanford, CA 94305 USA. EM hodgson@ssrl.stanford.edu; hedman@ssrl.stanford.edu; stack@stanford.edu RI Ottenwaelder, Xavier/J-1801-2012 OI Ottenwaelder, Xavier/0000-0003-4775-0303 FU NCRR NIH HHS [P41 RR001209, RR-01209]; NIGMS NIH HHS [GM-50730, R01 GM050730, R01 GM050730-11, R01 GM050730-12, R01 GM050730-13, R01 GM050730-14, R29 GM050730] NR 17 TC 38 Z9 38 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 26 PY 2006 VL 128 IS 29 BP 9268 EP 9269 DI 10.1021/ja061132g PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 064WL UT WOS:000239120700005 PM 16848427 ER PT J AU Rodriguez, AT Chen, M Chen, Z Brinker, CJ Fan, HY AF Rodriguez, Adrian T. Chen, Min Chen, Zhu Brinker, C. Jeffrey Fan, Hongyou TI Nanoporous carbon nanotubes synthesized through confined hydrogen-bonding self-assembly SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID POROUS ALUMINA MEMBRANES; BLOCK-COPOLYMERS; SILICA TUBES; TEMPLATES; FUNCTIONALIZATION; CARBONIZATION; ARRAYS C1 Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. Univ New Mexico, NSF, Ctr Microengn Mat, Albuquerque, NM 87131 USA. Sandia Natl Labs, Chem Synth & Nanomat Dept, Adv Mat Lab, Albuquerque, NM 87106 USA. RP Fan, HY (reprint author), Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. EM hfan@sandia.gov RI Chen, Zhu/M-3834-2015 NR 23 TC 50 Z9 53 U1 2 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 26 PY 2006 VL 128 IS 29 BP 9276 EP 9277 DI 10.1021/ja061380c PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 064WL UT WOS:000239120700009 PM 16848431 ER PT J AU Wang, HR Song, YJ Medforth, CJ Shelnutt, JA AF Wang, Haorong Song, Yujiang Medforth, Craig J. Shelnutt, John A. TI Interfacial synthesis of dendritic platinum nanoshells templated on benzene nanodroplets stabilized in water by a photocatalytic lipoporphyrin SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MESOPOROUS SILICA; FACILE SYNTHESIS; NANOPARTICLES; NANOSTRUCTURES; MICROSPHERES; SPHERES C1 Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. Univ Georgia, Dept Chem, Athens, GA 30602 USA. RP Shelnutt, JA (reprint author), Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. EM jasheln@unm.edu RI Song, Yujiang/A-8700-2009; Shelnutt, John/A-9987-2009; Medforth, Craig/D-8210-2013; REQUIMTE, FMN/M-5611-2013; REQUIMTE, UCIBIO/N-9846-2013 OI Shelnutt, John/0000-0001-7368-582X; Medforth, Craig/0000-0003-3046-4909; NR 17 TC 46 Z9 46 U1 3 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 26 PY 2006 VL 128 IS 29 BP 9284 EP 9285 DI 10.1021/ja0619859 PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 064WL UT WOS:000239120700013 PM 16848435 ER PT J AU Davis, AV Firman, TK Hay, BP Raymond, KN AF Davis, Anna V. Firman, Timothy K. Hay, Benjamin P. Raymond, Kenneth N. TI d-Orbital effects on stereochemical non-rigidity: Twisted Ti-IV intramolecular dynamics SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Review ID TRIS-CHELATE COMPLEXES; TRANSITION-METAL-COMPLEXES; NUCLEAR-MAGNETIC-RESONANCE; X-RAY-STRUCTURE; REARRANGEMENT REACTIONS; TRIS(DITHIOCARBAMATO) COMPLEXES; ENANTIOSELECTIVE CATALYSIS; COORDINATION COMPOUNDS; OCTAHEDRAL COMPLEXES; MOLECULAR-STRUCTURE AB The isomerization dynamics of tris-catecholate complexes have been investigated by variable-temperature NMR methods, demonstrating that the intramolecular racemization of Delta and Lambda enantiomers of d(0) Ti-IV is facile and faster than that of d(10) Ga-III and Ge-IV analogues. Activation parameters for the racemization of K-2[Ti2(3)] (H(2)2 = 2,3-dihydroxy-N,N'-diisopropylterephthalamide) were determined from line shape analysis of H-1 NMR spectra {methanol-d(4): Delta H-double dagger = 47(1) kJ/mol; Delta S-double dagger = -34(4) J/molK; Delta G(298)(double dagger) = 57(3) kJ/mol; DMF-d(7): Delta H-double dagger = 55(1) kJ/mol; Delta S-double dagger = -16(4) J/molK; Delta G(298)(double dagger) = 59(3) kJ/mol; D2O (pD(star) = 8.6, 20% MeOD): Delta H-double dagger = 48(3) kJ/mol; Delta S-double dagger = -28(10) J/molK; Delta G(298)(double dagger) = 56(3) kJ/mol}. The study of K-2[Ti4(3)] (H(2)4 = 2,3-dihydroxy-N-tert-butyl-N'-benzylterephthalamide) reveals two distinct isomerization processes: faster racemization of mer-[Ti4(3)](2-) by way of a Bailar twist mechanism (D-3h transition state) {T-c approximate to 242 K, methanol-d(4)}, and a slower mer reversible arrow fac[Ti4(3)](2-) isomerization by way of a Ray-Dutt mechanism (C-2v transition state) {T-c approximate to 281 K, methanol-d(4)}. The solution behavior of the Ti-IV complexes mirrors that reported previously for analogous Ga-III complexes, while that of analogous Ge-IV complexes was too inert to be detected by 1H NMR up to 400 K. These experimental findings are augmented by DFT calculations of the ML3 ground states and Bailar and Ray-Dutt transition states, which correctly predict the relative kinetic barriers of complexes of the three metal ions, in addition to faithfully reproducing the ground-state structures. Orbital calculations support the conclusion that participation of the Ti-IV d orbitals in ligand bonding contributes to the greater stabilization of the prismatic Ti-IV transition states. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. RP Raymond, KN (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM raymond@socrates.berkeley.edu NR 102 TC 13 Z9 13 U1 3 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 26 PY 2006 VL 128 IS 29 BP 9484 EP 9496 DI 10.1021/ja0617946 PG 13 WC Chemistry, Multidisciplinary SC Chemistry GA 064WL UT WOS:000239120700064 PM 16848486 ER PT J AU Contreras, MA Romero, MJ Noufi, R AF Contreras, MA Romero, MJ Noufi, R TI Characterization of Cu(In,Ga)Se-2 materials used in record performance solar cells SO THIN SOLID FILMS LA English DT Article; Proceedings Paper CT Symposium on Thin Film and Nanostructured Materials for Photovoltaics held at the 2005 EMRS Meeting CY MAY 31-JUN 03, 2005 CL Strasbourg, FRANCE SP EMRS DE chalcopyrite; Cu(In, Ga)Se-2; CIGS; high efficiency; texture; preferred orientation; grain boundary; thin-film solar cell AB Solar cells based on polycrystalline thin-film Cu(In,Ga)Se-2 materials have recently achieved a new level of performance with a certified efficiency of 19.5%. In this contribution, some physical characteristics of the absorber materials (and devices) leading to such performance are presented. From the absorber composition and the device quantum efficiency data, we found that these materials have an atomic bulk composition of 0.88 < Cu/(In+Ga)< 0.95 and Ga/(In+Ga) similar to 0.3 leading to an empirical effective band gap of 1.14 eV for which maximum performance is attained. These chalcopyrite absorber materials are also characterized by a strong < 220/204 > preferred orientation. Because of this key structural aspect found in our high-efficiency absorbers, we present a comparison for some physical characteristics of the absorber as related to typical preferred orientations observed in this material system, namely < 112 > and < 220/204 >. We find that < 220/204 >-oriented thin films are in general more homogeneous than < 112 >-oriented films in terms of their optoelectronic properties, and they lead to materials with a lower density of nonradiative recombination centers. (c) 2005 Elsevier B.V. All rights reserved. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Contreras, MA (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd,MS 3211, Golden, CO 80401 USA. EM miguel_contreras@nrel.gov NR 10 TC 117 Z9 121 U1 1 U2 47 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD JUL 26 PY 2006 VL 511 BP 51 EP 54 DI 10.1016/j.tsf.2005.11.097 PG 4 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 052QS UT WOS:000238249000010 ER PT J AU Rasheed, A Dadmun, MD Ivanov, I Britt, PF Geohegan, DB AF Rasheed, Asif Dadmun, Mark D. Ivanov, Ilia Britt, Phillip F. Geohegan, David B. TI Improving dispersion of single-walled carbon nanotubes in a polymer matrix using specific interactions SO CHEMISTRY OF MATERIALS LA English DT Article ID LIQUID-CRYSTALLINE POLYMER; TRUE MOLECULAR COMPOSITE; RAMAN-SPECTROSCOPY; BLENDS; STRENGTH; FILMS; DEFORMATION; INTERFACE; MIXTURES; FIBERS AB A novel approach is presented to improve the dispersion of oxidized single-walled carbon nanotubes (SWNTs) in a copolymer matrix by tuning hydrogen- bonding interactions to enhance dispersion. Nanocomposites of single- walled carbon nanotubes and copolymers of styrene and vinyl phenol (PSVPh) with varying vinyl phenol content were produced and examined. The dispersion of the SWNT in the polymer matrix is quantified by optical microscopy and Raman spectroscopy. Raman spectroscopy is also used to investigate preferred interactions between the SWNTs and the copolymers via the shift in the D* Raman band of the SWNTs in the composites. All composites show regions of SWNT aggregates; however, the aggregate size varies with composition of the PSVPh copolymer and the amount of SWNT oxidation. Optimal dispersion of the SWNT is observed in PSVPh with 20% vinyl phenol and oxidized nanotubes, which correlates with spectroscopic evidence that indicates that this system also incorporates the most interactions between SWNT and polymer matrix. These results are in agreement with previous studies that indicate that optimizing the extent of specific interactions between a polymer matrix and nanoscale filler enables the efficient dispersion of the nanofillers. C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Dadmun, MD (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RI ivanov, ilia/D-3402-2015; Geohegan, David/D-3599-2013; OI ivanov, ilia/0000-0002-6726-2502; Geohegan, David/0000-0003-0273-3139; Dadmun, Mark/0000-0003-4304-6087 NR 41 TC 37 Z9 37 U1 0 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUL 25 PY 2006 VL 18 IS 15 BP 3513 EP 3522 DI 10.1021/cm060315z PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 064JT UT WOS:000239085900018 ER PT J AU Elam, JW Martinson, ABF Pellin, MJ Hupp, JT AF Elam, Jeffrey W. Martinson, Alex B. F. Pellin, Michael J. Hupp, Joseph T. TI Atomic layer deposition of In2O3 using cyclopentadienyl indium: A new synthetic route to transparent conducting oxide films SO CHEMISTRY OF MATERIALS LA English DT Article ID SELECTIVE CATALYTIC-REDUCTION; THIN-FILMS; GROWTH-RATE; EPITAXY; PRECURSORS; SENSORS; WATER; SIO2; NO AB Indium oxide (In2O3) forms the basis for an important class of transparent conducting oxides that see wide use in optoelectronic devices, flat-panel displays, and photovoltaics. Here we present a new method for depositing In2O3 thin films by atomic layer deposition (ALD) using alternating exposures to cyclopentadienyl indium and ozone. Using a precursor vaporization temperature of 40 degrees C and deposition temperatures of 200-450 degrees C, we measure growth rates of 1.3-2.0 angstrom/cycle. A significant advantage of this synthesis route over previous techniques is the ability to conformally coat porous materials such as anodic aluminum oxide membranes. The deposited films are nanocrystalline, cubic phase In2O3 and are highly transparent and conducting. In situ quadrupole mass spectrometry and quartz crystal microbalance measurements elucidate the details of the In2O3 growth mechanism. C1 Argonne Natl Lab, Argonne, IL 60439 USA. Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Elam, JW (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jelam@anl.gov RI Pellin, Michael/B-5897-2008; Hupp, Joseph/K-8844-2012; OI Pellin, Michael/0000-0002-8149-9768; Hupp, Joseph/0000-0003-3982-9812; Martinson, Alex/0000-0003-3916-1672 NR 39 TC 64 Z9 64 U1 2 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUL 25 PY 2006 VL 18 IS 15 BP 3571 EP 3578 DI 10.1021/cm060754y PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 064JT UT WOS:000239085900025 ER PT J AU Andrews, SS Arkin, AR AF Andrews, Steven S. Arkin, Adam R. TI Simulating cell biology SO CURRENT BIOLOGY LA English DT Editorial Material ID STOCHASTIC SIMULATION; BACTERIAL CHEMOTAXIS; CHEMICAL-REACTIONS; ESCHERICHIA-COLI; NOISE; MECHANISMS; PATHWAY C1 Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. RP Andrews, SS (reprint author), Lawrence Berkeley Natl Lab, Phys Biosci Div, 1 Cyclotron Rd,MS 977-152, Berkeley, CA 94720 USA. EM ssandrews@lbl.gov RI Arkin, Adam/A-6751-2008 OI Arkin, Adam/0000-0002-4999-2931 NR 27 TC 18 Z9 18 U1 0 U2 4 PU CELL PRESS PI CAMBRIDGE PA 1100 MASSACHUSETTS AVE, CAMBRIDGE, MA 02138 USA SN 0960-9822 J9 CURR BIOL JI Curr. Biol. PD JUL 25 PY 2006 VL 16 IS 14 BP R523 EP R527 DI 10.1016/j.cub.2006.06.048 PG 5 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 067TE UT WOS:000239324700005 PM 16860723 ER PT J AU Grant, RF Zhang, Y Yuan, F Wang, S Hanson, PJ Gaumont-Guay, D Chen, J Black, TA Barr, A Baldocchi, DD Arain, A AF Grant, R. F. Zhang, Y. Yuan, F. Wang, S. Hanson, P. J. Gaumont-Guay, D. Chen, J. Black, T. A. Barr, A. Baldocchi, D. D. Arain, A. TI Intercomparison of techniques to model water stress effects on CO2 and energy exchange in temperate and boreal deciduous forests SO ECOLOGICAL MODELLING LA English DT Article DE water stress; CO2 exchange; energy exchange; ecosystem modeling; deciduous forests; net primary productivity; net ecosystem productivity ID LAND-SURFACE SCHEME; ECOSYSTEM SIMULATION-MODEL; CARBON-DIOXIDE FLUXES; DOUGLAS-FIR FOREST; STOMATAL CONDUCTANCE; SOIL RESPIRATION; ASPEN FOREST; EDDY-COVARIANCE; VAPOR EXCHANGE; MICROBIAL RESPIRATION AB Soil water deficits are a key controller of net ecosystem productivity (NEP) in deciduous broadleaf forests. Mathematical models of forest NEP need to represent the processes by which this control is exerted if they are to be used to predict the impacts of changing hydrology on forest C stocks., The key processes controlling NEP during soil water deficits are hydraulic limitations to water transfer in soil, roots, stems and leaves that impose constraints on gross primary productivity (GPP). We compare five ecosystem models with different techniques to simulate these processes for their ability to model reduced latent versus sensible heat fluxes, earlier diurnal declines in CO2 influxes and reduced Soil CO2 effluxes during soil drying. Model accuracy was assessed using energy and CO2 fluxes measured by eddy covariance and surface chambers in a warm temperate and a cool boreal deciduous forest during a drying period. Diurnal declines in CO2 influxes during soil drying were consistently simulated by models in which soil drying lowered root and canopy water potentials (psi(c)) and raised soil and root hydraulic resistances. Leaf stomatal conductance (g(l)), derived in these models from non-linear functions of psi(c), then became more sensitive to diurnal changes in vapor pressure deficits (D). Diurnal declines in CO2 influxes could be simulated with comparable accuracy under most conditions by a model in which g(l) was empirically related to soil water potential and D, although these declines were sometimes not fully simulated. CO2 influxes declined too rapidly with diurnal rises in D in another model in which was calculated from CO2 fixation which was empirically related to soil water content. Divergences in modeled versus measured half-hourly or hourly CO2 exchange were also apparent in modeled versus measured annual GPP, net primary productivity (NPP) and NEP. The ability to distinguish among alternative algorithms for their accuracy in calculating CO2 and energy fluxes was often limited by uncertainty in the measurement of these fluxes using eddy covariance, especially when low wind speeds and stable boundary layers reduced atmospheric turbulence. (c),2006 Elsevier B.V. All rights reserved. C1 Univ Alberta, Dept Renewable Resources, Edmonton, AB T6G 2E3, Canada. Canada Ctr Remote Sensing, Ottawa, ON K1A OY7, Canada. McMaster Univ, Sch Geog & Geol, Hamilton, ON L8S 4L8, Canada. Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN USA. Univ British Columbia, Dept Soil Sci, Vancouver, BC V5Z 1M9, Canada. Univ Toronto, Dept Geog, Toronto, ON M4X 1K9, Canada. Environm Canada, Natl Hydrol Res Inst, Saskatoon, SK S7N 3H5, Canada. Univ Calif Berkeley, Dept Environm Sci Policy & Managament, Berkeley, CA 94720 USA. RP Grant, RF (reprint author), Univ Alberta, Dept Renewable Resources, Edmonton, AB T6G 2E3, Canada. EM robert.grant@afhe.ualberta.ca RI Hanson, Paul J./D-8069-2011; Baldocchi, Dennis/A-1625-2009; Barr, Alan/H-9939-2014; OI Wang, Shusen/0000-0003-1860-899X; Hanson, Paul J./0000-0001-7293-3561; Baldocchi, Dennis/0000-0003-3496-4919; Grant, Robert/0000-0002-8890-6231; Arain, M. Altaf/0000-0002-1433-5173 NR 82 TC 30 Z9 32 U1 0 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3800 J9 ECOL MODEL JI Ecol. Model. PD JUL 25 PY 2006 VL 196 IS 3-4 BP 289 EP 312 DI 10.1016/j.ecolmodel.2006.02.015 PG 24 WC Ecology SC Environmental Sciences & Ecology GA 063CY UT WOS:000238994800003 ER PT J AU Wang, JY Sinogeikin, SV Inoue, T Bass, JD AF Wang, Jingyun Sinogeikin, Stanislav V. Inoue, Toru Bass, Jay D. TI Elastic properties of hydrous ringwoodite at high-pressure conditions SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SINGLE-CRYSTAL ELASTICITY; SEISMIC DISCONTINUITY; HIGH-TEMPERATURES; SOUND VELOCITIES; TRANSITION-ZONE; UPPER MANTLE; GAMMA-PHASE; WATER; GAMMA-MG2SIO4; COMPRESSION AB The sound velocities and single-crystal elastic moduli of hydrous gamma-Mg2SiO4 (ringwoodite) containing 2.3 wt% of H2O have been measured by Brillouin spectroscopy at high pressures to 23.4 GPa, spanning the pressure range in Earth's transition zone. The resulting pressure derivatives of the adiabatic bulk modulus, K'(S), and shear modulus, mu', are 4.4(1) and 1.7(1) respectively. Compared with results for anhydrous ringwoodite, the pressure derivatives of the elastic moduli are consistent with an increase due to hydration of as much as 7% for the K'(S) and 30% for mu', depending on the data sets used for comparison. However, the gradients of velocity as a function of pressure for hydrous ringwoodite are significantly less than the corresponding gradients in the Earth's transition zone. We conclude that transition zone seismic velocity gradients are not due to "wet'' ringwoodite, as previously speculated. C1 Univ Illinois, Dept Geol, Urbana, IL 61801 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Ehime Univ, Dept Earth Sci, Matsuyama, Ehime 7908577, Japan. RP Wang, JY (reprint author), Univ Illinois, Dept Geol, 1301 W Green St, Urbana, IL 61801 USA. EM jwang11@uiuc.edu RI Bass, Jay/G-2599-2013 NR 28 TC 23 Z9 25 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 25 PY 2006 VL 33 IS 14 AR L14308 DI 10.1029/2006GL026441 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 069ZK UT WOS:000239489000002 ER PT J AU Pokrovski, KA Bell, AT AF Pokrovski, Konstantin A. Bell, Alexis T. TI An investigation of the factors influencing the activity of Cu/CexZr1-xO2 for methanol synthesis via CO hydrogenation SO JOURNAL OF CATALYSIS LA English DT Article DE methanol; Cu; zirconia; ZrO2; synthesis gas ID X-RAY-DIFFRACTION; CARBON-MONOXIDE; STRUCTURAL-CHARACTERIZATION; POLYCRYSTALLINE CERIA; PHASE-TRANSFORMATION; ZIRCONIA MORPHOLOGY; COPPER ZIRCONIA; CATALYSTS; TEMPERATURE; CU/ZRO2 AB An investigation was carried out to identify the effects of incorporating Ce into ZrO2 on the catalytic activity and selectivity of Cu/CexZr1-xO2 for the hydrogenation of CO to methanol. A series of CexZr1-xO2 solid solutions was synthesized by forced hydrolysis at low pH. The resulting catalysts were characterized to determine the structure of the mixed oxide phase, the H-2 and CO adsorption capacities of the catalyst, and the reducibility of both oxidation states of both Cu and Ce. The methanol synthesis activity goes through a maximum at x = 0.5, and the activity of 3 wt% Cu/Ce0.5Zr0.5O2 catalyst is four times higher than that of 3 wt% Cu/ZrO2 when tested at total pressure of 3.0 MPa and temperatures between 473 and 523 K with a feed containing H-2 and CO (H-2/CO = 3). The maximum in methanol synthesis activity is paralleled by a maximum in the hydrogen adsorption capacity of the catalyst, an effect attributed to the formation of Ce3+-O(H)-Zr4+ species by dissociative adsorption of H-2 on particles of supported Cu followed by spillover of atomic H onto the oxide surface and reaction with Ce4+-O-Zr4+ centers. In situ infrared spectroscopy shows that formate and methoxide groups are the primary adspecies present on Cu/CexZr1-xO2 during CO hydrogenation. The rate-limiting step for methanol synthesis is the elimination of methoxide species by reaction with Ce3+-O(H)-Zr4+ species. The higher concentration of Ce3+-O(H)-Zr4+ species on the oxide surface, together with the higher Bronsted acidity of these species, appears to be the primary cause of the four-fold higher activity of 3 wt% Cu/Ce0.5Zr0.5O2 relative to 3 wt% Cu/ZrO2. (c) 2006 Elsevier Inc. All rights reserved. C1 Univ Calif Berkeley, Div Chem Sci, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Bell, AT (reprint author), Univ Calif Berkeley, Div Chem Sci, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM alexbell@berkeley.edu OI Bell, Alexis/0000-0002-5738-4645 NR 39 TC 44 Z9 48 U1 2 U2 26 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD JUL 25 PY 2006 VL 241 IS 2 BP 276 EP 286 DI 10.1016/j.jcat.2006.05.002 PG 11 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 068JE UT WOS:000239369000005 ER PT J AU Jankowski, TA Majdalani, J AF Jankowski, TA Majdalani, J TI Symmetric solutions for the oscillatory channel flow with arbitrary suction SO JOURNAL OF SOUND AND VIBRATION LA English DT Article ID UNIFORMLY POROUS CHANNEL; LAMINAR FLOW; ASYMPTOTIC SOLUTION; VISCOUS-FLUID; WALLS; INJECTION AB This paper considers a porous channel in which a suction-driven flow is modulated by arbitrary levels of fluid extraction acting uniformly along its porous boundaries. When small longitudinal oscillations are enabled, a rotational wave motion is established that this study attempts to analyse. For an elongated channel, two asymptotic methods are used. The first technique is based on a two-variable multiple-scale expansion that takes into account the thin boundary layer near the wall. While retaining generality of expression, the multiple-scale procedure is carried out until a closed-form solution for the velocity field is obtained for an arbitrary mean-flow function. An alternative approach based on WKB exponentials is also employed. The WKB. expansion is then pursued to arbitrary order. These asymptotic formulations are shown to agree with one another and with numeric simulations of the problem for three specific mean-flow functions. (c) 2006 Elsevier Ltd. All rights reserved. C1 Univ Tennessee, UTSI, Tullahoma, TN 37388 USA. Los Alamos Natl Lab, Engn Sci & Applicat Div, Los Alamos, NM 87545 USA. RP Majdalani, J (reprint author), Univ Tennessee, UTSI, 411 BH Goethert Pkwy,MS-23, Tullahoma, TN 37388 USA. EM jankowski@lanl.gov; maji@utsi.edu RI Jankowski, Todd/A-8793-2014 NR 27 TC 3 Z9 3 U1 0 U2 1 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-460X J9 J SOUND VIB JI J. Sound Vibr. PD JUL 25 PY 2006 VL 294 IS 4-5 BP 880 EP 893 DI 10.1016/j.jsv.2005.12.035 PG 14 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA 054EI UT WOS:000238359200012 ER PT J AU Anderson, JA Travesset, A AF Anderson, Joshua A. Travesset, Alex TI Coarse-grained simulations of gels of nonionic multiblock copolymers with hydrophobic groups SO MACROMOLECULES LA English DT Article ID MOLECULAR-DYNAMICS; PENTABLOCK COPOLYMERS; ASSOCIATING POLYMERS; TRIBLOCK COPOLYMERS; AQUEOUS-SOLUTIONS; BEHAVIOR; DIBLOCK; CHAINS; MODEL; MELTS AB Solutions of multiblock nonionic polymers with hydrophobic blocks in water exhibit crystalline and liquid-crystalline phases over a narrow temperature range. This strong temperature sensitivity, critical in the design of novel self-assembled materials, is the result of the drastic increase of hydrophobicity combined with the weakening of solvating interactions (hydrogen bonding or dipolar) as the temperature is raised. In this paper, we separate thermal fluctuations into a "kinetic" temperature and solvation effects and parametrize temperature variations with a single parameter alpha, where the solvent is modeled implicitly. We provide a microscopic interpretation for this parameter, and molecular dynamics simulations are used to investigate the phases of short ABCBA pentablocks, where the A and C blocks are hydrophobic and the B blocks are hydrophilic but contain hydrophobic groups. At low temperatures and for increasing concentrations, the system undergoes a sol-gel transition. The gel is swollen and consists of highly interconnected spherical micelles with a finite lifetime. At higher temperatures, lamellar and perforated lamellar phases are found for increasing polymer concentrations, while for intermediate concentrations, the system is found in a supercoiled gel. We find good agreement of our results with modified and inverted Pluronic systems and discuss the relevance for other polymers including hydrophobic blocks such as telechelic or peptide-based polymers. C1 Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Ames Lab, Ames, IA 50011 USA. RP Anderson, JA (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM joaander@ameslab.gov; trvsst@ameslab.gov RI Anderson, Joshua/H-4262-2011 NR 44 TC 33 Z9 33 U1 4 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD JUL 25 PY 2006 VL 39 IS 15 BP 5143 EP 5151 DI 10.1021/ma061120f PG 9 WC Polymer Science SC Polymer Science GA 064JW UT WOS:000239086200031 ER PT J AU Ye, RQ Smugeresky, JE Zheng, BL Zhou, YZ Lavernia, EJ AF Ye, Riqing Smugeresky, John E. Zheng, Balong Zhou, Yizhang Lavernia, Enrique J. TI Numerical modeling of the thermal behavior during the LENS (R) process SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE laser engineered net-shaping; thermal behavior; finite element analysis ID LASER; SIMULATION; DEPOSITION AB Laser Engineered Net-Shaping (LENS (R)) is an emerging manufacturing technique that ensures significant reduction of process time between initial design and final components. The fabrication of fully dense parts with appropriate properties using the LENS (R) process requires an in-depth understanding of the entire thermal behavior of the process. In this paper, the thermal behavior during LENS (R) was studied, both numerically and experimentally. Temperature distribution and gradient in the fabricated part were obtained by finite element method (FEM) simulation. The numerical results are in good agreement with the experimental observations. The numerical method may be used to optimize process parameters and predict the thermal response of LENS (R) fabricated components. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. Sandia Natl Labs, Livermore, CA 94551 USA. RP Lavernia, EJ (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. EM lavernia@ucdavis.edu RI Lavernia, Enrique/I-6472-2013 OI Lavernia, Enrique/0000-0003-2124-8964 NR 21 TC 39 Z9 46 U1 2 U2 14 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JUL 25 PY 2006 VL 428 IS 1-2 BP 47 EP 53 DI 10.1016/j.msea.2006.04.079 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 068UF UT WOS:000239399300007 ER PT J AU Lee, D Santella, ML AF Lee, Dongyun Santella, M. L. TI Thermal aging effects on the mechanical properties of as-cast Ni3Al-based alloy SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE as-cast materials; Ni-Al-Cr alloys; Ni3Al-based intermetallics; gamma+Ni5Zr eutectic; gamma ' phase coarsening; tensile properties ID ENVIRONMENTAL EMBRITTLEMENT; TERM OXIDATION; BINARY NI3AL; MICROSTRUCTURE; BEHAVIOR; INTERMETALLICS; SOLIDIFICATION; GAMMA'; STRESS; FLOW AB A series of tensile tests were conducted at room and elevated temperatures on specimens of the alloy known as IC221M (Ni-8.2Al-7.6Cr-1.5Mo-2.1Zr, wt.%). Specimens were tested in the as-cast condition or after aging in either air or Ar for up to 1000h at 900-1100 degrees C. Room temperature yield strength decreased continuously with aging time at 900 degrees C from the as-cast value of 530-320 MPa after 1000h. A similar trend was found for hardness. The strength reductions with aging time at 900 degrees C were similar foraging in either air or Ar. Foraging at 1050 and 1100 degrees C, aging in air caused significant strength loss that was attributed to aggressive oxidation. The room temperature yield strength of specimens aged in Ar increased for aging at 1050 and 1100 degrees C. Microhardness testing also showed that specimens aged at 1100 degrees C had higher hardness than those aged at 900 degrees C. Analysis using equilibrium thermodynamics suggested that the increases of yield strength and hardness resulted from increasing the amount of fine gamma' precipitation in the alloy matrix. For testing at elevated temperatures, the as-cast alloy had room temperature yield strength of 530 MPa that increased continuously up to a value of 650 MPa at 700 degrees C. Aging in Ar for 1000h at 900 degrees C resulted in a room temperature yield strength of 320 MPa that increased to 560 MPa at 700 degrees C and decrease slightly to 550 MPa at 900 degrees C. Aging in Ar for 1000 h at 1100 degrees C produced room temperature yield strength of 435 MPa that increased to 550 MPa at 500 degrees C and decreased continuously at high test temperatures. The behavior of these specimens was also rationalized using equilibrium thermodynamics to estimate the fractions of coarse and fine gamma' particles in the microstructures. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. RP Lee, D (reprint author), Columbia Univ, Dept Mech Engn, 500 W 120th St, New York, NY 10027 USA. EM dl2198@columbia.edu RI Lee, Dongyun/D-2469-2012 NR 32 TC 8 Z9 10 U1 0 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JUL 25 PY 2006 VL 428 IS 1-2 BP 196 EP 204 DI 10.1016/j.msea.2006.05.007 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 068UF UT WOS:000239399300026 ER PT J AU Tang, YY Kim, CY Mathews, II Cane, DE Khosla, C AF Tang, Yinyan Kim, Chu-Young Mathews, Irimpan I. Cane, David E. Khosla, Chaitan TI The 2.7-angstrom crystal structure of a 194-kDa homodimeric fragment of the 6-deoxyerythronolide B synthase SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE modular megasynthase; multienzyme assembly; polyketicle synthase ID CARRIER PROTEIN SYNTHASE; FATTY-ACID SYNTHASE; MODULAR POLYKETIDE SYNTHASES; BIOSYNTHETIC GENE-CLUSTER; INTERMODULAR COMMUNICATION; SUBSTRATE-SPECIFICITY; ESCHERICHIA-COLI; MOLECULAR ARCHITECTURE; DIFFRACTION DATA; DOMAIN AB The x-ray crystal structure of a 194-kDa fragment from module 5 of the 6-deoxyerythronolide B synthase has been solved at 2.7 angstrom resolution. Each subunit of the homodimeric protein contains a full-length ketosynthase (KS) and acyl transferase (AT) domain as well as three flanking "linkers." The linkers are structurally well defined and contribute extensively to intersubunit or interdomain interactions, frequently by means of multiple highly conserved residues. The crystal structure also reveals that the active site residue Cys-199 of the KS domain is separated from the active site residue Ser-642 of the AT domain by approximate to 80 angstrom. This distance is too large to be covered simply by alternative positioning of a statically anchored, fully extended phosphopantetheine arm of the acyl carrier protein domain from module 5. Thus, substantial domain reorganization appears necessary for the acyl carrier protein to interact successively with both the AT and the KS domains of this prototypical polyketide synthase module. The 2.7-angstrom KS-AT structure is fully consistent with a recently reported lower resolution, 4.5-angstrom model of fatty acid synthase stucture, and emphasizes the close biochemical and structural similarity between polyketide synthase and fatty acid synthase enzymology. C1 Stanford Univ, Dept Chem, Stanford, CA 94305 USA. Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. Brown Univ, Dept Chem, Providence, RI 02912 USA. RP Khosla, C (reprint author), Stanford Univ, Dept Chem, Stanford, CA 94305 USA. EM khosla@stanford.edu RI Kim, Chu-Young/D-8849-2012 OI Kim, Chu-Young/0000-0003-3744-7802 FU NCI NIH HHS [CA 66736, R01 CA066736]; NIGMS NIH HHS [GM 22172, R01 GM022172] NR 44 TC 149 Z9 153 U1 1 U2 15 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 25 PY 2006 VL 103 IS 30 BP 11124 EP 11129 DI 10.1073/pnas.0601924103 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 068DZ UT WOS:000239353900006 PM 16844787 ER PT J AU Werner, JH Joggerst, R Dyer, RB Goodwin, PM AF Werner, James H. Joggerst, Raymond Dyer, R. Brian Goodwin, Peter M. TI A two-dimensional view of the folding energy landscape of cytochrome c SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE fluorescence correlation; maximum entropy; time-correlated single photon counting; protein folding ID FLUORESCENCE CORRELATION SPECTROSCOPY; CONFORMATIONAL FLUCTUATIONS; SINGLE-MOLECULE; PROTEIN; DYNAMICS; KINETICS; DISTRIBUTIONS; DISTANCES; STATES; TIME AB Time-correlated single photon counting (TCSPC) was combined with fluorescence correlation spectroscopy (FCS) to study the transition between acid-denatured states and the native structure of cytochrome c (Cyt c) from Saccharomyces cerevisiae. The use of these techniques in concert proved to be more powerful than either alone, yielding a two-dimensional picture of the folding energy landscape of Cyt c. TCSPC measured the distribution of distances between the heme of the protein and a covalently attached dye molecule at residue C102 (one folding reaction coordinate), whereas FCS measured the hydrodynamic radius (a second folding reaction coordinate) of the protein over a range of pH values. These two independent measurements provide complimentary information regarding protein conformation. We see evidence for a well defined folding intermediate in the acid renaturation folding pathway of this protein reflected in the distribution of lifetimes needed to fit the TCSPC data. Moreover, FCS studies revealed this intermediate state to be in dynamic equilibrium with unfolded structures, with conformational fluctuations into and out of this intermediate state occurring on an approximate to 30-mu s time scale. C1 Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Werner, JH (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mail Stop G755, Los Alamos, NM 87545 USA. EM jwerner@lanl.gov OI Werner, James/0000-0002-7616-8913 FU NIGMS NIH HHS [R01 GM053640, GM53640] NR 31 TC 36 Z9 36 U1 0 U2 5 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 25 PY 2006 VL 103 IS 30 BP 11130 EP 11135 DI 10.1073/pnas.0604712103 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 068DZ UT WOS:000239353900007 PM 16844777 ER PT J AU Miller, AE Fischer, AJ Laurence, T Hollars, CW Saykally, RJ Lagarias, JC Huser, T AF Miller, Abigail E. Fischer, Amanda J. Laurence, Ted Hollars, Christopher W. Saykally, Richard J. Lagarias, J. Clark Huser, Thomas TI Single-molecule dynamics of phytochrome-bound fluorophores probed by fluorescence correlation spectroscopy SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE biliprotein photoreceptor; phytofluor; single-molecule fluorescence; biophotonics ID HIGHER-PLANTS; LIGHT; PROTEIN; CYANOBACTERIAL; TRYPTOPHAN; DIFFUSION; PCC6803; DOMAIN; DYES; CPH1 AB Fluorescence correlation spectroscopy (FCS) was used to investigate the hydrodynamic and photophysical properties of PR1 (phytofluor red 1), an intensely red fluorescent biliprotein variant of the truncated cyanobacterial phytochrome 1 (Cph1 Delta, which consists of the N-terminal 514 amino acids). Single-molecule diffusion measurements showed that PR1 has excellent fluorescence properties at the single-molecule level, making it an interesting candidate for red fluorescent protein fusions. FCS measurements for probing dimer formation in solution over a range of protein concentrations were enabled by addition of Cph1 Delta apoprotein (apoCph1 Delta) to nanomolar solutions of PR1. FCS brightness analysis showed that heterodimerization of PR1 with apoCph1 Delta altered the chemical environment of the PR1 chromophore to further enhance its fluorescence emission. Fluorescence correlation measurements also revealed interactions between apoCph1 Delta and the red fluorescent dyes Cy5.18 and Atto 655 but not Alexa Fluor 660. The concentration dependence of protein:dye complex formation indicated that Atto 655 interacted with, or influenced the formation of, the apoCph1 dimer. These studies presage the utility of phytofluor tags for probing single-molecule dynamics in living cells in which the fluorescence signal can be controlled by the addition of various chromophores that have different structures and photophysical properties, thereby imparting different types of information, such as dimer formation or the presence of open binding faces on a protein. C1 Univ Calif Davis, Coll Biol Sci, Sect Mol & Cellular Biol, Davis, CA 95616 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. Natl Sci Fdn, Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA. RP Lagarias, JC (reprint author), Univ Calif Davis, Coll Biol Sci, Sect Mol & Cellular Biol, 1 Shields Ave, Davis, CA 95616 USA. EM jclagarias@ucdavis.edu; trhuser@ucdavis.edu RI Laurence, Ted/E-4791-2011; Huser, Thomas/H-1195-2012; Lagarias, J Clark/L-3139-2013 OI Laurence, Ted/0000-0003-1474-779X; Huser, Thomas/0000-0003-2348-7416; Lagarias, J Clark/0000-0002-2093-0403 FU NIGMS NIH HHS [R01 GM068552-03, GM068552-01, R01 GM068552, R01 GM068552-02, R01 GM068552-04] NR 33 TC 19 Z9 19 U1 1 U2 9 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 25 PY 2006 VL 103 IS 30 BP 11136 EP 11141 DI 10.1073/pnas.0604724103 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 068DZ UT WOS:000239353900008 PM 16844775 ER PT J AU Gorby, YA Yanina, S McLean, JS Rosso, KM Moyles, D Dohnalkova, A Beveridge, TJ Chang, IS Kim, BH Kim, KS Culley, DE Reed, SB Romine, MF Saffarini, DA Hill, EA Shi, L Elias, DA Kennedy, DW Pinchuk, G Watanabe, K Ishii, S Logan, B Nealson, KH Fredrickson, JK AF Gorby, Yuri A. Yanina, Svetlana McLean, Jeffrey S. Rosso, Kevin M. Moyles, Dianne Dohnalkova, Alice Beveridge, Terry J. Chang, In Seop Kim, Byung Hong Kim, Kyung Shik Culley, David E. Reed, Samantha B. Romine, Margaret F. Saffarini, Daad A. Hill, Eric A. Shi, Liang Elias, Dwayne A. Kennedy, David W. Pinchuk, Grigoriy Watanabe, Kazuya Ishii, Shun'ichi Logan, Bruce Nealson, Kenneth H. Fredrickson, Jim K. TI Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE biofilms; cytochromes; electron transport; microbial fuel cells ID EXTRACELLULAR ELECTRON-TRANSFER; OUTER-MEMBRANE CYTOCHROMES; METAL-REDUCING BACTERIUM; II PROTEIN SECRETION; MICROBIAL FUEL-CELL; ESCHERICHIA-COLI; ANAEROBIC RESPIRATION; MN(IV) REDUCTION; FE(III); ACCEPTORS AB Shewanella oneidensis MR-1 produced electrically conductive pilus-like appendages called bacterial nanowires in direct response to electron-acceptor limitation. Mutants deficient in genes for c-type decaheme cytochromes MtrC and OmcA, and those that lacked a functional Type 11 secretion pathway displayed nanowires that were poorly conductive. These mutants were also deficient in their ability to reduce hydrous ferric oxide and in their ability to generate current in a microbial fuel cell. Nanowires produced by the oxygenic phototrophic cyanobacterium Synechocystis PCC6803 and the thermophilic, fermentative bacterium Pelotomaculum thermopropionicum reveal that electrically conductive appendages are not exclusive to dissimilatory metal-reducing bacteria and may, in fact, represent a common bacterial strategy for efficient electron transfer and energy distribution. C1 Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. Univ Guelph, Dept Mol & Cell Biol, Guelph, ON N1G 2W1, Canada. Korea Inst Sci & Technol, Water Environm & Remediat Res Ctr, Seoul 136791, South Korea. Gwangju Inst Sci & Technol, Dept Environm Sci & Engn, Kwangju 500712, South Korea. Univ Wisconsin, Dept Biol Sci, Milwaukee, WI 53211 USA. Univ Missouri, Dept Agr Biochem, Columbia, MO 65211 USA. Maryland Biotechnol Inst, Kamaishi, Iwate 0260001, Japan. Penn State Univ, Dept Environm Engn, University Pk, PA 16802 USA. Univ So Calif, Dept Earth Sci, Los Angeles, CA 90089 USA. RP Gorby, YA (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,MS P7-50, Richland, WA 99352 USA. EM yuri.gorby@pnl.gov RI Elias, Dwayne/B-5190-2011; Logan, Bruce/E-7063-2012; OI Elias, Dwayne/0000-0002-4469-6391; Logan, Bruce/0000-0001-7478-8070; McLean, Jeffrey/0000-0001-9934-5137; Ishii, Shun'ichi/0000-0002-0203-8569; Romine, Margaret/0000-0002-0968-7641; Kennedy, David/0000-0003-0763-501X; Chang, In Seop/0000-0001-5064-7951 NR 31 TC 811 Z9 859 U1 60 U2 474 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 25 PY 2006 VL 103 IS 30 BP 11358 EP 11363 DI 10.1073/pnas.0604517103 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 068DZ UT WOS:000239353900046 PM 16849424 ER PT J AU Tseng, SH Taflove, A Maitland, D Backman, V AF Tseng, Snow H. Taflove, Allen Maitland, Duncan Backman, Vadim TI Pseudospectral time domain simulations of multiple light scattering in three-dimensional macroscopic random media SO RADIO SCIENCE LA English DT Article ID ELECTROMAGNETIC SCATTERING; PSTD ALGORITHM; MATRIX AB report a full-vector, three-dimensional, numerical solution of Maxwell's equations for optical propagation within, and scattering by, a random medium of macroscopic dimensions. The total scattering cross section is determined using the pseudospectral time domain technique. Specific results reported in this paper indicate that multiply scattered light also contains information that can be extracted by the proposed cross-correlation analysis. On a broader perspective, our results demonstrate the feasibility of accurately determining the optical characteristics of arbitrary, macroscopic random media, including geometries with continuous variations of refractive index. Specifically, our results point toward the new possibilities of tissue optics; by numerically solving Maxwell's equations, the optical properties of tissue structures can be determined unambiguously. C1 Natl Taiwan Univ, Grad Inst Electroopt Engn, Taipei 10764, Taiwan. Northwestern Univ, Dept Elect & Comp Engn, Evanston, IL 60208 USA. Lawrence Livermore Natl Lab, Med Phys & Biophys Div, Livermore, CA 94550 USA. Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA. RP Tseng, SH (reprint author), Natl Taiwan Univ, Grad Inst Electroopt Engn, Taipei 10764, Taiwan. EM snow@cc.ee.ntu.edu.tw RI Backman, Vadim/B-6689-2009; Taflove, Allen/B-7275-2009; OI TSENG, SNOW-HONG/0000-0003-1743-801X NR 15 TC 16 Z9 16 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0048-6604 J9 RADIO SCI JI Radio Sci. PD JUL 25 PY 2006 VL 41 IS 4 AR RS4009 DI 10.1029/2005RS003408 PG 5 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications GA 070AG UT WOS:000239491700002 ER PT J AU Buonassisi, T Istratov, AA Pickett, MD Marcus, MA Ciszek, TF Weber, ER AF Buonassisi, T. Istratov, A. A. Pickett, M. D. Marcus, M. A. Ciszek, T. F. Weber, E. R. TI Metal precipitation at grain boundaries in silicon: Dependence on grain boundary character and dislocation decoration SO APPLIED PHYSICS LETTERS LA English DT Article ID BEAM-INDUCED CURRENT; MULTICRYSTALLINE SILICON; ELECTRICAL-ACTIVITY; DIFFUSION LENGTH; IMPURITY; BICRYSTAL; NI AB Synchrotron-based analytical microprobe techniques, electron backscatter diffraction, and defect etching are combined to determine the dependence of metal silicide precipitate formation on grain boundary character and microstructure in multicrystalline silicon (mc-Si). Metal silicide precipitate decoration is observed to increase with decreasing atomic coincidence within the grain boundary plane (increasing Sigma values). A few low-Sigma boundaries contain anomalously high metal precipitate concentrations, concomitant with heavy dislocation decoration. These results provide direct experimental evidence that the degree of interaction between metals and structural defects in mc-Si can vary as a function of microstructure, with implications for mc-Si device performance and processing. C1 Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Buonassisi, T (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM buonassisi@alumni.nd.edu RI Buonassisi, Tonio/J-2723-2012 NR 36 TC 71 Z9 71 U1 6 U2 40 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 24 PY 2006 VL 89 IS 4 AR 042102 DI 10.1063/1.2234570 PG 3 WC Physics, Applied SC Physics GA 068LV UT WOS:000239376500056 ER PT J AU Kucheyev, SO Baumann, TF Cox, CA Wang, YM Satcher, JH Hamza, AV Bradby, JE AF Kucheyev, S. O. Baumann, T. F. Cox, C. A. Wang, Y. M. Satcher, J. H., Jr. Hamza, A. V. Bradby, J. E. TI Nanoengineering mechanically robust aerogels via control of foam morphology SO APPLIED PHYSICS LETTERS LA English DT Article ID SILICA AEROGELS; ALUMINA AEROGELS; FILMS AB Potential of aerogels for technological applications is often limited by their poor mechanical properties. Here, we demonstrate that alumina aerogel monoliths with excellent mechanical properties can be made by controlling the crystallographic phase, shape, and size of nanoligaments. In particular, we show that thermal processing of aerogels with a morphology of interconnected nanoleaflets causes dehydration and associated curling of the nanoleaflets, resulting in a dramatic improvement of mechanical properties. This study shows an effective way to control mechanical properties of the nanoporous solids that can be synthesized with ligaments having a quasi-two-dimensional shape, such as platelets, ribbons, or leaflets. (c) 2006 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Australian Natl Univ, Dept Elect Mat Engn, Canberra, ACT 0200, Australia. RP Kucheyev, SO (reprint author), Lawrence Livermore Natl Lab, POB 5508, Livermore, CA 94550 USA. EM kucheyev@llnl.gov RI Bradby, Jodie/A-8963-2009; Wang, Yinmin (Morris)/F-2249-2010 OI Bradby, Jodie/0000-0002-9560-8400; Wang, Yinmin (Morris)/0000-0002-7161-2034 NR 22 TC 19 Z9 19 U1 0 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 24 PY 2006 VL 89 IS 4 AR 041911 DI 10.1063/1.2236222 PG 3 WC Physics, Applied SC Physics GA 068LV UT WOS:000239376500044 ER PT J AU LaGrange, T Armstrong, MR Boyden, K Brown, CG Campbell, GH Colvin, JD DeHope, WJ Frank, AM Gibson, DJ Hartemann, FV Kim, JS King, WE Pyke, BJ Reed, BW Shirk, MD Shuttlesworth, RM Stuart, BC Torralva, BR Browning, ND AF LaGrange, T. Armstrong, M. R. Boyden, K. Brown, C. G. Campbell, G. H. Colvin, J. D. DeHope, W. J. Frank, A. M. Gibson, D. J. Hartemann, F. V. Kim, J. S. King, W. E. Pyke, B. J. Reed, B. W. Shirk, M. D. Shuttlesworth, R. M. Stuart, B. C. Torralva, B. R. Browning, N. D. TI Single-shot dynamic transmission electron microscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID DIFFRACTION AB A dynamic transmission electron microscope (DTEM) has been designed and implemented to study structural dynamics in condensed matter systems. The DTEM is a conventional in situ transmission electron microscope (TEM) modified to drive material processes with a nanosecond laser, "pump" pulse and measure it shortly afterward with a 30-ns-long probe pulse of similar to 10(7) electrons. An image with a resolution of < 20 nm may be obtained with a single pulse, largely eliminating the need to average multiple measurements and enabling the study of unique, irreversible events with nanosecond- and nanometer-scale resolution. Space charge effects, while unavoidable at such a high current, may be kept to reasonable levels by appropriate choices of operating parameters. Applications include the study of phase transformations and defect dynamics at length and time scales difficult to access with any other technique. This single-shot approach is complementary to stroboscopic TEM, which is capable of much higher temporal resolution but is restricted to the study of processes with a very high degree of repeatability. (c) 2006 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP LaGrange, T (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM lagrange2@llnl.gov RI Campbell, Geoffrey/F-7681-2010; Reed, Bryan/C-6442-2013; Stuart, Brent/K-4988-2015; OI Browning, Nigel/0000-0003-0491-251X NR 12 TC 59 Z9 59 U1 2 U2 33 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 24 PY 2006 VL 89 IS 4 AR 044105 DI 10.1063/1.2236263 PG 3 WC Physics, Applied SC Physics GA 068LV UT WOS:000239376500134 ER PT J AU Li, HQ Tao, KX Fan, C Liaw, PK Choo, H AF Li, Hongqi Tao, Kaixiang Fan, Cang Liaw, Peter K. Choo, Hahn TI Effect of temperature on mechanical behavior of Zr-based bulk metallic glasses SO APPLIED PHYSICS LETTERS LA English DT Article ID AMORPHOUS METALS; SHEAR BANDS; FLOW; DEFORMATION; LOCALIZATION; FRACTURE AB The compressive tests and Vickers microhardness measurements were conducted on the as-cast Zr-based bulk metallic glasses at different temperatures. The results show that the strength is proportional to the temperature. Furthermore, at cryogenic temperatures, more shear bands were observed near the fracture surface and surrounding the indentation marks. The analysis suggests that both the formation and propagation of the shear bands are thermally activated processes. C1 Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. RP Li, HQ (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM hqli@utk.edu RI Li, Hongqi/B-6993-2008; Choo, Hahn/A-5494-2009 OI Choo, Hahn/0000-0002-8006-8907 NR 22 TC 34 Z9 35 U1 3 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 24 PY 2006 VL 89 IS 4 AR 041921 DI 10.1063/1.224522 PG 3 WC Physics, Applied SC Physics GA 068LV UT WOS:000239376500054 ER PT J AU Mitchell, GE Landes, BG Lyons, J Kern, BJ Devon, MJ Koprinarov, I Gullikson, EM Kortright, JB AF Mitchell, G. E. Landes, B. G. Lyons, J. Kern, B. J. Devon, M. J. Koprinarov, I. Gullikson, E. M. Kortright, J. B. TI Molecular bond selective x-ray scattering for nanoscale analysis of soft matter SO APPLIED PHYSICS LETTERS LA English DT Article ID DIFFRACTION; POLYMERS; PHYSICS AB We demonstrate the utility of resonant soft x-ray scattering in characterizing heterogeneous chemical structure at nanometer length scales in polymer films and nanostructures. Resonant enhancements near the carbon K edge bring bond specific contrast and increased sensitivity to bridge a gap between x-ray absorption contrast in chemical sensitive imaging and higher spatial resolution hard x-ray and neutron small-angle scattering. Chemical bond sensitivity is illustrated in the scattering from latex spheres of differing chemistry and size. Resonant enhancements are then shown to yield sensitivity to heterogeneity in two-phase polymer films for which hard x-ray and nondeuterated neutron scattering lack sensitivity due to low contrast. (c) 2006 American Institute of Physics. C1 Dow Chem Co USA, Midland, MI 48667 USA. McMaster Univ, Hamilton, ON L8S 4L8, Canada. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Mitchell, GE (reprint author), Dow Chem Co USA, Midland, MI 48667 USA. EM jbkortright@lbl.gov RI MSD, Nanomag/F-6438-2012 NR 24 TC 35 Z9 35 U1 3 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 24 PY 2006 VL 89 IS 4 AR 044101 DI 10.1063/1.2234301 PG 3 WC Physics, Applied SC Physics GA 068LV UT WOS:000239376500130 ER PT J AU Deshpande, A Hammon, RJ Sanders, CK Graves, SW AF Deshpande, Alina Hammon, Rebecca J. Sanders, Claire K. Graves, Steven W. TI Quantitative analysis of the effect of cell type and cellular differentiation on protective antigen binding to human target cells SO FEBS LETTERS LA English DT Article DE protective antigen; lethal toxin; human cells; macrophages; endothelial cells; receptors ID ANTHRAX LETHAL TOXIN; PROMYELOCYTIC LEUKEMIA-CELLS; CAPILLARY MORPHOGENESIS; RECEPTOR; MACROPHAGES; INTERACTS AB We quantitatively measured protective antigen (PA) binding to human cells targeted by anthrax lethal toxin (LT). Affinities were less than 50 nM for all cells, but differentiated cells (macrophages and neutrophils) had significantly increased PA binding and endothelial cells demonstrated the most binding. Combined with the function of such cells, this suggests that PA receptors interact with the extracellular matrix and that differentiation increases the number of PA-specific receptors, which supports previously observed differentiation-induced LT susceptibility. Our results quantifiably confirm that the generality of PA binding will complicate its use as a tumor targeting agent. (c) 2006 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. C1 Los Alamos Natl Lab, Biosci Div, Natl Flow Cytometry Resource, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Decis Applicat Div, Los Alamos, NM 87545 USA. RP Graves, SW (reprint author), Los Alamos Natl Lab, Biosci Div, Natl Flow Cytometry Resource, MS M888, Los Alamos, NM 87545 USA. EM graves@lanl.gov FU NCRR NIH HHS [2P41 RR 001315] NR 27 TC 9 Z9 9 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0014-5793 J9 FEBS LETT JI FEBS Lett. PD JUL 24 PY 2006 VL 580 IS 17 BP 4172 EP 4175 DI 10.1016/i.febslet.2006.06.070 PG 4 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 067EK UT WOS:000239284300026 PM 16828760 ER PT J AU Waters, T Wang, XB Woo, HK Wang, LS AF Waters, Tom Wang, Xue-Bin Woo, Hin-Koon Wang, Lai-Sheng TI Photoelectron Spectroscopy of the bis(dithiolene) anions [M(mnt)(2)](n-)( M = Fe-Zn; n=1, 2): Changes in electronic structure with variation of metal center and with oxidation SO INORGANIC CHEMISTRY LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; MULTIPLY-CHARGED ANIONS; SULFUR LIGANDS; MALEONITRILEDITHIOLATE COMPLEXES; DITHIOLENE COMPLEXES; TRANSITION-ELEMENTS; PLANAR COMPLEXES; GAS-PHASE; AB-INITIO; COVALENCY AB A detailed understanding of the electronic structures of transition metal bis( dithiolene) centers is important in the context of their interesting redox, magnetic, and optical properties. The electronic structures of the series [M(mnt)(2)](n-) (M = Fe - Zn; mnt = 1,2- S2C2(CN)(2); n = 1,2) were examined by a combination of photodetachment photoelectron spectroscopy and density functional theory calculations, providing insights into changes in electronic structure with variation of the metal center and with oxidation. Significant changes were observed for the dianions [M(mnt)(2)](2-) due to stabilization of the metal 3d levels from Fe to Zn and the transition from square-planar to tetrahedral coordination about the metal center (Fe-Ni, D-2h -> Cu D-2 -> Zn, D-2d). Changes with oxidation from [M(mnt)(2)](2-) to [M(mnt)(2)](1-) were largely dependent on the nature of the redox-active orbital in the couple [M(mnt)(2)](2-/1-). In particular, the first detachment feature for [Fe(mnt)(2)](2-) originated from a metal-based orbital (Fe-II -> Fe-III) while that for [ Fe( mnt) 2] 1- originated from a ligand-based orbital, a consequence of stabilization of Fe 3d levels in the latter. In contrast, the first detachment feature for both of [Ni(mnt)(2)](2-) and [Ni(mnt)(2)](1-) originated from the same ligand-based orbital in both cases, a result of occupied Ni 3d levels being stabilized relative those of Fe 3d and occurring below the highest energy occupied ligand-based orbital for both of [ Ni( mnt) 2] 2- and [ Ni( mnt) 2] 1-. The combined data illustrate the subtle interplay between metal- and ligand-based redox chemistry in these species and demonstrate changes in their electronic structures with variation of metal center, oxidation, and coordination geometry. C1 Washington State Univ, Dept Phys, Richland, WA 99354 USA. Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. RP Wang, LS (reprint author), Washington State Univ, Dept Phys, 2710 Univ Dr, Richland, WA 99354 USA. EM ls.wang@pnl.gov NR 66 TC 16 Z9 17 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUL 24 PY 2006 VL 45 IS 15 BP 5841 EP 5851 DI 10.1021/ic060255z PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 063SN UT WOS:000239040000023 PM 16841989 ER PT J AU Binyamin, I Pailloux, S Duesler, EN Rapko, BM Paine, RT AF Binyamin, Iris Pailloux, Sylvie Duesler, Eileen N. Rapko, Brian M. Paine, Robert T. TI Synthesis and lanthanide coordination properties of new 2,6-bis(N-tert-butylacetamide)pyridine and 2,6-bis(N-tert-butylacetamide)pyridine-N-oxide ligands SO INORGANIC CHEMISTRY LA English DT Article ID NITRIC-ACID; SOLVENT-EXTRACTION; FISSION-PRODUCTS; TRUEX PROCESS; N,P,P'-TRIOXIDE; AMERICIUM(III); ION; TETRAHEXYLMALONAMIDES; MALONAMIDES; SEPARATION AB The compound 2,6-bis(N-tert-butylacetamide) pyridine ( 2) was obtained via a Ritter synthesis, and oxidation with oxone provided the title pyridine-N-oxide (3). The compounds were characterized by spectroscopic methods, and the molecular structure of the N-oxide was determined by single-crystal X-ray diffraction methods. The coordination chemistry with Eu(NO3)(3) was examined by using 1:1 and 2:1 ligand/Eu ratios, and a single-crystal X-ray analysis for Eu(3)(NO3)(3)(H2O) was completed. The ligand 3 is found to chelate in a tridentate fashion on the Eu(III). C1 Univ New Mexico, Dept Chem, Albuquerque, NM 87131 USA. Pacific NW Lab, Richland, WA 99352 USA. RP Paine, RT (reprint author), Univ New Mexico, Dept Chem, Albuquerque, NM 87131 USA. EM rtpaine@unm.edu OI Pailloux, Sylvie/0000-0001-7318-7089 NR 40 TC 15 Z9 15 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUL 24 PY 2006 VL 45 IS 15 BP 5886 EP 5892 DI 10.1021/ic060389c PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 063SN UT WOS:000239040000027 PM 16841993 ER PT J AU Fournier, LS Lucidi, V Berejnoi, K Miller, T Demos, SG Brasch, RC AF Fournier, Laure S. Lucidi, Vincenzo Berejnoi, Kirill Miller, Theodore Demos, Stavros G. Brasch, Robert C. TI In-vivo NIR autofluorescence imaging of rat mammary tumors SO OPTICS EXPRESS LA English DT Article ID DIFFUSE OPTICAL TOMOGRAPHY; RAMAN-SPECTROSCOPY; BREAST-CANCER; FLUORESCENCE; LESIONS; BENIGN; BIOPSY AB We investigate in vivo detection of mammary tumors in a rat model using autofluorescence imaging in the red and far-red spectral regions. The objective was to explore this method for non-invasive detection of malignant tumors and correlation between autofluorescence properties of tumors and their pathologic status. Eighteen tumor-bearing rats, bearing eight benign and seventeen malignant tumors were imaged. Autofluorescence images were acquired using spectral windows centered at 700-nm, 750-nm and 800-nm under laser excitation at 632.8-nm and 670-nm. Intensity in the autofluorescence images of malignant tumors under 670-nm excitation was higher than that of the adjacent normal tissue. whereas intensity of benign tumors was lower compared to normal tissue. (c) 2006 Optical Society of America. C1 Univ Calif San Francisco, Ctr Pharmaceut & Mol Imaging, San Francisco, CA 94143 USA. Univ Calif San Francisco, Dept Pathol, San Francisco, CA 94143 USA. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Fournier, LS (reprint author), Univ Calif San Francisco, Ctr Pharmaceut & Mol Imaging, 513 Parnassus Ave, San Francisco, CA 94143 USA. EM laure.fournier@gmail.com; demos1@llnl.gov NR 26 TC 6 Z9 6 U1 0 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 24 PY 2006 VL 14 IS 15 BP 6713 EP 6723 DI 10.1364/OE.14.006713 PG 11 WC Optics SC Optics GA 067ZW UT WOS:000239342300016 PM 19516853 ER PT J AU Valentine, GA Perry, FV AF Valentine, G. A. Perry, F. V. TI Decreasing magmatic footprints of individual volcanoes in a waning basaltic field SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SOUTHERN NEVADA; YUCCA MOUNTAIN; EVOLUTION; PATTERNS; ROCKS; AGE; USA AB The distribution and characteristics of individual basaltic volcanoes in the waning Southwestern Nevada Volcanic Field provide insight into the changing physical nature of magmatism and the controls on volcano location. During Pliocene-Pleistocene times the volumes of individual volcanoes have decreased by more than one order of magnitude, as have fissure lengths and inferred lava effusion rates. Eruptions evolved from Hawaiian-style eruptions with extensive lavas to eruptions characterized by small pulses of lava and Strombolian to violent Strombolian mechanisms. These trends indicate progressively decreasing partial melting and length scales, or magmatic footprints, of mantle source zones for individual volcanoes. The location of each volcano is determined by the location of its magmatic footprint at depth, and only by shallow structural and topographic features that are within that footprint. The locations of future volcanoes in a waning system are less likely to be determined by large-scale topography or structures than were older, larger volume volcanoes. C1 Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Valentine, GA (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, EES-6,MS D462, Los Alamos, NM 87545 USA. EM gav@lanl.gov; fperry@lanl.gov NR 31 TC 33 Z9 33 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 22 PY 2006 VL 33 IS 14 AR L14305 DI 10.1029/2006GL026743 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 071DI UT WOS:000239577800008 ER PT J AU Streets, DG Zhang, Q Wang, LT He, KB Hao, JM Wu, Y Tang, YH Carmichael, GR AF Streets, David G. Zhang, Qiang Wang, Litao He, Kebin Hao, Jiming Wu, Ye Tang, Youhua Carmichael, Gregory R. TI Revisiting China's CO emissions after the Transport and Chemical Evolution over the Pacific (TRACE-P) mission: Synthesis of inventories, atmospheric modeling, and observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CARBON-MONOXIDE; AIRCRAFT OBSERVATIONS; OZONE POLLUTION; WESTERN PACIFIC; ASIAN OUTFLOW; NORTH CHINA; ART.; POLLUTANTS; SATELLITE; CONSUMPTION AB [1] A new inventory of CO emissions in China is presented for the year 2001. This inventory improves and updates the a priori CO emission inventory prepared in support of NASA's TRACE-P mission in the spring of 2001. Analysis of CO observations using chemical transport models in inverse and forward modes suggested that China's emissions were underestimated by about 50%. We have reexamined the source characteristics and conclude that emissions from cement kilns, brick kilns, and the iron and steel industry were underestimated. Our new estimate for China's CO emissions in 2001 is 157 Tg, 36% higher than the TRACE-P estimate for the year 2000 of 116 Tg. Bottom-up and modeled emission estimates are now in good agreement, which represents a major success story for the TRACE-P mission. The new inventory has been gridded at 30 min x 30 min resolution and tested with the CFORS/STEM-2K1 model, considerably improving the correlation between model predictions and observations (bias reduced from 27% to 9%). Propagation-of-error estimates in the new inventory yield an uncertainty of +/-68% (95% confidence intervals), lower than the TRACE-P value of +/-156%; however, the good agreement with results from inverse and forward models implies a greater level of confidence than this. The largest remaining uncertainties concern (1) characterization of open vegetation burning, which cannot be resolved without new field studies; (2) emission factors for small combustion devices, for which emissions testing is urgently needed; and (3) residential fuel consumption, which may require a reassessment of China's official statistics. C1 Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA. RP Streets, DG (reprint author), Argonne Natl Lab, Decis & Informat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dstreets@anl.gov RI Zhang, Qiang/D-9034-2012; Tang, Youhua/D-5205-2016; Wu, Ye/O-9779-2015; OI Tang, Youhua/0000-0001-7089-7915; Streets, David/0000-0002-0223-1350 NR 67 TC 171 Z9 175 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 22 PY 2006 VL 111 IS D14 AR D14306 DI 10.1029/2006JD007118 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 071DV UT WOS:000239579200010 ER PT J AU Yin, YD Erdonmez, CK Cabot, A Hughes, S Alivisatos, AP AF Yin, Yadong Erdonmez, Can K. Cabot, Andreu Hughes, Steven Alivisatos, A. Paul TI Colloidal synthesis of hollow cobalt sulfide nanocrystals SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID NANOPARTICLES; PARTICLES; OXIDATION; DIFFUSION; GEOMETRY; BEHAVIOR; OXYGEN; OXIDE; SHAPE; ZINC AB Formation of cobalt sulfide hollow nanocrystals through a mechanism similar to the Kirkendall Effect has been investigated in detail. It is found that performing the reaction at > 120 degrees C leads to fast formation of a single void inside each shell, whereas at room temperature multiple voids are formed within each shell, which can be attributed to strongly temperature-dependent diffusivities for vacancies. The void formation process is dominated by outward diffusion of cobalt cations; still, the occurrence of significant inward transport of sulfur anions can be inferred as the final voids are smaller in diameter than the original cobalt nanocrystals. Comparison of volume distributions for initial and final nanostructures indicates excess apparent volume in shells, implying significant porosity and/or a defective structure. Indirect evidence for fracture of shells during growth at lower temperatures was observed in shell-size statistics and transmission electron microscopy images of as-grown shells. An idealized model of the diffusional process imposes two minimal requirements on material parameters for shell growth to be obtainable within a specific synthetic system. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Yin, YD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. EM alivis@berkeley.edu RI Yin, Yadong/D-5987-2011; andreu, cabot/B-5683-2014; Alivisatos , Paul /N-8863-2015; OI Yin, Yadong/0000-0003-0218-3042; Alivisatos , Paul /0000-0001-6895-9048; cabot, andreu /0000-0002-7533-3251 NR 29 TC 268 Z9 268 U1 28 U2 212 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD JUL 21 PY 2006 VL 16 IS 11 BP 1389 EP 1399 DI 10.1002/adfm.200600256 PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 070SB UT WOS:000239543000001 ER PT J AU Legin, AV Kirsanov, DO Babain, VA Borovoy, AV Herbst, RS AF Legin, A. V. Kirsanov, D. O. Babain, V. A. Borovoy, A. V. Herbst, R. S. TI Cross-sensitive rare-earth metal sensors based on bidentate neutral organophosphorus compounds and chlorinated cobalt dicarbollide SO ANALYTICA CHIMICA ACTA LA English DT Article DE chemical sensors; rare-earth cations; organophosphorus compounds; chlorinated cobalt dicarbollide ID ELECTRONIC TONGUE; SELECTIVE ELECTRODE; EXTRACTION; IONOPHORE; IONS AB A variety of new chemical sensors (ion selective electrodes) for determination of rare-earth (RE) and trivalent metal cations such as yttrium(III), lanthanum(III), praseodymium(III), neodymium(HI) and europium(III) that are commonly present in aqueous radiological samples, e.g. in high-level liquid waste (HLW) and solutions from reprocessing spent nuclear fuel, have been developed and studied. The sensors are based on bidentate neutral organophosphorus compounds, such as methylene bridged diphosphine dioxides and carbamoylmethylphosphine oxides, which are efficient extractants, especially when used in conjunction with chlorinated cobalt dicarbollide, for recovery and concentration of the RE and actinide elements from acidic HLW derived from the nuclear fuel cycle. The sensors exhibit remarkable sensitivity to RE cations and indicate promise for HLW analysis. (c) 2006 Elsevier B.V. All rights reserved. C1 St Petersburg Univ, Dept Chem, St Petersburg 199034, Russia. VG Khlopin Radium Inst, St Petersburg 194021, Russia. Idaho Natl Engn Lab, Idaho Falls, ID 83415 USA. RP Legin, AV (reprint author), St Petersburg Univ, Dept Chem, Univ Skaya Nab 7-9, St Petersburg 199034, Russia. EM andrew@KL13930.spb.edu; babain@atom.nw.ru RI Kirsanov, Dmitry/J-7508-2012; Legin, Andrey/M-8519-2013; Bueno, Ligia/P-1359-2014 OI Kirsanov, Dmitry/0000-0002-5667-6910; Legin, Andrey/0000-0001-8656-0145; NR 18 TC 21 Z9 23 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0003-2670 J9 ANAL CHIM ACTA JI Anal. Chim. Acta PD JUL 21 PY 2006 VL 572 IS 2 BP 243 EP 247 DI 10.1016/j.aca.2006.03.115 PG 5 WC Chemistry, Analytical SC Chemistry GA 066MX UT WOS:000239234900011 PM 17723484 ER PT J AU Chialvo, AA Horita, J AF Chialvo, Ariel A. Horita, Juske TI Liquid-vapor isotopic fractionation factors of diatomic fluids: A direct comparison between molecular simulation and experiment SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MEAN SQUARED TORQUES; THERMODYNAMIC PROPERTIES; STATISTICAL MECHANICS; QUANTUM CORRECTIONS; BOILING-POINT; PRESSURE; SYSTEMS; MIXTURES; DYNAMICS; HYDROGEN AB Liquid-vapor fractionation factors of molecular fluids are studied by molecular-based simulation, Gibbs ensemble Monte Carlo, and isothermal-isochoric molecular dynamics of realistic models for N-2, O-2, and CO. The temperature dependence of the fractionation factors for (NN)-N-15-N-14/N-14(2), N-15(2)/N-14(2), (OO)-O-18-O-16/O-16(2), O-18(2)/O-16(2), (CO)-C-13-O-16/(CO)-C-12-O-16, and (CO)-C-12-O-18/(CO)-C-12-O-16 along the vapor-liquid coexistence curves as predicted by simulation is compared with the existing experimental data to assess the accuracy of h(2)-order Kirkwood-Wigner free energy expansion for specific model parametrizations. Predictions of the fractionation factors for other isotopologue pairs, including (OO)-O-18-O-17/O-16(2), (OO)-O-16-O-17/O-16(2), and O-17(2)/O-16(2), as well as tests of some approximations behind the microscopic interpretation of the fractionation factors are also given. C1 Oak Ridge Natl Lab, Div Chem Sci, Aqueous Chem & Geochem Grp, Oak Ridge, TN 37831 USA. RP Chialvo, AA (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Aqueous Chem & Geochem Grp, Oak Ridge, TN 37831 USA. EM chialvoaa@ornl.gov OI Chialvo, Ariel/0000-0002-6091-4563 NR 38 TC 4 Z9 4 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 21 PY 2006 VL 125 IS 3 AR 034510 DI 10.1063/1.2215611 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 065QN UT WOS:000239174500029 PM 16863365 ER PT J AU Hay, PJ Martin, RL Uddin, J Scuseria, GE AF Hay, P. Jeffrey Martin, Richard L. Uddin, Jamal Scuseria, Gustavo E. TI Theoretical study of CeO2 and Ce2O3 using a screened hybrid density functional SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID X-RAY-ABSORPTION; AB-INITIO; ELECTRONIC-STRUCTURE; CRYSTAL-STRUCTURE; GROUND-STATE; EXCHANGE; PRO2; SESQUIOXIDES; DIFFRACTION; SPECTRA AB The predicted structures and electronic properties of CeO2 and Ce2O3 have been studied using conventional and hybrid density functional theory. The lattice constant and bulk modulus for CeO2 from local (LSDA) functionals are in good agreement with experiment, while the lattice parameter from a generalized gradient approximation (GGA) is too long. This situation is reversed for Ce2O3, where the LSDA lattice constant is much too short, while the GGA result is in reasonable agreement with experiment. Significantly, the screened hybrid HSE functional gives excellent agreement with experimental lattice constants for both CeO2 and Ce2O3. All methods give insulating ground states for CeO2 with gaps for the 4f band lying between 1.7 eV (LSDA) and 3.3 eV (HSE) and 6-8 eV for the conduction band. For Ce2O3 the local and GGA functionals predict a semimetallic ground state with small (0-0.3 eV) band gap but weak ferromagnetic coupling between the Ce+3 centers. By contrast, the HSE functional gives an insulating ground state with a band gap of 3.2 eV and antiferromagnetic coupling. Overall, the hybrid HSE functional gives a consistent picture of both the structural and electronic properties of CeO2 and Ce2O3 while treating the 4f band consistently in both oxides. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Rice Univ, Dept Chem, Houston, TX 77005 USA. RP Hay, PJ (reprint author), Los Alamos Natl Lab, Div Theoret, MS B268, Los Alamos, NM 87545 USA. RI Scuseria, Gustavo/F-6508-2011 NR 70 TC 136 Z9 137 U1 5 U2 46 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 21 PY 2006 VL 125 IS 3 AR 034712 DI 10.1063/1.2206184 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 065QN UT WOS:000239174500042 PM 16863378 ER PT J AU Chowell, G Ammon, CE Hengartner, NW Hyman, JM AF Chowell, G. Ammon, C. E. Hengartner, N. W. Hyman, J. M. TI Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: Assessing the effects of hypothetical interventions SO JOURNAL OF THEORETICAL BIOLOGY LA English DT Article DE Spanish flu; pandemic; influenza; reproductive number; Switzerland ID CROSS-IMMUNITY; MODEL; EPIDEMIC; IMPACT; STRATEGIES; MORTALITY; SPREAD; VIRUS; SARS AB Recurrent outbreaks of the avian H5N1 influenza virus in Asia represent a constant global pandemic threat. We characterize and evaluate hypothetical public health measures during the 1918 influenza pandemic in the Canton of Geneva, Switzerland. The transmission rate, the recovery rate, the diagnostic rate, the relative infectiousness of asymptomatic cases, and the proportion of clinical cases are estimated through least-squares fitting of the model to epidemic curve data of the cumulative number of hospital notifications. The latent period and the case fatality proportion are taken from published literature. We determine the variance and identifiability of model parameters via a simulation study. Our epidemic model agrees well with the observed epidemic data. We estimate the basic reproductive number for the spring wave R-1 = 1.49 (95% CI: 1.45-1.53) and the reproductive number for the fall wave R-2 = 3.75 (95% Cl: 3.57-3.93). In addition, we estimate the clinical reporting for these two waves to be 59.7% (95% Cl: 55.7-63.7) and 83% (95% Cl: 79-87). We surmise that the lower reporting in the first wave can be explained by a lack of initial awareness of the epidemic and the relative higher severity of the symptoms experienced during the fall wave. We found that effective isolation measures in hospital clinics at best would only ensure control with probability 0.87 while reducing the transmission rate by > 76.5% guarantees stopping an epidemic. (c) 2005 Elsevier Ltd. All rights reserved. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. CMU, Fac Med, Inst Social & Prevent Med, Geneva 4, Switzerland. RP Chowell, G (reprint author), Los Alamos Natl Lab, Div Theoret, MS B284, Los Alamos, NM 87545 USA. EM chowell@lanl.gov RI Chowell, Gerardo/A-4397-2008; Chowell, Gerardo/F-5038-2012; OI Chowell, Gerardo/0000-0003-2194-2251; Hengartner, Nicolas/0000-0002-4157-134X NR 43 TC 117 Z9 123 U1 4 U2 16 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-5193 J9 J THEOR BIOL JI J. Theor. Biol. PD JUL 21 PY 2006 VL 241 IS 2 BP 193 EP 204 DI 10.1016/j.jtbi.2005.11.026 PG 12 WC Biology; Mathematical & Computational Biology SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology GA 072RS UT WOS:000239691300003 PM 16387331 ER PT J AU Cooper, MC Newman, JA Croton, DJ Weiner, BJ Willmer, CNA Gerke, BF Madgwick, DS Faber, SM Davis, M Coil, AL Finkbeiner, DP Guhathakurta, P Koo, DC AF Cooper, Michael C. Newman, Jeffrey A. Croton, Darren J. Weiner, Benjamin J. Willmer, Christopher N. A. Gerke, Brian F. Madgwick, Darren S. Faber, S. M. Davis, Marc Coil, Alison L. Finkbeiner, Douglas P. Guhathakurta, Puragra Koo, David C. TI The DEEP2 Galaxy Redshift Survey: the relationship between galaxy properties and environment at z similar to 1 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies : evolution; galaxies : fundamental parameters; galaxies : high-redshift; galaxies : statistics; large-scale structure of Universe ID DIGITAL SKY SURVEY; MORPHOLOGY-DENSITY RELATION; COLOR-MAGNITUDE RELATION; BAND OPTICAL-PROPERTIES; HUBBLE-SPACE-TELESCOPE; SIMILAR-TO 1; STAR-FORMATION; BLACK-HOLES; SECULAR EVOLUTION; COOLING FLOWS AB We study the mean environment of galaxies in the DEEP2 Galaxy Redshift Survey as a function of rest-frame colour, luminosity, and [O II] 3727 angstrom equivalent width. The local galaxy overdensity for > 14000 galaxies at 0.75 < z < 1.35 is estimated using the projected third-nearest-neighbour surface density. Of the galaxy properties studied, mean environment is found to depend most strongly on galaxy colour; all major features of the correlation between mean overdensity and rest-frame colour observed in the local universe were already in place at z similar to 1. In contrast to local results, we find a substantial slope in the mean dependence of environment on luminosity for blue, star forming galaxies at z similar to 1, with brighter blue galaxies being found on average in regions of greater overdensity. We discuss the roles of galaxy clusters and groups in establishing the observed correlations between environment and galaxy properties at high redshift, and we also explore the evidence for a 'downsizing of quenching' from z similar to 1 to similar to 0. Our results add weight to existing evidence that the mechanism(s) that result in star formation quenching are efficient in group environments as well as clusters. This work is the first of its kind at high redshift and represents the first in a series of papers addressing the role of environment in galaxy formation at 0 < z < 1. C1 Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Santa Cruz, Lick Observ, UCO, Santa Cruz, CA 95064 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. Princeton Univ Observ, Princeton, NJ 08544 USA. RP Cooper, MC (reprint author), Univ Calif Berkeley, Dept Astron, Mail Code 3411, Berkeley, CA 94720 USA. EM cooper@astro.berkeley.edu; janewman@lbl.gov; darren@astro.berkeley.edu; bjw@ucolick.org; cnaw@ucolick.org; bgerke@astro.berkeley.edu; dsmadgwick@lbl.gov; faber@ucolick.org; marc@astro.berkeley.edu; acoil@as.arizona.edu; dfink@astro.princeton.edu; raja@ucolick.org; koo@ucolick.org NR 87 TC 178 Z9 179 U1 0 U2 1 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 21 PY 2006 VL 370 IS 1 BP 198 EP 212 DI 10.1111/j.1365-2966.2006.10485.x PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 064VD UT WOS:000239116800015 ER PT J AU Kozlowski, S Wozniak, PR Mao, S Smith, MC Sumi, T Vestrand, WT Wyrzykowski, L AF Kozlowski, S. Wozniak, P. R. Mao, S. Smith, M. C. Sumi, T. Vestrand, W. T. Wyrzykowski, L. TI Mapping stellar kinematics across the Galactic bar: HST measurements of proper motions in 35 fields SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational lensing; Galaxy : bulge; Galaxy : disc; Galaxy : kinematics and dynamics ID GRAVITATIONAL LENSING EXPERIMENT; MICROLENSING OPTICAL DEPTH; DIFFERENCE IMAGE-ANALYSIS; BULGE FIELDS; PROJECT; SYSTEMS; GALAXY; MODEL AB We present a proper motion mini-survey of 35 fields in the vicinity of Baade window, (l, b) = (1 degrees, -4 degrees), sampling roughly a 5 x 2.5-deg(2) region of the Galactic bar. Our second epoch observations collected with the Advanced Camera for Surveys/High Resolution Channel instrument onboard the Hubble Space Telescope were combined with the archival Wide Field Planetary Camera 2/PC images. The resulting time baselines are in the range of 4 to 8 yr. Precise proper motions of 15 863 stars were determined in the reference frame defined by the mean motion of stars with magnitudes between I(F814W) = 16.5 and 21.5 along the line of sight. We clearly detect small gradients in proper motion dispersions (sigma(l), sigma(b) similar to (3.0, 2.5) mas yr(-1), and in the amount of anisotropy (sigma(l)/sigma(b) similar to 1.2). Both the longitude dispersion sigma(l) and its ratio to the vertical motion sigma(b) increase towards the Galactic plane. The decline of the anisotropy ratio sigma(l)/sigma(b) towards the minor axis of the bulge is mostly due to increasing sigma(b). We also find, for the first time, a significant negative covariance term in the transverse velocity field sigma(lb)/(sigma(l)sigma(b)) similar or equal to -0.10. Our results extend by a factor of similar to 15 the number of the Galactic bar fields with good proper motion dispersions. C1 Univ Manchester, Jodrell Bank Observ, Macclesfield SK11 9DL, Cheshire, England. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. Princeton Univ Observ, Princeton, NJ 08544 USA. Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. RP Kozlowski, S (reprint author), Univ Manchester, Jodrell Bank Observ, Macclesfield SK11 9DL, Cheshire, England. EM simkoz@jb.man.ac.uk RI Kozlowski, Szymon/G-4799-2013; OI Kozlowski, Szymon/0000-0003-4084-880X; Wozniak, Przemyslaw/0000-0002-9919-3310 NR 31 TC 18 Z9 18 U1 0 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 21 PY 2006 VL 370 IS 1 BP 435 EP 443 DI 10.1111/j.1365-2966.10487.x PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 064VD UT WOS:000239116800036 ER PT J AU Abulencia, A Acosta, D Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arguin, JF Arisawa, T Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Bachacou, H Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Belloni, A Ben Haim, E Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carron, S Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chapman, J Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Chu, PH Chuang, SH Chung, K Chung, WH Chung, YS Ciljak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Cresciolo, F Cruz, A Almenar, CC Cuevas, J Culbertson, R Cyr, D DaRonco, S D'Auria, S D'Onofrio, M Dagenhart, D de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G Dell'Orso, M Paoli, FD Demers, S Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Dionisi, C Dittmann, JR DiTuro, P Dorr, C Donati, S Donega, M Dong, P Donini, J Dorigo, T Dube, S Ebina, K Efron, J Ehlers, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Flores-Castillo, LR Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Frisch, H Furic, I Gallinaro, M Galyardt, J Garcia, JE Sciveres, MG Garfinkel, AF Gay, C Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, A Gibson, K Ginsburg, C Giokaris, N Giolo, K Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Gotra, Y Goulianos, K Gresele, A Griffiths, M Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Hahn, K Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, M Harper, S Harr, RF Harris, RM Hatakeyama, K Hauser, J Hays, C Heijboer, A Heinemann, B Heinrich, J Herndon, M Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Huston, J Incandela, J Introzzi, G Iori, M Ishizawa, Y Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jensen, H Jeon, EJ Jindariani, S Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Kang, J Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kobayashi, H Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kovalev, A Kraan, A Kraus, J Kravchenko, I Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kuhlmann, SE Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Lindgren, M Lipeles, E Liss, TM Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Maki, T Maksimovic, P Malde, S Manca, G Margaroli, F Marginean, R Marino, C Martin, A Martin, V Martinez, M Maruyama, T Mastrandrea, P Matsunaga, H Mattson, ME Mazini, R Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A von der Mey, M Miao, T Miladinovic, N Miles, J Miller, R Miller, JS Mills, C Milnik, M Miquel, R Mitra, A Mitselmakher, G Miyamoto, A Moggi, N Mohr, B Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Nachtman, J Naganoma, J Nahn, S Nakano, I Napier, A Naumov, D Necula, V Neu, C Neubauer, MS Nielsen, J Nigmanov, T Nodulman, L Norniella, O Nurse, E Ogawa, T Oh, SH Oh, YD Okusawa, T Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Paoletti, R Papadimitriou, V Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Rakitin, A Rappoccio, S Ratnikov, F Reisert, B Rekovic, V van Remortel, N Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robertson, WJ Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Rott, C Ruiz, A Russ, J Rusu, V Saarikko, H Sabik, S Safonov, A Sakumoto, WK Salamanna, G Salto, O Saltzberg, D Sanchez, C Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfiligoi, I Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Sjolin, J Skiba, A Slaughter, AJ Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spezziga, M Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Staveris-Polykalas, A St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sumorok, K Sun, H Suzuki, T Taffard, A Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tanimoto, N Tecchio, M Teng, PK Terashi, K Tether, S Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Tonnesmann, M Torre, S Torretta, D Tourneur, S Trischuk, W Tsuchiya, R Tsuno, S Turini, N Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vaiciulis, A Vallecorsa, S Varganov, A Vataga, E Velev, G Veramendi, G Veszpremi, V Vidal, R Vila, I Vilar, R Vine, T Vollrath, I Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, W Wallny, R Walter, T Wan, Z Wang, SM Warburton, A Waschke, S Waters, D Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zetti, F Zhang, X Zhou, J Zucchelli, S AF Abulencia, A. Acosta, D. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Ambrose, D. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arguin, J. -F. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Bachacou, H. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Bedeschi, F. Behari, S. Belforte, S. Bellettini, G. Bellinger, J. Belloni, A. Ben Haim, E. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carron, S. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chapman, J. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Chu, P. H. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciljak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Cresciolo, F. Cruz, A. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cyr, D. DaRonco, S. D'Auria, S. D'Onofrio, M. Dagenhart, D. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. Dell'Orso, M. Paoli, F. Delli Demers, S. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Dionisi, C. Dittmann, J. R. DiTuro, P. Doerr, C. Donati, S. Donega, M. Dong, P. Donini, J. Dorigo, T. Dube, S. Ebina, K. Efron, J. Ehlers, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Flores-Castillo, L. R. Foland, A. Forrester, S. Foster, G. W. Franklin, M. Freeman, J. C. Frisch, H. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Sciveres, M. Garcia Garfinkel, A. F. Gay, C. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, A. Gibson, K. Ginsburg, C. Giokaris, N. Giolo, K. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Gotra, Y. Goulianos, K. Gresele, A. Griffiths, M. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Hahn, K. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hatakeyama, K. Hauser, J. Hays, C. Heijboer, A. Heinemann, B. Heinrich, J. Herndon, M. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ishizawa, Y. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jensen, H. Jeon, E. J. Jindariani, S. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Kang, J. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kobayashi, H. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kovalev, A. Kraan, A. Kraus, J. Kravchenko, I. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kuhlmann, S. E. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Liss, T. M. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Loverre, P. Lu, R. -S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Maki, T. Maksimovic, P. Malde, S. Manca, G. Margaroli, F. Marginean, R. Marino, C. Martin, A. Martin, V. Martinez, M. Maruyama, T. Mastrandrea, P. Matsunaga, H. Mattson, M. E. Mazini, R. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. von der Mey, M. Miao, T. Miladinovic, N. Miles, J. Miller, R. Miller, J. S. Mills, C. Milnik, M. Miquel, R. Mitra, A. Mitselmakher, G. Miyamoto, A. Moggi, N. Mohr, B. Moore, R. Morello, M. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Nachtman, J. Naganoma, J. Nahn, S. Nakano, I. Napier, A. Naumov, D. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nigmanov, T. Nodulman, L. Norniella, O. Nurse, E. Ogawa, T. Oh, S. H. Oh, Y. D. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Paoletti, R. Papadimitriou, V. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Rakitin, A. Rappoccio, S. Ratnikov, F. Reisert, B. Rekovic, V. van Remortel, N. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robertson, W. J. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Rott, C. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Sabik, S. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Saltzberg, D. Sanchez, C. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfiligoi, I. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Sjolin, J. Skiba, A. Slaughter, A. J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spezziga, M. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. St. Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sumorok, K. Sun, H. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Takikawa, K. Tanaka, M. Tanaka, R. Tanimoto, N. Tecchio, M. Teng, P. K. Terashi, K. Tether, S. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Tonnesmann, M. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tsuchiya, R. Tsuno, S. Turini, N. Ukegawa, F. Unverhau, T. Uozumi, S. Usynin, D. Vaiciulis, A. Vallecorsa, S. Varganov, A. Vataga, E. Velev, G. Veramendi, G. Veszpremi, V. Vidal, R. Vila, I. Vilar, R. Vine, T. Vollrath, I. Volobouev, I. Volpi, G. Wurthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wallny, R. Walter, T. Wan, Z. Wang, S. M. Warburton, A. Waschke, S. Waters, D. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zetti, F. Zhang, X. Zhou, J. Zucchelli, S. CA CDF Collaboration TI Search for new physics in lepton plus photon plus X events with 305 pb(-1) of p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID Z-GAMMA PRODUCTION; QCD CORRECTIONS; CDF; DETECTOR; GENERATION; PYTHIA-5.7; COUPLINGS AB We present results of a search for anomalous production of events containing a charged lepton (l, either e or mu) and a photon (gamma), both with high transverse momentum, accompanied by additional signatures X, including missing transverse energy (is not an element of(T)) and additional leptons and photons. We use the same selection criteria as in a previous CDF search but with a substantially larger data set, 305 pb(-1), a p (p) over bar collision energy of 1.96 TeV, and the CDF II detector. We find 42 l gamma E(T) events versus an expectation of 37.3 +/- 5.4 events. We observe 31 ll is not an element of gamma+X events versus an expectation of 23.0 +/- 2.7 events. We find no events similar to the run I ll gamma gamma is not an element of(T) event. C1 Univ Illinois, Urbana, IL 61801 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. Baylor Univ, Waco, TX 76798 USA. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva 4, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 305, Japan. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Inst Theoret & Expt Phys, Moscow 117259, Russia. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Paris 06, LPNHE, IN2P3, CNRS,UMR 7585, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl Pisa, Siena & Scuola Normale Super, I-56127 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Ist Nazl Geofis, Sez Roma 1, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Abulencia, A (reprint author), Univ Illinois, Urbana, IL 61801 USA. RI Lysak, Roman/H-2995-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016 OI Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Ruiz, Alberto/0000-0002-3639-0368; Warburton, Andreas/0000-0002-2298-7315; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117 NR 30 TC 6 Z9 6 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 21 PY 2006 VL 97 IS 3 AR 031801 DI 10.1103/PhysRevLett.97.031801 PG 7 WC Physics, Multidisciplinary SC Physics GA 065QS UT WOS:000239175000008 PM 16907493 ER PT J AU Al-Hassanieh, KA Dobrovitski, VV Dagotto, E Harmon, BN AF Al-Hassanieh, K. A. Dobrovitski, V. V. Dagotto, E. Harmon, B. N. TI Numerical modeling of the central spin problem using the spin-coherent-state P representation SO PHYSICAL REVIEW LETTERS LA English DT Article ID DYNAMICS AB In this work, we consider decoherence of a central spin by a spin bath. In order to study the nonperturbative decoherence regimes, we develop an efficient mean-field-based method for modeling the spin-bath decoherence, based on the P representation of the central spin density matrix. The method can be applied to longitudinal and transverse relaxation at different external fields. In particular, by modeling large-size quantum systems (up to 16 000 bath spins), we make controlled predictions for the slow long-time decoherence of the central spin. C1 Oak Ridge Natl Lab, Condensed Matter Sci Div, Knoxville, TN 37996 USA. Univ Tennessee, Dept Phys, Oak Ridge, TN 37831 USA. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Al-Hassanieh, KA (reprint author), Oak Ridge Natl Lab, Condensed Matter Sci Div, Knoxville, TN 37996 USA. NR 21 TC 69 Z9 69 U1 0 U2 7 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 21 PY 2006 VL 97 IS 3 AR 037204 DI 10.1103/PhysRevLett.97.037204 PG 4 WC Physics, Multidisciplinary SC Physics GA 065QS UT WOS:000239175000056 PM 16907541 ER PT J AU Kittilstved, KR Schwartz, DA Tuan, AC Heald, SM Chambers, SA Gamelin, DR AF Kittilstved, Kevin R. Schwartz, Dana A. Tuan, Allan C. Heald, Steve M. Chambers, Scott A. Gamelin, Daniel R. TI Direct kinetic correlation of carriers and ferromagnetism in Co2+: ZnO SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETIC SEMICONDUCTORS; ZNO; EXCHANGE; OXIDE; ZINC AB The hypothesis that high-Curie-temperature ferromagnetism in cobalt-doped ZnO (Co2+: ZnO) is mediated by charge carriers was tested by controlled introduction and removal of the shallow donor interstitial zinc. Using oriented epitaxial Co2+: ZnO films grown by chemical vapor deposition, kinetics measurements demonstrate a direct correlation between the oxidative quenching of ferromagnetism and the diffusion and oxidation of interstitial zinc. These results demonstrate controlled systematic variation of a key parameter involved in the ferromagnetism of Co2+: ZnO and, in the process, unambiguously reveal this ferromagnetism to be dependent upon charge carriers. The distinction between defect-bound and free carriers in Co2+: ZnO is discussed. C1 Univ Washington, Dept Chem, Seattle, WA 98195 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kittilstved, KR (reprint author), Univ Washington, Dept Chem, Seattle, WA 98195 USA. EM Gamelin@chem.washington.edu RI Kittilstved, Kevin/B-8204-2009; OI de Carvalho, H. B./0000-0001-7183-7260 NR 32 TC 247 Z9 254 U1 4 U2 33 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 21 PY 2006 VL 97 IS 3 AR 037203 DI 10.1103/PhysRevLett.97.037203 PG 4 WC Physics, Multidisciplinary SC Physics GA 065QS UT WOS:000239175000055 PM 16907540 ER PT J AU Macridin, A Jarrell, M Maier, T Kent, PRC D'Azevedo, E AF Macridin, Alexandru Jarrell, M. Maier, Thomas Kent, P. R. C. D'Azevedo, Eduardo TI Pseudogap and antiferromagnetic correlations in the Hubbard model SO PHYSICAL REVIEW LETTERS LA English DT Article ID ANGLE-RESOLVED PHOTOEMISSION; CUPRATE SUPERCONDUCTORS; PAIRING SYMMETRY; MAGNETIC ORDER; CLUSTER; DYNAMICS; SYSTEMS; PLANES; CU AB Using the dynamical cluster approximation and quantum Monte Carlo simulations we calculate the single-particle spectra of the Hubbard model with next-nearest neighbor hopping t('). In the underdoped region, we find that the pseudogap along the zone diagonal in the electron doped systems is due to long-range antiferromagnetic correlations. The physics in the proximity of (0, pi) is dramatically influenced by t(') and determined by the short range correlations. The effect of t(') on the low-energy angle-resolved photoemission spectroscopy spectra is weak except close to the zone edge. The short range correlations are sufficient to yield a pseudogap signal in the magnetic susceptibility and produce a concomitant gap in the single-particle spectra near (pi, pi/2), but not necessarily at a location in the proximity of the Fermi surface. C1 Univ Cincinnati, Cincinnati, OH 45221 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Macridin, A (reprint author), Univ Cincinnati, Cincinnati, OH 45221 USA. RI Kent, Paul/A-6756-2008; Maier, Thomas/F-6759-2012 OI Kent, Paul/0000-0001-5539-4017; Maier, Thomas/0000-0002-1424-9996 NR 31 TC 66 Z9 66 U1 2 U2 7 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 21 PY 2006 VL 97 IS 3 AR 036401 DI 10.1103/PhysRevLett.97.036401 PG 4 WC Physics, Multidisciplinary SC Physics GA 065QS UT WOS:000239175000035 PM 16907520 ER PT J AU Meng, S Zhang, ZY Kaxiras, E AF Meng, Sheng Zhang, Zhenyu Kaxiras, Efthimios TI Tuning solid surfaces from hydrophobic to superhydrophilic by submonolayer surface modification SO PHYSICAL REVIEW LETTERS LA English DT Article ID MOLECULAR-DYNAMICS; WATER; ADSORPTION; FILMS AB Molecular-scale understanding and manipulation of the wetting behavior of water on solids remains a fundamental challenge. Using diamond as a model system, we show that the naturally hydrophobic behavior of a hydrogen-terminated C(111) surface can be manipulated by replacing the H termination with a monolayer of adsorbate. In particular, a mixed monolayer of 1/3 Na and 2/3 F atoms leads to superhydrophilic behavior, as shown by first-principles calculations. The physical origin of the superhydrophilic behavior is attributed to the ionic nature of the Na adatoms, which mediate the right degree of binding strength between water molecules and the substrate. C1 Univ Texas, Dept Phys, Austin, TX 78712 USA. Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Meng, S (reprint author), Univ Texas, Dept Phys, Austin, TX 78712 USA. RI Meng, Sheng/A-7171-2010 OI Meng, Sheng/0000-0002-1553-1432 NR 27 TC 18 Z9 19 U1 0 U2 17 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 21 PY 2006 VL 97 IS 3 AR 036107 DI 10.1103/PhysRevLett.97.036107 PG 4 WC Physics, Multidisciplinary SC Physics GA 065QS UT WOS:000239175000034 PM 16907519 ER PT J AU Niccolai, S Mirazita, M Rossi, P Baltzell, NA Carman, DS Hicks, K McKinnon, B Mibe, T Stepanyan, S Tedeschi, DJ Adams, G Ambrozewicz, P Pereira, SA Anghinolfi, M Asryan, G Avakian, H Bagdasaryan, H Baillie, N Ball, JP Batourine, V Battaglieri, M Bedlinskiy, I Bektasoglu, M Bellis, M Benmouna, N Berman, BL Biselli, AS Boiarinov, S Bouchigny, S Bradford, R Branford, D Briscoe, WJ Brooks, WK Bultmann, S Burkert, VD Butuceanu, C Calarco, JR Careccia, SL Carnahan, B Chen, S Cole, PL Collins, P Coltharp, P Crabb, D Crannell, H Crede, V Cummings, JP Dashyan, N Degtyarenko, PV De Masi, R Deppman, A De Sanctis, E Deur, A DeVita, R Dharmawardane, KV Djalali, C Dodge, GE Donnelly, J Doughty, D Dugger, M Dzyubak, OP Egiyan, H Egiyan, KS El Fassi, L Elouadrhiri, L Eugenio, P Fedotov, G Feldman, G Funsten, H Garcon, M Gavalian, G Gilfoyle, GP Giovanetti, KL Girod, FX Goetz, JT Gonenc, A Gordon, CIO Gothe, RW Griffioen, KA Guidal, M Guler, N Guo, L Gyurjyan, V Hadjidakis, C Hafidi, K Hakobyan, H Hakobyan, RS Hardie, J Hersman, FW Hleiqawi, I Holtrop, M Hyde-Wright, CE Ilieva, Y Ireland, DG Ishkhanov, BS Isupov, EL Ito, MM Jenkins, D Jo, HS Joo, K Juengst, HG Kellie, JD Khandaker, M Kim, W Klein, A Klein, FJ Klimenko, AV Kossov, M Kramer, LH Kubarovsky, V Kuhn, J Kuhn, SE Kuleshov, SV Lachniet, J Langheinrich, J Lawrence, D Lee, T Li, J Livingston, K Lu, H MacCormick, M Markov, N Mecking, BA Mellor, J Melone, JJ Mestayer, MD Meyer, CA Mikhailov, K Minehart, R Miskimen, R Mokeev, V Morand, L Morrow, SA Moteabbed, M Mutchler, GS Nadel-Turonski, P Napolitano, J Nasseripour, R Niculescu, G Niculescu, I Niczyporuk, BB Niroula, MR Niyazov, RA Nozar, M Echeimberg, JD Osipenko, M Ostrovidov, AI Park, K Pasyuk, E Paterson, C Pierce, J Pivnyuk, N Pocanic, D Pogorelko, O Pozdniakov, S Preedom, BM Price, JW Prok, Y Protopopescu, D Raue, BA Riccardi, G Ricco, G Ripani, M Ritchie, BG Ronchetti, F Rosner, G Sabatie, F Salgado, C Santoro, JP Sapunenko, V Schumacher, RA Serov, VS Sharabian, YG Shvedunov, NV Smith, ES Smith, LC Sober, DI Stavinsky, A Stepanyan, SS Stokes, BE Stoler, P Strakovsky, II Strauch, S Taiuti, M Thoma, U Tkabladze, A Tkachenko, S Todor, L Tur, C Ungaro, M Vineyard, MF Vlassov, AV Watts, DP Weinstein, LB Weygand, DP Williams, M Wolin, E Wood, MH Yegneswaran, A Zana, L Zhang, J Zhao, B Zhao, Z AF Niccolai, S. Mirazita, M. Rossi, P. Baltzell, N. A. Carman, D. S. Hicks, K. McKinnon, B. Mibe, T. Stepanyan, S. Tedeschi, D. J. Adams, G. Ambrozewicz, P. Pereira, S. Anefalos Anghinolfi, M. Asryan, G. Avakian, H. Bagdasaryan, H. Baillie, N. Ball, J. P. Batourine, V. Battaglieri, M. Bedlinskiy, I. Bektasoglu, M. Bellis, M. Benmouna, N. Berman, B. L. Biselli, A. S. Boiarinov, S. Bouchigny, S. Bradford, R. Branford, D. Briscoe, W. J. Brooks, W. K. Bultmann, S. Burkert, V. D. Butuceanu, C. Calarco, J. R. Careccia, S. L. Carnahan, B. Chen, S. Cole, P. L. Collins, P. Coltharp, P. Crabb, D. Crannell, H. Crede, V. Cummings, J. P. Dashyan, N. Degtyarenko, P. V. De Masi, R. Deppman, A. De Sanctis, E. Deur, A. DeVita, R. Dharmawardane, K. V. Djalali, C. Dodge, G. E. Donnelly, J. Doughty, D. Dugger, M. Dzyubak, O. P. Egiyan, H. Egiyan, K. S. El Fassi, L. Elouadrhiri, L. Eugenio, P. Fedotov, G. Feldman, G. Funsten, H. Garcon, M. Gavalian, G. Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Goetz, J. T. Gonenc, A. Gordon, C. I. O. Gothe, R. W. Griffioen, K. A. Guidal, M. Guler, N. Guo, L. Gyurjyan, V. Hadjidakis, C. Hafidi, K. Hakobyan, H. Hakobyan, R. S. Hardie, J. Hersman, F. W. Hleiqawi, I. Holtrop, M. Hyde-Wright, C. E. Ilieva, Y. Ireland, D. G. Ishkhanov, B. S. Isupov, E. L. Ito, M. M. Jenkins, D. Jo, H. S. Joo, K. Juengst, H. G. Kellie, J. D. Khandaker, M. Kim, W. Klein, A. Klein, F. J. Klimenko, A. V. Kossov, M. Kramer, L. H. Kubarovsky, V. Kuhn, J. Kuhn, S. E. Kuleshov, S. V. Lachniet, J. Langheinrich, J. Lawrence, D. Lee, T. Li, Ji Livingston, K. Lu, H. MacCormick, M. Markov, N. Mecking, B. A. Mellor, J. Melone, J. J. Mestayer, M. D. Meyer, C. A. Mikhailov, K. Minehart, R. Miskimen, R. Mokeev, V. Morand, L. Morrow, S. A. Moteabbed, M. Mutchler, G. S. Nadel-Turonski, P. Napolitano, J. Nasseripour, R. Niculescu, G. Niculescu, I. Niczyporuk, B. B. Niroula, M. R. Niyazov, R. A. Nozar, M. de Oliveira Echeimberg, J. Osipenko, M. Ostrovidov, A. I. Park, K. Pasyuk, E. Paterson, C. Pierce, J. Pivnyuk, N. Pocanic, D. Pogorelko, O. Pozdniakov, S. Preedom, B. M. Price, J. W. Prok, Y. Protopopescu, D. Raue, B. A. Riccardi, G. Ricco, G. Ripani, M. Ritchie, B. G. Ronchetti, F. Rosner, G. Sabatie, F. Salgado, C. Santoro, J. P. Sapunenko, V. Schumacher, R. A. Serov, V. S. Sharabian, Y. G. Shvedunov, N. V. Smith, E. S. Smith, L. C. Sober, D. I. Stavinsky, A. Stepanyan, S. S. Stokes, B. E. Stoler, P. Strakovsky, I. I. Strauch, S. Taiuti, M. Thoma, U. Tkabladze, A. Tkachenko, S. Todor, L. Tur, C. Ungaro, M. Vineyard, M. F. Vlassov, A. V. Watts, D. P. Weinstein, L. B. Weygand, D. P. Williams, M. Wolin, E. Wood, M. H. Yegneswaran, A. Zana, L. Zhang, J. Zhao, B. Zhao, Z. CA CLAS Collaboration TI Search for the Theta(+) pentaquark in the gamma d ->Lambda nK(+) reaction measured with the CLAS spectrometer SO PHYSICAL REVIEW LETTERS LA English DT Article ID POSITIVE-STRANGENESS; BARYON RESONANCE; NARROW; PHOTOPRODUCTION; STATE; COLLISIONS; MASS; HERA AB For the first time, the reaction gamma d ->Lambda nK(+) has been analyzed in order to search for the exotic pentaquark baryon Theta(+)(1540). The data were taken at Jefferson Laboratory, using the Hall-B tagged-photon beam of energy between 0.8 and 3.6 GeV and the CEBAF Large Acceptance Spectrometer (CLAS). No statistically significant structures were observed in the nK(+) invariant-mass distribution. The upper limit on the gamma d ->Lambda Theta(+) integrated cross section has been calculated and found to be between 5 and 25 nb, depending on the production model assumed. The upper limit on the differential cross section is also reported. C1 Inst Phys Nucl, F-91406 Orsay, France. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ S Carolina, Columbia, SC 29208 USA. Ohio Univ, Athens, OH 45701 USA. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Arizona State Univ, Tempe, AZ 85287 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Calif State Univ Dominguez Hills, Carson, CA 90747 USA. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Catholic Univ Amer, Washington, DC 20064 USA. CEA Saclay, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. Christopher Newport Univ, Newport News, VA 23606 USA. Univ Connecticut, Storrs, CT 06269 USA. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Florida Int Univ, Miami, FL 33199 USA. Florida State Univ, Tallahassee, FL 32306 USA. George Washington Univ, Washington, DC 20052 USA. Idaho State Univ, Pocatello, ID 83209 USA. Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. Inst Theoret & Expt Phys, Moscow 117259, Russia. James Madison Univ, Harrisonburg, VA 22807 USA. Kyungpook Natl Univ, Taegu 702701, South Korea. Univ Massachusetts, Amherst, MA 01003 USA. Moscow MV Lomonosov State Univ, Gen Nucl Phys Inst, Moscow 119899, Russia. Univ New Hampshire, Durham, NH 03824 USA. Norfolk State Univ, Norfolk, VA 23504 USA. Old Dominion Univ, Norfolk, VA 23529 USA. Rensselaer Polytech Inst, Troy, NY 12180 USA. Rice Univ, Houston, TX 77005 USA. Univ Richmond, Richmond, VA 23173 USA. Union Coll, Schenectady, NY 12308 USA. Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. Univ Virginia, Charlottesville, VA 22901 USA. Yerevan Phys Inst, Yerevan 375036, Armenia. Univ Sao Paulo, Inst Phys, Sao Paulo, Brazil. RP Niccolai, S (reprint author), Inst Phys Nucl, BP 1, F-91406 Orsay, France. RI Meyer, Curtis/L-3488-2014; Sabatie, Franck/K-9066-2015; Osipenko, Mikhail/N-8292-2015; Zhang, Jixie/A-1461-2016; Deppman, Airton/J-5787-2014; Kuleshov, Sergey/D-9940-2013; Deppman, Airton/F-6332-2010; Schumacher, Reinhard/K-6455-2013; Ireland, David/E-8618-2010; Bektasoglu, Mehmet/A-2074-2012; Lu, Haiyun/B-4083-2012; Protopopescu, Dan/D-5645-2012; riccardi, gabriele/A-9269-2012; Zana, Lorenzo/H-3032-2012; Isupov, Evgeny/J-2976-2012; Ishkhanov, Boris/E-1431-2012; Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013 OI Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975; Osipenko, Mikhail/0000-0001-9618-3013; Deppman, Airton/0000-0001-9179-6363; Kuleshov, Sergey/0000-0002-3065-326X; Deppman, Airton/0000-0001-9179-6363; Schumacher, Reinhard/0000-0002-3860-1827; Ireland, David/0000-0001-7713-7011; Zhao, Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570 NR 41 TC 38 Z9 39 U1 0 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 21 PY 2006 VL 97 IS 3 AR 032001 DI 10.1103/PhysRevLett.97.032001 PG 6 WC Physics, Multidisciplinary SC Physics GA 065QS UT WOS:000239175000009 PM 16907494 ER PT J AU Frei, H AF Frei, Heinz TI Selective hydrocarbon oxidation in zeolites SO SCIENCE LA English DT Editorial Material ID ROOM-TEMPERATURE; CHARGE-TRANSFER; Y-ZEOLITE; PHOTOOXIDATION; PROPANE; OXYGEN; IR C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Frei, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM hmfrei@lbl.gov NR 15 TC 39 Z9 40 U1 4 U2 40 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUL 21 PY 2006 VL 313 IS 5785 BP 309 EP 310 DI 10.1126/science.1128981 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 065IV UT WOS:000239154300030 PM 16857928 ER PT J AU Baca, HK Ashley, C Carnes, E Lopez, D Flemming, J Dunphy, D Singh, S Chen, Z Liu, NG Fan, HY Lopez, GP Brozik, SM Werner-Washburne, M Brinker, CJ AF Baca, Helen K. Ashley, Carlee Carnes, Eric Lopez, Deanna Flemming, Jeb Dunphy, Darren Singh, Seema Chen, Zhu Liu, Nanguo Fan, Hongyou Lopez, Gabriel P. Brozik, Susan M. Werner-Washburne, Margaret Brinker, C. Jeffrey TI Cell-directed assembly of lipid-silica nanostructures providing extended cell viability SO SCIENCE LA English DT Article ID SACCHAROMYCES-CEREVISIAE; LIVING BACTERIA; MICROORGANISMS; ENCAPSULATION; FILMS; DYNAMICS; ARRAYS; ROUTE; STATE; GELS AB Amphiphilic phospholipids were used to direct the formation of biocompatible, uniform silica nanostructures in the presence of Saccharomyces cerevisiae and bacterial cell lines. The cell surfaces organize multilayered phospholipid vesicles that interface coherently with the silica host and help relieve drying stresses that develop with conventional templates. These host structures maintain cell accessibility, addressability, and viability in the absence of buffer or an external fluidic architecture. The cell surfaces are accessible and can be used to localize added proteins, plasmids, and nanocrystals. Prolonged cell viability combined with reporter protein expression enabled stand-alone cell-based sensing. C1 Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87185 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. Univ New Mexico, Dept Mol Genet & Microbiol, Albuquerque, NM 87131 USA. RP Brinker, CJ (reprint author), Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87185 USA. EM cjbrink@sandia.gov RI Chen, Zhu/M-3834-2015 FU PHS HHS [206-00139-06] NR 32 TC 100 Z9 101 U1 2 U2 47 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUL 21 PY 2006 VL 313 IS 5785 BP 337 EP 341 DI 10.1126/science.1126590 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 065IV UT WOS:000239154300040 PM 16857936 ER PT J AU Chen, H Gu, MF Beiersdorfer, P Boyce, KR Brown, GV Kahn, SM Kelley, RL Kilbourne, CA Porter, FS Scofield, JH AF Chen, H. Gu, M. F. Beiersdorfer, P. Boyce, K. R. Brown, G. V. Kahn, S. M. Kelley, R. L. Kilbourne, C. A. Porter, F. S. Scofield, J. H. TI Electron impact excitation cross section measurement for n=3 to n=2 line emission in Fe17+ to Fe23+ SO ASTROPHYSICAL JOURNAL LA English DT Article DE atomic data; atomic processes; X-rays : general ID X-RAY SPECTROMETER; BEAM ION-TRAP; L-SHELL IONS; LABORATORY MEASUREMENTS; FE-XVII; RELATIVE INTENSITY; XMM-NEWTON; TRANSITIONS; IRON; XXIV AB We report the measurement of electron impact excitation cross sections for the strong iron L-shell 3 ! 2 lines of Fe XVIII through Fe XXIV at the EBIT-I electron beam ion trap using a crystal spectrometer and a 6 x 6 pixel array microcalorimeter. The cross sections were determined by direct normalization to the well established theoretical cross section of radiative electron capture through a sophisticated model analysis, which results in the excitation cross section for 48 lines at multiple electron energies. We also studied the electron-density-dependent nature of the emission lines, which is demonstrated by the effective excitation cross section of the 3d -> 2p transition in Fe XXI. C1 Lawrence Livermore Natl Lab, High Temp & Astrophys Div, Livermore, CA 94551 USA. Stanford Univ, Dept Phys, Stanford, CA 94305 USA. Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Chen, H (reprint author), Lawrence Livermore Natl Lab, High Temp & Astrophys Div, Livermore, CA 94551 USA. RI Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012 OI Porter, Frederick/0000-0002-6374-1119; NR 34 TC 17 Z9 17 U1 0 U2 7 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2006 VL 646 IS 1 BP 653 EP 665 DI 10.1086/504708 PN 1 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 072AL UT WOS:000239644900056 ER PT J AU Heitmann, K Higdon, D Nakhleh, C Habib, S AF Heitmann, Katrin Higdon, David Nakhleh, Charles Habib, Salman TI Cosmic calibration SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmological parameters; cosmology : theory ID DIGITAL SKY SURVEY; SIMULATIONS; SYSTEMS; MODELS AB The complexity and accuracy of current and future "precision cosmology" observational campaigns has made it essential to develop an efficient technique for directly combining simulation and observational data sets to determine cosmological and model parameters, a procedure we term "calibration." Once a satisfactory calibration of the underlying cosmological model is achieved, independent predictions for new observations become possible. For this procedure to be effective, robust characterization of the uncertainty in the calibration process is highly desirable. In this Letter we describe a statistical methodology that can achieve both of these goals. An application example based around dark matter structure formation simulations and a synthetic mass power spectrum data set is used to demonstrate the approach. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Heitmann, K (reprint author), Los Alamos Natl Lab, ISR-1,MS D466, Los Alamos, NM 87545 USA. EM heitmann@lanl.gov; dhigdon@lanl.gov; cnakhleh@lanl.gov; habib@lanl.gov NR 16 TC 35 Z9 35 U1 1 U2 5 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2006 VL 646 IS 1 BP L1 EP L4 DI 10.1086/506448 PN 2 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 072BI UT WOS:000239647200001 ER PT J AU Stanford, SA Romer, AK Sabirli, K Davidson, M Hilton, M Viana, PTP Collins, CA Kay, ST Liddle, AR Mann, RG Miller, CJ Nichol, RC West, MJ Conselice, CJ Spinrad, H Stern, D Bundy, K AF Stanford, S. A. Romer, A. Kathy Sabirli, Kivanc Davidson, Michael Hilton, Matt Viana, Pedro T. P. Collins, Chris A. Kay, Scott T. Liddle, Andrew R. Mann, Robert G. Miller, Christopher J. Nichol, Robert C. West, Michael J. Conselice, Christopher J. Spinrad, Hyron Stern, Daniel Bundy, Kevin TI The XMM cluster survey: A massive galaxy cluster at z=1.45 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies : clusters : general; galaxies : evolution; galaxies : formation ID CHANDRA; SAMPLE AB We report the discovery of XMMXCS J2215.9-1738, a massive galaxy cluster at, which was found z = 1.45 in the XMM Cluster Survey. The cluster candidate was initially identified as an extended X-ray source in archival XMM data. Optical spectroscopy shows that six galaxies within a similar to 60 '' diameter region lie at. z p 1.45 +/- 0.01 Model fits to the X-ray spectra of the extended emission yield kT = 7.4(-1.8)(+2.7) keV (90% confidence); if there is an undetected central X-ray point source, then kT = 6.5(-1.8)(+2.6). The bolometric X-ray luminosity is L-x-0.6(+0.8) x 10(44) ergs s(-1) over a 2 Mpc radial region. The measured T-x, which is the highest for any known cluster at z > 1, suggests that this cluster is relatively massive for such a high redshift. The redshift of XMMXCS of J2215.9-1738 is the highest currently known for a spectroscopically confirmed cluster of galaxies. C1 Univ Calif Davis, Davis, CA 95616 USA. Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. Univ Sussex, Ctr Astron, Brighton BN1 9QJ, E Sussex, England. Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15217 USA. Univ Edinburgh, Astron Inst, Edinburgh EH9 9HJ, Midlothian, Scotland. Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. Univ Porto, Fac Ciencias, Dept Matemat Aplicada, P-4169007 Oporto, Portugal. Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Tucson, AZ 85719 USA. Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 2EG, Hants, England. Univ Hawaii, Dept Phys & Astron, Hilo, HI 96720 USA. Gemini Observ, La Serena, Chile. Univ Nottingham, Nottingham NG9 2RD, England. Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. CALTECH, Pasadena, CA 91125 USA. RP Stanford, SA (reprint author), Univ Calif Davis, Davis, CA 95616 USA. EM adam@igpp.ucllnl.org RI Conselice, Christopher/B-4348-2013; Hilton, Matthew James/N-5860-2013; OI Conselice, Christopher/0000-0003-1949-7638 NR 23 TC 109 Z9 109 U1 0 U2 5 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 20 PY 2006 VL 646 IS 1 BP L13 EP L16 DI 10.1086/506449 PN 2 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 072BI UT WOS:000239647200004 ER PT J AU Corbett, JD AF Corbett, John D. TI Exploratory synthesis of reduced rare-earth-metal halides, chalcogenides, intermetallics - New compounds, structures, and properties SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article; Proceedings Paper CT 24th Rare Earth Research Conference CY JUN 26, 2005 CL Keystone, CO DE reduced rare-earth-metal compounds; chemical synthesis; crystal structures; synthesis; halides; tellurides; bonding ID EARLY TRANSITION-METALS; X = BR; INTERSTITIAL ATOMS; CRYSTAL-STRUCTURE; CHAIN COMPOUNDS; METALLOTHERMIC REDUCTION; SOLID-STATE; PRASEODYMIUM CHLORIDE; YTTRIUM MONOCHLORIDE; CLUSTER COMPOUNDS AB A new direction in reduced rare-earth-metal (R) compounds opened up when tantalum (and niobium) were adapted to use as virtually faultless containers for these reactions, as these gave immediate access to many new metal-rich phases and structures. Examples are summarized for the new binary dihalides (e.g., Pr, Nd, Dy, Ho, Tm), metallic diodides (Sc, La, Ce, Gd), and metal-metal bonded chains (Sc, Y, Gd, Lu) that were so discovered. Furthermore, a large array of condensed metal cluster, chain, and sheet halides arise when a stoichiometric amount of a diverse variety of nonmetal or metal atoms is included to serve as an interstitial, the earliest examples originating with traces of common impurities. A change in anion charge type to telluride affords a whole new regime of condensed metal-rich cluster compounds and structures, including such remarkable examples as (Sc, Gd, Dy)(2)Te, Lu(11)Te(4), Lu(8)Te, and Sc(6)PdTe(2). Also, a number of novel Zintl phases, interstitial derivatives of the type R(5)Ge(3)Z, quasicrystals, and their approximants are generated in other intermetallic systems. Generalities in structures and bonding are described along the way. (c) 2005 Elsevier B.V. All rights reserved. C1 Iowa State Univ Sci & Technol, Dept Chem, Ames, IA 50011 USA. Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. RP Corbett, JD (reprint author), Iowa State Univ Sci & Technol, Dept Chem, Ames, IA 50011 USA. EM jcorbett@iastate.edu NR 134 TC 20 Z9 20 U1 4 U2 25 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JUL 20 PY 2006 VL 418 IS 1-2 BP 1 EP 20 DI 10.1016/j.jallcom.2005.08.107 PG 20 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 060DE UT WOS:000238781500003 ER PT J AU Wang, ZM Felmy, AR Xia, YX Buck, EC AF Wang, ZM Felmy, AR Xia, YX Buck, EC TI Observation of aqueous Cm(III)/Eu(III) and UO22+ nanoparticulates at concentrations approaching solubility limit by laser-induced fluorescence spectroscopy SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article; Proceedings Paper CT 24th Rare Earth Research Conference CY JUN 26, 2005 CL Keystone, CO DE europium; curium; uranyl; fluorescence spectroscopy; nanoparticle ID AROMATIC LIGANDS; CM(III); COMPLEXES; EU(III); MONTMORILLONITE; LUMINESCENCE; SPECIATION; MIGRATION; COLLOIDS; NUMBER AB Eu(III), Cm(III) and the uranyl ion display intense fluorescence spectra in the visible range and the spectroscopic characteristics are dependent on the composition and structure of the individual metal complexes. In this work, we demonstrate the application of laser-induced time-resolved fluorescence spectroscopy in identification of nanoparticles of (i) Eu(III) and Cm(III) in basic solutions (pH > 10) in the presence of organic chelates including EDTA, HEDTA, NTA and oxalate and (ii) sodium uranyl phosphate after equilibration with synthetic sodium uranyl phosphate suspensions. Fluorescence spectral and SEM results indicate that Eu(III) and Cm(III) can exist as colloidal nanoparticles in filtered 0.1 M NaOH solutions. Such nanoparticles, which display largely red-shifted fluorescence spectra as compared with the aqueous complexes and unusually short fluorescence lifetimes, contribute to the measured concentrations of Eu(III)/Cm(III) in the aqueous solutions. Similarly, uranyl spectroscopic signatures indicate that the determination of the solubility of uranium phosphate minerals is prone to the presence of uranyl phosphate nanoparticles. Due to the presence of such nanoparticles, the common solubility measurements may only indicate an upper limit of the "true" solubility. (c) 2005 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, ZM (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Zheming.wang@pnl.gov RI Wang, Zheming/E-8244-2010; Buck, Edgar/D-4288-2009; Buck, Edgar/N-7820-2013 OI Wang, Zheming/0000-0002-1986-4357; Buck, Edgar/0000-0001-5101-9084 NR 29 TC 5 Z9 5 U1 1 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JUL 20 PY 2006 VL 418 IS 1-2 BP 166 EP 170 DI 10.1016/j.jallcom.2005.07.080 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 060DE UT WOS:000238781500030 ER PT J AU Sessler, JL Melfi, PJ Tomat, E Callaway, W Huggins, MT Gordon, PL Keogh, DW Date, RW Bruce, DW Donnio, B AF Sessler, JL Melfi, PJ Tomat, E Callaway, W Huggins, MT Gordon, PL Keogh, DW Date, RW Bruce, DW Donnio, B TI Schiff base oligopyrrolic macrocycles as ligands for lanthanides and actinides SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article; Proceedings Paper CT 24th Rare Earth Research Conference CY JUN 26, 2005 CL Keystone, CO DE liquid crystals; chemical synthesis; X-ray diffraction ID EXPANDED PORPHYRIN; LIQUID-CRYSTAL; COMPLEXES; TEXAPHYRIN; NEPTUNYL; CATIONS; ANALOGS AB The coordination of f-block cations with Schiff base oligopyrrolic macrocycles is discussed. Analysis of the mesophase of a uranyl 2,5-diformylpyrrole-derived expanded porphyrin complex through temperature-dependent X-ray diffraction (XRD) methods has provided evidence for liquid-crystalline properties, and for molecular stacking into columns, arranged in a 2D hexagonal lattice. In separate studies, UV-vis spectral analysis has indicated the formation of three new f-block oligopyrrolic complexes. Addition of neptunyl ([NpO2](2+)) or plutonyl ([PuO2](2+)) chloride salts to the free base of a dipyrromethane-derived Schiff base macrocycle induces an immediate spectral change, namely the growth of a Q-like band at 630 nm. Such changes in the absorption spectra cause a dramatic color change from pale yellow to blue. It is postulated that oxidation of this macrocycle, stimulated by reduction of the metal center, leads to the observed spectral changes. An immediate visible and spectral change is also observed with the reaction of lutetium silylamide (Lu[N(Si(CH3)(3))(2)](3)), with a different, tetrapyrrole-containing Schiff base macrocycle. In this case, the formation of a complex with 1: 1 metal-to-ligand binding stoichiometry is further supported by MALDI-TOF mass spectrometry. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Texas, Inst Cellular & Mol Biol, Dept Chem & Biochem, Univ Stn 1, Austin, TX 78712 USA. Los Alamos Natl Lab, Div Chem C, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, NMT Nucl Mat Technol Div, Los Alamos, NM 87545 USA. Univ Exeter, Dept Chem, Exeter EX4 4QD, Devon, England. ULP, CNRS,UMR 7504, GMO, IPCMS, F-67034 Strasbourg 2, France. Univ York, Dept Chem, York YO10 5DD, N Yorkshire, England. RP Sessler, JL (reprint author), Univ Texas, Inst Cellular & Mol Biol, Dept Chem & Biochem, Univ Stn 1, A5300, Austin, TX 78712 USA. EM sessier@mail.utexas.edu RI Donnio, Bertrand/I-1305-2016; OI Donnio, Bertrand/0000-0001-5907-7705; Bruce, Duncan/0000-0002-1365-2222 NR 26 TC 8 Z9 8 U1 0 U2 29 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JUL 20 PY 2006 VL 418 IS 1-2 BP 171 EP 177 DI 10.1016/j.jallcom.2005.06.089 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 060DE UT WOS:000238781500031 ER PT J AU Pool, JA Scott, BL Kiplinger, JL AF Pool, JA Scott, BL Kiplinger, JL TI Synthesis of actinide eta(2)-pyridyl and eta(2)-alpha-picolyl complexes by carbon-hydrogen bond activation SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article; Proceedings Paper CT 24th Rare Earth Research Conference CY JUN 26, 2005 CL Keystone, CO DE actinides; C-H activation; pyridine; picoline; organometallic eta(2)-pyridyl complexes ID C-H ACTIVATION; HYDRODENITROGENATION CATALYSIS; ETA(2)(N,C)-PYRIDINE COMPLEX; STRUCTURAL CHARACTERIZATION; BIS(KETIMIDO) COMPLEXES; ELECTRONIC-STRUCTURE; EXCITED-STATES; ARYL BONDS; REACTIVITY; PYRIDINE AB Studies in our laboratory have shown that the thorium(IV) complexes (C5Me5)(2)ThPh2 and (C5Me5)(2)Th(CH2Ph2)(2) mediate carbon-nitrogen bond cleavage and dearomatization of the pyridine ring in pyridine N-oxide. Based upon these results, we examined the analogous chemistry with a variety of pyridine compounds to determine if the electron-withdrawing oxygen present in pyridine N-oxide was required for reactivity of this type. Interestingly, reaction of (C5Me5)(2)An(CH3)(2) (An = Th, U) with pyridine and substituted analogues produces CH4 and the corresponding eta(2)-(N,C)-pyridyl complexes by activation of the sp(2)-hybridized ortho C-H bond. Isotopic labeling studies indicate that the C-H activation reactions are consistent with a sigma-bond metathesis mechanism. Additionally, the eta(2) -(N,C)-pyridyl complexes undergo ligand-exchange reactions with both pyridine-d(5) and alpha-picoline. (c) 2005 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Kiplinger, JL (reprint author), Los Alamos Natl Lab, Div Chem, MS J514, Los Alamos, NM 87545 USA. EM kiplinger@lanl.gov RI Kiplinger, Jaqueline/B-9158-2011; Scott, Brian/D-8995-2017 OI Kiplinger, Jaqueline/0000-0003-0512-7062; Scott, Brian/0000-0003-0468-5396 NR 39 TC 28 Z9 28 U1 0 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JUL 20 PY 2006 VL 418 IS 1-2 BP 178 EP 183 DI 10.1016/j.jallcom.2005.08.092 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 060DE UT WOS:000238781500032 ER PT J AU Schwantes, JM Rundberg, RS Taylor, WA Vieira, DJ AF Schwantes, JM Rundberg, RS Taylor, WA Vieira, DJ TI Rapid, high-purity, lanthanide separations using HPLC SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article; Proceedings Paper CT 24th Rare Earth Research Conference CY JUN 26, 2005 CL Keystone, CO DE lanthanide; HPLC; separation; alpha-hydroxyisobuturic acid ID PERFORMANCE LIQUID-CHROMATOGRAPHY; MASS-TRANSFER KINETICS; ION-EXCHANGE; RARE-EARTHS AB High-purity chromatographic methods for separating five pairs of neighboring lanthanide elements (Tm/Er, Gd/Eu, Eu/Sm, Sm/Pm, and Pm/Nd) have been developed for the purpose of producing radioactive targets for neutron capture experiments. The methods employ high-performance liquid chromatography (HPLC) with CS-3 Dionex cation exchange columns that were optimized for each set of elements to obtain the greatest peak separation as a function of the concentration and pH of the alpha-hydroxyisobuturic acid (alpha-HIB) eluent. Our results indicate a minimum separation resolution (SR) of 2.8 was obtained between each pair of neighboring lanthanides and an overall average SR of around 4.0 within 15 min time. These results represent a significant enhancement over previous chromatographic methods using other technologies (i.e., reverse-phase resins) as well as those based upon similar instrumentation. We attribute our success here to two factors: (1) optimizing the eluent to effect the greatest separation between individual pairs of lanthanides, and (2) altering pH as well as concentration of the eluent for each specified lanthanide pair. Implications of these results to rapid, high-purity lanthanide group separations for general analytical purposes as well as for specialized applications in the area of nuclear attribution (NA) are discussed. (c) 2005 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Div Chem, Isotope & Nucl Chem Grp, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Nucl Mat Div, Los Alamos, NM 87545 USA. RP Schwantes, JM (reprint author), Los Alamos Natl Lab, Div Chem, Isotope & Nucl Chem Grp, MS J514,C INC, Los Alamos, NM 87545 USA. EM JMSchwantes@lanl.gov RI Schwantes, Jon/A-7318-2009 NR 17 TC 13 Z9 14 U1 3 U2 21 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JUL 20 PY 2006 VL 418 IS 1-2 BP 189 EP 194 DI 10.1016/j.jallcom.2005.08.110 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 060DE UT WOS:000238781500034 ER PT J AU Luo, HM Dai, S Bonnesen, PV Buchanan, AC AF Luo, Huimin Dai, Sheng Bonnesen, Peter V. Buchanan, A. C., III TI Separation of fission products based on ionic liquids: Task-specific ionic liquids containing an aza-crown ether fragment SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article; Proceedings Paper CT 24th Rare Earth Research Conference CY JUN 26, 2005 CL Keystone, CO DE ionic liquids; solvent extraction; aza-crown ether ID SOLVENT-EXTRACTION; AQUEOUS-SOLUTIONS; METAL-IONS; EXCHANGE; CO2 AB A new class of task-specific ionic liquids (TSILs) based on the covalent attachment of imidazolium cations to a monoaza-crown ether fragment has been synthesized and characterized. The efficacy of these TSILs for the biphasic extraction of Cs(+) and Sr(2+) from aqueous solutions has been evaluated. The extraction properties of these TSILs can be influenced by the structures of the covalently attached imidazolium cations, which highlight the possibilities to enhance or tune the selectivities of crown ethers toward target ionic species through the covalent coupling with the imidazolium cations. (c) 2005 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Luo, HM (reprint author), Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. EM luoh@ornl.gov RI Bonnesen, Peter/A-1889-2016; Dai, Sheng/K-8411-2015 OI Bonnesen, Peter/0000-0002-1397-8281; Dai, Sheng/0000-0002-8046-3931 NR 19 TC 69 Z9 75 U1 1 U2 23 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JUL 20 PY 2006 VL 418 IS 1-2 BP 195 EP 199 DI 10.1016/j.jallcom.2005.10.054 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 060DE UT WOS:000238781500035 ER PT J AU Loubere, R Caramana, EJ AF Loubere, R Caramana, EJ TI The force/work differencing of exceptional points in the discrete, compatible formulation of Lagrangian hydrodynamics SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Lagrangian; hydrodynamics; energy conserving; high speed flow; artificial viscosity ID ARTIFICIAL VISCOSITY; PRESERVATION; ENERGY; SHOCKS; ERRORS AB This study presents the force and mass discretization of exceptional points in the compatible formulation of Lagrangian hydrodynamics. It concludes a series of papers that develop various aspects of the theoretical exposition and the operational implementation of this numerical algorithm. Exceptional points are grid points at the termination of lines internal to the computational domain, and where boundary conditions are therefore not applied. These points occur naturally in most applications in order to ameliorate spatial grid anisotropy, and the consequent timestep reduction, that will otherwise arise for grids with highly tapered regions or a center of convergence. They have their velocity enslaved to that of neighboring points in order to prevent large excursions of the numerical solution about them. How this problem is treated is given herein for the aforementioned numerical algorithm such that its salient conservation properties are retained. In doing so the subtle aspects of this algorithm that are due to the interleaving of spatial contours that occur with the use of a spatially-staggered-grid mesh are illuminated. These contours are utilized to define both forces and the work done by them, and are the central construct of this type of finite-volume differencing. Additionally, difficulties that occur due to uncertainties in the specification of the artificial viscosity are explored, and point to the need for further research in this area. (c) 2005 Elsevier Inc. All rights reserved. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Loubere, R (reprint author), Los Alamos Natl Lab, Div Theoret, T-7 & CCS-2,T7,MS B284, Los Alamos, NM 87545 USA. EM loubere@lanl.gov; ejc@lanl.gov NR 18 TC 11 Z9 11 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUL 20 PY 2006 VL 216 IS 1 BP 1 EP 18 DI 10.1016/j.jcp.2005.11.022 PG 18 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 047XC UT WOS:000237911000001 ER PT J AU Dragojlovic, Z Najmabadi, F Day, M AF Dragojlovic, Z Najmabadi, F Day, M TI An embedded boundary method for viscous, conducting compressible flow SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE embedded boundary; Godunov; convergence analysis; Cartesian grid; redistribution; inertial fusion energy ID LASER FUSION; UNSTEADY; CHAMBER AB The evolution of an inertial fusion energy (IFE) chamber involves a repetition of short, intense depositions of energy (from target ignition) into a reaction chamber, followed by the turbulent relaxation of that energy through shock waves and thermal conduction to the vessel walls. We present an algorithm for 2D simulations of the fluid inside an IFE chamber between fueling repetitions. Our finite-volume discretization for the Navier-Stokes equations incorporates a Cartesian grid treatment for irregularly-shaped domain boundaries. The discrete conservative update is based on a time-explicit Godunov method for advection, and a two-stage Runge-Kutta update for diffusion accommodating state-dependent transport properties. Conservation is enforced on cut cells along the embedded boundary interface using a local redistribution scheme so that the explicit time step for the combined approach is governed by the mesh spacing in the uniform grid. The test problems demonstrate second-order convergence of the algorithm on smooth solution profiles, and the robust treatment of discontinuous initial data in an IFE-relevant vessel geometry. (c) 2005 Elsevier Inc. All rights reserved. C1 Univ Calif San Diego, Dept Elect & Comp Engn, Energy Res Ctr, La Jolla, CA 92093 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA. RP Dragojlovic, Z (reprint author), Univ Calif San Diego, Dept Elect & Comp Engn, Energy Res Ctr, 457 EBU-2,9500 Gilman Dr,MC 0417, La Jolla, CA 92093 USA. EM zoran@fusion.ucsd.edu NR 17 TC 8 Z9 8 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUL 20 PY 2006 VL 216 IS 1 BP 37 EP 51 DI 10.1016/j.jcp.2005.11.025 PG 15 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 047XC UT WOS:000237911000003 ER PT J AU Michalsky, JJ Anderson, GP Barnard, J Delamere, J Gueymard, C Kato, S Kiedron, P McComiskey, A Ricchiazzi, P AF Michalsky, J. J. Anderson, G. P. Barnard, J. Delamere, J. Gueymard, C. Kato, S. Kiedron, P. McComiskey, A. Ricchiazzi, P. TI Shortwave radiative closure studies for clear skies during the atmospheric radiation measurement 2003 aerosol intensive observation period SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CLOUD-FREE SKIES; MULTIPLE-SCATTERING; OPTICAL DEPTH; SOLAR-RADIATION; THERMAL OFFSET; IRRADIANCE; SURFACE; MODELS; TRANSMITTANCE; PYRANOMETERS AB [ 1] The Department of Energy's Atmospheric Radiation Measurement ( ARM) program sponsored a large aerosol intensive observation period (AIOP) to study aerosol during the month of May 2003 around the Southern Great Plains (SGP) Climate Research Facility (CRF) in north central Oklahoma. Redundant measurements of aerosol optical properties were made using different techniques at the surface as well as in vertical profile with sensors aboard two aircraft. One of the principal motivations for this experiment was to resolve the disagreement between models and measurements of diffuse horizontal broadband shortwave irradiance at the surface, especially for modest aerosol loading. This paper focuses on using the redundant aerosol and radiation measurements during this AIOP to compare direct beam and diffuse horizontal broadband shortwave irradiance measurements and models at the surface for a wide range of aerosol cases that occurred during 30 clear-sky periods on 13 days of May 2003. Models and measurements are compared over a large range of solar-zenith angles. Six different models are used to assess the relative agreement among them and the measurements. Better agreement than previously achieved appears to be the result of better specification of input parameters and better measurements of irradiances than in prior studies. Biases between modeled and measured direct irradiances are in the worst case 1%, and biases between modeled and measured diffuse irradiances are less than 1.9%. C1 NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. USAF, Res Lab, Battlespace Surveillance Innovat Ctr, Boulder, CO 80305 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. Atmospher & Environm Res Inc, Lexington, MA 02421 USA. Solar Consulting Serv Inc, Colebrook, NH 03576 USA. Hampton Univ, Ctr Atmospher Sci, Hampton, VA 23668 USA. SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12222 USA. Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. Univ Calif Santa Barbara, Inst Computat Earth Syst Sci, Santa Barbara, CA 93106 USA. RP Michalsky, JJ (reprint author), NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. EM joseph.michalsky@noaa.gov; gail.anderson@noaa.gov; james.barnard@pnl.gov; jdelamer@aer.com; chris@solarconsultingservices.com; s.kato@larc.nasa.gov; kiedron@asrc.cestm.albany.edu; allison.mc-comiskey@noaa.gov; paul@icess.ucsb.edu RI McComiskey, Allison/I-3933-2013 OI McComiskey, Allison/0000-0002-6125-742X NR 47 TC 44 Z9 47 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 20 PY 2006 VL 111 IS D14 AR D14S90 DI 10.1029/2005JD006341 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 071DS UT WOS:000239578900001 ER PT J AU Shepard, R AF Shepard, Ron TI Hamiltonian matrix and reduced density matrix construction with nonlinear wave functions SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID UNITARY-GROUP-APPROACH; ELECTRON CORRELATION-PROBLEM; CONFIGURATION-INTERACTION CALCULATIONS; PROGRAM SYSTEM; CI; IMPLEMENTATION; COLUMBUS AB An efficient procedure to compute Hamiltonian matrix elements and reduced one- and two-particle density matrices for electronic wave functions using a new graphical-based nonlinear expansion form is presented. This method is based on spin eigenfunctions using the graphical unitary group approach ( GUGA), and the wave function is expanded in a basis of product functions ( each of which is equivalent to some linear combination of all of the configuration state functions), allowing application to closed-and open-shell systems and to ground and excited electronic states. In general, the effort required to construct an individual Hamiltonian matrix element between two product basis functions HMN) < M vertical bar H vertical bar N > scales as O (beta n(4)) for a wave function expanded in n molecular orbitals. The prefactor, itself scales between N(0) and N(2), for N electrons, depending on the complexity of the underlying Shavitt graph. Timings with our initial implementation of this method are very promising. Wave function expansions that are orders of magnitude larger than can be treated with traditional CI methods require only modest effort with our new method. C1 Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Shepard, R (reprint author), Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. EM shepard@tcg.anl.gov NR 24 TC 24 Z9 24 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUL 20 PY 2006 VL 110 IS 28 BP 8880 EP 8892 DI 10.1021/jp060336g PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 063EX UT WOS:000239001600034 PM 16836452 ER PT J AU Li, QW Zhu, YT Kinloch, IA Windle, AH AF Li, Qingwen Zhu, Yuntian T. Kinloch, Ian A. Windle, Alan H. TI Self-organization of carbon nanotubes in evaporating droplets SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID ORIENTATION; NANOSPHERES; PATTERNS; DROPS; FLOW AB Here, we report a simple and efficient way for organizing carbon nanotubes, in particular, single-wall carbon nanotubes ( SWNTs) into ordered structures from their dilute solutions. It was found that drying a droplet of carbon nanotube solution at room temperature on a wettable surface such as glass or silica wafer led to redistribution, accumulation, and organization of carbon nanotubes along the perimeter of the droplet. Unlike the aggregation behaviors of colloid nanoparticles, anistropic carbon nanotubes tended to show two orientations in a ring deposit: one parallel to the outer perimeter of the ring and the other normal to it in the interior. Drying droplets of SWNT solutions at high temperatures exhibited a long-range ordered structure. In addition, droplet drying may cause size separation of carbon nanotubes and pattern formation through interactions between droplets. This result helps us not only to further understand fluid dynamics during the drying process but also to provide a promising and simple strategy for either assembling carbon nanotubes on a surface or organizing them into well-aligned films and fibers. C1 Los Alamos Natl Lab, Div Mat Sci, Los Alamos, NM 87545 USA. Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. RP Li, QW (reprint author), Los Alamos Natl Lab, Div Mat Sci, POB 1663, Los Alamos, NM 87545 USA. EM qingwen@lanl.gov RI Zhu, Yuntian/B-3021-2008 OI Zhu, Yuntian/0000-0002-5961-7422 NR 13 TC 74 Z9 76 U1 3 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUL 20 PY 2006 VL 110 IS 28 BP 13926 EP 13930 DI 10.1021/jp061554c PG 5 WC Chemistry, Physical SC Chemistry GA 063EY UT WOS:000239001700036 PM 16836343 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barbereis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Berntzon, L Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borcherding, F Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Chevallier, E Cho, DK Choi, S Choudhary, B Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Das, M Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E Martins, CD Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvir, VD Eno, S Ermolov, P Estrada, J Evans, H Evdokimov, A Evdokimov, VN Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Gounder, K Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth'y, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jenkins, A Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, JM Kalk, JR Kappler, S Karmanov, D Kasper, J Kasper, P Katsanos, I Kau, D Kaur, R Kehoe, R Kermiche, S Kesisoglou, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Kryemadhi, A Krzywdzinski, S Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lager, S Lammers, S Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Lesne, V Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Z Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK McCarthy, R McCroskey, R Meder, D Melnitchouk, A Mendes, A Mendoza, L Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Millet, T Mitrevski, J Molina, J Mondal, NK Monk, J Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundim, L Mutaf, YD Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Oguri, V Oliveira, N Oshima, N Otec, R Garzon, GJY Owen, M Padley, P Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Peters, K Petroff, P Petteni, M Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG Popov, AV da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rani, KJ Ranjan, K Rapidis, PA Ratoff, PN Renkel, P Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Siccardi, V Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tillery, B Titov, M Tokmenin, VV Tomoto, M Toole, T Torchiani, I Towers, S Trefzger, T Trincaz-Duvoid, S Tsybychev, D Tuchming, B Tully, C Turcot, AS Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vlimant, JR Von Toerne, E Voutilainen, M Vreeswijk, M Wahl, HD Wang, L Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Womersley, J Wood, DR Wyatt, TR Xie, Y Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, C Yu, J Yurkewicz, A Zatserklyaniy, A Zeitnitz, C Zhang, D Zhao, T Zhao, Z Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Agelou, M. Agram, J. -L. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barbereis, E. Bargassa, P. Baringer, P. Barnes, C. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Berntzon, L. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Binder, M. Biscarat, C. Black, K. M. Blackler, I. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Blumenschein, U. Boehnlein, A. Boeriu, O. Bolton, T. A. Borcherding, F. Borissov, G. Bos, K. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Burdin, S. Burke, S. Burnett, T. H. Busato, E. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Caron, S. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chapin, D. Charles, F. Cheu, E. Chevallier, E. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Claes, D. Clement, B. Clement, C. Coadou, Y. Cooke, M. Cooper, W. E. Coppage, D. Corcoran, M. Cousinou, M. -C. Cox, B. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Das, M. Davies, B. Davies, G. Davis, G. A. De, K. de Jong, P. de Jong, S. J. De La Cruz-Burelo, E. De Oliveira Martins, C. Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Demine, P. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Doidge, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Edwards, T. Ellison, J. Elmsheuser, J. Elvir, V. D. Eno, S. Ermolov, P. Estrada, J. Evans, H. Evdokimov, A. Evdokimov, V. N. Fatakia, S. N. Feligioni, L. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fleck, I. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gardner, J. Gavrilov, V. Gay, A. Gay, P. Gele, D. Gelhaus, R. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Gounder, K. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hooper, R. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth'y, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jenkins, A. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kaefer, D. Kahn, S. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kalk, J. R. Kappler, S. Karmanov, D. Kasper, J. Kasper, P. Katsanos, I. Kau, D. Kaur, R. Kehoe, R. Kermiche, S. Kesisoglou, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Klima, B. Kohli, J. M. Konrath, J. -P. Kopal, M. Korablev, V. M. Kotcher, J. Kothari, B. Koubarovsky, A. Kozelov, A. V. Kozminski, J. Kryemadhi, A. Krzywdzinski, S. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lager, S. Lammers, S. Landsberg, G. Lazoflores, J. Le Bihan, A. -C. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lesne, V. Leveque, J. Lewis, P. Li, J. Li, Q. Z. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Lounis, A. Love, P. Lubatti, H. J. Lynker, M. Lyon, A. L. Maciel, A. K. A. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Magnan, A. -M. Makovec, N. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martens, M. Mattingly, S. E. K. McCarthy, R. McCroskey, R. Meder, D. Melnitchouk, A. Mendes, A. Mendoza, L. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Michaut, M. Miettinen, H. Millet, T. Mitrevski, J. Molina, J. Mondal, N. K. Monk, J. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundim, L. Mutaf, Y. D. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Nelson, S. Neustroev, P. Noeding, C. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Oguri, V. Oliveira, N. Oshima, N. Otec, R. Garzon, G. J. Otero y Owen, M. Padley, P. Parashar, N. Park, S. J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Perea, P. M. Perez, E. Peters, K. Petroff, P. Petteni, M. Piegaia, R. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Pompos, A. Pope, B. G. Popov, A. V. Prado da Silva, W. L. Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rani, K. J. Ranjan, K. Rapidis, P. A. Ratoff, P. N. Renkel, P. Reucroft, S. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Royon, C. Rubinov, P. Ruchti, R. Rud, V. I. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schmitt, C. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sengupta, S. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shephard, W. D. Shivpuri, R. K. Shpakov, D. Siccardi, V. Sidwell, R. A. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smith, R. P. Snow, G. R. Snow, J. Snyder, S. Soldner-Rembold, S. Song, X. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stevenson, K. Stolin, V. Stone, A. Stoyanova, D. A. Strandberg, J. Strang, M. A. Strauss, M. Stroehmer, R. Strom, D. Strovink, M. Stutte, L. Sumowidagdo, S. Sznajder, A. Talby, M. Tamburello, P. Taylor, W. Telford, P. Temple, J. Tillery, B. Titov, M. Tokmenin, V. V. Tomoto, M. Toole, T. Torchiani, I. Towers, S. Trefzger, T. Trincaz-Duvoid, S. Tsybychev, D. Tuchming, B. Tully, C. Turcot, A. S. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vartapetian, A. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vlimant, J. -R. Von Toerne, E. Voutilainen, M. Vreeswijk, M. Wahl, H. D. Wang, L. Warchol, J. Watts, G. Wayne, M. Weber, M. Weerts, H. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Womersley, J. Wood, D. R. Wyatt, T. R. Xie, Y. Xuan, N. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, C. Yu, J. Yurkewicz, A. Zatserklyaniy, A. Zeitnitz, C. Zhang, D. Zhao, T. Zhao, Z. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zutshi, V. Zverev, E. G. CA DO Collaboration TI Search for R-parity violating supersymmetry via the LL(E)over-bar couplings lambda(121), lambda(122) or lambda(133) in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICS LETTERS B LA English DT Article DE supersymmetry; supergravity; supersymmetric models ID PHYSICS; NEUTRINO; PARTICLE; WEAK AB A search for gaugino pair production with a trilepton signature in the framework of R-parity violating supersymmetry via the couplings; lambda(121), lambda(122), or lambda(133) is presented. The data, corresponding to an integrated luminosity of L approximate to 360 pb(-1), were collected from April 2002 to August 2004 with the D0 detector at the Fermilab Tevatron Collider, at a center-of-mass energy of root s = 1.96 TeV. This analysis considers final states with three charged leptons with the flavor combinations eel, mu mu l, and ee tau (l = e or mu). No evidence for supersymmetry is found and limits at the 95% confidence level are set on the gaugino pair production cross section and lower bounds on the masses of the lightest neutralino and chargino are derived in two supersymmetric models. (c) 2006 Elsevier B.V. All rights reserved. C1 Rhein Westfal TH Aachen, Inst Phys 3, D-5100 Aachen, Germany. Univ Buenos Aires, RA-1053 Buenos Aires, DF, Argentina. Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. Univ Alberta, Edmonton, AB T6G 2M7, Canada. York Univ, Toronto, ON M3J 2R7, Canada. McGill Univ, Montreal, PQ H3A 2T5, Canada. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republ, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, F-38041 Grenoble, France. Univ Mediterranee, CNR, IN2P3, CPPM, Marseille, France. Accelerateur Lineaire Lab, CNRS, IN2P3, Orsay, France. Univ Paris 06, CNRS, IN2P3, LPNHE, F-75252 Paris 05, France. Univ Paris 07, CNRS, IN2P3, LPNHE, F-75221 Paris 05, France. CEA, Serv Phys Particules, DAPNIA, Saclay, France. Univ Haute Alsace, Mulhouse, France. Univ Strasbourg 1, CNRS, IN2P3, IReS, Strasbourg, France. Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl, F-69622 Villeurbanne, France. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, D-7800 Freiburg, Germany. Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. Sungkyunkwan Univ, Suwon, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. Inst NIKHEF, FOM, NL-1009 DB Amsterdam, Netherlands. Univ Amsterdam, NIKHEF H, Amsterdam, Netherlands. Radboud Univ Nijmegen, NIKHEF H, Nijmegen, Netherlands. Joint Inst Nucl Res, Dubna, Russia. Inst Theoret & Expt Phys, Moscow 117259, Russia. Inst Theoret & Expt Phys, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Royal Inst Technol, Stockholm, Sweden. Stockholm Univ, S-10691 Stockholm, Sweden. Lund Univ, S-22100 Lund, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Zurich, Inst Phys, CH-8006 Zurich, Switzerland. Univ Lancaster, Lancaster LA1 4YW, England. Imperial Coll Sch Med, London, England. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Purdue Univ Calumet, Hammond, IN 46323 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. SUNY Buffalo, Buffalo, NY 14260 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Oklahoma State Univ, Stillwater, OK 74078 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 75275 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Kafer, D (reprint author), Rhein Westfal TH Aachen, Inst Phys 3, D-5100 Aachen, Germany. EM kaefer@physik.rwth-aachen.de RI Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Oguri, Vitor/B-5403-2013; Telford, Paul/B-6253-2011; Nomerotski, Andrei/A-5169-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016 OI Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108 NR 33 TC 20 Z9 20 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUL 20 PY 2006 VL 638 IS 5-6 BP 441 EP 449 DI 10.1016/j.physletb.2006.05.077 PG 9 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 064QB UT WOS:000239103100008 ER PT J AU Okada, H Alekseev, IG Bravar, A Bunce, G Dhawan, S Gill, R Haeberli, W Jinnouchi, O Khodinov, A Makdisi, Y Nass, A Saito, N Stephenson, EJ Svirida, DN Wise, T Zelenski, A AF Okada, H. Alekseev, I. G. Bravar, A. Bunce, G. Dhawan, S. Gill, R. Haeberli, W. Jinnouchi, O. Khodinov, A. Makdisi, Y. Nass, A. Saito, N. Stephenson, E. J. Svirida, D. N. Wise, T. Zelenski, A. TI Measurement of the analyzing power A(N) in pp elastic scattering in the CNI region with a polarized atomic hydrogen gas jet target SO PHYSICS LETTERS B LA English DT Article DE elastic scattering; spin; coulomb nuclear interference; hadronic spin-flip ID ENERGY; INTERFERENCE AB A precise measurement of the analyzing power A(N) in proton-proton elastic scattering in the region of 4-momentum transfer squared 0.001 < vertical bar t vertical bar < 0.032 (GeV/c)(2) has been performed using a polarized atomic hydrogen gas jet target and the 100 GeV/c RHIC proton beam. The interference of the electromagnetic spin-flip amplitude with a hadronic spin-nonflip amplitude is predicted to generate a significant A(N) of 4-5%, peaking at -t similar or equal to 0.003 (GeV/c)(2). This kinematic region is known as the Coulomb nuclear interference region. A possible hadronic spin-flip amplitude modifies this calculable prediction. We present the first precise result of the CNI asymmetry and shape as a function of t. Our data are well described by the CNI prediction with the electromagnetic spin-flip alone and do not support the presence of a large hadronic spin-flip amplitude. (c) 2006 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. Brookhaven Natl Lab, RIKEN, Res Ctr, Upton, NY 11973 USA. Inst Theoret & Expt Phys, Moscow 117259, Russia. Kyoto Univ, Sakyo Ku, Kyoto 6068502, Japan. RIKEN, Wako, Saitama 3510198, Japan. SUNY Stony Brook, Stony Brook, NY 11794 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Bravar, A (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM bravar@bnl.gov RI KHODINOV, ALEKSANDR/D-6269-2015; Svirida, Dmitry/R-4909-2016 OI KHODINOV, ALEKSANDR/0000-0003-3551-5808; NR 17 TC 47 Z9 47 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUL 20 PY 2006 VL 638 IS 5-6 BP 450 EP 454 DI 10.1016/j.physletb.2006.06.008 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 064QB UT WOS:000239103100009 ER PT J AU Downum, C Barnes, T Stone, JR Swanson, ES AF Downum, C. Barnes, T. Stone, J. R. Swanson, E. S. TI Nucleon-meson coupling constants and form factors in the quark model SO PHYSICS LETTERS B LA English DT Article ID EXCHANGE-POTENTIAL APPROACH; BARYON-BARYON SCATTERING; DECAYS AB We demonstrate the calculation of the coupling constants and form factors required by effective hadron Lagrangians using the quark model. These relations follow from equating expressions for strong transition amplitudes in the two approaches. As examples we derive the NNm nucleon-meson coupling constants and form factors for m = pi, eta, eta', alpha, alpha(0), omega and rho, using harmonic oscillator quark model meson and baryon wavefunctions and the P-3(0) decay model; these results are relevant to quark-based descriptions of the NN force. This technique should be useful in the application of effective Lagrangians to processes in which the lack of data precludes the direct determination of coupling constants and form factors from experiment. (c) 2006 Published by Elsevier B.V. C1 Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Univ Oxford, Dept Phys, Oxford OX1 3PU, England. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. RP Barnes, T (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM c.downum1@physics.ox.ac.uk; tbarnes@utk.edu; j.stone1@physics.ox.ac.uk; swansone@pitt.edu NR 17 TC 17 Z9 17 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUL 20 PY 2006 VL 638 IS 5-6 BP 455 EP 460 DI 10.1016/j.physletb.2006.05.084 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 064QB UT WOS:000239103100010 ER PT J AU Nguyen, T Joshi, NS Francis, MB AF Nguyen, Trung Joshi, Neel S. Francis, Matthew B. TI An affinity-based method for the purification of fluorescently-labeled biomolecules SO BIOCONJUGATE CHEMISTRY LA English DT Article ID MOLECULAR RECOGNITION; BETA-CYCLODEXTRIN; SENSORS AB Due to the difficulty of separating mixtures of labeled and unlabeled biomolecules, a general new method for the affinity purification of modified proteins has been developed. A Sepharose-based solid support bearing beta-cyclodextrin groups was used to capture chromophore-modified proteins selectively, while unmodified proteins remained in solution. After isolation of the resin, the modified proteins were released by treating the sample with a competitive cyclodextrin binder, such as adamantane carboxylic acid. This procedure was demonstrated for several dyes displaying a wide range of spectral characteristics and diverse chemical structures. Preliminary studies have shown that this method can also be used to enrich modified peptide fragments present in proteolytic digests. This technique is anticipated to accelerate the development of new protein modification reactions and could provide a useful tool for proteomics applications. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Francis, MB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. OI Joshi, Neel/0000-0001-8236-3566 FU NIGMS NIH HHS [GM072700-01] NR 14 TC 18 Z9 18 U1 3 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1043-1802 J9 BIOCONJUGATE CHEM JI Bioconjugate Chem. PD JUL 19 PY 2006 VL 17 IS 4 BP 869 EP 872 DI 10.1021/bc060130i PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Chemistry, Multidisciplinary; Chemistry, Organic SC Biochemistry & Molecular Biology; Chemistry GA 064WJ UT WOS:000239120500002 PM 16848391 ER PT J AU Boore, JL AF Boore, Jeffrey L. TI The complete sequence of the mitochondrial genome of Nautilus macromphalus (Mollusca : Cephalopoda) SO BMC GENOMICS LA English DT Article ID TRANSFER-RNA GENES; MYTILUS-EDULIS; BLUE MUSSEL; DNA; REPLICATION; EVOLUTION; STRAND; ORIGIN; REARRANGEMENT; AMPLIFICATION AB Background: Mitochondria contain small genomes that are physically separate from those of nuclei. Their comparison serves as a model system for understanding the processes of genome evolution. Although complete mitochondrial genome sequences have been reported for more than 600 animals, the taxonomic sampling is highly biased toward vertebrates and arthropods, leaving much of the diversity yet uncharacterized. Results: The mitochondrial genome of the bellybutton nautilus, Nautilus macromphalus, a cephalopod mollusk, is 16,258 nts in length and 59.5% A+T, both values that are typical of animal mitochondrial genomes. It contains the 37 genes that are almost universally found in animal mtDNAs, with 15 on one DNA strand and 22 on the other. The arrangement of these genes can be derived from that of the distantly related Katharina tunicata (Mollusca: Polyplacophora) by a switch in position of two large blocks of genes and transpositions of four tRNA genes. There is strong skew in the distribution of nucleotides between the two strands, and analysis of this yields insight into modes of transcription and replication. There is an unusual number of non-coding regions and their function, if any, is not known; however, several of these demark abrupt shifts in nucleotide skew, and there are several identical sequence elements at these junctions, suggesting that they may play roles in transcription and/or replication. One of the non-coding regions contains multiple repeats of a tRNA-like sequence. Some of the tRNA genes appear to overlap on the same strand, but this could be resolved if the polycistron were cleaved at the beginning of the downstream gene, followed by polyadenylation of the product of the upstream gene to form a fully paired structure. Conclusion: Nautilus macromphalus mtDNA contains an expected gene content that has experienced few rearrangements since the evolutionary split between cephalopods and polyplacophorans. It contains an unusual number of non-coding regions, especially considering that these otherwise often are generated by the same processes that produce gene rearrangements. The skew in nucleotide composition between the two strands is strong and associated with the direction of transcription in various parts of the genomes, but a comparison with K. tunicata implies that mutational bias during replication also plays a role. This appears to be yet another case where polyadenylation of mitochondrial tRNAs restores what would otherwise be an incomplete structure. C1 DOE, Joint Genome Inst, Evolutionary Genom Program, Walnut Creek, CA 94598 USA. Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA. Genome Project Solut, Hercules, CA 94547 USA. RP Boore, JL (reprint author), DOE, Joint Genome Inst, Evolutionary Genom Program, Walnut Creek, CA 94598 USA. EM JLBoore@berkeley.edu NR 48 TC 51 Z9 60 U1 1 U2 6 PU BIOMED CENTRAL LTD PI LONDON PA MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD JUL 19 PY 2006 VL 7 AR 182 DI 10.1186/1471-2164-7-182 PG 13 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 073UA UT WOS:000239766900001 PM 16854241 ER PT J AU Khatri, RA Chuang, SSC Soong, Y Gray, M AF Khatri, Rajesh A. Chuang, Steven S. C. Soong, Yee Gray, McMahan TI Thermal and chemical stability of regenerable solid amine sorbent for CO2 capture SO ENERGY & FUELS LA English DT Article ID CARBON-DIOXIDE REMOVAL; ACTIVATED CARBONS; MODIFIED SBA-15; NATURAL-GAS; ADSORPTION; SILICA; CAO AB The adsorption and desorption of CO2 and SO2 on an amine-grafted SBA-15 sorbent has been studied by in situ infrared spectroscopy coupled with mass spectrometry. CO2 adsorbed on an amine-grafted sorbent as carbonates and bicarbonates, while SO2 adsorbed as sulfates and sulfites. The CO2 adsorption capacity of the amine- grafted sorbent was almost twice as much as that of a commercial sorbent. The adsorption of CO2 in the presence of H2O and D2O shows an isotopic shift in the IR frequency of adsorbed carbonate and bicarbonate bands, revealing that water plays a role in the CO2 adsorption on amine- grafted sorbents. Although the rate of adsorption of SO2 was slower than that of CO2, the adsorbed S surface species is capable of blocking the active amine sites for CO2 adsorption. A temperature-programmed degradation study of the amine- grafted sorbent showed that the surface amine species are stable up to 250 degrees C in air. C1 Univ Akron, Dept Chem Engn, Akron, OH 44325 USA. US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Chuang, SSC (reprint author), Univ Akron, Dept Chem Engn, Akron, OH 44325 USA. EM schuang@uakron.edu NR 41 TC 225 Z9 234 U1 18 U2 86 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD JUL 19 PY 2006 VL 20 IS 4 BP 1514 EP 1520 DI 10.1021/ef050402y PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 064WF UT WOS:000239120000024 ER PT J AU Zuo, Y Maness, PC Logan, BE AF Zuo, Yi Maness, Pin-Ching Logan, Bruce E. TI Electricity production from steam-exploded corn stover biomass SO ENERGY & FUELS LA English DT Article ID MICROBIAL FUEL-CELL; PROTON-EXCHANGE MEMBRANE; WASTE-WATER; POWER-GENERATION; TEMPERATURE; OXIDATION; HYDROGEN; GLUCOSE AB Electricity generation using microbial fuel cells ( MFCs) was examined from corn stover waste biomass using samples prepared through either neutral or acid steam- exploded hydrolysis processes that convert the hemicellulose to soluble sugars. Maximum power densities in fed- batch tests using an air-cathode MFC were 371 +/- 13 mW/m(2) and 367 +/- 13 mW/m(2) for the neutral and acid hydrolysates ( 1000 mg- COD/ L, 250 Omega). Power output exhibited saturation kinetics with respect to fuel concentration, with predicted maximum power densities of P-max) 475 mW/ m(2) and half- saturation constants of K-s) 347 mg/ L ( neutral) and Pmax) 422 mW/m(2) and Ks) 170 mg/ L ( acid). Coulombic efficiencies ( CEs) were comparable to that found using carbohydrates in this type of MFC, with values ranging from 20 to 30% for both hydrolysates. All sugars ( monomeric or oligomeric) were completely utilized, with overall biochemical oxygen demand ( BOD) removal efficiencies of 93 +/- 2% ( neutral) and 94 +/- 1% ( acid). Power output could be increased by using a cathode containing a diffusion layer, resulting in maximum power densities of 810 ( 3 mW/m(2) ( neutral) and 861 ( 37 mW/m(2) ( acid). Power was further increased by increasing solution conductivity to 20 mS/ cm, resulting in 933 mW/ m(2) ( neutral) and 971 mW/ m(2) ( acid) for the two hydrolysates. Additional increases in solution conductivity lowered the anode potential and did not increase power. These results demonstrate the potential for a new method of renewable energy production based on conversion of biomass to electricity using MFCs. C1 Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA. Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Logan, BE (reprint author), Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA. EM blogan@psu.edu RI Logan, Bruce/E-7063-2012 OI Logan, Bruce/0000-0001-7478-8070 NR 23 TC 85 Z9 96 U1 2 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD JUL 19 PY 2006 VL 20 IS 4 BP 1716 EP 1721 DI 10.1021/ef060033l PG 6 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 064WF UT WOS:000239120000051 ER PT J AU Carapelli, A Vannini, L Nardi, F Boore, JL Beani, L Dallai, R Frati, F AF Carapelli, Antonio Vannini, Laura Nardi, Francesco Boore, Jeffrey L. Beani, Laura Dallai, Romano Frati, Francesco TI The mitochondrial genome of the entomophagous endoparasite Xenos vesparum (Insecta : Strepsiptera) SO GENE LA English DT Article DE mtDNA; gene order; codon usage; tRNA; A plus T context; strand nucleotide bias ID 12S RIBOSOMAL-RNA; SECONDARY STRUCTURE; PHYLOGENETIC ANALYSIS; CONSERVED MOTIFS; FELSENSTEIN ZONE; DNA-SEQUENCE; EVOLUTION; GENE; ORGANIZATION; ALIGNMENT AB In this study, the nearly complete sequence (14,519 bp) of the mitochondrial DNA (mtDNA) of the entomophagous endoparasite Xenos vesparunt (Insecta: Strepsiptera) is described. All protein coding genes (PCGs) are in the arrangement known to be ancestral for insects, but three tRNA genes (trnA, trnS(geu), and trnL(uag)) have transposed to derived positions and there are three tandem copies of trnH, each of which is potentially functional. All of these rearrangements except for that of trnL(uag) is within the short span between nad3 and nad4 and there are numerous blocks of unassignable sequence in this region, perhaps as remnants of larger scale predisposing rearrangements. X vesparunt mtDNA nucleotide composition is strongly biased toward A and T, as is typical for insect mtDNAs. There is also a significant strand skew in the distribution of these nucleotides, with the J-strand being richer in A than T and in C than G, and the N-strand showing an opposite skew for complementary pairs of nucleotides. The hypothetical secondary structure of the LSU rRNA has also been reconstructed, obtaining a structural model similar to that of other insects. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Siena, Dept Evolut Biol, I-53100 Siena, Italy. Univ Calif Berkeley, US Dept Energy Joint Genome Inst, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Florence, Dept Anim Biol & Genet Leo Pardi, Florence, Italy. RP Frati, F (reprint author), Univ Siena, Dept Evolut Biol, Via A Moro 2, I-53100 Siena, Italy. RI Nardi, Francesco/E-5516-2011; OI Dallai, Romano/0000-0002-2258-8891; Nardi, Francesco/0000-0003-0271-9855; CARAPELLI, Antonio/0000-0002-3165-9620 NR 61 TC 27 Z9 29 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-1119 J9 GENE JI Gene PD JUL 19 PY 2006 VL 376 IS 2 BP 248 EP 259 DI 10.1016/j.gene.2006.04.005 PG 12 WC Genetics & Heredity SC Genetics & Heredity GA 068FI UT WOS:000239357700011 PM 16766140 ER PT J AU Monroe, CW Newman, J AF Monroe, Charles W. Newman, John TI Onsager reciprocal relations for Stefan-Maxwell diffusion SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID MULTICOMPONENT DIFFUSION; IRREVERSIBLE-PROCESSES AB The choice of diffusional driving forces and fluxes such that a sum of their products yields the entropy generation rate does not generally lead to a system with a symmetric transport matrix. One can apply Onsager's fluctuation theory to a mass-transfer system with various driving forces, such as gradients of mole fraction, concentration, or chemical potential, and obtain a proper reciprocal relation among the transport properties so defined. Although Stefan-Maxwell coefficients are generally not symmetric, Dij not equal Dji, Onsager's theory still supplies the reciprocal relation. This work employs these principles to derive the reciprocal relation among Stefan-Maxwell coefficients for isothermal, isobaric mass diffusion, with an illustration for ideal solutions. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Newman, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM newman@newman.cchem.berkeley.edu RI Newman, John/B-8650-2008 OI Newman, John/0000-0002-9267-4525 NR 19 TC 12 Z9 12 U1 3 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD JUL 19 PY 2006 VL 45 IS 15 BP 5361 EP 5367 DI 10.1021/ie051061e PG 7 WC Engineering, Chemical SC Engineering GA 062VL UT WOS:000238973200022 ER PT J AU Haick, H Hurley, PT Hochbaum, AI Yang, PD Lewis, NS AF Haick, Hossam Hurley, Patrick T. Hochbaum, Allon I. Yang, Peidong Lewis, Nathan S. TI Electrical characteristics and chemical stability of non-oxidized, methyl-terminated silicon nanowires SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID FIELD-EFFECT TRANSISTORS; SURFACES C1 CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Lewis, NS (reprint author), CALTECH, Div Chem & Chem Engn, MC 127-72,1200 E Calif Blvd, Pasadena, CA 91125 USA. EM nslewis@its.caltech.edu NR 15 TC 110 Z9 110 U1 2 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 19 PY 2006 VL 128 IS 28 BP 8990 EP 8991 DI 10.1021/ja056785w PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 062VI UT WOS:000238972900001 PM 16834345 ER PT J AU Poltavets, VV Lokshin, KA Dikmen, S Croft, M Egami, T Greenblatt, M AF Poltavets, Viktor V. Lokshin, Konstantin A. Dikmen, Sibel Croft, Mark Egami, Takeshi Greenblatt, Martha TI La3Ni2O6: A new double T '-type nickelate with infinite Ni1+/2+O2 layers SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SODIUM HYDRIDE; PEROVSKITE; LANIO2; LA3NI2O7-DELTA; PHASE; ND C1 Rutgers State Univ, Dept Chem & Biol Chem, Piscataway, NJ 08854 USA. Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Greenblatt, M (reprint author), Rutgers State Univ, Dept Chem, 610 Taylor Rd, Piscataway, NJ 08854 USA. EM martha@rutchem.rutgers.edu OI Poltavets, Viktor/0000-0001-5086-7743 NR 15 TC 35 Z9 35 U1 4 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 19 PY 2006 VL 128 IS 28 BP 9050 EP 9051 DI 10.1021/ja063031o PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 062VI UT WOS:000238972900031 PM 16834375 ER PT J AU Mao, YB Zhang, F Wong, SS AF Mao, Yuanbing Zhang, Fen Wong, Stanislaus S. TI Ambient template-directed synthesis of single-crystalline alkaline-earth metal fluoride nanowires SO ADVANCED MATERIALS LA English DT Article ID ONE-DIMENSIONAL NANOSTRUCTURES; HYDROTHERMAL SYNTHESIS; UP-CONVERSION; POLYCARBONATE MEMBRANES; NANOPARTICLES; NANOTUBES; MICROEMULSION; NANORODS; PHOTOLUMINESCENCE; MORPHOLOGY AB A facile and mild means of controllably preparing a series of single-crystalline alkaline-earth metal fluoride nanowires of reproducible shape and varying sizes (see figure) using a simple, room-temperature approach has been developed. This approach is based on the use of readily commercially available polycarbonate template membranes. The favorable luminescence properties of the doped nanowires imply their possible incorporation into functional nanoscale devices. C1 SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Wong, SS (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM sswong@notes.cc.sunysb.edu RI Zhang, Fen/G-5015-2010; Mao, Yuanbing/D-5580-2009 NR 43 TC 54 Z9 54 U1 1 U2 21 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD JUL 18 PY 2006 VL 18 IS 14 BP 1895 EP + DI 10.1002/adma.200600358 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 070RO UT WOS:000239541600020 ER PT J AU Polivka, T van Stokkum, IHM Zigmantas, D van Grondelle, R Sundstrom, V Hiller, RG AF Polivka, Tomas van Stokkum, Ivo H. M. Zigmantas, Donatas van Grondelle, Rienk Sundstrom, Villy Hiller, Roger G. TI Energy transfer in the major intrinsic light-harvesting complex from Amphidinium carterae SO BIOCHEMISTRY LA English DT Article ID PERIDININ-CHLOROPHYLL-PROTEIN; CHARGE-TRANSFER STATE; EXCITED-STATES; SPECTROSCOPIC PROPERTIES; CAROTENOID PERIDININ; TRANSIENT ABSORPTION; S-1 STATE; A-PROTEIN; FLUORESCENCE SPECTROSCOPY; PURPLE BACTERIA AB Carbonyl carotenoids are important constituents of the antenna complexes of marine organisms. These carotenoids possess an excited state with a charge-transfer character ( intramolecular charge transfer state, ICT), but many details of the carotenoid to chlorophyll energy transfer mechanisms are as yet poorly understood. Here, we employ femtosecond transient absorption spectroscopy to study energy transfer pathways in the intrinsic light-harvesting complex (LHC) of dinoflagellates, which contains the carbonyl carotenoid peridinin. Carotenoid to chlorophyll energy transfer efficiency is about 90% in the 530-550 nm region, where the peridinin S-2 state transfers energy with an efficiency of 25-50%. The rest proceeds via the S-1/ICT channel, and the major S-1/ICT-mediated energy transfer pathway utilizes the relaxed S-1/ICT state and occurs with a time constant of 2.6 ps. Below 525 nm, the overall energy transfer efficiency drops because of light absorption by another carotenoid, diadinoxanthin, that contributes only marginally to energy transfer. Instead, its role is likely to be photoprotection. In addition to the peridinin-Chl-a energy transfer, it was shown that energy transfer also occurs between the two chlorophyll species in LHC, Chl-c(2), and Chl-a. The time constant characterizing the Chl-c2 to Chl-a energy transfer is 1.4 ps. The results demonstrate that the properties of the S1/ICT state specific for carbonyl carotenoids is the key to ensure the effective harvesting of photons in the 500-600 nm region, which is of vital importance to underwater organisms. C1 Univ S Bohemia, Inst Biol Phys, Ceske Budejovice, Czech Republic. Acad Sci Czech Republ, Inst Plant Mol Biol, Prague, Czech Republic. Lund Univ, Dept Chem Phys, S-22100 Lund, Sweden. Vrije Univ Amsterdam, Dept Phys & Astron, Amsterdam, Netherlands. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Macquarie Univ, Dept Biol Sci, N Ryde, NSW 2109, Australia. RP Polivka, T (reprint author), Univ S Bohemia, Inst Biol Phys, Ceske Budejovice, Czech Republic. EM polivka@ufb.jcu.cz RI Polivka, Tomas/B-6280-2008; Zigmantas, Donatas/E-5541-2014; Polivka, Tomas/G-9564-2014; van Stokkum, Ivo/E-7175-2015 OI Zigmantas, Donatas/0000-0003-2007-5256; Polivka, Tomas/0000-0002-6176-0420; van Stokkum, Ivo/0000-0002-6143-2021 NR 52 TC 56 Z9 57 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD JUL 18 PY 2006 VL 45 IS 28 BP 8516 EP 8526 DI 10.1021/bi060265b PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 062DK UT WOS:000238924600007 PM 16834325 ER PT J AU Boyle, JS AF Boyle, J. S. TI Upper level atmospheric stationary waves in the twentieth century climate of the Intergovernmental Panel on Climate Change simulations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID HORIZONTAL RESOLUTION; SENSITIVITY; REANALYSIS AB [1] The upper level stationary waves are defined as the deviations from longitudinal symmetry of the 250 hPa climatological monthly mean stream function. The climatological averaging period is over the years 1980 to 2000. The coupled model simulations are those of the climate of the 20th Century experiment (20C3M) prescribed by IPCC. The model results are compared to the NCEP/NCAR and ERA40 Reanalyses. The comparison shows the following. ( 1) The amplitude of the modeled waves in the Northern Hemisphere is generally weaker than observed; that is, modeled flow is too zonal. In the Southern Hemisphere, there are phase as well as amplitude discrepancies but no clear biases. ( 2) The correlation of the waves in the reanalyses and models in the Northern Hemisphere in winter averages about 0.9, but decreases sharply outside of winter. ( 3) For many models the correlation of the waves in the reanalyses and models outside of the wintertime Northern Hemisphere is poor, sometimes being less than 0.7. The most prominent systematic error, occurring across all models, is the underestimate of the trough/ridge in the Northern Hemisphere winter over the north Atlantic sector, 60 degrees W- 0 degrees W. ( 4) The models having the coarsest horizontal resolution consistently underperform compared to the others. For models of horizontal resolution finer than approximately 2.5 degrees, the relation to horizontal resolution and fidelity of the simulation is somewhat less clear. ( 5) The interannual variability of the waves is consistently underestimated by almost all the models throughout the year and over the Northern Hemisphere. The differences between the models and the reanalyses are surprisingly large, given the large scale of the features diagnosed and the fairly long averaging period. Comparison to AMIP2 integrations indicates that differences in the ocean simulation in the coupled models are likely not an overwhelming influence on the agreement with reanalyses. C1 Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94550 USA. RP Boyle, JS (reprint author), Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, L-103,7000 East Ave, Livermore, CA 94550 USA. EM boyle5@llnl.gov NR 11 TC 7 Z9 7 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 18 PY 2006 VL 111 IS D14 AR D14101 DI 10.1029/2005JD006612 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 071DP UT WOS:000239578600001 ER PT J AU Smith, SD Hamersky, MW Bowman, MK Rasmussen, KO Spontak, RJ AF Smith, Steven D. Hamersky, Mark W. Bowman, Michelle K. Rasmussen, Kim O. Spontak, Richard J. TI Molecularly asymmetric triblock copolymers as a single-molecule route to ordered bidisperse polymer brushes SO LANGMUIR LA English DT Article ID BLOCK-COPOLYMERS; DIELECTRIC-RELAXATION; EQUILIBRIUM BEHAVIOR; SOFT MATERIALS; MORPHOLOGY; PHASE; MELTS; MICROSTRUCTURES; NANOTECHNOLOGY; DIBLOCK AB The conditions signaling the formation of bidisperse brushes in ordered block copolymers are investigated as an A(2) block is progressively grown onto an A(1)B diblock copolymer to form a series of molecularly asymmetric, isomorphic A(1)BA(2) triblock copolymers. Small-angle scattering and self-consistent field theory confirm that the microphase-ordered period decreases when the A(2) block is short relative to the A(1) block, but then increases as A(1)+ A(2) bidisperse brushes develop. The mechanical properties systematically follow the spatial distribution of the A(2) block. C1 Procter & Gamble Co, Miami Valley Innovat Ctr, Cincinnati, OH 45061 USA. N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Smith, SD (reprint author), Procter & Gamble Co, Miami Valley Innovat Ctr, Cincinnati, OH 45061 USA. RI Rasmussen, Kim/B-5464-2009 OI Rasmussen, Kim/0000-0002-4029-4723 NR 39 TC 8 Z9 8 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUL 18 PY 2006 VL 22 IS 15 BP 6465 EP 6468 DI 10.1021/la060616n PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 062DY UT WOS:000238926000002 PM 16830983 ER PT J AU Fishman, RS Popescu, F Alvarez, G Moreno, J Maier, T Jarrell, M AF Fishman, R. S. Popescu, F. Alvarez, G. Moreno, J. Maier, Th Jarrell, M. TI Magnetic instabilities and phase diagram of the double-exchange model in infinite dimensions SO NEW JOURNAL OF PHYSICS LA English DT Article ID LONG-RANGE INTERACTIONS; TO-POLARON CROSSOVER; MEAN-FIELD THEORY; BETHE LATTICE; SPIN-GLASS; HUBBARD-MODEL; COLOSSAL-MAGNETORESISTANCE; FERROMAGNETIC TRANSITION; TEMPERATURE; MANGANITES AB Dynamical mean-field theory is used to study the magnetic instabilities and phase diagram of the double-exchange (DE) model with Hund's coupling J(H) > 0 in infinite dimensions. In addition to ferromagnetic ( FM) and antiferromagnetic (AF) phases, the DE model also supports a broad class of short-range ordered (SRO) states with extensive entropy and short-range magnetic order. For any site on the Bethe lattice, the correlation parameter q of an SRO state is given by the average q = [sin(2)(theta(i)/ 2)], where theta(i) is the angle between any spin and its neighbours. Unlike the FM ( q = 0) and AF ( q = 1) transitions, the transition temperature of an SRO state with 0 < q < 1 cannot be obtained from the magnetic susceptibility. But a solution of the coupled Green's functions in the weak-coupling limit indicates that an SRO state always has a higher transition temperature than the AF for all fillings p below 1 and even has a higher transition temperature than the FM for 0.26 <= p <= 0.39. For 0.39 < p < 0.73, where both the FM and AF phases are unstable for small J(H), an SRO phase has a nonzero transition temperature except close top = 0.5. As J(H) increases, the SRO transition temperature eventually vanishes and the FM phase dominates the phase diagram. For small J(H), the T = 0 phase diagram of the DE model is greatly simplified by the presence of the SRO phase. An SRO phase is found to have lower energy than either the FM or AF phases for 0.26 <= p < 1. Phase separation ( PS) disappears as J(H) -> 0 but appears for any nonzero coupling. For fillings near p = 1, PS occurs between an AF with p = 1 and either an SRO or a FM phase. The stability of an SRO state at T = 0 can be understood by examining the interacting density-of-states, which is gapped for any nonzero J(H) in an AF but only when J(H) exceeds a critical value in an SRO state. C1 Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. Univ N Dakota, Dept Phys, Grand Forks, ND 58202 USA. Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA. RP Fishman, RS (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM fishmanrs@ornl.gov RI Moreno, Juana/D-5882-2012; Fishman, Randy/C-8639-2013; Maier, Thomas/F-6759-2012 OI Maier, Thomas/0000-0002-1424-9996 NR 53 TC 6 Z9 6 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD JUL 18 PY 2006 VL 8 AR 116 DI 10.1088/1367-2630/8/7/116 PG 29 WC Physics, Multidisciplinary SC Physics GA 065DJ UT WOS:000239139300001 ER PT J AU Baryshev, A Hovenier, JN Adam, AJL Kasalynas, I Gao, JR Klaassen, TO Williams, BS Kumar, S Hu, Q Reno, JL AF Baryshev, A. Hovenier, J. N. Adam, A. J. L. Kasalynas, I. Gao, J. R. Klaassen, T. O. Williams, B. S. Kumar, S. Hu, Q. Reno, J. L. TI Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser SO APPLIED PHYSICS LETTERS LA English DT Article ID HETERODYNE RECEIVER; LOCAL OSCILLATOR; BOLOMETER AB We have studied the phase locking and spectral linewidth of an similar to 2.7 THz quantum cascade laser by mixing its two lateral lasing modes. The beat signal at about 8 GHz is compared with a microwave reference by applying conventional phase lock loop circuitry with feedback to the laser bias current. Phase locking has been demonstrated, resulting in a narrow beat linewidth of less than 10 Hz. Under frequency stabilization we find that the terahertz line profile is essentially Lorentzian with a minimum linewidth of similar to 6.3 kHz. Power dependent measurements suggest that this linewidth does not approach the Schawlow-Townes limit. (c) 2006 American Institute of Physics. C1 SRON Netherlands Inst Space Res, NL-9747 AD Groningen, Netherlands. Delft Univ Technol, Fac Sci Appl, Kavli Inst NanoSci, NL-2628 CJ Delft, Netherlands. MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. MIT, Elect Res Lab, Cambridge, MA 02139 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Inst Semicond Phys, LT-01108 Vilnius, Lithuania. RP Baryshev, A (reprint author), SRON Netherlands Inst Space Res, Landleven 12, NL-9747 AD Groningen, Netherlands. EM j.r.gao@tnw.tudelft.nl RI Adam, Aurele/C-6313-2012; Williams, Benjamin/B-4494-2013 OI Adam, Aurele/0000-0002-6727-946X; Williams, Benjamin/0000-0002-6241-8336 NR 13 TC 33 Z9 33 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 17 PY 2006 VL 89 IS 3 AR 031115 DI 10.1063/1.2227624 PG 3 WC Physics, Applied SC Physics GA 065QJ UT WOS:000239174100015 ER PT J AU Egatz-Gomez, A Melle, S Garcia, AA Lindsay, SA Marquez, M Dominguez-Garcia, P Rubio, MA Picraux, ST Taraci, JL Clement, T Yang, D Hayes, MA Gust, D AF Egatz-Gomez, Ana Melle, Sonia Garcia, Antonio A. Lindsay, S. A. Marquez, M. Dominguez-Garcia, P. Rubio, Miguel A. Picraux, S. T. Taraci, J. L. Clement, T. Yang, D. Hayes, Mark A. Gust, Devens TI Discrete magnetic microfluidics SO APPLIED PHYSICS LETTERS LA English DT Article ID DROPLETS; SURFACE; LIQUID; INTERFACES; ACTUATION; MOTION AB We present a method to move and control drops of water on superhydrophobic surfaces using magnetic fields. Small water drops (volume of 5-35 mu l) that contain fractions of paramagnetic particles as low as 0.1% in weight can be moved at relatively high speed (7 cm/s) by displacing a permanent magnet placed below the surface. Coalescence of two drops has been demonstrated by moving a drop that contains paramagnetic particles towards an aqueous drop that was previously pinned to a surface defect. This approach to microfluidics has the advantages of faster and more flexible control over drop movement. (c) 2006 American Institute of Physics. C1 Arizona State Univ, Harrington Dept Bioengn, Tempe, AZ 85287 USA. Univ Nacl Educ Distancia, Dept Fis Fundamental, Madrid 28040, Spain. Arizona State Univ, Dept Chem & Mat Engn, Tempe, AZ 85287 USA. Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. Univ Complutense Madrid, Dept Opt, Madrid 28037, Spain. Los Alamos Natl Lab, CINT, MST, Los Alamos, NM 87545 USA. RP Egatz-Gomez, A (reprint author), Arizona State Univ, Harrington Dept Bioengn, Tempe, AZ 85287 USA. EM smelle@fis.ucm.es RI rubio, miguel/A-4093-2008; Egatz-Gomez, Ana/B-7213-2011; Dominguez-Garcia, Pablo/B-2443-2009; OI rubio, miguel/0000-0002-4210-0443; Dominguez-Garcia, Pablo/0000-0002-1703-8967; Melle, Sonia/0000-0002-9802-6908 NR 27 TC 48 Z9 48 U1 2 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 17 PY 2006 VL 89 IS 3 AR 034106 DI 10.1063/1.2227517 PG 3 WC Physics, Applied SC Physics GA 065QJ UT WOS:000239174100125 ER PT J AU Kim, EH Shin, YH Kim, Y Noh, SJ Perry, CH Simmons, JA Crooker, SA Takamasu, T AF Kim, E. H. Shin, Y. H. Kim, Yongmin Noh, S. J. Perry, C. H. Simmons, J. A. Crooker, S. A. Takamasu, T. TI Nonlinear optical transitions of GaAs/AlGaAs asymmetric double-well structures SO APPLIED PHYSICS LETTERS LA English DT Article ID DOUBLE-QUANTUM-WELLS; MAGNETIC-FIELDS; ELECTRIC-FIELDS; PHOTOLUMINESCENCE; EXCITONS; INPLANE; GAS AB A thin AlGaAs barrier (2.5 nm) inserted into a GaAs/AlGaAs single heterojunction formed a square and a wedge-shaped triangular quantum well in the conduction band. In such a structure, the valence band does not have tunnel-coupled energy levels. Hence, the photogenerated valence holes tend to move to the GaAs flatband region. This asymmetric quantum structure showed intense nonlinear photoluminescence emission behavior with external excitation power and magnetic field. Increasing the external laser power simply caused the number of photogenerated holes to increase near the interface close to the quantum well, which then recombined with the conduction band electrons. External magnetic fields resulted in an increased Coulomb attraction which generated dynamic movement of valence holes. The migration of unbound holes to the interface region from the GaAs flatband area produced highly nonlinear optical transitions in magnetic fields. (c) 2006 American Institute of Physics. C1 Dankook Univ, Inst Nanosci & Biotechnol, Dept Appl Phys, Seoul 140714, South Korea. Northeastern Univ, Dept Phys, Boston, MA 02115 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Natl High Magne Field Lab, Los Alamos, NM 87545 USA. Natl Inst Mat Sci, Tsukuba, Ibaraki 3050003, Japan. RP Kim, EH (reprint author), Dankook Univ, Inst Nanosci & Biotechnol, Dept Appl Phys, Seoul 140714, South Korea. EM yongmin@dankook.ac.kr NR 14 TC 3 Z9 3 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 17 PY 2006 VL 89 IS 3 AR 032114 DI 10.1063/1.2220533 PG 3 WC Physics, Applied SC Physics GA 065QJ UT WOS:000239174100065 ER PT J AU Wu, XL Zhu, YT AF Wu, X. L. Zhu, Y. T. TI Partial-dislocation-mediated processes in nanocrystalline Ni with nonequilibrium grain boundaries SO APPLIED PHYSICS LETTERS LA English DT Article ID SEVERE PLASTIC-DEFORMATION; STACKING-FAULT ENERGIES; FORMATION MECHANISM; CRACK-TIP; METALS; AL; NUCLEATION; ALUMINUM; NICKEL; TWINS AB The partial-dislocation-mediated processes have so far eluded high-resolution transmission electron microscopy studies in nanocrystalline (nc) Ni with nonequilibrium grain boundaries. It is revealed that the nc Ni deformed largely by twinning instead of extended partials. The underlying mechanisms including dissociated dislocations, high residual stresses, and stress concentrations near stacking faults are demonstrated and discussed. (c) 2006 American Institute of Physics. C1 Chinese Acad Sci, State Key Lab Nonlinear Mech, Inst Mech, Beijing 100080, Peoples R China. Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Wu, XL (reprint author), Chinese Acad Sci, State Key Lab Nonlinear Mech, Inst Mech, Beijing 100080, Peoples R China. EM xlwu@imech.ac.cn; yzhu@lanl.gov RI Zhu, Yuntian/B-3021-2008; ping, jiang/C-7263-2008 OI Zhu, Yuntian/0000-0002-5961-7422; ping, jiang/0000-0002-0503-140X NR 31 TC 57 Z9 60 U1 4 U2 47 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 17 PY 2006 VL 89 IS 3 AR 031922 DI 10.1063/1.2227639 PG 3 WC Physics, Applied SC Physics GA 065QJ UT WOS:000239174100048 ER PT J AU Zhang, XG Lu, ZY Pantelides, ST AF Zhang, X. -G. Lu, Zhong-Yi Pantelides, Sokrates T. TI First-principles theory of tunneling currents in metal-oxide-semiconductor structures SO APPLIED PHYSICS LETTERS LA English DT Article ID ULTRATHIN GATE OXIDES; BAND-STRUCTURE; ELECTRON-GAS; STATES; JUNCTIONS; FORMULA AB Ultrathin gate-oxide films and alternate dielectrics call for accurate modeling of tunneling currents. Available models, based on the effective-mass approximation, yield good fits to finite-bias data, but fail for infinitesimal biases. Here we report a first-principles theory of tunneling currents. We show that the conductance at infinitesimal bias is a ground-state property and can be calculated accurately using density-functional theory and the local-density approximation for exchange and correlation. At finite biases, a discontinuity in the exchange-correlation potential must be properly included. Challenges for both theory and experiments are identified. (c) 2006 American Institute of Physics. C1 Oak Ridge Natl Lab, Ctr Nanophys Mat Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Div Math, Oak Ridge, TN 37831 USA. Chinese Acad Sci, Inst Theoret Phys, Beijing 100080, Peoples R China. Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. RP Zhang, XG (reprint author), Oak Ridge Natl Lab, Ctr Nanophys Mat Sci, Oak Ridge, TN 37831 USA. EM zhangx@ornl.gov RI 上官, 敏慧/E-8964-2012 NR 23 TC 8 Z9 8 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 17 PY 2006 VL 89 IS 3 AR 032112 DI 10.1063/1.2234283 PG 3 WC Physics, Applied SC Physics GA 065QJ UT WOS:000239174100063 ER PT J AU van Noije, TPC Eskes, HJ Dentener, FJ Stevenson, DS Ellingsen, K Schultz, MG Wild, O Amann, M Atherton, CS Bergmann, DJ Bey, I Boersma, KF Butler, T Cofala, J Drevet, J Fiore, AM Gauss, M Hauglustaine, DA Horowitz, LW Isaksen, ISA Krol, MC Lamarque, JF Lawrence, MG Martin, RV Montanaro, V Muller, JF Pitari, G Prather, MJ Pyle, JA Richter, A Rodriguez, JM Savage, NH Strahan, SE Sudo, K Szopa, S van Roozendael, M AF van Noije, T. P. C. Eskes, H. J. Dentener, F. J. Stevenson, D. S. Ellingsen, K. Schultz, M. G. Wild, O. Amann, M. Atherton, C. S. Bergmann, D. J. Bey, I. Boersma, K. F. Butler, T. Cofala, J. Drevet, J. Fiore, A. M. Gauss, M. Hauglustaine, D. A. Horowitz, L. W. Isaksen, I. S. A. Krol, M. C. Lamarque, J. -F. Lawrence, M. G. Martin, R. V. Montanaro, V. Mueller, J. - F. Pitari, G. Prather, M. J. Pyle, J. A. Richter, A. Rodriguez, J. M. Savage, N. H. Strahan, S. E. Sudo, K. Szopa, S. van Roozendael, M. TI Multi-model ensemble simulations of tropospheric NO2 compared with GOME retrievals for the year 2000 SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID CHEMICAL-TRANSPORT MODEL; OZONE MONITORING EXPERIMENT; RADIATIVE-TRANSFER MODEL; AIRCRAFT MOZAIC DATA; SATELLITE-OBSERVATIONS; NITROGEN-DIOXIDE; NONMETHANE HYDROCARBONS; SURFACE REFLECTIVITY; GLOBAL DISTRIBUTIONS; 3-DIMENSIONAL MODEL AB We present a systematic comparison of tropospheric NO2 from 17 global atmospheric chemistry models with three state-of-the-art retrievals from the Global Ozone Monitoring Experiment (GOME) for the year 2000. The models used constant anthropogenic emissions from IIASA/EDGAR3.2 and monthly emissions from biomass burning based on the 1997 - 2002 average carbon emissions from the Global Fire Emissions Database (GFED). Model output is analyzed at 10: 30 local time, close to the overpass time of the ERS-2 satellite, and collocated with the measurements to account for sampling biases due to incomplete spatiotemporal coverage of the instrument. We assessed the importance of different contributions to the sampling bias: correlations on seasonal time scale give rise to a positive bias of 30 - 50% in the retrieved annual means over regions dominated by emissions from biomass burning. Over the industrial regions of the eastern United States, Europe and eastern China the retrieved annual means have a negative bias with significant contributions ( between - 25% and + 10% of the NO2 column) resulting from correlations on time scales from a day to a month. We present global maps of modeled and retrieved annual mean NO2 column densities, together with the corresponding ensemble means and standard deviations for models and retrievals. The spatial correlation between the individual models and retrievals are high, typically in the range 0.81 - 0.93 after smoothing the data to a common resolution. On average the models underestimate the retrievals in industrial regions, especially over eastern China and over the Highveld region of South Africa, and overestimate the retrievals in regions dominated by biomass burning during the dry season. The discrepancy over South America south of the Amazon disappears when we use the GFED emissions specific to the year 2000. The seasonal cycle is analyzed in detail for eight different continental regions. Over regions dominated by biomass burning, the timing of the seasonal cycle is generally well reproduced by the models. However, over Central Africa south of the Equator the models peak one to two months earlier than the retrievals. We further evaluate a recent proposal to reduce the NOx emission factors for savanna fires by 40% and find that this leads to an improvement of the amplitude of the seasonal cycle over the biomass burning regions of Northern and Central Africa. In these regions the models tend to underestimate the retrievals during the wet season, suggesting that the soil emissions are higher than assumed in the models. In general, the discrepancies between models and retrievals cannot be explained by a priori profile assumptions made in the retrievals, neither by diurnal variations in anthropogenic emissions, which lead to a marginal reduction of the NO2 abundance at 10: 30 local time ( by 2.5 - 4.1% over Europe). Overall, there are significant differences among the various models and, in particular, among the three retrievals. The discrepancies among the retrievals ( 10 - 50% in the annual mean over polluted regions) indicate that the previously estimated retrieval uncertainties have a large systematic component. Our findings imply that top-down estimations of NOx emissions from satellite retrievals of tropospheric NO2 are strongly dependent on the choice of model and retrieval. C1 Royal Netherlands Meteorol Inst, NL-3730 AE De Bilt, Netherlands. European Commiss, Joint Res Ctr, Inst Environm & Sustaiinabil, Ispra, Italy. Univ Edinburgh, Sch Geosci, Edinburgh, Midlothian, Scotland. Univ Oslo, Dept Geosci, Oslo, Norway. Max Planck Inst Meteorol, Hamburg, Germany. JAMSTEC, Frontier Res Ctr Global Change, Yokohama, Kanagawa, Japan. Univ Cambridge, Ctr Atmospher Sci, Cambridge CB2 1TN, England. Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. Lawrence Livermore Natl Lab, Div Atmospher Sci, Livermore, CA USA. Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. Max Planck Inst Chem, Mainz, Germany. NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. Lab Sci Climat & Environm, Gif Sur Yvette, France. Space Res Org Netherlands, Utrecht, Netherlands. Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada. Smithsonian Astrophys Observ, Cambridge, MA USA. Univ Aquila, Dipartimento Fis, I-67100 Laquila, Italy. Belgian Inst Space Aeron, Brussels, Belgium. Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. Univ Bremen, Inst Environm Phys, Bremen, Germany. Goddard Earth Sci & Technol Ctr, Washington, DC USA. RP van Noije, TPC (reprint author), Royal Netherlands Meteorol Inst, POB 201, NL-3730 AE De Bilt, Netherlands. EM noije@knmi.nl RI Martin, Randall/C-1205-2014; Krol, Maarten/E-3414-2013; Horowitz, Larry/D-8048-2014; Lamarque, Jean-Francois/L-2313-2014; Schultz, Martin/I-9512-2012; Martin, Randall/A-2051-2008; Wild, Oliver/A-4909-2009; Szopa, Sophie/F-8984-2010; Krol, Maarten/B-3597-2010; Richter, Andreas/C-4971-2008; Bergmann, Daniel/F-9801-2011; Butler, Tim/G-1139-2011; Stevenson, David/C-8089-2012; Strahan, Susan/H-1965-2012; Boersma, Klaas/H-4559-2012; Magana, Felipe/B-6966-2013; Rodriguez, Jose/G-3751-2013 OI Martin, Randall/0000-0003-2632-8402; Horowitz, Larry/0000-0002-5886-3314; Lamarque, Jean-Francois/0000-0002-4225-5074; Schultz, Martin/0000-0003-3455-774X; Pitari, Giovanni/0000-0001-7051-9578; Wild, Oliver/0000-0002-6227-7035; Szopa, Sophie/0000-0002-8641-1737; Richter, Andreas/0000-0003-3339-212X; Bergmann, Daniel/0000-0003-4357-6301; Stevenson, David/0000-0002-4745-5673; Boersma, Klaas/0000-0002-4591-7635; Rodriguez, Jose/0000-0002-1902-4649 NR 96 TC 87 Z9 87 U1 42 U2 83 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD JUL 17 PY 2006 VL 6 BP 2943 EP 2979 PG 37 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 065CO UT WOS:000239137200002 ER PT J AU Park, JY Somorjai, GA AF Park, Jeong Young Somorjai, Gabor A. TI The catalytic nanodiode: Detecting continous electron flow at oxide-metal interfaces generated by a gas-phase exothermic reaction SO CHEMPHYSCHEM LA English DT Article DE carbon monoxide; catalysis; electrochemistry; hot electron flow; metal-semiconductor Schottky diode ID SCHOTTKY DIODES; SURFACES; ADSORPTION; PROMOTION; OXIDATION; HYDROGEN; CO AB Continuous flow of ballistic charge carriers is generated by an exothermic chemical reaction and detected using the catalytic metal-semiconductor Schottky diode. We obtained a hot electron current for several hours using two types of catalytic nanaodiodes Pt/TiO2 or Pt/GaN, during carbon monoxide oxidation at pressures of 100 Torr O2 and 40 Torr of CO at 413-573 K. This result reveals that the chemical energy of an exothermic catalytic reaction is directly converted into hot electrons flux in the catalytic nanodiode. By heating the nanodiodes in He, we could measure the thermoelectric current which is in the opposite direction to the flow of the hot electron current. The chemicurrent is well correlated with the turnover rate of CO oxidation, which is separately measured with gas chromatography. The influence of the flow of hot charge carriers on the chemistry at the oxide-metal interface, and the turnover rate in the chemical reaction are discussed. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Mat Sci & Chem Sci Civ, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Mat Sci & Chem Sci Civ, Berkeley, CA 94720 USA. EM somorjai@cchem.berkeley.edu RI Park, Jeong Young/A-2999-2008 NR 25 TC 69 Z9 69 U1 3 U2 25 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1439-4235 J9 CHEMPHYSCHEM JI ChemPhysChem PD JUL 17 PY 2006 VL 7 IS 7 BP 1409 EP 1413 DI 10.1002/cphc.200600056 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 064QV UT WOS:000239105100002 PM 16739158 ER PT J AU Barnard, AS Curtiss, LA AF Barnard, Amanda S. Curtiss, Larry A. TI Predicting the shape and structure of face-centered cubic gold nanocrystals smaller than 3 nm SO CHEMPHYSCHEM LA English DT Article DE ab initio; calculation; density; functional calculations; gold; nanostructures; solid-state structures ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; MOLECULAR-DYNAMICS; METAL-CLUSTERS; BASIS-SET; NANOPARTICLES; NANOCLUSTERS; CHEMISTRY; PARTICLES; EVOLUTION AB Although a number of computational studies have examined the relative stability of icosahedral and decahedral gold clusters from 1 and 3 nm iun size, few studies have focussed on the ariety of face-centred cubic (fcc) nanoparticles in this size regime. In most cases small fcc gold particles are assumed to adopt the truncated octahedral shape, but in light of the fact that the shape and structure of gold nanoparticles is known to vary, the relatives of fcc polyhedra may change with size. Presented here are the results of first-principles calculations investigating the preferred shape of gold particles less that 3 nm in size. Our results indicate that the equilibrium shape of fcc gold nanoparticles less than 1 nm is the cubotahedron, but this shape rapidly decomes energetically unstable with respect to the truncated octahedron, octahedron and truncated cube shapes as the size increases. C1 Univ Oxford, Dept Mat, Oxford OX1 3PH, England. Argonne Natl Lab, Mat Sci & Chem Div, Argonne, IL 60439 USA. RP Barnard, AS (reprint author), Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England. EM amanda.barnard@materials.ox.ac.uk RI Barnard, Amanda/A-7340-2011 OI Barnard, Amanda/0000-0002-4784-2382 NR 52 TC 58 Z9 58 U1 2 U2 27 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1439-4235 J9 CHEMPHYSCHEM JI ChemPhysChem PD JUL 17 PY 2006 VL 7 IS 7 BP 1544 EP 1553 DI 10.1002/cphc.200600107 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 064QV UT WOS:000239105100023 PM 16755641 ER PT J AU Raitsimring, AM Astashkin, AV Baute, D Goldfarb, D Poluektov, OG Lowe, MP Zech, SG Caravan, P AF Raitsimring, Arnold M. Astashkin, Andrei V. Baute, Debbie Goldfarb, Daniela Poluektov, Oleg G. Lowe, Mark P. Zech, Stephan G. Caravan, Peter TI Determination of the hydration number of gadolinium(III) complexes by high-field pulsed O-17 ENDOR spectroscopy SO CHEMPHYSCHEM LA English DT Article DE coordination modes; ENDOR spectroscopy; EPR spectroscopy; hydration number; metal complexes ID MRI CONTRAST AGENTS; SPHERE WATER-MOLECULES; LUMINESCENCE; RELAXIVITY; EUROPIUM; MODULATION; SOLVATION; CONSTANTS; CARBONATE; DYNAMICS AB Pulsed O-17 Mims electron-nuclear double resonance (ENDOR) spectroscopy at the W band (95GHz) and D band (130 GHz) is used for the direct determination of the water coordination number (q) of gadolinium-based magnetic resonance imaging (MRI) contrast agents. Spectra of metal complexes in frozen aqueous solutions at approximately physiological concentrations can be obtained either in the presence or absence of protein targets. This method is an improvement over the H-1 ENDOR method described previously (Zech et aL, ChemPhysChem 2005, 6, 2570), which involved the difference ENDOR spectrum of exchangeable I protons from spectra taken in H2O and D2O. In addition to exchangeable water protons, the H-1 ENDOR method is also sensitive to other exchangeable protons, and it is shown here that this method can overestimate hydration numbers for complexes with exchangeable protons at (GdH)-H-... distances similar to that of the coordinated water, for example, from NH groups. The O-17 method does not suffer from this limitation. O-17 ENDOR spectroscopy is applied to Gd(III) complexes containing zero, one, or two inner-sphere water molecules. In addition, C-13 and H-1 ENDOR studies were performed to assess the extent of methanol coordination, since methanol is used to produce a gloss in these experiments. Under the experimental conditions used for the hydration number determination (30 mol% methanol), fewer than 75% of the coordination sites were found to be occupied by methanol. C1 Univ Arizona, Dept Chem, Tucson, AZ 85721 USA. Weizmann Inst Sci, IL-76100 Rehovot, Israel. Argonne Natl Lab, Chem Div, Argonne, IL 60439 USA. Univ Leicester, Dept Chem, Leicester LE1 7RH, Leics, England. EPIX Pharmaceut Inc, Cambridge, MA 02142 USA. RP Raitsimring, AM (reprint author), Univ Arizona, Dept Chem, Tucson, AZ 85721 USA. EM arnold@u.arizona.edu; pcaravan@epixpharma.com OI Lowe, Mark/0000-0003-0601-8335 NR 34 TC 18 Z9 18 U1 2 U2 16 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1439-4235 J9 CHEMPHYSCHEM JI ChemPhysChem PD JUL 17 PY 2006 VL 7 IS 7 BP 1590 EP 1597 DI 10.1002/cphc.200600138 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 064QV UT WOS:000239105100027 PM 16810729 ER PT J AU Tatar, R Watari, T AF Tatar, Radu Watari, Taizan TI Proton decay, Yukawa couplings and underlying gauge symmetry in string theory SO NUCLEAR PHYSICS B LA English DT Review ID STANDARD-LIKE MODEL; CALABI-YAU THREEFOLDS; F-THEORY; INTERSECTING D6-BRANES; IIA ORIENTIFOLDS; WEINBERG ANGLE; COMPACTIFICATIONS; UNIFICATION; FORMULATION; MANIFOLDS AB In string theory, massless particles often originate from a symmetry breaking of a large gauge symmetry G to its subgroup H. The absence of dimension-4 proton decay in supersymmetric theories suggests that ((D) over tilde, L) are different from (H) over bar((5) over bar) in their origins. In this article, we consider a possibility that they come from different irreducible components in g/h. Requiring that all the Yukawa coupling constants of quarks and leptons be generated from the super-Yang-Mills interactions of G, we found in the context of Georgi-Glashow H = SU(5) unification that the minimal choice of G is E-7 and E-8 is the only alternative. This idea is systematically implemented in heterotic String, M theory and F theory, confirming the absence of dimension 4 proton decay operators. Not only H = SU(5) but also G constrain operators of effective field theories, providing non-trivial information. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Liverpool, Dept Math Sci, Div Theoret Phys, Liverpool L69 3BX, Merseyside, England. RP Watari, T (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM rtatar@liverpool.ac.uk; twatari@lbl.gov OI Watari, Taizan/0000-0002-8879-1008 NR 111 TC 48 Z9 48 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 EI 1873-1562 J9 NUCL PHYS B JI Nucl. Phys. B PD JUL 17 PY 2006 VL 747 IS 1-2 BP 212 EP 265 DI 10.1016/j.nuclphysb.2006.04.025 PG 54 WC Physics, Particles & Fields SC Physics GA 059GX UT WOS:000238722400007 ER PT J AU Rhers, B Salameh, A Baudouin, A Quadrelli, EA Taoufik, M Coperet, C Lefebvre, F Basset, JM Solans-Monfort, X Eisenstein, O Lukens, WW Lopez, LPH Sinha, A Schrock, RR AF Rhers, Bouchra Salameh, Alain Baudouin, Anne Quadrelli, Elsje Alessandra Taoufik, Mostafa Coperet, Christophe Lefebvre, Frederic Basset, Jean-Marie Solans-Monfort, Xavier Eisenstein, Odile Lukens, Wayne W. Lopez, Lordes Pia H. Sinha, Amritanshu Schrock, Richard R. TI A well-defined, silica-supported tungsten imido alkylidene olefin metathesis catalyst SO ORGANOMETALLICS LA English DT Article ID SURFACE ORGANOMETALLIC CHEMISTRY; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; ALKANE METATHESIS; COMPLEXES; LIGAND; RE(=CR)(=CHR)(X)(Y); POLYMERIZATION; ALCOHOLS; CARBYNE AB The reaction of [W(=NAr)(=CHtBu)(CH(2)tBu)(2)] (1; Ar = 2,6-iPrC(6)H(3)) with a silica partially dehydroxylated at 700 degrees C, SiO2-(700), gives syn-[( SiO)W(=NAr)(=CHtBu)(=CH(2)tBu)] ( 2) as a major surface species, which was fully characterized by mass balance analysis, IR, NMR, EXAFS, and DFT periodic calculations. Similarly, complex 1 reacts with [(c-C5H9)(7)Si7O12SiOH] to give [(SiO)W(=NAr)(=CHtBu)(CH(2)tBu)] (2m), which shows similar spectroscopic properties. Surface complex 2 is a highly active propene metathesis catalyst, which can achieve a TON of 16 000 within 100 h, with only a slow deactivation. C1 ENSCPE, CNRS, UMR 9986, Lab Chim Organomet, F-69616 Villeurbanne, France. Univ Montpellier 2, Inst Gerhardt, CNRS UM2, UMR 5636,LSDSMS, F-34095 Montpellier 05, France. Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. MIT, Dept Chem, Cambridge, MA 02139 USA. RP Lefebvre, F (reprint author), ENSCPE, CNRS, UMR 9986, Lab Chim Organomet, 43 Bd 11 Novembre 1918, F-69616 Villeurbanne, France. RI Baudouin, Anne/B-2228-2010; Quadrelli, Elsje/M-8603-2013; Solans Monfort, Xavier/K-8951-2014; Eisenstein, Odile/I-1704-2016; OI Solans Monfort, Xavier/0000-0002-2172-3895; Eisenstein, Odile/0000-0001-5056-0311; basset, jean marie/0000-0003-3166-8882; Quadrelli, Elsje Alessandra/0000-0002-8606-1183 NR 29 TC 97 Z9 97 U1 1 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD JUL 17 PY 2006 VL 25 IS 15 BP 3554 EP 3557 DI 10.1021/om060279d PG 4 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 061CK UT WOS:000238848600009 ER PT J AU Fandos, R Walter, MD Kazhdan, D Andersen, RA AF Fandos, Rosa Walter, Marc D. Kazhdan, Daniel Andersen, Richard A. TI Selective syntheses of homo- and hetero-dimetal complexes with the tetramethyltetraazaannulene ligand of the type [(ML,M ' L ')(TMTAA)], where M and M ' are Rh(I) or Ir(I) and L and L ' are COD or (CO)(2) SO ORGANOMETALLICS LA English DT Article ID AROMATENKOMPLEXE VON METALLEN; X-RAY; MOLECULAR-STRUCTURE; MACROCYCLIC LIGAND; DI-CARBONYL; RHODIUM(I); CHEMISTRY; BOND; FUNCTIONALITIES; DERIVATIVES AB The tetraazamacrocycle, tmtaaH(2), reacts with [M-2(COD)(2)(mu-OH)(2)], M = Rh or Ir, to give [M(tmtaaH)-(COD)], which give the dicarbonyl derivatives, [ M( tmtaaH)(CO)(2)], on exposure to CO. The COD and dicarbonyl derivatives, M) Rh, are methylated with MeOTf at the beta-carbon site of the imidinate ring, giving [Rh(tmtaaHMe)(L-2)](+), where L-2 = COD or (CO)(2). The crystal structure of [Rh(tmtaaHMe)(CO)(2)]-[OTf] shows that the site of methylation is the imidinate ring that contains the Rh( CO) 2 fragment. Protonation by HOTf also occurs at the beta-carbon site of the imidinate ring, assumed to be the ring that contains the Rh(L-2) fragment. The dicarbonyls are deprotonated by LiN(SiMe3)(2) in thf, giving [M(CO)(2)-(tmtaa)Li(thf)]. A crystal structure of M = Rh shows an intramolecular Li-Rh distance of 2.635(10) angstrom and an intermolecular Rh center dot center dot center dot Rh contact distance between two molecular units of 3.198(1) angstrom that align along their molecular z-axis. Addition of MeI to [M(CO)(2)(tmtaa)Li(thf)]yields [M(tmtaaMe)(CO)(2)], where the methyl group is attached to the imidinate ring that contains the Li(thf) fragment, as shown by X-ray crystallography. The [M(tmtaaH)(CO)(2)] reacts with half an equivalent of [M-2(COD)(2)(mu-OH)(2)] to give the mixed dimetal complexes [M(CO)(2)(tmtaa)M'(COD)], where M, M' is either Rh, Rh or Rh, Ir, which react with CO to give [MM'(tmtaa)(CO)(4)]. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Div Chem Sci, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Castilla La Mancha, Fac Ciencias Medio Ambiente, Toledo 45071, Spain. RP Andersen, RA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM raandersen@lbl.gov RI Fandos, Rosa/J-9688-2014; Walter, Marc/E-4479-2012 OI Fandos, Rosa/0000-0001-6626-2140; NR 46 TC 4 Z9 4 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD JUL 17 PY 2006 VL 25 IS 15 BP 3678 EP 3687 DI 10.1021/om060039y PG 10 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 061CK UT WOS:000238848600026 ER PT J AU Shui, WQ Fan, J Yang, PY Liu, CL Zhai, JJ Lei, J Yan, Y Zhao, DY Chen, X AF Shui, Wenqing Fan, Jie Yang, Pengyuan Liu, Chunli Zhai, Jianjun Lei, Jie Yan, Yan Zhao, Dongyuan Chen, Xian TI Nanopore-based proteolytic reactor for sensitive and comprehensive proteomic analyses SO ANALYTICAL CHEMISTRY LA English DT Article ID ONLINE PROTEIN DIGESTION; MASS-SPECTROMETRY; MESOPOROUS SILICA; CAPILLARY-ELECTROPHORESIS; ENZYME IMMOBILIZATION; CATALYTIC ACTIVITY; MOLECULAR-SIEVES; SOL-GEL; TRYPSIN; CHIP AB Various silica-based microreactors have been designed that use enzyme immobilization to address technical concerns in proteolysis including inefficient and incomplete protein digestion. Most of current designs for proteolytic reactors can improve either protease stability or proteolysis efficiency of individual protein(s). However, the desired features such as rapid digestion, larger sequence coverage, and high sensitivity have not been achieved by a single microreactor design for broad range proteins with diverse physical properties. Here, unlike conventional enzyme immobilization strategies, we describe a novel proteolytic nanoreactor based on the unique three-dimensional nanopore structure of our newly synthesized mesoporous silica ( MPS), FDU-12, which integrates substrate enrichment, "reagent-free" protein denaturation, and efficient proteolytic digestion. In our design, protein substrates were first captured by MPS nanopore structure and were concentrated from the solution. Following the pH change and applying trypsin, the denaturation and concurrent proteolysis of broad-range proteins were efficiently achieved. In minutes, many more sample peptides from the in-nanopore digestion of protein mixtures were detected by mass spectrometry, resulting in the identifications of a broad range of diverse proteins with high sequence coverage. The unique features of FDU-12 nanostructure that allow rapid, complete proteolysis and resulting enhanced sequence coverage of individual proteins were investigated by using Raman spectroscopy and comparative studies with respect to other MPSs. C1 Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China. Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Zhao, DY (reprint author), Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China. EM dyzhao@fudan.edu.cn; chen_xian@lanl.gov RI Fan, Jie/B-3740-2008; Zhao, Dongyuan/E-5796-2010 OI Fan, Jie/0000-0002-8380-6338; Zhao, Dongyuan/0000-0002-1642-2510 NR 39 TC 55 Z9 57 U1 3 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUL 15 PY 2006 VL 78 IS 14 BP 4811 EP 4819 DI 10.1021/ac060116z PG 9 WC Chemistry, Analytical SC Chemistry GA 063KS UT WOS:000239017700009 PM 16841899 ER PT J AU Havey, CD McCormick, RL Hayes, RR Dane, AJ Voorhees, KJ AF Havey, Crystal D. McCormick, Robert L. Hayes, R. Robert Dane, A. John Voorhees, Kent J. TI Analysis of nitro-polycyclic aromatic hydrocarbons in conventional diesel and Fischer-Tropsch diesel fuel emissions using electron monochromator-mass spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID ION CHEMICAL-IONIZATION; CAPILLARY GAS-CHROMATOGRAPHY; PARTICULATE EXTRACTS; EXHAUST; IDENTIFICATION; MUTAGENICITY; 1-NITROPYRENE; NITROARENES; TOXICITY; MATTER AB The presence of nitro-polycyclic aromatic hydrocarbons ( NPAHs) in diesel fuel emissions has been studied for a number of years predominantly because of their contribution to the overall health and environmental risks associated with these emissions. Electron monochromator-mass spectrometry (EM-MS) is a highly selective and sensitive method for detection of NPAHs in complex matrixes, such as diesel emissions. Here, EM-MS was used to compare the levels of NPAHs in fuel emissions from conventional ( petroleum) diesel, ultra-low sulfur/low-aromatic content diesel, Fischer-Tropsch synthetic diesel, and conventional diesel/synthetic diesel blend. The largest quantities of NPAHs were detected in the conventional diesel fuel emissions, while the ultra-low sulfur diesel and synthetic diesel fuel demonstrated a more than 50% reduction of NPAH quantities when compared to the conventional diesel fuel emissions. The emissions from the blend of conventional diesel with 30% synthetic diesel fuel also demonstrated a more than 30% reduction of the NPAH content when compared to the conventional diesel fuel emissions. In addition, a correlation was made between the aromatic content of the different fuel types and NPAH quantities and between the nitrogen oxides emissions from the different fuel types and NPAH quantities. The EM-MS system demonstrated high selectivity and sensitivity for detection of the NPAHs in the emissions with minimal sample cleanup required. C1 Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA. Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Voorhees, KJ (reprint author), Colorado Sch Mines, Dept Chem & Geochem, Golden, CO 80401 USA. EM kvoorhee@mines.edu RI McCormick, Robert/B-7928-2011 NR 37 TC 8 Z9 8 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUL 15 PY 2006 VL 78 IS 14 BP 4894 EP 4900 DI 10.1021/ac060400q PG 7 WC Chemistry, Analytical SC Chemistry GA 063KS UT WOS:000239017700018 PM 16841908 ER PT J AU Van Berkel, GJ Kertesz, V AF Van Berkel, Gary J. Kertesz, Vilmos TI Automated sampling and imaging of analytes separated on thin-layer chromatography plates using desorption electrospray ionization mass spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID PHARMACEUTICAL SAMPLES; AMBIENT CONDITIONS; SYSTEM; PROBE; TISSUE AB Modest modifications to the atmospheric sampling capillary of a commercial electrospray mass spectrometer and upgrades to an in-house-developed surface positioning control software package (HandsFree TLC/MS) were used to enable the automated sampling and imaging of analytes on and within large area surface substrates using desorption electrospray ionization mass spectrometry. Sampling and imaging of rhodamine dyes separated on TLC plates were used to illustrate some of the practical applications of this system. Examples are shown for user-defined spot sampling from separated bands on a TLC plate ( one or multiple spots), scanning of a complete development lane ( one or multiple lanes), or imaging of analyte bands in a development lane (i.e., multiple lane scans with close spacing). The post data acquisition processing and data display aspects of the software system are also discussed. C1 Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, Oak Ridge, TN 37831 USA. RP Van Berkel, GJ (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, Oak Ridge, TN 37831 USA. EM vanberkelgj@ornl.gov RI Kertesz, Vilmos/M-8357-2016 OI Kertesz, Vilmos/0000-0003-0186-5797 NR 20 TC 96 Z9 96 U1 5 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUL 15 PY 2006 VL 78 IS 14 BP 4938 EP 4944 DI 10.1021/ac060690a PG 7 WC Chemistry, Analytical SC Chemistry GA 063KS UT WOS:000239017700024 PM 16841914 ER PT J AU Slater, M Snauko, M Svec, F Frechet, JMJ AF Slater, Michael Snauko, Marian Svec, Frantisek Frechet, Jean M. J. TI "Click chemistry" in the preparation of porous polymer-based particulate stationary phases for mu-HPLC separation of peptides and proteins SO ANALYTICAL CHEMISTRY LA English DT Article ID AZIDE-ALKYNE CYCLOADDITION; METHACRYLATE-ETHYLENE DIMETHACRYLATE; PERFORMANCE LIQUID-CHROMATOGRAPHY; HUISGEN 1,3-DIPOLAR CYCLOADDITION; EPOXY GROUPS; IN-SITU; SELECTIVITY; TETRAZOLES; PROTEOMICS; CYANIDES AB With the use of the copper(I)-catalyzed (3 + 2) azide-alkyne cycloaddition, an element of "click chemistry," stationary phases carrying long alkyl chains or soybean trypsin inhibitor have been prepared for use in HPLC separations in the reversed-phase and affinity modes, respectively. The ligands were attached via a triazole ring to size monodisperse porous beads containing either alkyne or azide pendant functionalities. Alkyne-containing beads prepared by direct copolymerization of propargyl acrylate with ethylene dimethacrylate were allowed to react with azidooctadecane to give a reversed-phase sorbent. Azide-functionalized beads were prepared by chemical modification of glycidyl methacrylate particles. Subsequent reaction with a terminal aliphatic alkyne produced a reversed-phase sorbent similar to that obtained from the alkyne beads. Soybean trypsin inhibitor was functionalized with N-(4-pentynoyloxy) succinimide to carry alkyne groups and then allowed to react with the azide-containing beads to produce an affinity sorbent for trypsin. The performance of these stationary phases was demonstrated with the HPLC separations of a variety of peptides and proteins. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EO Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Frechet, JMJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM frechet@berkeley.edu RI Slater, Michael/D-5388-2012 FU NIGMS NIH HHS [GM44885] NR 41 TC 116 Z9 118 U1 2 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUL 15 PY 2006 VL 78 IS 14 BP 4969 EP 4975 DI 10.1021/ac060006s PG 7 WC Chemistry, Analytical SC Chemistry GA 063KS UT WOS:000239017700029 PM 16841919 ER PT J AU Hatch, AV Herr, AE Throckmorton, DJ Brennan, JS Singh, AK AF Hatch, Anson V. Herr, Amy E. Throckmorton, Daniel J. Brennan, James S. Singh, Anup K. TI Integrated preconcentration SDS-PAGE of proteins in microchips using photopatterned cross-linked polyacrylamide gels SO ANALYTICAL CHEMISTRY LA English DT Article ID TOTAL ANALYSIS SYSTEMS; SOLID-PHASE EXTRACTION; MICROFLUIDIC DEVICES; CAPILLARY-ELECTROPHORESIS; LINEAR POLYACRYLAMIDE; FERGUSON PLOTS; DNA FRAGMENTS; PORE-SIZE; SEPARATIONS; MEMBRANES AB The potential of integration of functions in microfluidic chips is demonstrated by implementing on-chip preconcentration of proteins prior to on-chip protein sizing by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Two polymeric elements-a thin (similar to 50 mu m) size exclusion membrane for preconcentration and a longer (similar to cm) porous monolith for protein sizing-were fabricated in situ using photopolymerization. Contiguous placement of the two polymeric elements in the channels of a microchip enabled simple and zero dead volume integration of the preconcentration with SDS-PAGE. The size exclusion membrane was polymerized in the injection channel using a shaped laser beam, and the sizing monolith was cast by photolithography using a mask and UV lamp. Proteins injected electrophoretically were trapped on the upstream side of the size exclusion membrane (MW cutoff similar to 10 kDa) and eluted off the membrane by reversing the electric field. Subsequently, the concentrated proteins were separated in a cross-linked polyacrylamide monolith that was patterned contiguous to the size exclusion membrane. The extent of protein preconcentration is easily tuned by varying the voltage during injection or by controlling the sample volume loaded. Electric fields applied across the nanoporous membrane resulted in a concentration polarization effect evidenced by decreasing current over time and irreproducible migration of proteins during sizing. To minimize the concentration polarization effect, sieving gels were polymerized only on the separation side of the membrane, and an alternate electrical current path was employed, bypassing the membrane, for most of the elution and separation steps. Electrophoretically sweeping a fixed sample volume against the membrane yields preconcentration factors that are independent of protein mobility. The volume sweeping method also avoids biased protein loading from concentration polarization and sample matrix variations. Mobilities of the concentrated proteins were log-linear with respect to molecular weight, demonstrating the suitability of this approach for protein sizing. Proteins were concentrated rapidly (<5 min) over 1000-fold followed by high-resolution separation in the sieving monolith. Proteins with concentrations as low as 50 fM were detectable with 30 min of preconcentration time. The integrated preconcentration-sizing approach facilitates analysis of low-abundant proteins that cannot be otherwise detected. Moreover, the integrated preconcentration-analysis approach employing in situ formation of photopatterned polymeric elements provides a generic, inexpensive, and versatile method to integrate functions at chip level and can be extended to lowering of detection limits for other applications such as DNA analysis and clinical diagnostics. C1 Sandia Natl Labs, Biosyst Res Dept, Livermore, CA 94551 USA. RP Singh, AK (reprint author), Sandia Natl Labs, Biosyst Res Dept, Livermore, CA 94551 USA. EM aksingh@sandia.gov OI Herr, Amy/0000-0002-6906-2985 FU NIDCR NIH HHS [U01DE014961] NR 35 TC 121 Z9 125 U1 0 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUL 15 PY 2006 VL 78 IS 14 BP 4976 EP 4984 DI 10.1021/ac0600454 PG 9 WC Chemistry, Analytical SC Chemistry GA 063KS UT WOS:000239017700030 PM 16841920 ER PT J AU Petritis, K Kangas, LJ Yan, B Monroe, ME Strittmatter, EF Qian, WJ Adkins, JN Moore, RJ Xu, Y Lipton, MS Ii, DGC Smith, RD AF Petritis, Konstantinos Kangas, Lars J. Yan, Bo Monroe, Matthew E. Strittmatter, Eric F. Qian, Wei-Jun Adkins, Joshua N. Moore, Ronald J. Xu, Ying Lipton, Mary S. II, David G. Camp Smith, Richard D. TI Improved peptide elution time prediction for reversed-phase liquid chromatography-MS by incorporating peptide sequence information SO ANALYTICAL CHEMISTRY LA English DT Article ID TANDEM MASS-SPECTROMETRY; AMINO-ACID-COMPOSITION; GROUP RETENTION CONTRIBUTIONS; ARTIFICIAL NEURAL-NETWORKS; PROTEIN IDENTIFICATION; ACCURATE MASS; HYDROPHOBIC MOMENT; SYNTHETIC PEPTIDES; ISOELECTRIC POINT; HELICAL PEPTIDES AB We describe an improved artificial neural network (ANN)-based method for predicting peptide retention times in reversed-phase liquid chromatography. In addition to the peptide amino acid composition, this study investigated several other peptide descriptors to improve the predictive capability, such as peptide length, sequence, hydrophobicity and hydrophobic moment, and nearest-neighbor amino acid, as well as peptide predicted structural configurations (i.e., helix, sheet, coil). An ANN architecture that consisted of 1052 input nodes, 24 hidden nodes, and 1 output node was used to fully consider the amino acid residue sequence in each peptide. The network was trained using similar to 345 000 nonredundant peptides identified from a total of 12 059 LC-MS/MS analyses of more than 20 different organisms, and the predictive capability of the model was tested using 1303 confidently identified peptides that were not included in the training set. The model demonstrated an average elution time precision of similar to 1.5% and was able to distinguish among isomeric peptides based upon the inclusion of peptide sequence information. The prediction power represents a significant improvement over our earlier report (Petritis, K.; Kangas, L. J.; Ferguson, P. L.; Anderson, G. A.; Pasa-Tolic, L.; Lipton, M. S.; Auberry, K. J.; Strittmatter, E. F.; Shen, Y.; Zhao, R.; Smith, R. D. Anal. Chem. 2003, 75, 1039-1048) and other previously reported models. C1 Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA. Univ Georgia, Computat Syst Biol Lab, Dept Biochem & Mol Biol, Athens, GA 30601 USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. EM rds@pnl.gov RI Petritis, Konstantinos/F-2156-2010; Qian, Weijun/C-6167-2011; Smith, Richard/J-3664-2012; Adkins, Joshua/B-9881-2013 OI Smith, Richard/0000-0002-2381-2349; Adkins, Joshua/0000-0003-0399-0700 FU NCRR NIH HHS [P41 RR018522, RR18522]; NIAID NIH HHS [Y1-AI-4894-01] NR 91 TC 107 Z9 111 U1 2 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUL 15 PY 2006 VL 78 IS 14 BP 5026 EP 5039 DI 10.1021/ac060143p PG 14 WC Chemistry, Analytical SC Chemistry GA 063KS UT WOS:000239017700036 PM 16841926 ER PT J AU Pierce, KM Hoggard, JC Hope, JL Rainey, PM Hoofnagle, AN Jack, RM Wright, BW Synovec, RE AF Pierce, Karisa M. Hoggard, Jamin C. Hope, Janiece L. Rainey, Petrie M. Hoofnagle, Andrew N. Jack, Rhona M. Wright, Bob W. Synovec, Robert E. TI Fisher ratio method applied to third-order separation data to identify significant chemical components of metabolite extracts SO ANALYTICAL CHEMISTRY LA English DT Article ID 2-DIMENSIONAL GAS-CHROMATOGRAPHY; FLIGHT MASS-SPECTROMETRY; PERFORMANCE LIQUID-CHROMATOGRAPHY; GC X GC; AUTOMATED INSTRUMENTATION; CHEMOMETRIC ANALYSIS; ALIGNMENT ALGORITHM; FEATURE-SELECTION; METABOLOMICS DATA; ELECTROPHORESIS AB This report is about applying a Fisher ratio method to entire four dimensional (4D) data sets from third-order instrumentation data. The Fisher ratio method uses a novel indexing scheme to discover the unknown chemical differences among known classes of complex samples. This is the first report of a Fisher ratio analysis procedure applied to entire 4D data sets of third-order separation data, which, in this case, is comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry analyses of metabolite extracts using all of the collected mass channels. Current analysis methods for third-order separation data use only user-defined subsets of the 4D data set. First, in a validation study, the Fisher ratio method was demonstrated to objectively evaluate and determine the chemical differences between three controlled urine samples that differed by known spiked chemical components. It was determined that, out of more than 600 recognizable chemical components in a single sample, the six spiked components, along with only two other matrix components, differed most significantly in concentration among the control samples. In a second study, the Fisher ratio method was used in a novel application to discover the unknown chemical differences between urine metabolite samples from pregnant women and nonpregnant women. A brief list of the top 11 components that were most significantly different in concentration between the pregnant and nonpregnant samples was generated. Because the Fisher ratio calculation statistically differentiates regions of the chromatogram with large class-to-class variations from regions containing large within-class variations, the Fisher ratio method should generally be robust against biological diversity in a sample population. Indeed, application of principal component analysis in this second study failed due to biological diversity of the samples. C1 Univ Washington, Dept Chem, Seattle, WA 98195 USA. Univ Washington, Dept Lab Med, Seattle, WA 98195 USA. Childrens Hosp & Reg Med Ctr, Seattle, WA 98145 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Synovec, RE (reprint author), Univ Washington, Dept Chem, Box 351700, Seattle, WA 98195 USA. EM synovec@chem.washington.edu NR 45 TC 73 Z9 75 U1 2 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUL 15 PY 2006 VL 78 IS 14 BP 5068 EP 5075 DI 10.1021/ac0602625 PG 8 WC Chemistry, Analytical SC Chemistry GA 063KS UT WOS:000239017700041 PM 16841931 ER PT J AU Halas, S Durakiewicz, T AF Halas, Stanislaw Durakiewicz, Tomasz TI Physical foundations of the oxide cathodes SO APPLIED SURFACE SCIENCE LA English DT Article; Proceedings Paper CT International Workshop on Surface Physics CY SEP 10-13, 2005 CL Polanica Zdroj, POLAND DE work function; metal oxides; oxide cathodes; CS2O; CaO; SrO; BaO; Y2O3; La2O3; LaB6; thermionic emission ID ELECTRON-EMISSION; WORK FUNCTION; METAL-OXIDES; TEMPERATURE; ELEMENTS AB A novel explanation of the low values of work function in case of activated (partly deoxidized) polycrystalline oxides of alkali and alkaline earth metals is offered. Use of the metallic plasma model to the conducting oxides leads to the following values (in eV): 1.00, 1.67, 1.50, 1.44, 1.46 and 1.59 for activated Cs2O, CaO, SrO, BaO, Y2O3 and La2O3, respectively. The main reason of low work function of the oxide cathodes is very low density of free electrons in the emitting surface layer. (c) 2006 Elsevier B.V All rights reserved. C1 Marie Curie Sklodowska Univ, Inst Phys, PL-20031 Lublin, Poland. Los Alamos Natl Lab, MST 10 Grp, Los Alamos, NM 87544 USA. RP Halas, S (reprint author), Marie Curie Sklodowska Univ, Inst Phys, PL-20031 Lublin, Poland. EM halas@tytan.umcs.lublin.pl OI Durakiewicz, Tomasz/0000-0002-1980-1874 NR 14 TC 11 Z9 11 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD JUL 15 PY 2006 VL 252 IS 18 BP 6119 EP 6121 DI 10.1016/j.apsusc.2006.05.012 PG 3 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 073IB UT WOS:000239735100004 ER PT J AU Means, S Smith, AJ Shepherd, J Shadid, J Fowler, J Wojcikiewicz, RJH Mazel, T Smith, GD Wilson, BS AF Means, S Smith, AJ Shepherd, J Shadid, J Fowler, J Wojcikiewicz, RJH Mazel, T Smith, GD Wilson, BS TI Reaction diffusion modeling of calcium dynamics with realistic ER geometry SO BIOPHYSICAL JOURNAL LA English DT Article ID INOSITOL 1,4,5-TRISPHOSPHATE RECEPTOR; ENDOPLASMIC-RETICULUM; MAST-CELLS; TRISPHOSPHATE RECEPTOR; CA2+ STORES; PROTEIN-KINASE; RBL-2H3 CELLS; RELEASE; INFLUX; CALRETICULIN AB We describe a finite-element model of mast cell calcium dynamics that incorporates the endoplasmic reticulum's complex geometry. The model is built upon a three-dimensional reconstruction of the endoplasmic reticulum ( ER) from an electron tomographic tilt series. Tetrahedral meshes provide volumetric representations of the ER lumen, ER membrane, cytoplasm, and plasma membrane. The reaction-diffusion model simultaneously tracks changes in cytoplasmic and ER intraluminal calcium concentrations and includes luminal and cytoplasmic protein buffers. Transport fluxes via PMCA, SERCA, ER leakage, and Type II IP3 receptors are also represented. Unique features of the model include stochastic behavior of IP3 receptor calcium channels and comparisons of channel open times when diffusely distributed or aggregated in clusters on the ER surface. Simulations show that IP3R channels in close proximity modulate activity of their neighbors through local Ca2+ feedback effects. Cytoplasmic calcium levels rise higher, and ER luminal calcium concentrations drop lower, after IP3-mediated release from receptors in the diffuse configuration. Simulation results also suggest that the buffering capacity of the ER, and not restricted diffusion, is the predominant factor influencing average luminal calcium concentrations. C1 Univ New Mexico, Dept Pathol, Canc Res Facil, Hlth Sci Ctr, Albuquerque, NM 87131 USA. Univ New Mexico, Canc Res & Treatment Ctr, Sch Med, Albuquerque, NM 87131 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. SUNY Upstate Med Univ, Dept Pharmacol, Syracuse, NY USA. Coll William & Mary, Dept Appl Sci, Williamsburg, VA USA. RP Wilson, BS (reprint author), Univ New Mexico, Dept Pathol, Canc Res Facil, Hlth Sci Ctr, Rm 205, Albuquerque, NM 87131 USA. EM bwilson@salud.unm.edu OI Smith, Alex/0000-0002-3034-9137; Smith, Gregory/0000-0002-1054-6790 FU FDA HHS [P20 BM0066283]; NIAID NIH HHS [R01 AI051575, R01 AI051575-04]; NIDDK NIH HHS [DK49194, R01 DK049194, R29 DK049194] NR 73 TC 41 Z9 42 U1 0 U2 2 PU BIOPHYSICAL SOCIETY PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD JUL 15 PY 2006 VL 91 IS 2 BP 537 EP 557 DI 10.1529/biophysj.105.075036 PG 21 WC Biophysics SC Biophysics GA 057RA UT WOS:000238611700017 PM 16617072 ER PT J AU Wang, WC Pan, D Song, Y Liu, WH Yang, L Huang, HW AF Wang, WC Pan, D Song, Y Liu, WH Yang, L Huang, HW TI Method of X-ray anomalous diffraction for lipid structures SO BIOPHYSICAL JOURNAL LA English DT Article ID FUSION INTERMEDIATE STRUCTURE; IPMS-BASED PHASES; CRYSTAL-STRUCTURE; SYNCHROTRON RADIATION; WATER SYSTEMS; MEMBRANE; BILAYERS; DISPERSION; RECONSTRUCTION; SCATTERING AB The structures of the unit cells of lipid phases that exhibit long-range crystalline order but short-range liquid-like disorder are of biological interests. In particular, the recently discovered rhombohedral phase has a unit cell containing either the structure of a membrane fusion intermediate state or that of a peptide-induced transmembrane pore, depending on the lipid composition and participating peptides. Diffraction from such systems generally presents a difficult phase problem. The existing methods of phase determination all have their limitations. Therefore it is of general interest to develop a new phasing method. The method of multi-wavelength anomalous dispersion is routinely used in protein crystallography, but the same method is difficult for lipid systems for the practical reason that the commonly used lipid samples for diffraction do not have a well-defined thickness. Here we describe a practical approach to use the multi-wavelength anomalous dispersion method for lipid structures. The procedure is demonstrated with the lamellar phase of a brominated lipid. The method is general to all phases as long as anomalous diffraction is applicable. C1 Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Huang, HW (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. EM hwhuang@rice.edu RI Yang, Lin/D-5872-2013 OI Yang, Lin/0000-0003-1057-9194 FU NIGMS NIH HHS [R01 GM055203, GM55203] NR 30 TC 9 Z9 9 U1 0 U2 3 PU BIOPHYSICAL SOCIETY PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD JUL 15 PY 2006 VL 91 IS 2 BP 736 EP 743 DI 10.1529/biophysj.105.080267 PG 8 WC Biophysics SC Biophysics GA 057RA UT WOS:000238611700036 PM 16632507 ER PT J AU Wilson, CS Davidson, GS Martin, SB Andries, E Potter, J Harvey, R Ar, K Xu, YX Kopecky, KJ Ankerst, DP Gundacker, H Slovak, ML Mosquera-Caro, M Chen, IM Stirewalt, DL Murphy, M Schultz, FA Kang, HN Wang, XF Radich, JP Appelbaum, FR Atlas, SR Godwin, J Willman, CL AF Wilson, Carla S. Davidson, George S. Martin, Shawn B. Andries, Erik Potter, Jeffrey Harvey, Richard Ar, Kerem Xu, Yuexian Kopecky, Kenneth J. Ankerst, Donna P. Gundacker, Holly Slovak, Marilyn L. Mosquera-Caro, Monica Chen, I-Ming Stirewalt, Derek L. Murphy, Maurice Schultz, Frederick A. Kang, Huining Wang, Xuefei Radich, Jerald P. Appelbaum, Frederick R. Atlas, Susan R. Godwin, John Willman, Cheryl L. TI Gene expression profiling of adult acute myeloid leukemia identities novel biologic clusters for risk classification and outcome prediction SO BLOOD LA English DT Article ID ACUTE MYELOGENOUS LEUKEMIA; CANCER RESISTANCE PROTEIN; SOUTHWEST-ONCOLOGY-GROUP; ACUTE PROMYELOCYTIC LEUKEMIA; FAVORABLE PROGNOSTIC-SIGNIFICANCE; MALIGNANT HEMATOPOIETIC-CELLS; MINIMAL RESIDUAL DISEASE; LONG-TERM SURVIVAL; NORMAL KARYOTYPE; DE-NOVO AB To determine whether gene expression profiling could improve risk classification and outcome prediction in older acute myeloid leukemia (AMIL) patients, expression profiles were obtained in pretreatment leukemic samples from 170 patients whose median age was 65 years. Unsupervised clustering methods were used to classify patients into 6 cluster groups (designated A to F) that varied significantly in rates of resistant disease (RD; P < .001), complete response (CR; P = .023), and disease-free survival (DFS; P = .023). Cluster A (n = 24), dominated by NPM1 mutations (78%), normal karyotypes (75%), and genes associated with signaling and apoptosis, had the best DFS (27%) and overall survival (OS; 25% at 5 years). Patients in clusters B (n = 22) and C (n = 31) had the worst OS (5% and 6%, respectively); cluster B was distinguished by the highest rate of RD (77%) and multidrug resistant gene expression (ABCG2, MDR1). Cluster D was characterized by a "proliferative" gene signature with the highest proportion of detectable cytogenetic abnormalities (76%; including 83% of all favorable and 34% of unfavorable karyotypes). Cluster F (n = 33) was dominated by monocytic leukemias (97% of cases), also showing increased NPM1 mutations (61%). These gene expression signatures provide insights into novel groups of AML not predicted by traditional studies that impact prognosis and potential therapy. C1 Univ New Mexico, Canc Res & Treatment Ctr, Albuquerque, NM 87131 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA. Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA. Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. Univ New Mexico, UNM Ctr High Performance Comp, Albuquerque, NM 87131 USA. SW Oncol Grp, Ctr Stat, Seattle, WA USA. City Hope Natl Med Ctr, Duarte, CA 91010 USA. Loyola Univ, Chicago, IL 60611 USA. Fred Hutchinson Canc Res Ctr, Seattle, WA 98104 USA. Univ New Mexico, Dept Pathol, Albuquerque, NM 87131 USA. RP Willman, CL (reprint author), Univ New Mexico, Canc Res & Treatment Ctr, MSC08 4630 1, Albuquerque, NM 87131 USA. EM cwillman@salud.unm.edu FU NCI NIH HHS [CA32102, CA88361] NR 81 TC 115 Z9 122 U1 0 U2 3 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 2021 L ST NW, SUITE 900, WASHINGTON, DC 20036 USA SN 0006-4971 EI 1528-0020 J9 BLOOD JI Blood PD JUL 15 PY 2006 VL 108 IS 2 BP 685 EP 696 DI 10.1182/blood-2004-12-4633 PG 12 WC Hematology SC Hematology GA 064ZP UT WOS:000239129500047 PM 16597596 ER PT J AU Bhojwani, D Kang, HN Moskowitz, NP Min, DJ Lee, H Potter, JW Davidson, G Willman, CL Borowitz, MJ Belitskaya-Levy, I Hunger, SP Raetz, EA Carroll, WL AF Bhojwani, Deepa Kang, Huining Moskowitz, Naomi P. Min, Dong-Joon Lee, Hokyung Potter, Jeffrey W. Davidson, George Willman, Cheryl L. Borowitz, Michael J. Belitskaya-Levy, Ilana Hunger, Stephen P. Raetz, Elizabeth A. Carroll, William L. TI Biologic pathways associated with relapse in childhood acute lymphoblastic leukemia: a Children's Oncology Group study SO BLOOD LA English DT Article ID POLYMERASE-CHAIN-REACTION; GENE-EXPRESSION; METHOTREXATE RESISTANCE; BREAST-CANCER; GROWTH-FACTOR; 1ST RELAPSE; PROLIFERATION; MICROARRAYS; EXPERIENCE; TRANSPORT AB Outcome for children with childhood acute lymphoblastic leukemia (ALL) who relapse is poor. To gain insight into the mechanisms of relapse, we analyzed gene-expression profiles in 35 matched diagnosis/relapse pairs as well as 60 uniformly treated children at relapse using the Affymetrix platform. Matched-pair analyses revealed significant differences in the expression of genes involved in cell-cycle regulation, DNA repair, and apoptosis between diagnostic and early-relapse samples. Many of these pathways have been implicated in tumorigenesis previously and are attractive targets for intervention strategies. In contrast, no common pattern of changes was observed among late-relapse pairs. Early-relapse samples were more likely to be similar to their respective diagnostic sample while we noted greater divergence in gene-expression patterns among late-relapse pairs. Comparison of expression profiles of early- versus late-relapse samples indicated that early-relapse clones were characterized by overexpression of biologic pathways associated with cell-cycle regulation. These results suggest that early-relapse results from the emergence of a related clone, characterized by the up-regulation of genes mediating cell proliferation. In contrast, late relapse appears to be mediated by diverse pathways. C1 NYU, Div Pediat Hematol Oncol, Ctr Canc, New York, NY 10016 USA. NYU, Sch Med, Dept Biostat, New York, NY USA. Mt Sinai Sch Med, Dept Pediat, New York, NY USA. Univ New Mexico, Canc Res & Treatment Ctr, Albuquerque, NM 87131 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Univ Florida, Coll Med, Dept Pediat, Gainesville, FL USA. Univ Florida, Shands Canc Ctr, Gainesville, FL USA. Johns Hopkins Med Inst, Dept Pathol & Oncol, Baltimore, MD 21205 USA. RP Carroll, WL (reprint author), NYU, Div Pediat Hematol Oncol, Ctr Canc, 550 1St Ave, New York, NY 10016 USA. EM william.carroll@nyumc.org OI Bhojwani, Deepa/0000-0002-7559-7927 FU NCI NIH HHS [U01 CA88361] NR 35 TC 98 Z9 99 U1 1 U2 4 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD JUL 15 PY 2006 VL 108 IS 2 BP 711 EP 717 DI 10.1182/blood-2006-02-002824 PG 7 WC Hematology SC Hematology GA 064ZP UT WOS:000239129500050 PM 16822902 ER PT J AU Fournier, MV Martin, KJ Kenny, PA Xhaja, K Bosch, I Yaswen, P Bissell, MJ AF Fournier, Marcia V. Martin, Katherine J. Kenny, Paraic A. Xhaja, Kris Bosch, Irene Yaswen, Paul Bissell, Mina J. TI Gene expression signature in organized and growth-arrested mammary acini predicts good outcome in breast cancer SO CANCER RESEARCH LA English DT Article ID EPITHELIAL-CELL LINE; MOLECULAR PORTRAITS; PROGNOSTIC-FACTORS; BASEMENT-MEMBRANE; SERIAL ANALYSIS; DEFINED MEDIUM; PROLIFERATION; RECEPTOR; DIFFERENTIATION; MORPHOGENESIS AB Nonmalignant human mammary epithelial cells (HMEC) seeded in laminin-rich extracellular matrix (IrECM) form polarized acini and, in doing so, transit from a disorganized proliferating state to an organized growth-arrested state. We hypothesized that the gene expression pattern of organized and growth-arrested HMECs would share similarities with breast tumors with good prognoses. Using Affymetrix HGU133A microarrays, we analyzed the expression of 22,283 gene transcripts in 184 (finite life span) and HMT3522 S1 (immortal nonmalignant) HMECs on successive days after seeding in a IrECM assay. Both HMECs underwent growth arrest in G(0)-G(1) and differentiated into polarized acini between days 5 and 7. We identified gene expression changes with the same temporal pattern in both lines and examined the expression of these genes in a previously published panel of microarray data for 295 breast cancer samples. We show that genes that are significantly lower in the organized, growth-arrested HMEC than in their proliferating counterparts can be used to classify breast cancer patients into poor and good prognosis groups with high accuracy. This study represents a novel unsupervised approach to identifying breast cancer markers that may be of use clinically. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Canc Biol, Div Life Sci, Berkeley, CA 94720 USA. Univ Massachusetts, Sch Med, Ctr Infect Dis & Vaccine Res, Worcester, MA 01605 USA. RP Bissell, MJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Canc Biol, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM mjbissell@lbl.gov RI Kenny, Paraic/A-3120-2008 FU NCI NIH HHS [2 R01 CA064786-09, R01 CA064786, R01 CA064786-09]; NIAID NIH HHS [U19 AI057319, U19-AI057319] NR 41 TC 74 Z9 76 U1 3 U2 17 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 J9 CANCER RES JI Cancer Res. PD JUL 15 PY 2006 VL 66 IS 14 BP 7095 EP 7102 DI 10.1158/0008-5472.CAN-06-0515 PG 8 WC Oncology SC Oncology GA 064QE UT WOS:000239103400026 PM 16849555 ER PT J AU Nash, BP Perkins, ME Christensen, JN Lee, DC Halliday, AN AF Nash, Barbara P. Perkins, Michael E. Christensen, John N. Lee, Der-Chuen Halliday, A. N. TI The Yellowstone hotspot in space and time: Nd and Hf isotopes in silicic magmas SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE neodymium; hafnium; isotope ratios; Yellowstone; hotspot; silicic magma; rhyolite; mantle plume ID SNAKE RIVER PLAIN; WESTERN UNITED-STATES; NEOGENE VOLCANIC-ROCKS; UPPER-MANTLE; CRUSTAL CONTRIBUTIONS; VELOCITY STRUCTURE; RATTLESNAKE TUFF; HIGH-TEMPERATURE; NORTHERN BASIN; RANGE PROVINCE AB Over the course of its 16 m.y. history, the Yellowstone hotspot has produced silicic magmas exhibiting systematic, and often sympathetic, variations in isotopic and chemical composition, temperature and frequency of eruption. Nd and Hf isotopic ratios vary systematically from initial eruptions at similar to 16 Ma, contemporaneous with basaltic volcanism in eastern Oregon and Washington, to the present day Yellowstone Volcanic Plateau. Nd and Hf isotopic ratios co-vary and span the range of most terrestrial samples, reflecting mixing of mantle and crustal sources. Earliest erupted silicic magmas were hot (in excess of 1050 degrees C), relatively less evolved and have isotopic ratios within the range of contemporaneous Columbia River flood basalts. The transit of the hotspot across the lithospheric boundary between the western accreted oceanic terrain and the Precambrian craton at 15 Ma is marked by shifts in epsilon(Nd) from +4 to -11 and in epsilon(Hf) from +10 to -10. The duration of the transit yields a crustal magma source diameter of similar to 70 km. In the interval from 14 to 9 Ma, epsilon(Nd) systematically increases from -11 to -7, recording a minimum increase in the mantle component from 5% to 30%. The mantle component could be twice as great, depending upon the isotopic composition of crust and mantle reservoirs. In this same interval, peak temperatures of similar to 1000 degrees C occurred at 9 Ma. The last 9 m.y. are characterized by less frequent eruption of lower temperature (830-900 degrees C) and more compositionally evolved magmas. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Utah, Dept Geol & Geophys, Salt Lake City, UT 84112 USA. Lawrence Berkeley Lab, Ctr Isotope Geochem, Berkeley, CA 94720 USA. Acad Sinica, Inst Earth Sci, Taipei 115, Taiwan. Univ Oxford, Dept Earth Sci, Oxford OX1 3PR, England. RP Nash, BP (reprint author), Univ Utah, Dept Geol & Geophys, Salt Lake City, UT 84112 USA. EM Nash@earth.utah.edu RI Lee, Der-Chuen/N-9225-2013; Christensen, John/D-1475-2015 NR 68 TC 68 Z9 69 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JUL 15 PY 2006 VL 247 IS 1-2 BP 143 EP 156 DI 10.1016/j.epsl.2006.04.030 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 068IE UT WOS:000239366100012 ER PT J AU Destaillats, H Lunden, MM Singer, BC Coleman, BK Hodgson, AT Weschler, CJ Nazaroff, WW AF Destaillats, Hugo Lunden, Melissa M. Singer, Brett C. Coleman, Beverly K. Hodgson, Alfred T. Weschler, Charles J. Nazaroff, William W. TI Indoor secondary pollutants from household product emissions in the presence of ozone: A bench-scale chamber study SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID GAS-PHASE REACTIONS; ATMOSPHERIC PARTICLES; CLEANING PRODUCTS; AIR FRESHENERS; OH RADICALS; 2-METHYL-3-BUTEN-2-OL; VENTILATION; SIMULATION; CHEMISTRY; OXIDATION AB Ozone-driven chemistry is a source of indoor secondary pollutants of potential health concern. This study investigates secondary air pollutants formed from reactions between constituents of household products and ozone. Gas-phase product emissions were introduced along with ozone at constant rates into a 198-L Teflon-lined reaction chamber. Gas-phase concentrations of reactive terpenoids and oxidation products were measured. Formaldehyde was a predominant oxidation byproduct for the three studied products, with yields for most conditions of 20-30% with respect to ozone consumed. Acetaldehyde, acetone, glycolaldehyde, formic acid, and acetic acid were each also detected for two or three of the products. Immediately upon mixing of reactants, a scanning mobility particle sizer detected particle nucleation events that were followed by a significant degree of secondary particle growth. The production of secondary gaseous pollutants and particles depended primarily on the ozone level and was influenced by other parameters such as the air-exchange rate. Hydroxyl radical concentrations in the range 0.04-200 x 105 molecules cm(-3) were determined by an indirect method. OH concentrations were observed to vary strongly with residual ozone level in the chamber, which was in the range 1-25 ppb, as is consistent with expectations from a simplified kinetic model. In a separate chamber study, we exposed the dry residue of two products to ozone and observed the formation of gas-phase and particle-phase secondary oxidation products. C1 Lawrence Berkeley Natl Lab, Indoor Environm Dept, Environm Energy Technol Div, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Dept Atmospher Sci, Environm Energy Technol Div, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. Univ Med & Dent New Jersey, Environm & Occupat Hlth Sci Inst, Piscataway, NJ 08854 USA. Rutgers State Univ, Piscataway, NJ 08854 USA. RP Destaillats, H (reprint author), Lawrence Berkeley Natl Lab, Indoor Environm Dept, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM HDestaillats@lbl.gov RI Nazaroff, William/C-4106-2008; Destaillats, Hugo/B-7936-2013; Weschler, Charles/A-9788-2009 OI Nazaroff, William/0000-0001-5645-3357; Weschler, Charles/0000-0002-9097-5850 NR 29 TC 117 Z9 121 U1 1 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 15 PY 2006 VL 40 IS 14 BP 4421 EP 4428 DI 10.1021/es052198z PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 063EZ UT WOS:000239001800021 PM 16903280 ER PT J AU He, JZ Robrock, KR Alvarez-Cohen, L AF He, Jianzhong Robrock, Kristin R. Alvarez-Cohen, Lisa TI Microbial reductive debromination of polybrominated diphenyl ethers (PBDEs) SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID BROMINATED FLAME RETARDANTS; CARP CYPRINUS-CARPIO; DECABROMODIPHENYL ETHER; ANAEROBIC BACTERIUM; DEHALOCOCCOIDES-ETHENOGENES; DEHALOSPIRILLUM-MULTIVORANS; DIETARY EXPOSURE; ELECTRON-DONORS; TREATMENT-PLANT; VINYL-CHLORIDE AB Polybrominated diphenyl ethers ( PBDEs) are a class of widely used flame retardants that have recently been detected in environmental samples, diverse biota, human blood serum, and breast milk at exponentially increasing concentrations. Currently, little is known about the fate of these compounds, and in particular, about the microbial potential to degrade them. In this study, debromination of deca-BDE and an octa-BDE mixture is demonstrated with anaerobic bacteria including Sulfurospirillum multivorans and Dehalococcoides species. Hepta- and octa-BDEs were produced by the S. multivorans culture when it was exposed to deca-BDE, although no debromination was observed with the octa-BDE mixture. In contrast, a variety of hepta- through di-BDEs were produced by Dehalococcoides-containing cultures exposed to an octa-BDE mixture, despite the fact that none of these cultures could debrominate deca-BDE. The more toxic hexa-154, penta-99, tetra-49, and tetra-47 were identified among the debromination products. Because the penta-BDE congeners are among the most toxic PBDEs, debromination of the higher congeners to more toxic products in the environment could have profound implications for public health and for the regulation of these compounds. C1 Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Alvarez-Cohen, L (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. EM alvarez@ce.berkeley.edu FU NIEHS NIH HHS [ES04705] NR 34 TC 206 Z9 246 U1 12 U2 119 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 15 PY 2006 VL 40 IS 14 BP 4429 EP 4434 DI 10.1021/es052508d PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 063EZ UT WOS:000239001800022 PM 16903281 ER PT J AU Hinton, TG Kaplan, DI Knox, AS Coughlin, DP Nascimento, RV Watson, SI Fletcher, DE Koo, BJ AF Hinton, Thomas G. Kaplan, Daniel I. Knox, Anna S. Coughlin, Daniel P. Nascimento, Rebecca V. Watson, Siobahn I. Fletcher, Dean E. Koo, Bon-Jun TI Use of illite clay for in situ remediation of Cs-137-contaminated water bodies: Field demonstration of reduced biological uptake SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SOIL AMENDMENTS; CS-137; CESIUM-137; SEDIMENTS; RESERVOIR; FIXATION; SORPTION AB We hypothesized that adding micaceous minerals to Cs-137-contaminated aquatic systems would serve as an effective in situ remediation technique by sequestering the contaminant and reducing its bioavailability. Results from several laboratory studies are presented from which an effective amendment material was chosen for a replicated field study. The field study was conducted over a 2-year period and incorporated 16 3.3-m diameter column-plots (limnocorrals) that were randomly placed in a Cs-137-contaminated pond. The limnocorrals received three rates of amendment treatments to their water surfaces. The amendment material was a commercially available mineral with high sorption (K-d > 9000 L kg(-1)) and low desorption (< 20%) characteristics for cesium, even in the presence of high concentrations of the competing cation, NH4+. In the treated limnocorrals, Cs-137 concentrations were reduced some 25-30-fold in the water, 4-5-fold in aquatic plants, and 2-3-fold in fish. The addition of the amendment did not adversely affect water chemistry, although increased turbidity and subsequent siltation did alter the aquatic macroinvertebrate insect community. This in situ technology provides a valuable, less-environmentally intrusive alternative to costly ex situ technologies that require the contaminated sediment to be excavated prior to treatment, or excavated and disposed of elsewhere. C1 Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. Savannah River Natl Lab, Aiken, SC 29802 USA. RP Hinton, TG (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. EM thinton@srel.edu NR 27 TC 14 Z9 14 U1 2 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 15 PY 2006 VL 40 IS 14 BP 4500 EP 4505 DI 10.1021/es060124x PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 063EZ UT WOS:000239001800033 PM 16903292 ER PT J AU Perry, TD Cygan, RT Mitchell, R AF Perry, Thomas D., IV Cygan, Randall T. Mitchell, Ralph TI Molecular models of alginic acid: Interactions with calcium ions and calcite surfaces SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID X-RAY-DIFFRACTION; L-GULURONIC ACID; EGG-BOX MODEL; PSEUDOMONAS-AERUGINOSA; DYNAMICS SIMULATION; STRUCTURAL COMPONENTS; CRYSTALLINE-STRUCTURE; MINERAL DISSOLUTION; FORCE-FIELD; FREE-ENERGY AB Cation binding by polysaccharides is observed in many environments and is important for predictive environmental modeling, and numerous industrial and food technology applications. The complexities of these cation-organic interactions are well suited for predictive molecular modeling and the analysis of conformation and configuration of polysaccharides and their influence on cation binding. In this study, alginic acid was chosen as a model polymer system and representative disaccharide and polysaccharide subunits were developed. Molecular dynamics simulation of the torsion angles of the ether linkage between various monomeric subunits identified local and global energy minima for selected disaccharides. The simulations indicate stable disaccharide configurations and a common global energy minimum for all disaccharide models at Phi = 274 +/- 7 degrees, Psi = 227 +/- 5 degrees, where Phi and Psi are the torsion angles about the ether linkage. The ability of disaccharide subunits to bind calcium ions and to associate with the (1014) surface of calcite was also investigated. Molecular models of disaccharide interactions with calcite provide binding energy differences for conformations that are related to the proximity and residence densities of the electron-donating moieties with calcium ions on the calcite surface, which are controlled, in part, by the torsion of the ether linkage between monosaccharide units. Dynamically optimized configurations for polymer alginate models with calcium ions were also derived. (c) 2006 Elsevier Inc. All rights reserved. C1 Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Perry, TD (reprint author), Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA. EM tperry@deas.harvard.edu NR 65 TC 31 Z9 31 U1 3 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 15 PY 2006 VL 70 IS 14 BP 3508 EP 3532 DI 10.1016/j.gca.2006.04.023 PG 25 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 066TE UT WOS:000239252200002 ER PT J AU Schlegel, ML Nagy, KL Fenter, P Cheng, L Sturchio, NC Jacobsen, SD AF Schlegel, Michel L. Nagy, Kathryn. L. Fenter, Paul Cheng, Likwan Sturchio, Nell C. Jacobsen, Steven D. TI Cation sorption on the muscovite (001) surface in chloride solutions using high-resolution X-ray reflectivity SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID ATOMIC-FORCE MICROSCOPE; SODIUM MAGNESIUM EXCHANGE; MONTE-CARLO SIMULATION; WYOMING BENTONITE; CLAY-MINERALS; IN-SITU; AGGREGATE STRUCTURES; HYDRATION FORCES; ORGANIC-MATTER; MICA SURFACES AB The structure and mechanism of cation sorption at the (00 1) muscovite-water interface were investigated in 0.01 and 0.5 m KCl, CsCl, and CaCl, and 0.01 in BaCl, solutions at slightly acidic pH by high-resolution X-ray reflectivity. Structural relaxations of atom positions in the 2M(1) muscovite were small (<= 0.07 A) and occurred over a distance of 30 to 40 A perpendicular to the interface. Cations in all solutions were sorbed dominantly in the first and second solution layers adjacent to the mineral surface. The derived heights of the first solution layer in KCl and CsCl solutions, 1.67(6)-1.77(7) and 2.15(9)-2.16(2) A, respectively, differ in magnitude by the approximate difference in crystallographic radii between K and Cs, and correspond closely to the interlayer cation positions in bulk K- and Cs-mica structures. The first solution layer heights in CaCl, and BaCl2 solutions, 2.46(5)-2.56(11) and 2.02(5)A, respectively, differ in a sense opposite to that expected based on crystallographic or hydrated radii of the divalent cations. The derived ion heights in all solutions imply that there is no intercalated water layer between the first solution layer and the muscovite surface. Molecular compositions were assigned to the first two Solution layers in the electron density profiles using models that constrain the number density of sorbed cations, water molecules. and anions by considering the permanent negative charge of the muscovite and average solution density. The models result in partial charge balance (at least 50%) by cations sorbed in the first two layers in the 0.01 in solutions and approximately full charge balance in the 0.5 m solutions. Damped oscillations of model water density away from the first two solution layers agree with previous X-ray reffectivity results on the muscovite (001) surface in pure water. (c) 2006 Elsevier Inc. All rights reserved. C1 Univ Illinois, Dept Earth & Environm Sci, Chicago, IL 60607 USA. Univ Colorado, Dept Geol Sci, Boulder, CO 80309 USA. Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Nagy, KL (reprint author), Univ Illinois, Dept Earth & Environm Sci, 845 W Taylor St,MC-186, Chicago, IL 60607 USA. EM klnagy@uic.edu RI Cheng, Likwan/C-1436-2013; Jacobsen, Steven/F-3443-2013 OI Jacobsen, Steven/0000-0002-9746-958X NR 67 TC 98 Z9 99 U1 3 U2 43 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 15 PY 2006 VL 70 IS 14 BP 3549 EP 3565 DI 10.1016/j.gca.2006.04.011 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 066TE UT WOS:000239252200004 ER PT J AU Boily, JF Szanyi, J Felmy, AR AF Boily, Jean-Francois Szanyi, Janos Felmy, Andrew R. TI A combined FTIR and TPD study on the bulk and surface dehydroxylation and decarbonation of synthetic goethite SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID ALPHA-FEOOH; INFRARED-SPECTROSCOPY; VARYING CRYSTALLINITY; THERMAL-DECOMPOSITION; CARBONATE ADSORPTION; PHOSPHATED GOETHITE; IRON OXYHYDROXIDES; OXIDE HYDROXIDES; PARTICLE-SIZE; GREEN RUST AB The thermal dehydroxylation of a goethite-carbonate solid solution was studied with combined Fourier-transform infrared (FTIR)Temperature programmed desorption (TPD) experiments. The TPD data revealed dehydroxylation peaks involving the intrinsic dehydroxylation of goethite at 560 K and a low temperature peak at 485 K which was shown to be associated to the release of non-stoichiometric water from the goethite bulk and surface. The FTIR and the TPD data of goethite in the absence of adsorbed carbonate species revealed the presence of adventitious carbonate mostly sequestered in the goethite bulk. The release of carbonate was however not only related to the dehydration of goethite but also from the crystallization of hematite at temperatures exceeding 600 K. The relative abundance of surface hydroxyls was shown to change systematically upon goethite dehydroxylation with a preferential stripping of singly-coordinated -OH sites followed by a dramatic change in the dominance of the different surface hydroxyls upon the formation of hematite. (c) 2006 Published by Elsevier Inc. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Boily, JF (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM boily@pnl.gov NR 65 TC 28 Z9 28 U1 0 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 15 PY 2006 VL 70 IS 14 BP 3613 EP 3624 DI 10.1016/j.gca.2006.05.013 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 066TE UT WOS:000239252200008 ER PT J AU Kukkadapu, RK Zachara, JM Fredrickson, JK McKinley, JP Kennedy, DW Smith, SC Dong, HL AF Kukkadapu, Ravi K. Zachara, John M. Fredrickson, James K. McKinley, James P. Kennedy, David W. Smith, Steven C. Dong, Hailiang TI Reductive biotransformation of Fe in shale-limestone saprolite containing Fe(III) oxides and Fe(II)/Fe(III) phyllosilicates SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID HYDROUS FERRIC-OXIDE; MICROBIAL REDUCTION; FE(III)-REDUCING BACTERIUM; MOSSBAUER-SPECTROSCOPY; SUBSURFACE SEDIMENTS; IRON REDUCTION; CLAY-MINERALS; SURFACE-AREA; GREEN RUST; TRANSFORMATION AB A < 2.0-min fraction of a mineralogically complex subsurface sediment containing goethite and Fe(II)/Fe(III) phyllosilicates was incubated with Shewanella putrefaciens (strain CN32) and lactate at circumneutral pH under anoxic conditions to investigate electron acceptor preference and the nature of the resulting biogenic Fe(II) fraction. Anthraquinone-2,6-disulfonate (AQDS), an electron shuttle, was included in select treatments to enhance bioreduction and subsequent biomineralization. The sediment was highly aggregated and contained two distinct clast populations: (i) a highly weathered one with "sponge-like" internal porosity, large mineral crystallites, and Fe-containing micas, and (ii) a dense, compact one with fine-textured Fe-containing illite and nano-sized goethite, as revealed by various forms of electron microscopic analyses. Approximately 10-15% of the Fe(III)TOT was bioreduced by CN32 over 60 d in media without AQDS, whereas 24% and 35%, of the Fe(III)(TOT) was bioreduced by CN32 after 40 and 95 d in media with AQDS. Little or no Fe2+, Mn, Si, Al, and Mg were evident in aqueous filtrates after reductive incubation. Mossbauer measurements on the bioreduced sediments indicated that both goethite and phyllosilicate Fe(III) were partly reduced without bacterial preference. Goethite was more extensively reduced in the presence of AQDS whereas phyllosilicate Fe(Ill) reduction was not influenced by AQDS. Biogenic Fe(II) resulting from phyllosilicate Fe(Ill) reduction remained in a layer-silicate environment that displayed enhanced solubility in weak acid. The mineralogic nature of the goethite biotransformation product was not determined. Chemical and cryogenic Mossbauer measurements, however, indicated that the transformation product was not siderite, green rust, magnetite, Fe(OH)(2), or Fe(II) adsorbed on phyllosilicate or bacterial surfaces. Several lines of evidence suggested that biogenic Fe(II) existed as surface associated phase on the residual goethite, and/or as a Fe(II)-Al coprecipitate. Sediment aggregation and mineral physical and/or chemical factors were demonstrated to play a major role on the nature and location of the biotransformation reaction and its products. (c) 2006 Elsevier Inc. All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99354 USA. Miami Univ, Dept Geol, Oxford, OH 45056 USA. RP Kukkadapu, RK (reprint author), Pacific NW Natl Lab, POB 999,MSIN K8-96, Richland, WA 99354 USA. EM ravi.kukkadapu@pnl.gov OI Kennedy, David/0000-0003-0763-501X NR 66 TC 53 Z9 53 U1 2 U2 40 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 15 PY 2006 VL 70 IS 14 BP 3662 EP 3676 DI 10.1016/j.gca.2006.05.004 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 066TE UT WOS:000239252200011 ER PT J AU Agustin, MP Bersuker, G Foran, B Boatner, LA Stemmer, S AF Agustin, Melody P. Bersuker, Gennadi Foran, Brendan Boatner, Lynn A. Stemmer, Susanne TI Scanning transmission electron microscopy investigations of interfacial layers in HfO2 gate stacks SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ENERGY-LOSS SPECTROSCOPY; DIELECTRICS; SILICON; OXIDES; FILMS; STABILITY; ZRO2; SCATTERING; SPECTRA; SI(001) AB Electron energy-loss spectroscopy combined with high-angle annular dark-field (HAADF) imaging in scanning transmission electron microscopy was used to investigate the chemistry of interfacial layers in HfO2 gate stacks capped with polycrystalline Si gate electrodes. To interpret the energy-loss near-edge fine structure (ELNES) obtained from the interfacial layers, reference spectra were obtained from single crystal hafnium silicate (HfSiO4), monoclinic HfO2 powder, and amorphous SiO2. No bulk-like silicate bonding could be detected in the ELNES of Si L-2,L-3 and O K edges recorded from layers at the Si substrate interface. Compared to bulk SiO2, the interfacial ELNES showed additional features that were caused by overlap of signals from Si, HfO2, and SiO2, despite a relatively small electron probe size of similar to 3 A. HAADF showed that interfacial roughness caused the projected thickness of nominally pure SiO2 (within the detection limit of the method) to be as small as similar to 5 A in many locations. (c) 2006 American Institute of Physics. C1 Univ Calif Berkeley, Mat Dept, Santa Barbara, CA 93106 USA. Sematech, Austin, TX 78741 USA. ATDF Inc, Austin, TX 78741 USA. Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. RP Agustin, MP (reprint author), Univ Calif Berkeley, Mat Dept, Santa Barbara, CA 93106 USA. EM stemmer@mrl.ucsb.edu RI Stemmer, Susanne/H-6555-2011; Boatner, Lynn/I-6428-2013 OI Stemmer, Susanne/0000-0002-3142-4696; Boatner, Lynn/0000-0002-0235-7594 NR 37 TC 25 Z9 25 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2006 VL 100 IS 2 AR 024103 DI 10.1063/1.2214187 PG 6 WC Physics, Applied SC Physics GA 069CR UT WOS:000239423400097 ER PT J AU Harimkar, SP Dahotre, NB AF Harimkar, Sandip P. Dahotre, Narendra B. TI Crystallographic and morphological textures in laser surface modified alumina ceramic SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID GRINDING WHEEL MATERIAL; ELECTROHYDRODYNAMIC ATOMIZATION; MICROSTRUCTURE; COATINGS; EVOLUTION; ALLOYS; DEPOSITION; SELECTION; HARDNESS; POWDERS AB Laser surface modification is an advanced technique for improving the surface performance of alumina ceramics in refractory and abrasive machining applications. Surface performance is expected to be greatly influenced by the crystallographic and morphological textures of surface grains generated during rapid solidification associated with laser processing. In this study, an investigation of the evolution of crystallographic and morphological textures during laser surface modifications of alumina ceramic was carried out using a 4 kW Nd:YAG laser with fluences in the range of 458-726 J/cm(2). In these regimes of laser surface processing, the formation of equilibrium alpha-alumina was found to be assisted by catalytic sites provided by the substrate. Microstructure evolution was explored in terms of the development of crystallographic and morphological (size and shape) textures of surface grains as a function of laser processing parameters. The interdependence of crystallographic and morphological textures of the surface grains is discussed within the framework of faceted growth model suggesting that the formation of crystal shapes is governed by the relative velocities of certain crystallographic facets. Also, the effect of thermal aspects of laser processing on the morphology of the surface grains is discussed from the viewpoint of existing solidification theories. (c) 2006 American Institute of Physics. C1 Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Dahotre, NB (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM ndahotre@utk.edu NR 23 TC 30 Z9 32 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2006 VL 100 IS 2 AR 024901 DI 10.1063/1.2214365 PG 6 WC Physics, Applied SC Physics GA 069CR UT WOS:000239423400143 ER PT J AU Hooks, DE Ramos, KJ Martinez, AR AF Hooks, Daniel E. Ramos, Kyle J. Martinez, A. Richard TI Elastic-plastic shock wave profiles in oriented single crystals of cyclotrimethylene trinitramine (RDX) at 2.25 GPa SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PENTAERYTHRITOL TETRANITRATE; SPECTROSCOPY; DISLOCATIONS; ORIENTATION; INITIATION; LIF AB Plate impact experiments were performed on oriented single crystals of the energetic material cyclotrimethylene trinitramine (RDX). The experiments were performed to determine the anisotropic dynamic yield point for the RDX crystal, as well as to provide data for continuum modeling efforts. Impact was on the (111), (210), and (100) planes to access 3, 2, and 0 slip systems, respectively. Velocity history profiles were measured using Doppler interferometry. Impacts on the (210) plane resulted in nominally conventional results, with distinct elastic and plastic waves, stress relaxation, elastic precursor decay, and increasing wave separation with propagation distance. Velocity profiles from impacts on the (111) plane had no discernable precursor, although an inflection seen in the thicker samples might be the nearly overdriven elastic wave. Wave arrival times signaled a slower elastic wave speed in the (111) profiles. Several unexpected features were observed in the elastic precursor of the profiles from impacts on the (100) plane. Up to three distinct step features were resolved in these profiles in the region of the elastic precursor; these features are not understood. In preparing samples for these experiments, it was noted that the (100) crystal slabs were exceptionally brittle. Wave speeds determined from the shock experiments were consistent with both pulse-echo wave speed measurements and wave speeds calculated from the measured elastic tensor. The elastic limit, as indicated by the peak of the leading wave, was relatively isotropic. (c) 2006 American Institute of Physics. C1 Los Alamos Natl Lab, Dynam Expt Div, Los Alamos, NM 87545 USA. RP Hooks, DE (reprint author), Los Alamos Natl Lab, Dynam Expt Div, POB 1663, Los Alamos, NM 87545 USA. EM dhooks@lanl.gov NR 26 TC 37 Z9 40 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2006 VL 100 IS 2 AR 024908 DI 10.1063/1.2214639 PG 7 WC Physics, Applied SC Physics GA 069CR UT WOS:000239423400150 ER PT J AU Nguyen, JH Orlikowski, D Streitz, FH Moriarty, JA Holmes, NC AF Nguyen, Jeffrey H. Orlikowski, Daniel Streitz, Frederick H. Moriarty, John A. Holmes, Neil C. TI High-pressure tailored compression: Controlled thermodynamic paths SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ISENTROPIC COMPRESSION; RAMAN-SCATTERING; Z-ACCELERATOR; DENSE MATTER; SUPERCONDUCTIVITY; STATE; GPA; EQUATION; HYDROGEN; LITHIUM AB We have recently carried out exploratory dynamic experiments where the samples were subjected to prescribed thermodynamic paths. In typical dynamic compression experiments, the samples are thermodynamically limited to the principal Hugoniot or quasi-isentrope. With recent developments in a functionally graded material impactor, we can prescribe and shape the applied pressure profile with similarly shaped, nonmonotonic impedance profile in the impactor. Previously inaccessible thermodynamic states beyond the quasi-isentropes and Hugoniot can now be reached in dynamic experiments with these impactors. In the light gas gun experiments on copper reported here, we recorded the particle velocities of the Cu-LiF interfaces and have employed hydrodynamic simulations to relate them to the thermodynamic phase diagram. Peak pressures for these experiments are on the order of megabars, and the time scales range from nanoseconds to several microseconds. The strain rates of these quasi-isentropic experiments are approximately 10(4)-10(6) s(-1) in samples with thicknesses of up to 5 mm. Though developed at a light gas gun facility, such shaped pressure profiles are also feasible using laser ablation or magnetically driven compression techniques and allow for previously unexplored directions to be taken in high pressure physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Nguyen, JH (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM nguyen29@llnl.gov NR 33 TC 23 Z9 29 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2006 VL 100 IS 2 AR 023508 DI 10.1063/1.2214209 PG 4 WC Physics, Applied SC Physics GA 069CR UT WOS:000239423400033 ER PT J AU Smith, DR Gollub, J Mock, JJ Padilla, WJ Schurig, D AF Smith, David R. Gollub, Jonah Mock, Jack J. Padilla, Willie J. Schurig, David TI Calculation and measurement of bianisotropy in a split ring resonator metamaterial SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PERMITTIVITY; PERMEABILITY; DESIGN AB A medium that exhibits artificial magnetism can be formed by assembling an array of split ring resonators (SRRs)-planar conducting elements that exhibit a resonant response to electromagnetic radiation. The SRR exhibits a large magnetic dipole moment when excited by a magnetic field directed along its axis. However, the SRR also exhibits an electric response that can be quite large depending on the symmetry of the SRR and the orientation of the SRR with respect to the electric component of the field. So, while the SRR medium can be considered as having a predominantly magnetic response for certain orientations with respect to the incident wave, it is generally the case that the SRR exhibits magnetoelectric coupling, and hence a medium of SRRs arranged so as to break mirror symmetry about one of the axes will exhibit bianisotropy. We present here a method of directly calculating the magnetoelectric coupling terms using averages over the fields computed from full-wave finite-element based numerical simulations. We confirm the predicted bianisotropy of a fabricated SRR medium by measuring the cross polarization of a microwave beam transmitted through the sample. We also demonstrate that the magnetoelectric coupling that gives rise to the bianisotropic response is suppressed by symmetrizing the SRR composite structure and provide measurements comparing the cross polarization of the symmetric and asymmetric structures. (c) 2006 American Institute of Physics. C1 Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA. Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Smith, DR (reprint author), Duke Univ, Dept Elect & Comp Engn, POB 90291, Durham, NC 27708 USA. EM drsmith@ee.duke.edu RI Schurig, David/A-3647-2008; Smith, David/E-4710-2012; Padilla, Willie/A-7235-2008 OI Padilla, Willie/0000-0001-7734-8847 NR 22 TC 62 Z9 70 U1 6 U2 34 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2006 VL 100 IS 2 AR 024507 DI 10.1063/1.2218033 PG 9 WC Physics, Applied SC Physics GA 069CR UT WOS:000239423400133 ER PT J AU Vaithyanathan, V Lettieri, J Tian, W Sharan, A Vasudevarao, A Li, YL Kochhar, A Ma, H Levy, J Zschack, P Woicik, JC Chen, LQ Gopalan, V Schlom, DG AF Vaithyanathan, V. Lettieri, J. Tian, W. Sharan, A. Vasudevarao, A. Li, Y. L. Kochhar, A. Ma, H. Levy, J. Zschack, P. Woicik, J. C. Chen, L. Q. Gopalan, V. Schlom, D. G. TI c-axis oriented epitaxial BaTiO3 films on (001) Si SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID FERROELECTRIC THIN-FILMS; PULSED-LASER DEPOSITION; MOLECULAR-BEAM EPITAXY; MISFIT RELAXATION MECHANISMS; BARIUM-TITANATE; HETEROEPITAXIAL GROWTH; DOMAIN CONFIGURATIONS; HARMONIC GENERATION; FORCE MICROSCOPY; CRYSTALS AB c-axis oriented epitaxial films of the ferroelectric BaTiO3 have been grown on (001) Si by reactive molecular-beam epitaxy. The orientation relationship between the film and substrate is (001) BaTiO3 parallel to(001) Si and [100] BaTiO3 parallel to[110] Si. The uniqueness of this integration is that the entire epitaxial BaTiO3 film on (001) Si is c-axis oriented, unlike any reported so far in the literature. The thermal expansion incompatibility between BaTiO3 and silicon is overcome by introducing a relaxed buffer layer of BaxSr1-xTiO3 between the BaTiO3 film and silicon substrate. The rocking curve widths of the BaTiO3 films are as narrow as 0.4 degrees. X-ray diffraction and second harmonic generation experiments reveal the out-of-plane c-axis orientation of the epitaxial BaTiO3 film. Piezoresponse atomic force microscopy is used to write ferroelectric domains with a spatial resolution of similar to 100 nm, corroborating the orientation of the ferroelectric film. (c) 2006 American Institute of Physics. C1 Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. Univ Illinois, APS UNICAT, Argonne Natl Lab, Argonne, IL 60439 USA. NIST, Gaithersburg, MD 20899 USA. Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Vaithyanathan, V (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM schlom@ems.psu.edu RI Schlom, Darrell/J-2412-2013; Chen, LongQing/I-7536-2012; Levy, Jeremy/A-2081-2009 OI Schlom, Darrell/0000-0003-2493-6113; Chen, LongQing/0000-0003-3359-3781; Levy, Jeremy/0000-0002-5700-2977 NR 59 TC 68 Z9 70 U1 3 U2 40 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2006 VL 100 IS 2 AR 024108 DI 10.1063/1.2203208 PG 9 WC Physics, Applied SC Physics GA 069CR UT WOS:000239423400102 ER PT J AU Van, TT Bargar, JR Chang, JP AF Van, Trinh Tu Bargar, John R. Chang, Jane P. TI Er coordination in Y2O3 thin films studied by extended x-ray absorption fine structure SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID BOND-VALENCE DETERMINATION; ATOMIC LAYER DEPOSITION; LOCAL-STRUCTURE; SORPTION PRODUCTS; O-RADICALS; GLASSES; SILICA; ERBIUM; PHOTOLUMINESCENCE; MICROSTRUCTURE AB Extended x-ray absorption fine structure (EXAFS) spectroscopy was employed to study the Er coordination in polycrystalline Y2O3 thin films, which was found to dictate their photoluminescence (PL) properties. Incorporation of Er with concentrations varying from 6 to 14 at. % was achieved by radical-enhanced atomic layer deposition at 350 degrees C. In all samples, Er was found to be in the optically active trivalent state, confirmed by their x-ray absorption near-edge spectroscopy spectra. Modeling of the EXAFS data revealed that the local structure of Er3+ is similar to that of Er3+ in Er2O3. Specifically, Er3+ is coordinated with six O at 2.24 and 2.32 A. Excellent fits to the EXAFS for samples with Er3+ concentration less than 8 at. % were achieved when the second coordination shell was modeled as a mixture of Y3+ and Er3+, indicating a complete miscibility of Er3+ in the Y2O3 matrix under these experimental conditions. This behavior is attributed to the almost perfect ionic size match between Y3+ and Er3+, having identical valence state and coordination characteristics. For thin films with higher Er concentrations, the EXAFS analysis revealed an exsolution with Er2O3 domain. Since there is no indication of Er clustering, it is concluded that the PL quenching observed in samples with the Er doping level exceeding 8 at. % is likely due to Er ion-ion interaction but not Er immiscibility in Y2O3. Specifically, an increase in the Er3+ concentration implied an increase in the average number of Er3+ in the second coordination shell, thus making ion-ion interaction possible. The critical interionic distance between two Er3+ was determined to be similar to 4 A, thus setting an upper limit on the Er3+ concentration in Y2O3 at similar to 6x10(21) cm(-3), at least three orders of magnitude higher than the Er3+ solubility limit in the conventional SiO2 host (< 10(18) cm(-3)). (c) 2006 American Institute of Physics. C1 Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. RP Chang, JP (reprint author), Univ Calif Los Angeles, Dept Chem & Biomol Engn, 5532 D Boelter Hall, Los Angeles, CA 90095 USA. EM jpchang@seas.ucla.edu NR 36 TC 16 Z9 16 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2006 VL 100 IS 2 AR 023115 DI 10.1063/1.2214299 PG 8 WC Physics, Applied SC Physics GA 069CR UT WOS:000239423400015 ER PT J AU Wang, Y Liu, ZK Chen, LQ Burakovsky, L Ahuja, R AF Wang, Y. Liu, Z. -K. Chen, L. -Q. Burakovsky, L. Ahuja, R. TI First-principles calculations on MgO: Phonon theory versus mean-field potential approach SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID EQUATION-OF-STATE; ALKALINE-EARTH OXIDES; MAGNESIUM-OXIDE; AB-INITIO; HIGH-PRESSURE; MOLECULAR-DYNAMICS; LATTICE-DYNAMICS; HIGH-TEMPERATURE; THERMODYNAMIC PROPERTIES; PERICLASE AB Various thermodynamic properties of MgO were studied using both ab initio phonon theory and the mean-field potential (MFP) approach. They include thermal pressure, thermal expansion, the 300 K equation of state, and the shock Hugoniot. It is found that the results of ab initio phonon theory and the MFP approach agree with each other, except that ab initio phonon theory gave a poor description of the thermal pressure when temperature became relatively high. (c) 2006 American Institute of Physics. C1 Penn State Univ, University Pk, PA 16802 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Uppsala Univ, Dept Phys, Condensed Matter Theory Grp, S-75121 Uppsala, Sweden. RP Wang, Y (reprint author), Penn State Univ, University Pk, PA 16802 USA. EM yuw3@psu.edu RI Wang, Yi/D-1032-2013; Chen, LongQing/I-7536-2012; Liu, Zi-Kui/A-8196-2009 OI Chen, LongQing/0000-0003-3359-3781; Liu, Zi-Kui/0000-0003-3346-3696 NR 49 TC 12 Z9 12 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2006 VL 100 IS 2 AR 023533 DI 10.1063/1.2219081 PG 5 WC Physics, Applied SC Physics GA 069CR UT WOS:000239423400058 ER PT J AU Xu, Z Edgar, JH Speakman, S AF Xu, Z. Edgar, J. H. Speakman, S. TI Heteroepitaxial B12As2 on silicon substrates SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE nucleation; substrates; X-ray diffraction; chemical vapor deposition processes; semiconducting boride compounds ID CHEMICAL-VAPOR-DEPOSITION; BORON-RICH SOLIDS; THIN-FILMS; GROWTH; SYSTEM AB The morphology and crystal structure of rhombohedral B12As2, thin films prepared by chemical vapor deposition on Si (100), Si (I 10) and Si (I 1 1) substrates were examined. For short depositions, 30s at 1300 degrees C, the B12As2 nucleated in patterns that were unique to each substrate orientation, probably due to variations in the surface atomic structure and surface activation energy of the substrates. Small square domains, one-dimensional straight lines, and irregular lines were the representative morphologies on Si (100), Si (I 1 1) and Si (I 10), respectively. For long depositions, 30 min at 1300 degrees C, continuous thin films of B 1 As, formed with distinct morphologies also depend on the orientation of the substrates. "Cross", "wire" and "chain" morphologies were formed on the Si (10 0), Si (I 1 1) and Si (110) substrates, respectively. X-ray diffraction (XRD) showed that the B12As2 films had the following predominant oriented textures: B12As2 (110) on Si (100), B12As2 (101) on Si (111), and B12As2 (001) on Si (I 10). The in-plane orientations of the B12As2 films as determined by XRD pole figures is also reported. Crown Copyright (c) 2006 Published by Elsevier B.V. All rights reserved. C1 Kansas State Univ, Dept Chem Engn, Manhattan, KS 66506 USA. Oak Ridge Natl Lab, High Temp Mat Lab, Oak Ridge, TN 37831 USA. RP Edgar, JH (reprint author), Kansas State Univ, Dept Chem Engn, Durland Hall, Manhattan, KS 66506 USA. EM edgarjh@ksu.edu NR 19 TC 5 Z9 5 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD JUL 15 PY 2006 VL 293 IS 1 BP 162 EP 168 DI 10.1016/j.jcrysgro.2006.04.092 PG 7 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 073AU UT WOS:000239715400029 ER PT J AU Thranhardt, A Meier, T Reichelt, M Schlichenmaier, C Pasenow, B Kuznetsova, I Becker, S Stroucken, T Hader, J Zakharian, AR Moloney, JV Chow, WW Koch, SW AF Thraenhardt, A. Meier, T. Reichelt, M. Schlichenmaier, C. Pasenow, B. Kuznetsova, I. Becker, S. Stroucken, T. Hader, J. Zakharian, A. R. Moloney, J. V. Chow, W. W. Koch, S. W. TI Microscopic modeling of the optical properties of semiconductor nanostructures SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article; Proceedings Paper CT 1st Conference on Advances in Optical Materials (AIOM) CY OCT 12-15, 2005 CL Tucson, AZ SP Univ Arizona, Raytheon Co DE quantum wells; wires and dots; optical properties; absorption; lasers; non-linear optics ID SURFACE-EMITTING LASER; SPONTANEOUS EMISSION; GAIN SPECTRA; BAND; CRYSTALS; DIODES AB A brief overview of a consistent microscopic approach to model the optical and electronic properties of semiconductor nanostructures is presented. Coupled semiconductor Bloch and Maxwell equations are used to investigate the performance of semiconductor microcavity structures, photonic band gap systems, and lasers. The predictive potential of the microscopic theory is demonstrated for several examples of practical importance. Optical gain and output characteristics are computed for modern vertical external cavity surface emitting laser structures. It is shown how design flexibilities can be used to optimize the device performance. Nanostructures are proposed where semiconductor quantum wells are embedded in one-dimensional photonic crystals. For field modes spectrally below the photonic band edge it is shown that the optical gain and absorption can be enhanced by more than one order of magnitude over the value of the homogeneous medium. The increased gain can be used for laser action by placing quantum wells and a suitably designed photonic crystal structure inside a microcavity. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Marburg, Dept Phys & Mat Sci Ctr, D-35032 Marburg, Germany. Univ Arizona, Arizona Ctr Math Sci, Tucson, AZ 85721 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Meier, T (reprint author), Univ Marburg, Dept Phys & Mat Sci Ctr, Renthof 5, D-35032 Marburg, Germany. EM torsten.meier@physik.uni-marburg.de RI Thranhardt, Angela/A-5888-2013 NR 20 TC 4 Z9 4 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD JUL 15 PY 2006 VL 352 IS 23-25 BP 2480 EP 2483 DI 10.1016/j.jnoncrysol.2006.02.064 PG 4 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 064SU UT WOS:000239110200044 ER PT J AU Van Ginhoven, RM Jonsson, H Corrales, LR AF Van Ginhoven, Renee M. Jonsson, Hannes Corrales, L. Rene TI Characterization of exciton self-trapping in amorphous silica SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article; Proceedings Paper CT 1st Conference on Advances in Optical Materials (AIOM) CY OCT 12-15, 2005 CL Tucson, AZ SP Univ Arizona, Raytheon Co DE defects; density functional theory; silica ID FRENKEL DEFECT FORMATION; HIGH-PURITY SILICA; AB-INITIO; MOLECULAR-DYNAMICS; FUSED-SILICA; SIO2; GENERATION; QUARTZ; LUMINESCENCE; IRRADIATION AB Triplet electron-hole excitations were introduced into amorphous silica to study self-trapping (localization) and damage formation using density functional theory. Multiple self-trapped exciton (STE) states are found that can be differentiated based on the luminescence energy, the localization and distribution of the excess spin density of the triplet state, and relevant structural data, including the presence or absence of broken bonds. The trapping is shown to be affected by the relaxation response of the silica network, and by comparing results of quartz and amorphous silica systems the effects of the inherent disordered structures on exciton self-trapping are revealed. A key result is that the process of exciton trapping can lead directly to the formation of point defects, without thermal activation. The proposed mechanism includes a non-radiative decay from the excited to the ground state followed by structure relaxation to a defect configuration in the ground state. (c) 2006 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. Univ Washington, Dept Chem, Seattle, WA 98195 USA. Univ Iceland, Fac Sci VR2, IS-107 Reykjavik, Iceland. RP Corrales, LR (reprint author), Pacific NW Natl Lab, POB 999,MSIN K8-91, Richland, WA 99352 USA. EM hj@hi.is; rene.corrales@pnl.gov RI Jonsson, Hannes/G-2267-2013 OI Jonsson, Hannes/0000-0001-8285-5421 NR 34 TC 12 Z9 12 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD JUL 15 PY 2006 VL 352 IS 23-25 BP 2589 EP 2595 DI 10.1016/j.jnoncrysol.2006.01.095 PG 7 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 064SU UT WOS:000239110200068 ER PT J AU Potter, BG Simmons-Potter, K Chandra, H Jamison, GM Thomes, WJ AF Potter, B. G., Jr. Simmons-Potter, K. Chandra, H. Jamison, G. M. Thomes, W. J., Jr. TI Photoprogrammable molecular hybrid materials for write-as-needed optical devices SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article; Proceedings Paper CT 1st Conference on Advances in Optical Materials (AIOM) CY OCT 12-15, 2005 CL Tucson, AZ SP Univ Arizona, Raytheon Co DE spin coating; laser-matter interactions; optical spectroscopy; absorption; photoinduced effects; FTIR measurements; polymers and organics ID POLYSILANE HIGH POLYMERS; PLANAR WAVE-GUIDES; THIN-FILMS; POLY(METHYLPHENYLSILYLENE); MECHANISM; DEFECTS AB The application of photosensitive materials to provide immediately configurable optical device functionality in integrated photonic systems has motivated an examination of the unique materials requirements associated with this alternative operational mode. In this case, a reliable photoinduced index change is needed when photopatterning under non-laboratory conditions utilizing compact, integrable optical sources. Molecular hybrid thin films, based on inorganic, Group IVA linear-chain polymers, are investigated in terms of excitation (writing) wavelength tuning through molecular modification and the influence of environmental conditions and thermal history on the photosensitive response observed. In general, a significant photoinduced refractive index change (with magnitude greater than 10(-2) at 632.8 nm) is found to be retained as the lowest energy absorption band (associated with the Group IVA conjugated backbone structure) is shifted with changes in side-group identity and backbone composition. In addition, the photosensitive response of a representative polysilane composition (poly[(methyl)(phenyl)silylene]) is observed to be strongly dependent on the local atmospheric composition during photoexposure, a key issue in the effective in-situ patterning of optical structures. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85718 USA. Univ Arizona, Dept Elect & Comp Engn, Tucson, AZ 85718 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Potter, BG (reprint author), Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85718 USA. EM bgpotter@mse.arizona.edu NR 22 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD JUL 15 PY 2006 VL 352 IS 23-25 BP 2618 EP 2627 DI 10.1016/j.jnoncrysol.2006.01.096 PG 10 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 064SU UT WOS:000239110200071 ER PT J AU Kim, CW Wronkiewicz, DJ Finch, RJ Buck, EC AF Kim, Cheol-Woon Wronkiewicz, David J. Finch, Robert J. Buck, Edgar C. TI Incorporation of cerium and neodymium in uranyl phases SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID SPENT NUCLEAR-FUEL; CRYSTAL-STRUCTURES; 90-DEGREES-C; OXIDATION; CORROSION; UO2; IANTHINITE; URANIUM; HYDRATE; RELEASE AB The potential for incorporating rare earth elements (REE) into/onto crystalline compounds has been evaluated by precipitating uranyl phases from aqueous solutions containing either cerium or neodymium. These REEs serve both as monitors for evaluating the potential repository behavior of REE radionuclides, and as surrogate elements for actinides (e.g., Ce4+ and Nd3+ for Pu4+ and Am3+, respectively). The present experiments examined the behavior of REE in the presence of ianthinite ([U-2(4+)(UO2)(4)O-6(OH)(4)(H2O),](H2O)(5)), becquerelite (Ca(UO2)(6)O-4(OH)(6)(H2O)(8)), and other uranyl hydroxide compounds commonly noted as alteration products during the corrosion of UO2, spent nuclear fuel, and naturally occurring uraninite. The results of these experiments demonstrate that significant quantities of both cerium (K-d = 1020) and neodymium (K-d = 840) are incorporated within the uranium alteration phases and suggest that ionic substitution and/or adsorption to the uranyl phases can play a key role in the limiting the mobility of REE (and by analogy, actinide elements) in a nuclear waste repository. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Missouri, Dept Min & Nucl Engn, Rolla, MO 65409 USA. Univ Missouri, Dept Geol Sci & Engn, Rolla, MO 65409 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kim, CW (reprint author), Univ Missouri, Dept Min & Nucl Engn, Rolla, MO 65409 USA. EM cheol@umr.edu RI Buck, Edgar/D-4288-2009; Finch, Robert/D-9553-2013; Buck, Edgar/N-7820-2013 OI Finch, Robert/0000-0001-9342-5574; Buck, Edgar/0000-0001-5101-9084 NR 21 TC 8 Z9 8 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL 15 PY 2006 VL 353 IS 3 BP 147 EP 157 DI 10.1016/j.jnucmat.2006.02.087 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 063BG UT WOS:000238990300001 ER PT J AU Kelly, AM Thoma, DJ Field, RD Dunn, PS Teter, DF AF Kelly, Ann M. Thoma, Dan J. Field, Robert D. Dunn, Paul S. Teter, David F. TI Metallographic preparation techniques for uranium SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article AB Existing metallographic preparation techniques for uranium are limited to elucidating specific microstructural characteristics, and some of the techniques are regarded as being environmentally unacceptable. This paper describes a newly developed technique, which is not only more environmentally friendly, but reveals most microstructural features simultaneously. Example microstructures of the various preparation stages are given to highlight the new technique. (c) 2006 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Mat Sci Technol Div, Los Alamos, NM 87545 USA. RP Kelly, AM (reprint author), Los Alamos Natl Lab, Mat Sci Technol Div, POB 1663,MST-6, Los Alamos, NM 87545 USA. EM akelly@lanl.gov NR 7 TC 12 Z9 12 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL 15 PY 2006 VL 353 IS 3 BP 158 EP 166 DI 10.1016/j.jnucmat.2005.12.008 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 063BG UT WOS:000238990300002 ER PT J AU Clark, JC Saengkerdsub, S Eldridge, GT Campana, C Barnes, CE AF Clark, Jason C. Saengkerdsub, Suree Eldridge, Geoff T. Campana, C. Barnes, Craig E. TI Synthesis and structure of functional spherosilicate building block molecules for materials synthesis SO JOURNAL OF ORGANOMETALLIC CHEMISTRY LA English DT Article DE silicate cage precursor; silicate decamer; silicate octomer; zeolite building block; spherosilicates; structural distortions spherosilicates; silicate oxide; titanocene dichloride; trimethyl tin; aprotic building block synthesis ID X-RAY-DIFFRACTION; NUCLEAR-MAGNETIC-RESONANCE; HYDRATE-TYPE MATERIALS; CRYSTAL-STRUCTURE; CLATHRATE HYDRATE; OCTANUCLEAR SILASESQUIOXANE; STRUCTURE DIRECTORS; OCTAMERIC SILICATE; POROUS MATERIALS; ZEOLITE-TYPE AB Cubic, trialkyl tin functionalized spherosilicates Si8O20(SnR3)(8) (R = Me, "Bu) and the pentagonal prismatic tin-spherosilicate Si10O25(SnMe3)(10) have been synthesized and characterized. Single crystal X-ray structures were obtained for Si8O20(SnMe3)(8) (I), Si8O20(SnMe3)(8) (.) 4H(2)O (I (.) 4H(2)O), and Si10O25(SnMe3)(10) (.) 4H(2)O (II). Structural metrics for the silicate cores observed in these structures were compared to other Si8O12 and Si10O25 cores reported in the CSD database. A pronounced tetragonal distortion of the Si8O20 cage leads to Si-O-Si bond angles that are considerably distorted in I (.) 4H(2)O when compared to other analogous Si8O12 structures described in the literature. These octameric stannylated spherosilicates readily react with metal chlorides to produce mesocopically interesting metal oxide and hybrid materials. An illustration of this is found in the reaction of the octameric anhydrous tin compound I with titanocene dichloride to give the octatitanocene derivative Si8O20(Cp2TiCl)(8) (.) 3CH(2)Cl(2) (III). The single crystal structure of III is also described. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Bruker AXS Inc, Madison, WI 53711 USA. RP Barnes, CE (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM cebarnes@utk.edu OI Campana, Charles/0000-0002-0495-0922 NR 71 TC 16 Z9 16 U1 1 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0022-328X J9 J ORGANOMET CHEM JI J. Organomet. Chem. PD JUL 15 PY 2006 VL 691 IS 15 BP 3213 EP 3222 DI 10.1016/j.jorganchem.2006.03.028 PG 10 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 065DU UT WOS:000239140400001 ER PT J AU Martin, LP Orlikowski, D Nguyen, JH AF Martin, L. Peter Orlikowski, Daniel Nguyen, Jeffrey H. TI Fabrication and characterization of graded impedance impactors for gas gun experiments from tape cast metal powders SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE magnesium; copper; tape cast; acoustic impedance; sound wave velocity ID ISENTROPIC COMPRESSION; ELASTICITY; COMPOSITE; DENSITY AB Fabrication of compositionally graded structures for use as light-gas gun impactors has been demonstrated using a tape casting technique. Mixtures of metal powders in the Mg-Cu system were cast into a series of tapes with uniform compositions ranging from 100% Mg to 100% Cu. The individual compositions were fabricated into monolithic pellets for characterization by laminating multiple layers together, thermally removing the organics, and hot-pressing to near-full density. The pellets were characterized by optical and scanning electron microscopy, X-ray diffraction, and measurement of density and sound wave velocity. The density and acoustic impedance were observed to vary monotonically (and nearly linearly) with composition. Graded structures were fabricated by stacking layers of different compositions in a sequence calculated to yield a desired acoustic impedance profile. The measured physical properties of the graded structures compare favorably with those predicted from the monolithic pellet characteristics. Fabrication of graded impactors by this technique is of significant interest for providing improved control of the pressure profile and impactor planarity in gas gun experiments. (c) 2006 Elsevier B.V. All rights reserved. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Martin, LP (reprint author), Lawrence Livermore Natl Lab, POB 808,Mail Code L-353, Livermore, CA 94551 USA. EM martin89@llnl.gov NR 32 TC 23 Z9 29 U1 1 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JUL 15 PY 2006 VL 427 IS 1-2 BP 83 EP 91 DI 10.1016/j.msea.2006.04.039 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 063LF UT WOS:000239019000011 ER PT J AU Duan, RG Roebben, G Vleugels, J Van der Biest, O AF Duan, Ren-Guan Roebben, Gert Vleugels, Jozef Van der Biest, Omer TI Optimization of microstructure and properties of in situ formed beta-O-sialon-TiN composite SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE sialon ceramic; hot-pressing; impulse excitation technique (IET); high-temperature X-ray diffraction (HTXRD); internal friction (Q(-1)); thermal expansion ID NANO-NANO COMPOSITES; SILICON-NITRIDE; CERAMICS; RELAXATION; MATRIX; GROWTH AB A powder mixture of alpha-Si3N4, Al2O3, and TiO2 was hot-pressed using different sintering cycles to search for an optimum in situ formed P-O-sialon-TiN composite. The impulse excitation technique (IET), high-temperature X-ray diffraction (HTXRD), and scanning electron microscopy (SEM) were used to investigate the microstructure. Below the temperature of 1300 degrees C, the high-temperature internal friction (Q(-1)) decreases with the increase of sintering temperature, whereas the density of the material increases with the increase of sintering temperature. At a sintering temperature higher than 1850 degrees C, the ceramic could not be densilied and O-sialon was not formed. Also, the mechanical properties of ceramics hot-pressed using different sintering cycles were assessed. The ceramic hot-pressed at 1700 degrees C for 10 min displays a combination of high hardness and good fracture toughness, due to an optimum combination of beta-sialon, O-sialon, and TiN-phases. This paper also evaluated the thermal expansion of beta-sialon in the different ceramics hot-pressed using different sintering cycles. (c) 2006 Elsevier B.V All fights reserved. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Joint Res Ctr European Commiss, Inst Reference Mat & Measurements, Geel, Belgium. Katholieke Univ Leuven, Dept Met & Mat Engn, B-3001 Heverlee, Belgium. RP Duan, RG (reprint author), Los Alamos Natl Lab, Mail Stop D469,EES-6, Los Alamos, NM 87545 USA. EM rduan@lanl.gov RI Duan, Ren-Guan/D-5190-2011; Vleugels, Jozef/C-8262-2017 OI Vleugels, Jozef/0000-0003-4432-4675 NR 27 TC 15 Z9 15 U1 0 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JUL 15 PY 2006 VL 427 IS 1-2 BP 195 EP 202 DI 10.1016/j.msea.2006.04.019 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 063LF UT WOS:000239019000026 ER PT J AU Yang, L Zu, XT Xiao, HY Gao, F Liu, KZ Heinisch, HL Kurtz, RJ Yang, SZ AF Yang, L. Zu, X. T. Xiao, H. Y. Gao, F. Liu, K. Z. Heinisch, H. L. Kurtz, R. J. Yang, S. Z. TI Temperature effects on He bubbles production due to cascades in alpha-iron SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Fe; displacement cascade; He-vacancy cluster; molecular dynamics ID MOLECULAR-DYNAMICS SIMULATIONS; STAINLESS-STEEL; DISPLACEMENT CASCADES; MICROSTRUCTURAL EVOLUTION; COMPUTER-SIMULATION; DEFECT PRODUCTION; HELIUM; IRRADIATION; METALS; COPPER AB The effects of irradiation temperature on the formation of He-vacancy clusters by displacement cascades in alpha-Fe are investigated by molecular dynamics (MD) methods. The irradiation temperatures of 100 and 600 K are considered for primary knock-on atom (PKA) energy, E-p, from 500 eV to 20 keV. The concentration of He in Fe varies from 1 to 5 at.%. We find that the number of Frenkel pairs (N-F) at 600 K is slightly lower than that at 100 K for the same He concentration and E-p, but the number of He-vacancy clusters increases with increasing temperature for the same He concentration and energy recoils. However, the mean size of He-vacancy clusters is independent on temperature. The mechanisms of He bubble nucleation in displacement cascades at different temperatures are discussed in detail. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. China W Normal Univ, Sch Phys & Elect Informat, Nanchong 637002, Peoples R China. Pacific NW Natl Lab, Richland, WA 99352 USA. China Acad Engn Phys, Mianyang 621900, Peoples R China. RP Zu, XT (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM xiaotaozu@yahoo.com RI Xiao, Haiyan/A-1450-2012; Gao, Fei/H-3045-2012 NR 21 TC 11 Z9 11 U1 2 U2 10 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JUL 15 PY 2006 VL 427 IS 1-2 BP 343 EP 347 DI 10.1016/j.msea.2006.04.086 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 063LF UT WOS:000239019000045 ER PT J AU Goodman, J Pugh, B Grob, E AF Goodman, Jack Pugh, Brett Grob, Eric TI Environmental (thermal) testing of space instrumentation: The GLAST example SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 3rd Workshop on Advanced Transition Radiation Detectors for Accelerators and Space Applications CY SEP 07-10, 2005 CL Brindisi, ITALY DE thermal tests; thermal-vacuum tests; environmental tests; space-bound instrumentation AB Space-bound scientific instruments are subjected to extensive ground testing before launch to ensure successful launch and on-orbit operation. This is a radical departure from testing terrestrial laboratory instruments since these instruments typically operate in a more benign environment., and are generally accessible for repair during their useful life. Among the various tests conducted for space environmental testing are thermal, structural (including vibration and acoustic) and electromagnetic interference (EMI). While all these tests are important, this paper concentrates only on the thermal tests. The intent of this paper is to provide a description of ground environmental thermal testing requirements necessary for successful launch and operation of space scientific instruments. This paper summarizes the scope, objectives and value for the various levels of thermal tests commonly performed on space-bound instrumentation, using Gamma-ray Large Area Space Telescope (GLAST) as an example. (c) 2006 Elsevier B.V. All rights reserved. C1 Stanford Linear Accelerator Ctr, Ingenium Associates, GLAST, LAT Instrument Program, Menlo Pk, CA 94025 USA. GLAST Program, Swales Aerosp, Pasadena, CA 91107 USA. NASA, Goddard Space Flight Ctr, GLAST Project, Washington, DC 20546 USA. RP Goodman, J (reprint author), Stanford Linear Accelerator Ctr, Ingenium Associates, GLAST, LAT Instrument Program, 408-505-3413, Menlo Pk, CA 94025 USA. EM jackg@slac.stanford.edu; BPugh@swales.com; Eric.W.Grob@nasa.gov NR 4 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 15 PY 2006 VL 563 IS 2 BP 377 EP 380 DI 10.1016/j.nima.2006.02.153 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 065KT UT WOS:000239159500020 ER PT J AU Stevenson, K Ferer, M Bromhal, GS Gump, J Wilder, J Smith, DH AF Stevenson, K Ferer, M Bromhal, GS Gump, J Wilder, J Smith, DH TI 2-D network model simulations of miscible two-phase flow displacements in porous media: Effects of heterogeneity and viscosity SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS LA English DT Article DE miscible drainage; heterogeneity; viscous fingering; pore-level modeling ID CAPILLARY TUBE NETWORKS; RESERVOIR PERFORMANCE; DRAINAGE AB There are long-standing uncertainties regarding the relative significance of the role of porous medium heterogeneities vs. the role of fluid properties in determining the efficiencies of various strategies for fluid injection into porous media. In this paper, we study both the role of heterogeneities and of viscosity ratio in determining the characteristics of miscible, two-phase flow in two-dimensional (2-D) porous media. Not surprisingly, we find that both are significant in determining the flow characteristics. For a variety of statistical distributions of pore-throat radii, we find that the coefficient of variation (the ratio of the standard deviation of the radii to their mean) is a reliable predictor of the injected fluid saturation as well as the width of the interfacial region. Consistent with earlier results, we find that viscosity ratio causes a crossover from fractal viscous fingering to standard compact flow at a characteristic crossover time which varies inversely with viscosity ratio. The studies in this paper show that the power law relating characteristic time to viscosity ratio does not depend upon the distribution of pore-throat radii or upon the connectivity (coordination number) of the medium each of which affects the porosity; this suggests that the power law may be entirely independent of the structure of the porous medium. This power law relationship leads to a robust dependence of the flow properties upon a particular ratio of the saturation to a given power of the viscosity ratio. This dependence is reminiscent of the empirical "quarter power mixing rule" in three dimensions. As such, this work provides a physical understanding of the origin and limitations of this empirical mixing rule. (c) 2006 Elsevier B.V. All rights reserved. C1 W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. W Virginia Univ, Dept Stat, Morgantown, WV 26506 USA. Dana Farber Canc Inst, Boston, MA 02115 USA. USN, Ctr Surface Warfare, Res & Technol Dept, Indian Head, MD 20640 USA. RP Ferer, M (reprint author), W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. EM mferer@wvu.edu NR 26 TC 17 Z9 18 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-4371 J9 PHYSICA A JI Physica A PD JUL 15 PY 2006 VL 367 BP 7 EP 24 DI 10.1016/j.physa.2005.12.009 PG 18 WC Physics, Multidisciplinary SC Physics GA 052MB UT WOS:000238236700002 ER PT J AU Delayen, JR AF Delayen, J. R. TI Ponderomotive instabilities and microphonics - a tutorial SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 12th International Workshop on RF Superconductivity CY JUL 10-15, 2005 CL Cornell Univ, Ithaca, NY HO Cornell Univ DE superconducting RF cavities; microphonics; ponderomotive effects; instabilities; RF control ID FORCES; CAVITY; WALLS AB `Phase and amplitude stabilization of the fields in superconducting cavities in the presence of ponderomotive effects and microphonics was one of the major challenges that had to be surmounted in order to make superconducting rf accelerators practical. This was of particular concern in low-velocity proton and ion accelerators since the beam loading was often negligible, but was usually not relevant in electron accelerators since the beam loading was often high and the gradients-low. More recent or future applications of electron linacs-for example JLab upgrade, energy recovering linacs (ERLs)-will operate at increasingly higher gradients with little beam loading, and the issues associated with microphonics and ponderomotive instabilities will again become relevant areas of research. This paper will describe the ponderomotive instabilities and the conditions under which they can occur, and review the methods by which they, and microphonics, can be overcome. (c) 2006 Elsevier B.V. All rights reserved. C1 Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Delayen, JR (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM delayen@jlab.org NR 15 TC 4 Z9 4 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD JUL 15 PY 2006 VL 441 IS 1-2 BP 1 EP 6 DI 10.1016/j.physc.2006.03.050 PG 6 WC Physics, Applied SC Physics GA 061MC UT WOS:000238875600003 ER PT J AU Campisi, IE AF Campisi, Isidoro E. TI Status of the spallation neutron source SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 12th International Workshop on RF Superconductivity CY JUL 10-15, 2005 CL Cornell Univ, Ithaca, NY HO Cornell Univ DE pulsed RF superconductivity; linear accelerator; medium-beta cavities; high-beta cavities; 4.2 K operation; high-energy H- acceleration AB The superconducting linac for the spallation neutron source is being commissioned. Seventy seven of the 81 niobium cavities resonating at 805 MHz have been installed in the SNS tunnel in 11 medium beta (0.61) cryomodules each containing three cavities and 11 (presently) high beta (0.81) cryomodules each with four cavities. The niobium cavities and cryomodules were designed and assembled at Jefferson Lab to operate at 2.1 K. The central helium liquefier has been tested to 2.1 K but is routinely operated at 4.2 K. At this temperature, all but four cavities have been tested, mostly at 10 pulses per second and at a full pulse length of 1.3 ms. Shorter periods of operation at 2.1 K have also been implemented, with results similar to those at 4.2 K. Beam commissioning is under way and operation with beam at both temperatures has been demonstrated. Negative hydrogen ion energies of 865 and 907 MeV have been reached at 4.2 and 2.1 K respectively, even with a few cavities not being operated. Further beam commissioning is under way. (c) 2006 Published by Elsevier B.V. C1 Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Campisi, IE (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. EM cie@ornl.gov NR 16 TC 0 Z9 0 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD JUL 15 PY 2006 VL 441 IS 1-2 BP 7 EP 12 DI 10.1016/j.physc.2006.03.117 PG 6 WC Physics, Applied SC Physics GA 061MC UT WOS:000238875600004 ER PT J AU Ben-Zvi, I AF Ben-Zvi, I. TI Review of various approaches to address high currents in SRF electron linacs SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 12th International Workshop on RF Superconductivity CY JUL 10-15, 2005 CL Cornell Univ, Ithaca, NY HO Cornell Univ DE SRF; ERL; high current; HOM AB The combination of high-brightness electron sources and high-current SRF Energy Recovery Linacs (ERL) leads to a new emerging technology: high-power, high-brightness electron beams. This technology enables extremely high average power free-electron lasers, a new generation of extreme brightness light sources, electron coolers of high-energy hadron storage rings, polarized electron-hadron colliders of very high luminosity, compact Thomson scattering X-ray sources, terahertz radiation generators and much more. What is typical for many of these applications is the need for very high current, defined here as over 100 mA average current, and high brightness, which is charge dependent, but needs to be in the emittance range of between submicron up to perhaps 50 mu m, usually the lower-the better. Suffice it to say that while there are a number of projects aiming at this level of performance, none is anywhere near it. This work will review the problems associated with the achievement of such performance and the various approaches taken in a number of laboratories around the world to address the issues. (c) 2006 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. RP Ben-Zvi, I (reprint author), Brookhaven Natl Lab, Collider Accelerator Dept, MS 911B, Upton, NY 11973 USA. EM ilan@bnl.gov NR 19 TC 6 Z9 7 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD JUL 15 PY 2006 VL 441 IS 1-2 BP 21 EP 30 DI 10.1016/j.physc.2006.03.052 PG 10 WC Physics, Applied SC Physics GA 061MC UT WOS:000238875600006 ER PT J AU Ciovati, G AF Ciovati, Gianluigi TI Review of the frontier workshop and Q-slope results SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 12th International Workshop on RF Superconductivity CY JUL 10-15, 2005 CL Cornell Univ, Ithaca, NY HO Cornell Univ DE surface impedance; niobium; radio-frequency cavities ID SUPERCONDUCTING RF CAVITIES; INTERSTITIAL OXYGEN; NIOBIUM; BARRIER AB Over the last few years, significant progress has been made to produce field emission free niobium surfaces. Nowadays, the major limitation towards achieving the critical field in radio-frequency (rf) superconducting cavities made of bulk niobium of high purity is represented by the so-called "high field Q-slope" or "Q-drop". This phenomenon is characterized by a sharp decrease of the cavity quality factor, in absence of field emission, starting at a peak surface magnetic field of the order of 100 mT. It has been observed that these losses are usually reduced by a low-temperature "in situ" baking, typically at 100-120 degrees C for 24-48 h. Several models have been proposed to explain the high field Q-slope and many experiments have been conducted in different laboratories to validate such models. A three-day workshop was held in Argonne in September 2004 to present and discuss experimental and theoretical results on the present limitations of superconducting rf cavities. In this paper, we will focus on the high field Q-slope by reviewing the results presented at the workshop along with other experimental data. In order to explain the Q-drop and the baking effect we will discuss an improved version of the oxygen diffusion model. (c) 2006 Elsevier B.V. All rights reserved. C1 TJNAF, Newport News, VA 23606 USA. RP Ciovati, G (reprint author), TJNAF, 1200 Jefferson Ave, Newport News, VA 23606 USA. EM gciovati@jlab.org NR 36 TC 14 Z9 14 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD JUL 15 PY 2006 VL 441 IS 1-2 BP 44 EP 50 DI 10.1016/j.physc.2006.03.126 PG 7 WC Physics, Applied SC Physics GA 061MC UT WOS:000238875600009 ER PT J AU Bauer, P Solyak, N Ciovati, GL Eremeev, G Gurevich, A Lje, L Visentin, B AF Bauer, P. Solyak, N. Ciovati, G. L. Eremeev, G. Gurevich, A. Lje, L. Visentin, B. TI Evidence for non-linear BCS resistance in SRF cavities SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 12th International Workshop on RF Superconductivity CY JUL 10-15, 2005 CL Cornell Univ, Ithaca, NY HO Cornell Univ DE linear collider; superconducting RF cavities; niobium; RF surface resistance; non-linear BCS resistance ID NIOBIUM AB Very powerful RF cavities are now being developed for future large-scale particle accelerators such as the International Linear Collider (ILC). The basic model for the cavity quality factor Q-slope in high gradient SRF cavities, i.e. the reduction of Q with increasing operating electric and magnetic fields, is the so-called thermal feedback model (TFBM). Most important for the agreement between the model and experimental data, however, is which different surface resistance contributions are included in the TFBM. This paper attempts to further clarify if the non-linear pair-breaking correction to the BCS resistance [A. Gurevich, in: Pushing the Limits of RF Superconductivity Workshop, ANL, September 2004; A. Gurevich, This conference.] is among those surface resistance contributions, through a comparison of TFBM calculations with experimental data from bulk Nb cavities built and tested at several different laboratories. (c) 2006 Elsevier B.V. All rights reserved. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. TJNAF, Newport News, VA USA. Cornell Univ, Ithaca, NY USA. Univ Wisconsin, Madison, WI USA. DESY, D-2000 Hamburg, Germany. RP Bauer, P (reprint author), Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. EM pbauer@fnal.gov RI Gurevich, Alex/A-4327-2008 OI Gurevich, Alex/0000-0003-0759-8941 NR 8 TC 15 Z9 15 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD JUL 15 PY 2006 VL 441 IS 1-2 BP 51 EP 56 DI 10.1016/j.physc.2006.03.056 PG 6 WC Physics, Applied SC Physics GA 061MC UT WOS:000238875600010 ER PT J AU Ciovati, G Halbritter, J AF Ciovati, G. Halbritter, J. TI Analysis of the medium field Q-slope in superconducting cavities made of bulk niobium SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 12th International Workshop on RF Superconductivity CY JUL 10-15, 2005 CL Cornell Univ, Ithaca, NY HO Cornell Univ DE surface impedance; niobium; radio-frequency cavities AB The quality factor of superconducting radio-frequency cavities made of high purity, bulk niobium decreases with rf field in the medium field range (peak surface magnetic field between 20 and about 100 mT). The causes for this effect are not clear yet. The dependence of the surface resistance on the peak surface magnetic field is typically linear and quadratic. This contribution will present an analysis of the medium field Q-slope data measured on cavities at different frequencies treated with buffered chemical polishing (BCP) at Jefferson Lab, as function of different treatments such as post-purification and low-temperature baking. The data have been compared with a model involving a combination of heating and of hysteresis losses due to "strong-links" formed on the niobium surface during oxidation. (c) 2006 Elsevier B.V. All rights reserved. C1 TJNAF, Newport News, VA 23606 USA. Forschungszentrum Karlsruhe, Inst Mat Forsch 1, D-76021 Karlsruhe, Germany. RP Ciovati, G (reprint author), TJNAF, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM gciovati@jlab.org NR 11 TC 9 Z9 9 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD JUL 15 PY 2006 VL 441 IS 1-2 BP 57 EP 61 DI 10.1016/j.physc.2006.03.053 PG 5 WC Physics, Applied SC Physics GA 061MC UT WOS:000238875600011 ER PT J AU Sebastian, JT Seidman, DN Yoon, KE Bauer, P Reid, T Boffo, C Norem, J AF Sebastian, J. T. Seidman, D. N. Yoon, K. E. Bauer, P. Reid, T. Boffo, C. Norem, J. TI Atom-probe tomography analyses of niobium superconducting RF cavity materials SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 12th International Workshop on RF Superconductivity CY JUL 10-15, 2005 CL Cornell Univ, Ithaca, NY HO Cornell Univ DE atom-probe tomography; niobium; oxygen; radio-frequency cavities ID FIELD-ION-MICROSCOPE AB We present the first atom-probe tomographic (APT) measurements of niobium superconducting RF (SCRF) cavity materials. APT involves the atom-by-atom dissection of sharply pointed niobium tips, along with their niobium oxide coatings, via the application of a high-pulsed electric field and the measurement of each ion's mass-to-charge state ratio (m/n) with time-of-flight (TOF) mass spectrometry. The resulting atomic reconstructions, typically containing at least 10(5) atoms and with typical dimensions of 10(5) nm(3) (or less), show the detailed, nanoscale chemistry of the niobium oxide coatings, and of the underlying high-purity niobium metal. Our initial results show a nanochemically smooth transition through the oxide layer from near-stoichiometric Nb2O5 at the surface to near-stoichiometric Nb2O as the underlying metal is approached (after similar to 10 nm of surface oxide). The underlying metal, in the near-oxide region, contains a significant amount of interstitially dissolved oxygen (similar to 5-10 at.%), as well as a considerable amount of dissolved hydrogen. The experimental results are interpreted in light of current models of oxide and sub-oxide formation in the Nb-O system. (c) 2006 Elsevier B.V. All rights reserved. C1 Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Argonne Natl Lab, Argonne, IL 60439 USA. RP Yoon, KE (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM megabass@northwestern.edu RI Seidman, David/B-6697-2009 NR 10 TC 11 Z9 11 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD JUL 15 PY 2006 VL 441 IS 1-2 BP 70 EP 74 DI 10.1016/j.physc.2006.03.118 PG 5 WC Physics, Applied SC Physics GA 061MC UT WOS:000238875600014 ER PT J AU Swenson, DR Degenkolb, E Insepov, Z AF Swenson, D. R. Degenkolb, E. Insepov, Z. TI Study of gas cluster ion beam surface treatments for mitigating RF breakdown SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 12th International Workshop on RF Superconductivity CY JUL 10-15, 2005 CL Cornell Univ, Ithaca, NY HO Cornell Univ DE RF breakdown; surface treatment; gas cluster ion beam; field emission ID CHARGE; ENERGY; MASS AB Surface processing with high-energy gas cluster ion beams (GCIB) is investigated for increasing the high voltage breakdown strength of RF cavities and electrodes in general. Various GCIB treatments were studied for Nb, Cu, Stainless Steel and Ti electrode materials using beams of Ar, Ar + H-2, O-2, N-2, Ar + CH4, or O-2 + NF3 clusters with accelerating potentials up to 35 M Etching using chemically active clusters such as NF3 reduces the grain structure of Nb used for SRF cavities. Smoothing effects on stainless steel and Ti substrates were evaluated using SEM and AFM imaging and show that 200 nm wide polishing scratch marks are greatly attenuated. Using a combination of Ar and O-2 processing for stainless steel electrode material, the oxide thickness and surface hardness are dramatically increased. The DC field emission of a 150-mm diameter sample of GCIB processed stainless steel electrode material was a factor of 10(6) less than a similar untreated sample. (c) 2006 Elsevier B.V. All rights reserved. C1 Epion Corp, Billerica, MA 01821 USA. Argonne Natl Lab, Argonne, IL 60439 USA. RP Swenson, DR (reprint author), Epion Corp, Billerica, MA 01821 USA. EM dswenson@epion.com RI Insepov, Zinetula/L-2095-2013 OI Insepov, Zinetula/0000-0002-8079-6293 NR 11 TC 6 Z9 6 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD JUL 15 PY 2006 VL 441 IS 1-2 BP 75 EP 78 DI 10.1016/j.physc.2006.03.039 PG 4 WC Physics, Applied SC Physics GA 061MC UT WOS:000238875600015 ER PT J AU Wu, AT AF Wu, A. T. TI Investigation of oxide layer structure on niobium surface using a secondary ion mass spectrometry SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 12th International Workshop on RF Superconductivity CY JUL 10-15, 2005 CL Cornell Univ, Ithaca, NY HO Cornell Univ DE SIMS; surface; niobium; superconducting RF cavities; oxide layer structure; surface depth profile AB Oxide layer structure on the surfaces of niobium (Nb) can be studied by continuously monitoring peaks of the secondary ions of Nb and its relevant oxides as a function of time during depth profiling measurements employing a secondary ion mass spectrometry (SIMS). This is based on the fact that different oxides have different cracking patterns. This new approach is much simpler and easier for studying oxide layer structure on Nb surfaces than the conventional approach through deconvolution of oxide peaks obtained from an X-ray photoelectron spectroscopy. Eventually the method described here can be developed into an in situ tool for monitoring the oxide layer structure on Nb surfaces prepared by various procedures. Preliminary results of SIMS measurements on the surfaces of Nb samples treated by buffered electropolishing and buffered chemical polishing will be reported. (c) 2006 Elsevier B.V. All rights reserved. C1 Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Wu, AT (reprint author), Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM andywu@jlab.org NR 6 TC 10 Z9 10 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD JUL 15 PY 2006 VL 441 IS 1-2 BP 79 EP 82 DI 10.1016/j.physc.2006.03.125 PG 4 WC Physics, Applied SC Physics GA 061MC UT WOS:000238875600016 ER PT J AU Insepov, Z Hassanein, A Swenson, D AF Insepov, Z. Hassanein, A. Swenson, D. TI Computer simulation of surface modification with ion beams SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 12th International Workshop on RF Superconductivity CY JUL 10-15, 2005 CL Cornell Univ, Ithaca, NY HO Cornell Univ DE niobium; smoothening; gas-cluster ion beam; field evaporation; RF breakdown ID RF BREAKDOWN; CAVITIES AB Niobium surface modification dynamics treated by cluster ion irradiation was studied based on atomistic and mesoscopic simulation methods and the results were compared to experiments. A surface smoothening method was proposed consisting of a treatment of the Nb cavity surfaces by accelerated gas (argon) cluster ion beams (GCIB) that is capable of reducing the surface roughness up to the theoretical limit. (c) 2006 Elsevier B.V. All rights reserved. C1 ANL, Argonne, IL USA. Epion Corp, Billerica, MA 01821 USA. RP Insepov, Z (reprint author), ANL, 9700 S Cass Ave, Argonne, IL USA. EM insepov@anl.gov RI Insepov, Zinetula/L-2095-2013 OI Insepov, Zinetula/0000-0002-8079-6293 NR 13 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD JUL 15 PY 2006 VL 441 IS 1-2 BP 114 EP 117 DI 10.1016/j.physc.2006.03.122 PG 4 WC Physics, Applied SC Physics GA 061MC UT WOS:000238875600022 ER PT J AU Lee, PJ Polyanskii, AA Gurevich, A Squitieri, AA Larbalestier, DC Bauer, PC Boffo, C Edwards, HT AF Lee, P. J. Polyanskii, A. A. Gurevich, A. Squitieri, A. A. Larbalestier, D. C. Bauer, P. C. Boffo, C. Edwards, H. T. TI Grain boundary flux penetration and resistivity in large grain niobium sheet SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 12th International Workshop on RF Superconductivity CY JUL 10-15, 2005 CL Cornell Univ, Ithaca, NY HO Cornell Univ DE magneto-optical effects; grain boundary; niobium; resistivity; superconducting RF; superconductivity AB Kneisel, Ciovati, Myneni and co-workers at TJNAF have recently fabricated two superconducting cavities from the center of a large grain Nb billet manufactured by CBMM. Both cavities had excellent properties with one attaining an accelerating gradient of 45 MV/m (2 K) after a 48 h and 120 degrees C bake [P. Bauer et al., An investigation of the properties of BCP niobium for superconducting RF cavities, in: K.-J. Kim, C., Eyberger (Eds.), Proceedings of the Pushing the Limits of RF Superconductivity workshop, Argonne National Laboratory Report ANL-05/10, March 2005, pp. 84-93]. An investigation is underway to use magneto-optical (MO) imaging to observe the flux penetration behavior of a sheet sliced from this billet. The large grain size (some larger than 50 mm) allowed us to isolate multiple bicrystals and tri-crystals. In the first stage of the present study we have taken the as-received sheet (RRR similar to 280), which has been etched to reveal the grain structure. By magneto-optical examination we observed preferential flux penetration at some grain boundaries of a bicrystal where the grain boundary was almost perpendicular to the sample surface and there was < 1 mu m surface step across the boundary. At other grain boundaries, with large steps or where the grain boundaries were not normal to the surface, we observed no preferential flux penetration. Preliminary transport measurements on a bi-crystal showed greater normal state resistance and lower superconducting critical current at the grain boundary. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Wisconsin, Appl Superconduct Ctr, Madison, WI 53706 USA. Fermilab Natl Accelerator Lab, Batavia, IL USA. RP Lee, PJ (reprint author), Univ Wisconsin, Appl Superconduct Ctr, Madison, WI 53706 USA. EM lee@engr.wisc.edu RI Gurevich, Alex/A-4327-2008; Larbalestier, David/B-2277-2008; OI Gurevich, Alex/0000-0003-0759-8941; Larbalestier, David/0000-0001-7098-7208; Lee, Peter/0000-0002-8849-8995 NR 7 TC 7 Z9 7 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD JUL 15 PY 2006 VL 441 IS 1-2 BP 126 EP 129 DI 10.1016/j.physc.2006.03.027 PG 4 WC Physics, Applied SC Physics GA 061MC UT WOS:000238875600025 ER PT J AU Calaga, R Ben-Zvi, I Blaskiewicz, M Chang, X Kayran, D Litvinenko, V AF Calaga, R. Ben-Zvi, I. Blaskiewicz, M. Chang, X. Kayran, D. Litvinenko, V. TI High current superconducting gun at 703.75 MHz SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 12th International Workshop on RF Superconductivity CY JUL 10-15, 2005 CL Cornell Univ, Ithaca, NY HO Cornell Univ DE superconducting RF guns; high current ID COMPENSATION; EMITTANCE AB A half-cell superconducting RF (SRF) electron gun has been proposed as an injector to the 20 MeV energy recovery linac (ERL) prototype at Brookhaven National Lab (BNL). The design and optimization of the half-cell gun based on RF parameters, higher order mode (HOM) wakefields, and preservation of very low beam emittance in the high current regime are discussed. Comparison of several different shapes based on the above criteria and issues relating to multipacting, cathode insertion, and laser stability will be presented. (c) 2006 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. RP Calaga, R (reprint author), Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. EM rcalaga@bnl.gov RI Kayran, Dmitry/E-1876-2013 OI Kayran, Dmitry/0000-0002-1156-4384 NR 21 TC 11 Z9 11 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD JUL 15 PY 2006 VL 441 IS 1-2 BP 159 EP 172 DI 10.1016/j.physc.2006.03.098 PG 14 WC Physics, Applied SC Physics GA 061MC UT WOS:000238875600032 ER PT J AU Shepard, KW Kelly, MP Fuerst, J Kedzie, M Conway, ZA AF Shepard, K. W. Kelly, M. P. Fuerst, J. Kedzie, M. Conway, Z. A. TI Development of spoke cavities for RIA SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 12th International Workshop on RF Superconductivity CY JUL 10-15, 2005 CL Cornell Univ, Ithaca, NY HO Cornell Univ DE superconducting; cavity; ion; proton; linear accelerator AB This paper reports the development status of 345 MHz, 4 cm beam aperture, three-spoke-loaded, TEM-class superconducting cavities for particle velocities 0.4 < v/c < 0.8. Two prototype cavities have been operated cw at 4.2 K at accelerating gradients above 10 MV/m. Results of cold tests, including mechanical properties and microphonic behavior, are presented. (c) 2006 Published by Elsevier B.V. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Shepard, KW (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 2 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD JUL 15 PY 2006 VL 441 IS 1-2 BP 205 EP 208 DI 10.1016/j.physc.2006.03.061 PG 4 WC Physics, Applied SC Physics GA 061MC UT WOS:000238875600040 ER PT J AU Hahn, H Burrill, A Calaga, R Kayran, D Zhao, Y AF Hahn, H. Burrill, A. Calaga, R. Kayran, D. Zhao, Y. TI R-square impedance of ERL ferrite HOM absorber SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 12th International Workshop on RF Superconductivity CY JUL 10-15, 2005 CL Cornell Univ, Ithaca, NY HO Cornell Univ DE higher order modes; ferrite absorber; ferrite surface impedance; ERL AB An R&D facility for an energy recovery linac (ERL) intended as part of an electron-cooling project for RHIC is being constructed at this laboratory. The center piece of the facility is a five-cell 703.75 MHz superconducting RF linac. Successful operation will depend on effective HOM damping. It is planned to achieve HOM damping exclusively with ferrite absorbers. The performance of a prototype absorber was measured by transforming it into a resonant cavity and alternatively by a conventional wire method. The results expressed as a surface or R-square impedance are presented in this paper. (c) 2006 Elsevier B.V. All rights reserved. C1 BNL, Upton, NY 11973 USA. RP Hahn, H (reprint author), BNL, Upton, NY 11973 USA. EM hahnh@bnl.gov RI Kayran, Dmitry/E-1876-2013 OI Kayran, Dmitry/0000-0002-1156-4384 NR 8 TC 4 Z9 4 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD JUL 15 PY 2006 VL 441 IS 1-2 BP 239 EP 242 DI 10.1016/j.physc.2006.03.097 PG 4 WC Physics, Applied SC Physics GA 061MC UT WOS:000238875600047 ER PT J AU Ko, K Folwell, N Ge, L Guetz, A Lee, L Li, Z Ng, C Prudencio, E Schussman, G Uplenchwar, R Xiao, L AF Ko, K. Folwell, N. Ge, L. Guetz, A. Lee, L. Li, Z. Ng, C. Prudencio, E. Schussman, G. Uplenchwar, R. Xiao, L. TI Advances in electromagnetic modelling through high performance computing SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 12th International Workshop on RF Superconductivity CY JUL 10-15, 2005 CL Cornell Univ, Ithaca, NY HO Cornell Univ DE accelerator simulation; superconducting RF; linear collider; electromagnetic modeling; high performance computing; computational science AB Under the DOE SciDAC project on Accelerator Science and Technology, a suite of electromagnetic codes has been under development at SLAC that are based on unstructured grids for higher accuracy, and use parallel processing to enable large-scale simulation. The new modeling capability is supported by SciDAC collaborations on meshing, solvers, refinement, optimization and visualization. These advances in computational science are described and the application of the parallel eigensolver Omega3P to the cavity design for the International Linear Collider is discussed. (c) 2006 Elsevier B.V. All rights reserved. C1 Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Ko, K (reprint author), Stanford Linear Accelerator Ctr, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM Kwok@slac.stanford.edu NR 8 TC 5 Z9 5 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD JUL 15 PY 2006 VL 441 IS 1-2 BP 258 EP 262 DI 10.1016/j.physc.2006.03.139 PG 5 WC Physics, Applied SC Physics GA 061MC UT WOS:000238875600051 ER PT J AU Powers, T Davis, K AF Powers, T. Davis, K. TI Transient ponderomotive effects in superconducting cavities SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 12th International Workshop on RF Superconductivity CY JUL 10-15, 2005 CL Cornell Univ, Ithaca, NY HO Cornell Univ DE ponderomotive effects; Lorentz force detuning; LLRF AB A number of experiments were performed on an installed and operational 5-cell CEBAF cavity to determine the minimum time required to re-establish stable gradient after a cavity window arc trip. Once it was determined that gradient could be re-established within 10 ms by applying constant power RF signal in a voltage controlled oscillator-phase locked loop based system (VCO-PLL), a second experiment was performed to determine if stable gradient could be re-established using a fixed frequency RF system with a simple gradient based closed loop control system. During this test, fluctuations were observed in the cavity forward power signal, the source of which was later determined to be ponderomotive in nature. These ponderomotive induced vibrations were quantified using a cavity resonance monitor and a VCO-PLL RF system. Experimental results, analysis of the resultant klystron power transients, the decay time of the transients, and the implications with respect to fast reset algorithms will be presented. (c) 2006 Elsevier B.V. All rights reserved. C1 TJNAF, Newport News, VA 23606 USA. RP Powers, T (reprint author), TJNAF, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM powers@jlab.org NR 4 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD JUL 15 PY 2006 VL 441 IS 1-2 BP 282 EP 285 DI 10.1016/j.physc.2006.03.131 PG 4 WC Physics, Applied SC Physics GA 061MC UT WOS:000238875600056 ER PT J AU Chan, TL Wang, CZ Hupalo, M Tringides, MC Lu, WC Ho, KM AF Chan, T. L. Wang, C. Z. Hupalo, M. Tringides, M. C. Lu, W. C. Ho, K. M. TI Impact of interface relaxation on the nanoscale corrugation in Pb/Si(111) islands SO SURFACE SCIENCE LA English DT Article DE metal-semiconductor interfaces; molecular dynamics; scanning tunneling microscopy; surface relaxation and reconstruction; self-assembly; silicon; lead; low index single crystal surfaces ID HEIGHT; GROWTH AB The nanoscale hexagonal pattern observed in scanning tunneling microscopy (STM) for 3-layer and 4-layer Pb islands on Si(1 1 1) is studied theoretically. We found that besides thickness the atomic rearrangement at the Pb/Si interface plays an important role in determining the STM patterns. Electronic structures of the Pb film on Si(1 1 1) obtained from fully relaxed and unrelaxed Pb films are qualitatively different. Simulated STM images for Pb films with different stacking also show that the corrugation patterns are sensitive to the buried Pb-Si interfacial structure. (c) 2006 Elsevier B.V. All rights reserved. C1 Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Tringides, MC (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. EM tringides@ameslab.gov NR 21 TC 4 Z9 4 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUL 15 PY 2006 VL 600 IS 14 BP L179 EP L183 DI 10.1016/j.susc.2006.05.014 PG 5 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 067QH UT WOS:000239317200003 ER PT J AU Lobell, DB Bala, G Bonfils, C Duffy, PB AF Lobell, D. B. Bala, G. Bonfils, C. Duffy, P. B. TI Potential bias of model projected greenhouse warming in irrigated regions SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SUMMER DRYNESS; CLIMATE-CHANGE AB Atmospheric general circulation models (GCMs) used to project climate responses to increased CO2 generally omit irrigation of agricultural land. Using the NCAR CAM3 GCM coupled to a slab-ocean model, we find that inclusion of an extreme irrigation scenario has a small effect on the simulated temperature and precipitation response to doubled CO2 in most regions, but reduced warming by as much as 1 degrees C in some agricultural regions, such as Europe and India. This interaction between CO2 and irrigation occurs in cases where agriculture is a major fraction of the land surface and where, in the absence of irrigation, soil moisture declines are projected to provide a positive feedback to temperature change. The reduction of warming is less than 25% of the temperature increase modeled for doubled CO2 in most regions; thus greenhouse warming will still be dominant. However, the results indicate that land use interactions may be an important component of climate change uncertainty in some agricultural regions. While irrigated lands comprise only similar to 2% of the land surface, they contribute over 40% of global food production. Climate changes in these regions are therefore particularly important to society despite their relatively small contribution to average global climate. C1 Lawrence Livermore Natl Lab, Energy & Environm Directorate, Livermore, CA 94550 USA. Univ Calif, Sch Nat Sci, Merced, CA 95344 USA. RP Lobell, DB (reprint author), Lawrence Livermore Natl Lab, Energy & Environm Directorate, POB 808 L-103, Livermore, CA 94550 USA. RI Bonfils, Celine/H-2356-2012 OI Bonfils, Celine/0000-0002-4674-5708 NR 18 TC 22 Z9 24 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 14 PY 2006 VL 33 IS 13 AR L13709 DI 10.1029/2006GL026770 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 066FR UT WOS:000239215600008 ER PT J AU Asthagiri, D Pratt, LR Paulaitis, ME AF Asthagiri, D. Pratt, Lawrence R. Paulaitis, Michael E. TI Role of fluctuations in a snug-fit mechanism of KcsA channel selectivity SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID POTASSIUM CHANNELS; CONDUCTION; DYNAMICS; IONS AB The thermodynamic exclusion of Na+ relative to K+ in potassium channels is examined by calculating the distribution of binding energies for Na+ and K+ in a model of the selectivity filter of the KcsA potassium channel. These distributions are observed to take a surprisingly simple form: Gaussian with a slight positive skewness that is insignificant in the present context. Complications that might be anticipated from these distributions are not problematic here. Na+ occupies the filter with a mean binding energy substantially lower than that of K+. The difference is comparable to the difference in hydration free energies of Na+ and K+ in bulk aqueous solution. Thus, the average energies of binding to the filter do not discriminate Na+ from K+ when measured from a baseline of the difference in bulk hydration free energies. The strong binding of Na+ constricts the filter, consistent with a negative partial molar volume of Na+ in water in contrast with a positive partial molar volume of K+ in water. Discrimination in favor of K+ can be attributed to the scarcity of favorable binding configurations for Na+ compared to K+. That relative scarcity is quantified as enhanced binding energy fluctuations, which reflects both the energetically stronger binding of Na+ and the constriction of the filter induced by Na+ binding. (c) 2006 American Institute of Physics. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Ohio State Univ, Dept Chem Engn, Columbus, OH 43210 USA. RP Asthagiri, D (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. EM lrp@lanl.gov RI Asthagiri, Dilipkumar/A-3383-2010; Pratt, Lawrence/H-7955-2012; Asthagiri, Dilipkumar/P-9450-2016 OI Pratt, Lawrence/0000-0003-2351-7451; Asthagiri, Dilipkumar/0000-0001-5869-0807 NR 19 TC 40 Z9 40 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 14 PY 2006 VL 125 IS 2 AR 024701 DI 10.1063/1.2205853 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 063YK UT WOS:000239055600033 PM 16848598 ER PT J AU Denis, PA Balasubramanian, K AF Denis, Pablo A. Balasubramanian, K. TI Electronic states and potential energy curves of molybdenum carbide and its ions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID RELATIVISTIC EFFECTIVE POTENTIALS; TRANSITION-METAL CARBIDES; SPIN-ORBIT OPERATORS; SPECTROSCOPIC CONSTANTS; TUNGSTEN CARBIDE; MOLECULE; MOC; MONOCARBIDE; RUC; FEC AB The potential energy curves and spectroscopic constants of the ground and 29 low-lying excited states of MoC with different spin and spatial symmetries within 48 000 cm(-1) have been investigated. We have used the complete active space multiconfiguration self-consistent field methodology, followed by multireference configuration interaction (MRCI) methods. Relativistic effects were considered with the aid of relativistic effective core potentials in conjunction with these methods. The results are in agreement with previous studies that determined the ground state as X (3)Sigma(-). At the MRCISD+Q level, the transition energies to the 1 (3)Delta and 4 (1)Delta states are 3430 and 8048 cm(-1), respectively, in fair agreement with the results obtained by DaBell [J. Chem. Phy. 114, 2938 (2001)], namely, 4003 and 7834 cm(-1), respectively. The three band systems located at 18 611, 20 700, and 22 520 cm(-1) observed by Brugh [J. Chem. Phy. 109, 7851 (1998)] were attributed to the excited 11 (3)Sigma(-), 14 (3)Pi, and 15 (1)Pi states respectively. At the MRCISD level, these states are 17 560, 20 836, and 20 952 cm(-1) above the ground state respectively. We have also identified a (3)Pi state lying 14 309 cm(-1) above the ground state. The ground states of the molecular ions are predicted to be (4)Sigma(-) and (2)Delta for MoC- and MoC+, respectively. (c) 2006 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. Calif State Univ Hayward, Dept Math & Comp Sci, Hayward, CA 94542 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Glenn T Seaborg Ctr, Berkeley, CA 94720 USA. Univ Calif Davis, Ctr Image Proc & Integrated Computing, Livermore, CA 94550 USA. RP Balasubramanian, K (reprint author), Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. EM balu@llnl.gov OI Denis, Pablo/0000-0003-3739-5061 NR 35 TC 4 Z9 4 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 14 PY 2006 VL 125 IS 2 AR 024306 DI 10.1063/1.2216700 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 063YK UT WOS:000239055600018 PM 16848583 ER PT J AU Wick, CD Dang, LX Jungwirth, P AF Wick, Collin D. Dang, Liem X. Jungwirth, Pavel TI Simulated surface potentials at the vapor-water interface for the KCl aqueous electrolyte solution SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS; AIR/WATER INTERFACE; ION-BINDING; LIQUID AB Classical molecular dynamics simulations with polarizable potential models were carried out to quantitatively determine the effects of KCl salt concentrations on the electrostatic surface potentials of the vapor-liquid interface of water. To the best of our knowledge, the present work is the first calculation of the aqueous electrolyte surface potentials. Results showed that increased salt concentration enhanced the electrostatic surface potentials, in agreement with the corresponding experimental measurements. Furthermore, the decomposition of the potential drop into contributions due to static charges and induced dipoles showed a very strong effect (an increase of similar to 1 V per 1M) due to the double layers formed by KCl. However, this was mostly negated by the negative contribution from induced dipoles, resulting in a relatively small overall increase (similar to 0.05 V per 1M) with increased salt concentration. (c) 2006 American Institute of Physics. C1 Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. Acad Sci Czech Republ, Inst Organ Chem & Biochem, Prague 16610 6, Czech Republic. Acad Sci Czech Republ, Ctr Biomol & Complex Mol Syst, Prague 16610 6, Czech Republic. RP Wick, CD (reprint author), Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. EM liem.dang@pul.gov RI Jungwirth, Pavel/D-9290-2011 OI Jungwirth, Pavel/0000-0002-6892-3288 NR 19 TC 37 Z9 37 U1 0 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 14 PY 2006 VL 125 IS 2 AR 024706 DI 10.1063/1.2218840 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 063YK UT WOS:000239055600038 PM 16848603 ER PT J AU Modey, WK Doskey, PV AF Modey, WK Doskey, PV TI Evaluation of a valveless thermal desorption system for organic aerosols and vapors - Transfer lines and preconcentration module SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE air analysis; organic aerosols; thermal desorption; transfer lines; preconcentration ID 2-DIMENSIONAL GAS-CHROMATOGRAPHY; PARTICULATE AIR-POLLUTION; POLYCHLORINATED-BIPHENYLS; ATMOSPHERIC AEROSOLS; NORMAL-ALKANES; LAKE-MICHIGAN; URBAN; HEALTH; PAHS; ASSOCIATION AB Semivolatile organic compounds (SVOCs) are distributed in the atmosphere between the gas- and aerosol-phases. The low vapor pressures of some SVOCs makes thermal extraction and transfer through gas chromatographic (GC) systems difficult. We evaluated a programmable temperature vaporization (PTV) GC inlet, which served as the preconcentration module, and four open-tubular capillaries (Silcosteel- and Siltek-treated stainless steel, Silcosteel-treated stainless steel coated with 100% dimethylpolysiloxane, and deactivated fused silica) as transfer lines in a valveless, whole-sample analytic system. Thermal extraction of C-9-C-36 n-alkanes at 300 and 320 degrees C from fused silica and quartz wool in the PTV inlet was equally efficient. Adsorptive losses of C-22-C-36 n-alkanes to stainless steel surfaces that protruded into the PTV inlet were suspected. Thus, treatment of the outer surfaces of transfer lines is recommended for effective thermal transfer of SVOCs. Transfer efficiencies began to decline after n-C-24, n-C-28, and n-C-30 in Silcosteel-treated stainless steel, deactivated fused silica, and Siltek-treated stainless steel transfer lines, respectively. Thus, quantitative recovery at 320 degrees C of compounds with vapor pressures less than about 3 x 10(-8) Pa is not expected in valveless SVOC thermal desorption systems that use Siltek-treated stainless steel transfer lines and fused silica or quartz wool as preconcentration substrates. (c) 2006 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Div Environm Sci, Argonne, IL 60439 USA. RP Doskey, PV (reprint author), Argonne Natl Lab, Div Environm Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM pvdoskey@anl.gov NR 38 TC 5 Z9 5 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD JUL 14 PY 2006 VL 1121 IS 1 BP 16 EP 22 DI 10.1016/j.chroma.2006.04.028 PG 7 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 060BL UT WOS:000238776200003 PM 16678188 ER PT J AU An, K Reifsnider, KL Gao, CY AF An, Ke Reifsnider, Kenneth L. Gao, Carrie Y. TI Durability of (Pr0.7Sr0.3)MnO3 +/-delta/8YSZ composite cathodes for solid oxide fuel cells SO JOURNAL OF POWER SOURCES LA English DT Article DE composite cathode; durability; aging; impedance; SOFCs ID IMPEDANCE SPECTROSCOPY; SOFC CATHODES; ELECTRODES; INTERFACE; ND; CATHODE/ELECTROLYTE; MICROSTRUCTURE; MECHANISM; PR; GD AB Half cell SOFCs with (Pr0.7Sr0.3)MnO3 +/-delta/8YSZ composite cathodes on 8YSZ electrolytes were aged up to 1000 h at 1000 degrees C in air with/without 0.318 A cm(-2) cathodic polarization. During the aging, the performance of the half cell SOFCs was measured using electrochemical impedance spectroscopy (EIS). After aging, the surface of the composite cathode and the interface between the composite cathode and the electrolyte was investigated with scanning electron microscopy (SEM). Chemical element analysis was performed with energy dispersive X-ray spectroscopy (EDS). The performance of the half cell SOFCs degraded after aging with/without polarization compared to the initial state. The SOFCs had a larger polarization resistance after 1000 h of aging. The cathodic current was shown to have an impact on the performance by slowing down the rate of decrease of polarization resistance of the SOFCs. After aging, the microstructural properties-mean pore size increased and cumulative pore volume decreased, and growth of grains was found on the (Pr0.7Sr0.3)MnO3 +/-delta phases. (c) 2005 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. Univ Connecticut, Connecticut Global Fuel Cell Ctr, Storrs, CT 06269 USA. Univ Tennessee, Dept Chem Engn, Knoxville, TN 37996 USA. RP An, K (reprint author), Oak Ridge Natl Lab, Div Met & Ceram, POB 2008, Oak Ridge, TN 37831 USA. EM kean@vt.edu RI An, Ke/G-5226-2011 OI An, Ke/0000-0002-6093-429X NR 30 TC 7 Z9 7 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 14 PY 2006 VL 158 IS 1 BP 254 EP 262 DI 10.1016/j.jpowsour.2005.08.047 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 062SG UT WOS:000238964200031 ER PT J AU Kim, J Kim, BH Baik, YH Chang, PK Park, HS Amine, K AF Kim, J. Kim, B. H. Baik, Y. H. Chang, P. K. Park, H. S. Amine, K. TI Effect of (Al, Mg) substitution in LiNiO2 electrode for lithium batteries SO JOURNAL OF POWER SOURCES LA English DT Article DE lithium batteries; lithium nickelate; layered compound; aluminium and magnesium co-substitution; refluxing method ID CATHODE MATERIALS; LICOO2 AB Stabilized lithium nickelate is receiving increased attention as a low-cost alternative to the LiCoO2 cathode now used in rechargeable lithium batteries. Layered LiNi1-x-yMxMyO2 samples (M-x = Al3+ and My = Mg2+, where x = 0.05, 0.10 and y = 0.02, 0.05) are prepared by the refluxing method using acetic acid at 750 degrees C under an oxygen stream, and are subsequently subjected to powder X-ray diffraction analysis and coin-cell tests. The co-doped LiNi1-x-yAlxMgyO2 samples show good structural stability and electrochemical performance. The LiNiAl0.05Mg0.05O2, cathode material exhibits a reversible capacity of 180 mA h g(-1) after extended cycling. These results suggest that the threshold concentration for aluminum and magnesium substitution is of the order of 5%. The co-substitution of magnesium and aluminium into lithium nickelate is considered to yield a promising cathode material. (c) 2005 Elsevier B.V. All rights reserved. C1 Chonnam Natl Univ, Dept Mat Sci & Engn, Kwangju 500757, South Korea. Argonne Natl Lab, Div Chem Engn, Argonne, IL 60439 USA. RP Kim, J (reprint author), Chonnam Natl Univ, Dept Mat Sci & Engn, 300 Yongbongdong, Kwangju 500757, South Korea. EM jaekook@chonnam.ac.kr RI Amine, Khalil/K-9344-2013 NR 15 TC 22 Z9 24 U1 9 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 14 PY 2006 VL 158 IS 1 BP 641 EP 645 DI 10.1016/j.jpowsour.2005.08.028 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 062SG UT WOS:000238964200078 ER PT J AU Liu, P Lee, SH Yan, YF Tracy, CE Turner, JA AF Liu, Ping Lee, Se-Hee Yan, Yanfa Tracy, C. Edwin Turner, John A. TI Nanostructured manganese oxides as lithium battery cathode materials SO JOURNAL OF POWER SOURCES LA English DT Article DE nanocrystalline; manganese oxide; nanotibrous morphology; lithium battery ID LI; ELECTRODE AB We have designed and synthesized a novel nanocrystalline manganese oxide with a nanofibrous, morphology by employing an electrodeposition process in the presence of a non-ionic surfactant. This unique nanoporous/nanocrystalline material effectively accommodates the structural transformation during lithium insertion and avoids deleterious morphological changes as observed in battery materials composed of large particles. Consequently, the material exhibits outstanding cycling stability in addition to its high discharge capacity. (c) 2005 Elsevier B.V. All rights reserved. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Lee, SH (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. RI Lee, Sehee/A-5989-2011; Liu, Ping/I-5615-2012 NR 14 TC 17 Z9 18 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 14 PY 2006 VL 158 IS 1 BP 659 EP 662 DI 10.1016/j.jpowsour.2005.10.005 PG 4 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 062SG UT WOS:000238964200082 ER PT J AU Potter, BG Duong, TQ Bloom, I AF Potter, B. G. Duong, T. Q. Bloom, I. TI Performance and cycle life test results of a PEVE first-generation prismatic nickel/metal-hydride battery pack SO JOURNAL OF POWER SOURCES LA English DT Article DE battery; nickel/metal-hydride; cycle life AB A first-generation, prismatic, nickel/metal-hydride battery pack from Panasonic EV Energy Company Ltd. (PEVE) was characterized following the standard PNGV test procedures and then cycle life tested at 25 degrees C. The pack met, or exceeded, PNGV power and energy goals at the beginning of life. After more than 500,000 cycles, the data for capacity and discharge pulse power capability showed no measurable fade; similarly, discharge pulse resistance at 60% DOD also showed no measurable change. After the same pack was tested with two size factors, it still met or exceeded the PNGV goals. (c) 2005 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Electrochem Technol Program, Argonne, IL 60439 USA. US DOE, Off FreedomCAR & Vehicle Technol, Washington, DC 20585 USA. RP Bloom, I (reprint author), Argonne Natl Lab, Electrochem Technol Program, 9700 S Cass Ave, Argonne, IL 60439 USA. EM bloom@cmt.anl.gov NR 3 TC 4 Z9 4 U1 2 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 14 PY 2006 VL 158 IS 1 BP 760 EP 764 DI 10.1016/j.jpowsour.2005.08.053 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 062SG UT WOS:000238964200095 ER PT J AU Doytcheva, M Kaiser, M de Jonge, N AF Doytcheva, Maya Kaiser, Monja de Jonge, Niels TI In situ transmission electron microscopy investigation of the structural changes in carbon nanotubes during electron emission at high currents SO NANOTECHNOLOGY LA English DT Article ID FIELD-EMISSION; BRIGHTNESS; STABILITY; CATHODES; DAMAGE; BEAM; TIPS AB The structural changes in carbon nanotubes under electron emission conditions were investigated in situ in a transmission electron microscope (TEM). The measurements were performed on individually mounted free-standing multi-walled carbon nanotubes (CNTs). It was found that the structure of the carbon nanotubes did not change gradually, as is the case with field emission electron sources made of sharp metal tips. Instead, changes occurred only above a current level of a few microamperes, which was different for each nanotube. Above the threshold current, carbon nanotubes underwent either structural damage, such as shortening and splitting of the apex of the nanotube, or closing of their open cap. The results are discussed on the basis of several models for degradation mechanisms. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Philips Res, NL-5656 AA Eindhoven, Netherlands. RP de Jonge, N (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM dejongen@ornl.gov RI de Jonge, Niels/B-5677-2008 NR 44 TC 30 Z9 30 U1 2 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD JUL 14 PY 2006 VL 17 IS 13 BP 3226 EP 3233 DI 10.1088/0957-4484/17/13/025 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 052UI UT WOS:000238259000025 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Berntzon, L Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borcherding, F Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Calvet, S Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Das, M Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De la Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Estrada, J Evans, H Evdokimov, A Evdokimov, VN Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Gounder, K Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jain, V Jakobs, K Jarvis, C Jenkins, A Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, JM Kalk, JR Kappler, S Karmanov, D Kasper, J Katsanos, I Kau, D Kaur, R Kehoe, R Kermiche, S Kesisoglou, S Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Kryemadhi, A Krzywdzinski, S Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lager, S Lammers, S Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Leonidopoulos, C Lesne, V Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Z Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK McCarthy, R McCroskey, R Meder, D Melnitchouk, A Mendes, A Mendoza, L Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Millet, T Mitrevski, J Molina, J Mondal, NK Monk, J Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundim, L Mutaf, YD Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Oguri, V Oliveira, N Oshima, N Otec, R Garzon, GJOY Owen, M Padley, P Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Peters, K Petroff, P Petteni, M Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG Popov, AV da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rani, KJ Ranjan, K Rapidis, PA Ratoff, PN Renkel, P Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Siccardi, V Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tiller, B Titov, M Tokmenin, VV Tomoto, M Toole, T Torchiani, I Towers, S Trefzger, T Trincaz-Duvoid, S Tsybychev, D Tuchming, B Tully, C Turcot, AS Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vlimant, JR Von Toerne, E Voutilainen, M Vreeswijk, M Wahl, HD Wang, L Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Womersley, J Wood, DR Wyatt, TR Xie, Y Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, C Yu, J Yurkewicz, A Zatserklyaniy, A Zeitnitz, C Zhang, D Zhao, T Zhao, Z Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Agelou, M. Agram, J. -L. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Bargassa, P. Baringer, P. Barnes, C. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Berntzon, L. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Binder, M. Biscarat, C. Black, K. M. Blackler, I. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Blumenschein, U. Boehnlein, A. Boeriu, O. Bolton, T. A. Borcherding, F. Borissov, G. Bos, K. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Burdin, S. Burke, S. Burnett, T. H. Busato, E. Buszello, C. P. Butler, J. M. Calvet, S. Cammin, J. Caron, S. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chapin, D. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Claes, D. Clement, B. Clement, C. Coadou, Y. Cooke, M. Cooper, W. E. Coppage, D. Corcoran, M. Cousinou, M. -C. Cox, B. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Das, M. Davies, B. Davies, G. Davis, G. A. De, K. de Jong, P. de Jong, S. J. De la Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Demine, P. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Doidge, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Edwards, T. Ellison, J. Elmsheuser, J. Elvira, V. D. Eno, S. Ermolov, P. Estrada, J. Evans, H. Evdokimov, A. Evdokimov, V. N. Fatakia, S. N. Feligioni, L. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fleck, I. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gardner, J. Gavrilov, V. Gay, A. Gay, P. Gele, D. Gelhaus, R. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Gounder, K. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grunendahl, S. Grunewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hong, S. J. Hooper, R. Houben, P. Hu, Y. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jain, V. Jakobs, K. Jarvis, C. Jenkins, A. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kaefer, D. Kahn, S. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kalk, J. R. Kappler, S. Karmanov, D. Kasper, J. Katsanos, I. Kau, D. Kaur, R. Kehoe, R. Kermiche, S. Kesisoglou, S. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Klima, B. Kohli, J. M. Konrath, J. -P. Kopal, M. Korablev, V. M. Kotcher, J. Kothari, B. Koubarovsky, A. Kozelov, A. V. Kozminski, J. Kryemadhi, A. Krzywdzinski, S. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lager, S. Lammers, S. Landsberg, G. Lazoflores, J. Le Bihan, A. -C. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Leonidopoulos, C. Lesne, V. Leveque, J. Lewis, P. Li, J. Li, Q. Z. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Lounis, A. Love, P. Lubatti, H. J. Lynker, M. Lyon, A. L. Maciel, A. K. A. Madaras, R. J. Mattig, P. Magass, C. Magerkurth, A. Magnan, A. -M. Makovec, N. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martens, M. Mattingly, S. E. K. McCarthy, R. McCroskey, R. Meder, D. Melnitchouk, A. Mendes, A. Mendoza, L. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Michaut, M. Miettinen, H. Millet, T. Mitrevski, J. Molina, J. Mondal, N. K. Monk, J. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundim, L. Mutaf, Y. D. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Nelson, S. Neustroev, P. Noeding, C. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Oguri, V. Oliveira, N. Oshima, N. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Perea, P. M. Perez, E. Peters, K. Petroff, P. Petteni, M. Piegaia, R. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Pompos, A. Pope, B. G. Popov, A. V. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rani, K. J. Ranjan, K. Rapidis, P. A. Ratoff, P. N. Renkel, P. Reucroft, S. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Royon, C. Rubinov, P. Ruchti, R. Rud, V. I. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schmitt, C. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sengupta, S. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shephard, W. D. Shivpuri, R. K. Shpakov, D. Siccardi, V. Sidwell, R. A. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smith, R. P. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Song, X. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stevenson, K. Stolin, V. Stone, A. Stoyanova, D. A. Strandberg, J. Strang, M. A. Strauss, M. Stroehmer, R. Strom, D. Strovink, M. Stutte, L. Sumowidagdo, S. Sznajder, A. Talby, M. Tamburello, P. Taylor, W. Telford, P. Temple, J. Tiller, B. Titov, M. Tokmenin, V. V. Tomoto, M. Toole, T. Torchiani, I. Towers, S. Trefzger, T. Trincaz-Duvoid, S. Tsybychev, D. Tuchming, B. Tully, C. Turcot, A. S. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vartapetian, A. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vlimant, J. -R. Von Toerne, E. Voutilainen, M. Vreeswijk, M. Wahl, H. D. Wang, L. Warchol, J. Watts, G. Wayne, M. Weber, M. Weerts, H. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Womersley, J. Wood, D. R. Wyatt, T. R. Xie, Y. Xuan, N. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, C. Yu, J. Yurkewicz, A. Zatserklyaniy, A. Zeitnitz, C. Zhang, D. Zhao, T. Zhao, Z. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Direct limits on the B-s(0) oscillation frequency SO PHYSICAL REVIEW LETTERS LA English DT Article ID DETECTOR; PHYSICS; IMPACT AB We report results of a study of the B-s(0) oscillation frequency using a large sample of B-s(0) semileptonic decays corresponding to approximately 1 fb(-1) of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron Collider in 2002-2006. The amplitude method gives a lower limit on the B-s(0) oscillation frequency at 14.8 ps(-1) at the 95% C.L. At Delta m(s)=19 ps(-1), the amplitude deviates from the hypothesis A=0 (1) by 2.5 (1.6) standard deviations, corresponding to a two-sided C.L. of 1% (10%). A likelihood scan over the oscillation frequency, Delta m(s), gives a most probable value of 19 ps(-1) and a range of 17