FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Frey, NA Srinath, S Srikanth, H Varela, M Pennycook, S Miao, GX Gupta, A AF Frey, N. A. Srinath, S. Srikanth, H. Varela, M. Pennycook, S. Miao, G. X. Gupta, A. TI Magnetic anisotropy in epitaxial CrO2 and CrO2/Cr2O3 bilayer thin films SO PHYSICAL REVIEW B LA English DT Article ID EXCHANGE BIAS; SPIN POLARIZATION; TUNNEL-JUNCTIONS; MAGNETORESISTANCE; CR2O3 AB We have investigated the effective magnetic anisotropy in CVD-grown epitaxial CrO2 thin films and Cr2O3/CrO2 bilayers using resonant radio-frequency transverse susceptibility (TS). While CrO2 is a highly spin polarized ferromagnet, Cr2O3 is known to exhibit magnetoelectric effect and orders antiferromagnetically just above room temperature. In CrO2, the measured values for the room temperature anisotropy constant scaled with the film thickness and the TS data is influenced by magnetoelastic contributions at low temperature due to interfacial strain caused by lattice mismatch with the substrate. In CrO2/Cr2O3 bilayers M-H loops indicated an enhanced coercivity without appreciable loop shift and the transverse susceptibility revealed features associated with both the ferromagnetic and antiferromagnetic phases. In addition, a considerable broadening of the anisotropy fields and large K-eff values were observed depending on the fraction of Cr2O3 present. This anomalous behavior, observed for the first time, cannot be accounted for by the variable thickness of CrO2 alone and is indicative of possible exchange coupling between CrO2 and Cr2O3 phases that significantly affects the effective magnetic anisotropy. (c) 2006 American Institute of Physics. C1 Univ S Florida, Dept Phys, Tampa, FL 33620 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Alabama, MINT Ctr, Tuscaloosa, AL 35487 USA. RP Srinath, S (reprint author), Univ S Florida, Dept Phys, Tampa, FL 33620 USA. EM sharihar@cas.usf.edu RI Miao, Guo-Xing/A-2411-2008; Varela, Maria/H-2648-2012; Varela, Maria/E-2472-2014 OI Miao, Guo-Xing/0000-0002-8735-8077; Varela, Maria/0000-0002-6582-7004 NR 33 TC 28 Z9 29 U1 1 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 2 AR 024420 DI 10.1103/PhysRevB.74.024420 PG 8 WC Physics, Condensed Matter SC Physics GA 069DP UT WOS:000239426600061 ER PT J AU Gonzalez, R Ramirez, R Tardio, M Chen, Y Kokta, MR AF Gonzalez, R. Ramirez, R. Tardio, M. Chen, Y. Kokta, M. R. TI Equilibrium and nonequilibrium distribution of aliovalent light-impurity ions in simple oxides SO PHYSICAL REVIEW B LA English DT Article ID ALKALINE-EARTH OXIDES; MGO SINGLE-CRYSTALS; ELECTRON-SPIN-RESONANCE; LITHIUM IMPURITIES; HIGH-TEMPERATURES;
  • 0 DEFECTS; ALPHA-AL2O3; RADIATION; MAGNESIUM; CONDUCTIVITY AB The effects of atmosphere and cooling rate from elevated temperatures on the distribution of Li impurities in MgO, and Mg impurities in Al2O3 crystals are reported. At sufficiently high temperatures, regardless of the atmosphere, Li+ ions from Li2O precipitates in MgO, and Mg2+ ions from MgAl2O4 precipitates in Al2O3 are dispersed around the precipitates, forming complex-oxide regions rich in these impurities, referred to as microgalaxies. Fast cooling of these crystals freezes the nonequilibrium distribution of these impurities surrounding the precipitates. However, if the crystals are cooled sufficiently slowly, the system has ample time to establish an equilibrium distribution, with most of the Li and Mg ions returning to the Li2O and MgAl2O4 precipitates respectively. Based on the microgalaxy model, it is not unrealistic to expect that oxygen vacancies would be formed within the microgalaxy, regardless of the atmosphere. C1 Univ Carlos III Madrid, Escuela Politecn Super, Dept Fis, Madrid 28911, Spain. US DOE, Off Basic Energy Sci, Div Engn & Mat Sci, Washington, DC 20585 USA. St Gobain Crystals & Detectors, Washougal, WA 98671 USA. RP Gonzalez, R (reprint author), Univ Carlos III Madrid, Escuela Politecn Super, Dept Fis, Avda Univ 30, Madrid 28911, Spain. RI Ramirez Jimenez, Rafael/I-1769-2015; TARDIO LOPEZ, MIGUEL M./G-3177-2016 OI TARDIO LOPEZ, MIGUEL M./0000-0001-7413-0009 NR 44 TC 6 Z9 6 U1 0 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 1 AR 014102 DI 10.1103/PhysRevB.74.014102 PG 7 WC Physics, Condensed Matter SC Physics GA 069DO UT WOS:000239426400026 ER PT J AU Heidrich-Meisner, F Honecker, A Vekua, T AF Heidrich-Meisner, F. Honecker, A. Vekua, T. TI Frustrated ferromagnetic spin-1/2 chain in a magnetic field: The phase diagram and thermodynamic properties SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM RENORMALIZATION-GROUPS; CRITICAL EXPONENTS; ANTIFERROMAGNETS; LADDERS; LIQUID AB The frustrated ferromagnetic spin-1/2 Heisenberg chain is studied by means of a low-energy field theory as well as the density-matrix renormalization group and exact diagonalization methods. First, we study the ground-state phase diagram in a magnetic field and find an "even-odd" (EO) phase characterized by bound pairs of magnons in the region of two weakly coupled antiferromagnetic chains. A jump in the magnetization curves signals a first-order transition at the boundary of the EO phase, but otherwise the curves are smooth. Second, we discuss thermodynamic properties at zero field, where we confirm a double-peak structure in the specific heat for moderate frustrating next-nearest-neighbor interactions. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Univ Gottingen, Inst Theoret Phys, D-37077 Gottingen, Germany. Tech Univ Braunschweig, Inst Theoret Phys, D-38106 Braunschweig, Germany. Univ Strasbourg 1, Phys Theor Lab, F-67084 Strasbourg, France. Andronikashvili Inst Phys, GE-0177 Tbilisi, Rep of Georgia. RP Heidrich-Meisner, F (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Honecker, Andreas/A-7941-2008; Heidrich-Meisner, Fabian/B-6228-2009 OI Honecker, Andreas/0000-0001-6383-3200; NR 24 TC 81 Z9 82 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 2 AR 020403 DI 10.1103/PhysRevB.74.020403 PG 4 WC Physics, Condensed Matter SC Physics GA 069DP UT WOS:000239426600005 ER PT J AU Jia, Y Wu, B Weitering, HH Zhang, ZY AF Jia, Yu Wu, Biao Weitering, H. H. Zhang, Zhenyu TI Quantum size effects in Pb films from first principles: The role of the substrate SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; BY-LAYER GROWTH; WAVE BASIS-SET; ELECTRON-DENSITY; WORK FUNCTION; SURFACES; METALS; CU(111); HEIGHT; SUPERCONDUCTIVITY AB Three different Pb films-free standing, on a semiconducting Ge(111) substrate, and on a metallic Cu(111) substrate-are studied with first-principles calculations. Our studies show that the properties of these films-surface energy, work function, and lattice relaxation-oscillate strongly with the film thickness. The oscillation follows a bilayer pattern interrupted by even-odd crossovers. However, the positions of the crossovers and the separation between the crossovers depend on the substrate, showing that the substrate plays an important role in the Pb film properties. In particular, the results for Pb films on Cu(111) substrate challenge the existing physical picture of Pb films. C1 Zhengzhou Univ, Sch Phys & Engn, Zhengzhou 450052, Henan, Peoples R China. Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Jia, Y (reprint author), Zhengzhou Univ, Sch Phys & Engn, Zhengzhou 450052, Henan, Peoples R China. RI Wu, Biao/B-3329-2008 OI Wu, Biao/0000-0001-9229-5894 NR 56 TC 61 Z9 62 U1 2 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 3 AR 035433 DI 10.1103/PhysRevB.74.035433 PG 10 WC Physics, Condensed Matter SC Physics GA 069DQ UT WOS:000239426700140 ER PT J AU Karaiskaj, D Mascarenhas, A Adamcyk, M Young, EC Tiedje, T AF Karaiskaj, D. Mascarenhas, A. Adamcyk, M. Young, E. C. Tiedje, T. TI Ultranarrow photoluminescence transitions of nitrogen cluster bound excitons in dilute GaAsN SO PHYSICAL REVIEW B LA English DT Article ID ALLOY; BAND; GAP; LUMINESCENCE; GAAS1-XNX AB High resolution photoluminescence spectroscopy on heavily doped GaAs:N reveals the existence of excitons bound to a nitrogen cluster. The observed transitions are exceedingly sharp, similar to those observed for excitons bound to nitrogen pairs in high quality GaAs with the narrowest transition being only 94 mu eV. Moreover, several other features can be observed originating most likely from phonon replicas of the nitrogen pair bound excitons and higher order clusters. However, the main transitions which dominate the photoluminescence spectra are thought to originate from excitons bound to a three nitrogen cluster. The sharp photoluminescence features are superimposed on a broad luminescence band indicating a strong perturbation induced by nitrogen atoms to the host GaAs lattice. The number of the allowed transitions and their polarization dependence provide important information about the arrangement of the nitrogen atoms in the cluster. C1 Natl Renewable Energy Lab, Ctr Basic Sci, Golden, CO 80401 USA. Univ British Columbia, Dept Phys & Astron, AMPEL, Vancouver, BC V6T 1Z4, Canada. RP Karaiskaj, D (reprint author), Natl Renewable Energy Lab, Ctr Basic Sci, 1617 Cole Blvd, Golden, CO 80401 USA. RI Young, Erin/J-5786-2013 NR 23 TC 13 Z9 13 U1 0 U2 8 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 3 AR 035208 DI 10.1103/PhysRevB.74.035208 PG 4 WC Physics, Condensed Matter SC Physics GA 069DQ UT WOS:000239426700060 ER PT J AU Kenzelmann, M Harris, AB Aharony, A Entin-Wohlman, O Yildirim, T Huang, Q Park, S Lawes, G Broholm, C Rogado, N Cava, RJ Kim, KH Jorge, G Ramirez, AP AF Kenzelmann, M. Harris, A. B. Aharony, A. Entin-Wohlman, O. Yildirim, T. Huang, Q. Park, S. Lawes, G. Broholm, C. Rogado, N. Cava, R. J. Kim, K. H. Jorge, G. Ramirez, A. P. TI Field dependence of magnetic ordering in Kagome-staircase compound Ni3V2O8 SO PHYSICAL REVIEW B LA English DT Article ID ANISOTROPIC SUPEREXCHANGE; WEAK FERROMAGNETISM; LATTICE; ANTIFERROMAGNET; FLUCTUATIONS; SR2CU3O4CL2; INVERSION; EXCHANGE; CO3V2O8 AB We present powder and single-crystal neutron diffraction and bulk measurements of the Kagome-staircase compound Ni3V2O8 (NVO) in fields up to 8.5 T applied along the c direction. (The Kagome plane is the a-c plane.) This system contains two types of Ni ions, which we call "spine" and "cross-tie." Our neutron measurements can be described with the paramagnetic space group Cmca for T < 15 K and each observed magnetically ordered phase is characterized by the appropriate irreducible representation(s). Our zero-field measurements show that at T-PH=9.1 K NVO undergoes a transition to a predominantly longitudinal incommensurate structure in which the spine spins are nearly along the a-axis. At T-HL=6.3 K, there is a transition to an elliptically polarized incommensurate structure with both spine and cross-tie moments in the a-b plane. At T-LC=4 K the system undergoes a first-order phase transition to a commensurate antiferromagnetic structure with the staggered magnetization primarily along the a-axis and a weak ferromagnetic moment along the c-axis. A specific heat anomaly at T-CC(')=2.3 K indicates an additional transition, which remarkably does not affect Bragg peaks of the commensurate C structure. Neutron, specific heat, and magnetization measurements produce a comprehensive temperature-field phase diagram. The symmetries of the incommensurate magnetic phases are consistent with the observation that only one phase is electrically polarized. The magnetic structures are explained theoretically using a simplified model Hamiltonian, that involves competing nearest- and next-nearest-neighbor exchange interactions, single-ion anisotropy, pseudodipolar interactions, and Dzyaloshinskii-Moriya interactions. C1 Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. Princeton Univ, Princeton Mat Inst, Princeton, NJ 08544 USA. Lucent Technol, Bell Labs, Murray Hill, NJ 07974 USA. RP Kenzelmann, M (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. RI yildirim, taner/A-1290-2009; Broholm, Collin/E-8228-2011; ENTIN, ORA/F-1114-2012; Kenzelmann, Michel/A-8438-2008; harris, A Brooks/C-8640-2013 OI Broholm, Collin/0000-0002-1569-9892; Kenzelmann, Michel/0000-0001-7913-4826; NR 49 TC 83 Z9 84 U1 4 U2 23 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 1 AR 014429 DI 10.1103/PhysRevB.74.014429 PG 26 WC Physics, Condensed Matter SC Physics GA 069DO UT WOS:000239426400081 ER PT J AU Kim, YM Lee, BJ Baskes, MI AF Kim, Young-Min Lee, Byeong-Joo Baskes, M. I. TI Modified embedded-atom method interatomic potentials for Ti and Zr SO PHYSICAL REVIEW B LA English DT Article ID CLOSE-PACKED METALS; HCP METALS; TRANSITION-METALS; ALPHA-ZR; POSITRON-ANNIHILATION; DEFECT PROPERTIES; SINGLE-CRYSTALS; SELF-DIFFUSION; BCC ZIRCONIUM; AB-INITIO AB Semiempirical interatomic potentials for hcp elements, Ti and Zr, have been developed based on the MEAM (modified embedded-atom method) formalism. The new potentials do not cause the stability problem previously reported in MEAM for hcp elements, and describe wide range of physical properties (bulk properties, point defect properties, planar defect properties, and thermal properties) of pure Ti and Zr, in good agreement with experimental information. The applicability of the potentials to atomistic approaches for investigation of various materials behavior (slip, irradiation, amorphous behavior, etc.) in Ti or Zr-based alloys is demonstrated by showing that the related material properties are correctly reproduced using the present potentials and that the potentials can be easily extended to multicomponent systems. C1 Pohang Univ Sci & Technol, Dept Mat Sci & Engn, Pohang 790784, South Korea. Los Alamos Natl Lab, Struct Properties Relat Grp, Los Alamos, NM 87545 USA. RP Lee, BJ (reprint author), Pohang Univ Sci & Technol, Dept Mat Sci & Engn, Pohang 790784, South Korea. EM calphad@postech.ac.kr NR 55 TC 83 Z9 84 U1 3 U2 42 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 1 AR 014101 DI 10.1103/PhysRevB.74.014101 PG 12 WC Physics, Condensed Matter SC Physics GA 069DO UT WOS:000239426400025 ER PT J AU Kocharian, AN Fernando, GW Palandage, K Davenport, JW AF Kocharian, Armen N. Fernando, Gayanath W. Palandage, Kalum Davenport, James W. TI Exact study of charge-spin separation, pairing fluctuations, and pseudogaps in four-site Hubbard clusters SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; PHASE-SEPARATION; CUPRATE SUPERCONDUCTORS; MODEL; REEXAMINATION; TRANSITION; DIAGRAM; STATE; FIELD AB An exact study of charge-spin separation, pairing fluctuations, and pseudogaps is carried out by combining the analytical eigenvalues of the four-site Hubbard clusters with the grand canonical and canonical ensemble approaches in a multidimensional parameter space of temperature (T), magnetic field (h), on-site interaction (U), and chemical potential (mu). Our results, near the average number of electrons < N >approximate to 3, strongly suggest the existence of a critical parameter U(c)(T) for the localization of electrons and a particle-hole binding (positive) gap Delta(e-h)(T)> 0 at U > U(c)(T), with a zero temperature critical value, U(c)(0)=4.584. For U < U(c)(T), the particle-particle pair binding is found with a (positive) pairing gap Delta(P)(T)> 0. The ground state degeneracy is lifted at U > U(c)(T) and the cluster becomes a Mott-Hubbard like insulator due to the presence of energy gaps at all (allowed) integer numbers (1 <= N <= 8) of electrons. In contrast, for U <= U(c)(T), we find an electron pair binding instability at finite temperature near < N >approximate to 3, which manifests a possible pairing mechanism, a precursor to superconductivity in small clusters. Rigorous criteria for the existence of many-body Mott-Hubbard like particle-hole and particle-particle pairings, spin pairing, (spin) pseudogap, and (spin) antiferromagnetic critical crossover temperatures, at which the corresponding pseudogaps disappear, are also formulated. In particular, the resulting phase diagram consisting of charge and spin pseudogaps, antiferromagnetic correlations, hole pairing with competing hole-rich (< N >=2), hole-poor (< N >=4), and magnetic (< N >=3) regions in the ensemble of clusters near 1/8 filling closely resembles the phase diagrams and inhomogeneous phase separation recently found in the family of doped high-T(c) cuprates. C1 Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA. Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. IFS, Kandy, Sri Lanka. Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. RP Kocharian, AN (reprint author), Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA. EM armen.n.kocharian@csun.edu; fernando@phys.uconn.edu NR 32 TC 39 Z9 39 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 2 AR 024511 DI 10.1103/PhysRevB.74.024511 PG 9 WC Physics, Condensed Matter SC Physics GA 069DP UT WOS:000239426600083 ER PT J AU Koci, L Bringa, EM Ivanov, DS Hawreliak, J McNaney, J Higginbotham, A Zhigilei, LV Belonoshko, AB Remington, BA Ahuja, R AF Koci, L. Bringa, E. M. Ivanov, D. S. Hawreliak, J. McNaney, J. Higginbotham, A. Zhigilei, L. V. Belonoshko, A. B. Remington, B. A. Ahuja, R. TI Simulation of shock-induced melting of Ni using molecular dynamics coupled to a two-temperature model SO PHYSICAL REVIEW B LA English DT Article ID METAL TARGETS; COPPER; SILICON; AL; COMPRESSION; PRESSURES; CRYSTALS; ALUMINUM; EQUATION; STATE AB Using nonequilibrium molecular dynamics (MD) simulations we study shock-induced melting in Ni with an embedded atom method (EAM). Dynamic melting is probed by the pair correlation function, and we find a melting lattice temperature of T-melt=6400 +/- 300 K for a melting pressure of P-melt=275 +/- 10 GPa. When a combined MD+TTM (two-temperature model) approach is used to include electronic heat conduction and electron-phonon coupling, P-melt and T-melt change. For a given pressure, the temperature behind the shock decreases due to electronic heat diffusion into the cold, unshocked material. This cooling of the material behind the shock slightly increases the melting pressure compared to simulations without electronic heat conduction and electron-phonon coupling. The decrease in the temperature behind the shock front is enhanced if the electron-phonon coupling is artificially made larger. We also explore the feasibility of using x-ray diffraction to detect melting. C1 Uppsala Univ, Dept Phys, SE-75121 Uppsala, Sweden. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Natl Ctr Laser Applicat, Galway, Ireland. Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22903 USA. Royal Inst Technol, Dept Mat Sci & Engn, S-10044 Stockholm, Sweden. AlbaNova Univ Ctr, Dept Phys, Royal Inst Technol, S-10044 Stockholm, Sweden. RP Koci, L (reprint author), Uppsala Univ, Dept Phys, Box 530, SE-75121 Uppsala, Sweden. RI Higginbotham, Andrew/F-7910-2011; Bringa, Eduardo/F-8918-2011; Zhigilei, Leonid/E-2167-2012; McNaney, James/F-5258-2013; OI Belonoshko, Anatoly/0000-0001-7531-3210 NR 36 TC 24 Z9 25 U1 2 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 1 AR 012101 DI 10.1103/PhysRevB.74.012101 PG 4 WC Physics, Condensed Matter SC Physics GA 069DO UT WOS:000239426400001 ER PT J AU Kresin, VZ Ovchinnikov, YN AF Kresin, Vladimir Z. Ovchinnikov, Yurii N. TI Shell structure and strengthening of superconducting pair correlation in nanoclusters SO PHYSICAL REVIEW B LA English DT Article ID DISCRETE ELECTRONIC STATES; SMALL METALLIC PARTICLES; TRANSITION TEMPERATURE; CADMIUM CLUSTERS; ENERGY-SPECTRUM; ATOMIC CLUSTERS; INDIUM CLUSTERS; JELLIUM MODEL; SUPERSHELLS; PHYSICS AB The existence of shell structure and the accompanying high degeneracy of electronic levels leads to the possibility of strong superconducting pairing in metallic nanoclusters with N similar to 10(2)-10(3) delocalized electrons. The most favorable cases correspond to (a) "magic" clusters with strongly degenerate highest occupied and lowest unoccupied shells and a relatively small energy spacing between them as well as to (b) clusters with slightly incomplete shells and small Jahn-Teller splitting. It is shown that realistic sets of parameters lead to very high values of T-c as well as to a strong alteration of the energy spectrum. The impact of fluctuations is analyzed. Spectroscopic experiments aimed at detecting the presence of pair correlations are proposed. The pairing should also manifest itself via odd-even effects in cluster spectra, similar to the case in nuclei. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Russian Acad Sci, LD Landau Theoret Phys Inst, Moscow 117334, Russia. Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany. RP Kresin, VZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 78 TC 46 Z9 46 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 2 AR 024514 DI 10.1103/PhysRevB.74.024514 PG 11 WC Physics, Condensed Matter SC Physics GA 069DP UT WOS:000239426600086 ER PT J AU Langridge, S Michez, LA Ali, M Marrows, CH Hickey, BJ Charlton, TR Dalgliesh, RM Toohey, M Hill, EW McFadzean, S Chapman, JN AF Langridge, Sean Michez, L. A. Ali, M. Marrows, C. H. Hickey, B. J. Charlton, T. R. Dalgliesh, R. M. Toohey, M. Hill, E. W. McFadzean, S. Chapman, J. N. TI Controlled magnetic roughness in a multilayer that has been patterned using a nanosphere array SO PHYSICAL REVIEW B LA English DT Article ID POLARIZED-NEUTRON REFLECTOMETRY; X-RAY-SCATTERING; GIANT MAGNETORESISTANCE; SURFACES; DIFFUSE; INTERFACES; LAYERS; MEDIA; FILMS AB The micromagnetic structure of an antiferromagnetically exchange-coupled multilayer constrained by a periodic in-plane structure has been quantified using polarized-neutron reflectometry. The pattern was realized through nanosphere lithography. The fabrication of the patterned array introduces a significant deviation in the in-plane magnetization direction near to and at the surface of the heterostructure but does not significantly perturb the domain structure. The characteristic length scale of this magnetic roughening is shown to be driven by the feature size. The roughening is not observable by conventional magnetometry techniques but is confirmed by micromagnetic simulation. The combination of scattering techniques and numerical simulation provides a powerful tool to study the subtle interlayer and intralayer ordering in patterned magnetic heterostructures. C1 Rutherford Appleton Lab, ISIS, Didcot OX11 0QX, Oxon, England. Univ Leeds, Sch Phys & Astron, EC Stoner Lab, Leeds LS2 9JT, W Yorkshire, England. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Univ Manchester, Dept Comp Sci, Manchester M13 9PL, Lancs, England. Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. RP Langridge, S (reprint author), Rutherford Appleton Lab, ISIS, Didcot OX11 0QX, Oxon, England. EM s.langridge@rl.ac.uk RI Marrows, Christopher/D-7980-2011; Hill, Ernie/K-6942-2015; Hickey, B J/B-3333-2016; OI Hill, Ernie/0000-0001-9412-6795; Hickey, B J/0000-0001-8289-5618; Marrows, Christopher/0000-0003-4812-6393; Langridge, Sean/0000-0003-1104-0772 NR 38 TC 10 Z9 10 U1 0 U2 6 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 1 AR 014417 DI 10.1103/PhysRevB.74.014417 PG 6 WC Physics, Condensed Matter SC Physics GA 069DO UT WOS:000239426400069 ER PT J AU Lawes, G Melot, B Page, K Ederer, C Hayward, MA Proffen, T Seshadri, R AF Lawes, G. Melot, B. Page, K. Ederer, C. Hayward, M. A. Proffen, Th. Seshadri, R. TI Dielectric anomalies and spiral magnetic order in CoCr2O4 SO PHYSICAL REVIEW B LA English DT Article ID FERROELECTRIC POLARIZATION; CONFIGURATIONS; SPINEL AB We have investigated the structural, magnetic, thermodynamic, and dielectric properties of polycrystalline CoCr2O4, an insulating spinel exhibiting both ferrimagnetic and spiral magnetic structures. Below T-c=94 K the sample develops long-range ferrimagnetic order, and we attribute a sharp phase transition at T-S approximate to 27 K to the onset of long-range spiral magnetic order. Neutron measurements confirm that the structure remains cubic at 80 K and at 11 K; the magnetic ordering by 11 K is seen to be rather complex. Density functional theory supports the view of a ferrimagnetic semiconductor with magnetic interactions consistent with noncollinear ordering. Capacitance measurements on CoCr2O4 show a sharp decrease in the dielectric constant at T-S, but also an anomaly showing thermal hysteresis falling between approximately T=50 and 57 K. We tentatively attribute the appearance of this higher-temperature dielectric anomaly to the development of short-range spiral magnetic order, and discuss these results in the context of utilizing dielectric spectroscopy to investigate noncollinear short-range magnetic structures. (c) 2006 American Institute of Physics. C1 Wayne State Univ, Dept Phys & Astron, Detroit, MI 48201 USA. Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA. Univ Oxford, Dept Chem, Inorgan Chem Lab, Oxford OX1 3QR, England. Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Lawes, G (reprint author), Wayne State Univ, Dept Phys & Astron, Detroit, MI 48201 USA. RI Page, Katharine/C-9726-2009; Ederer, Claude/F-5420-2010; Lujan Center, LANL/G-4896-2012; Seshadri, Ram/C-4205-2013; Melot, Brent/B-6456-2008; Proffen, Thomas/B-3585-2009; OI Page, Katharine/0000-0002-9071-3383; Seshadri, Ram/0000-0001-5858-4027; Melot, Brent/0000-0002-7078-8206; Proffen, Thomas/0000-0002-1408-6031; Hayward, Michael/0000-0002-6248-2063 NR 19 TC 100 Z9 103 U1 3 U2 39 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 2 AR 024413 DI 10.1103/PhysRevB.74.024413 PG 6 WC Physics, Condensed Matter SC Physics GA 069DP UT WOS:000239426600054 ER PT J AU Lorke, M Chow, WW Nielsen, TR Seebeck, J Gartner, P Jahnke, F AF Lorke, M. Chow, W. W. Nielsen, T. R. Seebeck, J. Gartner, P. Jahnke, F. TI Anomaly in the excitation dependence of the optical gain of semiconductor quantum dots SO PHYSICAL REVIEW B LA English DT Article ID ROOM-TEMPERATURE AB Optical gain behavior of semiconductor quantum dots is studied within a quantum-kinetic theory, with carrier-carrier and carrier-phonon scattering treated using renormalized quasiparticle states. For inhomogeneously broadened samples, we found the excitation dependence of gain to be basically similar to quantum-well and bulk systems. However, for a high quality sample, our theory predicts the possibility of a decreasing peak gain with increasing carrier density. This anomaly can be attributed to the delicate balance between state filling and dephasing. C1 Univ Bremen, Inst Theoret Phys, D-28334 Bremen, Germany. Sandia Natl Labs, Semicond Mat & Device Sci Dept, Albuquerque, NM 87185 USA. RP Lorke, M (reprint author), Univ Bremen, Inst Theoret Phys, D-28334 Bremen, Germany. NR 20 TC 21 Z9 21 U1 0 U2 6 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 3 AR 035334 DI 10.1103/PhysRevB.74.035334 PG 4 WC Physics, Condensed Matter SC Physics GA 069DQ UT WOS:000239426700099 ER PT J AU Marian, J Caro, A AF Marian, J. Caro, A. TI Moving dislocations in disordered alloys: Connecting continuum and discrete models with atomistic simulations SO PHYSICAL REVIEW B LA English DT Article ID SCREW DISLOCATION; SHORT-RANGE; BCC METALS; DYNAMICS; LATTICE; MOTION; NI; MOBILITY; BEHAVIOR; CRYSTAL AB Using atomistic simulations of dislocation motion in Ni and Ni-Au alloys we report a detailed study of the mobility function as a function of stress, temperature, and alloy composition. We analyze the results in terms of analytic models of phonon radiation and their selection rules for phonon excitation. We find a remarkable agreement between the location of the cusps in the sigma-v relation and the velocity of waves propagating in the direction of dislocation motion. We identify and characterize three regimes of dissipation whose boundaries are essentially determined by the direction of motion of the dislocation, rather than by its screw or edge character. C1 Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. RP Marian, J (reprint author), Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. EM marian1@llnl.gov NR 43 TC 29 Z9 29 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 2 AR 024113 DI 10.1103/PhysRevB.74.024113 PG 12 WC Physics, Condensed Matter SC Physics GA 069DP UT WOS:000239426600027 ER PT J AU McMahon, WE Batyrev, IG Hannappel, T Olson, JM Zhang, SB AF McMahon, W. E. Batyrev, Iskander G. Hannappel, T. Olson, J. M. Zhang, S. B. TI 5-7-5 line defects on As/Si(100): A general stress-relief mechanism for V/IV surfaces SO PHYSICAL REVIEW B LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; VICINAL SI(001) SURFACES; TERMINATED SI(001); CRYSTAL-SURFACES; SI(100) 2X1; CORE-LEVEL; GE; SI; PHOSPHORUS; ADSORPTION AB An entire family of nano-scale trenches, ridges, and steps has been observed experimentally on AsH3-exposed Si(100). Some of these line structures have been observed previously, but their structures have remained a mystery. Theoretical modeling shows that they are all based upon the same stress-relieving 5-7-5 core structure. The strong similarities between line structures on As/Si(100), P/Si(100), As/Ge(100), and other V/IV surfaces lead to a much broader conclusion: 5-7-5 line structures are a general form of stress relief for group-V terminated Si and Ge surfaces. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany. RP McMahon, WE (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Krausnick, Jennifer/D-6291-2013; Zhang, Shengbai/D-4885-2013 OI Zhang, Shengbai/0000-0003-0833-5860 NR 42 TC 11 Z9 11 U1 1 U2 10 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 3 AR 033304 DI 10.1103/PhysRevB.74.033304 PG 4 WC Physics, Condensed Matter SC Physics GA 069DQ UT WOS:000239426700009 ER PT J AU Mei, Q Benmore, CJ Hart, RT Bychkov, E Salmon, PS Martin, CD Michel, FM Antao, SM Chupas, PJ Lee, PL Shastri, SD Parise, JB Leinenweber, K Amin, S Yarger, JL AF Mei, Q. Benmore, C. J. Hart, R. T. Bychkov, E. Salmon, P. S. Martin, C. D. Michel, F. M. Antao, S. M. Chupas, P. J. Lee, P. L. Shastri, S. D. Parise, J. B. Leinenweber, K. Amin, S. Yarger, J. L. TI Topological changes in glassy GeSe2 at pressures up to 9.3 GPa determined by high-energy x-ray and neutron diffraction measurements SO PHYSICAL REVIEW B LA English DT Article ID INTERMEDIATE-RANGE ORDER; LIQUID GESE2; CHALCOGENIDE GLASSES; CRYSTALLINE GESE2; HIGH-TEMPERATURES; VITREOUS SILICA; SCATTERING; DENSITY; ALLOYS; MOLTEN AB Monochromatic high-energy x-ray diffraction measurements employing microfocusing optics were performed on glassy GeSe2 in a diamond anvil cell at pressures up to 9.3 GPa. In addition, the method of isotopic substitution in neutron diffraction was applied to samples that had been densified by 4% via pressurization to 10 GPa in a multianvil device and subsequently recovered to ambient conditions. The results reveal a steady increase with pressure of the average coordination number of Ge from 4.0(2) under ambient conditions to 4.5(2) at 9.3 GPa. With increasing pressure, the first sharp diffraction peak in the measured diffraction patterns at similar to 1.0 A(-1) decreases in intensity and almost disappears while the amplitude of the peaks beyond the nearest neighbor in the measured total pair distribution functions gradually increases. Equation of state measurements show a gradual density increase of 33% from ambient pressure to 8.5 GPa which is in good agreement with molecular dynamics simulations. The results are consistent with the occurrence of two densification processes for glassy GeSe2, namely, a conversion from edge-sharing to corner-sharing tetrahedra and a gradual increase in the average local coordination number with increasing density. (c) 2006 American Institute of Physics. C1 Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA. Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. Univ Littoral, CNRS, UMR 8101, LPCA, F-59140 Dunkerque, France. Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England. SUNY Stony Brook, Dept Geosci, CEMS, Stony Brook, NY 11794 USA. Argonne Natl Lab, Div Sci Mat, Argonne, IL 60439 USA. RP Benmore, CJ (reprint author), Argonne Natl Lab, Intense Pulsed Neutron Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM benmore@anl.gov RI Yarger, Jeff/L-8748-2014; Salmon, Philip/Q-9512-2016; OI Yarger, Jeff/0000-0002-7385-5400; Salmon, Philip/0000-0001-8671-1011; Benmore, Chris/0000-0001-7007-7749 NR 55 TC 51 Z9 51 U1 0 U2 12 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 1 AR 014203 DI 10.1103/PhysRevB.74.014203 PG 10 WC Physics, Condensed Matter SC Physics GA 069DO UT WOS:000239426400040 ER PT J AU Moon, CY Wei, SH AF Moon, Chang-Youn Wei, Su-Huai TI Band gap of Hg chalcogenides: Symmetry-reduction-induced band-gap opening of materials with inverted band structures SO PHYSICAL REVIEW B LA English DT Article ID II-VI SEMICONDUCTORS; OPTICAL-PROPERTIES; CHEMICAL TRENDS; BETA-HGS; INN; METAL; ALLOYS AB We have investigated the band structure of zinc-blende (ZB) Hg chalcogenides using a corrected local density approximation method. We find that the band gaps of HgS, HgSe, and HgTe are 0.30, -0.24, and -0.31 eV, respectively. That is, HgS has a positive band gap, whereas HgSe and HgTe have inverted band structures. The chemical trend of the band gaps is explained by the atomic energy levels and sizes, as well as by the related deformation potentials for these compounds. We also show systematically how the band gap of the inverted band structure can open up when the T-d symmetry of the ZB structure is reduced under strain or in the presence of a surface or interface. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Moon, CY (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. NR 36 TC 39 Z9 39 U1 3 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 4 AR 045205 DI 10.1103/PhysRevB.74.045205 PG 5 WC Physics, Condensed Matter SC Physics GA 069DR UT WOS:000239426800050 ER PT J AU Narvaez, GA Zunger, A AF Narvaez, Gustavo A. Zunger, Alex TI Nominally forbidden transitions in the interband optical spectrum of quantum dots SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE; PSEUDOPOTENTIAL THEORY; EXCITONIC ABSORPTION; INP; APPROXIMATION; MODEL; WELLS AB We calculate the excitonic optical absorption spectra of (In,Ga)As/GaAs self-assembled quantum dots by adopting an atomistic pseudopotential approach to the single-particle problem followed by a configuration-interaction approach to the many-body problem. We find three types of allowed transitions that would be naively expected to be forbidden: (i) transitions that are parity forbidden in simple effective mass models with infinite confining wells (e.g., 1S-2S, 1P-2P) but are possible because of finite band offsets and orbital-mixing effects; (ii) light-hole-to-conduction-band transitions, enabled by the confinement of light-hole states; and (iii) transitions that show an enhanced intensity due to electron-hole configuration mixing with allowed transitions. We compare these predictions with results of eight-band k center dot p calculations as well as recent spectroscopic data. Transitions of types (i) and (ii) explain recently observed satellites of the allowed P-P transitions. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Narvaez, GA (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM g_a_narvaez@hotmail.com; alex_zunger@nrel.gov RI Zunger, Alex/A-6733-2013 NR 38 TC 7 Z9 7 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 4 AR 045316 DI 10.1103/PhysRevB.74.045316 PG 6 WC Physics, Condensed Matter SC Physics GA 069DR UT WOS:000239426800078 ER PT J AU Osorio-Guillen, J Zhao, YJ Barabash, SV Zunger, A AF Osorio-Guillen, Jorge Zhao, Yu-Jun Barabash, Sergey V. Zunger, Alex TI Structural stability of (Ga,Mn)As from first principles: Random alloys, ordered compounds, and superlattices SO PHYSICAL REVIEW B LA English DT Article ID PHASE; HETEROSTRUCTURE; FERROMAGNETISM; FILMS AB We calculate by a combination of density functional theory and mixed-basis cluster expansion the structural stability of ordered and disordered zincblende GaAs-MnAs systems. We find that the ground state of this system is phase separating into GaAs+MnAs, even though the strain energy is negligible. The study of short-period superlattices shows that the least-unstable superlattices are along the (111) orientation whereas the most-unstable orientation is the (201). The formation enthalpy of the random alloy has been calculated; combining it with a mean-field approximation, we obtain the temperature-composition phase diagram showing the miscibility-gap temperature below which the alloy phase separates. The stabilization energy for (100) (Ga1-xMnxAs)(1)/(GaAs)(n) superlattices shows that these superlattices prefer ferromagnetic order over a nonferromagnetic arrangement. Remarkably, the decay of the exchange interactions with superlattice period n is slower for the Mn dilute x=0.5 case than for x=1. This shows that as the system becomes more Mn dilute the range of the exchange interactions increase. This reveals an exceptional property of dilute magnetic semiconductors, namely that the system counter balances dilution of the magnetic ions by extending the range of exchange interactions, hence maintaining ferromagnetism down to small concentrations of a magnetic ion. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Osorio-Guillen, J (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM alex_zunger@nrel.gov RI Osorio-Guillen, Jorge/B-7587-2008; Schaff, William/B-5839-2009; Zhao, Yu-Jun/A-1219-2011; Zunger, Alex/A-6733-2013 OI Osorio-Guillen, Jorge/0000-0002-7384-8999; Zhao, Yu-Jun/0000-0002-6923-1099; NR 32 TC 8 Z9 8 U1 0 U2 8 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 3 AR 035305 DI 10.1103/PhysRevB.74.035305 PG 9 WC Physics, Condensed Matter SC Physics GA 069DQ UT WOS:000239426700070 ER PT J AU Ouyang, ZW Pecharsky, VK Gschneidner, KA Schlagel, DL Lograsso, TA AF Ouyang, Z. W. Pecharsky, V. K. Gschneidner, K. A., Jr. Schlagel, D. L. Lograsso, T. A. TI Magnetic anisotropy and magnetic phase diagram of Gd5Ge4 SO PHYSICAL REVIEW B LA English DT Article ID TRANSITION-METAL; GD-5(SI2GE2); GD-5(SIXGE1-X)(4); MAGNETORESISTANCE; CRYSTALS; SYSTEM; FIELD AB The magnetization of single crystal Gd5Ge4, which in a zero magnetic field orders antiferromagnetically at 128 K, indicates a reversible spin-flop transition when the magnetic field is along the c axis and the absence of similar transformations when the magnetic field vector is perpendicular to the c axis. This anisotropic behavior is due to variation of magnetization energy between the c axis and the a or b axes of the orthorhombic crystal caused by a different alignment of the Gd moments with respect to the magnetic field vector. The anisotropy of the antiferromagnetic state diminishes with the increasing magnetic field and temperature. The critical magnetic field for the antiferromagnetic-ferromagnetic transition is the smallest and the ferromagnetic state is most stable when the magnetic field vector is parallel to the b axis, indicating an easy magnetization direction along this axis. The anisotropy of the magnetic field-induced transformation in Gd5Ge4 is discussed in connection with the coupled magnetic and structural transitions. Anisotropic magnetic phase diagrams along the three major crystallographic axes are constructed. C1 Iowa State Univ, Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Pecharsky, VK (reprint author), Iowa State Univ, Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. EM vitkp@ameslab.gov NR 37 TC 12 Z9 12 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 2 AR 024401 DI 10.1103/PhysRevB.74.024401 PG 11 WC Physics, Condensed Matter SC Physics GA 069DP UT WOS:000239426600042 ER PT J AU Park, JY Ogletree, DF Salmeron, M Ribeiro, RA Canfield, PC Jenks, CJ Thiel, PA AF Park, Jeong Young Ogletree, D. F. Salmeron, M. Ribeiro, R. A. Canfield, P. C. Jenks, C. J. Thiel, P. A. TI Tribological properties of quasicrystals: Effect of aperiodic versus periodic surface order SO PHYSICAL REVIEW B LA English DT Article ID ATOMIC-FORCE MICROSCOPY; FRICTION ANISOTROPY; TUNNELING-MICROSCOPY; ADHESION PROPERTIES; ULTRAHIGH-VACUUM; CONTACT; APPROXIMANTS; CALIBRATION; MONOLAYER; INTERFACE AB We investigated the nanoscale tribological properties of a decagonal quasicrystal using a combination of atomic force microscopy and scanning tunneling microscopy in ultrahigh vacuum. This combination permitted a variety of in situ measurements, including atomic-scale structure, friction and adhesion force, tip-sample current, and topography. We found that thiol-passivated tips can be used for reproducible studies of the tip-quasicrystal contact while nonpassivated probes adhere irreversibly to the clean quasicrystalline surface causing permanent modifications. The most remarkable results were obtained on the twofold surface of the Al-Ni-Co decagonal quasicrystal where atoms are arranged periodically along the tenfold axis and aperiodically in the perpendicular direction. Strong friction anisotropy was observed on this surface, with high friction along the periodic direction and low friction in the aperiodic direction. C1 Univ Calif Berkeley, Div Sci Mat, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Salmeron, M (reprint author), Univ Calif Berkeley, Div Sci Mat, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RI Park, Jeong Young/A-2999-2008; Ribeiro, Raquel/B-9041-2012; Canfield, Paul/H-2698-2014; Ogletree, D Frank/D-9833-2016 OI Ribeiro, Raquel/0000-0001-6075-1701; Ogletree, D Frank/0000-0002-8159-0182 NR 62 TC 34 Z9 34 U1 3 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 2 AR 024203 DI 10.1103/PhysRevB.74.024203 PG 10 WC Physics, Condensed Matter SC Physics GA 069DP UT WOS:000239426600033 ER PT J AU Ross, M Rogers, F AF Ross, Marvin Rogers, Forrest TI Polymerization, shock cooling, and the high-pressure phase diagram of nitrogen SO PHYSICAL REVIEW B LA English DT Article ID EQUATION-OF-STATE; ULTRAHIGH PRESSURE; LIQUID-NITROGEN; FLUID NITROGEN; DISSOCIATION; TRANSITION; GPA; TRANSFORMATION; PHOSPHORUS; STABILITY AB The trajectory of states passed through by the nitrogen Hugoniot has been followed from the normal molecular liquid up to the dense plasma state near 10(6) GPa. A phase diagram is proposed that is very similar to one reported for phosphorous. The nitrogen phase diagram connects the recently observed molecular to cg-N polymer phase transition in the solid at 110 GPa, to a liquid-polymer phase line obtained from of shock cooling measurements. At much higher pressures, calculations of the Hugoniot predict that ionization of the tightly bound inner L and K electron shells lead to compression maxima of approximately 5-6 fold near 1000 GPa (T similar to 3.5 10(5) K) and 40 000 GPa (T similar to 2.3 10(6) K), respectively. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Ross, M (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. NR 37 TC 24 Z9 25 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 2 AR 024103 DI 10.1103/PhysRevB.74.024103 PG 6 WC Physics, Condensed Matter SC Physics GA 069DP UT WOS:000239426600017 ER PT J AU Roy, SB Chattopadhyay, MK Chaddah, P Moore, JD Perkins, GK Cohen, LF Gschneidner, KA Pecharsky, VK AF Roy, S. B. Chattopadhyay, M. K. Chaddah, P. Moore, J. D. Perkins, G. K. Cohen, L. F. Gschneidner, K. A., Jr. Pecharsky, V. K. TI Evidence of a magnetic glass state in the magnetocaloric material Gd5Ge4 SO PHYSICAL REVIEW B LA English DT Article ID PHASE-TRANSITION; MANGANITES; GD-5(SI2GE2); SEPARATION; BEHAVIOR; FIELD AB We demonstrate the kinetic arrest of the first-order phase transition from the high-temperature antiferromagnetic state to the ferromagnetic ground state in zero and low applied magnetic fields, occurring within the experimental time scale in the magnetocaloric material Gd5Ge4. A magnetization study clearly reveals glasslike dynamics in the low-temperature antiferromagnetically ordered state. The observation of a glasslike magnetic state is unusual, but we expect that a similar phenomenon should exist in other magnetic systems. C1 Raja Ramanna Ctr Adv Technol, Magnet & Superconducting Mat Sect, Indore 452013, India. UGC DAE Consortium Sci Res, Indore 452017, India. Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England. Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Roy, SB (reprint author), Raja Ramanna Ctr Adv Technol, Magnet & Superconducting Mat Sect, Indore 452013, India. NR 37 TC 83 Z9 85 U1 1 U2 13 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 1 AR 012403 DI 10.1103/PhysRevB.74.012403 PG 4 WC Physics, Condensed Matter SC Physics GA 069DO UT WOS:000239426400010 ER PT J AU Shim, SH Rekhi, S Martin, MC Jeanloz, R AF Shim, S. -H. Rekhi, S. Martin, M. C. Jeanloz, R. TI Vibrational spectroscopy and X-ray diffraction of Cd(OH)(2) to 28 GPa at 300 K SO PHYSICAL REVIEW B LA English DT Article ID HYDROUS WADSLEYITE BETA-MG2SIO4; PRESSURE-INDUCED AMORPHIZATION; NEUTRON-DIFFRACTION; STRUCTURAL REFINEMENT; COMPRESSION MECHANISM; STATIC COMPRESSION; POWDER DIFFRACTION; RAMAN-SPECTRA; BRUCITE; TEMPERATURE AB We report Raman and infrared absorption spectroscopy along with x-ray diffraction for brucite-type beta-Cd(OH)(2) to 28 GPa at 300 K. The OH-stretching modes soften with pressure and disappear at 21 GPa with their widths increasing rapidly above 5 GPa, consistent with a gradual disordering of the H sublattice at 5-20 GPa similar to that previously observed for Co(OH)(2). Asymmetry in the peak shapes of the OH-stretching modes suggests the existence of diverse disordered sites for H atoms in Cd(OH)(2) under pressure. Above 15 GPa, the A(1g)(T) lattice mode shows nonlinear behavior and softens to 21 GPa, at which pressure significant changes are observed: some Raman modes appear, two Raman-active lattice modes and the OH-stretching modes of the low-pressure phase disappear, and the positions of some x-ray diffraction lines change abruptly with the appearance of weak diffraction features. These observations suggest that amorphization of the H sublattice is accompanied by a crystalline-to-crystalline transition at 21 GPa in Cd(OH)(2), which has not been previously observed in the brucite-type hydroxides. The Raman spectra of the high-pressure phase of Cd(OH)(2) is similar to those of the high-pressure phase of single-crystal Ca(OH)(2) of which structure has been tentatively assigned to the Sr(OH)(2) type. C1 MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source Div, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Shim, SH (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM sangshim@mit.edu OI Shim, Sang-Heon/0000-0001-5203-6038 NR 37 TC 11 Z9 11 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 2 AR 024107 DI 10.1103/PhysRevB.74.024107 PG 10 WC Physics, Condensed Matter SC Physics GA 069DP UT WOS:000239426600021 ER PT J AU Smerdon, JA Ledieu, J McGrath, R Noakes, TCQ Bailey, P Draxler, M McConville, CF Lograsso, TA Ross, AR AF Smerdon, J. A. Ledieu, J. McGrath, R. Noakes, T. C. Q. Bailey, P. Draxler, M. McConville, C. F. Lograsso, T. A. Ross, A. R. TI Characterization of aperiodic and periodic thin Cu films formed on the five-fold surface of i-Al70Pd21Mn9 using medium-energy ion scattering spectroscopy SO PHYSICAL REVIEW B LA English DT Article ID FIVEFOLD SURFACE; QUASI-CRYSTALS; AL70PD21MN9; NUCLEATION; ADSORPTION AB The elucidation of the local atomic structure of a pseudomorphic film of Cu deposited on the five-fold surface of i-Al70Pd21Mn9 using medium-energy ion scattering spectroscopy is reported. Monte Carlo calculations, using the < emph type="5"> VEGAS code, have been utilized to simulate the blocking of 100 keV He+ ions scattered from the overlayer. The coordinates of the Cu atoms in the overlayer derived from this procedure are consistent with a structure occurring in five rotational domains. Each domain consists of nanoscale strips of fcc Cu(100) with the < 110 > azimuth aligned along the five-fold directions of the quasicrystalline substrate. The strips are arranged according to a one-dimensional Fibonacci sequence with long and short widths related by the golden mean tau. Upon annealing the film transforms to an alloyed structure composed of five orientational domains of fcc material with the (110) axis perpendicular to the surface. C1 Univ Liverpool, Surface Sci Res Ctr, Liverpool, Merseyside, England. CCLRC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Smerdon, JA (reprint author), Univ Liverpool, Surface Sci Res Ctr, Liverpool, Merseyside, England. RI McGrath, Ronan/A-1568-2009; Ledieu, Julian/F-1430-2010 OI McGrath, Ronan/0000-0002-9880-5741; NR 22 TC 16 Z9 16 U1 1 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 3 AR 035429 DI 10.1103/PhysRevB.74.035429 PG 7 WC Physics, Condensed Matter SC Physics GA 069DQ UT WOS:000239426700136 ER PT J AU Tanimura, K Inami, E Kanasaki, J Hess, WP AF Tanimura, K. Inami, E. Kanasaki, J. Hess, Wayne P. TI Two-hole localization mechanism for electronic bond rupture of surface atoms by laser-induced valence excitation of semiconductors SO PHYSICAL REVIEW B LA English DT Article ID RESOLVED PHOTOELECTRON-SPECTROSCOPY; ULTRAFAST CARRIER DYNAMICS; SYNCHROTRON RADIATION; SI ATOMS; INP(110); SI(111)-(7X7); GAAS(110); PLASMAS; SI(100); SILICON AB We examine the mechanism of electronic bond rupture on semiconductor surfaces induced by laser-generated nonequilibrium three-dimensional valence excitation associated with strong carrier diffusion. For such excited systems, the density of subsurface valence holes that contribute to two-hole localization on the surface is characterized by quasi-Fermi-levels and effective temperature. The rate of two-hole localization, formulated for equilibrated two-dimensional electronic systems by Sumi [Surf. Sci. 248, 382 (1991)], is reformulated, and a simple analytical expression is yielded for moderate excitation densities. The resulting theoretical model has been successfully applied in the analysis of recent laser-induced atomic desorption experiments on InP and Si surfaces. C1 Osaka Univ, Inst Sci & Ind Res, Osaka 5670047, Japan. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Tanimura, K (reprint author), Osaka Univ, Inst Sci & Ind Res, 8-1 Mihogaoka, Osaka 5670047, Japan. RI Kanasaki, Jun'ichi/H-2556-2014 OI Kanasaki, Jun'ichi/0000-0001-5888-6498 NR 39 TC 7 Z9 7 U1 1 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 3 AR 035337 DI 10.1103/PhysRevB.74.035337 PG 8 WC Physics, Condensed Matter SC Physics GA 069DQ UT WOS:000239426700102 ER PT J AU Trimarchi, G Graf, P Zunger, A AF Trimarchi, G. Graf, P. Zunger, A. TI Exploring the configurational space of binary alloys: Different sampling for different cell shapes SO PHYSICAL REVIEW B LA English DT Article ID SHORT-RANGE ORDER; SEMICONDUCTOR ALLOYS; STRUCTURAL-PROPERTIES; ELECTRONIC-STRUCTURE; METAL AB In many areas of alloy theory, such as determination of the T=0 ground state structures or calculation of finite-T alloy thermodynamics, one needs to enumerate and evaluate the similar to 2(N) configurations sigma created by different substitutions of atoms A and B on the N sites of a unit cell. These configurations consist of M-ICS "inequivalent cell shapes" (ICS's), each having M-SSS "same-shape structures" (SSS's). Exhaustive evaluation approaches attempt to compute the physical properties P(sigma) of all SSS's belonging to all ICS's. "Inverse band structure" approaches sample the physical properties of all SSS's belonging to a single inequivalent cell shape. We show that the number M-ICS of ICS's rises only as BN alpha, whereas the total number of SSS's scales as Ae(gamma N). Thus, one can enumerate the former (i.e., calculate all) and only sample the latter (i.e., calculate but a few). Indeed, we show here that it is possible to span the full configurational space efficiently by sampling all SSS's (using a genetic algorithm) and repeating this by explicit evaluation for all ICS's. This is demonstrated for the problem of ground state search of a generalized cluster expansion for the Au-Pd and Mo-Ta alloys constructed from first-principles total-energy calculations. This approach enables the search of much larger spaces than hitherto possible. This is illustrated here for the 2(32) alloy configurations relative to the previously possible 2(20). (c) 2006 American Institute of Physics. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Trimarchi, G (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM alex_zunger@nrel.gov RI Zunger, Alex/A-6733-2013; Trimarchi, Giancarlo/A-8225-2010 OI Trimarchi, Giancarlo/0000-0002-0365-3221 NR 26 TC 11 Z9 11 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 1 AR 014204 DI 10.1103/PhysRevB.74.014204 PG 8 WC Physics, Condensed Matter SC Physics GA 069DO UT WOS:000239426400041 ER PT J AU Vescovo, E AF Vescovo, E. TI Reply to "Comment on 'Oxidation of the Fe(110) surface: An Fe3O4(111)/Fe(110) bilayer'" SO PHYSICAL REVIEW B LA English DT Editorial Material AB We briefly reconsider the supposed controversy between our results [H.-J. Kim, J.-H. Park, and E. Vescovo, Phys. Rev. B 61, 15284 (2000); 61, 15288 (2000)] and the ones by Koike's group [K. Koike and T. Furukawa, Phys. Rev. Lett. 77, 3921 (1996); K. Mori, M. Yamazaky, T. Hiraki, H. Matsuyama, and K. Koike, Phys. Rev. B 72, 014418 (2005)] and find neither any need to modify our original conclusions [namely that the oxide formed by heavy oxidation of the Fe(110) surface is Fe3O4] nor any real discrepancy between the data from the two laboratories. The results presented in the comment are not in contradiction with our previous findings because they were taken under different experimental conditions. C1 Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Vescovo, E (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. NR 4 TC 2 Z9 2 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 2 AR 026406 DI 10.1103/PhysRevB.74.026406 PG 3 WC Physics, Condensed Matter SC Physics GA 069DP UT WOS:000239426600106 ER PT J AU Vo, T Williamson, AJ Galli, G AF Vo, T. Williamson, A. J. Galli, G. TI First principles simulations of the structural and electronic properties of silicon nanowires SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM-WELL STRUCTURES; OPTICAL-PROPERTIES; THERMOELECTRIC FIGURE; CONTROLLED GROWTH; BUILDING-BLOCKS; WIRES; MERIT; CONFINEMENT; FABRICATION; DEVICE AB We report the results of first principles studies of the structural and electronic properties of hydrogen-passivated silicon nanowires with [001], [011], and [111] growth directions and diameters ranging from 1 to 3 nm. We show that the growth direction, diameter, and surface structure all have a significant effect on the structural stability, electronic band gap, band structure, and band-edge effective masses of the nanowires. The band gap is found to decrease with increasing diameter and to be further reduced by surface reconstruction. While the electron and hole effective masses are found to depend on NW size for [001] and [111] NWs, they are almost independent of size for [011] NWs. Our results suggest the possibility of engineering the properties of nanowires by manipulating their diameter, growth direction, and surface structure. Finally, we use FEFF calculations to predict the extended x-ray absorption fine structure spectra produced by the relaxed atomic structure of the NWs and show that these spectra can serve as a tool for detecting surface reconstructions on NWs. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Vo, T (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM williamson10@llnl.gov NR 48 TC 136 Z9 142 U1 2 U2 36 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 4 AR 045116 DI 10.1103/PhysRevB.74.045116 PG 12 WC Physics, Condensed Matter SC Physics GA 069DR UT WOS:000239426800033 ER PT J AU Zhang, Y Mascarenhas, A Wang, LW AF Zhang, Yong Mascarenhas, A. Wang, L. -W. TI Systematic approach to distinguishing a perturbed host state from an impurity state in a supercell calculation for a doped semiconductor: Using GaP : N as an example SO PHYSICAL REVIEW B LA English DT Article ID III-V-SEMICONDUCTORS; GALLIUM-PHOSPHIDE; NITROGEN PAIRS; BAND; CLUSTERS; EXCITONS; CENTERS; ALLOYS AB We illustrate a systematic approach for distinguishing a perturbed host state from an impurity state in a supercell calculation for a doped semiconductor, using GaP:N as an example and employing a charge-patching technique based on a first-principles pseudopotential method. For GaP:N, we (1) identify an impuritylike state that is resonant with the conduction band minimum in the dilute doping limit, which provides a qualitative explanation for the peculiar behavior of the A(x) transition; (2) provide an alternative explanation of a recent finding of the existence of multiple impurity states resonant within the conduction band up to the energy of the Gamma point; and (3) show that there exists no impurity state caused by a valley-orbit interaction within a few hundred meV proximity of the N bound state, in contrast to the decades long speculation of the existence of such a state. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Zhang, Y (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM yong_zhang@nrel.gov NR 26 TC 10 Z9 10 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 4 AR 041201 DI 10.1103/PhysRevB.74.041201 PG 4 WC Physics, Condensed Matter SC Physics GA 069DR UT WOS:000239426800001 ER PT J AU Zhang, Z Louca, D Visinoiu, A Lee, SH Thompson, JD Proffen, T Llobet, A Qiu, Y Park, S Ueda, Y AF Zhang, Z. Louca, Despina Visinoiu, A. Lee, S. -H. Thompson, J. D. Proffen, T. Llobet, A. Qiu, Y. Park, S. Ueda, Y. TI Local order and frustration in the geometrically frustrated spinels Cd1-xZnxV2O4 SO PHYSICAL REVIEW B LA English DT Article ID ANTIFERROMAGNET AB Orbitally degenerate frustrated spinels, Cd1-xZnxV2O4, with 0 <= x <= 1 were investigated using elastic and inelastic neutron scattering techniques. In the end members with x=0 and 1, a tetragonal distortion (c < a) has been observed upon cooling mediated by a Jahn-Teller distortion that gives rise to orbital ordering. This leads to the formation of spin chains in the ab-plane that upon further cooling, Neel ordering is established due to interchain coupling. In the doped compositions, however, the bulk susceptibility, chi, shows that the macroscopic transitions to cooperative orbital ordering and long-range antiferromagnetic ordering are suppressed. However, the inelastic neutron scattering measurements suggest that the dynamic spin correlations at low temperatures have similar one-dimensional characteristics as those observed in the pure samples. The pair density function analysis of neutron diffraction data shows that the local atomic structure does not become random with doping but rather consists of two distinct environments corresponding to ZnV2O4 and CdV2O4. This indicates that short-range orbital ordering is present which leads to the one-dimensional character of the spin correlations even in the low temperature cubic phase of the doped compositions. (c) 2006 American Institute of Physics. C1 Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Natl Inst Stand & Technol, NCNR, Gaithersburg, MD 20899 USA. Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. Korea Atom Energy Res Inst, HANARO Ctr, Taejon, South Korea. Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan. RP Zhang, Z (reprint author), Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. RI Llobet, Anna/B-1672-2010; Lujan Center, LANL/G-4896-2012; Proffen, Thomas/B-3585-2009 OI Proffen, Thomas/0000-0002-1408-6031 NR 21 TC 29 Z9 29 U1 0 U2 13 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2006 VL 74 IS 1 AR 014108 DI 10.1103/PhysRevB.74.014108 PG 9 WC Physics, Condensed Matter SC Physics GA 069DO UT WOS:000239426400032 ER PT J AU Al-Khatib, A Singh, AK Hubel, H Bringel, P Burger, A Domscheit, J Neusser-Neffgen, A Schoenwasser, G Hagemann, GB Hansen, CR Herskind, B Sletten, G Wilson, JN Timar, J Algora, A Dombradi, Z Gal, J Kalinka, G Molnar, J Nyako, BM Sohler, D Zolnai, L Clark, RM Cromaz, M Fallon, P Lee, IY Macchiavelli, AO Ward, D Amro, H Ma, WC Kmiecik, M Maj, A Styczen, J Zuber, K Hauschild, K Korichi, A Lopez-Martens, A Roccaz, J Siem, S Hannachi, F Scheurer, JN Bednarczyk, P Byrski, T Curien, D Dorvaux, O Duchene, G Gall, B Khalfallah, F Piqueras, I Robin, J Gorgen, A Juhasz, K Patel, SB Evans, AO Rainovski, G Benzoni, G Bracco, A Camera, F Leoni, S Mason, P Million, B Paleni, A Sacchi, R Wieland, O Petrache, CM Petrache, D La Rana, G Moro, R De Angelis, G Lisle, JC Cederwall, B Lagergren, K Lieder, RM Podsvirova, E Gast, W Jager, H Redon, N AF Al-Khatib, A. Singh, A. K. Hubel, H. Bringel, P. Burger, A. Domscheit, J. Neusser-Neffgen, A. Schoenwasser, G. Hagemann, G. B. Hansen, C. Ronn Herskind, B. Sletten, G. Wilson, J. N. Timar, J. Algora, A. Dombradi, Zs. Gal, J. Kalinka, G. Molnar, J. Nyako, B. M. Sohler, D. Zolnai, L. Clark, R. M. Cromaz, M. Fallon, P. Lee, I. Y. Macchiavelli, A. O. Ward, D. Amro, H. Ma, W. C. Kmiecik, M. Maj, A. Styczen, J. Zuber, K. Hauschild, K. Korichi, A. Lopez-Martens, A. Roccaz, J. Siem, S. Hannachi, F. Scheurer, J. N. Bednarczyk, P. Byrski, Th. Curien, D. Dorvaux, O. Duchene, G. Gall, B. Khalfallah, F. Piqueras, I. Robin, J. Gorgen, A. Juhasz, K. Patel, S. B. Evans, A. O. Rainovski, G. Benzoni, G. Bracco, A. Camera, F. Leoni, S. Mason, P. Million, B. Paleni, A. Sacchi, R. Wieland, O. Petrache, C. M. Petrache, D. La Rana, G. Moro, R. De Angelis, G. Lisle, J. C. Cederwall, B. Lagergren, K. Lieder, R. M. Podsvirova, E. Gast, W. Jager, H. Redon, N. TI Competition between collective and noncollective excitation modes at high spin in Ba-124 SO PHYSICAL REVIEW C LA English DT Article ID GAMMA-RAY SPECTROSCOPY; BA-CE-REGION; ROTATIONAL BANDS; MASS REGION; TERMINATING BANDS; XE-NUCLEI; STATES; ALIGNMENTS; HYPERDEFORMATION; SPECTROMETER AB High-spin states in Ba-124 were investigated in two experiments using the Ni-64(Ni-64, 4n)Ba-124 reaction at three different beam energies. In-beam gamma-ray coincidences were measured with the Euroball and Gammasphere detector arrays. In the experiment with Euroball, the CsI detector array Diamant was employed to discriminate against charged-particle channels. Six new rotational bands were observed in Ba-124, and previously known bands were extended to higher spins. One of the bands shows a transition from collective to noncollective behavior at high spins. Configuration assignments are suggested on the basis of comparison with cranked shell model and cranked Nilsson-Strutinsky calculations. C1 Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany. Niels Bohr Inst, DK-2100 Copenhagen, Denmark. Hungarian Acad Sci, Inst Nucl Res, H-4001 Debrecen, Hungary. Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. Mississippi State Univ, Dept Phys, Mississippi State, MS 39762 USA. Polish Acad Sci, H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. Ctr Spectrometrie Nucl & Spectrometrie Masse, IN2P3, CNRS, F-91405 Orsay, France. Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France. CNRS, IN2P3, Inst Rech Subatom, F-67037 Strasbourg, France. CEA Saclay, DAPNIA SPhN, F-91191 Gif Sur Yvette, France. Debrecen Univ, Fac Informat, Dept Informat Technol, H-4032 Debrecen, Hungary. Univ Mumbai, Dept Phys, Bombay, Maharashtra, India. Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. Ist Nazl Fis Nucl, Sez Perugia, I-62032 Camerino, Italy. Complesso Univ Monte S Angelo, Dept Phys Sci, I-80126 Naples, Italy. Complesso Univ Monte S Angelo, Ist Nazl Fis Nucl, I-80126 Naples, Italy. Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden. Inst Kernphys, Forschungszentrum, D-52425 Julich, Germany. Univ Lyon 1, CNRS, IPN Lyon, IN2P3, F-69622 Villeurbanne, France. RP Al-Khatib, A (reprint author), Univ Bonn, Helmholtz Inst Strahlen & Kernphys, Nussallee 14-16, D-53115 Bonn, Germany. RI Hauschild, Karl/A-6726-2009; Wieland, Oliver/G-1784-2011; Dombradi, Zsolt/B-3743-2012; Petrache, Costel/E-9867-2012; CURIEN, Dominique/B-6718-2013; Cederwall, Bo/M-3337-2014; Algora, Alejandro/E-2960-2015; Rainovski, Georgi/A-3450-2008 OI Petrache, Costel/0000-0001-8419-1390; Cederwall, Bo/0000-0003-1771-2656; Algora, Alejandro/0000-0002-5199-1794; Rainovski, Georgi/0000-0002-1729-0249 NR 49 TC 15 Z9 15 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2006 VL 74 IS 1 AR 014305 DI 10.1103/PhysRevC.74.014305 PG 18 WC Physics, Nuclear SC Physics GA 070HF UT WOS:000239511600013 ER PT J AU Back, BB Baker, MD Ballintijn, M Barton, DS Betts, RR Bickley, AA Bindel, R Budzanowski, A Busza, W Carroll, A Chai, Z Decowski, MP Garcia, E Gburek, T George, N Gulbrandsen, K Gushue, S Halliwell, C Hamblen, J Hauer, M Heintzelman, GA Henderson, C Hofman, DJ Hollis, RS Holynski, R Holzman, B Iordanova, A Johnson, E Kane, JL Katzy, J Khan, N Kucewicz, W Kulinich, P Kuo, CM Lin, WT Manly, S McLeod, D Mignerey, AC Noucier, R Olszewski, A Pak, R Park, IC Pernegger, H Reed, C Remsberg, LP Reuter, M Roland, C Roland, G Rosenberg, L Sagerer, J Sarin, P Sawicki, P Seals, H Sedykh, I Skulski, W Smith, CE Stankiewicz, MA Steinberg, P Stephans, GSF Sukhanov, A Tang, JL Tonjes, MB Trzupek, A Vale, C van Nieuwenhuizen, GJ Vaurynovich, SS Verdier, R Veres, GI Wenger, E Wolfs, FLH Wosiek, B Wozniak, K Wuosmaa, AH Wyslouch, B AF Back, B. B. Baker, M. D. Ballintijn, M. Barton, D. S. Betts, R. R. Bickley, A. A. Bindel, R. Budzanowski, A. Busza, W. Carroll, A. Chai, Z. Decowski, M. P. Garcia, E. Gburek, T. George, N. Gulbrandsen, K. Gushue, S. Halliwell, C. Hamblen, J. Hauer, M. Heintzelman, G. A. Henderson, C. Hofman, D. J. Hollis, R. S. Holynski, R. Holzman, B. Iordanova, A. Johnson, E. Kane, J. L. Katzy, J. Khan, N. Kucewicz, W. Kulinich, P. Kuo, C. M. Lin, W. T. Manly, S. McLeod, D. Mignerey, A. C. Noucier, R. Olszewski, A. Pak, R. Park, I. C. Pernegger, H. Reed, C. Remsberg, L. P. Reuter, M. Roland, C. Roland, G. Rosenberg, L. Sagerer, J. Sarin, P. Sawicki, P. Seals, H. Sedykh, I. Skulski, W. Smith, C. E. Stankiewicz, M. A. Steinberg, P. Stephans, G. S. F. Sukhanov, A. Tang, J. -L. Tonjes, M. B. Trzupek, A. Vale, C. van Nieuwenhuizen, G. J. Vaurynovich, S. S. Verdier, R. Veres, G. I. Wenger, E. Wolfs, F. L. H. Wosiek, B. Wozniak, K. Wuosmaa, A. H. Wyslouch, B. CA PHOBOS Collaboration TI Forward-backward multiplicity correlations in root s(NN)=200 GeVAu+Au collisions SO PHYSICAL REVIEW C LA English DT Article AB Forward-backward correlations of charged-particle multiplicities in symmetric bins in pseudorapidity are studied to gain insight into the underlying correlation structure of particle production in Au+Au collisions. The PHOBOS detector is used to measure integrated multiplicities in bins centered at eta, defined within vertical bar eta vertical bar < 3, and covering intervals Delta eta. The variance sigma(2)(C) of a suitably defined forward-backward asymmetry variable C is calculated as a function of eta,Delta eta, and centrality. It is found to be sensitive to short-range correlations, and the concept of "clustering" is used to interpret comparisons to phenomenological models. C1 Argonne Natl Lab, Argonne, IL 60439 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Inst Nucl Phys PAN, Krakow, Poland. MIT, Cambridge, MA 02139 USA. Natl Cent Univ, Chungli, Taiwan. Univ Illinois, Chicago, IL 60607 USA. Univ Maryland, College Pk, MD 20742 USA. Univ Rochester, Rochester, NY 14627 USA. RP Back, BB (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Decowski, Patrick/A-4341-2011; Mignerey, Alice/D-6623-2011; OI Holzman, Burt/0000-0001-5235-6314 NR 11 TC 11 Z9 11 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2006 VL 74 IS 1 AR 011901 DI 10.1103/PhysRevC.74.011901 PG 5 WC Physics, Nuclear SC Physics GA 070HF UT WOS:000239511600003 ER PT J AU Bonneau, L AF Bonneau, L. TI Fission modes of Fm-256 and Fm-258 in a microscopic approach SO PHYSICAL REVIEW C LA English DT Article ID HARTREE-FOCK CALCULATIONS; HEAVIEST ELEMENTS; SYMMETRIC FISSION; FERMIUM ISOTOPES; NUCLEAR-FISSION; BIMODAL FISSION; HEAVY-NUCLEI; MASS; ENERGY; BARRIERS AB A static microscopic study of potential-energy surfaces within the Skyrme-Hartree-Fock-plus-BCS model is carried out for the Fm-256 and Fm-258 isotopes with the goal of deducing some properties of spontaneous fission. The calculated fission modes are found to be in agreement with the experimentally observed asymmetric-to-symmetric transition in the fragment-mass distributions and with the high- and low-total-kinetic-energy modes experimentally observed in Fm-258. Most of the results are similar to those obtained in macroscopic-microscopic models as well as in recent Hartree-Fock-Bogolyubov calculations with the Gogny interaction, with a few differences in their interpretations. In particular an alternative explanation is proposed for the low-energy fission mode of Fm-258. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Bonneau, L (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. NR 46 TC 28 Z9 28 U1 1 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2006 VL 74 IS 1 AR 014301 DI 10.1103/PhysRevC.74.014301 PG 12 WC Physics, Nuclear SC Physics GA 070HF UT WOS:000239511600009 ER PT J AU Bozek, P Dean, DJ Muther, H AF Bozek, P. Dean, D. J. Muether, H. TI Correlations and effective interactions in nuclear matter SO PHYSICAL REVIEW C LA English DT Article ID FOLDED-DIAGRAM EXPANSION; MODEL-OPERATOR APPROACH; DRESSED NUCLEONS; SYSTEMS; CONSTRUCTION; POTENTIALS; FORCES; ENERGY; STATE AB We performed self-consistent Green's function calculations for symmetric nuclear matter using realistic nucleon-nucleon (NN) interactions and effective low-momentum interactions (Vlow-k), which are derived from such realistic NN interactions. We compare the spectral distributions resulting from such calculations. We also introduce a density-dependent effective low-momentum interaction that accounts for the dispersive effects in the single-particle propagator in the medium. C1 Inst Nucl Phys, PL-31342 Krakow, Poland. Rzeszow Univ, Inst Phys, PL-35959 Rzeszow, Poland. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Univ Tubingen, Inst Theoret Phys, D-72076 Tubingen, Germany. RP Bozek, P (reprint author), Inst Nucl Phys, Ul Radzikowskiego 152, PL-31342 Krakow, Poland. EM piotr.bozek@ifj.edu.pl; deandj@ornl.gov; herbert.muether@uni-tuebingen.de RI Muther, Herbert/B-2829-2011; Bozek, Piotr/A-5031-2012; OI Bozek, Piotr/0000-0001-6050-4380; Dean, David/0000-0002-5688-703X NR 47 TC 9 Z9 9 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2006 VL 74 IS 1 AR 014303 DI 10.1103/PhysRevC.74.014303 PG 8 WC Physics, Nuclear SC Physics GA 070HF UT WOS:000239511600011 ER PT J AU Chae, KY Bardayan, DW Blackmon, JC Gregory, D Guidry, MW Johnson, MS Kozub, RL Livesay, RJ Ma, Z Nesaraja, CD Pain, SD Paulauskas, S Porter-Peden, M Shriner, JF Smith, N Smith, MS Thomas, JS AF Chae, K. Y. Bardayan, D. W. Blackmon, J. C. Gregory, D. Guidry, M. W. Johnson, M. S. Kozub, R. L. Livesay, R. J. Ma, Z. Nesaraja, C. D. Pain, S. D. Paulauskas, S. Porter-Peden, M. Shriner, J. F., Jr. Smith, N. Smith, M. S. Thomas, J. S. TI First experimental constraints on the interference of 3/2(+) resonances in the F-18(p,alpha)O-15 reaction SO PHYSICAL REVIEW C LA English DT Article ID GAMMA-RAY EMISSION; REACTION-RATES; NUCLEOSYNTHESIS; NOVAE AB The interference effects among J(pi)=3/2(+) resonances in the F-18+p system have not been previously measured. R-matrix calculations show that the cross sections above the E-c.m.=665 keV resonance are sensitive to the interference between the E-c.m.=8, 38, and 665 keV resonances. An excitation function for the H-1(F-18,alpha)O-15 reaction has been measured in the energy range of E-c.m.=663-877 keV using radioactive F-18 beams at the Holifield Radioactive Ion Beam Facility (HRIBF). By comparing the observed cross sections with the R-matrix calculations, we provide the first experimental constraints on the interference. Upper limits on proton widths (Gamma(p)) of the E-c.m.=827 and 842 keV resonances have been set as well. C1 Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Tennessee Technol Univ, Dept Phys, Cookeville, TN 38505 USA. Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Chae, KY (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Pain, Steven/E-1188-2011 OI Pain, Steven/0000-0003-3081-688X NR 17 TC 26 Z9 26 U1 0 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2006 VL 74 IS 1 AR 012801 DI 10.1103/PhysRevC.74.012801 PG 5 WC Physics, Nuclear SC Physics GA 070HF UT WOS:000239511600004 ER PT J AU Goodin, C Fong, D Hwang, JK Ramayya, AV Hamilton, JH Li, K Luo, YX Rasmussen, JO Wu, SC Stoyer, MA Ginter, TN Zhu, SJ Donangelo, R Ter-Akopian, GM Daniel, AV Popeko, GS Rodin, AM Fomichev, AS AF Goodin, C. Fong, D. Hwang, J. K. Ramayya, A. V. Hamilton, J. H. Li, K. Luo, Y. X. Rasmussen, J. O. Wu, S. C. Stoyer, M. A. Ginter, T. N. Zhu, S. J. Donangelo, R. Ter-Akopian, G. M. Daniel, A. V. Popeko, G. S. Rodin, A. M. Fomichev, A. S. TI New results for the intensity of bimodal fission in barium channels of the spontaneous fission of Cf-252 SO PHYSICAL REVIEW C LA English DT Article ID COINCIDENCE DATA; FRAGMENT PAIRS; YIELDS AB Triple coincidence data from the fission of Cf-252 were used to deduce the intensity of the proposed "hot" mode in barium channels. gamma-gamma-gamma and alpha-gamma-gamma fission data were analyzed to find the neutron multiplicity distribution for several binary and ternary charge splits. The binary channels Xe-Ru and Ba-Mo were analyzed, as well as the Ba-alpha-Zr, Mo-alpha-Xe, and Te-alpha-Ru ternary channels. An improved method of analysis was used to avoid many of the complexities associated with fission spectra. With this method, we were unable to confirm the second mode in the either the Ba-Mo or Ba-alpha-Zr splits. C1 Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. Joint Inst Heavy Ion Res, Oak Ridge, TN 37830 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. Tsing Hua Univ, Dept Phys, Beijing 100084, Peoples R China. JINR, Flerov Lab Nucl React, Dubna, Russia. RP Goodin, C (reprint author), Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. NR 12 TC 4 Z9 5 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2006 VL 74 IS 1 AR 017309 DI 10.1103/PhysRevC.74.017309 PG 4 WC Physics, Nuclear SC Physics GA 070HF UT WOS:000239511600066 ER PT J AU Hwang, JK Ramayya, AV Hamilton, JH Rasmussen, JO Luo, YX Fong, D Li, K Goodin, C Zhu, SJ Wu, SC Stoyer, MA Donangelo, R Zhu, XR Sagawa, H AF Hwang, J. K. Ramayya, A. V. Hamilton, J. H. Rasmussen, J. O. Luo, Y. X. Fong, D. Li, K. Goodin, C. Zhu, S. J. Wu, S. C. Stoyer, M. A. Donangelo, R. Zhu, X. -R. Sagawa, H. TI Identification of high spin states in Zr-100 SO PHYSICAL REVIEW C LA English DT Article ID NUCLEI AB Eight new high spin states and 23 new gamma transitions have been identified in Zr-100 from studies of Cf-252 spontaneous fission with Gammasphere. A near-spherical excited band in Zr-100 based on the 331.1 keV 0(+) state is extended from 4(+) up to 12(+). A Delta I=1 band with band-head energy of 2316.1 keV is extended. C1 Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Tsing Hua Univ, Dept Phys, Beijing 100084, Peoples R China. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Fed Rio de Janeiro, Rio De Janeiro, Brazil. Univ Aizu, Ctr Math Sci, Fukushima 9658560, Japan. Xiamen Univ, Dept Phys, Xiamen 361005, Peoples R China. RP Hwang, JK (reprint author), Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. NR 16 TC 11 Z9 11 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2006 VL 74 IS 1 AR 017303 DI 10.1103/PhysRevC.74.017303 PG 4 WC Physics, Nuclear SC Physics GA 070HF UT WOS:000239511600060 ER PT J AU Peterson, D Back, BB Janssens, RVF Khoo, TL Lister, CJ Seweryniak, D Ahmad, I Carpenter, MP Davids, CN Hecht, AA Jiang, CL Lauritsen, T Wang, X Zhu, S Kondev, FG Heinz, A Qian, J Winkler, R Chowdhury, P Tandel, SK Tandel, US AF Peterson, D. Back, B. B. Janssens, R. V. F. Khoo, T. L. Lister, C. J. Seweryniak, D. Ahmad, I. Carpenter, M. P. Davids, C. N. Hecht, A. A. Jiang, C. L. Lauritsen, T. Wang, X. Zhu, S. Kondev, F. G. Heinz, A. Qian, J. Winkler, R. Chowdhury, P. Tandel, S. K. Tandel, U. S. TI Decay modes of No-250 SO PHYSICAL REVIEW C LA English DT Article ID FISSION HALF-LIVES; SUPERHEAVY NUCLEI; DEFORMATIONS; ENERGIES; BARRIERS; BAND AB The fragment mass analyzer at the ATLAS facility has been used to unambiguously identify the mass number associated with different decay modes of the nobelium isotopes produced via Pb-204(Ca-48,xn)No252-x reactions. Isotopically pure (> 99.7%) Pb-204 targets were used to reduce background from more favored reactions on heavier lead isotopes. Two spontaneous fission half-lives (t(1/2)=3.7(-0.8)(+1.1) and 43(-15)(+22) mu s) were deduced from a total of 158 fission events. Both decays originate from No-250 rather than from neighboring isotopes as previously suggested. The longer activity most likely corresponds to a K isomer in this nucleus. No conclusive evidence for an alpha branch was observed, resulting in upper limits of 2.1% for the shorter lifetime and 3.4% for the longer activity. C1 Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. Argonne Natl Lab, Div Nucl Engn, Argonne, IL 60439 USA. Yale Univ, AW Wright Nucl Struct Lab, New Haven, CT 06511 USA. Univ Massachusetts Lowell, Dept Phys, Lowell, MA 01854 USA. Univ Maryland, Dept Chem, College Pk, MD 20742 USA. Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP Peterson, D (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RI Qian, Jing/F-9639-2010; Heinz, Andreas/E-3191-2014; Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 NR 35 TC 39 Z9 39 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2006 VL 74 IS 1 AR 014316 DI 10.1103/PhysRevC.74.014316 PG 9 WC Physics, Nuclear SC Physics GA 070HF UT WOS:000239511600024 ER PT J AU Schiller, A Voinov, AV Algin, E Bernstein, LA Garrett, PE Guttormsen, M Nelson, RO Rekstad, J Siem, S AF Schiller, A. Voinov, A. V. Algin, E. Bernstein, L. A. Garrett, P. E. Guttormsen, M. Nelson, R. O. Rekstad, J. Siem, S. TI Primary versus secondary gamma intensities in Yb-171(n(th), gamma) SO PHYSICAL REVIEW C LA English DT Article ID YB-172 AB The two published literature values [Greenwood , Nucl. Phys. A252, 260 (1975) and Gelletly , J. Phys. G 11, 1055 (1985)] for absolute primary gamma intensities following thermal neutron capture of Yb-171 differ on average by a factor of 3. We have resolved this conflict in favor of Greenwood by a measurement of primary versus secondary intensities. C1 Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. Joint Inst Nucl Res, Frank Lab Neutron Phys, RU-141980 Dubna, Moscow Region, Russia. N Carolina State Univ, Raleigh, NC 27695 USA. Triangle Univ Nucl Lab, Durham, NC 27708 USA. Eskisehir Osmangazi Univ, Dept Phys, TR-26480 Eskisehir, Turkey. Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. Univ Oslo, Dept Phys, N-0316 Oslo, Norway. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Schiller, A (reprint author), Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. EM schiller@nscl.msu.edu NR 9 TC 0 Z9 0 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2006 VL 74 IS 1 AR 017305 DI 10.1103/PhysRevC.74.017305 PG 3 WC Physics, Nuclear SC Physics GA 070HF UT WOS:000239511600062 ER PT J AU Sin, M Capote, R Ventura, A Herman, M Oblozinsky, P AF Sin, M. Capote, R. Ventura, A. Herman, M. Oblozinsky, P. TI Fission of light actinides: Th-232(n,f) and Pa-231(n,f) reactions SO PHYSICAL REVIEW C LA English DT Article ID NEUTRON CROSS-SECTIONS; ENERGY-RANGE; INELASTIC-SCATTERING; ROTATIONAL BANDS; 3RD MINIMUM; BARRIER; NUCLEI; CODE; THRESHOLD; EMPIRE AB A model to describe fission on light actinides, which takes into account transmission through a triple-humped fission barrier with absorption, is proposed. The fission probability derived in the WKB approximation within an optical model for fission has been incorporated into the statistical model of nuclear reactions. The complex resonant structure in the first-chance neutron-induced fission cross sections of Th-232 and Pa-231 nuclei has been reproduced by the proposed model. Consistent sets of parameters describing the triple-humped fission barriers of Th-233 and Pa-232 have been obtained. The results confirm the attribution of the gross resonant structure in the fission probability of these light actinides to partially damped vibrational states in the second well and undamped vibrational states in the third well of the corresponding fission barriers. C1 Univ Bucharest, Dept Nucl Phys, Bucharest, Romania. IAEA, NAPC, Nucl Data Sect, A-1400 Vienna, Austria. Ente Nuove Tecnol, Bologna, Italy. Ist Nazl Fis Nucl, I-40126 Bologna, Italy. Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP Sin, M (reprint author), Univ Bucharest, Dept Nucl Phys, POB MG-11, Bucharest, Romania. EM msin@pcnet.ro RI Ventura, Alberto/B-9584-2011; Capote Noy, Roberto/M-1245-2014 OI Ventura, Alberto/0000-0001-6748-7931; Capote Noy, Roberto/0000-0002-1799-3438 NR 75 TC 52 Z9 52 U1 1 U2 8 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2006 VL 74 IS 1 AR 014608 DI 10.1103/PhysRevC.74.01608 PG 13 WC Physics, Nuclear SC Physics GA 070HF UT WOS:000239511600034 ER PT J AU Voinov, AV Grimes, SM Agvaanluvsan, U Algin, E Belgya, T Brune, CR Guttormsen, M Hornish, MJ Massey, T Mitchell, GE Rekstad, J Schiller, A Siem, S AF Voinov, A. V. Grimes, S. M. Agvaanluvsan, U. Algin, E. Belgya, T. Brune, C. R. Guttormsen, M. Hornish, M. J. Massey, T. Mitchell, G. E. Rekstad, J. Schiller, A. Siem, S. TI Level density of Fe-56 and low-energy enhancement of gamma-strength function SO PHYSICAL REVIEW C LA English DT Article ID SPECTRA; RESONANCES; EXTRACTION AB The Mn-55(d,n)Fe-56 differential cross section is measured at E-d=7 MeV. The Fe-56 level density obtained from neutron evaporation spectra is compared to the level density extracted from the Fe-57(He-3, alpha gamma)Fe-56 reaction by the Oslo-type technique. Good agreement is found between the level densities determined by the two methods. With the level density function obtained from the neutron evaporation spectra, the Fe-56 gamma-strength function is also determined from the first-generation gamma matrix of the Oslo experiment. The good agreement between the past and present results for the gamma-strength function supports the validity of both methods and is consistent with the low-energy enhancement of the gamma strength below similar to 4 MeV that was first discovered by the Oslo method in iron and molybdenum isotopes. C1 Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Eskisehir Osmangazi Univ, Dept Phys, TR-26480 Eskisehir, Turkey. Hungarian Acad Sci, Inst Isotope & Surface Chem, Chem Res Ctr, H-1525 Budapest, Hungary. Univ Oslo, Dept Phys, N-0316 Oslo, Norway. N Carolina State Univ, Raleigh, NC 27695 USA. Triangle Univ Nucl Lab, Durham, NC 27708 USA. Michigan State Univ, NSCL, E Lansing, MI 48824 USA. RP Voinov, AV (reprint author), Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. EM voinov@ohio.edu NR 29 TC 16 Z9 16 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2006 VL 74 IS 1 AR 014314 DI 10.1103/PhysRevC.74.014314 PG 6 WC Physics, Nuclear SC Physics GA 070HF UT WOS:000239511600022 ER PT J AU Abazajian, K Koushiappas, SM AF Abazajian, Kevork Koushiappas, Savvas M. TI Constraints on sterile neutrino dark matter SO PHYSICAL REVIEW D LA English DT Article ID DWARF SPHEROIDAL GALAXY; LARGE-MAGELLANIC-CLOUD; FLAVOR OSCILLATIONS; POWER SPECTRUM; ALPHA FOREST; MILKY-WAY; X-RAY; COSMOLOGY; MODELS; HALOS AB We present a comprehensive analysis of constraints on the sterile neutrino as a dark matter candidate. The minimal production scenario with a standard thermal history and negligible cosmological lepton number is in conflict with conservative radiative decay constraints from the cosmic X-ray background in combination with stringent small-scale structure limits from the Lyman-alpha forest. We show that entropy release through massive particle decay after production does not alleviate these constraints. We further show that radiative decay constraints from local group dwarf galaxies are subject to large uncertainties in the dark matter density profile of these systems. Within the strongest set of constraints, resonant production of cold sterile neutrino dark matter in nonzero lepton number cosmologies remains allowed. C1 Los Alamos Natl Lab, Theoret Div, ISR Div, Los Alamos, NM 87545 USA. RP Abazajian, K (reprint author), Los Alamos Natl Lab, Theoret Div, ISR Div, MS B285,T-8&T-6, Los Alamos, NM 87545 USA. NR 62 TC 93 Z9 93 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2006 VL 74 IS 2 AR 023527 DI 10.1103/PhysRevD.74.023527 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 070HH UT WOS:000239512000041 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Berntzon, L Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borcherding, F Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Das, M Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E Martins, CD Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Estrada, J Evans, H Evdokimov, A Evdokimov, VN Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Gounder, K Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jenkins, A Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, JM Kalk, JR Kappler, S Karmanov, D Kasper, J Kasper, P Katsanos, I Kau, D Kaur, R Kehoe, R Kermiche, S Kesisoglou, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Kryemadhi, A Krzywdzinski, S Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lager, S Lammers, S Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Lesne, V Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Z Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK McCarthy, R McCroskey, R Meder, D Melnitchouk, A Mendes, A Mendoza, L Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Millet, T Mitrevski, J Molina, J Mondal, NK Monk, J Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundim, L Mutaf, YD Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Oguri, V Oliveira, N Oshima, N Otec, R Garzon, GJOY Owen, M Padley, P Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Peters, K Petroff, P Petteni, M Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG Popov, AV da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rani, KJ Ranjan, K Rapidis, PA Ratoff, PN Renkel, P Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Siccardi, V Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Thomas, E Tiller, B Titov, M Tokmenin, VV Tomoto, M Toole, T Torchiani, I Towers, S Trefzger, T Trincaz-Duvoid, S Tsybychev, D Tuchming, B Tully, C Turcot, AS Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Vertogradov, PVLS Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vlimant, JR Von Toerne, E Voutilainen, M Vreeswijk, M Wahl, HD Wang, L Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Womersley, J Wood, DR Wyatt, TR Xie, Y Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, C Yu, J Yurkewicz, A Zatserklyaniy, A Zeitnitz, C Zhang, D Zhao, T Zhao, Z Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Agelou, M. Agram, J. -L. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Bargassa, P. Baringer, P. Barnes, C. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Berntzon, L. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Binder, M. Biscarat, C. Black, K. M. Blackler, I. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Blumenschein, U. Boehnlein, A. Boeriu, O. Bolton, T. A. Borcherding, F. Borissov, G. Bos, K. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Burdin, S. Burke, S. Burnett, T. H. Busato, E. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Caron, S. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chapin, D. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Claes, D. Clement, B. Clement, C. Coadou, Y. Cooke, M. Cooper, W. E. Coppage, D. Corcoran, M. Cousinou, M. -C. Cox, B. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Das, M. Davies, B. Davies, G. Davis, G. A. De, K. de Jong, P. de Jong, S. J. De La Cruz-Burelo, E. De Oliveira Martins, C. Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Demine, P. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Doidge, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Edwards, T. Ellison, J. Elmsheuser, J. Elvira, V. D. Eno, S. Ermolov, P. Estrada, J. Evans, H. Evdokimov, A. Evdokimov, V. N. Fatakia, S. N. Feligioni, L. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fleck, I. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gardner, J. Gavrilov, V. Gay, A. Gay, P. Gele, D. Gelhaus, R. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Gounder, K. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grunendahl, S. Grunewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hooper, R. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jenkins, A. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kaefer, D. Kahn, S. Kajfasz, E. Kalinin, A. M. Kalk, J. M. Kalk, J. R. Kappler, S. Karmanov, D. Kasper, J. Kasper, P. Katsanos, I. Kau, D. Kaur, R. Kehoe, R. Kermiche, S. Kesisoglou, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Klima, B. Kohli, J. M. Konrath, J. -P. Kopal, M. Korablev, V. M. Kotcher, J. Kothari, B. Koubarovsky, A. Kozelov, A. V. Kozminski, J. Kryemadhi, A. Krzywdzinski, S. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lager, S. Lammers, S. Landsberg, G. Lazoflores, J. Le Bihan, A. -C. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lesne, V. Leveque, J. Lewis, P. Li, J. Li, Q. Z. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Lounis, A. Love, P. Lubatti, H. J. Lynker, M. Lyon, A. L. Maciel, A. K. A. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Magnan, A. -M. Makovec, N. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martens, M. Mattingly, S. E. K. McCarthy, R. McCroskey, R. Meder, D. Melnitchouk, A. Mendes, A. Mendoza, L. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Michaut, M. Miettinen, H. Millet, T. Mitrevski, J. Molina, J. Mondal, N. K. Monk, J. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundim, L. Mutaf, Y. D. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Nelson, S. Neustroev, P. Noeding, C. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Oguri, V. Oliveira, N. Oshima, N. Otec, R. Garzon, G. J. Otero y Owen, M. Padley, P. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Perea, P. M. Perez, E. Peters, K. Petroff, P. Petteni, M. Piegaia, R. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Pompos, A. Pope, B. G. Popov, A. V. Prado da Silva, W. L. Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rani, K. J. Ranjan, K. Rapidis, P. A. Ratoff, P. N. Renkel, P. Reucroft, S. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Royon, C. Rubinov, P. Ruchti, R. Rud, V. I. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schmitt, C. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sengupta, S. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shephard, W. D. Shivpuri, R. K. Shpakov, D. Siccardi, V. Sidwell, R. A. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smith, R. P. Snow, G. R. Snow, J. Snyder, S. Soldner-Rembold, S. Song, X. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stevenson, K. Stolin, V. Stone, A. Stoyanova, D. A. Strandberg, J. Strang, M. A. Strauss, M. Stroehmer, R. Strom, D. Strovink, M. Stutte, L. Sumowidagdo, S. Sznajder, A. Talby, M. Tamburello, P. Taylor, W. Telford, P. Temple, J. Thomas, E. Tiller, B. Titov, M. Tokmenin, V. V. Tomoto, M. Toole, T. Torchiani, I. Towers, S. Trefzger, T. Trincaz-Duvoid, S. Tsybychev, D. Tuchming, B. Tully, C. Turcot, A. S. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vartapetian, A. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vlimant, J. -R. Von Toerne, E. Voutilainen, M. Vreeswijk, M. Wahl, H. D. Wang, L. Warchol, J. Watts, G. Wayne, M. Weber, M. Weerts, H. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Womersley, J. Wood, D. R. Wyatt, T. R. Xie, Y. Xuan, N. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, C. Yu, J. Yurkewicz, A. Zatserklyaniy, A. Zeitnitz, C. Zhang, D. Zhao, T. Zhao, Z. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Search for a heavy resonance decaying into a Z plus jet final state in p(p)over-bar collisions at root s=1.96 TeV using the D0 detector SO PHYSICAL REVIEW D LA English DT Article AB We have searched for a heavy resonance decaying into a Z+jet final state in p (p) over bar collisions at a center of mass energy of 1.96 TeV at the Fermilab Tevatron collider using the D0 detector. No indication for such a resonance was found in a data sample corresponding to an integrated luminosity of 370 pb(-1). We set upper limits on the cross section times branching fraction for heavy resonance production at the 95% C.L. as a function of the resonance mass and width. The limits are interpreted within the framework of a specific model of excited quark production. C1 Joint Inst Nucl Res, Dubna, Russia. Univ Buenos Aires, Buenos Aires, DF, Argentina. Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. Univ Alberta, Edmonton, AB, Canada. York Univ, Toronto, ON M3J 2R7, Canada. McGill Univ, Montreal, PQ, Canada. Inst High Energy Phys, Beijing, Peoples R China. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ Prague, CR-16635 Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco, Quito, Ecuador. Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. Univ Meditarranee, CNRS, IN2P3, CPPM, Marseille, France. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. Univ Paris 07, Paris, France. CEA, Serv Phys Particules, DAPNIA, Saclay, France. Univ Haute Alsace, Mulhouse, France. Univ Louis Pasteur Strasbourg 1, CNRS, IN2P3, IReS, Strasbourg, France. Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. Rhein Westfal TH Aachen, Inst Phys 3, D-5100 Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, Freiburg, Germany. Univ Munich, Munich, Germany. Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. SungKyunKwan Univ, Suwon, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. NIKHEF, FOM Inst, Amsterdam, Netherlands. Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. Radboud Univ Nijmegen NIKHEF, Nijmegen, Netherlands. Inst Theoret & Expt Phys, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Lund Univ, Lund, Sweden. Royal Inst Technol, Stockholm, Sweden. Stockholm Univ, S-10691 Stockholm, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Zurich, Inst Phys, Zurich, Switzerland. Univ Lancaster, Lancaster, England. Univ London Imperial Coll Sci Technol & Med, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Purdue Univ Calumet, Hammond, IN 46323 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Northeastern Univ, Boston, MA 02215 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. SUNY Buffalo, Buffalo, NY 14260 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Oklahoma State Univ, Stillwater, OK 74078 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Telford, Paul/B-6253-2011; Yip, Kin/D-6860-2013; Nomerotski, Andrei/A-5169-2010; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Oguri, Vitor/B-5403-2013; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mundim, Luiz/A-1291-2012 OI Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805 NR 13 TC 7 Z9 7 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2006 VL 74 IS 1 AR 011104 DI 10.1103/PhysRevD.74.011104 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 070HG UT WOS:000239511800004 ER PT J AU Aubert, B Barate, R Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Pappagallo, M Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Best, DS Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Gritsan, AV Groysman, Y Jacobsen, RG Kadel, RW Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Fritsch, M Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L del Re, D Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dubois-Felsmann, GP Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Spaan, B Brandt, T Dickopp, M Klose, V Lacker, HM Nogowski, R Otto, S Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Schrenk, S Thiebaux, C Vasileiadis, G Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Piemontese, L Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mader, WF Mallik, U Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Petersen, TC Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Bevan, AJ Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Di Lodovico, F Menges, W Sacco, R Brown, CL Cowan, G Flaecher, HU Green, MG Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Kelly, MP Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Kovalskyi, D Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Kofler, R Li, X Moore, TB Saremi, S Staengle, H Willocq, SY Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Potter, CT Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rama, M Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Mayer, B Vasseur, G Yeche, C Zito, M Park, W Purohit, MV Weidemann, AW Wilson, JR Allen, MT Aston, D Bartoldus, R Berger, N Boyarski, AM Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Libby, J Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Bona, M Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Panvini, RS Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Graham, MT Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Mohapatra, AK Pan, Y Pierini, M Prepost, R Tan, P Wu, SL Yu, Z Neal, H AF Aubert, B. Barate, R. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Pappagallo, M. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Best, D. S. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Day, C. T. Gill, M. S. Gritsan, A. V. Groysman, Y. Jacobsen, R. G. Kadel, R. W. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Oddone, P. J. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Fritsch, M. Goetzen, K. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Kravchenko, E. A. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. del Re, D. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dubois-Felsmann, G. P. Dvoretskii, A. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Andreassen, R. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Spaan, B. Brandt, T. Dickopp, M. Klose, V. Lacker, H. M. Nogowski, R. Otto, S. Petzold, A. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Grenier, P. Latour, E. Schrenk, S. Thiebaux, Ch. Vasileiadis, G. Verderi, M. Bard, D. J. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Piemontese, L. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Zallo, A. Buzzo, A. Capra, R. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Gaillard, J. R. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Chai, X. Charles, M. J. Mader, W. F. Mallik, U. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Petersen, T. C. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Bevan, A. J. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Di Lodovico, F. Menges, W. Sacco, R. Brown, C. L. Cowan, G. Flaecher, H. U. Green, M. G. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Kelly, M. P. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Kovalskyi, D. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Kofler, R. Li, X. Moore, T. B. Saremi, S. Staengle, H. Willocq, S. Y. Cowan, R. Koeneke, K. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Patel, P. M. Potter, C. T. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Reidy, J. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. Bulten, H. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Pulliam, T. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Galeazzi, F. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. John, M. J. J. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Behera, P. K. Gladney, L. Panetta, J. Biasini, M. Covarelli, R. Pioppi, M. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rama, M. Rizzo, G. Walsh, J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Schroeder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Mayer, B. Vasseur, G. Yeche, Ch. Zito, M. Park, W. Purohit, M. V. Weidemann, A. W. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Berger, N. Boyarski, A. M. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dong, D. Dorfan, J. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Libby, J. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schwitters, R. F. Izen, J. M. Kitayama, I. Lou, X. C. Ye, S. Bianchi, F. Bona, M. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Grancagnolo, S. Lanceri, L. Vitale, L. Azzolini, V. Martinez-Vidal, F. Panvini, R. S. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Eichenbaum, A. M. Flood, K. T. Graham, M. T. Hollar, J. J. Johnson, J. R. Kutter, P. E. Li, H. Liu, R. Mellado, B. Mihalyi, A. Mohapatra, A. K. Pan, Y. Pierini, M. Prepost, R. Tan, P. Wu, S. L. Yu, Z. Neal, H. CA BABAR Collaboration TI Measurements of the branching fraction and time-dependent CP asymmetries of B-0 -> J/psi pi(0) decays SO PHYSICAL REVIEW D LA English DT Article ID B-DECAYS; PHYSICS; VIOLATION; DETECTOR AB We present measurements of the branching fraction and time-dependent CP asymmetries in B-0 -> J/psi pi(0) decays based on (231.8 +/- 2.6)x10(6) Upsilon(4S)-> B (B) over bar decays collected with the BABAR detector at the SLAC PEP-II asymmetric-energy B factory. We obtain a branching fraction B(B-0 -> J/psi pi(0))=(1.94 +/- 0.22(stat)+/- 0.17(syst))x10(-5). We also measure the CP asymmetry parameters C=-0.21 +/- 0.26(stat)+/- 0.06(syst) and S=-0.68 +/- 0.30(stat)+/- 0.04(syst). C1 Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Autonoma Barcelona, IFAE, E-08193 Barcelona, Spain. Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. Lab Accelerateur Lineaire, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02129 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF, Natl Inst Nucl & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie Vew A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas Dallas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain. Vanderbilt Univ, Nashville, TN 37235 USA. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Basilicata, I-85100 Potenza, Italy. RP Aubert, B (reprint author), Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Cavallo, Nicola/F-8913-2012; Patrignani, Claudia/C-5223-2009; Della Ricca, Giuseppe/B-6826-2013; Bellini, Fabio/D-1055-2009; Saeed, Mohammad Alam/J-7455-2012; Calcaterra, Alessandro/P-5260-2015; Pappagallo, Marco/R-3305-2016; Luppi, Eleonora/A-4902-2015; Frey, Raymond/E-2830-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Peters, Klaus/C-2728-2008; de Groot, Nicolo/A-2675-2009; Lista, Luca/C-5719-2008; Roe, Natalie/A-8798-2012; Kravchenko, Evgeniy/F-5457-2015; Neri, Nicola/G-3991-2012; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Lo Vetere, Maurizio/J-5049-2012; Forti, Francesco/H-3035-2011; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; M, Saleem/B-9137-2013 OI Barlow, Roger/0000-0002-8295-8612; Raven, Gerhard/0000-0002-2897-5323; Patrignani, Claudia/0000-0002-5882-1747; Della Ricca, Giuseppe/0000-0003-2831-6982; Bellini, Fabio/0000-0002-2936-660X; Saeed, Mohammad Alam/0000-0002-3529-9255; Calcaterra, Alessandro/0000-0003-2670-4826; Pappagallo, Marco/0000-0001-7601-5602; Luppi, Eleonora/0000-0002-1072-5633; Frey, Raymond/0000-0003-0341-2636; Egede, Ulrik/0000-0001-5493-0762; Bettarini, Stefano/0000-0001-7742-2998; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Peters, Klaus/0000-0001-7133-0662; Neri, Nicola/0000-0002-6106-3756; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Lo Vetere, Maurizio/0000-0002-6520-4480; Forti, Francesco/0000-0001-6535-7965; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; NR 22 TC 50 Z9 53 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2006 VL 74 IS 1 AR 011101 DI 10.1103/PhysRevD.74.011101 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 070HG UT WOS:000239511800001 ER PT J AU Aubert, B Barate, R Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Pappagallo, M Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Best, DS Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Brown, CL Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Kelly, MP Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Willocq, SY Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Potter, CT Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G del Re, D Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Mayer, B Vasseur, G Yeche, C Zito, M Park, W Purohit, MV Weidemann, AW Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Boyarski, AM Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Li, S Libby, J Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Mohapatra, AK Pan, Y Pierini, M Prepost, R Tan, P Wu, SL Yu, Z Neal, H AF Aubert, B. Barate, R. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Pappagallo, M. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Day, C. T. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Oddone, P. J. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Goetzen, K. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Best, D. S. Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dvoretskii, A. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Andreassen, R. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Petzold, A. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Grenier, P. Latour, E. Thiebaux, Ch. Verderi, M. Bard, D. J. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Capra, R. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Gaillard, J. R. Nash, J. A. Nikolich, M. B. Panduro Vazquez, W. Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Brown, C. L. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Kelly, M. P. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Willocq, S. Y. Cowan, R. Koeneke, K. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Patel, P. M. Potter, C. T. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Reidy, J. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. del Re, D. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. Bulten, H. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Pulliam, T. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Galeazzi, F. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. John, M. J. J. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Behera, P. K. Gladney, L. Panetta, J. Biasini, M. Covarelli, R. Pioppi, M. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Gaidot, A. Ganzhur, S. F. Hamel de Monchenault, G. Kozanecki, W. Legendre, M. Mayer, B. Vasseur, G. Yeche, Ch. Zito, M. Park, W. Purohit, M. V. Weidemann, A. W. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Boyarski, A. M. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dong, D. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Libby, J. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Kitayama, I. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Grancagnolo, S. Lanceri, L. Vitale, L. Azzolini, V. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Eichenbaum, A. M. Flood, K. T. Hollar, J. J. Johnson, J. R. Kutter, P. E. Li, H. Liu, R. Mellado, B. Mihalyi, A. Mohapatra, A. K. Pan, Y. Pierini, M. Prepost, R. Tan, P. Wu, S. L. Yu, Z. Neal, H. TI Study of the decay (B)over-bar(0)-> D*+omega pi(-) SO PHYSICAL REVIEW D LA English DT Article ID MESON DECAYS; QUARK-MODEL; FACTORIZATION; ASYMMETRIES AB We report on a study of the decay (B) over bar (0)-> D*+omega pi(-) with the BABAR detector at the PEP-II B-factory at the Stanford Linear Accelerator Center. Based on a sample of 232x10(6) B (B) over bar decays, we measure the branching fraction B((B) over bar (0)-> D*+omega pi(-))=(2.88 +/- 0.21(stat.)+/- 0.31(syst.))x10(-3). We study the invariant mass spectrum of the omega pi(-) system in this decay. This spectrum is in good agreement with expectations based on factorization and the measured spectrum in tau(-)->omega pi(-)nu(tau). We also measure the polarization of the D*+ as a function of the omega pi(-) mass. In the mass region 1.1 to 1.9 GeV we measure the fraction of longitudinal polarization of the D*+ to be Gamma(L)/Gamma=0.654 +/- 0.042(stat.)+/- 0.016(syst.). This is in agreement with the expectations from heavy-quark effective theory and factorization assuming that the decay proceeds as (B) over bar (0)-> D*+rho(1450)(-), rho(1450)(-)->omega pi(-). C1 Phys Particules Lab, F-79471 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Phys Expt, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, LLR, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Nazl Frascati Lab, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, IN2P3, Accelerateur Lineaire Lab, F-91898 Orsay, France. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Univ London, Queen Mary, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF, Natl Inst Nucl & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Ohio State Univ, Eugene, OR 97403 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Scuola Normale Super, Dipartimento Fis, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), Phys Particules Lab, F-79471 Annecy Le Vieux, France. RI Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Roe, Natalie/A-8798-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Grancagnolo, Sergio/J-3957-2015; M, Saleem/B-9137-2013; Cavallo, Nicola/F-8913-2012; Peters, Klaus/C-2728-2008; de Groot, Nicolo/A-2675-2009; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Della Ricca, Giuseppe/B-6826-2013 OI Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Egede, Ulrik/0000-0001-5493-0762; Raven, Gerhard/0000-0002-2897-5323; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Grancagnolo, Sergio/0000-0001-8490-8304; Peters, Klaus/0000-0001-7133-0662; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Della Ricca, Giuseppe/0000-0003-2831-6982 NR 27 TC 10 Z9 10 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2006 VL 74 IS 1 AR 012001 DI 10.1103/PhysRevD.74.012001 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 070HG UT WOS:000239511800011 ER PT J AU Aubert, B Barate, R Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Pappagallo, M Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Best, DS Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Brown, CL Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Kelly, MP Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Willocq, SY Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Potter, CT Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G del Re, D Fabozzi, F Gatto, C Lista, L Monorchio, D Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Mayer, B Vasseur, G Yeche, C Zito, M Park, W Purohit, MV Weidemann, AW Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Boyarski, AM Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Li, S Libby, J Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Mohapatra, AK Pan, Y Pierini, M Prepost, R Tan, P Wu, SL Yu, Z Neal, H AF Aubert, B. Barate, R. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Pappagallo, M. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Day, C. T. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Oddone, P. J. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Goetzen, K. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Best, D. S. Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dvoretskii, A. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Andreassen, R. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Petzold, A. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Grenier, P. Latour, E. Thiebaux, Ch. Verderi, M. Bard, D. J. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Capra, R. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Gaillard, J. R. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Brown, C. L. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Kelly, M. P. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Willocq, S. Y. Cowan, R. Koeneke, K. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Patel, P. M. Potter, C. T. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Reidy, J. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. del Re, D. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Piccolo, D. Sciacca, C. Baak, M. Bulten, H. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Pulliam, T. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Galeazzi, F. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. John, M. J. J. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Behera, P. K. Gladney, L. Panetta, J. Biasini, M. Covarelli, R. Pioppi, M. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Mayer, B. Vasseur, G. Yeche, Ch. Zito, M. Park, W. Purohit, M. V. Weidemann, A. W. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Boyarski, A. M. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dong, D. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Libby, J. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Kitayama, I. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Grancagnolo, S. Lanceri, L. Vitale, L. Azzolini, V. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Eichenbaum, A. M. Flood, K. T. Hollar, J. J. Johnson, J. R. Kutter, P. E. Li, H. Liu, R. Mellado, B. Mihalyi, A. Mohapatra, A. K. Pan, Y. Pierini, M. Prepost, R. Tan, P. Wu, S. L. Yu, Z. Neal, H. CA BaBar Collaboration TI Measurements of CP-violating asymmetries and branching fractions in B decays to omega K and omega pi SO PHYSICAL REVIEW D LA English DT Article ID PHYSICS AB We present measurements of CP-violating asymmetries and branching fractions for the decays B+->omega pi(+), B+->omega K+, and B-0 ->omega K-0. The data sample corresponds to 232x10(6) B (B) over bar pairs produced by e(+)e(-) annihilation at the Upsilon(4S) resonance. For the decay B-0 ->omega K-S(0), we measure the time-dependent CP-violation parameters S=0.51(-0.39)(+0.35)+/- 0.02, and C=-0.55(-0.26)(+0.28)+/- 0.03. We also measure the branching fractions, in units of 10(-6), B(B+->omega pi(+))=6.1 +/- 0.7 +/- 0.4, B(B+->omega K+)=6.1 +/- 0.6 +/- 0.4, and B(B-0 ->omega K-0)=6.2 +/- 1.0 +/- 0.4, and charge asymmetries A(ch)(B+->omega pi(+))=-0.01 +/- 0.10 +/- 0.01 and A(ch)(B+->omega K+)=0.05 +/- 0.09 +/- 0.01. C1 Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain. Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, LLR, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ Sci & Technol, Ames, IA 50011 USA. Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Queen Mary Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, F-75252 Paris, France. Univ Paris 07, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. Scuola Normale Super Pisa, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas Dallas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Basilicata, I-85100 Potenza, Italy. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. RI dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; M, Saleem/B-9137-2013; Cavallo, Nicola/F-8913-2012; Peters, Klaus/C-2728-2008; de Groot, Nicolo/A-2675-2009; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Della Ricca, Giuseppe/B-6826-2013 OI Lafferty, George/0000-0003-0658-4919; Faccini, Riccardo/0000-0003-2613-5141; Wilson, Robert/0000-0002-8184-4103; Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Hamel de Monchenault, Gautier/0000-0002-3872-3592; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Galeazzi, Fulvio/0000-0002-6830-9982; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Paoloni, Eugenio/0000-0001-5969-8712; Lanceri, Livio/0000-0001-8220-3095; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Cristinziani, Markus/0000-0003-3893-9171; Bettarini, Stefano/0000-0001-7742-2998; Ebert, Marcus/0000-0002-3014-1512; Cibinetto, Gianluigi/0000-0002-3491-6231; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Peters, Klaus/0000-0001-7133-0662; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Della Ricca, Giuseppe/0000-0003-2831-6982 NR 21 TC 13 Z9 13 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2006 VL 74 IS 1 AR 011106 DI 10.1103/PhysRevD.74.011106 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 070HG UT WOS:000239511800006 ER PT J AU Aubert, B Barate, R Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Pappagallo, M Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Best, DS Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Brown, CL Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Kelly, MP Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Willocq, SY Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Potter, CT Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G del Re, D Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Mayer, B Vasseur, G Yeche, C Zito, M Park, W Purohit, MV Weidemann, AW Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Boyarski, AM Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Li, S Libby, J Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Mohapatra, AK Pan, Y Pierini, M Prepost, R Tan, P Wu, SL Yu, Z Neal, H AF Aubert, B. Barate, R. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Pappagallo, M. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Day, C. T. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Oddone, P. J. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Goetzen, K. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Best, D. S. Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dvoretskii, A. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Andreassen, R. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Petzold, A. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Grenier, P. Latour, E. Thiebaux, Ch. Verderi, M. Bard, D. J. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Capra, R. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Gaillard, J. R. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Brown, C. L. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Kelly, M. P. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Willocq, S. Y. Cowan, R. Koeneke, K. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Patel, P. M. Potter, C. T. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Reidy, J. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. del Re, D. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. Bulten, H. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Pulliam, T. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Galeazzi, F. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. John, M. J. J. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Behera, P. K. Gladney, L. Panetta, J. Biasini, M. Covarelli, R. Pioppi, M. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Mayer, B. Vasseur, G. Yeche, Ch. Zito, M. Park, W. Purohit, M. V. Weidemann, A. W. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Boyarski, A. M. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dong, D. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Libby, J. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Kitayama, I. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Grancagnolo, S. Lanceri, L. Vitale, L. Azzolini, V. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Eichenbaum, A. M. Flood, K. T. Hollar, J. J. Johnson, J. R. Kutter, P. E. Li, H. Liu, R. Mellado, B. Mihalyi, A. Mohapatra, A. K. Pan, Y. Pierini, M. Prepost, R. Tan, P. Wu, S. L. Yu, Z. Neal, H. TI Search for B+->phi pi(+) and B-0 ->phi pi(0) decays SO PHYSICAL REVIEW D LA English DT Article ID B DECAYS AB A search has been made for the decays B+->phi pi(+) and B-0 ->phi pi(0) in a data sample of approximately 232x10(6) B (B) over bar pairs recorded at the Upsilon(4S) resonance with the BABAR detector at the PEP-II B-meson Factory at SLAC. No significant signals have been observed, and therefore upper limits have been set on the branching fractions: B(B+->phi pi(+))< 2.4x10(-7) and B(B-0 ->phi pi(0))< 2.8x10(-7) at 90% probability. C1 Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis Dept, ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, LLR, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. Univ Paris Sud 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas Dallas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Lista, Luca/C-5719-2008; Cavallo, Nicola/F-8913-2012; Bellini, Fabio/D-1055-2009; Patrignani, Claudia/C-5223-2009; Calabrese, Roberto/G-4405-2015; Lusiani, Alberto/N-2976-2015; de Groot, Nicolo/A-2675-2009; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Della Ricca, Giuseppe/B-6826-2013; M, Saleem/B-9137-2013; Peters, Klaus/C-2728-2008; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Grancagnolo, Sergio/J-3957-2015; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; OI Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Bellini, Fabio/0000-0002-2936-660X; Patrignani, Claudia/0000-0002-5882-1747; Calabrese, Roberto/0000-0002-1354-5400; Lusiani, Alberto/0000-0002-6876-3288; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Della Ricca, Giuseppe/0000-0003-2831-6982; Peters, Klaus/0000-0001-7133-0662; Raven, Gerhard/0000-0002-2897-5323; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Grancagnolo, Sergio/0000-0001-8490-8304; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Egede, Ulrik/0000-0001-5493-0762 NR 18 TC 20 Z9 20 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2006 VL 74 IS 1 AR 011102 DI 10.1103/PhysRevD.74.011102 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 070HG UT WOS:000239511800002 ER PT J AU Aubert, B Barate, R Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Shafer, JB Cahn, RN Charles, E Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Sanchez, PD Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Sherwood, DJ Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Best, DS Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Petzold, A Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Willocq, SY Cowan, R Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Potter, CT Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Boyarski, AM Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Cheng, B Dasu, S Datta, M Flood, KT Hollar, JJ Kutter, PE Mellado, B Mihalyi, A Pan, Y Pierini, M Prepost, R Wu, SL Yu, Z Neal, H AF Aubert, B. Barate, R. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Shafer, J. Button- Cahn, R. N. Charles, E. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Oddone, P. J. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. del Amo Sanchez, P. Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Goetzen, K. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Sherwood, D. J. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Best, D. S. Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dvoretskii, A. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Andreassen, R. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Petzold, A. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Grenier, P. Latour, E. Thiebaux, Ch. Verderi, M. Bard, D. J. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Capra, R. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Nash, J. A. Nikolich, M. B. Panduro Vazquez, W. Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Willocq, S. Y. Cowan, R. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Lu, M. Potter, C. T. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Galeazzi, F. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. John, M. J. J. Malcles, J. Ocariz, J. Roos, L. Therin, G. Behera, P. K. Gladney, L. Panetta, J. Biasini, M. Covarelli, R. Pioppi, M. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Rizzo, G. Walsh, J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Li Gioi, L. Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Safai Tehrani, F. Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Gaidot, A. Ganzhur, S. F. Hamel de Monchenault, G. Kozanecki, W. Legendre, M. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Boyarski, A. M. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Kitayama, I. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Grancagnolo, S. Lanceri, L. Vitale, L. Azzolini, V. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Flood, K. T. Hollar, J. J. Kutter, P. E. Mellado, B. Mihalyi, A. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Yu, Z. Neal, H. CA BABAR Collaboration TI Search for doubly charmed baryons Xi(+)(cc) and Xi(++)(cc) in BABAR SO PHYSICAL REVIEW D LA English DT Article ID 2 HEAVY QUARKS; PHYSICS; MASSES; DECAY AB We search for the production of doubly charmed baryons in e(+)e(-) annihilations at or near a center-of-mass energy of 10.58 GeV, in a data sample with an integrated luminosity of 232 fb(-1) recorded with the BABAR detector at the PEP-II storage ring at the Stanford Linear Accelerator Center. We search for Xi(+)(cc) baryons in the final states Lambda K-+(c)-pi(+) and Xi(0)(c)pi(+), and Xi(++)(cc) baryons in the final states Lambda K-+(c)-pi(+)pi(+) and Xi(0)(c)pi(+)pi(+). We find no evidence for the production of doubly charmed baryons. C1 Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, LLR, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. Univ Paris Sud 11, Ctr Sci Orsay, F-91898 Orsay, France. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fis, I-80125 Naples, Italy. Ist Nazl Fis Nucl, I-80125 Naples, Italy. Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas Dallas, Richardson, TX 75083 USA. Univ Naples Federico II, Dipartimento Fis Sperimentale, I-80125 Naples, Italy. Ist Nazl Fis Nucl, I-80125 Naples, Italy. Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Basilicata, I-85100 Potenza, Italy. RP Aubert, B (reprint author), Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. RI Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; de Sangro, Riccardo/J-2901-2012; Negrini, Matteo/C-8906-2014; Lo Vetere, Maurizio/J-5049-2012; Saeed, Mohammad Alam/J-7455-2012; Rotondo, Marcello/I-6043-2012; Roe, Natalie/A-8798-2012; Forti, Francesco/H-3035-2011; Luppi, Eleonora/A-4902-2015; Della Ricca, Giuseppe/B-6826-2013; Mir, Lluisa-Maria/G-7212-2015; Bellini, Fabio/D-1055-2009; Lista, Luca/C-5719-2008; Cavallo, Nicola/F-8913-2012; Patrignani, Claudia/C-5223-2009; Peters, Klaus/C-2728-2008; de Groot, Nicolo/A-2675-2009; Grancagnolo, Sergio/J-3957-2015; Neri, Nicola/G-3991-2012; Calabrese, Roberto/G-4405-2015; Kolomensky, Yury/I-3510-2015; Lusiani, Alberto/A-3329-2016; Lusiani, Alberto/N-2976-2015; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Morandin, Mauro/A-3308-2016; Martinez Vidal, F*/L-7563-2014; Di Lodovico, Francesca/L-9109-2016 OI Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Egede, Ulrik/0000-0001-5493-0762; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Cristinziani, Markus/0000-0003-3893-9171; Wilson, Robert/0000-0002-8184-4103; de Sangro, Riccardo/0000-0002-3808-5455; Negrini, Matteo/0000-0003-0101-6963; Lo Vetere, Maurizio/0000-0002-6520-4480; Saeed, Mohammad Alam/0000-0002-3529-9255; Rotondo, Marcello/0000-0001-5704-6163; Forti, Francesco/0000-0001-6535-7965; Luppi, Eleonora/0000-0002-1072-5633; Della Ricca, Giuseppe/0000-0003-2831-6982; Mir, Lluisa-Maria/0000-0002-4276-715X; Bellini, Fabio/0000-0002-2936-660X; Patrignani, Claudia/0000-0002-5882-1747; Peters, Klaus/0000-0001-7133-0662; Grancagnolo, Sergio/0000-0001-8490-8304; Neri, Nicola/0000-0002-6106-3756; Calabrese, Roberto/0000-0002-1354-5400; Kolomensky, Yury/0000-0001-8496-9975; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Morandin, Mauro/0000-0003-4708-4240; Martinez Vidal, F*/0000-0001-6841-6035; Di Lodovico, Francesca/0000-0003-3952-2175 NR 26 TC 159 Z9 160 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2006 VL 74 IS 1 AR 011103 DI 10.1103/PhysRevD.74.011103 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 070HG UT WOS:000239511800003 ER PT J AU Aubert, B Barate, R Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Pappagallo, M Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Best, DS Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Brown, CL Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Kelly, MP Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Willocq, SY Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Potter, CT Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G del Re, D Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Emery, S Gaidot, A Ganzhur, SF De Monchenault, GH Kozanecki, W Legendre, M Mayer, B Vasseur, G Yeche, C Zito, M Park, W Purohit, MV Weidemann, AW Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Boyarski, AM Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Li, S Libby, J Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Mohapatra, AK Pan, Y Pierini, M Prepost, R Tan, P Wu, SL Yu, Z Neal, H AF Aubert, B. Barate, R. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Pappagallo, M. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Day, C. T. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Oddone, P. J. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Goetzen, K. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Best, D. S. Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dvoretskii, A. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Andreassen, R. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Petzold, A. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Grenier, P. Latour, E. Thiebaux, Ch. Verderi, M. Bard, D. J. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Capra, R. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Gaillard, J. R. Nash, J. A. Nikolich, M. B. Panduro Vazquez, W. Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Brown, C. L. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Kelly, M. P. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Willocq, S. Y. Cowan, R. Koeneke, K. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Patel, P. M. Potter, C. T. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Reidy, J. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. del Re, D. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. Bulten, H. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Pulliam, T. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Galeazzi, F. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. John, M. J. J. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Behera, P. K. Gladney, L. Panetta, J. Biasini, M. Covarelli, R. Pioppi, M. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Mayer, B. Vasseur, G. Yeche, Ch. Zito, M. Park, W. Purohit, M. V. Weidemann, A. W. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Boyarski, A. M. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dong, D. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Libby, J. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Kitayama, I. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Grancagnolo, S. Lanceri, L. Vitale, L. Azzolini, V. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Eichenbaum, A. M. Flood, K. T. Hollar, J. J. Johnson, J. R. Kutter, P. E. Li, H. Liu, R. Mellado, B. Mihalyi, A. Mohapatra, A. K. Pan, Y. Pierini, M. Prepost, R. Tan, P. Wu, S. L. Yu, Z. Neal, H. CA BaBar Collaborat TI Measurement of the eta and eta(') transition form factors at q(2)=112 GeV2 SO PHYSICAL REVIEW D LA English DT Article ID HARD-PHOTON-EMISSION; EXCLUSIVE PROCESSES; BHABHA SCATTERING; ENERGIES; DETECTOR; PHYSICS; MESONS AB We report a study of the processes e(+)e(-)->eta gamma and e(+)e(-)->eta(')gamma at a center-of-mass energy of 10.58 GeV, using a 232 fb(-1) data sample collected with the BABAR detector at the PEP-II collider at SLAC. We observe 20(-5)(+6)eta gamma and 50(-7)(+8)eta(')gamma events over small backgrounds, and measure the cross sections sigma(e(+)e(-)->eta gamma)=4.5(-1.1)(+1.2)+/- 0.3 fb and sigma(e(+)e(-)->eta(')gamma)=5.4 +/- 0.8 +/- 0.3 fb. The corresponding transition form factors at q(2)=112 GeV2 are q(2)vertical bar F-eta(q(2))vertical bar=0.229 +/- 0.030 +/- 0.008 GeV, and q(2)vertical bar F-eta(')(q(2))vertical bar=0.251 +/- 0.019 +/- 0.008 GeV, respectively. C1 Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Phys Expt, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, LLR, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Nazl Frascati Lab, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Univ London, Queen Mary, London E1 4NS, England. Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Scuola Normale Super, Dipartimento Fis, I-56127 Pisa, Italy. Prairie View A & M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Univ Valencia, CSIC, IFIC, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Grancagnolo, Sergio/J-3957-2015; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Bellini, Fabio/D-1055-2009; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Della Ricca, Giuseppe/B-6826-2013; Cavallo, Nicola/F-8913-2012; Saeed, Mohammad Alam/J-7455-2012; Peters, Klaus/C-2728-2008; de Groot, Nicolo/A-2675-2009; Lista, Luca/C-5719-2008; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; OI Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Grancagnolo, Sergio/0000-0001-8490-8304; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Della Ricca, Giuseppe/0000-0003-2831-6982; Saeed, Mohammad Alam/0000-0002-3529-9255; Peters, Klaus/0000-0001-7133-0662; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Egede, Ulrik/0000-0001-5493-0762; Raven, Gerhard/0000-0002-2897-5323 NR 33 TC 49 Z9 50 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2006 VL 74 IS 1 AR 012002 DI 10.1103/PhysRevD.74.012002 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 070HG UT WOS:000239511800012 ER PT J AU Aubert, B Barate, R Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Best, DS Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Brown, CL Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Kelly, MP Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Willocq, SY Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G del Re, D Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Potter, CT Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Vasseur, G Yeche, C Zito, M Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Boyarski, AM Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Li, S Libby, J Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perl, M Perazzo, A Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Hollar, JJ Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Mohapatra, AK Pan, Y Pierini, M Prepost, R Tan, P Wu, SL Yu, Z Neal, H AF Aubert, B. Barate, R. Bona, M. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Gill, M. S. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Oddone, P. J. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Goetzen, K. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Best, D. S. Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. Hadavand, H. K. Hill, E. J. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dvoretskii, A. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Andreassen, R. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Spaan, B. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Petzold, A. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Grenier, P. Latour, E. Thiebaux, Ch. Verderi, M. Bard, D. J. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Capra, R. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Gaillard, J. R. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Fritsch, M. Schott, G. Arnaud, N. Davier, M. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. Di Lodovico, F. Menges, W. Sacco, R. Brown, C. L. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Kelly, M. P. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Yi, J. I. Chen, C. Hulsbergen, W. D. Jawahery, A. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Saremi, S. Staengle, H. Willocq, S. Y. Cowan, R. Koeneke, K. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Reidy, J. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. del Re, D. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. Bulten, H. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Pulliam, T. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Lu, M. Potter, C. T. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Galeazzi, F. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. John, M. J. J. Malcles, J. Ocariz, J. Roos, L. Therin, G. Behera, P. K. Gladney, L. Panetta, J. Biasini, M. Covarelli, R. Pioppi, M. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Rizzo, G. Walsh, J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Vasseur, G. Yeche, Ch. Zito, M. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Boyarski, A. M. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dong, D. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Libby, J. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perl, M. Perazzo, A. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schilling, C. J. Schwitters, R. F. Izen, J. M. Kitayama, I. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Grancagnolo, S. Lanceri, L. Vitale, L. Azzolini, V. Martinez-Vidal, F. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Eichenbaum, A. M. Flood, K. T. Hollar, J. J. Kutter, P. E. Li, H. Liu, R. Mellado, B. Mihalyi, A. Mohapatra, A. K. Pan, Y. Pierini, M. Prepost, R. Tan, P. Wu, S. L. Yu, Z. Neal, H. CA BABAR Collaboration TI Measurement of the D+->pi(+) pi(0) and D+-> K+ pi(0) branching fractions SO PHYSICAL REVIEW D LA English DT Article ID DECAYS; PHYSICS AB We present measurements of the branching fractions for the Cabbibo suppressed decays D+->pi(+)pi(0) and D+-> K+pi(0) based on a data sample corresponding to an integrated luminosity of 124.3 fb(-1). The data were taken with the BABAR detector at the PEP-II B Factory operating on and near the Upsilon(4S) resonance. We find B(D+->pi(+)pi(0))=(1.25 +/- 0.10 +/- 0.09 +/- 0.04)x10(-3) and B(D+-> K+pi(0))=(2.52 +/- 0.47 +/- 0.25 +/- 0.08)x10(-4), where the first uncertainty is statistical, the second systematic and the last error is due to the uncertainties in the absolute branching fraction scale for D+ mesons. This represents the first observation of the doubly Cabibbo-suppressed D+-> K+pi(0) decay mode and a new measurement of the D+->pi(+)pi(0) branching fraction. C1 Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain. Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, LLR, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ Sci & Technol, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Mississippi, University, MS 38677 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Queen Mary Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, F-75252 Paris, France. Univ Paris 07, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. Scuola Normale Super Pisa, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas Dallas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Basilicata, I-85100 Potenza, Italy. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. RI dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Roe, Natalie/A-8798-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Grancagnolo, Sergio/J-3957-2015; Bellini, Fabio/D-1055-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Della Ricca, Giuseppe/B-6826-2013; M, Saleem/B-9137-2013; Cavallo, Nicola/F-8913-2012; Peters, Klaus/C-2728-2008; de Groot, Nicolo/A-2675-2009; Lista, Luca/C-5719-2008 OI dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Galeazzi, Fulvio/0000-0002-6830-9982; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Faccini, Riccardo/0000-0003-2613-5141; Raven, Gerhard/0000-0002-2897-5323; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Egede, Ulrik/0000-0001-5493-0762; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Grancagnolo, Sergio/0000-0001-8490-8304; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Della Ricca, Giuseppe/0000-0003-2831-6982; Peters, Klaus/0000-0001-7133-0662; NR 13 TC 10 Z9 10 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2006 VL 74 IS 1 AR 011107 DI 10.1103/PhysRevD.74.011107 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 070HG UT WOS:000239511800007 ER PT J AU Barbieri, R Hall, LJ Rychkov, VS AF Barbieri, Riccardo Hall, Lawrence J. Rychkov, Vyacheslav S. TI Improved naturalness with a heavy Higgs boson: An alternative road to CERN LHC physics SO PHYSICAL REVIEW D LA English DT Article ID STANDARD MODEL; NEUTRALINOS; COLLISIONS; CHARGINOS; SEARCH; BOUNDS AB The quadratic divergences of the Higgs mass may be cancelled either accidentally or by the exchange of some new particles. Alternatively its impact on naturalness may be weakened by raising the Higgs mass, which requires changing the standard model below its natural cutoff. We show in detail how this can be achieved, while preserving perturbativity and consistency with the electroweak precision tests, by extending the standard model to include a second Higgs doublet that has neither a vev nor couplings to quarks and leptons. This inert doublet model yields a perturbative and completely natural description of electroweak physics at all energies up to 1.5 TeV. The discrete symmetry that yields the inert doublet is unbroken, so that dark matter may be composed of neutral inert Higgs bosons, which may have escaped detection at LEP2. Predictions are given for multilepton events with missing transverse energy at the Large Hadron Collider, and for the direct detection of dark matter. C1 Scuola Normale Super Pisa, I-56126 Pisa, Italy. Ist Nazl Fis Nucl, I-56126 Pisa, Italy. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. LBNL, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Barbieri, R (reprint author), Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy. NR 26 TC 445 Z9 445 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2006 VL 74 IS 1 AR 015007 DI 10.1103/PhysRevD.74.015007 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 070HG UT WOS:000239511800078 ER PT J AU Barenboim, G Requejo, OM Quigg, C AF Barenboim, Gabriela Requejo, Olga Mena Quigg, Chris TI Neutrino coannihilation on dark-matter relics? SO PHYSICAL REVIEW D LA English DT Article AB High-energy neutrinos may resonate with relic background neutralinos to form short-lived sneutrinos. In some circumstances, the decay chain that leads back to the lightest supersymmetric particle would yield few-GeV gamma rays or charged-particle signals. Although resonant coannihilation would occur at an appreciable rate in our galaxy, the signal in any foreseeable detector is unobservably small. C1 Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain. Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. RP Barenboim, G (reprint author), Univ Valencia, Dept Fis Teor, Carrer Dr Moliner 50, E-46100 Valencia, Spain. EM Gabriela.Barenboim@uv.es; omena@fnal.gov; quigg@fnal.gov OI Quigg, Chris/0000-0002-2728-2445 NR 27 TC 3 Z9 3 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2006 VL 74 IS 2 AR 023006 DI 10.1103/PhysRevD.74.023006 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 070HH UT WOS:000239512000013 ER PT J AU Bodwin, GT Kang, D Lee, J AF Bodwin, Geoffrey T. Kang, Daekyoung Lee, Jungil TI Potential-model calculation of an order-v(2) nonrelativistic QCD matrix element SO PHYSICAL REVIEW D LA English DT Article ID HEAVY QUARKONIUM; LATTICE QCD; S-WAVE; ANNIHILATION; RATES AB We present two methods for computing dimensionally regulated nonrelativistic QCD heavy-quarkonium matrix elements that are related to the second derivative of the heavy-quarkonium wave function at the origin. The first method makes use of a hard-cutoff regulator as an intermediate step and requires knowledge only of the heavy-quarkonium wave function. It involves a significant cancellation that is an obstacle to achieving high numerical accuracy. The second method is more direct and yields a result that is identical to the Gremm-Kapustin relation, but it is limited to use in potential models. It can be generalized to the computation of matrix elements of higher order in the heavy-quark velocity and can be used to resum the contributions to decay and production rates that are associated with those matrix elements. We apply these methods to the Cornell potential model and compute a matrix element for the J/psi state that appears in the leading relativistic correction to the production and decay of that state through the color-singlet quark-antiquark channel. C1 Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. Korea Univ, Dept Phys, Seoul 136701, South Korea. RP Bodwin, GT (reprint author), Argonne Natl Lab, Div High Energy Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 22 TC 14 Z9 14 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2006 VL 74 IS 1 AR 014014 DI 10.1103/PhysRevD.74.014014 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 070HG UT WOS:000239511800043 ER PT J AU Boer, D Vogelsang, W AF Boer, Daniel Vogelsang, Werner TI Drell-Yan lepton angular distribution at small transverse momentum SO PHYSICAL REVIEW D LA English DT Article ID MUON-PAIR PRODUCTION; QUARK FORM-FACTORS; TO-BACK JETS; QUANTUM CHROMODYNAMICS; HADRONIC COLLISIONS; INELASTIC-SCATTERING; BOSON PRODUCTION; NEGATIVE PIONS; CROSS-SECTIONS; HARD PROCESSES AB We investigate the dependence of the Drell-Yan cross section on lepton polar and azimuthal angles, as generated by the lowest-order QCD annihilation and Compton processes. We focus, in particular, on the azimuthal-angular distributions, which are of the form cos phi and cos2 phi. At small transverse momentum q(T) of the lepton pair, q(T)< Q, with Q the pair mass, these terms are known to be suppressed relative to the phi-independent part of the Drell-Yan cross section by one or two powers of the transverse momentum. Nonetheless, as we show, like the phi-independent part they are subject to large logarithmic corrections, whose precise form, however, depends on the reference frame chosen. These logarithmic contributions ultimately require resummation to all orders in the strong coupling. We discuss the potential effects of resummation on the various angular terms in the cross section and on the Lam-Tung relation. C1 Vrije Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Boer, D (reprint author), Vrije Univ Amsterdam, Dept Phys & Astron, De Boelelaan 1081, NL-1081 HV Amsterdam, Netherlands. EM D.Boer@few.vu.nl; vogelsan@quark.phy.bnl.gov RI Boer, Daniel/B-3493-2015 OI Boer, Daniel/0000-0003-0985-4662 NR 52 TC 40 Z9 40 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2006 VL 74 IS 1 AR 014004 DI 10.1103/PhysRevD.74.014004 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 070HG UT WOS:000239511800033 ER PT J AU Carena, M Menon, A Noriega-Papaqui, R Szynkman, A Wagner, CEM AF Carena, M. Menon, A. Noriega-Papaqui, R. Szynkman, A. Wagner, C. E. M. TI Constraints on B and Higgs physics in minimal low energy supersymmetric models SO PHYSICAL REVIEW D LA English DT Article ID LARGE TAN-BETA; HIGH-PRECISION PREDICTIONS; EXPLICIT CP VIOLATION; STANDARD MODEL; ELECTROWEAK BARYOGENESIS; BOSON MASSES; MU(+) MU(-); QUARK MASS; MSSM; SECTOR AB We study the implications of minimal flavor violating low energy supersymmetry scenarios for the search of new physics in the B and Higgs sectors at the Tevatron collider and the LHC. We show that the already stringent Tevatron bound on the decay rate B-s ->mu(+)mu(-) sets strong constraints on the possibility of generating large corrections to the mass difference Delta M-s of the B-s eigenstates. We also show that the B-s ->mu(+)mu(-) bound together with the constraint on the branching ratio of the rare decay b -> s gamma has strong implications for the search of light, nonstandard Higgs bosons at hadron colliders. In doing this, we demonstrate that the former expressions derived for the analysis of the double penguin contributions in the Kaon sector need to be corrected by additional terms for a realistic analysis of these effects. We also study a specific nonminimal flavor violating scenario, where there are flavor changing gluino-squark-quark interactions, governed by the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements, and show that the B and Higgs physics constraints are similar to the ones in the minimal flavor violating case. Finally we show that, in scenarios like electroweak baryogenesis which have light stops and charginos, there may be enhanced effects on the B and K mixing parameters, without any significant effect on the rate of B-s ->mu(+)mu(-). C1 Dept Theoret Phys, Fermi Natl Lab, Batavia, IL 60510 USA. Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Univ Montreal, Phys Nucl Lab, Montreal, PQ H3C 3J7, Canada. Univ Autonoma Puebla, Inst Fis, Puebla, Mexico. Natl Univ La Plata, Dept Fis, IFLP, RA-1900 La Plata, Argentina. RP Carena, M (reprint author), Dept Theoret Phys, Fermi Natl Lab, Batavia, IL 60510 USA. NR 68 TC 9 Z9 9 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2006 VL 74 IS 1 AR 015009 DI 10.1103/PhysRevD.74.015009 PG 23 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 070HG UT WOS:000239511800080 ER PT J AU Duffy, LD Sikivie, P Tanner, DB Asztalos, SJ Hagmann, C Kinion, D Rosenberg, LJ Van Bibber, K Yu, DB Bradley, RF AF Duffy, L. D. Sikivie, P. Tanner, D. B. Asztalos, S. J. Hagmann, C. Kinion, D. Rosenberg, L. J. Van Bibber, K. Yu, D. B. Bradley, R. F. TI High resolution search for dark-matter axions SO PHYSICAL REVIEW D LA English DT Article ID STRONG CP PROBLEM; COSMIC AXIONS; INVISIBLE AXION; HARMLESS AXION; INVARIANCE; HALOS; CONSERVATION; COSMOLOGY AB We have performed a high resolution search for galactic halo axions in cold flows using a microwave cavity detector. The analysis procedure and other details of this search are described. No axion signal was found in the mass range 1.98-2.17 mu eV. We place upper limits on the density of axions in local discrete flows based on this result. C1 Univ Florida, Dept Phys, Gainesville, FL 32611 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Natl Radio Astron Observ, Charlottesville, VA 22903 USA. RP Duffy, LD (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA. OI Duffy, Leanne/0000-0002-0123-6723 NR 40 TC 102 Z9 105 U1 1 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2006 VL 74 IS 1 AR 012006 DI 10.1103/PhysRevD.74.012006 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 070HG UT WOS:000239511800016 ER PT J AU Green, D Silverstein, E Starr, D AF Green, Daniel Silverstein, Eva Starr, David TI Attractor explosions and catalyzed vacuum decay SO PHYSICAL REVIEW D LA English DT Article ID PRIMORDIAL BLACK-HOLES; DENSITY AB We present a mechanism for catalyzed vacuum bubble production obtained by combining moduli stabilization with a generalized attractor phenomenon in which moduli are sourced by compact objects. This leads straightforwardly to a class of examples in which the Hawking decay process for black holes unveils a bubble of a different vacuum from the ambient one, generalizing the new end point for Hawking evaporation discovered recently by Horowitz. Catalyzed vacuum bubble production can occur for both charged and uncharged bodies, including Schwarzschild black holes for which massive particles produced in the Hawking process can trigger vacuum decay. We briefly discuss applications of this process to the population and stability of metastable vacua. C1 Stanford Univ, SLAC, Stanford, CA 94305 USA. Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Green, D (reprint author), Stanford Univ, SLAC, Stanford, CA 94305 USA. NR 43 TC 17 Z9 17 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2006 VL 74 IS 2 AR 024004 DI 10.1103/PhysRevD.74.024004 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 070HH UT WOS:000239512000050 ER PT J AU Kinney, WH Kolb, EW Melchiorri, A Riotto, A AF Kinney, William H. Kolb, Edward W. Melchiorri, Alessandro Riotto, Antonio TI Inflation model constraints from the Wilkinson Microwave Anisotropy Probe three-year data SO PHYSICAL REVIEW D LA English DT Article ID POWER SPECTRUM; DARK-MATTER; UNIVERSE; PERTURBATIONS; NORMALIZATION; FLUCTUATIONS; SCALE; MAPS AB We extract parameters relevant for distinguishing among single-field inflation models from the Wilkinson Microwave Anisotropy Probe (WMAP) three-year data set, and also from WMAP in combination with the Sloan Digital Sky Survey (SDSS) galaxy power spectrum. Our analysis leads to the following conclusions: (1) the Harrison-Zel'dovich model is consistent with both data sets at a 95% confidence level; (2) there is no strong evidence for running of the spectral index of scalar perturbations; (3) potentials of the form V proportional to phi(p) are consistent with the data for p=2, and are marginally consistent with the WMAP data considered alone for p=4, but ruled out by WMAP combined with SDSS. We perform a "Monte Carlo reconstruction" of the inflationary potential, and find that: (1) there is no evidence to support an observational lower bound on the amplitude of gravitational waves produced during inflation; (2) models such as simple hybrid potentials which evolve toward an inflationary late-time attractor in the space of flow parameters are strongly disfavored by the data, (3) models selected with even a weak slow-roll prior strongly cluster in the region favoring a red power spectrum and no running of the spectral index, consistent with simple single-field inflation models. C1 SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. Univ Chicago, Dept Astron & Astrophys, Enrico Fermi Inst, Chicago, IL 60637 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Univ Roma La Sapienza, Sez INFN, I-00185 Rome, Italy. CERN, Div Theory, CH-1211 Geneva 23, Switzerland. RP Kinney, WH (reprint author), SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. EM whkinney@buffalo.edu; rocky@fnal.gov; alessandro.melchiorri@roma1.infn.it; antonio.riotto@pd.infn.it OI Melchiorri, Alessandro/0000-0001-5326-6003 NR 60 TC 139 Z9 139 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2006 VL 74 IS 2 AR 023502 DI 10.1103/PhysRevD.74.023502 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 070HH UT WOS:000239512000016 ER PT J AU Lee, KSM Ligeti, Z Stewart, IW Tackmann, FJ AF Lee, Keith S. M. Ligeti, Zoltan Stewart, Iain W. Tackmann, Frank J. TI Universality and m(X) cut effects in B -> X(s)l(+)l(-) SO PHYSICAL REVIEW D LA English DT Article ID B-MESON DECAYS; LEADING LOGARITHMS; B->X(S)L(+)L(-); DISTRIBUTIONS; FACTORIZATION; B->X(S)GAMMA; SPECTRUM; MODEL; MASS AB The most precise comparison between theory and experiment for the B -> X-s center dot(+)center dot(-) rate is in the low q(2) region, but the hadronic uncertainties associated with an experimentally required cut on m(X) potentially spoil the search for new physics in these decays. We show that a 10%-30% reduction of d Gamma(B -> X-s center dot(+)center dot(-))/dq(2) due to the m(X) cut can be accurately computed using the B -> X-s gamma shape function. The effect is universal for all short distance contributions in the limit m(X)(2)< m(B)(2), and this universality is spoiled neither by realistic values of the m(X) cut nor by alpha(s) corrections. Both the differential decay rate and forward-backward asymmetry with an m(X) cut are computed. C1 MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Lee, KSM (reprint author), MIT, Ctr Theoret Phys, 77 Massachusetts Ave, Cambridge, MA 02139 USA. NR 32 TC 23 Z9 23 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2006 VL 74 IS 1 AR 011501 DI 10.1103/PhysRevD.74.011501 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 070HG UT WOS:000239511800008 ER PT J AU Nunokawa, H Parke, S Funchal, RZ AF Nunokawa, Hiroshi Parke, Stephen Funchal, Renata Zukanovich TI What fraction of boron-8 solar neutrinos arrive at the Earth as a nu(2) mass eigenstate? SO PHYSICAL REVIEW D LA English DT Article ID MODELS; OSCILLATIONS; HELIOSEISMOLOGY; DIFFUSION; MATTER; SPECTROSCOPY; HELIUM; TIME; SUN AB We calculate the fraction of B-8 solar neutrinos that arrive at the Earth as a nu(2) mass eigenstate as a function of the neutrino energy. Weighting this fraction with the B-8 neutrino energy spectrum and the energy dependence of the cross section for the charged current interaction on deuteron with a threshold on the kinetic energy of the recoil electrons of 5.5 MeV, we find the integrated weighted fraction of nu(2)'s to be (91 +/- 2)% at the 95% CL. This energy weighting procedure corresponds to the charged current response of the Sudbury Neutrino Observatory (SNO). We have used SNO's current best fit values for the solar mass squared difference and the mixing angle, obtained by combining the data from all solar neutrino experiments and the reactor data from KamLAND. The uncertainty on the nu(2) fraction comes primarily from the uncertainty on the solar delta m(2) rather than from the uncertainty on the solar mixing angle or the standard solar model. Similar results for the Super-Kamiokande experiment are also given. We extend this analysis to three neutrinos and discuss how to extract the modulus of the Maki-Nakagawa-Sakata mixing matrix element U-e2 as well as place a lower bound on the electron number density in the production region for B-8 solar neutrinos. C1 Pontificia Univ Catolica Rio de Janeiro, Dept Fis, BR-22452970 Rio De Janeiro, Brazil. Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. RP Nunokawa, H (reprint author), Pontificia Univ Catolica Rio de Janeiro, Dept Fis, CP 38071, BR-22452970 Rio De Janeiro, Brazil. EM nunokawa@fis.puc-rio.br; parke@fnal.gov; zukanov@if.usp.br RI Zukanovich Funchal, Renata/C-5829-2013; OI Zukanovich Funchal, Renata/0000-0001-6749-0022; Parke, Stephen/0000-0003-2028-6782 NR 64 TC 3 Z9 3 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2006 VL 74 IS 1 AR 013006 DI 10.1103/PhysRevD.74.013006 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 070HG UT WOS:000239511800024 ER PT J AU Sefusatti, E Crocce, M Pueblas, S Scoccimarro, R AF Sefusatti, Emiliano Crocce, Martin Pueblas, Sebastian Scoccimarro, Roman TI Cosmology and the bispectrum SO PHYSICAL REVIEW D LA English DT Article ID GALAXY REDSHIFT SURVEY; 3-POINT CORRELATION-FUNCTION; LARGE-SCALE STRUCTURE; HALO OCCUPATION DISTRIBUTION; POWER-SPECTRUM ANALYSIS; PROBE WMAP OBSERVATIONS; LUMINOUS RED GALAXIES; DARK-MATTER HALOES; DIGITAL SKY SURVEY; BACKGROUND ANISOTROPIES AB The present spatial distribution of galaxies in the Universe is non-Gaussian, with 40% skewness in 50h(-1) Mpc spheres, and remarkably little is known about the information encoded in it about cosmological parameters beyond the power spectrum. In this work we present an attempt to bridge this gap by studying the bispectrum, paying particular attention to a joint analysis with the power spectrum and their combination with CMB data. We address the covariance properties of the power spectrum and bispectrum including the effects of beat coupling that lead to interesting cross-correlations, and discuss how baryon acoustic oscillations break degeneracies. We show that the bispectrum has significant information on cosmological parameters well beyond its power in constraining galaxy bias, and when combined with the power spectrum is more complementary than combining power spectra of different samples of galaxies, since non-Gaussianity provides a somewhat different direction in parameter space. In the framework of flat cosmological models we show that most of the improvement of adding bispectrum information corresponds to parameters related to the amplitude and effective spectral index of perturbations, which can be improved by almost a factor of 2. Moreover, we demonstrate that the expected statistical uncertainties in sigma(8) of a few percent are robust to relaxing the dark energy beyond a cosmological constant. C1 Fermilab Natl Accelerator Lab, Particle Astrophys Ctr, Batavia, IL 60510 USA. NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. RP Sefusatti, E (reprint author), Fermilab Natl Accelerator Lab, Particle Astrophys Ctr, Batavia, IL 60510 USA. OI Sefusatti, Emiliano/0000-0003-0473-1567 NR 79 TC 77 Z9 77 U1 3 U2 7 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2006 VL 74 IS 2 AR 023522 DI 10.1103/PhysRevD.74.023522 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 070HH UT WOS:000239512000036 ER PT J AU Filevich, J Grava, J Purvis, M Marconi, MC Rocca, JJ Nilsen, J Dunn, J Johnson, WR AF Filevich, Jorge Grava, Jonathan Purvis, Mike Marconi, Mario C. Rocca, Jorge J. Nilsen, Joseph Dunn, James Johnson, Walter R. TI Prediction and observation of tin and silver plasmas with index of refraction greater than one in the soft x-ray range SO PHYSICAL REVIEW E LA English DT Article ID BOUND-ELECTRON CONTRIBUTION; LASER INTERFEROMETRY; DIAGNOSTICS; PHOTOABSORPTION; TRANSMISSION; CONDUCTION; SCATTERING; MIRROR; MODEL; NM AB We present the calculated prediction and the experimental confirmation that doubly ionized Ag and Sn plasmas can have an index of refraction greater than one for soft x-ray wavelengths. Interferometry experiments conducted using a capillary discharge soft x-ray laser operating at a wavelength of 46.9 nm (26.44 eV) confirm that in few times ionized laser-created plasmas of these elements the anomalous dispersion from bound electrons can dominate the free electron contribution, making the index of refraction greater than one. The results confirm that bound electrons can strongly influence the index of refraction of numerous plasmas over a broad range of soft x-ray wavelengths confirming recent observations. The understanding of index of refraction at short wavelengths will become even more essential during the next decade as x-ray free electron lasers will become available to probe a wider variety of plasmas at higher densities and shorter wavelengths. C1 Colorado State Univ, Dept Elect & Comp Engn, NSF ERC Extreme Ultraviolet Sci & Technol, Ft Collins, CO 80523 USA. Colorado State Univ, Dept Phys, NSF ERC Extreme Ultraviolet Sci & Technol, Ft Collins, CO 80523 USA. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. RP Filevich, J (reprint author), Colorado State Univ, Dept Elect & Comp Engn, NSF ERC Extreme Ultraviolet Sci & Technol, Ft Collins, CO 80523 USA. NR 34 TC 17 Z9 17 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2006 VL 74 IS 1 AR 016404 DI 10.1103/PhysRevE.74.016404 PN 2 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 069DJ UT WOS:000239425700053 PM 16907195 ER PT J AU Han, SI Pierce, KL Pines, A AF Han, Song-I Pierce, Kimberly L. Pines, Alexander TI NMR velocity mapping of gas flow around solid objects SO PHYSICAL REVIEW E LA English DT Article ID LASER-POLARIZED XENON; MAGNETIC-RESONANCE; POROUS-MEDIA; SPHERE; WAKE AB We present experimental visualizations of gas flow around solid blunt bodies by NMR imaging. NMR velocimetry is a model-free and tracer-free experimental means for quantitative and multi-dimensional flow visualization. Hyperpolarization of Xe-129 provided sufficient NMR signal to overcome the low density of the dilute gas phase, and its long coherence time allows for true velocity vector mapping. In this study, the diverging gas flow around and wake patterns immediately behind a sphere could be vectorally visualized and quantified. In a similar experiment, the flow over an aerodynamic model airplane body revealed a less disrupted flow pattern. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Han, SI (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RI Han, Songi/E-4723-2012 OI Han, Songi/0000-0001-6489-6246 NR 31 TC 4 Z9 4 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2006 VL 74 IS 1 AR 016302 DI 10.1103/PhysRevE.74.016302 PN 2 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 069DJ UT WOS:000239425700044 PM 16907186 ER PT J AU Hu, XS Jiang, Z Narayanan, S Jiao, XS Sandy, AR Sinha, SK Lurio, LB Lal, J AF Hu, Xuesong Jiang, Zhang Narayanan, Suresh Jiao, Xuesong Sandy, Alec R. Sinha, Sunil K. Lurio, Laurence B. Lal, Jyotsana TI Observation of a low-viscosity interface between immiscible polymer layers SO PHYSICAL REVIEW E LA English DT Article ID X-RAY-SCATTERING; INCOMPATIBLE POLYMERS; THIN-FILMS; POLYSTYRENE; SURFACES; SYSTEMS; BLENDS; WAVES; MODES AB X-ray photon correlation spectroscopy was employed in a surface standing wave geometry in order to resolve the thermally driven in-plane dynamics at both the surface/vacuum (top) and polymer/polymer (bottom) interfaces of a thin polystyrene (PS) film on top of Poly(4-bromo styrene) (PBrS) and supported on a Si substrate. The top vacuum interface shows two relaxation modes: one fast and one slow, while the buried polymer-polymer interface shows a single slow mode. The slow mode of the top interface is similar in magnitude and wave vector dependence to the single mode of the buried interface. The dynamics are consistent with a low-viscosity mixed layer between the PS and PBrS and coupling of the capillary wave fluctuations between this layer and the PS. C1 Argonne Natl Lab, Div Intense Pulsed Neutron Source, Argonne, IL 60439 USA. Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Hu, XS (reprint author), Argonne Natl Lab, Div Intense Pulsed Neutron Source, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Jiang, Zhang/A-3297-2012 OI Jiang, Zhang/0000-0003-3503-8909 NR 36 TC 26 Z9 26 U1 3 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2006 VL 74 IS 1 AR 010602 DI 10.1103/PhysRevE.74.010602 PN 1 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 069DI UT WOS:000239425600013 PM 16907050 ER PT J AU Jayaraman, A Scheel, JD Greenside, HS Fischer, PF AF Jayaraman, A. Scheel, J. D. Greenside, H. S. Fischer, P. F. TI Characterization of the domain chaos convection state by the largest Lyapunov exponent SO PHYSICAL REVIEW E LA English DT Article ID RAYLEIGH-BENARD CONVECTION; SPIRAL-DEFECT-CHAOS; KARHUNEN-LOEVE DECOMPOSITION; FINITE PRANDTL NUMBER; SPATIOTEMPORAL CHAOS; ROTATING CONVECTION; PATTERN-FORMATION; SPATIAL DISORDER; EXTENSIVE CHAOS; TRANSITION AB Using numerical integrations of the Boussinesq equations in rotating cylindrical domains with realistic boundary conditions, we have computed the value of the largest Lyapunov exponent lambda(1) for a variety of aspect ratios and driving strengths. We study in particular the domain chaos state, which bifurcates supercritically from the conducting fluid state and involves extended propagating fronts as well as point defects. We compare our results with those from Egolf , [Nature 404, 733 (2000)], who suggested that the value of lambda(1) for the spiral defect chaos state of a convecting fluid was determined primarily by bursts of instability arising from short-lived, spatially localized dislocation nucleation events. We also show that the quantity lambda(1) is not intensive for aspect ratios Gamma over the range 20 infinity) convergence behavior for the thermal-conductivity ratio is found to be second-order in both time step and cell size, in good agreement with previous theoretical predictions based on Green-Kubo theory. For vanishing time step and cell size, the finite-particle-number convergence behavior is found to be O(1/N-c) if similar to 30 or more particles per cell are used. The observed convergence behavior is found to be more complicated when all three discretization parameters are finite. As discretization errors are systematically reduced, the DSMC-calculated conductivity is shown to approach the infinite-approximation CE theoretical value to within 1 part in 10(4). C1 Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany. RP Rader, DJ (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM djrader@sandia.gov NR 31 TC 38 Z9 38 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD JUL PY 2006 VL 18 IS 7 AR 077102 DI 10.1063/1.2213640 PG 16 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 069CX UT WOS:000239424200037 ER PT J AU Ramakrishnan, S Collis, SS AF Ramakrishnan, Srinivas Collis, S. Scott TI Partition selection in multiscale turbulence modeling SO PHYSICS OF FLUIDS LA English DT Article ID LARGE-EDDY SIMULATION; PROPER ORTHOGONAL DECOMPOSITION; WALL-BOUNDED FLOWS; CHANNEL FLOW; REYNOLDS-NUMBER; REGION; EQUATIONS; LAYER AB The variational multiscale (VMS) method for large-eddy simulation (LES) is a promising new approach that employs variational projection to achieve a priori scale separation in lieu of traditional spatial filtering. However, depending on the numerical method used, VMS may not be convenient in all spatial directions. We apply the VMS methodology to a numerical method that does not support explicit scale separation in the wall-normal direction for turbulent channel flow. Similar to the common LES practice of filtering only in the planes, variational projection is performed only in the planes and this strategy is found to be as successful as the full VMS method. However, in all VMS approaches, the partition between the large and small scales and the overall resolution are crucial parameters for obtaining quality solutions. By applying scale separation in just one of the coordinate directions, we have developed a consistent method for partition and resolution selection in channel flow that is related to the physical structures in the near-wall region. The idea behind this approach can, potentially, be extended for informed VMS parameter selection in other flows. C1 Rice Univ, Houston, TX 77005 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Collis, SS (reprint author), Rice Univ, Houston, TX 77005 USA. EM sscoll@sandia.gov NR 33 TC 7 Z9 7 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD JUL PY 2006 VL 18 IS 7 AR 075105 DI 10.1063/1.2227002 PG 16 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 069CX UT WOS:000239424200029 ER PT J AU Ristorcelli, JR AF Ristorcelli, J. R. TI Passive scalar mixing: Analytic study of time scale ratio, variance, and mix rate SO PHYSICS OF FLUIDS LA English DT Article ID GRID-GENERATED TURBULENCE; DIRECT NUMERICAL SIMULATIONS; HOMOGENEOUS ISOTROPIC TURBULENCE; TEMPERATURE-FLUCTUATIONS; SCHMIDT NUMBER; DECAY; ENERGY; DISSIPATION; STATISTICS; TRANSPORT AB Some very reasonable approximations, consistent with numerical and experimental evidence, were applied to the skewness and palinstrophy coefficients in the dissipation equations to produce a simple closed moment model for mixing. Such a model, first suggested on the grounds of a Taylor microscale self-similarity of the scalar field, was studied numerically by Gonzalez and Fall ["The approach to self-preservation of scalar fluctuation decay in isotropic turbulence," Phys. Fluids 10, 654 (1998)]. Here, in a somewhat old fashioned and physically meaningful style, analytic solutions to the four coupled nonlinear moment equations for mixing by decaying and forced stationary turbulence, are given. Analytic expressions for the variance < c(2)>, the mixing rate epsilon(c), and the time scale ratio r(t) are derived and compared in different mixing situations. The solutions show the sensitive dependence on the initial relative length ratio as studied experimentally by Warhaft and Lumley ["An experimental study of the decay of temperature fluctuations in grid-generated turbulence," J. Fluid Mech. 88, 659 (1978)], and simulated by Eswaran and Pope ["Direct numerical simulation of the turbulent mixing of a passive scalar," Phys. Fluids 31, 506 (1988)]. The length scale ratio saturation effect predicted by Durbin ["Analysis of the decay of temperature fluctuations in isotropic turbulence," Phys. Fluids 25, 1328 (1982)], resolving the apparent contradiction with the results of Sreenivasan, Tavoularis, and Corrsin ["Temperature fluctuations and scales in grid generated turbulence," J. Fluid Mech. 100, 597 (1980)] is predicted. For stationary turbulence the solutions indicate, in contradistinction to the power law "stirring" result predicted by a stochastic Lagrangian analysis, that the mixing is asymptotically exponential as shown in the phenomenological analysis of Corrsin ["The isotropic turbulent mixer," AIChE J. 10, 870 (1964)]. That the time scale ratio solution also depends on Reynolds number is consistent with the DNS observations of Overholt and Pope ["Direct numerical simulation of passive scalar with imposed mean gradient in isotropic turbulence," Phys. Fluids 31, 506 (1998)]. As a consequence, the customary approximations in k-epsilon type turbulence moment models for the mixing rate is, on theoretical grounds, not justified. The analysis predicts important phenomenological differences between mixing by stationary forced turbulence and decaying turbulence. Mixing by forced turbulence is asymptotically exponential with long lasting dependence on the initial time scale ratio and features an intermediate time transient. The time scale for the variance < c(2)> and its mix rate epsilon(c) are commensurate. Mixing by decaying turbulence appears described by variable power law and only asymptotically as a constant power law. In decaying turbulence the characteristic time scale of < c(2)> and epsilon(c) are very different and dependent on Reynolds number. An additional class of decays, seen by Antonia ["Scaling of the mean energy dissipation rate equation in grid turbulence," J. Turbulence 3, 1 (2002)], in which the palinstrophy coefficient scales as R-lambda, is subsumed by this analysis. Solutions for mixing by constant power law decay (k similar to t(c)(-n)) are given. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ristorcelli, JR (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jrrj@lanl.gov NR 54 TC 11 Z9 11 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD JUL PY 2006 VL 18 IS 7 AR 075101 DI 10.1063/1.2214704 PG 17 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 069CX UT WOS:000239424200025 ER PT J AU Chu, TK AF Chu, T. K. TI A hypothesis of inductive drive to explain the sawtooth measurements of tokamak experiment for technology oriented research (TEXTOR) SO PHYSICS OF PLASMAS LA English DT Article ID FUSION TEST REACTOR; INTERNAL DISRUPTIONS; SAFETY FACTOR; PROFILE; DISCHARGES; PLASMA; OSCILLATIONS; COLLAPSE; PEAKING; MODEL AB A hypothesis, based on the current density profile determined from the principle of minimum dissipation of magnetic energy, is applied to explain the measurement of q(0) and current variation in a sawtooth cycle in tokomak experiment for technology oriented research (TEXTOR) [Plasma Physics and Controlled Nuclear Fusion Research (IAEA, Vienna, 1985), Vol. I, p. 193]. A sawtooth oscillation is triggered when the on-axis current density in a configuration with m=0 and n=0 symmetry is driven inductively to a limit. (c) 2006 American Institute of Physics. C1 Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Chu, TK (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM tchu@pppl.gov NR 32 TC 0 Z9 0 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2006 VL 13 IS 7 AR 072503 DI 10.1063/1.2216934 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 069CY UT WOS:000239424400021 ER PT J AU Evstatiev, EG Delzanno, GL Finn, JM AF Evstatiev, E. G. Delzanno, G. L. Finn, J. M. TI A new method for analyzing line-tied kink modes in cylindrical geometry SO PHYSICS OF PLASMAS LA English DT Article ID RESISTIVE BALLOONING MODES; CORONAL LOOPS; MAGNETIC LOOP; FINITE-LENGTH; GROWTH-RATES; INSTABILITIES; STABILITY; FIELDS; EQUILIBRIUM; PINCH AB A new method for studying linear stability of the m=1 (kink) mode in a cylinder with line-tied boundary conditions is presented. The method is applicable to both resistive and ideal MHD. It is based on expansion in one-dimensional eigenfunctions depending on the radius, satisfying boundary conditions on the cylindrical axis and radial wall. The boundary conditions at the end plates are satisfied by a sum of such radial eigenfunctions. The spectrum of possibly complex axial eigenvalues k is studied and is shown to consist of a continuum part and a discrete part in ideal MHD. Only the discrete part is used to give an approximation to the complete two-dimensional eigenfunction. The method is applied to a special equilibrium magnetic field with constant field line pitch. The role of the individual radial eigenfunctions is explained. It is shown that our method reproduces previously found values of the critical pitch (at marginal stability) for a plasma column in vacuum. The method also suggests important differences between ideal and resistive MHD. (c) 2006 American Institute of Physics. C1 Los Alamos Natl Lab, Plasma Theory Grp T 15, Los Alamos, NM 87545 USA. RP Evstatiev, EG (reprint author), Los Alamos Natl Lab, Plasma Theory Grp T 15, Los Alamos, NM 87545 USA. NR 26 TC 15 Z9 19 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2006 VL 13 IS 7 AR 072902 DI 10.1063/1.2219426 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 069CY UT WOS:000239424400033 ER PT J AU Lewandowski, JLV Rewoldt, G Ethier, S Lee, WW Lin, Z AF Lewandowski, J. L. V. Rewoldt, G. Ethier, S. Lee, W. W. Lin, Z. TI Global particle-in-cell simulations of microturbulence with kinetic electrons SO PHYSICS OF PLASMAS LA English DT Article ID SHEAR-ALFVEN WAVES; GYROKINETIC SIMULATIONS; ELECTROMAGNETIC SIMULATION; TURBULENCE SIMULATIONS; TOROIDAL GEOMETRY; GENERAL GEOMETRY; ZONAL FLOWS; DRIFT WAVES; TRANSPORT; PLASMAS AB The effects of nonadiabatic electrons on ion temperature gradient drift instabilities have been studied in global toroidal geometry using the gyrokinetic particle simulation approach. Compared to the nonlinear global simulations based on only the adiabatic response of the electrons, we have found that the cross-field ion heat transport is two to three times larger in the presence of trapped electrons as compared to the purely adiabatic electron case, and that the zonal component of the electrostatic potential has a shorter wavelength. The numerical methods for calculating both the adiabatic and the nonadiabatic responses for the electrons are presented. (c) 2006 American Institute of Physics. C1 Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. Univ Calif Irvine, Irvine, CA 92697 USA. RP Lewandowski, JLV (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 46 TC 4 Z9 4 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2006 VL 13 IS 7 AR 072306 DI 10.1063/1.2221931 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 069CY UT WOS:000239424400016 ER PT J AU White, AE Zweben, SJ Burin, MJ Carter, TA Hahm, TS Krommes, JA Maqueda, RJ AF White, A. E. Zweben, S. J. Burin, M. J. Carter, T. A. Hahm, T. S. Krommes, J. A. Maqueda, R. J. TI Bispectral analysis of low- to high-confinement mode transitions in the National Spherical Torus Experiment SO PHYSICS OF PLASMAS LA English DT Article ID REYNOLDS STRESS; FLOW GENERATION; EDGE TURBULENCE; H TRANSITION; TRANSPORT; NSTX; BICOHERENCE; DYNAMICS; PLASMAS; TOKAMAK AB This paper will present an experimental study of the temporal and spatial characteristics of the autobicoherence calculated from light amplitude fluctuations measured in the edge plasma of the National Spherical Torus Experiment (NSTX) [M. Ono , Plasma Phys. Controlled Fusion 45, A335 (2003)] using data from the gas puff imaging (GPI) diagnostic [R. J. Maqueda , Rev. Sci. Instrum. 74, 2020 (2003); S. J. Zweben , Nucl. Fusion 44, 134 (2004)] obtained during a series of thirteen shots in which the NSTX plasma underwent spontaneous low- to high-confinement mode (L-H) transitions. The autobicoherence calculated from the available GPI chord signals in the region near the magnetic separatrix and just above the outer midplane indicates that there is no significant increase, i.e., outside the rms error, in the amount of nonlinear coupling between low frequency fluctuations and high frequency fluctuations during the 10 ms before the transition. Limitations of bicoherence analysis are discussed. (c) 2006 American Institute of Physics. C1 Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08540 USA. Nova Photon Inc, Princeton, NJ 08540 USA. RP White, AE (reprint author), Univ Calif Los Angeles, Los Angeles, CA 90095 USA. EM white@physics.ucla.edu RI Carter, Troy/E-7090-2010; White, Anne/B-8990-2011 OI Carter, Troy/0000-0002-5741-0495; NR 37 TC 18 Z9 18 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2006 VL 13 IS 7 AR 072301 DI 10.1063/1.2215439 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 069CY UT WOS:000239424400011 ER PT J AU Yin, L Daughton, W Albright, BJ Bowers, KJ Montgomery, DS Kline, JL Fernandez, JC Roper, Q AF Yin, L. Daughton, W. Albright, B. J. Bowers, K. J. Montgomery, D. S. Kline, J. L. Fernandez, J. C. Roper, Q. TI Nonlinear backward stimulated Raman scattering from electron beam acoustic modes in the kinetic regime SO PHYSICS OF PLASMAS LA English DT Article ID PARAMETRIC-INSTABILITIES; BRILLOUIN-SCATTERING; DECAY INSTABILITY; PLASMA-WAVES; HOT-SPOTS; BACKSCATTER; PHYSICS AB The backward stimulated Raman scattering (BSRS) of a laser from electron beam acoustic modes (BAM) in the presence of self-consistent non-Maxwellian velocity distributions is examined by linear theory and particle-in-cell (PIC) simulations in one and two dimensions (1D and 2D). The BAM evolve from Langmuir waves (LW) as electron trapping modifies the distribution to a non-Maxwellian form that exhibits a beam component. Linear dispersion relations using the nonlinearly modified distribution from simulations are solved for the electrostatic modes involved in the parametric coupling. Results from linear analysis agree well with electrostatic spectra from simulations. It is shown that the intersection of the Stokes root with BAM (instead of LW) determines the matching conditions for BSRS at a nonlinear stage. As the frequency of the unstable Stokes mode decreases with increasing wave number, the damping rate and the phase velocity of BAM decreases with the phase velocity of the Stokes mode, providing a self-consistently evolving plasma linear response that favors continuation of the nonlinear frequency shift. Coincident with the emergence of BAM is a rapid increase in BSRS reflectivity. The details of the wave-particle interaction region in the electron velocity distribution determine the growth/damping rate of these electrostatic modes and the nonlinear frequency shift; in modeling this behavior, the use of sufficiently large numbers of particles in the simulations is crucial. Both the reflectivity scaling with laser intensity and the spectral features from simulations are discussed and are consistent with recent Trident experiments. (c) 2006 American Institute of Physics. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Iowa, Iowa City, IA 52242 USA. Drake Univ, Iowa City, IA 52242 USA. RP Yin, L (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM lyin@lanl.gov RI Fernandez, Juan/H-3268-2011; Daughton, William/L-9661-2013; OI Fernandez, Juan/0000-0002-1438-1815; Albright, Brian/0000-0002-7789-6525; Yin, Lin/0000-0002-8978-5320; Kline, John/0000-0002-2271-9919 NR 34 TC 25 Z9 25 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2006 VL 13 IS 7 AR 072701 DI 10.1063/1.2210929 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 069CY UT WOS:000239424400031 ER PT J AU Inokuti, M Bederson, B AF Inokuti, Mitio Bederson, Benjamin TI Tributes to Hans Bethe continue SO PHYSICS TODAY LA English DT Letter C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Inokuti, M (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM inokuti@anl.gov; ben.bederson@nyu.edu NR 1 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD JUL PY 2006 VL 59 IS 7 BP 8 EP 9 PG 2 WC Physics, Multidisciplinary SC Physics GA 059QC UT WOS:000238746300004 ER PT J AU Peshkin, M AF Peshkin, Murray TI Addressing the public about science and religion SO PHYSICS TODAY LA English DT Editorial Material C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Peshkin, M (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. NR 2 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD JUL PY 2006 VL 59 IS 7 BP 46 EP 47 PG 2 WC Physics, Multidisciplinary SC Physics GA 059QC UT WOS:000238746300028 ER PT J AU Crease, RP AF Crease, Robert P. TI Critical Point - The retirement problem SO PHYSICS WORLD LA English DT Editorial Material C1 SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD JUL PY 2006 VL 19 IS 7 BP 14 EP 14 PG 1 WC Physics, Multidisciplinary SC Physics GA 062YM UT WOS:000238982900016 ER PT J AU Sarret, G Harada, E Choi, YE Isaure, MP Geoffroy, N Fakra, S Marcus, MA Birschwilks, M Clemens, S Manceau, A AF Sarret, Geraldine Harada, Emiko Choi, Yong-Eui Isaure, Marie-Pierre Geoffroy, Nicolas Fakra, Sirine Marcus, Matthew A. Birschwilks, Mandy Clemens, Stephan Manceau, Alain TI Trichomes of tobacco excrete zinc as zinc-substituted calcium carbonate and other zinc-containing compounds SO PLANT PHYSIOLOGY LA English DT Article ID HYPERACCUMULATOR ARABIDOPSIS-HALLERI; X-RAY-FLUORESCENCE; HEAVY-METALS; EXAFS SPECTROSCOPY; ZN SPECIATION; CADMIUM; ACCUMULATION; LEAVES; PLANTS; TOLERANCE AB Tobacco (Nicotiana tabacum L. cv Xanthi) plants were exposed to toxic levels of zinc (Zn). Zn exposure resulted in toxicity signs in plants, and these damages were partly reduced by a calcium (Ca) supplement. Confocal imaging of intracellular Zn using Zinquin showed that Zn was preferentially accumulated in trichomes. Exposure to Zn and Zn + Ca increased the trichome density and induced the production of Ca/Zn mineral grains on the head cells of trichomes. These grains were aggregates of submicrometer-sized crystals and poorly crystalline material and contained Ca as major element, along with subordinate amounts of Zn, manganese, potassium, chlorine, phosphorus, silicon, and magnesium. Micro x-ray diffraction revealed that the large majority of the grains were composed essentially of metal-substituted calcite (CaCO3). CaCO3 polymorphs (aragonite and vaterite) and CaC2O4 (Ca oxalate) mono- and dihydrate also were identified, either as an admixture to calcite or in separate grains. Some grains did not diffract, although they contained Ca, suggesting the presence of amorphous form of Ca. The presence of Zn-substituted calcite was confirmed by Zn K-edge micro-extended x-ray absorption fine structure spectroscopy. Zn bound to organic compounds and Zn-containing silica and phosphate were also identified by this technique. The proportion of Zn-substituted calcite relative to the other species increased with Ca exposure. The production of Zn-containing biogenic calcite and other Zn compounds through the trichomes is a novel mechanism involved in Zn detoxification. This study illustrates the potential of laterally resolved x-ray synchrotron radiation techniques to study biomineralization and metal homeostasis processes in plants. C1 Univ Grenoble, Environm Geochem Grp, Lab Geophys Interne & Tectonophys, F-38041 Grenoble 9, France. CNRS, F-38041 Grenoble 9, France. Kangwon Natl Univ, Coll Forest Sci, Div Forest Resources, Chunchon 200701, South Korea. Leibniz Inst Pflanzenbiochem, D-06120 Halle, Germany. Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Choi, YE (reprint author), Univ Grenoble, Environm Geochem Grp, Lab Geophys Interne & Tectonophys, F-38041 Grenoble 9, France. EM yechoi@kangwon.ac.kr RI Clemens, Stephan/A-5107-2009; Sarret, Geraldine/I-2797-2016; OI Clemens, Stephan/0000-0003-0570-1060; Birschwilks, Mandy/0000-0003-1630-9910; Harada, Emiko/0000-0002-8479-8034 NR 50 TC 66 Z9 67 U1 0 U2 44 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 EI 1532-2548 J9 PLANT PHYSIOL JI Plant Physiol. PD JUL PY 2006 VL 141 IS 3 BP 1021 EP 1034 DI 10.1104/pp.106.082743 PG 14 WC Plant Sciences SC Plant Sciences GA 060WU UT WOS:000238833400021 PM 16731580 ER PT J AU Busov, V Meilan, R Pearce, DW Rood, SB Ma, CP Tschaplinski, TJ Strauss, SH AF Busov, V Meilan, R Pearce, DW Rood, SB Ma, CP Tschaplinski, TJ Strauss, SH TI Transgenic modification of gai or rgl1 causes dwarfing and alters gibberellins, root growth, and metabolite profiles in Populus SO PLANTA LA English DT Article DE metabolic profiling; adaptation; DELLA proteins; root formation ID ARABIDOPSIS-THALIANA; SIGNAL-TRANSDUCTION; AGROBACTERIUM-TUMEFACIENS; LIGNIN BIOSYNTHESIS; NEGATIVE REGULATOR; PLANT-GROWTH; GENE; MUTANT; EXPRESSION; ENCODES AB In Arabidopsis and other plants, gibberellin (GA)-regulated responses are mediated by proteins including GAI, RGA and RGL1-3 that contain a functional DELLA domain. Through transgenic modification, we found that DELLA-less versions of GAI (gai) and RGL1 (rgl1) in a Populus tree have profound, dominant effects on phenotype, producing pleiotropic changes in morphology and metabolic profiles. Shoots were dwarfed, likely via constitutive repression of GA-induced elongation, whereas root growth was promoted two- to threefold in vitro. Applied GA(3) inhibited adventitious root production in wild-type poplar, but gai/rgl1 poplars were unaffected by the inhibition. The concentrations of bioactive GA(1) and GA(4) in leaves of gai- and rgl1-expressing plants increased 12- to 64-fold, while the C-19 precursors of GA(1) (GA(53), GA(44) and GA(19)) decreased three- to ninefold, consistent with feedback regulation of GA 20-oxidase in the transgenic plants. The transgenic modifications elicited significant metabolic changes. In roots, metabolic profiling suggested increased respiration as a possible mechanism of the increased root growth. In leaves, we found metabolite changes suggesting reduced carbon flux through the lignin biosynthetic pathway and a shift towards allocation of secondary storage and defense metabolites, including various phenols, phenolic glucosides, and phenolic acid conjugates. C1 Michigan Technol Univ, Sch Forest Resources & Environm Sci, Houghton, MI 49931 USA. Purdue Univ, Dept Forestry & Nat Resources, W Lafayette, IN 47907 USA. Univ Lethbridge, Dept Biol Sci, Lethbridge, AB T1K 3M4, Canada. Oregon State Univ, Dept Forest Sci, Corvallis, OR 97331 USA. Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Busov, V (reprint author), Michigan Technol Univ, Sch Forest Resources & Environm Sci, Houghton, MI 49931 USA. EM vbusov@mtu.edu OI Tschaplinski, Timothy/0000-0002-9540-6622; Rood, Stewart/0000-0003-1340-1172 NR 45 TC 57 Z9 65 U1 2 U2 23 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0032-0935 J9 PLANTA JI Planta PD JUL PY 2006 VL 224 IS 2 BP 288 EP 299 DI 10.1007/s00425-005-0213-9 PG 12 WC Plant Sciences SC Plant Sciences GA 056KZ UT WOS:000238523000006 PM 16404575 ER PT J AU Tam, C Glass, EM Anderson, DM Missiakas, D AF Tam, C Glass, EM Anderson, DM Missiakas, D TI Transposon mutagenesis of Bacillus anthracis strain Sterne using Bursa aurealis SO PLASMID LA English DT Article DE transposon mutagenesis; Bursa aurealis; Bacillus anthracis ID VIRULENCE GENES; STAPHYLOCOCCUS-AUREUS; REGULATOR AB Bacillus anthracis, a spore forming Gram-positive microbe, is the causative agent of anthrax. Although plasmid encoded factors such as lethal toxin (LeTx), edema toxin (EdTx), and gamma-poly-D-glutamic acid (PGA) capsule are known to be required for disease pathogenesis, B. anthracis genes that enable spore invasion, phagosomal escape and macrophage replication are still unknown. To establish transposon mutagenesis as a tool for the characterization of anthrax genes, we employed the mariner-based mini-transposon Bursa aurealis in B. anthracis strain Sterne 7702. B. aurealis carrying an erythromycin resistance cassette and its cognate transposase were delivered by transformation of two plasmids. B. aurealis transposition can be selected for by temperature shift to prevent plasmid replication and by screening colonies for erythromycin resistance. Using inverse polymerase chain reaction, DNA fragments of 129 random erythromycin-resistant transposon mutants were amplified and submitted to DNA sequence analysis. These studies demonstrate that B. aurealis inserts randomly into the genome of B. anthracis and can therefore be employed for finding genes involved in virulence. (c) 2006 Elsevier Inc. All rights reserved. C1 Univ Chicago, Dept Microbiol, Chicago, IL 60637 USA. Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. RP Missiakas, D (reprint author), Univ Chicago, Dept Microbiol, Chicago, IL 60637 USA. EM dmissiak@bsd.uchicago.edu FU NIAID NIH HHS [1-U54-AI-057153]; NIGMS NIH HHS [T32GM007183] NR 17 TC 23 Z9 24 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0147-619X J9 PLASMID JI Plasmid PD JUL PY 2006 VL 56 IS 1 BP 74 EP 77 DI 10.1016/j.plasmid.2006.01.002 PG 4 WC Genetics & Heredity; Microbiology SC Genetics & Heredity; Microbiology GA 053AT UT WOS:000238276600009 PM 16530833 ER PT J AU Voy, BH Scharff, JA Perkins, AD Saxton, AM Borate, B Chesler, EJ Branstetter, LK Langston, MA AF Voy, Brynn H. Scharff, Jon A. Perkins, Andy D. Saxton, Arnold M. Borate, Bhavesh Chesler, Elissa J. Branstetter, Lisa K. Langston, Michael A. TI Extracting gene networks for low-dose radiation using graph theoretical algorithms SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID C-LIKE PROTEIN; MICROARRAY DATA; EXPRESSION PATTERNS; IONIZING-RADIATION; CELLS; GROWTH; COEXPRESSION; MOUSE; MICE; PHOSPHORYLATION AB Genes with common functions often exhibit correlated expression levels, which can be used to identify sets of interacting genes from microarray data. Microarrays typically measure expression across genomic space, creating a massive matrix of co-expression that must be mined to extract only the most relevant gene interactions. We describe a graph theoretical approach to extracting co-expressed sets of genes, based on the computation of cliques. Unlike the results of traditional clustering algorithms, cliques are not disjoint and allow genes to be assigned to multiple sets of interacting partners, consistent with biological reality. A graph is created by thresholding the correlation matrix to include only the correlations most likely to signify functional relationships. Cliques computed from the graph correspond to sets of genes for which significant edges are present between all members of the set, representing potential members of common or interacting pathways. Clique membership can be used to infer function about poorly annotated genes, based on the known functions of better-annotated genes with which they share clique membership (i.e., "guilt-by-association''). We illustrate our method by applying it to microarray data collected from the spleens of mice exposed to low-dose ionizing radiation. Differential analysis is used to identify sets of genes whose interactions are impacted by radiation exposure. The correlation graph is also queried independently of clique to extract edges that are impacted by radiation. We present several examples of multiple gene interactions that are altered by radiation exposure and thus represent potential molecular pathways that mediate the radiation response. C1 Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN USA. Univ Tennessee, Dept Comp Sci, Knoxville, TN 37996 USA. Univ Tennessee, Dept Anim Sci, Knoxville, TN 37996 USA. RP Voy, BH (reprint author), Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN USA. EM voybh@ornl.gov RI Langston, Michael/A-9484-2011 FU NIDA NIH HHS [1-P01-DA-015027-01, P01 DA015027]; NIMH NIH HHS [1-R01-MH-074460-01] NR 66 TC 50 Z9 55 U1 0 U2 0 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD JUL PY 2006 VL 2 IS 7 BP 757 EP 768 AR e89 DI 10.1371/journal.pcbi.0020089 PG 12 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 070BA UT WOS:000239494100010 PM 16854212 ER PT J AU Wang, J Lu, Q Lu, HP AF Wang, Jin Lu, Qiang Lu, H. Peter TI Single-molecule dynamics reveals cooperative binding-folding in protein recognition SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID TRANSITION-STATE ENSEMBLE; ALDRICH-SYNDROME PROTEIN; MONTE-CARLO SIMULATIONS; ENERGY LANDSCAPE; CONFORMATIONAL DYNAMICS; CONTACT ORDER; MECHANISM; CDC42; TOPOLOGY; FUNNELS AB The study of associations between two biomolecules is the key to understanding molecular function and recognition. Molecular function is often thought to be determined by underlying structures. Here, combining a single-molecule study of protein binding with an energy-landscape-inspired microscopic model, we found strong evidence that biomolecular recognition is determined by flexibilities in addition to structures. Our model is based on coarse-grained molecular dynamics on the residue level with the energy function biased toward the native binding structure ( the Go model). With our model, the underlying free-energy landscape of the binding can be explored. There are two distinct conformational states at the free-energy minimum, one with partial folding of CBD itself and significant interface binding of CBD to Cdc42, and the other with native folding of CBD itself and native interface binding of CBD to Cdc42. This shows that the binding process proceeds with a significant interface binding of CBD with Cdc42 first, without a complete folding of CBD itself, and that binding and folding are then coupled to reach the native binding state. The single-molecule experimental finding of dynamic fluctuations among the loosely and closely bound conformational states can be identified with the theoretical, calculated free-energy minimum and explained quantitatively in the model as a result of binding associated with large conformational changes. The theoretical predictions identified certain key residues for binding that were consistent with mutational experiments. The combined study identified fundamental mechanisms and provided insights about designing and further exploring biomolecular recognition with large conformational changes. C1 Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun, Jilin, Peoples R China. SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. SUNY Stony Brook, Dept Phys, Stony Brook, NY 11794 USA. Pacific NW Natl Lab, Fundamental Sci Div, Richland, WA 99352 USA. RP Wang, J (reprint author), Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun, Jilin, Peoples R China. EM jin.wang.1@stonybrook.edu; peter.lu@pnl.gov NR 50 TC 42 Z9 43 U1 2 U2 8 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-734X EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD JUL PY 2006 VL 2 IS 7 BP 842 EP 852 AR e78 DI 10.1371/journal.pcbi.0020078 PG 11 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 070BA UT WOS:000239494100017 PM 16839193 ER PT J AU Blower, MD Daigle, T Kaufman, T Karpen, GH AF Blower, Michael D. Daigle, Tanya Kaufman, Thom Karpen, Gary H. TI Drosophila CENP-A mutations cause a BubR1-dependent early mitotic delay without normal localization of kinetochore components SO PLOS GENETICS LA English DT Article ID SPINDLE-ASSEMBLY CHECKPOINT; ACCURATE CHROMOSOME SEGREGATION; SACCHAROMYCES-CEREVISIAE; CENTROMERIC CHROMATIN; DNA-DAMAGE; CAENORHABDITIS-ELEGANS; FISSION YEAST; LIVING CELLS; HELA-CELLS; PROTEIN AB The centromere/kinetochore complex plays an essential role in cell and organismal viability by ensuring chromosome movements during mitosis and meiosis. The kinetochore also mediates the spindle attachment checkpoint ( SAC), which delays anaphase initiation until all chromosomes have achieved bipolar attachment of kinetochores to the mitotic spindle. CENP-A proteins are centromere- specific chromatin components that provide both a structural and a functional foundation for kinetochore formation. Here we show that cells in Drosophila embryos homozygous for null mutations in CENP-A (CID) display an early mitotic delay. This mitotic delay is not suppressed by inactivation of the DNA damage checkpoint and is unlikely to be the result of DNA damage. Surprisingly, mutation of the SAC component BUBR1 partially suppresses this mitotic delay. Furthermore, cid mutants retain an intact SAC response to spindle disruption despite the inability of many kinetochore proteins, including SAC components, to target to kinetochores. We propose that SAC components are able to monitor spindle assembly and inhibit cell cycle progression in the absence of sustained kinetochore localization. C1 Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. Univ Washington, Dept Anesthesiol, Seattle, WA 98195 USA. Indiana Univ, Dept Biol, Bloomington, IN 47405 USA. Lawrence Berkeley Lab, Dept Genome Biol, Berkeley, CA USA. RP Karpen, GH (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM karpen@fruitfly.org FU NIGMS NIH HHS [R01 GM066272-04, R01 GM066272] NR 54 TC 26 Z9 27 U1 1 U2 2 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7390 J9 PLOS GENET JI PLoS Genet. PD JUL PY 2006 VL 2 IS 7 BP 1025 EP 1033 AR e110 DI 10.1371/journal.pgen.0020110 PG 9 WC Genetics & Heredity SC Genetics & Heredity GA 070BH UT WOS:000239494800013 PM 16839185 ER PT J AU Miller, PF de Souza, MM Moratti, SC Holmes, AB Samuel, IDW Rumbles, G AF Miller, Paul F. de Souza, Melanie M. Moratti, Stephen C. Holmes, Andrew B. Samuel, Ifor D. W. Rumbles, Garry TI The equilibration of intrachain and interchain excitations in aggregates of a cyano-substituted phenylene vinylene polymer SO POLYMER INTERNATIONAL LA English DT Article DE CNPPV; MEH-CNPPV; MDMO-CNPPV; OC1C10-CNPPV; excimer; exciplex; aggregates; interchain excitation; intrachain excitation; conjugated polymer ID AFFINITY CONJUGATED POLYMER; MODEL COMPOUNDS; FILM MORPHOLOGY; PHOTOLUMINESCENCE; LUMINESCENCE; FLUORESCENCE; PHOTOPHYSICS; POLYFLUORENE; DIODES; LIGHT AB Aggregates formed in dilute solutions of poly[2,2'-dimethoxy-5,5'-di-(2",7"-dimethyloctyloxy)-dicyanodi-p-phenylene vinylene], OC1C10-CNPPV, in toluene exhibit emission from both an intrachain and an interchain excitation that equilibrate on the timescale of the excited states. The position of the equilibrium can be adjusted with temperature, and a binding energy of 130 meV for the interchain species has been determined. A repulsion energy of 350 meV demonstrates that the interchain excitation is not bound in the ground state, indicative of an excited dimer or complex. At ambient temperatures the equilibrated state exhibits a mean photoluminescence quantum yield of 19% that actually decreases with a reduction in temperature, but a mean photoluminescence lifetime of 4.2 ns that shows a moderate increase. These counterintuitive observations, which imply a strong dependence upon temperature of the mean natural radiative lifetime, arise from the relative weighting factors of the two individual natural radiative lifetimes of the interacting species and the dependence upon the position of equilibrium. (C) 2006 Society of Chemical Industry. C1 Univ London Imperial Coll Sci & Technol, Dept Chem, London SW7 2AY, England. Univ Cambridge, Melville Lab Polymer Synth, Cambridge CB2 3RA, England. Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. RP Rumbles, G (reprint author), Natl Renewable Energy Lab, Ctr Basic Sci, MS3216,1617 Cole Blvd, Golden, CO 80401 USA. EM garry_rumbles@nrel.gov RI Moratti, Stephen/B-4422-2009; OI Samuel, Ifor/0000-0001-7821-7208; Rumbles, Garry/0000-0003-0776-1462 NR 38 TC 9 Z9 9 U1 1 U2 5 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0959-8103 J9 POLYM INT JI Polym. Int. PD JUL PY 2006 VL 55 IS 7 BP 784 EP 792 DI 10.1002/pi.2028 PG 9 WC Polymer Science SC Polymer Science GA 056TN UT WOS:000238548100011 ER PT J AU Sinha, SK Roy, S Fitzsimmons, MR Park, S Dorn, M Petracic, O Roshchin, IV Li, ZP Batlle, X Morales, R Misra, A Zhang, X Chesnel, K Kortright, JB Schuller, IK AF Sinha, Sunil K. Roy, S. Fitzsimmons, M. R. Park, S. Dorn, M. Petracic, O. Roshchin, I. V. Li, Zhi-Pan Batlle, X. Morales, R. Misra, A. Zhang, X. Chesnel, K. Kortright, J. B. Schuller, Ivan K. TI Combined neutron and synchrotron studies of magnetic films SO PRAMANA-JOURNAL OF PHYSICS LA English DT Article; Proceedings Paper CT 50th Annual DAE-BRNS Solid State Physics Symposium CY DEC 05-09, 2005 CL Bhabha Atom Res Ctr, Mumbai, INDIA SP Tata Inst Fundamental Res, DAE, BRNS HO Bhabha Atom Res Ctr DE neutron reflectometry; X-ray reflectometry; magnetic films ID EXCHANGE BIAS; ANISOTROPY AB We discuss specular reflectivity and off-specular scattering of neutrons and X-rays from magnetic films. Both these techniques are capable of providing information about the morphology of the chemical and magnetic roughness and the magnetic domain structure. The use of neutrons with polarization analysis enables the spatial distribution of different vector components of the magnetization to be determined, and the use of resonant magnetic X-ray scattering enables magnetization in a compound system to be determined element-selectively. Thus both these methods provide powerful and complementary new probes for studying magnetism at the nanoscopic level in a variety of systems such as those exhibiting exchange bias, giant magnetoresistance, spin injection, etc. We shall illustrate with an example of both techniques applied to an exchange bias system consisting of a single crystal of antiferromagnetic FeF2 capped with a ferromagnetic Co film, and discuss what has been learned about how exchange bias works in such a system. C1 Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Duisburg Essen, D-47048 Duisburg, Germany. Univ Barcelona, Dept Fis Fonamental, E-08028 Barcelona, Catalonia, Spain. Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Sinha, SK (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. EM ssinha@physics.ucsd.edu RI Lujan Center, LANL/G-4896-2012; MSD, Nanomag/F-6438-2012; Misra, Amit/H-1087-2012; Batlle, Xavier/H-5795-2012; Roshchin, Igor/I-5162-2012; Morales, Rafael/F-8215-2016; OI Petracic, Oleg/0000-0002-5138-9832 NR 9 TC 1 Z9 1 U1 0 U2 5 PU INDIAN ACADEMY SCIENCES PI BANGALORE PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA SN 0304-4289 J9 PRAMANA-J PHYS JI Pramana-J. Phys. PD JUL PY 2006 VL 67 IS 1 BP 47 EP 55 DI 10.1007/s12043-006-0035-8 PG 9 WC Physics, Multidisciplinary SC Physics GA 065XG UT WOS:000239192800005 ER PT J AU Smith, ST Seugling, RM AF Smith, Stuart T. Seugling, Richard M. TI Sensor and actuator considerations for precision, small machines SO PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY LA English DT Review DE sensor and actuator; dimensional metrology; small-scale machine ID SCANNING CAPACITANCE MICROSCOPY; MEMORY ALLOY MICROACTUATORS; X-RAY INTERFEROMETRY; ELECTROMAGNETIC ACTUATORS; PIEZOELECTRIC ACTUATORS; TUNNELING MICROSCOPY; DIODE-LASER; DISPLACEMENT; DESIGN; FORCE AB This article reviews some design considerations for the scaling down in size of instruments and machines with a primary aim to identify technologies that may provide more optimal performance solutions than those, often established, technologies used at macroscopic, or conventional, scales. Dimensional metrology within emerging applications will be considered for meso- through micro-down to nanometer level systems with particular emphasis on systems for which precision is directly related to function. In this paper, attention is limited to some of the more fundamental issues associated with scaling. For example, actuator work or power densities or the effect of noise on the sensor signals can be readily evaluated and provide some guidance in the selection for any given size of device. However, with reductions in scale these parameters and/or phenomena that limit performance may change. Within this review, the authors have tried to assess these complex inter-relationships between performance and scale, again from a fundamental perspective. In practice, it is likely that the nuances of implementation and integration of sensor, actuator and/or mechanism designs will determine functionality and commercial viability of any particular system development. (c) 2006 Elsevier Inc. All rights reserved. C1 Univ N Carolina, Ctr Precis Metrol, Charlotte, NC 28223 USA. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Smith, ST (reprint author), Univ N Carolina, Ctr Precis Metrol, Charlotte, NC 28223 USA. EM stusmith@uncc.edu NR 91 TC 28 Z9 28 U1 2 U2 29 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0141-6359 J9 PRECIS ENG JI Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol. PD JUL PY 2006 VL 30 IS 3 BP 245 EP 264 DI 10.1016/j.precisioneng.2005.10.003 PG 20 WC Engineering, Multidisciplinary; Engineering, Manufacturing; Nanoscience & Nanotechnology; Instruments & Instrumentation SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation GA 061KP UT WOS:000238871500001 ER PT J AU Koutsourelakis, PS AF Koutsourelakis, P. S. TI Probabilistic characterization and simulation of multi-phase random media SO PROBABILISTIC ENGINEERING MECHANICS LA English DT Article DE random multi-phase media; entropy; MCMC ID RANDOM-FIELDS AB The present paper is concerned with the problems of probabilistic characterization and digital simulation of random multi-phase media. A general framework is presented which is able to distinguish the most important features of the microstructure and generate sample realizations that are consistent with these probabilistic characteristics. The present approach is able to incorporate any type of information and is not restricted to first- and second-order moments. Several examples are presented for statistically homogeneous and inhomogeneous media with two and three phases. Published by Elsevier Ltd. C1 Lawrence Livermore Natl Lab, Elect Engn Technol Div, Livermore, CA 94551 USA. Leopold Franzens Univ Innsbruck, Innsbruck, Austria. RP Koutsourelakis, PS (reprint author), Lawrence Livermore Natl Lab, Elect Engn Technol Div, POB 808,L-227, Livermore, CA 94551 USA. EM koutsourelakis2@llnl.gov OI Koutsourelakis, Phaedon-Stelios/0000-0002-9345-759X NR 25 TC 9 Z9 10 U1 1 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0266-8920 J9 PROBABILIST ENG MECH JI Probab. Eng. Eng. Mech. PD JUL PY 2006 VL 21 IS 3 BP 227 EP 234 DI 10.1016/j.probengmech.2005.11.004 PG 8 WC Engineering, Mechanical; Mechanics; Statistics & Probability SC Engineering; Mechanics; Mathematics GA 082BD UT WOS:000240360500005 ER PT J AU Williams, TO Baxter, SC AF Williams, Todd O. Baxter, Sarah C. TI A framework for stochastic mechanics SO PROBABILISTIC ENGINEERING MECHANICS LA English DT Article DE stochastic micromechanics; stochastic transformation field analysis; moving windows; generalized method of cells; transformation fields ID RECONSTRUCTING RANDOM-MEDIA; COMPOSITES; FIELDS; MODEL AB Interest in and use of multiscale and multiphase materials has necessitated the need for more accurate modeling of the effects of the associated heterogeneous microstructures. Predicting the behavior of these materials is important not only with respect to specific applications but also as the basis for new material design. Towards this end, a review of a combined methodology for the analysis of the bulk and local constitutive behavior of stochastic composites is presented. The first part of the approach is a new stochastic transformation field analysis (STFA) that directly considers the effects of mechanical and transformation field concentration tensors and their associated probability distribution functions on the local and bulk material behavior. The second component of the work utilizes a combined Moving Window based, Generalized Method of Cells (MW/GMC) analysis to sample field data needed to analyze concentration tensors required by the STFA. The GMC micromechanics model was chosen as the basis for the moving window analysis since it provides straightforward access to values of the elements of the concentration tensors for the individual phases in a computationally efficient manner. The capabilities of the proposed modeling framework are illustrated through an application to a digital image of a numerically generated microstructure for a two-phase, continuous fiber, composite material. For this simple case, it can be shown analytically that the complete stochastic description for the history-dependent material behavior reduces to a description of the distribution functions for the mechanical concentration tensor. The local variations in the elements of the concentration tensor, due to the random microstructure, are presented. Mean values of these elements are used to predict the bulk material properties, which are compared to established bounds. The effects of the moving window size on the predicted material behavior are considered. This initial analysis considers only the elastic response of the composite. (C) 2005 Elsevier Ltd. All rights reserved. C1 Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA. Los Alamos Natl Lab, Theoret Div T3, Los Alamos, NM 87545 USA. RP Baxter, SC (reprint author), Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA. EM Baxter@engr.sc.edu RI Baxter, Sarah/C-3250-2011 OI Baxter, Sarah/0000-0002-3097-3212 NR 28 TC 9 Z9 9 U1 0 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0266-8920 J9 PROBABILIST ENG MECH JI Probab. Eng. Eng. Mech. PD JUL PY 2006 VL 21 IS 3 BP 247 EP 255 DI 10.1016/j.probengmech.2005.10.002 PG 9 WC Engineering, Mechanical; Mechanics; Statistics & Probability SC Engineering; Mechanics; Mathematics GA 082BD UT WOS:000240360500007 ER PT J AU Oberai, A Ihm, Y Kim, S Bowie, JU AF Oberai, Amit Ihm, Yungok Kim, Sanguk Bowie, James U. TI A limited universe of membrane protein families and folds SO PROTEIN SCIENCE LA English DT Article DE structural genomics; protein structure; Pfam; SCOP ID STRUCTURAL GENOMICS; ESCHERICHIA-COLI; CRYSTAL-STRUCTURE; RESPIRATORY COMPLEX; FUMARATE REDUCTASE; POTASSIUM CHANNELS; ABC TRANSPORTERS; HELIX PACKING; COVERING SET; CLASSIFICATION AB One of the goals of structural genomics is to obtain a structural representative of almost every fold in nature. A recent estimate suggests that 70%-80% of soluble protein domains identified in the first 1000 genome sequences should be covered by about 25,000 structures-a reasonably achievable goal. As no current estimates exist for the number of membrane protein families, however, it is not possible to know whether family coverage is a realistic goal for membrane proteins. Here we find that virtually all polytopic helical membrane protein families are present in the already known sequences so we can make an estimate of the total number of families. We find that only similar to 700 polytopic membrane protein families account for 80% of structured residues and; similar to 1700 cover 90% of structured residues. While apparently a finite and reachable goal, we estimate that it will likely take more than three decades to obtain the structures needed for 90% residue coverage, if current trends continue. C1 Univ Calif Los Angeles, Dept Chem & Biochem, DOE Inst Genom & Proteom, Inst Mol Biol, Los Angeles, CA 90095 USA. POSTECH, Dept Life Sci, Pohang 790784, Kyungbuk, South Korea. RP Bowie, JU (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, DOE Inst Genom & Proteom, Inst Mol Biol, 611 Charles E Young Dr E, Los Angeles, CA 90095 USA. EM bowie@mbi.ucla.edu FU NIGMS NIH HHS [GM3919, R01 GM063919-08, R01 GM063919-07, R01 GM063919-04, R01 GM063919, R01 GM063919-06, R01 GM063919-05] NR 62 TC 57 Z9 61 U1 0 U2 3 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI WOODBURY PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD JUL PY 2006 VL 15 IS 7 BP 1723 EP 1734 DI 10.1110/ps.062109706 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 059BB UT WOS:000238707200014 PM 16815920 ER PT J AU Rao, KN Kumaran, D Seetharaman, J Bonanno, JB Burley, SK Swaminathan, S AF Rao, KN Kumaran, D Seetharaman, J Bonanno, JB Burley, SK Swaminathan, S TI Crystal structure of trehalose-6-phosphate phosphatase-related protein: Biochemical and biological implications SO PROTEIN SCIENCE LA English DT Article DE enzymes; structure/function studies; structure; crystallography; protein structures; structural genomics; phosphatase ID METAL-LIGAND INTERACTIONS; ESCHERICHIA-COLI; ANGSTROM RESOLUTION; BINDING DOMAIN; PHOSPHOGLYCOLATE PHOSPHATASE; PHOSPHOSERINE PHOSPHATASE; THERMOPLASMA-ACIDOPHILUM; TREHALOSE; COMPLEX; ENZYME AB We report here the crystal structure of a trehalose-6-phosphate phosphatase-related protein (T6PP) from Thermoplasma acidophilum, TA1209, determined by the dual-wavelength anomalous diffraction ( DAD) method. T6PP is a member of the haloacid dehalogenase ( HAD) superfamily with significant sequence homology with trehalose-6-phosphate phosphatase, phosphoserine phosphatase, P-type ATPases and other members of the family. T6PP possesses a core domain of known alpha/beta-hydrolase fold, characteristic of the HAD family, and a cap domain, with a tertiary fold consisting of a four-stranded beta-sheet with two alpha-helices on one side of the sheet. An active-site magnesium ion and a glycerol molecule bound at the interface between the two domains provide insight into the mode of substrate binding by T6PP. A trehalose-6-phosphate molecule modeled into a cage formed by the two domains makes favorable interactions with the protein molecule. We have confirmed that T6PP is a trehalose phosphatase from amino acid sequence, three-dimensional structure, and biochemical assays. C1 Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. New York Struct Biol Ctr, New York, NY 10027 USA. SGX Pharmaceut Inc, San Diego, CA 92121 USA. RP Swaminathan, S (reprint author), Brookhaven Natl Lab, Dept Biol, POB 5000, Upton, NY 11973 USA. EM swami@bnl.gov FU NIGMS NIH HHS [GM62529, P50 GM062529] NR 46 TC 24 Z9 25 U1 1 U2 9 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI WOODBURY PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD JUL PY 2006 VL 15 IS 7 BP 1735 EP 1744 DI 10.1110/ps.062096606 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 059BB UT WOS:000238707200015 PM 16815921 ER PT J AU Zhang, R Joachimiak, G Jiang, S Cipriani, A Collart, F Joachimiak, A AF Zhang, R. Joachimiak, G. Jiang, S. Cipriani, A. Collart, F. Joachimiak, A. TI Structure of phage protein BC1872 from Bacillus cereus, a singleton with new fold SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article ID HIGH-THROUGHPUT; DATABASE; SEQUENCES; CLONING; GENOME; GENE C1 Argonne Natl Lab, Ctr Biol, Argonne, IL 60439 USA. Argonne Natl Lab, Midwest Ctr Struct Genom, Argonne, IL 60439 USA. RP Joachimiak, A (reprint author), Argonne Natl Lab, Ctr Biol, 9700 S Cass Ave,Bldg 202, Argonne, IL 60439 USA. EM andrzejj@anl.gov OI Collart, Frank/0000-0001-6942-4483; Jiang, Song/0000-0003-4890-4327 FU NIGMS NIH HHS [GM62414, P50 GM062414, P50 GM062414-02] NR 19 TC 2 Z9 2 U1 0 U2 0 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD JUL 1 PY 2006 VL 64 IS 1 BP 280 EP 283 DI 10.1002/prot.20910 PG 4 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 048GO UT WOS:000237935800029 PM 16596646 ER PT J AU Ketter, BS Velasco, AA Ammon, CJ Randall, GE AF Ketter, Brett S. Velasco, Aaron A. Ammon, Charles J. Randall, George E. TI Path-specific velocity structure of Western China from surface-wave dispersion SO PURE AND APPLIED GEOPHYSICS LA English DT Article DE China; Tien Shan; group velocity; phase velocity; surface waves; velocity structure ID NORTHERN TIEN-SHAN; CENTRAL-ASIA; RECEIVER FUNCTIONS; MOMENT TENSOR; KYRGYZSTAN; PLATEAU; NETWORK; BENEATH; TIBET AB We develop one-dimensional (1-D) path-specific velocity models in western China using new Rayleigh and Love wave group and phase velocity dispersion measurements for 20 events in the region. The earthquakes were grouped into three geographic clusters from which we compute the average phase and group velocity dispersion. We invert the average dispersion curves simultaneously for 1-D shear-velocity models appropriate for the three central Asian paths, using three previous shear-velocity models as initial models. The models are validated by forward modeling waveforms of recent events. The crustal thickness beneath western China in the vicinity of the Lop Nor test site is 50-60 km and our velocity models are consistent with major geologic features (e.g., basins and mountain ranges) and previous structural models for this region. C1 St Louis Univ, Dept Earth & Atmospher Sci, St Louis, MO 63103 USA. Univ Texas, Dept Geol Sci, El Paso, TX 79968 USA. Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. Los Alamos Natl Lab, Geophys Grp EES11, Los Alamos, NM 87545 USA. Univ Wisconsin, Dept Geosci, Milwaukee, WI 53201 USA. RP Ketter, BS (reprint author), St Louis Univ, Dept Earth & Atmospher Sci, St Louis, MO 63103 USA. RI Velasco, Aaron/H-2666-2012 NR 29 TC 4 Z9 5 U1 1 U2 2 PU BIRKHAUSER VERLAG AG PI BASEL PA VIADUKSTRASSE 40-44, PO BOX 133, CH-4010 BASEL, SWITZERLAND SN 0033-4553 J9 PURE APPL GEOPHYS JI Pure Appl. Geophys. PD JUL PY 2006 VL 163 IS 7 BP 1235 EP 1255 DI 10.1007/s00024-006-0071-9 PG 21 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 066RW UT WOS:000239248800003 ER PT J AU Masse, WB Liston, J Carucci, J Athens, JS AF Masse, WB Liston, J Carucci, J Athens, JS TI Evaluating the effects of climate change on environment, resource depletion, and culture in the Palau Islands between AD 1200 and 1600 SO QUATERNARY INTERNATIONAL LA English DT Article ID SEA-LEVEL CHANGES; WESTERN MICRONESIA; PACIFIC; BEHAVIOR; DEATH; CRABS; PERU AB The Palau archipelago is a sizeable and geologically diverse set of volcanic and coralline limestone islands in equatorial western Micronesia. Recent archeological fieldwork, pollen analyses, and radiocarbon assays have expanded our understanding of more than 3000 years of culture history in Palau, providing a potentially unique window on the relationship between climate, environment, human adaptation, and culture change in the tropical western Pacific. Our focus is on the period of AD 1200-1600, particularly as relates to the transition between the Medieval Warm Period and the onset of the Little Ice Age. This period encompasses the establishment of stonework villages throughout the archipelago, and ultimately their abandonment in the limestone islands. Paleoenvironmental and archeological data, including settlement pattern analyses, provide mixed but intriguing messages regarding the role of climate in Palauan culture change. Archeological deposits in Uchularois Cave contain domestic pig, Sus scrofa, large-eyed bream, Monotaxis grandoculis, parrotfish, Scarus sp., and the humped conch, Strombus gibberulus gibbosus, that together provide evidence of environmental degradation or overharvesting and the potential effects of climate change on culture. Our data suggest that a greater emphasis on high-resolution data is necessary to properly evaluate the role of climate in Pacific island culture change. (c) 2006 Elsevier Ltd and INQUA. All rights reserved. C1 Los Alamos Natl Lab, Ecol Grp, Los Alamos, NM 87545 USA. Int Archaeol Res Inst Inc, Honolulu, HI 96826 USA. CEVPC, 30CES, Cultural Resources Sect, Vandenberg AFB, CA 93437 USA. RP Masse, WB (reprint author), Los Alamos Natl Lab, Ecol Grp, Mailstop M887, Los Alamos, NM 87545 USA. EM wbmasse@lanl.gov NR 96 TC 27 Z9 28 U1 1 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1040-6182 J9 QUATERN INT JI Quat. Int. PD JUL PY 2006 VL 151 BP 106 EP 132 DI 10.1016/j.quaint.2006.01.017 PG 27 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 057JA UT WOS:000238590900011 ER PT J AU Loso, MG Anderson, RS Anderson, SP Reimer, PJ AF Loso, Michael G. Anderson, Robert S. Anderson, Suzanne P. Reimer, Paula J. TI A 1500-year record of temperature and glacial response inferred from varved Iceberg Lake, southcentral Alaska SO QUATERNARY RESEARCH LA English DT Article DE Alaska; Arctic climate; climatic history; glacial lakes; glacial sediments; glaciation fluctuations; little lee age; medieval warm period; stratigraphy; varves ID YUKON-TERRITORY; AGE CALIBRATION; SKILAK LAKE; 2 MILLENNIA; TREE-RING; SEDIMENTS; CANADA; CS-137; TEPHROCHRONOLOGY; FLUCTUATIONS AB We present a varve thickness chronology from glacier-dammed Iceberg Lake in the southern Alaska icefields. Radiogenic evidence confirms that laminations are annual and record continuous sediment deposition from A.D. 442 to A.D. 1998. Varve thickness is positively correlated with Northern Hemisphere temperature trends, and more strongly with a local, similar to 600 yr long tree ring width chronology. Varve thickness increases in warm summers because of higher melt, runoff, and sediment transport (as expected), but also because shrinkage of the glacier dam allows shoreline regression that concentrates sediment in the smaller lake. Varve thickness provides a sensitive record of relative changes in warm season temperatures. Relative to the entire record, temperatures implied by this chronology were lowest around A.D. 600, warm between A.D. 1000 and A.D. 1300, cooler between A.D. 1500 and A.D. 1850, and have increased dramatically since then. Combined with stratigraphic evidence that contemporary jokulhlaups (which began in 1999) are unprecedented since at least A.D. 442, this record suggests that 20th century warming is more intense, and accompanied by more extensive glacier retreat, than the Medieval Warm Period or any other time in the last 1500 yr. (c) 2006 University of Washington. All rights reserved. C1 Univ Calif Santa Cruz, Dept Earth Sci, Santa Cruz, CA 95062 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Loso, MG (reprint author), Univ Calif Santa Cruz, Dept Earth Sci, Santa Cruz, CA 95062 USA. EM mloso@alaskapacific.edu RI Anderson, Suzanne/F-4039-2014; OI Anderson, Suzanne/0000-0002-6796-6649; Loso, Michael/0000-0001-8414-2310 NR 56 TC 38 Z9 40 U1 0 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0033-5894 J9 QUATERNARY RES JI Quat. Res. PD JUL PY 2006 VL 66 IS 1 BP 12 EP 24 DI 10.1016/j.qyres.2005.11.007 PG 13 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 058UP UT WOS:000238690400002 ER PT J AU Matmon, A Nichols, K Finkel, R AF Matmon, A Nichols, K Finkel, R TI Isotopic insights into smoothening of abandoned fan surfaces, Southern California SO QUATERNARY RESEARCH LA English DT Article DE Be-10; Al-26; nuclide concentration ID COSMOGENIC NUCLIDES; SEDIMENT PRODUCTION; PRODUCTION-RATES; EROSION RATES; MOJAVE DESERT; NAMIB DESERT; SLIP RATES; BE-10; AL-26; HISTORIES AB Cosmogenic nuclide concentrations measured on abandoned fan surfaces along the Mojave section of the San Andreas Fault suggest that sediment is generated, transported, and removed from the fans on the order of 30-40 kyr. We measured in situ produced cosmogenic Be-10, and in some cases Al-26, in boulders (n = 15), surface sediment (n = 15), and one depth profile (n = 9). Nuclide concentrations in surface sediments and boulders underestimate fan ages, suggesting that 10Be accumulation is largely controlled by the geomorphic processes that operate on the surfaces of the fans and not by their ages. Field observations, grain-size distribution, and cosmogenic nuclide data suggest that over time, boulders weather into grus and the bar sediments diffuse into the adjacent swales. As fans grow older the relief between bars and swales decreases, the sediment transport rate from bars to swales decreases, and the surface processes that erode the fan become uniform over the entire fan surface. The nuclide data therefore suggest that, over time, the difference in Be-10 concentration between bars and swales increases to a maximum until the topographic relief between bars and swales is minimized, resulting in a common surface lowering rate and common 10Be concentrations across the fan. During this phase, the entire fan is lowered homogeneously at a rate of 10-15 mm kyr(-1). (c) 2006 University of Washington. All rights reserved. C1 Hebrew Univ Jerusalem, Inst Earth Sci, IL-91904 Jerusalem, Israel. Skidmore Coll, Dept Geosci, Saratoga Springs, NY 12866 USA. US Geol Survey, Menlo Pk, CA 94025 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Matmon, A (reprint author), Hebrew Univ Jerusalem, Inst Earth Sci, IL-91904 Jerusalem, Israel. EM arimatmon@cc.huji.ac.il NR 28 TC 29 Z9 30 U1 1 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0033-5894 J9 QUATERNARY RES JI Quat. Res. PD JUL PY 2006 VL 66 IS 1 BP 109 EP 118 DI 10.1016/j.yqres.2006.02.010 PG 10 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 058UP UT WOS:000238690400010 ER PT J AU Studt, T AF Studt, Tim TI Advancing state-of-the-art imaging capabilities - Electron-optical beam lines will provide opportunities for complex problems which escape the imaging capabilities of traditional electron microscopy systems. SO R&D MAGAZINE LA English DT Article C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Studt, T (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. NR 0 TC 1 Z9 1 U1 0 U2 0 PU REED BUSINESS INFORMATION PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA SN 0746-9179 J9 R&D MAG JI R D Mag. PD JUL PY 2006 VL 48 IS 7 BP 50 EP 51 PG 2 WC Engineering, Industrial; Multidisciplinary Sciences SC Engineering; Science & Technology - Other Topics GA 070LO UT WOS:000239524100017 ER PT J AU Batygin, YK AF Batygin, Yuri K. TI Undulator background in the final focus test beam experiment with polarized positrons SO RADIATION MEASUREMENTS LA English DT Article AB In the proposed E-166 experiment at SLAC, 50GeV electrons pass through a helical undulator, and produce circularly polarized photons, which interact with a tungsten target and generate longitudinally polarized positrons. The background is an important issue for an experiment under consideration. To address this issue, simulations were performed with the code GEANT3 to model the production of secondary particles from high-energy electrons hitting an undulator. The energy density of photons generated at the target has been analyzed. Results of the simulations are presented and discussed. (c) 2006 Elsevier Ltd. All rights reserved. C1 Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Batygin, YK (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. EM batygin@slac.stanford.edu NR 5 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1350-4487 J9 RADIAT MEAS JI Radiat. Meas. PD JUL PY 2006 VL 41 IS 6 BP 690 EP 694 DI 10.1016/j.radmeas.2006.04.025 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 086WJ UT WOS:000240703400008 ER PT J AU Livingston, GK Falk, RB Schmid, E AF Livingston, GK Falk, RB Schmid, E TI Effect of occupational radiation exposures on chromosome aberration rates in former plutonium workers SO RADIATION RESEARCH LA English DT Article ID FLUORESCENCE INSITU HYBRIDIZATION; IN-SITU HYBRIDIZATION; IONIZING-RADIATION; HUMAN-LYMPHOCYTES; DNA PROBES; TRANSLOCATIONS; PERSISTENCE; FREQUENCY; CANCER; MICRONUCLEI AB A fluorescence in situ hybridization (FISH) method was used to measure chromosome aberration rates in lymphocytes of 30 retired plutonium workers with combined internal and external radiation doses greater than 0.5 Sv along. with 17 additional workers with predominantly external doses below 0.1 Sv. The former group was defined as high-dose and the latter as low-dose with respect to occupational radiation exposure. The two groups were compared to each other and also to 21 control subjects having no history of occupational radiation exposure. Radiation exposures to the high-dose group were primarily the result of internal depositions of plutonium and its radioactive decay products resulting from various work-related activities and accidents. The median external dose for the high-dose group was 280 mSv (range 10-730) compared to a median of 22 mSv (range 10-76) for the low-dose group. The median internal dose to the bone marrow for the high-dose group was 168 mSv (range 29-20,904) while that of the low-dose group was considered negligible. Over 200,000 metaphase cells were analyzed for chromosome aberrations by painting pairs 1, 4 and 12 in combination with a pancentromeric probe. Additionally, 136,000 binucleated lymphocytes were analyzed for micronuclei in parallel cultures to assess mitotic abnormalities arising from damaged chromosomes. The results showed that the frequency of structural aberrations affecting any of the painted chromosomes in the high-dose group correlated with the bone marrow dose but not with the external dose. In contrast, the frequency of micronuclei did not vary significantly between the study groups, The total translocation frequency per genome equivalent x 10(-3) +/- SE was 4.0 +/- 0.6, 9.0 +/- 1.1 and 17.0 +/- 2.1 for the control, low-dose and high-dose groups, respectively. Statistical analysis of the data showed that the frequency of total translocations and S-cells correlated with the bone marrow dose, with P values of 0.005 and 0.004, respectively. In contrast, these two end points did not correlate with the external dose, with P values of 0.45 and 0.39, respectively. In conclusion, elevated rates of stable chromosome aberrations were found in lymphocytes of former workers decades after plutonium intakes, providing evidence that chronic irradiation of hematopoietic precursor cells in the bone marrow induces cytogenetically altered cells that persist in peripheral blood. (c) 2006 by Radiation Research Society. C1 Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. Oak Ridge Associated Univ, Ctr Epidemiol Res, Arvada, CO 80005 USA. Univ Munich, Inst Radiol, Munich, Germany. RP Livingston, GK (reprint author), Oak Ridge Inst Sci & Educ, POB 117, Oak Ridge, TN 37831 USA. EM livingsg@orau.gov NR 40 TC 14 Z9 16 U1 0 U2 1 PU RADIATION RESEARCH SOC PI OAK BROOK PA 820 JORIE BOULEVARD, OAK BROOK, IL 60523 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD JUL PY 2006 VL 166 IS 1 BP 89 EP 97 DI 10.1667/RR3586.1 PN 1 PG 9 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 057XA UT WOS:000238627300012 PM 16808624 ER PT J AU Boice, JD Cohen, SS Mumma, MT Ellis, ED Eckerman, KF Leggett, RW Boecker, BB Brill, AB Henderson, BE AF Boice, JD Cohen, SS Mumma, MT Ellis, ED Eckerman, KF Leggett, RW Boecker, BB Brill, AB Henderson, BE TI Mortality among radiation workers at Rocketdyne (Atomics International), 1948-1999 SO RADIATION RESEARCH LA English DT Article ID EXTERNAL IONIZING-RADIATION; PORTSMOUTH-NAVAL-SHIPYARD; NUCLEAR INDUSTRY WORKERS; OCCUPATIONAL COHORT DATA; LUNG-CANCER RISK; MAYAK WORKERS; MULTIPLICATIVE MODELS; SELLAFIELD PLANT; HANFORD SITE; OAK-RIDGE AB A retrospective cohort mortality study was conducted of workers engaged in nuclear technology development and employed for at least 6 months at Rocketdyne (Atomics International) facilities in California, 1948-1999. Lifetime occupational doses were derived from company records and linkages with national dosimetry data sets. International Commission on Radiation Protection (ICRP) biokinetic models were used to estimate radiation doses to 16 organs or tissues after the intake of radionuclides. Standardized mortality ratios (SMRs) compared the observed numbers of deaths with those expected in the general population of California. Cox proportional hazards models were used to evaluate dose-response trends over categories of cumulative radiation dose, combining external and internal organ-specific doses. There were 5,801 radiation workers, including 2,232 monitored for radionuclide intakes. The mean dose from external radiation was 13.5 mSv (maximum 1 Sv); the mean lung dose from external and internal radiation combined was 19.0 mSv (maximum 3.6 Sv). Vital status was determined for 97.6% of the workers of whom 25.3% (n = 1,468) had died. The average period of observation was 27.9 years. All cancers taken together (SMR 0.93; 95% CI 0.84-1.02) and all leukemia excluding chronic lymphocytic leukemia (CLL) (SMR 1.21; 95 % CI 0.69-1.97) were not significantly elevated. No SMR was significantly increased for any cancer or for any other cause of death. The Cox regression analyses revealed no significant dose-response trends for any cancer. For all cancers excluding leukemia, the RR at 100 mSv was estimated as 1.00 (95% CI 0.81-1.24), and for all leukemia excluding CLL it was 1.34 (95% CI 0.73-2.45). The nonsignificant increase in leukemia (excluding CLL) was in accord with expectation from other radiation studies, but a similar nonsignificant increase in CLL (a malignancy not found to be associated with radiation) tempers a causal interpretation. Radiation exposure has not caused a detectable increase in cancer deaths in this population, but results are limited by small numbers and relatively low career doses. (c) 2006 by Radiation Research Society. C1 Int Epidemiol Inst, Rockville, MD 20850 USA. Vanderbilt Ingram Canc Ctr, Nashville, TN USA. Oak Ridge Associated Univ, Oak Ridge, TN USA. Vanderbilt Univ, Sch Med, Nashville, TN 37212 USA. Oak Ridge Natl Lab, Oak Ridge, TN USA. Lovelace Resp Res Inst, Albuquerque, NM USA. Univ So Calif, Los Angeles, CA USA. RP Boice, JD (reprint author), Int Epidemiol Inst, 1455 Res Blvd,Suite 550, Rockville, MD 20850 USA. EM john.boice@vanderbilt.edu RI Brill, Aaron/H-3732-2014 OI Brill, Aaron/0000-0001-7538-086X NR 64 TC 27 Z9 28 U1 0 U2 5 PU RADIATION RESEARCH SOC PI OAK BROOK PA 820 JORIE BOULEVARD, OAK BROOK, IL 60523 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD JUL PY 2006 VL 166 IS 1 BP 98 EP 115 DI 10.1667/RR3582.1 PN 1 PG 18 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 057XA UT WOS:000238627300013 PM 16808626 ER PT J AU Gilbert, ES Thierry-Chef, I Cardis, E Fix, JJ Marshall, M AF Gilbert, ES Thierry-Chef, I Cardis, E Fix, JJ Marshall, M TI External dose estimation for nuclear worker studies SO RADIATION RESEARCH LA English DT Article ID RADIATION; MORTALITY; EXPOSURE; ENERGY; BIAS AB Epidemiological studies of nuclear workers are an important source of direct information on the health effects of exposure to radiation at low doses and low dose rates. These studies have the important advantage of doses that have been measured objectively through the use of personal dosimeters. However, to make valid comparisons of worker-based estimates with those obtained from data on A-bomb survivors or persons exposed for medical reasons, attention must be given to potential biases and uncertainties in dose estimates. This paper discusses sources of error in worker dose estimates and describes efforts that have been made to quantify these errors. Of particular importance is the extensive study of errors in dosimetry that was conducted as part of a large collaborative study of nuclear workers in 15 countries being coordinated by the International Agency for Research on Cancer. The study, which focused on workers whose dose was primarily from penetrating gamma radiation in the range 100 keV to 3 MeV, included (1) obtaining information on dosimetry practices and radiation characteristics through the use of questionnaires; (2) two detailed studies of exposure conditions, one of nuclear power plants and the other of mixed activity facilities; and (3) a study of dosimeter response characteristics that included laboratory testing of 10 dosimeter designs commonly used historically. Based on these efforts, facility- and calendar year-specific adjustment factors have been developed, which will allow risks to be expressed as functions of organ doses with reasonable confidence. (c) 2006 by Radiation Research Society. C1 NCI, Div Canc Epidemiol & Genet, Bethesda, MD 20892 USA. Int Agcy Res Canc, F-69372 Lyon, France. Pacific NW Natl Lab, Richland, WA USA. Twin Trees, Blewbury, Oxon, England. RP Gilbert, ES (reprint author), Div Canc Epidemiol & Genet, Radiat Epidemiol Branch, 6120 Execut Blvd,Room 7050, Rockville, MD 20852 USA. EM gilberte@mail.nih.gov RI Cardis, Elisabeth/C-3904-2017 NR 22 TC 7 Z9 7 U1 0 U2 2 PU RADIATION RESEARCH SOC PI OAK BROOK PA 820 JORIE BOULEVARD, OAK BROOK, IL 60523 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD JUL PY 2006 VL 166 IS 1 BP 168 EP 173 DI 10.1667/RR3126.1 PN 2 PG 6 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 057XC UT WOS:000238627500005 PM 16808605 ER PT J AU Degteva, MO Vorobiova, MI Tolstykh, EI Shagina, NB Shishkina, EA Anspaugh, LR Napier, BA Bougrov, NG Shved, VA Tokareva, EE AF Degteva, MO Vorobiova, MI Tolstykh, EI Shagina, NB Shishkina, EA Anspaugh, LR Napier, BA Bougrov, NG Shved, VA Tokareva, EE TI Development of an improved dose reconstruction system for the Techa River population affected by the operation of the Mayak Production Association SO RADIATION RESEARCH LA English DT Article ID ELECTRON-PARAMAGNETIC-RESONANCE; DOSIMETRY SYSTEM; STRONTIUM METABOLISM; URALS POPULATION; DENTAL-TISSUES; SR-90; MODEL; AGE; EXPOSURE; COHORT AB The Techa River Dosimetry System (TRDS) has been developed to provide estimates of dose received by approximately 30,000 members of the Extended Techa River Cohort (ETRC). Members of the ETRC were exposed beginning in 1949 to significant levels of external and internal (mainly from Sr-90) dose but at low to moderate dose rates. Members of this cohort are being studied in an effort to test the hypothesis that exposure at low to moderate dose rates has the same ability to produce stochastic health effects as exposure at high dose rates. The current version of the TRDS is known as TRDS-2000 and is the subject of this paper. The estimated doses from Sr-90 are supported strongly by similar to 30,000 measurements made with a tooth beta-particle counter, measurements of bones collected at autopsy, and similar to 38,000 measurements made with a special whole-body counter that detects the brems-strahlung from Y-90. The median doses to the red bone marrow and the bone surface are 0.21 and 0.37 Gy, respectively. The maximum doses to the red bone marrow and bone surface are 2.0 and 5.2 Gy, respectively. Distributions of dose to other organs are provided and are lower than the values given above. Directions for future work are discussed. (c) 2006 by Radiation Research Society. C1 Univ Utah, Dept Radiol, Div Radiobiol, Salt Lake City, UT 84132 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. Urals Res Ctr Radiat Med, Chelyabinsk 454076, Russia. RP Anspaugh, LR (reprint author), Univ Utah, POB 777777, Henderson, NV 89077 USA. EM LAnspaugh@aol.com RI Shishkina, Elena/G-4595-2016; Bugrov, Nikolay/G-8322-2016 OI Shishkina, Elena/0000-0003-4464-0889; Bugrov, Nikolay/0000-0002-3693-9218 NR 53 TC 39 Z9 41 U1 0 U2 2 PU RADIATION RESEARCH SOC PI OAK BROOK PA 820 JORIE BOULEVARD, OAK BROOK, IL 60523 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD JUL PY 2006 VL 166 IS 1 BP 255 EP 270 DI 10.1667/RR3438.1 PN 2 PG 16 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 057XC UT WOS:000238627500010 PM 16808612 ER PT J AU Denholm, P AF Denholm, P TI Improving the technical, environmental and social performance of wind energy systems using biomass-based energy storage SO RENEWABLE ENERGY LA English DT Article DE wind; compressed air energy storage; biomass gasification; transmission ID TECHNOLOGIES; EMISSIONS AB A completely renewable baseload electricity generation system is proposed by combining wind energy, compressed air energy storage, and biomass gasification. This system can eliminate problems associated with wind intermittency and provide a source of electrical energy functionally equivalent to a large fossil or nuclear power plant. Compressed air energy storage (CAES) can be economically deployed in the Midwestern US, an area with significant low-cost wind resources. CAES systems require a combustible fuel, typically natural gas, which results in fuel price risk and greenhouse gas emissions. Replacing natural gas with synfuel derived from biomass gasification eliminates the use of fossil fuels, virtually eliminating net CO2 emissions from the system. In addition, by deriving energy completely from farm sources, this type of system may reduce some opposition to long distance transmission lines in rural areas, which may be an obstacle to large-scale wind deployment. (c) 2005 Elsevier Ltd. All rights reserved. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Denholm, P (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM paul_denholm@nrel.gov NR 43 TC 43 Z9 46 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0960-1481 J9 RENEW ENERG JI Renew. Energy PD JUL PY 2006 VL 31 IS 9 BP 1355 EP 1370 DI 10.1016/j.renene.2005.07.001 PG 16 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA 031HZ UT WOS:000236696600007 ER PT J AU Tannenbaum, MJ AF Tannenbaum, M. J. TI Recent results in relativistic heavy ion collisions: from 'a new state of matter' to 'the perfect fluid' SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review ID QUARK-GLUON PLASMA; NUCLEUS-NUCLEUS COLLISIONS; LARGE-TRANSVERSE-MOMENTUM; PROTON-PROTON COLLISIONS; HIGH-ENERGY COLLISIONS; CHARGED-PARTICLE MULTIPLICITY; CHIRAL PHASE-TRANSITION; DENSE HADRONIC MATTER; HIGH-PT PROCESSES; ELLIPTIC FLOW AB Experimental physics with relativistic heavy ions dates from 1992 when a beam of Au-197 of energy greater than 10A GeV/c first became available at the Alternating Gradient Synchrotron at Brookhaven National Laboratory (BNL) soon followed in 1994 by a Pb-208 beam of 158A GeV/c at the Super Proton Synchrotron at CERN (European Center for Nuclear Research). Previous pioneering measurements at the Berkeley Bevalac (Gutbrod et al 1989 Rep. Prog. Phys. 52 1267-132) in the late 1970s and early 1980s were at much lower bombarding energies (<= 1AGeV/c) where nuclear breakup rather than particle production is the dominant inelastic process in A+A collisions. More recently, starting in 2000, the relativistic heavy ion collider at BNL has produced head-on collisions of two 100A GeV beams of fully stripped Au ions, corresponding to nucleon-nucleon centre-of-mass (cm) energy, root s(NN) = 200 GeV, total cm energy 200A GeV. The objective of this research program is to produce nuclear matter with extreme density and temperature, possibly resulting in a state of matter where the quarks and gluons normally confined inside individual nucleons (r < 1 fm) are free to act over distances an order of magnitude larger. Progress from the period 1992 to the present will be reviewed, with reference to previous results from light ion and proton-proton collisions where appropriate. Emphasis will be placed on the measurements which formed the basis for the announcements by the two major laboratories: 'A new state of matter', by CERN on Febraury 10 2000 and 'The perfect fluid' by BNL on April 19 2005. C1 Brookhaven Natl Lab, Dept Phys 510C, Upton, NY 11973 USA. RP Tannenbaum, MJ (reprint author), Brookhaven Natl Lab, Dept Phys 510C, Upton, NY 11973 USA. EM mjt@bnl.gov OI Tannenbaum, Michael/0000-0002-8840-5314 NR 326 TC 95 Z9 95 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 EI 1361-6633 J9 REP PROG PHYS JI Rep. Prog. Phys. PD JUL PY 2006 VL 69 IS 7 BP 2005 EP 2059 DI 10.1088/0034-4885/69/7/R01 PG 55 WC Physics, Multidisciplinary SC Physics GA 077ER UT WOS:000240011100001 ER PT J AU Coffey, T Mielke, CH Ruminer, P Migliori, A Kim, D Kim, KH Moritomo, Y AF Coffey, T. Mielke, C. H. Ruminer, P. Migliori, A. Kim, D. Kim, K. H. Moritomo, Y. TI Rapid contactless thermometry with submilli-Kelvin resolution SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID OSCILLATOR AB We present a contactless method of detecting small changes in the surface temperature of metallic samples over a short time period. The thermometry method incorporates a contactless heater and simplifies sample preparation requirements for calorimetric measurements. We demonstrate that we can measure small temperature shifts (250 mu K) in 5 ms at midrange temperatures (155 K). This method does not serve as a conventional thermometer but as an in situ thermometer useful for narrow temperature ranges, such as the region of a phase transition (often exploited in bolometers). The manganite material Nd0.5Sr0.5MnO3 was chosen as a test material for our experiments because it is a well characterized material where resistivity and magnetization [Kuwakara et al., Science 270, 961 (1995)] and thermal conductivity [Kim et al., American Physical Society March Meeting, W24.009 (2004)] have been previously measured and the material undergoes a metal-insulator transition. (c) 2006 American Institute of Physics. C1 Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. Seoul Natl Univ, CSCMR, Sch Phys, Seoul 151747, South Korea. Nagoya Univ, Nagoya, Aichi 468603, Japan. RP Coffey, T (reprint author), Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. OI moritomo, yutaka/0000-0001-6584-7489 NR 6 TC 0 Z9 0 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2006 VL 77 IS 7 AR 074901 DI 10.1063/1.2219972 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 069DC UT WOS:000239424800030 ER PT J AU Combs, SK Caughman, JBO Wilgen, JB AF Combs, S. K. Caughman, J. B. O. Wilgen, J. B. TI Technique for measuring D-2 pellet mass loss through a curved guide tube using two microwave cavity detectors SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID HIGH-FIELD-SIDE; INJECTION TECHNOLOGY; DEUTERIUM PELLETS; TOKAMAK; UPGRADE; LAUNCH AB Two microwave cavity mass detectors have been used to measure the mass loss of deuterium (D-2) pellets transported through a curved guide tube. The test tube was a mock-up of the pellet injection guide tube for the proposed ITER experiment, which will be used to transport pellets, including deuterium-tritium (D-T), from the pellet acceleration device to the inner wall (or magnetic high-field side) of the large tokamak for pellet injection and core fueling of plasmas. An accurate estimate of the mass loss is particularly important for D-T injection, because the inventory of the radioactive isotope (T) for ITER is limited and accountability and recycling will be crucial issues. In the laboratory, frozen cylindrical D-2 pellets of nominal 5.3-mm diameter were shot through the stainless steel test tube (approximate to 10 m in length and 10-mm inside diameter), with each end equipped with a microwave cavity. As the pellet passes through each tuned microwave cavity, the peak output signal from the electronics is directly proportional to the pellet mass. An absolute calibration of the cavities, which can be problematic, is not needed for the nondestructive technique described here. Instead, a cross calibration of the two cavities with pellets of varying masses provides the relationship to determine mass loss more precisely than any other technique previously reported. In addition, the individual output signals from the cavities can be used to identify intact pellets (a single signal peak) or broken pellets (multiple signal peaks). For the pellet speed range tested in this study (100-500 m/s), the mass loss for intact pellets was directly dependent on the pellet speed, with approximate to 10% mass loss at 300 m/s. The microwave cavities and the associated electronics, as well as some basic theory, are described; calibration and experimental data are presented and discussed. (c) 2006 American Institute of Physics. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Combs, SK (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. RI Caughman, John/R-4889-2016 OI Caughman, John/0000-0002-0609-1164 NR 21 TC 5 Z9 5 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2006 VL 77 IS 7 AR 073503 DI 10.1063/1.2219748 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 069DC UT WOS:000239424800013 ER PT J AU Jesse, S Lee, HN Kalinin, SV AF Jesse, Stephen Lee, Ho Nyung Kalinin, Sergei V. TI Quantitative mapping of switching behavior in piezoresponse force microscopy SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID THIN-FILMS; FERROELECTRIC DOMAINS; BATIO3(100) SURFACE; POLARIZATION; CHARGE; NANOSTRUCTURES; DYNAMICS; IMPRINT AB The application of ferroelectric materials for nonvolatile memory and ferroelectric data storage necessitates quantitative studies of local switching characteristics and their relationship to material microstructure and defects. Switching spectroscopy piezoresponse force microscopy (SS-PFM) is developed as a quantitative tool for real-space imaging of imprint, coercive bias, remanent and saturation responses, and domain nucleation voltage on the nanoscale. Examples of SS-PFM implementation, data analysis, and data visualization are presented for epitaxial lead zirconate titanate (PZT) thin films and polycrystalline PZT ceramics. Several common artifacts related to the measurement method, environmental factors, and instrument settings are analyzed. (c) 2006 American Institute of Physics. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012; Lee, Ho Nyung/K-2820-2012; Jesse, Stephen/D-3975-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Lee, Ho Nyung/0000-0002-2180-3975; Jesse, Stephen/0000-0002-1168-8483 NR 44 TC 111 Z9 111 U1 7 U2 83 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2006 VL 77 IS 7 AR 073702 DI 10.1063/1.2214699 PG 10 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 069DC UT WOS:000239424800018 ER PT J AU Rabii, B Winant, CD Collins, JS Lee, AT Richards, PL Abroe, ME Hanany, S Johnson, BR Ade, P Balbi, A Bock, JJ Borrill, J Stompor, R Boscaleri, A Pascale, E de Bernardis, P Ferreira, PG Hristov, VV Lange, AE Jaffe, AH Netterfield, CB Smoot, GF Wu, JHP AF Rabii, B. Winant, C. D. Collins, J. S. Lee, A. T. Richards, P. L. Abroe, M. E. Hanany, S. Johnson, B. R. Ade, P. Balbi, A. Bock, J. J. Borrill, J. Stompor, R. Boscaleri, A. Pascale, E. de Bernardis, P. Ferreira, P. G. Hristov, V. V. Lange, A. E. Jaffe, A. H. Netterfield, C. B. Smoot, G. F. Wu, J. H. P. TI MAXIMA: A balloon-borne cosmic microwave background anisotropy experiment SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID COSMOLOGICAL PARAMETERS; RADIATION; MAPS; CONTAMINATION; TRANSMISSION; FOREGROUNDS; BOLOMETER; BOOMERANG; EMISSION; TESTS AB We describe the Millimeter wave Anisotropy eXperiment IMaging Array (MAXIMA), a balloon-borne experiment which measured the temperature anisotropy of the cosmic microwave background (CMB) on angular scales of 10(') to 5 degrees. MAXIMA mapped the CMB using 16 bolometric detectors in spectral bands centered at 150, 240, and 410 GHz, with 10(') resolution at all frequencies. The combined receiver sensitivity to CMB anisotropy was similar to 40 mu K root s. The bolometric detectors, which were cooled to 100 mK, were a prototype of the detectors which will be used on the Planck Surveyor Satellite of the European Space Agency. Systematic parasitic contributions were controlled by using four uncorrelated spatial modulations, thorough cross-linking, multiple independent CMB observations, heavily baffled optics, and strong spectral discrimination. Pointing reconstruction was accurate to 1('), and absolute calibration was better than 4%. Two MAXIMA flights with more than 8.5 h of CMB observations have mapped a total of 300 deg(2) of the sky in regions of negligible known foreground emission. MAXIMA results have been released in previous publications and shown to be consistent with the Wilkinson Microwave Anisotropy Probe. MAXIMA I maps, power spectra, and correlation matrices are publicly available at http://cosmology.berkeley.edu/maxima. (c) 2006 American Institute of Physics. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Ctr Particle Astrophys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. Univ Minnesota, Sch Phys & Astron, St Paul, MN 55455 USA. Cardiff Univ, Dept Phys, Cardiff CF24 3YB, Wales. Univ Roma Tor Vergata, I-00133 Rome, Italy. CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. CALTECH, Pasadena, CA 91125 USA. Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. CNR, IFAC, I-50127 Florence, Italy. Univ Oxford, Oxford OX1 3RH, England. Univ London Imperial Coll Sci & Technol, London SW7 2BW, England. Univ Toronto, Dept Phys, Toronto, ON M5S 3H8, Canada. Natl Taiwan Univ, Dept Phys, Taipei 106, Taiwan. RP Rabii, B (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM bahman@physics.berkeley.edu; cwinant@bolo.berkeley.edu RI Jaffe, Andrew/D-3526-2009; OI WU, JIUN-HUEI/0000-0001-9608-7662; de Bernardis, Paolo/0000-0001-6547-6446 NR 51 TC 7 Z9 7 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2006 VL 77 IS 7 AR 071101 DI 10.1063/1.2219723 PG 25 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 069DC UT WOS:000239424800001 ER PT J AU Yu, WH Choi, SUS AF Yu, Wenhua Choi, Stephen U. -S. TI Influence of insulation coating on thermal conductivity measurement by transient hot-wire method SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID FLUIDS; GASES AB The transient hot-wire method is widely used to determine the thermal conductivity of various media. It has been improved through the addition of an insulation coating to the wire. However, this coating could affect the accuracy of the thermal conductivity measurement. The temperature rise for the insulation-coated wire was calculated as a function of time by a Laplace transformation along with the expansion method outlined by Carslaw and Jaeger [Conduction of Heat in Solids (Oxford University Press, Oxford, 1959)]. The results of numerical simulations and experimental tests show that, for most engineering applications, the relative measurement errors of the thermal conductivity caused by the insulation coating are very small if the slopes of the temperature rise-logarithmic time diagrams are calculated for large time values. No correction to the insulation coating is necessary even for the conditions that the insulation coating thickness is comparable to the wire radius, and that the thermal conductivity of the insulation coating is lower than that of the measured medium. (c) 2006 American Institute of Physics. C1 Argonne Natl Lab, Energy Technol Div, Argonne, IL 60439 USA. RP Yu, WH (reprint author), Argonne Natl Lab, Energy Technol Div, 9700 S Cass Ave,Bldg 335, Argonne, IL 60439 USA. EM wyu@anl.gov; choi@anl.gov NR 8 TC 10 Z9 10 U1 0 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2006 VL 77 IS 7 AR 076102 DI 10.1063/1.2219516 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 069DC UT WOS:000239424800037 ER PT J AU Remington, BA Drake, RP Ryutov, DD AF Remington, Bruce A. Drake, R. Paul Ryutov, Dmitri D. TI Experimental astrophysics with high power lasers and Z pinches SO REVIEWS OF MODERN PHYSICS LA English DT Review ID NATIONAL-IGNITION-FACILITY; YOUNG SUPERNOVA-REMNANTS; HUBBLE-SPACE-TELESCOPE; INERTIAL-CONFINEMENT-FUSION; X-RAY-EMISSION; HYDRODYNAMIC INSTABILITY EXPERIMENTS; NEON PHOTOIONIZATION EXPERIMENTS; DENSITY LABORATORY ASTROPHYSICS; CORE COLLAPSE SUPERNOVAE; HYPERSONIC PLASMA JETS AB With the advent of high-energy-density (HED) experimental facilities, such as high-energy lasers and fast Z-pinch, pulsed-power facilities, millimeter-scale quantities of matter can be placed in extreme states of density, temperature, and/or velocity. This has enabled the emergence of a new class of experimental science, HED laboratory astrophysics, wherein the properties of matter and the processes that occur under extreme astrophysical conditions can be examined in the laboratory. Areas particularly suitable to this class of experimental astrophysics include the study of opacities relevant to stellar interiors, equations of state relevant to planetary interiors, strong shock-driven nonlinear hydrodynamics and radiative dynamics relevant to supernova explosions and subsequent evolution, protostellar jets and high Mach number flows, radiatively driven molecular clouds and nonlinear photoevaporation front dynamics, and photoionized plasmas relevant to accretion disks around compact objects such as black holes and neutron stars. C1 Lawrence Livermore Natl Lab, Livermore, CA 94450 USA. Univ Michigan, Ann Arbor, MI 48109 USA. RP Remington, BA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94450 USA. EM remington2@llnl.gov; rpdrake@umich.edu; ryutov1@llnl.gov RI Drake, R Paul/I-9218-2012 OI Drake, R Paul/0000-0002-5450-9844 NR 325 TC 360 Z9 372 U1 12 U2 74 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0034-6861 J9 REV MOD PHYS JI Rev. Mod. Phys. PD JUL-SEP PY 2006 VL 78 IS 3 BP 755 EP 807 DI 10.1103/RevModPhys.78.755 PG 53 WC Physics, Multidisciplinary SC Physics GA 089IY UT WOS:000240875200003 ER PT J AU Ice, GE Pang, JWL Barabash, RI Puzyrev, Y AF Ice, GE Pang, JWL Barabash, RI Puzyrev, Y TI Characterization of three-dimensional crystallographic distributions using polychromatic X-ray microdiffraction SO SCRIPTA MATERIALIA LA English DT Article DE X-ray diffraction; synchrotron radiation; microdiffraction ID STRAIN AB Polychromatic microdiffraction uses small X-ray beams to characterize the local crystallographic structure of materials. When combined with a depth resolving technique called differential aperture microscopy, the phase and local orientation of femtoliter volumes (0.5 x 0.5 x 0.7 mu m(3)) can be resolved beneath the surface of a sample. In addition, the local elastic strain and dislocation tensors can also be determined and the local dislocation type can be modeled. Here we present recent technical developments, including example applications and emerging research directions. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. RP Ice, GE (reprint author), Oak Ridge Natl Lab, Div Met & Ceram, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM IceGE@ornl.gv NR 16 TC 12 Z9 12 U1 1 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUL PY 2006 VL 55 IS 1 BP 57 EP 62 DI 10.1016/j.scriptamat.2006.02.046 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 045SL UT WOS:000237762400011 ER PT J AU Rajulapati, KV Scattergood, RO Murty, KL Duscher, G Koch, CC AF Rajulapati, KV Scattergood, RO Murty, KL Duscher, G Koch, CC TI Effect of Pb on the mechanical properties of nanocrystalline Al SO SCRIPTA MATERIALIA LA English DT Article DE nanocrystalline materials; ball milling; second phase; Al-Pb; microhardness ID MELTING BEHAVIOR; METALS; DEFORMATION; MATRIX; ZN AB Nanocrystalline (nc) Al-Pb two phase mixtures of different Pb concentrations were made by two different routes using high energy ball milling. The microhardness measurements show a softening in nc Al-Pb composites with the increase in Pb content, contradicting the previous results reported in the literature. We conclude that interaction of Pb atoms with nanocrystalline Al grain boundaries is responsible for the softening of the nc Al matrix observed in the current study. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. RP Koch, CC (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, Box 7907, Raleigh, NC 27695 USA. EM carl_koch@ncsu.edu RI Scattergood, Ronald/D-5204-2009; Koch, Carl/B-9101-2008; Duscher, Gerd/G-1730-2014 OI Duscher, Gerd/0000-0002-2039-548X NR 23 TC 22 Z9 22 U1 1 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUL PY 2006 VL 55 IS 2 BP 155 EP 158 DI 10.1016/j.scriptamat.2006.03.051 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 049LT UT WOS:000238018600011 ER PT J AU Keller, JM Gee, GW AF Keller, J. M. Gee, G. W. TI Comparison of American Society of Testing Materials and Soil Science Society of America hydrometer methods for particle-size analysis SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID PREDICT AB Particle-size analysis (PSA) is widely used in both soil science and engineering. Soil classification schemes are built on PSA values and recent developments in pedotransfer functions rely on PSA to estimate soil hydraulic properties. Because PSA is method dependent, the standardization of experimental procedures is important for the comparison of reported results. A study was conducted to compare the American Society of Testing Materials (ASTM) hydrometer method (D422) for PSA with the hydrometer method published by the Soil Science Society of America (SSSA). Tests on soils ranging in texture from sand to sandy clay loam were conducted at temperatures ranging from 20 to 30 degrees C. The main difference between methods is the temperature correction, with the ASTM method relying on an empirical correction and the SSSA method using a blank hydrometer reading. Identical texture estimates for all but one of 48 total samples was observed between methods. Percentage of fines, silt, and clay demonstrated relatively consistent values between methods. The ASTM and SSSA methods were compared at values of D50, D30, and D10 (i.e., effective particle diameter values when the size-distributions have dropped to percentages of less than 50, 30, and 10, respectively). Excellent agreement was found between methods for D50 and D30 values (correlations above 0.99). Less agreement was found for D10 (correlation 0.989) values, but still reasonably good. The results suggest that for the range of soil textures evaluated in this study, ASTM and SSSA methods can be used interchangeably for textural analysis. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Keller, JM (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM jason.keller@pnl.gov NR 9 TC 4 Z9 5 U1 5 U2 35 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD JUL-AUG PY 2006 VL 70 IS 4 BP 1094 EP 1100 DI 10.2136/sssaj2005.0303N PG 7 WC Soil Science SC Agriculture GA 059MA UT WOS:000238735700003 ER PT J AU Blanco-Canqui, H Lal, R Post, WM Izaurralde, RC Shipitalo, MJ AF Blanco-Canqui, H Lal, R Post, WM Izaurralde, RC Shipitalo, MJ TI Organic carbon influences on soil particle density and rheological properties SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID EARTHWORM POPULATIONS; SIZE DISTRIBUTION; TILLAGE PRACTICES; WATER CONTENTS; MANAGEMENT; PARAMETERS; RESISTANCE; MINERALOGY; STRENGTH; OPTIMUM AB Soil particle density (rho(s)) is not routinely measured and is assumed to range between 2.60 and 2.70 Mg m(-3) or to be a constant (2.65 Mg m(-3)) when estimating essential properties such as porosity, and volumetric water and air relations. Values of rho(s) for the same soil may, however, differ significantly from the standard range due to management-induced changes in soil organiccarbon (SOC) concentrations. We quantified the rho(s) and Atterberg limits of a Rayne silt loam for five long-term (> 22 yr) moldboard-plowed continuous corn (Zea mays L.; MP), no-till continuous corn (NT), no-till continuous corn with beef cattle manure (NTm), pasture, and forest systems. We also assessed the relationships of SOC concentration with p, and the Atterberg limits and the impact of rho(s) on soil porosity. Mean rho(s) across NT, NTm, and pasture (2.35 Mg m(-3)) was -7% lower than that for MP in the 0- to 10-cm soil depth (2.52 Mg m(-3), p < 0.01). Forest had the lowest rho(s) of all soils (1.79 Mg m(-3)). The NTm caused a greater reduction in rho(s) and a greater increase in SOC concentration, liquid limit (LL), plastic limit (PL), and plasticity index (PI) than NT. Surface soils under MP had the highest rho(s) and rho(b) and the lowest SOC concentration, LL, PL, and PI. The SOC concentration was correlated negatively with rho(s) (r(2) = 0.75) and positively with Atterberg limits (r(2) > 0.64) at > 20-cm depth. Estimates of soil porosity for NT, NTm, and pasture using the constant p. overestimated the "true" porosity by 12% relative to that using the measured rho(s). C1 Ohio State Univ, Carbon Mangament & Sequestrat Ctr, FAES, OARDC,Sch Nat Resources, Columbus, OH 43210 USA. Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. Joint Global Change Res Inst, College Pk, MD 20740 USA. USDA ARS, Coshocton, OH 43812 USA. RP Blanco-Canqui, H (reprint author), Ohio State Univ, Carbon Mangament & Sequestrat Ctr, FAES, OARDC,Sch Nat Resources, 210 Kottman Hall,2021 Coffey Rd, Columbus, OH 43210 USA. EM blanco.16@osu.edu RI Post, Wilfred/B-8959-2012; Izaurralde, Roberto/E-5826-2012; Lal, Rattan/D-2505-2013; OI Shipitalo, Martin/0000-0003-4775-7345 NR 39 TC 30 Z9 31 U1 1 U2 19 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD JUL-AUG PY 2006 VL 70 IS 4 BP 1407 EP 1414 DI 10.2136/sssaj2005.0355 PG 8 WC Soil Science SC Agriculture GA 059MA UT WOS:000238735700036 ER PT J AU Witt, S Kwon, YD Sharon, M Felderer, K Beuttler, M Robinson, CV Baumeister, W Jap, BK AF Witt, Susanne Kwon, Young Do Sharon, Michal Felderer, Karin Beuttler, Mirjam Robinson, Carol V. Baumeister, Wolfgang Jap, Bing K. TI Proteasome assembly triggers a switch required for active-site maturation SO STRUCTURE LA English DT Article ID ELECTROSPRAY MASS-SPECTROMETRY; 20S PROTEASOME; RHODOCOCCUS PROTEASOME; CONTROLLED PROTEOLYSIS; SUBUNIT INTERACTIONS; PURIFICATION AB The processing of propeptides and the maturation of 20S proteasomes require the association of P rings from two half proteasomes. We propose an assembly-dependent activation model in which interactions between helix (H3 and H4) residues of the opposing half proteasomes are prerequisite for appropriate positioning of the S2-S3 loop; such positioning enables correct coordination of the active-site residue needed for propeptide cleavage. Mutations of H3 or H4 residues that participate in the association of two half proteasomes inhibit activation and prevent, in nearly all cases, the formation of full proteasomes. In contrast, mutations affecting interactions with residues of the S2-S3 loop allow the assembly of full, but activity impacted, proteasomes. The crystal structure of the inactive H3 mutant, Phe145Ala, shows that the S2-S3 loop is displaced from the position observed in wild-type proteasomes. These data support the proposed assembly-dependent activation model in which the S2-S3 loop acts as an activation switch. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Max Planck Inst Biochem, Dept Mol Struct Biol, D-82152 Martinsried, Germany. Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England. RP Jap, BK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM baumeist@biochem.mpg.de; bkjap@lbl.gov RI Kwon, Young Do/A-6957-2010; OI Sharon, Michal/0000-0003-3933-0595 NR 26 TC 20 Z9 22 U1 1 U2 4 PU CELL PRESS PI CAMBRIDGE PA 1100 MASSACHUSETTS AVE, CAMBRIDGE, MA 02138 USA SN 0969-2126 J9 STRUCTURE JI Structure PD JUL PY 2006 VL 14 IS 7 BP 1179 EP 1188 DI 10.1016/j.str.2006.05.019 PG 10 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 066KO UT WOS:000239228500012 PM 16843899 ER PT J AU Mullins, DR AF Mullins, D. R. TI Adsorption of CO and C2H4 on Rh-loaded thin-film dysprosium oxide SO SURFACE SCIENCE LA English DT Article DE dysprosium; rhodium; carbon monoxide; ethylene; soft X-ray photoelectron spectroscopy; catalysis ID CERIUM OXIDE; LEVEL PHOTOEMISSION; CARBON-MONOXIDE; SURFACES; RH(111); DISSOCIATION; ETHYLIDYNE; MOLECULES; ETHYLENE; RU(0001) AB A dysprosium oxide thin film was deposited on Ru(0001) by vapor depositing Dy in 2 x 10(-7) torr O-2 while the Ru was at 700 K. The film was ca. 5 nm thick and produced a p(1.4 x 1.4) LEED pattern relative to the Ru(0001) substrate. The adsorption and reaction of CO and C2H4 adsorbed on Rh supported on the Dy2O3 film were studied by TPD and SXPS. The CO initially reacted with loosely bound oxygen in the substrate to produce CO2. After the loosely bound oxygen was removed, the CO adsorbed non-dissociatively in a manner similar to what is seen on Rh(111). C2H4 adsorbed on the Rh particles and underwent progressive dehydrogenation to produce H-2 during TPD. The C from the C2H4 reacted with the O in Dy2O3 to produce CO. CO dissociation on the Rh particles could be promoted by treating the Dy2O3 with C2H4 before CO exposure. (c) 2006 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Mullins, DR (reprint author), Oak Ridge Natl Lab, POB 2008,MS 6201, Oak Ridge, TN 37831 USA. EM mullinsdr@ornl.gov NR 29 TC 5 Z9 5 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD JUL 1 PY 2006 VL 600 IS 13 BP 2718 EP 2725 DI 10.1016/j.susc.2006.04.037 PG 8 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 061SW UT WOS:000238893900013 ER PT J AU Chan, TL Ye, YY Wang, CZ Ho, KM AF Chan, T. -L. Ye, Y. Y. Wang, C. Z. Ho, K. M. TI Diffusion of Pb adatom and ad-dimer on Si(100) from ab initio studies SO SURFACE SCIENCE LA English DT Article DE density functional calculations; surface diffusion; silicon; lead; low index single crystal surfaces ID SCANNING-TUNNELING-MICROSCOPY; ELECTRON-GAS; SI(001); SURFACE AB The diffusion pathways of Ph adatoms and ad-dimers on Si(100) are investigated by first-principles calculations. Pb adatoms are found to diffuse on top of the Si(100) dimer row with an energy barrier of 0.31 eV. However, Pb dimers are energetically more stable. Ph dimers on top of the dimer row have a high energy barrier (0.95 eV) to rotate from the lowest energy configuration to the orientation parallel to the underlying Si(100) dimer row. Once the ad-dimer is oriented parallel to Si(100) dimer row, they can diffuse along the dimer row with an energy barrier of only 0.32 eV. (c) 2006 Elsevier B.V. All rights reserved. C1 Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Chan, TL (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. EM phyliang@iastate.edu RI Chan, Tzu-Liang/C-3260-2015 OI Chan, Tzu-Liang/0000-0002-9655-0917 NR 14 TC 7 Z9 7 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD JUL 1 PY 2006 VL 600 IS 13 BP L159 EP L163 DI 10.1016/j.susc.2006.05.001 PG 5 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 061SW UT WOS:000238893900001 ER PT J AU Klocke, M Mundt, K Idler, C McEniry, J O'Kiely, P Barth, S AF Klocke, Michael Mundt, Kerstin Idler, Christine McEniry, Joseph O'Kiely, Padraig Barth, Susanne TI Monitoring Lactobacillus plantarum in grass silages with the aid of 16S rDNA-based quantitative real-time PCR assays (vol 29, pg 49, 2006) SO SYSTEMATIC AND APPLIED MICROBIOLOGY LA English DT Correction C1 Leibniz Inst Agr Engn Potsdam Bornim, ATB, Dept Bioengn, D-14469 Potsdam, Germany. Univ Coll Dublin, Dept Ind Microbiol, Dublin 2, Ireland. TEAGASC, Grange Res Ctr, Dunsany, Meath, Ireland. TEAGASC, Oak Pk Res Ctr, Carlow, Co Carlow, Ireland. RP Klocke, M (reprint author), Leibniz Inst Agr Engn Potsdam Bornim, ATB, Dept Bioengn, Max Eyth Allee 100, D-14469 Potsdam, Germany. EM mklocke@atb-potsdam.de RI Barth, Susanne/P-3366-2014 OI Barth, Susanne/0000-0002-4104-5964 NR 1 TC 1 Z9 1 U1 0 U2 5 PU ELSEVIER GMBH, URBAN & FISCHER VERLAG PI JENA PA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY SN 0723-2020 J9 SYST APPL MICROBIOL JI Syst. Appl. Microbiol. PD JUL PY 2006 VL 29 IS 5 BP 431 EP 431 DI 10.1016/j.syapm.2006.01.015 PG 1 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 073XU UT WOS:000239776800011 ER PT J AU Wunderlich, B AF Wunderlich, Bernhard TI The glass transition of polymer crystals SO THERMOCHIMICA ACTA LA English DT Article DE glass transition of crystals; melting transition; macromolecule; vibrational motion; large-amplitude motion; heat capacity; mesophases ID TEMPERATURE-MODULATED CALORIMETRY; SOLID LINEAR MACROMOLECULES; STATE C-13 NMR; ALIPHATIC NYLONS; CONDIS CRYSTALS; HEAT-CAPACITIES; POLY(OXYETHYLENE); MOTION; CONVERSION; PHASE AB The statement: "A solid is a condensed phase at a temperature below its glass transition", is an operational definition. It leads to the corollary that for crystals to be solid, they must be below their glass transition. In this paper evidence for the usefulness of this definition is presented. It is based on the measurement of the glass transition of crystals in the presence of melting and crystallization. The experimental tool is temperature-modulated differential scanning calorimetry, TMDSC, which enables the measurement of heat capacity in the presence of irreversible latent heat of melting and crystallization. Not only is the expected change of the heat capacity during the first-order phase transition identified, but it was also discovered that in some flexible polymer crystals the glass transition of the crystal can occur at a lower temperature than the order/disorder process without a change in crystal structure. Typical examples for such behavior are seen in poly (oxyethylene), poly(oxytetramethylene), aliphatic nylons, and most likely also in polyesters, polyurethanes, and polymers with other functional groups, separated by longer CH2-sequences. Such order/disorder transitions above the vitrification to a solid are well-known for the mesophases described as liquid crystals, plastic crystals, and condis crystals of small and large molecules, attesting for the universality of the operational definition. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Chem & Analyt Sci Div, Oak Ridge, TN 37831 USA. RP Wunderlich, B (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM Wunderlich@CharterTN.net NR 36 TC 15 Z9 15 U1 2 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0040-6031 J9 THERMOCHIM ACTA JI Thermochim. Acta PD JUL 1 PY 2006 VL 446 IS 1-2 SI SI BP 128 EP 134 DI 10.1016/j.tca.2005.11.011 PG 7 WC Thermodynamics; Chemistry, Analytical; Chemistry, Physical SC Thermodynamics; Chemistry GA 060HI UT WOS:000238792900020 ER PT J AU DeSanto, P Buttrey, DJ Grasselli, RK Pyrz, WD Lugmair, CG Volpe, AF Vogt, T Toby, BH AF DeSanto, P., Jr. Buttrey, D. J. Grasselli, R. K. Pyrz, W. D. Lugmair, C. G. Volpe, A. F., Jr. Vogt, T. Toby, B. H. TI Comparison of MoVTaTeO and MoVNbTeO M1 crystal chemistry SO TOPICS IN CATALYSIS LA English DT Article; Proceedings Paper CT 3rd Irsee Symposium CY JUN 10-12, 2005 CL Kloster Irsee, GERMANY SP Robert Karl Grasselli Fdn DE MoVTaTeO; MoVNbTeO; propane ammoxidation catalyst; acrylonitrile; site isolation; molybdates; multifunctionality; chemical complexity ID OXYGEN BOND DISTANCES; SELECTIVE OXIDATION; ACTIVE-CENTERS; (AMM)OXIDATION CATALYSTS; PROPANE AMMOXIDATION; RAMAN-SPECTROSCOPY; O-X; OXIDES; ACRYLONITRILE; PERFORMANCE AB The structure of a new catalytically active MoVTaTeO variant of the M1-phase propane (amm)oxidation catalyst has been refined. This Ta-containing variant is isostructural with the well-known MoVNbTeO form of the M1 phase, in this case with a = 21.1484(9) angstrom, b = 26.6472(11) angstrom, c = 4.00332(1) angstrom with Z = 4. The formula unit of can be written as (TeO)(0.43) Mo-4.08 V0.70Ta0.22O14 to be compared to the previously determined composition for the Nb-containing phase: (TeO)(0.47)Mo3.98V0.59Nb0.43O14. The Ta-containing variant is somewhat vanadium-rich compared to its Nb counterpart, but the Ta solubility is only about half of the corresponding Nb solubility. Debate over the true location and role of Nb in the MoVNbTeO M1 phase may be better understood by comparison with the refined structure of this chemically similar Ta analog. In this case Ta is clearly distinguishable from each of the other metals from scattering experiments, unlike Nb. C1 Univ Delaware, Dept Chem Engn, Ctr Catalyt Sci & Technol, Newark, DE 19716 USA. Bloomsburg Univ, Dept Chem, Bloomsburg, PA 17815 USA. Symyx Technol Inc, Santa Clara, CA 95051 USA. Univ S Carolina, Dept Chem & Biochem, NanoCtr, Columbia, SC 29208 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Buttrey, DJ (reprint author), Univ Delaware, Dept Chem Engn, Ctr Catalyt Sci & Technol, Newark, DE 19716 USA. EM dbuttrey@udel.edu RI Toby, Brian/F-3176-2013; Vogt, Thomas /A-1562-2011 OI Toby, Brian/0000-0001-8793-8285; Vogt, Thomas /0000-0002-4731-2787 NR 35 TC 29 Z9 29 U1 0 U2 8 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD JUL PY 2006 VL 38 IS 1-3 BP 31 EP 40 DI 10.1007/s11244-006-0068-8 PG 10 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 071IC UT WOS:000239592200005 ER PT J AU Schultz, IR Shangraw, RE AF Schultz, IR Shangraw, RE TI Effect of short-term drinking water exposure to dichloroacetate on its pharmacokinetics and oral bioavailability in human volunteers: A stable isotope study SO TOXICOLOGICAL SCIENCES LA English DT Article DE haloacetic acids; chlorination; GST-zeta ID GLUTATHIONE TRANSFERASE ZETA; SODIUM DICHLOROACETATE; MASS-SPECTROMETRY; HALOACETIC ACIDS; LACTIC-ACIDOSIS; DEPLETED RATS; BY-PRODUCTS; B6C3F1 MICE; TOXICOKINETICS; INACTIVATION AB Dichloroacetic acid (DCAA) is a by-product of drinking water disinfection, is a known rodent hepatocarcinogen, and is also used therapeutically to treat a variety of metabolic disorders in humans. We measured DCAA bioavailability in 16 human volunteers (eight men, eight women) after simultaneous administration of oral and iv DCAA doses. Volunteers consumed DCAA-free bottled water for 2 weeks to wash out background effects of DCAA. Subsequently, each subject consumed C-12-DCAA (2 mg/kg) dissolved in 500 ml water over a period of 3 min. Five minutes after the start of the 12C-DCAA consumption, C-13-labeled DCAA (0.3 mg/kg) was administered iv over 20 s and plasma C-12/C-13-DCAA concentrations measured at predetermined time points over 4 h. Volunteers subsequently consumed for 14 consecutive days DCAA 0.02 mu g/kg/day dissolved in 500 ml water to simulate a low-level chronic DCAA intake. Afterward, the 12C/13C-DCAA administrations were repeated. Study end points were calculation of AUC(0 ->infinity), apparent volume of distribution (V-ss), total body clearance (Cl-b), plasma elimination half-life (t(1/2),(beta)), oral absorption rate (K-a), and oral bioavailability. Oral bioavailability was estimated from dose-adjusted AUC ratios and by using a compartmental pharmacokinetic model after simultaneous fitting of oral and iv DCAA concentration-time profiles. DCAA bioavailability had large interindividual variation, ranging from 27 to 100%. In the absence of prior DCAA intake, there were no significant differences (p > 0.05) in any pharmacokinetic parameters between male and female volunteers, although there was a trend that women absorbed DCAA more rapidly (increased Ka), and cleared DCAA more slowly (decreased Clb), than men. Only women were affected by previous 14-day DCAA exposure, which increased the AUC(0 ->infinity) for both oral and iv DCAA doses (p < 0.04 and p < 0.014, respectively) with a corresponding decrease in the Clb. C1 Battelle MSL, Battelle Pacific NW Div, Sequim, WA 98382 USA. Oregon Hlth Sci Univ, Portland, OR 97239 USA. RP Schultz, IR (reprint author), Battelle MSL, Battelle Pacific NW Div, 1529 W Sequim Bay Rd, Sequim, WA 98382 USA. EM ir_schultz@pnl.gov FU NCRR NIH HHS [5M01 RR 000334] NR 43 TC 11 Z9 11 U1 0 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 J9 TOXICOL SCI JI Toxicol. Sci. PD JUL PY 2006 VL 92 IS 1 BP 42 EP 50 DI 10.1093/toxsci/kfj193 PG 9 WC Toxicology SC Toxicology GA 058FH UT WOS:000238650400005 PM 16611621 ER PT J AU Wozei, E Hermanowicz, SW AF Wozei, E. Hermanowicz, S. W. TI Developing a yeast-based assay protocol to monitor total oestrogenic activity induced by 17 beta-oestradiol in activated sludge supernatants from batch experiments SO WATER SA LA English DT Article DE activated sludge; oestradiol; oestrogenic activity; suspended solids; Saccharomyces cerevisiae; yeast assay ID WASTE-WATER EFFLUENT; ALKYLPHENOL POLYETHOXYLATE SURFACTANTS; TREATMENT-PLANT EFFLUENTS; SEWAGE-TREATMENT PLANTS; ENDOCRINE DISRUPTORS; AQUATIC ENVIRONMENT; BETA-GALACTOSIDASE; STEROID-HORMONES; TREATMENT WORKS; UNITED-KINGDOM AB A yeast-based assay protocol developed for detecting oestrogenic activity in activated sludge (AS) supernatant is described. The protocol used Saccharomyces cerevisiae construct RMY/ER-ERE with human oestrogen receptor (ER alpha) and lacZ reporter genes, and was developed by modifying existing assays for use with AS samples from batch experiments. The method was able to detect total oestrogenic activity (without prior extraction) in supernatants of AS spiked with 17 beta-oestradiol (E2) with a detection limit of 0.03 ngE2-equivalent/l and an overall quanti. cation limit of 100 ngE2-equivalent/l. Mean E2-induced oestrogenic activity recoveries of > 56% were obtained from the spiked samples. C1 Lawrence Berkeley Lab, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. RP Wozei, E (reprint author), Lawrence Berkeley Lab, Dept Civil & Environm Engn, Mail Stop 70A-3317,1 Cyclotron Rd,629 Davis Hall, Berkeley, CA 94720 USA. EM EWozei@LBL.gov RI Hermanowicz, Slawomir/D-7678-2014 OI Hermanowicz, Slawomir/0000-0003-3708-0262 NR 54 TC 4 Z9 4 U1 0 U2 3 PU WATER RESEARCH COMMISSION PI PRETORIA PA PO BOX 824, PRETORIA 0001, SOUTH AFRICA SN 0378-4738 J9 WATER SA JI Water SA PD JUL PY 2006 VL 32 IS 3 BP 345 EP 354 PG 10 WC Water Resources SC Water Resources GA 063SF UT WOS:000239039200008 ER PT J AU Wozei, E Hermanowicz, SW AF Wozei, E. Hermanowicz, S. W. TI Application of a yeast-based assay protocol developed to monitor total oestrogenic activity induced by 17 beta-oestradiol in activated sludge supernatants from batch experiments SO WATER SA LA English DT Article DE activated sludge; 17 beta-oestradiol; oestrogen; oestrogen receptor; oestrogenic activity; suspended solids; wastewater treatment; yeast assay ID BIOSOLIDS TREATMENT PROCESSES; WATER TREATMENT SYSTEMS; SEWAGE-TREATMENT PLANTS; RECEPTOR AGONIST FATE; MASS-BALANCE ANALYSIS; IN-VITRO BIOASSAYS; WASTE-WATER; SURFACE-WATER; CHEMICAL FRACTIONATION; BETA-GALACTOSIDASE AB Batch experiments were carried out with activated sludge from laboratory reactors and a full-scale treatment plant spiked with 17 beta-oestradiol (E2). An oestrogen-sensitive yeast-based assay protocol, described in detail in a related publication, was used to measure reduction of E2-induced total oestrogenic activity from the sludge supernatant over a 15 d period after which the sludge was re-spiked to check for possible enhancement of reduction by pre-exposed sludge during an additional 15 d period. The reduction was generally improved by increasing sludge solids concentrations and by continuous mixing. For a 100 ngE2/l spike there was > 40% reduction of oestrogenic activity within 15 d, which improved to > 70% by pre-exposing the sludge. The oestrogenic activity produced by a dose of 100 mu gE2/l was readily removed by most sludges within 15 d. However, re-spiking the activated sludge with the same E2 concentration caused some sludges to lose reduction capacity. C1 Lawrence Berkeley Lab, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. RP Wozei, E (reprint author), Lawrence Berkeley Lab, Dept Civil & Environm Engn, Mail Stop 70A-3317,1 Cyclotron Rd,629 Davis Hall, Berkeley, CA 94720 USA. EM EWozei@LBL.gov RI Hermanowicz, Slawomir/D-7678-2014 OI Hermanowicz, Slawomir/0000-0003-3708-0262 NR 54 TC 0 Z9 0 U1 1 U2 3 PU WATER RESEARCH COMMISSION PI PRETORIA PA PO BOX 824, PRETORIA 0001, SOUTH AFRICA SN 0378-4738 J9 WATER SA JI Water SA PD JUL PY 2006 VL 32 IS 3 BP 355 EP 364 PG 10 WC Water Resources SC Water Resources GA 063SF UT WOS:000239039200009 ER PT J AU Valentine, GA Krogh, KEC AF Valentine, Greg A. Krogh, Karen E. C. TI Emplacement of shallow dikes and sills beneath a small basaltic volcanic center - The role of pre-existing structure (Paiute Ridge, southern Nevada, USA) SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE dike; sill; basalt ID RADIOACTIVE-WASTE REPOSITORY; RIFT ZONES; LATHROP WELLS; EARTHS CRUST; NEW-MEXICO; FIELD; PROPAGATION; ROCK; INTRUSIONS; FRACTURE AB Late Miocene sills and dikes in the Paiute Ridge area of southern Nevada were emplaced in an extensional setting beneath a small volume, alkali basaltic volcanic center. Dikes (400-5000 m long, 1.2-9 m wide) mostly occupy pre-existing E-dipping normal faults. Elastic deformation of the wall rocks alone cannot explain dike dimensions; inelastic deformation, wall rock erosion by flowing magma, and syn-emplacement extension of the host structural system also contributed to dike widths. After primarily subvertical emplacement, flow focused toward the southern end of one of the dikes to form a volcanic conduit. This dike and a fault-hosted radial dike subsequently were subject to high pressures due to transient volcanic processes. Three small sills (extending laterally up to similar to 500 m, and 20-46 m thick) and two larger sills (each having lateral dimensions similar to 1 km) locally branch off some dikes within similar to 250 m of the paleosurface. Individual small sills extend only into the hanging wall blocks of the faults that host their parent dikes, and are connected to the dikes by stems that are only a few tens of meters wide; elsewhere along their strikes the parent dikes extend above the sills. This mode of sill emplacement was caused by local rotation of principal stresses related to the intersection of the dike-hosting fault planes with the complex contact between relatively strong Paleozoic carbonates and weak Tertiary tuffs. Orientation of bedding planes in the tuffs controlled the direction of sill propagation. The three most areally extensive sills formed lopoliths with sagging roofs, indicating interaction with the free surface. (c) 2006 Elsevier B.V All rights reserved. C1 Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Valentine, GA (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Mail Stop 4D62, Los Alamos, NM 87545 USA. EM gav@lanl.gov NR 53 TC 92 Z9 92 U1 2 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JUN 30 PY 2006 VL 246 IS 3-4 BP 217 EP 230 DI 10.1106/j.epsl.2006.04.031 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 064YB UT WOS:000239125500007 ER PT J AU Robert, T Martel, R Conrad, SH Lefebvre, R Gabriel, U AF Robert, T Martel, R Conrad, SH Lefebvre, R Gabriel, U TI Visualization of TCE recovery mechanisms using surfactant-polymer solutions in a two-dimensional heterogeneous sand model SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article DE heterogeneous sand model; surfactants; Xanthan; gravity number; TCE; density flow ID ENHANCED AQUIFER REMEDIATION; NONAQUEOUS PHASE LIQUIDS; POROUS-MEDIA; DNAPL REMEDIATION; RESIDUAL TETRACHLOROETHYLENE; CONTAMINATED AQUIFER; FIELD-TEST; REMOVAL; SOLUBILIZATION; MOBILIZATION AB This research focused on the optimization of TCE dissolution in a physical two-dimensional model providing a realistic representation of a heterogeneous granular aquifer. TCE was infiltrated in the sand pack where it resided both in pools and in zones of residual saturation. Surfactant was initially injected at low concentration to minimize TCE remobilization at first contact but was incrementally increased later during the experiment. Xanthan gum was added to the injected surfactant solution to optimize the sweep efficiency through the heterogeneous medium. Photographs and digital image analysis illustrated the interactions between TCE and the injected fluids. During the polymer flood, the effects of heterogeneities inside the sand pack were greatly reduced by the increased fluid viscosity and the shear-thinning effects of the polymer. The polymer also improved the contact between the WE ganglia and the surfactant-polymer solution, thereby promoting dissolution. Surfactants interacted with the polymer reducing the overall viscosity of the solution. At first contact with a 0.5%(mass) surfactant solution, the TCE pools drained and some remobilization occurred. However, no TCE bank was formed and TCE did not penetrate into any previously uncontaminated areas. As a result, TCE surface area was increased. Subsequent surfactant floods at higher surfactant concentrations did not trigger more remobilization. TCE was mainly dissolved by the solution with the highest surfactant concentration. Plugging from bacterial growth or microgel formation associated to the polymer at the inflow screen prevented the full completion of the experiment. However, more than 90% of TCE was recovered with the circulation of less than 6 pore volumes of surfactant-polymer solution. (c) 2006 Elsevier B.V All rights reserved. C1 INRS Eau Terre & Environm Quebec, Quebec City, PQ, Canada. Sandia Natl Labs, Flow Visualizat & Proc Lab, Albuquerque, NM 87185 USA. RP Martel, R (reprint author), INRS Eau Terre & Environm Quebec, Quebec City, PQ, Canada. EM Richard_MARTEL@inrs-ete.uquebec.ca RI Lefebvre, Rene/D-6783-2016; OI Lefebvre, Rene/0000-0002-7938-9930; Martel, Richard/0000-0003-4219-5582 NR 55 TC 21 Z9 22 U1 3 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD JUN 30 PY 2006 VL 86 IS 1-2 BP 3 EP 31 DI 10.1016/j.jconhyd.2006.02.013 PG 29 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 060DP UT WOS:000238782800002 PM 16624443 ER PT J AU Wu, YS Mukhopadhyay, S Zhang, K Bodvarsson, GS AF Wu, YS Mukhopadhyay, S Zhang, K Bodvarsson, GS TI A mountain-scale thermal-hydrologic model for simulating fluid flow and heat transfer in unsaturated fractured rock SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article DE thermal-hydrologic processes; thermal load; fluid and heat flow; heat pipe; reservoir simulation; fractured unsaturated rock ID YUCCA MOUNTAIN; THERMOHYDROLOGIC CONDITIONS; TRANSPORT; NEVADA; ZONE; TUFF; REPOSITORY AB A multidimensional, mountain-scale, thermal-hydrologic (TH) numerical model is presented for investigating unsaturated flow behavior in response to decay heat from the proposed radioactive waste repository in the Yucca Mountain unsaturated zone (UZ), The model, consisting of both two-dimensional (2-D) and three-dimensional (3-D) representations of the UZ repository system, is based on the current repository design, drift layout, thermal loading scenario, and estimated current and future climate conditions. This mountain-scale TH model evaluates the coupled TH processes related to mountain-scale UZ flow. It also simulates the impact of radioactive waste heat release on the natural hydrogeological system, including heat-driven processes occurring near and far away from the emplacement tunnels or drifts. The model simulates predict thermally perturbed liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature elevations, as well as the changes in water flux driven by evaporation/condensation processes and drainage between drifts. These simulations provide insights into mountain-scale thermally perturbed flow fields under thermal loading conditions. Published by Elsevier B.V. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Zhang, K (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM kzhang@lbl.gov RI Wu, Yu-Shu/A-5800-2011 NR 37 TC 4 Z9 4 U1 2 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD JUN 30 PY 2006 VL 86 IS 1-2 BP 128 EP 159 DI 10.1016/j.jconhyd.2006.02.015 PG 32 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 060DP UT WOS:000238782800008 PM 16624442 ER PT J AU Palmer, PI Suntharalingam, P Jones, DBA Jacob, DJ Streets, DG Fu, QY Vay, SA Sachse, GW AF Palmer, Paul I. Suntharalingam, Parvadha Jones, Dylan B. A. Jacob, Daniel J. Streets, David G. Fu, Qingyan Vay, Stephanie A. Sachse, Glen W. TI Using CO2 : CO correlations to improve inverse analyses of carbon fluxes SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ATMOSPHERIC CO2; SATELLITE-OBSERVATIONS; AIRCRAFT OBSERVATIONS; CHEMICAL EVOLUTION; TRANSPORT PATHWAYS; ASIAN OUTFLOW; ART.; EMISSION; PACIFIC; MONOXIDE AB [1] Observed correlations between atmospheric concentrations of CO2 and CO represent potentially powerful information for improving CO2 surface flux estimates through coupled CO2-CO inverse analyses. We explore the value of these correlations in improving estimates of regional CO2 fluxes in east Asia by using aircraft observations of CO2 and CO from the TRACE-P campaign over the NW Pacific in March 2001. Our inverse model uses regional CO2 and CO surface fluxes as the state vector, separating biospheric and combustion contributions to CO2. CO2-CO error correlation coefficients are included in the inversion as off-diagonal entries in the a priori and observation error covariance matrices. We derive error correlations in a priori combustion source estimates of CO2 and CO by propagating error estimates of fuel consumption rates and emission factors. However, we find that these correlations are weak because CO source uncertainties are mostly determined by emission factors. Observed correlations between atmospheric CO2 and CO concentrations imply corresponding error correlations in the chemical transport model used as the forward model for the inversion. These error correlations in excess of 0.7, as derived from the TRACE-P data, enable a coupled CO2-CO inversion to achieve significant improvement over a CO2-only inversion for quantifying regional fluxes of CO2. C1 Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Shanghai Environm Monitoring Ctr, Shanghai 200030, Peoples R China. NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Palmer, PI (reprint author), Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. EM pip@env.leeds.ac.uk RI Palmer, Paul/F-7008-2010; Jones, Dylan/O-2475-2014; OI Jones, Dylan/0000-0002-1935-3725; Streets, David/0000-0002-0223-1350 NR 30 TC 36 Z9 36 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 30 PY 2006 VL 111 IS D12 AR D12318 DI 10.1029/2005JD006697 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 062IX UT WOS:000238938900004 ER PT J AU Vrugt, JA Gupta, HV Dekker, SC Sorooshian, S Wagener, T Bouten, W AF Vrugt, JA Gupta, HV Dekker, SC Sorooshian, S Wagener, T Bouten, W TI Application of stochastic parameter optimization to the Sacramento Soil Moisture Accounting Model SO JOURNAL OF HYDROLOGY LA English DT Article DE hydrologic model; Bayesian statistics; parameter uncertainty; Markov Chain Monte Carlo methods; rainfall-runoff ID RAINFALL-RUNOFF MODELS; HYDROLOGIC-MODELS; AUTOMATIC CALIBRATION; GLOBAL OPTIMIZATION; UNCERTAINTY; CATCHMENTS; MULTIPLE AB Hydrological models generally contain parameters that cannot be measured directly, but can only be meaningfully inferred by calibration against a historical record of input-output data. While considerable progress has been made in the development and application of automatic procedures for model calibration, such methods have received criticism for their lack of rigor in treating uncertainty in the parameter estimates. In this paper, we apply the recently developed Shuffled Complex Evolution Metropolis algorithm (SCEM-UA) to stochastic calibration of the parameters in the Sacramento Soil Moisture Accounting model (SAC-SMA) model using historical data from the Leaf River in Mississippi. The SCEM-UA algorithm is a Markov Chain Monte Carlo sampler that provides an estimate of the most likely parameter set and underlying posterior distribution within a single optimization run. In particular, we explore the relationship between the length and variability of the streamflow data and the Bayesian uncertainty associated with the SAC-SMA model parameters and compare SCEM-UA derived parameter values with those obtained using deterministic SCE-UA calibrations. Most significantly, for the Leaf River catchments under study our results demonstrate that most of the 13 SAC-SMA parameters are well identified by calibration to daily streamflow data suggesting that this data contains more information than has previously been reported in the literature. (c) 2006 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. Univ Utrecht, NL-3508 TC Utrecht, Netherlands. Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA. Dept Civil & Environm Engn, University Pk, PA 16802 USA. Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, NL-1018 WV Amsterdam, Netherlands. RP Vrugt, JA (reprint author), Los Alamos Natl Lab, Earth & Environm Sci Div, POB 1663, Los Alamos, NM 87545 USA. EM vrugt@lanl.gov; hoshin.gupta@hwr.arizona.edu; s.dekker@geog.uu.nl; soroosh@uci.edu; thorsten@engr.psu.edu; w.bouten@science.uva.nl RI Wagener, Thorsten/C-2062-2008; Vrugt, Jasper/C-3660-2008; Gupta, Hoshin/D-1642-2010; sorooshian, soroosh/B-3753-2008; Dekker, Stefan/F-5581-2013 OI Wagener, Thorsten/0000-0003-3881-5849; Gupta, Hoshin/0000-0001-9855-2839; sorooshian, soroosh/0000-0001-7774-5113; Dekker, Stefan/0000-0001-7764-2464 NR 34 TC 48 Z9 48 U1 0 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 J9 J HYDROL JI J. Hydrol. PD JUN 30 PY 2006 VL 325 IS 1-4 BP 288 EP 307 DI 10.1016/j.jhydrol.2005.10.041 PG 20 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA 060BP UT WOS:000238776600018 ER PT J AU Huang, BC Davern, S Kennel, SJ AF Huang, Bao-Cheng Davern, Sandra Kennel, Stephen J. TI Mono and bivalent binding of a scFv and covalent diabody to murine laminin-1 using radioiodinated proteins and SPR measurements: Effects on tissue retention in vivo SO JOURNAL OF IMMUNOLOGICAL METHODS LA English DT Article DE laminin; scFv; diabody; binding constant; tumor ID SINGLE-CHAIN FV; MONOCLONAL-ANTIBODY CC49; ED-B DOMAIN; RENAL ACCUMULATION; CRYSTAL-STRUCTURE; PICHIA-PASTORIS; DISULFIDE BOND; SOLID TUMORS; FRAGMENTS; PHARMACOKINETICS AB Phage display techniques identified a scFv, 15-9, which binds to murine laminin-1 and accumulated selectively in tumors. In this study, a covalent diabody was constructed by changing the amino acid residues at positions VH44 and VL100 to cysteine residues so that the diabody form could be stabilized via a disulfide bond. The covalent diabody was expressed in Pichiapastoris and purified by affinity chromatography. The binding properties were measured by surface plasmon resonance and solid phase binding of 1 25 1 diabody and scFv. Data from the plasmon resonance method yielded calculated K-DS of 4.4 x 10(-10) M for the covalent diabody and 9.9 x 10(-8) M for the scFv Kos calculated from solid phase binding of radioiodinated proteins were 1.7-2.1 x 10(-10) M and 2.1-2.4 x 10(-8) M respectively. The rate of dissociation of 125, scFv from solid phase laminin was independent of laminin concentration; however, the dissociation of the 125 1 diabody was dependent both on the concentration of laminin and on the concentration of the diabody. Specifically, high concentrations of laminin yielded very slow rates of diabody dissociation indicating that bivalent attachments had formed. When higher amounts of diabody were used that essentially saturated the laminin sites with univalent binding, the dissociation rate was similar to that for the scFv indicating univalent binding. Biodistribution studies in tumor-bearing SCID mice showed that the covalent diabody improved the ratio of tumor/muscle 2 fold over that obtained with the scFv, although the absolute amount of protein bound to the tumor site was not significantly different for the two forms. The data also showed that retention of the diabody in the tumor and kidney, sites where laminin is present in high concentration, was much longer compared to that of scFv. These data are consistent with the hypothesis that both scFv and diabody forms bind to available laminin in vivo with similar association kinetics, but that in situations of high target concentration, the diabody can bind bivalently and is thus retained at the binding site much longer than the scFv. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Tennessee, Grad Sch Med Res, Knoxville, TN 37920 USA. Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37831 USA. RP Kennel, SJ (reprint author), Univ Tennessee, Grad Sch Med Res, 2nd Floor 1924 Alco Highway, Knoxville, TN 37920 USA. EM skennel@mc.utmck.edu NR 42 TC 12 Z9 13 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1759 J9 J IMMUNOL METHODS JI J. Immunol. Methods PD JUN 30 PY 2006 VL 313 IS 1-2 BP 149 EP 160 DI 10.1016/j.jim.2006.04.006 PG 12 WC Biochemical Research Methods; Immunology SC Biochemistry & Molecular Biology; Immunology GA 067HM UT WOS:000239292500015 PM 16750217 ER PT J AU Jellison, GE Hunn, JD Lowden, RA AF Jellison, GE Hunn, JD Lowden, RA TI Optical characterization of tristructural isotropic fuel particle cross-sections using generalized ellipsometry SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT Symposium on Nuclear Materials held at the 2005 Spring Meeting of the European-Materials-Research-Society CY MAY 31-JUN 02, 2005 CL Strasbourg, FRANCE SP European Materials Res Soc AB One particularly important measure of quality of tristructural isotropic (TRISO) fuel particles is the degree of preferred orientation of crystallites in the polycrystalline pyrolytic carbon coatings. Excessive crystallographic anisotropy leads to unwanted anisotropic dimensional changes during irradiation that can cause the TRISO coatings to fail. Early optical methods were developed in the 60s and 70s to measure this anisotropy by taking advantage of the large optical anisotropy of graphite. Since that time, there have been significant improvements in both the theoretical understanding and experimental techniques in the understanding of optical anisotropy. Here we discuss a new method, based on the two-modulator generalized ellipsometer (2-MGE) to measure the optical anisotropy. This technique has been demonstrated to measure the optical diattenuation to an accuracy from +/- 0.001 to +/- 0.005 and the preferred direction of the crystallites to an accuracy of better than +/- 2 degrees with a spatial resolution of better than 5 mu m. Diattenuation 'pictures' of the nuclear fuel cross-sections reveal that the inner pyrocarbon layer (IPyC) is far from uniform both in the degree of diattenuation and in the direction of the principal axis. The 2-MGE technique is faster, more accurate, and collects considerably more data than previous optical anisotropy measurements of TRISO fuel particles. (c) 2006 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Jellison, GE (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM jellisongejr@ornl.gov NR 7 TC 18 Z9 18 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 30 PY 2006 VL 352 IS 1-3 BP 6 EP 12 DI 10.1016/j.jnucmat.2006.02.081 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 060AH UT WOS:000238773000004 ER PT J AU Samaras, M Hoffelner, W Victoria, M AF Samaras, M. Hoffelner, W. Victoria, M. TI Irradiation of pre-existing voids in nanocrystalline iron SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT Symposium on Nuclear Materials held at the 2005 Spring Meeting of the European-Materials-Research-Society CY MAY 31-JUN 02, 2005 CL Strasbourg, FRANCE SP European Materials Res Soc ID COMPUTER-SIMULATION; GRAIN-BOUNDARIES; PRODUCTION BIAS; BCC METALS; COPPER; NEUTRON; DAMAGE; FCC; FE; TEMPERATURE AB Understanding the role of voids is an important issue in lifetime predictions of materials which are exposed to irradiation. In this paper, we investigate the effect of a pre-existing void structure embedded in a grain boundary in computer generated nanocrystalline Fe samples in terms of nearby primary cascade evolution using molecular dynamics simulations. Results indicate that the void and grain boundaries act as sinks to self interstitial atoms formed from nearby displacement cascades. (c) 2006 Published by Elsevier B.V. C1 Paul Scherrer Inst, NES, High Temp Mat Grp, CH-5232 Villigen, Switzerland. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Univ Politecn Madrid, Madrid 28006, Spain. RP Samaras, M (reprint author), Paul Scherrer Inst, NES, High Temp Mat Grp, CH-5232 Villigen, Switzerland. EM maria.samaras@psi.ch NR 28 TC 16 Z9 18 U1 2 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 30 PY 2006 VL 352 IS 1-3 BP 50 EP 56 DI 10.1016/j.jnucmat.2006.02.041 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 060AH UT WOS:000238773000010 ER PT J AU Degueldre, C Conradson, S Amato, A Campitelli, E AF Degueldre, C Conradson, S Amato, A Campitelli, E TI Feeling defects in Zircaloy by extended X-ray absorption fine structure and muon spin relaxation analyses SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT Symposium on Nuclear Materials held at the 2005 Spring Meeting of the European-Materials-Research-Society CY MAY 31-JUN 02, 2005 CL Strasbourg, FRANCE SP European Materials Res Soc ID QUANTUM DIFFUSION; ZR; SPECTRA; NUMBER; ATOMS; TI AB The defects generated by plastic deformation of Zircaloy by cold rolling and the resulting sub-nanoscopic environment are investigated using results provided by extended X-ray fine structure (EXAFS) spectroscopy and muon spin relaxation (MuSR) analysis. EXAFS allows to visualizing the atomic environment as a function of the induced strain. The defects are deduced from the next neighbour number determined shell per shell by the EXAFS analysis. An additional dimension is added with the study of muon properties in the material, namely the possibility of examining different states of the defect centres over the sub-nanometric scale. Muon spin relaxation analysis provides information about the local order around the muon and about possible muon diffusion in the material. Combining these techniques allows to completing the complex picture yields by the defect creation yielded by plastic deformation due to cold rolling in Zircaloy. (c) 2006 Elsevier B.V. All rights reserved. C1 Paul Scherrer Inst, LWV, CH-5232 Villigen, Switzerland. Paul Scherrer Inst, LMU, CH-5232 Villigen, Switzerland. Los Alamos Natl Lab, Los Alamos, NM USA. RP Degueldre, C (reprint author), Paul Scherrer Inst, LWV, CH-5232 Villigen, Switzerland. EM claude.degueldre@psi.ch RI Amato, Alex/H-7674-2013 OI Amato, Alex/0000-0001-9963-7498 NR 19 TC 4 Z9 4 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 30 PY 2006 VL 352 IS 1-3 BP 126 EP 135 DI 10.1016/j.jnucmat.2006.02.046 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 060AH UT WOS:000238773000020 ER PT J AU Wiss, TAG Hiernaut, JP Damen, PMG Lutique, S Fromknecht, R Weber, WJ AF Wiss, TAG Hiernaut, JP Damen, PMG Lutique, S Fromknecht, R Weber, WJ TI Helium behaviour in waste conditioning matrices during thermal annealing SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT Symposium on Nuclear Materials held at the 2005 Spring Meeting of the European-Materials-Research-Society CY MAY 31-JUN 02, 2005 CL Strasbourg, FRANCE SP European Materials Res Soc ID FULLY STABILIZED ZIRCONIA; DEFECT EVOLUTION; NUCLEAR-WASTE; PLUTONIUM; IMMOBILIZATION; PYROCHLORE; EFFUSION; DAMAGE; FORM AB Reprocessing of spent fuel produces high level waste including minor actinides and long living fission products that might be disposed in waste conditioning matrices. Several natural mineral phases were proven to be able to incorporate fission products or actinides in their crystalline structure for long periods of time. In this study, synthetic compounds of zirconolite (CaZrTi2O7) and pyrochlores (Gd2Ti2O7 and Nd2Zr2O7) were fabricated and doped with the short-lived alpha-emitter (CM)-C-244 to increase the total amount of helium and damage generated in a laboratory time scale. Helium implantations were also used to simulate the damage caused by the alpha-decay and the build-up of helium in the matrix. The samples were annealed in a Knudsen cell, and the helium release profile interpreted in conjunction with radiation damage studies and previous analysis of annealing behaviour. Several processes like diffusion, trapping or phase changes could then be attributed to the helium behaviour depending on the material considered. Despite high damage and large amount of helium accumulated, the integrity of the studied materials was preserved during storage. (c) 2006 Elsevier B.V. All rights reserved. C1 Commiss European, Joint Res Ctr, Inst Transuranium Elements, D-76125 Karlsruhe, Germany. Forschungszentrum Karlsruhe, Inst Festkorperphys, D-76021 Karlsruhe, Germany. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wiss, TAG (reprint author), Commiss European, Joint Res Ctr, Inst Transuranium Elements, POB 2340, D-76125 Karlsruhe, Germany. EM wiss@itu.fzk.de RI Weber, William/A-4177-2008 OI Weber, William/0000-0002-9017-7365 NR 18 TC 17 Z9 18 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 30 PY 2006 VL 352 IS 1-3 BP 202 EP 208 DI 10.1016/j.jnucmat.2006.02.055 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 060AH UT WOS:000238773000030 ER PT J AU Carmack, WJ Todosow, M Meyer, MK Pasamehmetoglu, KO AF Carmack, WJ Todosow, M Meyer, MK Pasamehmetoglu, KO TI Inert matrix fuel neutronic, thermal-hydraulic, and transient behavior in a light water reactor SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT Symposium on Nuclear Materials held at the 2005 Spring Meeting of the European-Materials-Research-Society CY MAY 31-JUN 02, 2005 CL Strasbourg, FRANCE SP European Materials Res Soc ID PLUTONIUM AB Currently, commercial power reactors in the United States operate on a once-through or open cycle, with the spent nuclear fuel eventually destined for long-term storage in a geologic repository. Since the fissile and transuranic (TRU) elements in the spent nuclear fuel present a proliferation risk, limit the repository capacity, and are the major contributors to the long-term toxicity and dose from the repository, methods and systems are needed to reduce the amount of TRU that will eventually require long-term storage. An option to achieve a reduction in the amount, and modify the isotopic composition of TRU requiring geological disposal is 'burning' the TRU in commercial light water reactors (LWRs) and/or fast reactors. Fuel forms under consideration for TRU destruction in light water reactors (LWRs) include mixed-oxide (MOX), advanced mixed-oxide, and inert matrix fuels. Fertile-free inert matrix fuel (IMF) has been proposed for use in many forms and studied by several researchers. IMF offers several advantages relative to MOX, principally it provides a means for reducing the TRU in the fuel cycle by burning the fissile isotopes and transmuting the minor actinides while producing no new TRU elements from fertile isotopes. This paper will present and discuss the results of a four-bundle, neutronic, thermal-hydraulic, and transient analyses of proposed inert matrix materials in comparison with the results of similar analyses for reference UOX fuel bundles. The results of this work are to be used for screening purposes to identify the general feasibility of utilizing specific inert matrix fuel compositions in existing and future light water reactors. Compositions identified as feasible using the results of these analyses still require further detailed neutronic, thermal-hydraulic, and transient analysis study coupled with rigorous experimental testing and qualification. (c) 2006 Published by Elsevier B.V. C1 Idaho Natl Engn Lab, Idaho Falls, ID 83415 USA. Brookhaven Natl Lab, Brookhaven, NY USA. RP Carmack, WJ (reprint author), Idaho Natl Engn Lab, POB 1625, Idaho Falls, ID 83415 USA. EM jon.carmack@inl.gov OI Meyer, Mitchell/0000-0002-1980-7862 NR 14 TC 11 Z9 11 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 30 PY 2006 VL 352 IS 1-3 BP 276 EP 284 DI 10.1016/j.jnucmat.2006.02.098 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 060AH UT WOS:000238773000041 ER PT J AU Medvedev, PG Jue, JF Frank, SM Meyer, MK AF Medvedev, PG Jue, JF Frank, SM Meyer, MK TI Fabrication and characterization of dual phase magnesia-zirconia ceramics doped with plutonia SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT Symposium on Nuclear Materials held at the 2005 Spring Meeting of the European-Materials-Research-Society CY MAY 31-JUN 02, 2005 CL Strasbourg, FRANCE SP European Materials Res Soc ID INERT MATRIX FUEL; THERMAL-CONDUCTIVITY; OXIDE FUEL; REACTOR AB Dual phase magnesia-zirconia ceramics doped with plutonia are being studied as an inert matrix fuel (IMF) for light water reactors. The motivation of this work is to develop an IMF with a thermal conductivity superior to that of the fuels based on yttria stabilized zirconia. The concept uses the MgO phase as an efficient heat conductor to increase thermal conductivity of the composite. In this paper ceramic fabrication and characterization by scanning electron microscopy, energy and wavelength dispersive X-ray spectroscopy is discussed. Characterization shows that the ceramics consist of the two-phase matrix and PuO2-rich inclusions. The matrix is comprised of pure MgO phase and MgO-ZrO2-PuO2 solid solution. The PuO2-rich inclusion contained dissolved MgO and ZrO2. Published by Elsevier B.V. C1 EG&G Idaho Inc, Idaho Falls, ID 83415 USA. RP Medvedev, PG (reprint author), EG&G Idaho Inc, POB 1625, Idaho Falls, ID 83415 USA. EM pavel.medvedev@inl.gov RI Frank, Steven/B-9046-2017; OI Frank, Steven/0000-0001-8259-6722; Meyer, Mitchell/0000-0002-1980-7862 NR 11 TC 11 Z9 11 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 30 PY 2006 VL 352 IS 1-3 BP 318 EP 323 DI 10.1016/j.jnucmat.2006.02.074 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 060AH UT WOS:000238773000046 ER PT J AU Aubert, B Barate, R Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Pappagallo, M Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Best, DS Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Brown, CL Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Kelly, MP Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Willocq, SY Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Potter, CT Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G del Re, D Fabozzi, F Gatto, C Lista, L Monorchio, D Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Mayer, B Vasseur, G Yeche, C Zito, M Park, W Purohit, MV Weidemann, AW Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Boyarski, AM Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Li, S Libby, J Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Mohapatra, AK Pan, Y Pierini, M Prepost, R Tan, P Wu, SL Yu, Z Neal, H AF Aubert, B Barate, R Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Pappagallo, M Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Best, DS Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Brown, CL Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Kelly, MP Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Willocq, SY Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Potter, CT Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G del Re, D Fabozzi, F Gatto, C Lista, L Monorchio, D Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Mayer, B Vasseur, G Yeche, C Zito, M Park, W Purohit, MV Weidemann, AW Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Boyarski, AM Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Li, S Libby, J Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Mohapatra, AK Pan, Y Pierini, M Prepost, R Tan, P Wu, SL Yu, Z Neal, H CA BABAR Collaboration TI Search for T, CP, and CPT violation in B-0-(B)over-bar(0) mixing with inclusive dilepton events SO PHYSICAL REVIEW LETTERS LA English DT Article AB We report the results of a search for T, CP, and CPT violation in (B) over bar (0)-(B) over bar (0) mixing using an inclusive dilepton sample collected by the BABAR experiment at the PEP-II B factory. Using a sample of 232x10(6) B (B) over bar pairs, we measure the T and CP violation parameter vertical bar q/p vertical bar-1=(-0.8 +/- 2.7(stat)+/- 1.9(syst))x10(-3), and the CPT and CP parameters Imz=(-13.9 +/- 7.3(stat)+/- 3.2(syst))x10(-3) and Delta Gamma xRez=(-7.1 +/- 3.9(stat)+/- 2.0(syst))x10(-3) ps(-1). The statistical correlation between the measurements of Imz and Delta Gamma xRez is 76%. C1 Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Univ Bari, Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, LLR, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Univ Ferrara, Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Univ Genoa, Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Univ London, Queen Mary, London E1 4NS, England. Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Univ Naples Federico II, Ist Nazl Fis Nucl, I-80126 Naples, Italy. Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Univ Padua, Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Perugia, Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Scuola Normale Super, Dipartimento Fis, I-56127 Pisa, Italy. Univ Pisa, Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Univ Roma La Sapienza, Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Univ Turin, Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Univ Trieste, Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Oyanguren, Arantza/K-6454-2014; Della Ricca, Giuseppe/B-6826-2013; Mir, Lluisa-Maria/G-7212-2015; Kravchenko, Evgeniy/F-5457-2015; M, Saleem/B-9137-2013; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Rotondo, Marcello/I-6043-2012; Neri, Nicola/G-3991-2012; Grancagnolo, Sergio/J-3957-2015; Lo Vetere, Maurizio/J-5049-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Forti, Francesco/H-3035-2011; Luppi, Eleonora/A-4902-2015; Martinez Vidal, F*/L-7563-2014; Monge, Maria Roberta/G-9127-2012; Kolomensky, Yury/I-3510-2015; Di Lodovico, Francesca/L-9109-2016; Lista, Luca/C-5719-2008; Cavallo, Nicola/F-8913-2012; Morandin, Mauro/A-3308-2016; Bellini, Fabio/D-1055-2009; Patrignani, Claudia/C-5223-2009; Calabrese, Roberto/G-4405-2015; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; de Groot, Nicolo/A-2675-2009; Peters, Klaus/C-2728-2008; Roe, Natalie/A-8798-2012 OI Cavoto, Gianluca/0000-0003-2161-918X; Barlow, Roger/0000-0002-8295-8612; Raven, Gerhard/0000-0002-2897-5323; Oyanguren, Arantza/0000-0002-8240-7300; Della Ricca, Giuseppe/0000-0003-2831-6982; Mir, Lluisa-Maria/0000-0002-4276-715X; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Egede, Ulrik/0000-0001-5493-0762; Rotondo, Marcello/0000-0001-5704-6163; Neri, Nicola/0000-0002-6106-3756; Grancagnolo, Sergio/0000-0001-8490-8304; Lo Vetere, Maurizio/0000-0002-6520-4480; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Forti, Francesco/0000-0001-6535-7965; Luppi, Eleonora/0000-0002-1072-5633; Martinez Vidal, F*/0000-0001-6841-6035; Monge, Maria Roberta/0000-0003-1633-3195; Kolomensky, Yury/0000-0001-8496-9975; Di Lodovico, Francesca/0000-0003-3952-2175; Morandin, Mauro/0000-0003-4708-4240; Bellini, Fabio/0000-0002-2936-660X; Patrignani, Claudia/0000-0002-5882-1747; Calabrese, Roberto/0000-0002-1354-5400; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Peters, Klaus/0000-0001-7133-0662; NR 11 TC 86 Z9 86 U1 0 U2 6 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 30 PY 2006 VL 96 IS 25 AR 251802 DI 10.1103/PhysRevLett.96.251802 PG 7 WC Physics, Multidisciplinary SC Physics GA 058XD UT WOS:000238697000007 PM 16907295 ER PT J AU Brown, GV Beiersdorfer, P Chen, H Scofield, JH Boyce, KR Kelley, RL Kilbourne, CA Porter, FS Gu, MF Kahn, SM Szymkowiak, AE AF Brown, G. V. Beiersdorfer, P. Chen, H. Scofield, J. H. Boyce, K. R. Kelley, R. L. Kilbourne, C. A. Porter, F. S. Gu, M. F. Kahn, S. M. Szymkowiak, A. E. TI Energy-dependent excitation cross section measurements of the diagnostic lines of Fe XVII SO PHYSICAL REVIEW LETTERS LA English DT Article ID X-RAY-SPECTRUM; REFLECTION GRATING SPECTROMETER; HIGHLY CHARGED IONS; LABORATORY MEASUREMENTS; XMM-NEWTON; COLLISION STRENGTHS; RELATIVE INTENSITY; SOLAR; SPECTROSCOPY; TRANSITIONS AB By implementing a large-area, gain-stabilized microcalorimeter array on an electron beam ion trap, the electron-impact excitation cross sections for the dominant x-ray lines in the Fe XVII spectrum have been measured as a function of electron energy establishing a benchmark for atomic calculations. The results show that the calculations consistently predict the cross section of the resonance line to be significantly larger than measured. The lower cross section accounts for several problems found when modeling solar and astrophysical Fe XVII spectra. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. Stanford Univ, Dept Phys, Stanford, CA 94305 USA. Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. Yale Univ, Dept Phys, New Haven, CT 06520 USA. RP Brown, GV (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012 OI Porter, Frederick/0000-0002-6374-1119; NR 32 TC 52 Z9 52 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 30 PY 2006 VL 96 IS 25 AR 253201 DI 10.1103/PhysRevLett.96.253201 PG 4 WC Physics, Multidisciplinary SC Physics GA 058XD UT WOS:000238697000015 PM 16907303 ER PT J AU Garmash, A Abe, K Abe, K Adachi, I Aihara, H Asano, Y Aushev, T Aziz, T Bahinipati, S Bakich, AM Barbero, M Bedny, I Bitenc, U Bizjak, I Bondar, A Bozek, A Bracko, M Brodzicka, J Browder, TE Chang, P Chao, Y Chen, A Chen, KF Chen, WT Cheon, BG Chistov, R Choi, Y Choi, YK Chuvikov, A Dalseno, J Danilov, M Dash, M Dragic, J Drutskoy, A Eidelman, S Epifanov, D Fratina, S Gabyshev, N Gershon, T Go, A Gokhroo, G Golob, B Gorisek, A Ha, HC Hara, T Hasegawa, Y Hastings, NC Hayasaka, K Hayashii, H Hazumi, M Hokuue, T Hoshi, Y Hou, S Hou, WS Hsiung, YB Iijima, T Imoto, A Inami, K Ishikawa, A Itoh, R Iwasaki, M Iwasaki, Y Kapusta, P Katayama, N Kawai, H Kawasaki, T Khan, HR Kichimi, H Kim, SK Kim, SM Kinoshita, K Korpar, S Krizan, P Krokovny, P Kulasiri, R Kuo, CC Kuzmin, A Kwon, YJ Lee, SE Lesiak, T Limosani, A Lin, SW Liventsev, D Mandl, F Marlow, D Matsumoto, T Matyja, A Mitaroff, W Miyabayashi, K Miyake, H Miyata, H Miyazaki, Y Nagamine, T Nakano, E Nakao, M Natkaniec, Z Nishida, S Nitoh, O Noguchi, S Ohshima, T Okabe, T Okuno, S Olsen, SL Ozaki, H Park, CW Park, H Park, KS Peak, LS Pestotnik, R Piilonen, LE Rozanska, M Sakai, Y Satoyama, N Schietinger, T Schneider, O Schumann, J Schwanda, C Schwartz, AJ Seidl, R Sevior, ME Shibuya, H Shwartz, B Singh, JB Somov, A Stamen, R Stanic, S Staric, M Sumiyoshi, T Suzuki, S Suzuki, SY Takasaki, F Tamai, K Tamura, N Tanaka, M Taylor, GN Teramoto, Y Tian, XC Trabelsi, K Tsuboyama, T Tsukamoto, T Uehara, S Uglov, T Uno, S Urquijo, P Varner, G Varvell, KE Villa, S Wang, CH Wang, MZ Watanabe, Y Won, E Xie, QL Yamaguchi, A Yamauchi, M Yang, HY Zhang, LM Zhang, ZP Zhilich, V Zurcher, D AF Garmash, A. Abe, K. Abe, K. Adachi, I. Aihara, H. Asano, Y. Aushev, T. Aziz, T. Bahinipati, S. Bakich, A. M. Barbero, M. Bedny, I. Bitenc, U. Bizjak, I. Bondar, A. Bozek, A. Bracko, M. Brodzicka, J. Browder, T. E. Chang, P. Chao, Y. Chen, A. Chen, K. -F. Chen, W. T. Cheon, B. G. Chistov, R. Choi, Y. Choi, Y. K. Chuvikov, A. Dalseno, J. Danilov, M. Dash, M. Dragic, J. Drutskoy, A. Eidelman, S. Epifanov, D. Fratina, S. Gabyshev, N. Gershon, T. Go, A. Gokhroo, G. Golob, B. Gorisek, A. Ha, H. C. Hara, T. Hasegawa, Y. Hastings, N. C. Hayasaka, K. Hayashii, H. Hazumi, M. Hokuue, T. Hoshi, Y. Hou, S. Hou, W. -S. Hsiung, Y. B. Iijima, T. Imoto, A. Inami, K. Ishikawa, A. Itoh, R. Iwasaki, M. Iwasaki, Y. Kapusta, P. Katayama, N. Kawai, H. Kawasaki, T. Khan, H. R. Kichimi, H. Kim, S. K. Kim, S. M. Kinoshita, K. Korpar, S. Krizan, P. Krokovny, P. Kulasiri, R. Kuo, C. C. Kuzmin, A. Kwon, Y. -J. Lee, S. E. Lesiak, T. Limosani, A. Lin, S. -W. Liventsev, D. Mandl, F. Marlow, D. Matsumoto, T. Matyja, A. Mitaroff, W. Miyabayashi, K. Miyake, H. Miyata, H. Miyazaki, Y. Nagamine, T. Nakano, E. Nakao, M. Natkaniec, Z. Nishida, S. Nitoh, O. Noguchi, S. Ohshima, T. Okabe, T. Okuno, S. Olsen, S. L. Ozaki, H. Park, C. W. Park, H. Park, K. S. Peak, L. S. Pestotnik, R. Piilonen, L. E. Rozanska, M. Sakai, Y. Satoyama, N. Schietinger, T. Schneider, O. Schumann, J. Schwanda, C. Schwartz, A. J. Seidl, R. Sevior, M. E. Shibuya, H. Shwartz, B. Singh, J. B. Somov, A. Stamen, R. Stanic, S. Staric, M. Sumiyoshi, T. Suzuki, S. Suzuki, S. Y. Takasaki, F. Tamai, K. Tamura, N. Tanaka, M. Taylor, G. N. Teramoto, Y. Tian, X. C. Trabelsi, K. Tsuboyama, T. Tsukamoto, T. Uehara, S. Uglov, T. Uno, S. Urquijo, P. Varner, G. Varvell, K. E. Villa, S. Wang, C. H. Wang, M. -Z. Watanabe, Y. Won, E. Xie, Q. L. Yamaguchi, A. Yamauchi, M. Yang, Heyoung Zhang, L. M. Zhang, Z. P. Zhilich, V. Zuercher, D. CA Belle Collaboration TI Evidence for large direct CP violation in B-+/- -> p(770)K-0(+/-) from analysis of three-body charmless B-+/- -> K-+/-pi(+/-)pi(+/-) decays SO PHYSICAL REVIEW LETTERS LA English DT Article AB We report results on a Dalitz analysis of three-body charmless B-+/--> K-+/-pi(+/-)pi(-/+) decay including searches for direct CP violation. We report the first observation of the decay B-+/--> f(2)(1270)K-+/- with a statistical significance above 6 sigma. We also observe first evidence for large direct CP violation in the B-+/-->rho(770)K-0(+/-) channel. The results are obtained with a data sample that contains 386x10(6) B (B) over bar pairs collected at the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e(+)e(-) collider. C1 Princeton Univ, Princeton, NJ 08544 USA. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Chiba Univ, Chiba, Japan. Chonnam Natl Univ, Kwangju 500757, South Korea. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Hawaii, Honolulu, HI 96822 USA. Natl Lab High Energy Phys, KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan. Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. Inst High Energy Phys, Vienna, Austria. Inst Theoret & Expt Phys, Moscow 117259, Russia. J Stefan Inst, Ljubljana, Slovenia. Kanagawa Univ, Yokohama, Kanagawa, Japan. Korea Univ, Seoul 136701, South Korea. Kyungpook Natl Univ, Taegu 702701, South Korea. Swiss Fed Inst Technol, EPFL, CH-1015 Lausanne, Switzerland. Univ Ljubljana, Ljubljana, Slovenia. Univ Maribor, SLO-2000 Maribor, Slovenia. Univ Melbourne, Parkville, Vic 3052, Australia. Nagoya Univ, Nagoya, Aichi, Japan. Nara Womens Univ, Nara 630, Japan. Natl Cent Univ, Chungli 32054, Taiwan. Natl United Univ, Miaoli, Taiwan. Natl Taiwan Univ, Dept Phys, Taipei 10764, Taiwan. H Niewodniczanski Inst Nucl Phys, Krakow, Poland. Niigata Univ, Niigata 95021, Japan. Nova Gorica Polytech, Nova Gorica, Slovenia. Osaka City Univ, Osaka 558, Japan. Osaka Univ, Suita, Osaka 565, Japan. Panjab Univ, Chandigarh 160014, India. Peking Univ, Beijing 100871, Peoples R China. Princeton Univ, Princeton, NJ 08544 USA. RIKEN, BNL, Res Ctr, Upton, NY 11973 USA. Saga Univ, Saga, Japan. Univ Sci & Technol China, Hefei 230026, Peoples R China. Seoul Natl Univ, Seoul, South Korea. Shinshu Univ, Nagano, Japan. Sungkyunkwan Univ, Suwon 440746, South Korea. Univ Sydney, Sydney, NSW 2006, Australia. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Toho Univ, Funabashi, Chiba 274, Japan. Tohoku Gakuin Univ, Tagajo, Miyagi 985, Japan. Tohoku Univ, Sendai, Miyagi 980, Japan. Univ Tokyo, Tokyo, Japan. Tokyo Inst Technol, Tokyo 152, Japan. Tokyo Metropolitan Univ, Tokyo 158, Japan. Tokyo Univ Agr & Technol, Tokyo, Japan. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. Yonsei Univ, Seoul 120749, South Korea. RP Garmash, A (reprint author), Princeton Univ, Princeton, NJ 08544 USA. RI Abe, Kazuo/F-6576-2010; Aihara, Hiroaki/F-3854-2010; Nitoh, Osamu/C-3522-2013; Marlow, Daniel/C-9132-2014; Tian, Xinchun/L-2060-2013; Kim, Sun Kee/G-2042-2015; Uglov, Timofey/B-2406-2014; Danilov, Mikhail/C-5380-2014; Krokovny, Pavel/G-4421-2016; Chistov, Ruslan/B-4893-2014; Drutskoy, Alexey/C-8833-2016 OI Aihara, Hiroaki/0000-0002-1907-5964; Tian, Xinchun/0000-0002-6246-0470; Kim, Sun Kee/0000-0002-0013-0775; Uglov, Timofey/0000-0002-4944-1830; Danilov, Mikhail/0000-0001-9227-5164; Krokovny, Pavel/0000-0002-1236-4667; Chistov, Ruslan/0000-0003-1439-8390; Drutskoy, Alexey/0000-0003-4524-0422 NR 18 TC 73 Z9 73 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 30 PY 2006 VL 96 IS 25 AR 251803 DI 10.1103/PhysRevLett.96.251803 PG 6 WC Physics, Multidisciplinary SC Physics GA 058XD UT WOS:000238697000008 PM 16907296 ER PT J AU Homes, CC Dordevic, SV Gu, GD Li, Q Valla, T Tranquada, JM AF Homes, CC Dordevic, SV Gu, GD Li, Q Valla, T Tranquada, JM TI Charge order, metallic behavior, and superconductivity in La2-xBaxCuO4 with x=1/8 SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; ELECTRONIC-STRUCTURE; INFRARED PROPERTIES; STATE; LA2-XSRXCUO4; REFLECTANCE; PSEUDOGAP; DYNAMICS; STRIPES AB The ab-plane optical properties of a cleaved single crystal of La2-xBaxCuO4 for x=1/8 (T-c similar or equal to 2.4 K) have been measured over a wide frequency and temperature range. The low-frequency conductivity is Drude-like and shows a metallic response with decreasing temperature. However, below similar or equal to 60 K, corresponding to the onset of charge-stripe order, there is a rapid loss of spectral weight below about 40 meV. The behavior is quite different from that typically associated with the pseudogap in the normal state of the cuprates. Instead, the gapping of the normal-state single-particle excitations looks surprisingly similar to that observed in superconducting La2-xSrxCuO4, including the presence of a residual Drude peak with reduced weight. C1 Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Homes, CC (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM homes@bnl.gov RI Tranquada, John/A-9832-2009; Gu, Genda/D-5410-2013 OI Tranquada, John/0000-0003-4984-8857; Gu, Genda/0000-0002-9886-3255 NR 34 TC 40 Z9 40 U1 0 U2 8 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 30 PY 2006 VL 96 IS 25 AR 257002 DI 10.1103/PhysRevLett.96.257002 PG 4 WC Physics, Multidisciplinary SC Physics GA 058XD UT WOS:000238697000047 PM 16907335 ER PT J AU Ishikawa, A Abe, K Adachi, I Aihara, H Anipko, D Asano, Y Aushev, T Bakich, AM Balagura, V Barbero, M Bitenc, U Bizjak, I Blyth, S Bondar, A Bozek, A Bracko, M Browder, TE Chang, P Chao, Y Chen, A Cheon, BG Choi, Y Choi, YK Chuvikov, A Dalseno, J Danilov, M Dash, M Drutskoy, A Eidelman, S Fratina, S Gabyshev, N Gershon, T Gokhroo, G Golob, B Gorisek, A Ha, H Haba, J Hara, T Hayasaka, K Hayashii, H Hazumi, M Hinz, L Hokuue, T Hoshi, Y Hou, S Hou, WS Hsiung, YB Iijima, T Ikado, K Inami, K Ishino, H Itoh, R Iwasaki, M Iwasaki, Y Kang, JH Kataoka, SU Katayama, N Kawai, H Kawasaki, T Khan, HR Kichimi, H Kim, SK Kim, SM Kinoshita, K Korpar, S Krizan, P Kulasiri, R Kumar, R Kuo, CC Kwon, YJ Lee, J Lee, SE Lesiak, T Li, J Limosani, A Lin, SW Liventsev, D Majumder, G Mandl, F Matsumoto, T Matyja, A McOnie, S Mitaroff, W Miyabayashi, K Miyake, H Miyata, H Miyazaki, Y Mizuk, R Moloney, GR Nagamine, T Nakano, E Nakao, M Natkaniec, Z Nishida, S Nitoh, O Nozaki, T Ohshima, T Okabe, T Okuno, S Olsen, SL Onuki, Y Ozaki, H Park, CW Pestotnik, R Piilonen, LE Rozanska, M Sakai, Y Sato, N Satoyama, N Schietinger, T Schneider, O Schwanda, C Schwartz, AJ Seidl, R Senyo, K Sevior, ME Shapkin, M Shibuya, H Somov, A Soni, N Stamen, R Stanic, S Staric, M Stoeck, H Sumisawa, K Suzuki, S Tajima, O Takasaki, F Tamai, K Tamura, N Tanaka, M Taylor, GN Teramoto, Y Tian, XC Trabelsi, K Tsukamoto, T Uehara, S Uno, S Urquijo, P Ushiroda, Y Usov, Y Varner, G Villa, S Wang, CC Wang, CH Wang, MZ Watanabe, Y Won, E Xie, QL Yabsley, BD Yamaguchi, A Yamashita, Y Yamauchi, M Ying, J Yusa, Y Zhang, J Zhang, LM Zhang, ZP AF Ishikawa, A. Abe, K. Adachi, I. Aihara, H. Anipko, D. Asano, Y. Aushev, T. Bakich, A. M. Balagura, V. Barbero, M. Bitenc, U. Bizjak, I. Blyth, S. Bondar, A. Bozek, A. Bracko, M. Browder, T. E. Chang, P. Chao, Y. Chen, A. Cheon, B. G. Choi, Y. Choi, Y. K. Chuvikov, A. Dalseno, J. Danilov, M. Dash, M. Drutskoy, A. Eidelman, S. Fratina, S. Gabyshev, N. Gershon, T. Gokhroo, G. Golob, B. Gorisek, A. Ha, H. Haba, J. Hara, T. Hayasaka, K. Hayashii, H. Hazumi, M. Hinz, L. Hokuue, T. Hoshi, Y. Hou, S. Hou, W. -S. Hsiung, Y. B. Iijima, T. Ikado, K. Inami, K. Ishino, H. Itoh, R. Iwasaki, M. Iwasaki, Y. Kang, J. H. Kataoka, S. U. Katayama, N. Kawai, H. Kawasaki, T. Khan, H. R. Kichimi, H. Kim, S. K. Kim, S. M. Kinoshita, K. Korpar, S. Krizan, P. Kulasiri, R. Kumar, R. Kuo, C. C. Kwon, Y. -J. Lee, J. Lee, S. E. Lesiak, T. Li, J. Limosani, A. Lin, S. -W. Liventsev, D. Majumder, G. Mandl, F. Matsumoto, T. Matyja, A. McOnie, S. Mitaroff, W. Miyabayashi, K. Miyake, H. Miyata, H. Miyazaki, Y. Mizuk, R. Moloney, G. R. Nagamine, T. Nakano, E. Nakao, M. Natkaniec, Z. Nishida, S. Nitoh, O. Nozaki, T. Ohshima, T. Okabe, T. Okuno, S. Olsen, S. L. Onuki, Y. Ozaki, H. Park, C. W. Pestotnik, R. Piilonen, L. E. Rozanska, M. Sakai, Y. Sato, N. Satoyama, N. Schietinger, T. Schneider, O. Schwanda, C. Schwartz, A. J. Seidl, R. Senyo, K. Sevior, M. E. Shapkin, M. Shibuya, H. Somov, A. Soni, N. Stamen, R. Stanic, S. Staric, M. Stoeck, H. Sumisawa, K. Suzuki, S. Tajima, O. Takasaki, F. Tamai, K. Tamura, N. Tanaka, M. Taylor, G. N. Teramoto, Y. Tian, X. C. Trabelsi, K. Tsukamoto, T. Uehara, S. Uno, S. Urquijo, P. Ushiroda, Y. Usov, Y. Varner, G. Villa, S. Wang, C. C. Wang, C. H. Wang, M. -Z. Watanabe, Y. Won, E. Xie, Q. L. Yabsley, B. D. Yamaguchi, A. Yamashita, Y. Yamauchi, M. Ying, J. Yusa, Y. Zhang, J. Zhang, L. M. Zhang, Z. P. CA Belle Collaboration TI Measurement of forward-backward asymmetry and wilson coefficients in B -> K(*)l(+)l(-) SO PHYSICAL REVIEW LETTERS LA English DT Article ID RARE B-DECAYS; STANDARD MODEL; S-GAMMA; SUPERSYMMETRY; QUARK AB We report the first measurement of the forward-backward asymmetry and the ratios of Wilson coefficients A(9)/A(7) and A(10)/A(7) in B -> K(*)l(+)l(-), where l represents an electron or a muon. We find evidence for the forward-backward asymmetry with a significance of 3.4 sigma. The results are obtained from a data sample containing 386x10(6) (B) over bar pairs that were collected on the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e(+)e(-) collider. C1 Univ Tokyo, Dept Phys, Tokyo 113, Japan. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Chiba Univ, Chiba, Japan. Chonnam Natl Univ, Kwangju 500757, South Korea. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Hawaii, Honolulu, HI 96822 USA. Natl Lab High Energy Phys, KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan. Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. Inst High Energy Phys, Vienna, Austria. Inst High Energy Phys, Protvino, Russia. Inst Theoret & Expt Phys, Moscow 117259, Russia. Jozef Stefan Inst, Ljubljana, Slovenia. Kanagawa Univ, Yokohama, Kanagawa, Japan. Korea Univ, Seoul 136701, South Korea. Swiss Fed Inst Technol, CH-1015 Lausanne, Switzerland. Univ Ljubljana, Ljubljana, Slovenia. Univ Maribor, SLO-2000 Maribor, Slovenia. Univ Melbourne, Parkville, Vic 3052, Australia. Nagoya Univ, Nagoya, Aichi, Japan. Nara Womens Univ, Nara 630, Japan. Natl Cent Univ, Chungli 32054, Taiwan. Natl United Univ, Miaoli, Taiwan. Natl Taiwan Univ, Dept Phys, Taipei 10764, Taiwan. H Niewodniczanski Inst Nucl Phys, Krakow, Poland. Nippon Dent Univ, Niigata, Japan. Niigata Univ, Niigata, Japan. Nova Gorica Polytech, Nova Gorica, Slovenia. Osaka City Univ, Osaka 558, Japan. Osaka Univ, Osaka, Japan. Panjab Univ, Chandigarh 160014, India. Peking Univ, Beijing 100871, Peoples R China. Princeton Univ, Princeton, NJ 08544 USA. RIKEN, BNL, Res Ctr, Upton, NY 11973 USA. Saga Univ, Saga 840, Japan. Univ Sci & Technol China, Hefei, Peoples R China. Seoul Natl Univ, Seoul, South Korea. Shinshu Univ, Nagano, Japan. Sungkyunkwan Univ, Suwon 440746, South Korea. Univ Sydney, Sydney, NSW 2006, Australia. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Toho Univ, Funabashi, Chiba 274, Japan. Tohoku Gakuin Univ, Tagajo, Miyagi 985, Japan. Tohoku Univ, Sendai, Miyagi 980, Japan. Univ Tokyo, Dept Phys, Tokyo 113, Japan. Tokyo Inst Technol, Tokyo 152, Japan. Tokyo Metropolitan Univ, Tokyo 158, Japan. Tokyo Univ Agr & Technol, Tokyo, Japan. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. Yonsei Univ, Seoul 120749, South Korea. RP Ishikawa, A (reprint author), Univ Tokyo, Dept Phys, Tokyo 113, Japan. RI Abe, Kazuo/F-6576-2010; Aihara, Hiroaki/F-3854-2010; Nitoh, Osamu/C-3522-2013; Tian, Xinchun/L-2060-2013; Ishino, Hirokazu/C-1994-2015; Kim, Sun Kee/G-2042-2015; Danilov, Mikhail/C-5380-2014; Mizuk, Roman/B-3751-2014; Drutskoy, Alexey/C-8833-2016; OI Aihara, Hiroaki/0000-0002-1907-5964; Tian, Xinchun/0000-0002-6246-0470; Ishino, Hirokazu/0000-0002-8623-4080; Kim, Sun Kee/0000-0002-0013-0775; Danilov, Mikhail/0000-0001-9227-5164; Drutskoy, Alexey/0000-0003-4524-0422; HSIUNG, YEE/0000-0003-4801-1238; CHANG, PAO-TI/0000-0003-4064-388X NR 35 TC 76 Z9 76 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 30 PY 2006 VL 96 IS 25 AR 251801 DI 10.1103/PhysRevLett.96.251801 PG 6 WC Physics, Multidisciplinary SC Physics GA 058XD UT WOS:000238697000006 PM 16907294 ER PT J AU Lee, SK Hahn, EL Clarke, J AF Lee, SK Hahn, EL Clarke, J TI Static nuclear spin polarization induced in a liquid by a rotating magnetic field SO PHYSICAL REVIEW LETTERS LA English DT Article ID RESONANCE AB We demonstrate that protons in a liquid acquire a static polarization perpendicular to the plane of a rotating magnetic field. The rotating field was reduced adiabatically to zero, transforming the static polarization in the rotating frame to the laboratory frame. The application of a small magnetic field perpendicular to the polarization induced a free induction decay (FID) that was detected by a superconducting quantum interference device. The results agree with the predictions of the modified Bloch equations. The FID remained observable in the presence of magnetic material, suggesting that this technique may find practical applications. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Lee, SK (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Lee, Seung-Kyun/A-3464-2008 OI Lee, Seung-Kyun/0000-0001-7625-3141 NR 9 TC 6 Z9 6 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 30 PY 2006 VL 96 IS 25 AR 257601 DI 10.1103/PhysRevLett.96.257601 PG 4 WC Physics, Multidisciplinary SC Physics GA 058XD UT WOS:000238697000055 PM 16907343 ER PT J AU Patel, AJ Narayanan, S Sandy, A Mochrie, SGJ Garetz, BA Watanabe, H Balsara, NP AF Patel, AJ Narayanan, S Sandy, A Mochrie, SGJ Garetz, BA Watanabe, H Balsara, NP TI Relationship between structural and stress relaxation in a block-copolymer melt SO PHYSICAL REVIEW LETTERS LA English DT Article ID ORDER-DISORDER TRANSITION; DYNAMIC STRUCTURE FACTOR; DIELECTRIC-RELAXATION; DIBLOCK COPOLYMER; CIS-POLYISOPRENES; REGIME; MICELLES; BEHAVIOR; PHASE AB The relationship between structural relaxation on molecular length scales and macroscopic stress relaxation was explored in a disordered block-copolymer melt. Experiments show that the structural relaxation time, measured by x-ray photon correlation spectroscopy is larger than the terminal stress relaxation time, measured by rheology, by factors as large as 100. We demonstrate that the structural relaxation data are dominated by the diffusion of intact micelles while the stress relaxation data are dominated by contributions due to disordered concentration fluctuations. C1 Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Yale Univ, Dept Phys, New Haven, CT 06520 USA. Polytech Univ, Othmer Dept Chem & Biol Sci & Engn, Brooklyn, NY 11201 USA. Kyoto Univ, Inst Chem Res, Uji, Kyoto 6110011, Japan. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy & Technol Div, Berkeley, CA 94720 USA. RP Patel, AJ (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. NR 22 TC 13 Z9 13 U1 3 U2 23 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 30 PY 2006 VL 96 IS 25 AR 257801 DI 10.1103/PhysRevLett.96.257801 PG 4 WC Physics, Multidisciplinary SC Physics GA 058XD UT WOS:000238697000056 PM 16907344 ER PT J AU Ping, Y Hanson, D Koslow, I Ogitsu, T Prendergast, D Schwegler, E Collins, G Ng, A AF Ping, Y. Hanson, D. Koslow, I. Ogitsu, T. Prendergast, D. Schwegler, E. Collins, G. Ng, A. TI Broadband dielectric function of nonequilibrium warm dense gold SO PHYSICAL REVIEW LETTERS LA English DT Article ID WHITE-LIGHT CONTINUUM; ELECTRON; METALS; TEMPERATURE; MO; PSEUDOPOTENTIALS; CONDUCTIVITY; EXCITATION; STATE; CR AB We report on the first single-state measurement of the broadband (450-800 nm) dielectric function of gold isochorically heated by a femtosecond laser pulse to energy densities of 10(6)-10(7) J/kg. A Drude and an interband component are clearly seen in the imaginary part of the dielectric function. The Drude component increases with energy density while the interband component shows both enhancement and redshift. This is in strong disagreement with predictions of a recent calculation of dielectric function based on limited Brillouin zone sampling. C1 Lawrence Livermore Natl Lab, Livermore, CA USA. Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. RP Ping, Y (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA. RI Schwegler, Eric/F-7294-2010; Prendergast, David/E-4437-2010; Schwegler, Eric/A-2436-2016 OI Schwegler, Eric/0000-0003-3635-7418 NR 32 TC 43 Z9 43 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 30 PY 2006 VL 96 IS 25 AR 255003 DI 10.1103/PhysRevLett.96.255003 PG 4 WC Physics, Multidisciplinary SC Physics GA 058XD UT WOS:000238697000025 PM 16907313 ER PT J AU Rourke, PMC Tanatar, MA Turel, CS Petrovic, C Wei, JYT AF Rourke, PMC Tanatar, MA Turel, CS Petrovic, C Wei, JYT TI Comment on "Spectroscopic evidence for multiple order parameter components in the heavy fermion superconductor CeCoIn5" - Reply SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material ID YBA2CU3O7-DELTA C1 Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Rourke, PMC (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. RI Petrovic, Cedomir/A-8789-2009 OI Petrovic, Cedomir/0000-0001-6063-1881 NR 16 TC 3 Z9 3 U1 1 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 30 PY 2006 VL 96 IS 25 AR 259703 DI 10.1103/PhysRevLett.96.259703 PG 1 WC Physics, Multidisciplinary SC Physics GA 058XD UT WOS:000238697000067 ER PT J AU Stone, MB Broholm, C Reich, DH Tchernyshyov, O Vorderwisch, P Harrison, N AF Stone, M. B. Broholm, C. Reich, D. H. Tchernyshyov, O. Vorderwisch, P. Harrison, N. TI Quantum criticality in an organic magnet SO PHYSICAL REVIEW LETTERS LA English DT Article ID BOSE-EINSTEIN CONDENSATION; PHASE-DIAGRAM; HEISENBERG-ANTIFERROMAGNET; NEUTRON-SCATTERING; CRITICAL-POINT; FIELD; TLCUCL3; SYSTEMS; LIQUID; ORDER AB Exchange interactions between S=(1)/(2) sites in piperazinium hexachlorodicuprate produce a frustrated bilayer magnet with a singlet ground state. We have determined the field-temperature phase diagram by high field magnetization and neutron scattering experiments. There are two quantum critical points: H-c1=7.5 T separates a quantum paramagnet phase from a three dimensional, antiferromagnetically ordered state while H-c2=37 T marks the onset of a fully polarized state. The ordered phase, which we describe as a magnon Bose-Einstein condensate (BEC), is embedded in a quantum critical regime with short range correlations. A low temperature anomaly in the BEC phase boundary indicates that additional low energy features of the material become important near H-c1. C1 Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany. Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. RP Stone, MB (reprint author), Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. RI Broholm, Collin/E-8228-2011; Stone, Matthew/G-3275-2011; OI Broholm, Collin/0000-0002-1569-9892; Stone, Matthew/0000-0001-7884-9715; Harrison, Neil/0000-0001-5456-7756 NR 36 TC 29 Z9 29 U1 1 U2 16 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 30 PY 2006 VL 96 IS 25 AR 257203 DI 10.1103/PhysRevLett.96.257203 PG 4 WC Physics, Multidisciplinary SC Physics GA 058XD UT WOS:000238697000050 PM 16907338 ER PT J AU Wu, H Hu, Z Burnus, T Denlinger, JD Khalifah, PG Mandrus, DG Jang, LY Hsieh, HH Tanaka, A Liang, KS Allen, JW Cava, RJ Khomskii, DI Tjeng, LH AF Wu, Hua Hu, Z. Burnus, T. Denlinger, J. D. Khalifah, P. G. Mandrus, D. G. Jang, L. -Y. Hsieh, H. H. Tanaka, A. Liang, K. S. Allen, J. W. Cava, R. J. Khomskii, D. I. Tjeng, L. H. TI Orbitally driven spin-singlet dimerization in S=1 La4Ru2O10 SO PHYSICAL REVIEW LETTERS LA English DT Article ID TRANSITION-METAL OXIDES; X-RAY-ABSORPTION; HARTREE-FOCK; PHOTOEMISSION; SPECTRA; CHARGE; YVO3; 3D AB Using x-ray absorption spectroscopy at the Ru-L-2,L-3 edge we reveal that the Ru4+ ions remain in the S=1 spin state across the rare 4d-orbital ordering transition and spin-gap formation. We find using local spin density approximation+Hubbard U band structure calculations that the crystal fields in the low-temperature phase are not strong enough to stabilize the S=0 state. Instead, we identify a distinct orbital ordering with a significant anisotropy of the antiferromagnetic exchange couplings. We conclude that La4Ru2O10 appears to be a novel material in which the orbital physics drives the formation of spin-singlet dimers in a quasi-two-dimensional S=1 system. C1 Univ Cologne, Inst Phys 2, D-50937 Cologne, Germany. Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. Univ Massachusetts, Dept Chem, Amherst, MA 01003 USA. Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. Natl Synchrotron Radiat Res Ctr, Hsinchu 30077, Taiwan. Natl Def Univ, Chung Cheng Inst Technol, Tao Yuan 335, Taiwan. Hiroshima Univ, ADSM, Dept Quantum Matter, Higashihiroshima 7398530, Japan. Univ Michigan, Randall Lab Phys, Ann Arbor, MI 48109 USA. Princeton Univ, Dept Chem, Princeton, NJ 08540 USA. RP Wu, H (reprint author), Univ Cologne, Inst Phys 2, Zulpicher Str 77, D-50937 Cologne, Germany. RI Burnus, Tobias/A-8376-2008; Hu, Zhiwei/B-8635-2008; Wu, Hua/B-6219-2009; Mandrus, David/H-3090-2014 OI Burnus, Tobias/0000-0002-3206-2797; NR 30 TC 37 Z9 37 U1 5 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 30 PY 2006 VL 96 IS 25 AR 256402 DI 10.1103/PhysRevLett.96.256402 PG 4 WC Physics, Multidisciplinary SC Physics GA 058XD UT WOS:000238697000040 PM 16907328 ER PT J AU Berkowitz, B Cortis, A Dentz, M Scher, H AF Berkowitz, Brian Cortis, Andrea Dentz, Marco Scher, Harvey TI Modeling non-Fickian transport in geological formations as a continuous time random walk SO REVIEWS OF GEOPHYSICS LA English DT Review ID HETEROGENEOUS POROUS-MEDIA; ADVECTION-DISPERSION EQUATION; NONLOCAL REACTIVE TRANSPORT; SCALE-DEPENDENT DISPERSION; SELF-AVERAGING PROPERTIES; FRACTAL STREAM CHEMISTRY; MULTIRATE MASS-TRANSFER; SOLUTE TRANSPORT; ANOMALOUS TRANSPORT; CONTAMINANT TRANSPORT AB [ 1] Non-Fickian ( or anomalous) transport of contaminants has been observed at field and laboratory scales in a wide variety of porous and fractured geological formations. Over many years a basic challenge to the hydrology community has been to develop a theoretical framework that quantitatively accounts for this widespread phenomenon. Recently, continuous time random walk (CTRW) formulations have been demonstrated to provide general and effective means to quantify non-Fickian transport. We introduce and develop the CTRW framework from its conceptual picture of transport through its mathematical development to applications relevant to laboratory- and field-scale systems. The CTRW approach contrasts with ones used extensively on the basis of the advection-dispersion equation and use of upscaling, volume averaging, and homogenization. We examine the underlying assumptions, scope, and differences of these approaches, as well as stochastic formulations, relative to CTRW. We argue why these methods have not been successful in fitting actual measurements. The CTRW has now been developed within the framework of partial differential equations and has been generalized to apply to nonstationary domains and interactions with immobile states ( matrix effects). We survey models based on multirate mass transfer ( mobile-immobile) and fractional derivatives and show their connection as subsets within the CTRW framework. C1 Weizmann Inst Sci, Dept Environm Sci & Energy Res, IL-76100 Rehovot, Israel. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. Tech Univ Catalonia, Dept Geotech Engn & Geosci, E-08034 Barcelona, Spain. RP Berkowitz, B (reprint author), Weizmann Inst Sci, Dept Environm Sci & Energy Res, IL-76100 Rehovot, Israel. EM brian.berkowitz@weizmann.ac.il; acortis@lbl.gov; marco.dentz@upc.es; harvey.scher@weizmann.ac.il RI Cortis, Andrea/A-3525-2008; BERKOWITZ, BRIAN/K-1497-2012; Dentz, Marco/C-1076-2015 OI BERKOWITZ, BRIAN/0000-0003-3078-1859; Dentz, Marco/0000-0002-3940-282X NR 173 TC 416 Z9 422 U1 12 U2 93 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 8755-1209 EI 1944-9208 J9 REV GEOPHYS JI Rev. Geophys. PD JUN 30 PY 2006 VL 44 IS 2 AR RG2003 DI 10.1029/2005RG000178 PG 49 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 062KW UT WOS:000238944200001 ER PT J AU Berry, JF Bill, E Bothe, E George, SD Mienert, B Neese, F Wieghardt, K AF Berry, JF Bill, E Bothe, E George, SD Mienert, B Neese, F Wieghardt, K TI An octahedral coordination complex of iron(VI) SO SCIENCE LA English DT Article ID WASTE-WATER TREATMENT; SPECTROSCOPIC CHARACTERIZATION; METHANE MONOOXYGENASE; ELECTRONIC-STRUCTURE; CYTOCHROME P450CAM; CRYSTAL-STRUCTURE; DFT CALCULATIONS; NONHEME; HYDROXYLATION; HYDROGENASE AB The hexavalent state, considered to be the highest oxidation level accessible for iron, has previously been found only in the tetrahedral ferrate dianion, FeO42-. We report the photochemical synthesis of another Fe(VI) compound, an octahedrally coordinated dication bearing a terminal nitrido ligand. Mossbauer and x-ray absorption spectra, supported by density functional theory, are consistent with the octahedral structure having an Fe=N triple bond of 1.57 angstroms and a singlet d(xy)(2) ground electronic configuration. The compound is stable at 77 kelvin and yields a high-spin spin Fe(III) species upon warming. C1 Max Planck Inst Bioanorgan Chem, D-45470 Mulheim, Germany. Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. RP Wieghardt, K (reprint author), Max Planck Inst Bioanorgan Chem, Stiftstr 34-36, D-45470 Mulheim, Germany. EM wieghardt@mpi-muelheim.mpg.de RI DeBeer, Serena/G-6718-2012; Neese, Frank/J-4959-2014 OI Neese, Frank/0000-0003-4691-0547 NR 44 TC 165 Z9 165 U1 6 U2 93 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUN 30 PY 2006 VL 312 IS 5782 BP 1937 EP 1941 DI 10.1126/science.1128506 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 061CF UT WOS:000238848100055 PM 16741074 ER PT J AU Chen, J Hubbard, S Peterson, J Williams, K Fienen, M Jardine, P Watson, D AF Chen, J. Hubbard, S. Peterson, J. Williams, K. Fienen, M. Jardine, P. Watson, D. TI Development of a joint hydrogeophysical inversion approach and application to a contaminated fractured aquifer SO WATER RESOURCES RESEARCH LA English DT Article ID GROUND-PENETRATING-RADAR; HYDRAULIC CONDUCTIVITY; GEOPHYSICAL-DATA; SEISMIC TOMOGRAPHY; BAYESIAN MODEL; VADOSE ZONE; DISTRIBUTIONS; CROSSWELL; TESTS; SITE AB [ 1] This paper presents a joint inversion approach for combining crosshole seismic travel time and borehole flowmeter test data to estimate hydrogeological zonation. The approach is applied to a complex, fractured Department of Energy field site located at the Oak Ridge National Laboratory in Tennessee, United States. We consider seismic slowness ( the inverse of seismic velocity) and hydrogeological zonation indicators as unknown variables and use a physically based model with unknown parameters to relate the seismic slowness to the zonation indicators. We jointly estimate all the unknown parameters in the model by conditioning them to the crosshole seismic travel times as well as the borehole flowmeter data using a Bayesian model and a Markov chain Monte Carlo sampling method. The fracture zonation estimates are qualitatively compared to bromide tracer breakthrough data and to uranium biostimulation experiment results. The comparison suggests that the joint inversion approach adequately estimated the fractured zonation and that the fracture zonation influenced biostimulation efficacy. Our study suggests that the new joint hydrogeophysical inversion approach is flexible and effective for integrating various types of data sets within complex subsurface environments and that seismic travel time data have the potential to provide valuable information about fracture zonation. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Chen, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM jchen@lbl.gov RI Chen, Jinsong/A-1374-2009; Fienen, Michael/D-2479-2009; Hubbard, Susan/E-9508-2010; Watson, David/C-3256-2016 OI Fienen, Michael/0000-0002-7756-4651; Watson, David/0000-0002-4972-4136 NR 36 TC 28 Z9 28 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD JUN 30 PY 2006 VL 42 IS 6 AR W06425 DI 10.1029/2005WR004694 PG 13 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 062LD UT WOS:000238944900002 ER PT J AU Herberg, JL Maxwell, RS Majzoub, EH AF Herberg, JL Maxwell, RS Majzoub, EH TI Al-27 and H-1 MAS NMR and Al-27 multiple quantum studies of Ti-doped NaAlH4 SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE hydrogen storage; Ti-doped NaAlH4; Al-27 MAS NMR; Al-27 MQMAS NMR ID SOLID-STATE NMR; QUADRUPOLAR NUCLEI; RESONANCE; HYDRIDE; SPECTRA; SYSTEM; MQMAS; XRD; THF AB Previous X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) studies on Ti-doped NaAlH4 revealed the reaction products of two heavily doped (33.3 at.%) samples. This investigation revealed that nano-crystalline or amorphous Al2O3 forms from the possible coordination of aluminum with the oxygen atom of the furan ring system from added tetrahydrofuran (THF) in solvent-mixed samples, and that TiAl3 forms in mechanically-milled samples [E.H. Majzoub, J.L. Herberg, R. Stumpf, R.S. Maxwell, J. Alloys Compd. 394 (2005) 65], indicating; the importance of understanding the processing conditions of these potentially important hydrogen storage materials. The present paper provides a more sophisticated NMR investigation of these materials and resolves some unanswered questions. On heavily doped (33.3 at.%) solvent-mixed samples, Al-27 Magic Angle Spinning (MAS) NMR Al-27 multiple quantum MAS (MQMAS) indicates the presence of an oxide layer of Al2O3 On the surfaces of potentially bulk nanocrystalline Ti, nanocrystalline TiAl3, and/or metallic aluminum. The H-1 MAS NMR data also indicate the possible coordination of aluminum with oxygen atoms in the THF molecules. In addition, the H-1 MAS NMR and H-1 spin-lattice relaxation (T-1) measurements are consistent with the presence of TiH2. These results are in agreement with recent XAFS measurements indicating both Al and H within the first few coordination shells of Ti in the doped alanate. (c) 2005 Elsevier B.V. All rights reserved. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Sandia Natl Labs, Livermore, CA 94551 USA. RP Herberg, JL (reprint author), Lawrence Livermore Natl Lab, POB 5508, Livermore, CA 94551 USA. EM herberg1@llnl.gov NR 27 TC 32 Z9 34 U1 2 U2 14 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JUN 29 PY 2006 VL 417 IS 1-2 BP 39 EP 44 DI 10.1016/j.jallcom.2005.09.047 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 055RT UT WOS:000238468800011 ER PT J AU Xiong, ZT Wu, GT Hu, JJ Chen, P Luo, WF Wang, J AF Xiong, ZT Wu, GT Hu, JJ Chen, P Luo, WF Wang, J TI Investigations on hydrogen storage over Li-Mg-N-H complex - the effect of compositional changes SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Mg(NH2)(2); ternary imide; hydrogenation; dehydrogenation; LiH ID SYSTEM; DESORPTION; IMIDES AB Three Li-Mg-N-H samples with LiH/Mg(NH2)(2) Molar ratio of 1/1, 2/1 and 3/1 were prepared and investigated. Remarkable differences were observed in the temperature dependence of hydrogen desorption, subsequent absorption and P-C isotherms over these three samples. It was revealed that the reduction of LiH content induced the desorption of ammonia. Higher content of LiH pushes the hydrogen desorption to a higher temperature region. (c) 2005 Elsevier B.V. All rights reserved. C1 Natl Univ Singapore, Dept Phys, Singapore 119542, Singapore. Sandia Natl Labs, Analyt Mat Sci Dept, Livermore, CA 94550 USA. RP Chen, P (reprint author), Natl Univ Singapore, Dept Phys, 10 Kent Ridge Crescent, Singapore 119542, Singapore. EM phychenp@nus.edu.sg OI Yang, Shuman/0000-0002-9638-0890 NR 10 TC 51 Z9 52 U1 0 U2 22 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JUN 29 PY 2006 VL 417 IS 1-2 BP 190 EP 194 DI 10.1016/j.jallcom.2005.07.072 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 055RT UT WOS:000238468800039 ER PT J AU Seagle, CT Campbell, AJ Heinz, DL Shen, GY Prakapenka, VB AF Seagle, Christopher T. Campbell, Andrew J. Heinz, Dion L. Shen, Guoyin Prakapenka, Vitali B. TI Thermal equation of state of Fe3S and implications for sulfur in Earth's core SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID HIGH-PRESSURE; MELTING CURVE; IRON; PHASE; MARS; TEMPERATURES; INTERIOR; NACL; COMPRESSION; GIGAPASCALS AB [1] Iron ( Fe) and coexisting Fe3S were studied simultaneously using synchrotron X- ray diffraction and a laser-heated diamond anvil cell (DAC). The thermal equation of state (EOS) of Fe3S was investigated up to pressures of 80 GPa and temperatures of 2500 K. Fitting a third-order Birch-Murnaghan EOS to the room temperature data yielded bulk modulus K-0 = 156( 7) GPa ( values in parentheses are standard deviation) and pressure derivative K-0'= 3.8( 3) calibrated against NaCl in the B2 structure. The room temperature data were also calibrated against the EOS of hcp-Fe for comparison and aid in the determination of the thermal pressure contribution of Fe3S. This fit yielded bulk modulus K-0 = 113( 9) GPa and pressure derivative K-0'= 5.2( 6). The thermal pressure contribution of Fe3S was assumed to be of the form Delta P-thermal = alpha K-T Delta T, where alpha K-T is constant. The best fit to the data yielded alpha K-T = 0.011( 2) GPa K-1. Iron and Fe3S coexisted in the high-pressure, high-temperature experiments, and a density relationship between Fe and Fe3S was found to be linear and independent of temperature. Extrapolation of the data to the core-mantle boundary (CMB), using an assumed temperature of 3500 K at the CMB, a 2% volume change associated with melting, and applying a small adjustment to account for the nickel content of the core indicates that 14.7(11) wt % sulfur is adequate to resolve the density deficit of the outer core. C1 Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. Univ Maryland, Dept Geol, College Pk, MD 20742 USA. Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA. Argonne Natl Lab, Adv Photon Source, GeoSoilEnviro CARS Sector 13, Argonne, IL 60439 USA. RP Seagle, CT (reprint author), Univ Chicago, Dept Geophys Sci, 5734 S Ellis Ave, Chicago, IL 60637 USA. EM seagle@uchicago.edu RI Seagle, Christopher/D-5000-2009; Shen, Guoyin/D-6527-2011 NR 33 TC 36 Z9 39 U1 1 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD JUN 29 PY 2006 VL 111 IS B6 AR B06209 DI 10.1029/2005JB004091 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 062KJ UT WOS:000238942700001 ER PT J AU Lu, H Schulze-Gahmen, U AF Lu, H Schulze-Gahmen, U TI Toward understanding the structural basis of cyclin-dependent kinase 6 specific inhibition SO JOURNAL OF MEDICINAL CHEMISTRY LA English DT Article ID CYCLIN-DEPENDENT KINASES; VIRUS-ENCODED CYCLIN; CELL-CYCLE; CANCER-THERAPY; RETINOBLASTOMA PROTEIN; CDK6; IDENTIFICATION; SOFTWARE; COMPLEX; DESIGN AB Cyclin-dependent kinases (CDKs) are key players in cell cycle control, and genetic alterations of CDKs and their regulators have been linked to a variety of cancers. Hence, CDKs are obvious targets for therapeutic intervention in various proliferative diseases, including cancer. To date, drug design efforts have mostly focused on CDK2 because methods for crystallization of its inhibitor complexes have been well established. CDK4 and CDK6, however, may be at least as important as enzymes for cell cycle regulation and could provide alternative treatment options. We describe here two complex structures of human CDK6 with a very specific kinase inhibitor, PD0332991, which is based on a pyrido[2,3-d]pyrimidin-7-one scaffold, and with the less specific aminopurvalanol inhibitor. Analysis of the structures suggests that relatively small conformational differences between CDK2 and CDK6 in the hinge region are contributing to the inhibitor specificity by inducing changes in the inhibitor orientation that lead to sterical clashes in CDK2 but not CDK6. These complex structures provide valuable insights for the future development of CDK-specific inhibitors. C1 Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Schulze-Gahmen, U (reprint author), Lawrence Berkeley Natl Lab, Phys Biosci Div, 1 Cyclotron Rd,MS3, Berkeley, CA 94720 USA. EM uschulze-gahmen@lbl.gov NR 34 TC 41 Z9 43 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-2623 J9 J MED CHEM JI J. Med. Chem. PD JUN 29 PY 2006 VL 49 IS 13 BP 3826 EP 3831 DI 10.1021/jm0600388 PG 6 WC Chemistry, Medicinal SC Pharmacology & Pharmacy GA 055JN UT WOS:000238446700011 PM 16789739 ER PT J AU Woo, HK Wang, XB Lau, KC Wang, LS AF Woo, HK Wang, XB Lau, KC Wang, LS TI Low-temperature photoelectron spectroscopy of aliphatic dicarboxylate monoanions, HO2C(CH2)(n)CO2- (n=1-10): Hydrogen bond induced cyclization and strain energies SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID GAS-PHASE; AB-INITIO; ENZYMATIC CATALYSIS; CARBOXYLATE ANIONS; MALEATE; SOLVATION; CHEMISTRY; STRENGTH; SYSTEMS AB Photoelectron spectra of singly charged dicarboxylate anions HO2C(CH2)(n)CO2- (n = 1-10) are obtained at two different temperatures (300 and 70 K) at 193 nm. The electron binding energies of these species are observed to be much higher than the singly charged monocarboxylate anions, suggesting that the singly charged dicarboxylate anions are cyclic due to strong intramolecular hydrogen bonding between the terminal -CO2H and -CO2- groups. The measured electron binding energies are observed to depend on the chain length, reflecting the different -CO2H center dot center dot center dot-O2C- hydrogen bonding strength as a result of strain in the cyclic conformation. A minimum binding energy is found at n = 5, indicating that its intramolecular hydrogen bond is the weakest. At 70 K, all spectra are blue shifted relative to the room-temperature spectra with the maximum binding energy shift occurring at n = 5. These observations suggest that the cyclic conformation of HO2C(CH2)(5)CO2- (a ten-membered ring) is the most strained among the 10 anions. The present study shows that the -CO2H center dot center dot center dot-O2C- hydrogen bonding strength is different among the 10 anions and it is very sensitive to the strain in the cyclic conformations. C1 Washington State Univ, Dept Phys, Richland, WA 99354 USA. Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. RP Wang, LS (reprint author), Washington State Univ, Dept Phys, 2710 Univ Dr, Richland, WA 99354 USA. EM ls.wang@pnl.gov OI LAU, Kai Chung /0000-0003-2125-6841 NR 33 TC 9 Z9 9 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 29 PY 2006 VL 110 IS 25 BP 7801 EP 7805 DI 10.1021/jp0616009 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 055JL UT WOS:000238446500008 PM 16789765 ER PT J AU Xu, HF Johnson, PM Sears, TJ AF Xu, HF Johnson, PM Sears, TJ TI Photoinduced rydberg ionization spectroscopy of phenylacetylene: Vibrational assignments of the C-similar to state of the cation SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID PHOTOELECTRON-SPECTROSCOPY; AB-INITIO; MOLECULAR-SYSTEMS; PIRI SPECTROSCOPY; TRANSITION; SPECTRA; STYRENE AB The photoinduced Rydberg ionization spectrum of the third excited electronic state of phenylacetylene cation was recorded via the origin of the cation ground electronic state. The origin of this state is 17 834 cm(-1) above the ground state of the cation, and the spectrum shows well-resolved vibrational features to the energy of 2200 cm(-1) above this. An assignment of the vibrational structure was made by comparison to calculated frequencies and Franck-Condon factors. From the assignments, and electronic structure considerations, the electronic symmetry of the (C) over tilde state is established to be B-2(1). C1 SUNY Stony Brook, Dept Chem, Stony Brook, NY 11974 USA. Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Johnson, PM (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11974 USA. RI Sears, Trevor/B-5990-2013 OI Sears, Trevor/0000-0002-5559-0154 NR 24 TC 6 Z9 6 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 29 PY 2006 VL 110 IS 25 BP 7822 EP 7825 DI 10.1021/jp061467k PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 055JL UT WOS:000238446500011 PM 16789768 ER PT J AU Weston, RE Barker, JR AF Weston, RE Barker, JR TI On modeling the pressure-dependent photoisomerization of trans-stilbene by including slow intramolecular vibrational energy redistribution SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID CLASSICAL TRAJECTORY SIMULATIONS; UNIMOLECULAR REACTION SYSTEMS; SELECTIVE IONIZATION KCSI; HIGHLY EXCITED MOLECULES; NON-RRKM REACTION; TRANSFER PROBABILITIES; RATE CONSTANTS; MULTIPHOTON IONIZATION; POLYATOMIC-MOLECULES; COLLISIONAL SYSTEMS AB Experimental data for the photoisomerization of trans-stilbene (S-1) in thermal bath gases at pressures up to 20 bar obtained previously by Meyer, Schroeder, and Troe (J. Phys. Chem. A 1999, 103, 10528-10539) are modeled by using a full collisional-reaction master equation that includes non-RRKM (Rice-RamspergerKassel-Marcus) effects due to slow intramolecular vibrational energy redistribution (IVR). The slow IVR effects are modeled by incorporating the theoretical results obtained recently by Leitner et al. (J. Phys. Chem. A 2003, 107, 10706-10716), who used the local random matrix theory. The present results show that the experimental rate constants of Meyer et al. are described to within about a factor of 2 over much of the experimental pressure range. However, a number of assumptions and areas of disagreement will require further investigation. These include a discrepancy between the calculated and experimental thermal rate constants near zero pressure, a leveling off of the experimental rate constants that is not predicted by theory and which depends on the identity of the collider gas, the need to use rate constants for collision-induced IVR that are larger than the estimated total collision rate constants, and the choice of barrier-crossing frequency. Despite these unsettled issues, the theory of Leitner et al. shows great promise for accounting for possible non-RRKM effects in an important class of reactions. C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RP Weston, RE (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM weston@bnl.gov; jrbarker@umich.edu RI Barker, John/F-5904-2012 OI Barker, John/0000-0001-9248-2470 NR 66 TC 19 Z9 19 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 29 PY 2006 VL 110 IS 25 BP 7888 EP 7897 DI 10.1021/jp061630b PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 055JL UT WOS:000238446500020 PM 16789777 ER PT J AU Datar, A Balakrishnan, K Yang, XM Zuo, XB Huang, JL Oitker, R Yen, M Zhao, JC Tiede, DM Zang, L AF Datar, A Balakrishnan, K Yang, XM Zuo, XB Huang, JL Oitker, R Yen, M Zhao, JC Tiede, DM Zang, L TI Linearly polarized emission of an organic semiconductor nanobelt SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID DISCOTIC LIQUID-CRYSTALS; CHARGE-TRANSFER EXCITONS; PI-CONJUGATED SYSTEMS; SINGLE-MOLECULE; PERYLENE-3,4-9,10-BIS(DICARBOXIMIDE) PIGMENTS; ELECTRON-TRANSFER; BUILDING-BLOCKS; FILMS; CRYSTALLOCHROMY; FRENKEL AB Linearly polarized emission has been observed for the nanobelts fabricated from a perylene diimide molecule through both solution-based and surface-supported self-assembling. The measurement of polarized emission was performed over single nanobelts with use of a near-field scanning optical microscope (NSOM) adapted with emission polarization (by putting a planar polarizer before the detector). Rotating the emission polarizer (from 0 to 180) changed the emission intensity in a way depending on the relative angle between the long axis of the belt and the polarizer with a minimum of intensity detected at ca. 78 degrees, which is indicative of the tilted stacking of molecules along the belt direction. C1 Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. So Illinois Univ, Dept Chem & Biochem, Carbondale, IL 62901 USA. So Illinois Univ, Mat Technol Ctr, Carbondale, IL 62901 USA. Chinese Acad Sci, Inst Chem, Key Lab Photochem, Beijing 100080, Peoples R China. RP Tiede, DM (reprint author), Argonne Natl Lab, Div Chem, 9700 S Cass Ave, Argonne, IL 60439 USA. EM tiede@anl.gov; lzang@chem.siu.edu RI Zuo, Xiaobing/F-1469-2010 NR 32 TC 65 Z9 65 U1 1 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUN 29 PY 2006 VL 110 IS 25 BP 12327 EP 12332 DI 10.1021/jp061739j PG 6 WC Chemistry, Physical SC Chemistry GA 055JP UT WOS:000238446900019 PM 16800555 ER PT J AU Kopidakis, N Neale, NR Frank, AJ AF Kopidakis, N Neale, NR Frank, AJ TI Effect of an adsorbent on recombination and band-edge movement in dye-sensitized TiO2 solar cells: Evidence for surface passivation SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID IONIC LIQUID ELECTROLYTE; NANOCRYSTALLINE TIO2; CHARGE RECOMBINATION; TRANSPORT; PERFORMANCE; EFFICIENCY; CONVERSION; PHOTOCARRIERS; PHOTOCURRENT; COADSORBENT AB The mechanism by which the adsorbent guanidinium affects the open-circuit photovoltage of dye-sensitized TiO2 nanocrystalline solar cells was investigated. The influence of the guanidinium cation on the rate of recombination and band-edge movement was measured by transient photovoltage. When guanidinium is present in the electrolyte recombination becomes slower by a factor of about 20. At the same time, the adsorbent causes the band edges to move downward, toward positive electrochemical potentials, by 100 mV. The collective effect of both a downward shift of the band edges and slower recombination, owing to the presence of guanidinium, results in an overall improvement in the open-circuit photovoltage. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Kopidakis, N (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Nikos_Kopidakis@nrel.gov; afrank@nrel.gov RI Kopidakis, Nikos/N-4777-2015 NR 22 TC 205 Z9 206 U1 4 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUN 29 PY 2006 VL 110 IS 25 BP 12485 EP 12489 DI 10.1021/jp0607364 PG 5 WC Chemistry, Physical SC Chemistry GA 055JP UT WOS:000238446900040 PM 16800576 ER PT J AU Kim, CY Elam, JW Pellin, MJ Goswami, DK Christensen, ST Hersam, MC Stair, PC Bedzyk, MJ AF Kim, CY Elam, JW Pellin, MJ Goswami, DK Christensen, ST Hersam, MC Stair, PC Bedzyk, MJ TI Imaging of atomic layer deposited (ALD) tungsten monolayers on alpha-TiO2(110) by X-ray standing wave Fourier inversion SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID RUTILE-WATER INTERFACE; SURFACE; TIO2(110); ADSORPTION; CATALYSTS; GROWTH; DISSOCIATION; SPECTROSCOPY; DIOXIDE; TITANIA AB A single atomic layer of tungsten grown by atomic layer deposition (ALD) on a single-crystal rutile TiO2(110) support is studied by the X-ray standing wave (XSW) technique. The surface structural and chemical properties were also examined using atomic force microscopy, X-ray photoelectron spectroscopy, and low-energy electron diffraction. The XSW measured set of hkl Fourier components for the W atomic distribution function are summed together to produce a model-independent 3D map of the W atoms relative to the rutile lattice. The 3D atomic image shows surface tungsten atoms equally occupying the two nonequivalent Ti sites with a slight outward displacement. This corresponds to the atop and bridge sites with respect to the underlying lattice oxygen atoms. These XSW measurements clearly show that ALD conformal layers can be highly coherent with respect to the substrate lattice. C1 Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. Northwestern Univ, Inst Environm Catalysis, Evanston, IL 60208 USA. Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Kim, CY (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM cykim@northwestern.edu RI Hersam, Mark/A-9639-2008; Hersam, Mark/B-6739-2009; Bedzyk, Michael/B-7503-2009; Pellin, Michael/B-5897-2008; Goswami, Dipak/E-8186-2011; Bedzyk, Michael/K-6903-2013; Kim, Chang-Yong/I-3136-2014 OI Pellin, Michael/0000-0002-8149-9768; Goswami, Dipak/0000-0002-5891-6172; Kim, Chang-Yong/0000-0002-1280-9718 NR 48 TC 19 Z9 19 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUN 29 PY 2006 VL 110 IS 25 BP 12616 EP 12620 DI 10.1021/jp061391s PG 5 WC Chemistry, Physical SC Chemistry GA 055JP UT WOS:000238446900056 PM 16800592 ER PT J AU Barone, V Newton, MD Improta, R AF Barone, V Newton, MD Improta, R TI Dissociative electron transfer in donor-peptide-acceptor systems: Results for kinetic parameters from a density functional/polarizable continuum model SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; AROMATIC RADICAL-ANIONS; DISTANCE DEPENDENCE; DIALKYL PEROXIDES; FUNCTIONAL THEORY; POLAR-SOLVENTS; PBE0 MODEL; REDUCTION; MOLECULES; MECHANISM AB The main structural and electronic factors playing a role in intramolecular dissociative electron transfer of a simple donor-peptide-acceptor (D-peptide-A) model have been investigated by an integrated computational protocol based on the density functional theory, its time-dependent extension, and the polarizable continuum model. Our results allow us to elucidate the electronic states involved in the process and how they are perturbed by the orientation of the donor and the acceptor with respect to the peptide chain and by the presence of the solvent. We also report a semiquantitative estimation of the rate constant governing electron transfer obtained by a direct quantum mechanical evaluation of all the terms entering the kinetic expressions based on the Marcus theory and its extensions. C1 Univ Naples Federico II, Dipartimento Chim, I-80126 Naples, Italy. Brookhaven Natl Lab, Upton, NY 11973 USA. CNR, Ist Biostrutture & Bioimmagini, I-80134 Naples, Italy. RP Improta, R (reprint author), Univ Naples Federico II, Dipartimento Chim, Complesso Monte S Angelo,Via Cintia, I-80126 Naples, Italy. EM robimp@unina.it RI Barone, Vincenzo/C-7344-2008; improta, roberto/L-4971-2013 OI improta, roberto/0000-0003-1004-195X NR 54 TC 7 Z9 7 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUN 29 PY 2006 VL 110 IS 25 BP 12632 EP 12639 DI 10.1021/jp0557969 PG 8 WC Chemistry, Physical SC Chemistry GA 055JP UT WOS:000238446900059 PM 16800595 ER PT J AU Wylie, DC Hori, Y Dinner, AR Chakraborty, AK AF Wylie, Dennis C. Hori, Yuko Dinner, Aaron R. Chakraborty, Arup K. TI A hybrid deterministic-stochastic algorithm for modeling cell signaling dynamics in spatially inhomogeneous environments and under the influence of external fields SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID IMMUNOLOGICAL SYNAPSE; PATTERN-FORMATION; T-CELLS; ACTIVATION; RECEPTOR; SIMULATION; RECOGNITION; ANTIGEN; CD4; ADHESION AB Cell signaling dynamics mediate myriad processes in biology. It has become increasingly clear that inter- and intracellular signaling reactions often occur in a spatially inhomogeneous environment and that it is important to account for stochastic fluctuations of certain species involved in signaling reactions. The importance of these effects enhances the difficulty of gleaning mechanistic information from observations of a few experimental reporters and highlights the significance of synergistic experimental and computational studies. When both stochastic fluctuations and spatial inhomogeneity must be included in a model simultaneously, however, the resulting computational demands quickly become overwhelming. In many situations the failure of standard coarse-graining methods (i.e., ignoring spatial variation or stochastic fluctuations) when applied to all components of a complex system does not exclude the possibility of successfully applying such coarse-graining to some components of the system. Following this approach alleviates computational cost but requires "hybrid" algorithms where some variables are treated at a coarse-grained level while others are not. We present an efficient algorithm for simulation of stochastic, spatially inhomogeneous reaction-diffusion kinetics coupled to coarse-grained fields described by (stochastic or deterministic) partial differential equations (PDEs). The PDEs could represent mean-field descriptions of reactive species present in large copy numbers or evolution of hydrodynamic variables that influence signaling (e.g., membrane shape or cytoskeletal motion). We discuss the approximations made to derive our algorithm and test its efficacy by applying it to problems that include many features typical of realistic cell signaling processes. C1 MIT, Dept Chem Engn, Cambridge, MA 02139 USA. MIT, Div Biol Engn, Cambridge, MA 02139 USA. Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Univ Chicago, Dept Chem, Chicago, IL 60637 USA. RP Chakraborty, AK (reprint author), MIT, Dept Chem Engn, Cambridge, MA 02139 USA. EM arupc@mit.edu NR 43 TC 15 Z9 16 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUN 29 PY 2006 VL 110 IS 25 BP 12749 EP 12765 DI 10.1021/jp056231f PG 17 WC Chemistry, Physical SC Chemistry GA 055JP UT WOS:000238446900075 PM 16800611 ER PT J AU Tamhankar, S Alexandru, A Chen, Y Dong, SJ Draper, T Horvath, I Lee, FX Liu, KF Mathur, N Zhang, JB AF Tamhankar, S. Alexandru, A. Chen, Y. Dong, S. J. Draper, T. Horvath, I. Lee, F. X. Liu, K. F. Mathur, N. Zhang, J. B. TI Charmonium spectrum from quenched QCD with overlap fermions SO PHYSICS LETTERS B LA English DT Article ID CHIRAL FERMIONS; LATTICE QCD; QUARKS; HEAVY; SPECTROSCOPY; SYMMETRY AB We present the first study of the charmonium spectrum using overlap fermions, on quenched configurations. Simulations are performed on 16(3) x 72 lattices, with Wilson gauge action beta = 6.3345. We demonstrate that we have discretization errors, as indicated by the dispersion relation, at about 5%. We obtain 88(4) MeV for the IS hyperfine splitting using the r(0) scale, and 121(6) MeV using the (1 (P) over bar -1 (S) over bar) scale. This Letter should encourage the pursuit of using the same chiral fermions for both heavy and light quarks on the same lattice. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. Hamline Univ, Dept Phys, St Paul, MN 55104 USA. Chinese Acad Sci, Inst High Energy Phys, Beijing 100039, Peoples R China. George Washington Univ, Washington, DC 20052 USA. Jefferson Lab, Newport News, VA 23606 USA. Zhejiang Univ, Zhejiang Inst Modern Phys, Hangzhou 310027, Peoples R China. Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China. Univ Adelaide, CSSM, Adelaide, SA 5005, Australia. Univ Adelaide, Dept Phys, Adelaide, SA 5005, Australia. RP Tamhankar, S (reprint author), Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. EM stamhankar01@gw.hamline.edu OI Lee, Frank/0000-0001-8169-3440 NR 34 TC 3 Z9 3 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUN 29 PY 2006 VL 638 IS 1 BP 55 EP 60 DI 10.1016/j.physletb.2006.04.055 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 055ZJ UT WOS:000238489700009 ER PT J AU Minami, T Pindzola, MS Lee, TG Schultz, DR AF Minami, T. Pindzola, M. S. Lee, T-G Schultz, D. R. TI Lattice, time-dependent Schrodinger equation approach for charge transfer in collisions of Be4+ with atomic hydrogen SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID CLOSE-COUPLING METHOD; ELECTRON-CAPTURE; CROSS-SECTIONS; NUMERICAL-SOLUTION; IONIZATION; IONS; IMPACT; CONVERGENCE; ANTIPROTONS; EXCITATION AB A test of the lattice, time-dependent Schrodinger equation (LTDSE) method for treating inelastic ion-atom collisions is performed by treating state-selective charge transfer in 10-1000 keV/u Be4+ + H collisions. This system possesses a greater charge asymmetry of the colliding nuclei than has been treated in previous applications of the method. Consequently, its ability to represent well the dynamical evolution of the electronic wavefunction within the combination of a shallow and a deep potential well with a single coordinate- and momentum-space discretization is tested. New results are also computed using other, standard approaches, the atomic-orbital close-coupling and classical trajectory Monte Carlo methods, to provide comparisons with the LTDSE results owing to their well-established regimes of applicability and behaviours. C1 Auburn Univ, Dept Phys, Auburn, AL 36849 USA. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. RP Minami, T (reprint author), Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RI Lee, Teck Ghee/D-5037-2012 OI Lee, Teck Ghee/0000-0001-9472-3194 NR 37 TC 16 Z9 16 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD JUN 28 PY 2006 VL 39 IS 12 BP 2877 EP 2891 DI 10.1088/0953-4075/39/12/020 PG 15 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 067MI UT WOS:000239306700023 ER PT J AU Trevisan, CS Orel, AE Rescigno, TN AF Trevisan, C. S. Orel, A. E. Rescigno, T. N. TI Elastic scattering of low-energy electrons by tetrahydrofuran SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID COLLISIONS; DAMAGE AB We present the results of ab initio calculations for elastic electron scattering by tetrahydrofuran (THF) using the complex Kohn variational method. We carried out fixed-nuclei calculations at the equilibrium geometry of the target molecule for incident electron energies up to 20 eV. The calculated momentum transfer cross sections clearly reveal the presence of broad shape resonance behaviour in the 8-10 eV energy range, in agreement with recent experiments. The calculated differential cross sections at 20 eV, which include the effects of the long-range electron-dipole interaction, are also found to be in agreement with the most recent experimental findings. C1 Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Trevisan, CS (reprint author), Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. NR 20 TC 49 Z9 48 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD JUN 28 PY 2006 VL 39 IS 12 BP L255 EP L260 DI 10.1088/0953-4075/39/12/L01 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 067MI UT WOS:000239306700001 ER PT J AU Chesnut, GN Schiferl, D Streetman, BD Anderson, WW AF Chesnut, GN Schiferl, D Streetman, BD Anderson, WW TI Diamond-anvil cell for radial x-ray diffraction SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article; Proceedings Paper CT Workshop on Rheology and Elasticity Studies at Ultra-High Pressures and Temperatures CY OCT 21-23, 2005 CL Argonne Natl Lab, Adv Photon Source, Argonne, IL HO Argonne Natl Lab, Adv Photon Source ID UNIAXIAL STRESS COMPONENT; EQUATION-OF-STATE; HIGH-PRESSURE; PRASEODYMIUM METAL; SHEAR-STRENGTH; ELASTICITY; IRON; DEFORMATION; TUNGSTEN; CAMERAS AB We have designed a new diamond-anvil cell capable of radial x-ray diffraction to pressures of a few hundred GPa. The diffraction geometry allows access to multiple angles of Psi, which is the angle between each reciprocal lattice vector g( hkl) and the compression axis of the cell. At the 'magic angle', Psi approximate to 54.7 degrees, the effects of deviatoric stresses on the interplanar spacings, d( hkl), are significantly reduced. Because the systematic errors, which are different for each d( hkl), are significantly reduced, the crystal structures and the derived equations of state can be determined reliably. At other values of Psi, the effects of deviatoric stresses on the diffraction pattern could eventually be used to determine elastic constants. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Chesnut, GN (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 31 TC 1 Z9 1 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 28 PY 2006 VL 18 IS 25 SI SI BP S1083 EP S1090 DI 10.1088/0953-8984/18/25/S15 PG 8 WC Physics, Condensed Matter SC Physics GA 057JV UT WOS:000238593000016 PM 22611099 ER PT J AU Hu, JZ Mao, HK Shu, JF Guo, QZ Liu, HZ AF Hu, JZ Mao, HK Shu, JF Guo, QZ Liu, HZ TI Diamond anvil cell radial x-ray diffraction program at the National Synchrotron Light Source SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article; Proceedings Paper CT Workshop on Rheology and Elasticity Studies at Ultra-High Pressures and Temperatures CY OCT 21-23, 2005 CL Argonne Natl Lab, Adv Photon Source, Argonne, IL HO Argonne Natl Lab, Adv Photon Source ID EARTHS INNER-CORE; CRYSTAL ELASTIC-MODULI; HIGH-PRESSURE; LATTICE STRAINS; SHEAR-STRENGTH; NONHYDROSTATIC COMPRESSION; IRON; GPA; EQUATION; STATE AB During the past decade, the radial x-ray diffraction method using a diamond anvil cell ( DAC) has been developed at the X17C beamline of the National Synchrotron Light Source. The detailed experimental procedure used with energy dispersive x-ray diffraction is described. The advantages and limitations of using the energy dispersive method for DAC radial diffraction studies are also discussed. The results for FeO at 135 GPa and other radial diffraction experiments performed at X17C are discussed in this report. C1 Univ Chicago, CARS, NSLS, X17, Upton, NY 11973 USA. Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. RP Hu, JZ (reprint author), Univ Chicago, CARS, NSLS, X17, Upton, NY 11973 USA. EM jzhu@bnl.gov RI Liu, Haozhe/E-6169-2011 NR 29 TC 6 Z9 6 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 28 PY 2006 VL 18 IS 25 SI SI BP S1091 EP S1096 DI 10.1088/0953-8984/18/25/S16 PG 6 WC Physics, Condensed Matter SC Physics GA 057JV UT WOS:000238593000017 PM 22611100 ER PT J AU Mao, WL Mao, HK AF Mao, WL Mao, HK TI Ultrahigh-pressure experiment with a motor-driven diamond anvil cell SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article; Proceedings Paper CT Workshop on Rheology and Elasticity Studies at Ultra-High Pressures and Temperatures CY OCT 21-23, 2005 CL Argonne Natl Lab, Adv Photon Source, Argonne, IL HO Argonne Natl Lab, Adv Photon Source ID IRON AB A Pt sample was compressed to ultrahigh pressures in a diamond anvil cell ( DAC) using a motorized gearbox to change pressure remotely from outside the synchrotron x-ray hutch. In situ angle-dispersive x-ray diffraction ( XRD) was used to determine pressure from known equations of state ( EOS). The sample position was unperturbed during motor-driven pressure changes. By eliminating the need to realign the sample to the x-ray position after each pressure increment, 142 XRD patterns could be collected continuously over the course of three hours, and the maximum pressure of 230 GPa was reached before diamond failure ended the experiment. We demonstrate the advantages of this motor-driven assembly for smooth and efficient pressure change, and the possibility for fine pressure and temporal resolution. C1 Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87544 USA. Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. RP Mao, WL (reprint author), Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, POB 1663, Los Alamos, NM 87544 USA. EM wmao@lanl.gov RI Mao, Wendy/D-1885-2009 NR 11 TC 3 Z9 3 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 28 PY 2006 VL 18 IS 25 SI SI BP S1069 EP S1073 DI 10.1088/0953-8984/18/25/S13 PG 5 WC Physics, Condensed Matter SC Physics GA 057JV UT WOS:000238593000014 PM 22611097 ER PT J AU Meng, Y Shen, G Mao, HK AF Meng, Y. Shen, G. Mao, H. K. TI Double-sided laser heating system at HPCAT for in situ x-ray diffraction at high pressures and high temperatures SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article; Proceedings Paper CT Workshop on Rheology and Elasticity Studies at Ultra-High Pressures and Temperatures CY OCT 21-23, 2005 CL Argonne Natl Lab, Adv Photon Source, Argonne, IL HO Argonne Natl Lab, Adv Photon Source ID CRYSTAL-STRUCTURE; DIAMOND CELL; D''-LAYER; IRON; PEROVSKITE; CORE; DEFORMATION; GIGAPASCALS; SILICATES; MGSIO3 AB An overview of a YLF:Nd laser heating system at the undulator x-ray diffraction station ( 16ID-B) of the high-pressure collaborative access team ( HPCAT) of the Advanced Photon Source is presented. Based on the double-sided laser heating technique, the system is designed with considerable effort on the mechanical and optical stabilities, features for user-friendly operation, and the capability of accommodating diamond anvil cells of various heights up to 68 mm. This system has been used for x-ray diffraction studies of a wide range of materials to over 150 GPa and above 3000 K. Applying the laser heating technique to radial x-ray diffraction studies at simultaneous high-pressure and high-temperature ( PT) conditions requires heating to be conducted at variable angles relative to the x-ray direction. A rotation laser heating design is discussed. C1 Argonne Natl Lab, Adv Photon Source, HPCAT, Argonne, IL 60439 USA. Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. RP Meng, Y (reprint author), Argonne Natl Lab, Adv Photon Source, HPCAT, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ymeng@hpcat.aps.anl.gov RI Shen, Guoyin/D-6527-2011 NR 22 TC 31 Z9 31 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 28 PY 2006 VL 18 IS 25 SI SI BP S1097 EP S1103 DI 10.1088/0953-8984/18/25/S17 PG 7 WC Physics, Condensed Matter SC Physics GA 057JV UT WOS:000238593000018 PM 22611101 ER PT J AU Singh, AK Liermann, HP Saxena, SK Mao, HK Devi, SU AF Singh, AK Liermann, HP Saxena, SK Mao, HK Devi, SU TI Nonhydrostatic compression of gold powder to 60 GPa in a diamond anvil cell: estimation of compressive strength from x-ray diffraction data SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article; Proceedings Paper CT Workshop on Rheology and Elasticity Studies at Ultra-High Pressures and Temperatures CY OCT 21-23, 2005 CL Argonne Natl Lab, Adv Photon Source, Argonne, IL HO Argonne Natl Lab, Adv Photon Source ID UNIAXIAL-STRESS COMPONENT; CRYSTAL ELASTIC-MODULI; GRAIN-SIZE DEPENDENCE; HIGH-PRESSURE; LATTICE STRAINS; SINGLE-CRYSTAL; DEVIATORIC STRESS; TEMPERATURE; IRON; TUNGSTEN AB Two gold powder samples, one with average crystallite size of approximate to 30 nm ( n-Au) and another with approximate to 120 nm ( c-Au), were compressed under nonhydrostatic conditions in a diamond anvil cell to different pressures up to approximate to 60 GPa and the x-ray diffraction patterns recorded. The difference between the axial and radial stress components ( a measure of the compressive strength) was estimated from the shifts of the diffraction lines. The maximum micro-stress in the crystallites ( another measure of the compressive strength) and grain size ( crystallite size) were obtained from analysis of the line-width data. The strengths obtained by the two methods agreed well and increased with increasing pressure. Over the entire pressure range, the strength of n-Au was found to be significantly higher than that of c-Au. The grain sizes of both n-Au and c-Au decreased under pressure. This decrease was much larger than expected from the compressibility effect and was found to be reversible. An equation derived from the dislocation theory that predicts the dependence of strength on the grain size and the shear modulus was used to interpret the strength data. The strength derived from the published grain size versus hardness data agreed well with the present results. C1 Natl Aerosp Lab, Div Sci Mat, Bangalore 560017, Karnataka, India. Argonne Natl Lab, Adv Photon Source, HPCAT, Argonne, IL 60439 USA. Florida Int Univ, Ctr Study Matter Extreme Conditions, Miami, FL 33199 USA. Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. Carnegie Inst Washington, Ctr High Pressure Res, Washington, DC 20015 USA. RP Singh, AK (reprint author), Natl Aerosp Lab, Div Sci Mat, Bangalore 560017, Karnataka, India. EM aksingh@css.nal.res.in NR 59 TC 22 Z9 22 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 28 PY 2006 VL 18 IS 25 SI SI BP S969 EP S978 DI 10.1088/0953-8984/18/25/S05 PG 10 WC Physics, Condensed Matter SC Physics GA 057JV UT WOS:000238593000006 PM 22611106 ER PT J AU Gao, GH Prasad, R Lodwig, SN Unkefer, CJ Beard, WA Wilson, SH London, RE AF Gao, GH Prasad, R Lodwig, SN Unkefer, CJ Beard, WA Wilson, SH London, RE TI Determination of lysine pK values using [5-C-13]lysine: Application to the lyase domain of DNA pol beta SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PK(A) VALUES; POLYMERASE-BETA; ACTIVE-SITE; PROTEIN STABILITY; NMR DETERMINATION; MECHANISM; RESIDUES; ENZYME; LACTAMASES; EXCISION C1 NIEHS, Struct Biol Lab, NIH, Res Triangle Pk, NC 27709 USA. Los Alamos Natl Lab, Biosci Div, Natl Stable Isotope Resource, Los Alamos, NM 87544 USA. RP London, RE (reprint author), NIEHS, Struct Biol Lab, NIH, Res Triangle Pk, NC 27709 USA. EM london@niehs.nih.gov FU Intramural NIH HHS [Z01 ES050147-13]; NIBIB NIH HHS [P41 EB002166-18, P41 EB002166, 5P41 EB002166] NR 20 TC 11 Z9 11 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 28 PY 2006 VL 128 IS 25 BP 8104 EP 8105 DI 10.1021/ja061473u PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 054ZM UT WOS:000238418000004 PM 16787052 ER PT J AU Mao, YB Wong, SS AF Mao, YB Wong, SS TI Size- and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ONE-DIMENSIONAL NANOSTRUCTURES; HYDROTHERMAL CONDITIONS; ORIENTED ATTACHMENT; TIO2 NANOPARTICLES; CRYSTAL-GROWTH; NANOCRYSTALS; NANOTUBES; PHASE; NANOWIRES; CHEMISTRY AB A size- and shape-dependent morphological transformation was demonstrated during the hydrothermal soft chemical transformation, in neutral solution, of titanate nanostructures into their anatase titania counterparts. Specifically, lepidocrocite hydrogen titanate nanotubes with diameters of similar to 10 nm were transformed into anatase nanoparticles with an average size of 12 nm. Lepidocrocite hydrogen titanate nanowires with relatively small diameters (average diameter range of <= 200 nm) were converted into single-crystalline anatase nanowires with relatively smooth surfaces. Larger diameter (> 200 nm) titanate wires were transformed into analogous anatase submicron wire motifs, resembling clusters of adjoining anatase nanocrystals with perfectly parallel, oriented fringes. Our results indicate that as-synthesized TiO2 nanostructures possessed higher photocatalytic activity than the commercial titania precursors from whence they were derived. C1 SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Dept Chem Sci, Upton, NY 11973 USA. RP Wong, SS (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM sswong@notes.cc.sunysb.edu RI Mao, Yuanbing/D-5580-2009 NR 44 TC 269 Z9 276 U1 4 U2 98 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 28 PY 2006 VL 128 IS 25 BP 8217 EP 8226 DI 10.1021/ja0607483 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 054ZM UT WOS:000238418000038 PM 16787086 ER PT J AU Sarangi, R Aboelella, N Fujisawa, K Tolman, WB Hedman, B Hodgson, KO Solomon, EI AF Sarangi, R Aboelella, N Fujisawa, K Tolman, WB Hedman, B Hodgson, KO Solomon, EI TI X-ray absorption edge spectroscopy and computational studies on LCuO2 species: Superoxide-Cu-II versus peroxide-Cu-III bonding SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ALPHA-HYDROXYLATING MONOOXYGENASE; ELECTRONIC-STRUCTURE CONTRIBUTIONS; DENSITY-FUNCTIONAL THEORY; MOLECULAR-ORBITAL METHODS; BINUCLEAR COPPER SITE; SULFUR ACTIVE-SITES; K-EDGE; DIOXYGEN ACTIVATION; BASIS-SET; BIS(MU-OXO) COMPLEXES AB The geometric and electronic structures of two mononuclear CuO2 complexes, [Cu(O-2){HB(3-Ad-5-(i)Prpz)(3)}] (1) and [Cu(O-2)(beta-diketiminate)] (2), have been evaluated using Cu K- and L-edge X-ray absorption spectroscopy (XAS) studies in combination with valence bond configuration interaction (VBCI) simulations and spin-unrestricted broken symmetry density functional theory (DFT) calculations. Cu K- and L-edge XAS data indicate the Cu(II) and Cu(III) nature of 1 and 2, respectively. The total integrated intensity under the L-edges shows that the Psi(*)(LUMO)'s in 1 and 2 contain 20% and 28% Cu character, respectively, indicative of very covalent ground states in both complexes, although more so in 1. Two-state VBCI simulations also indicate that the ground state in 2 has more Cu (vertical bar 3d(8)>) character. DFT calculations show that the Psi(*)(LUMO)'s in both complexes is dominated by O-2(n-) character, although the O-2(n-) character is higher in 1. It is shown that the ligand L plays an important role in modulating Cu-O-2 bonding in these LCuO2 systems and tunes the ground states of 1 and 2 to have dominant Cu(II)-superoxide- like and Cu(III)-peroxide-like character, respectively. The contributions of ligand field (LF) and the charge on the absorbing atom in the molecule (Q(mol)(M)) to L- and K-edge energy shifts are evaluated using DFT and time-dependent DFT calculations. It is found that LF makes a dominant contribution to the edge energy shift, while the effect of Q(mol)(M) is minor. The charge on the Cu in the Cu(III) complex is found to be similar to that in Cu(II) complexes, which indicates a much stronger interaction with the ligand, leading to extensive charge transfer. C1 Stanford Univ, Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. Stanford Univ, Dept Chem, Stanford, CA 94305 USA. Univ Minnesota, Dept Biochem Mol Biol & Biophys, St Paul, MN 55108 USA. Univ Tsukuba, Dept Chem, Tsukuba, Ibaraki 3058571, Japan. RP Hedman, B (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. EM hedman@slac.stanford.edu; hodgson@slac.stanford.edu; edward.solomon@stanford.edu FU NCRR NIH HHS [P41 RR001209, P41 RR001209-29, RR-01209]; NIDDK NIH HHS [DK-31450, R01 DK031450, R37 DK031450, R37 DK031450-27]; NIGMS NIH HHS [GM-47365, R01 GM047365, R01 GM047365-16, R37 GM047365, R37 GM047365-17] NR 87 TC 90 Z9 90 U1 2 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 28 PY 2006 VL 128 IS 25 BP 8286 EP 8296 DI 10.1021/ja0615223 PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA 054ZM UT WOS:000238418000045 PM 16787093 ER PT J AU Lee, Z Ophus, C Fischer, LM Nelson-Fitzpatrick, N Westra, KL Evoy, S Radmilovic, V Dahmen, U Mitlin, D AF Lee, Z Ophus, C Fischer, LM Nelson-Fitzpatrick, N Westra, KL Evoy, S Radmilovic, V Dahmen, U Mitlin, D TI Metallic NEMS components fabricated from nanocomposite Al-Mo films SO NANOTECHNOLOGY LA English DT Article ID FE ALLOYS; MECHANICAL-PROPERTIES; AMORPHOUS-ALLOYS; BEAM DEPOSITION; PHASES; GROWTH; MICROSTRUCTURE; MORPHOLOGY; SUBSTRATE; ALUMINUM AB We have fabricated fully released nano-electro-mechanical system (NEMS) cantilevers of various geometries from metallic alloy nanocomposite films. At thicknesses of 4.3 and 20.0 nm, these are the thinnest released metal cantilevers reported in the literature to date. Such device dimensions are very difficult to achieve using conventional metal films. We were able to overcome this limitation by using room-temperature co-sputtering to synthesize nanocomposite alloy films of Al - Mo. A systematic investigation of microstructure and properties as a function of Mo content resulted in an optimum film composition of Al - 32 at.% Mo with a unique microstructure comprising a dense distribution of nano-scale Mo crystallites dispersed in an amorphous Al-rich matrix. These films were found to exhibit unusually high nanoindentation hardness and a very significant reduction in roughness compared with pure Al, while maintaining resistivity in the metallic range. A single-anchored cantilever 5 mu m long, 800 nm wide and 20 nm thick showed a resonance frequency of 608 kHz, yielding a Young's modulus of 112 GPa, in good agreement with a reduced modulus of 138 GPa measured by nanoindentation. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, NCEM, Berkeley, CA 94720 USA. Univ Alberta, Edmonton, AB T6G 2M7, Canada. Natl Inst Nanotechnol, Edmonton, AB, Canada. RP Radmilovic, V (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, NCEM, Berkeley, CA 94720 USA. EM VRRadmilovic@lbl.gov; dmitlin@ualberta.ca RI Fischer, Lee/I-3980-2012; Lee, Zonghoon/G-1474-2011; Ophus, Colin/H-2350-2013; Mitlin , David /M-5328-2016; OI Lee, Zonghoon/0000-0003-3246-4072; Mitlin , David /0000-0002-7556-3575; Evoy, Stephane/0000-0003-4587-3502; Ophus, Colin/0000-0003-2348-8558 NR 40 TC 110 Z9 111 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD JUN 28 PY 2006 VL 17 IS 12 BP 3063 EP 3070 DI 10.1088/0957-4484/17/12/042 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 052TH UT WOS:000238256300042 ER PT J AU Kim, CW Kim, DS Kang, SY Marquez, M Joo, YL AF Kim, Choo-Won Kim, Dae-Sik Kang, Seung-Yeon Marquez, Manuel Joo, Yong Lak TI Structural studies of electrospun cellulose nanofibers SO POLYMER LA English DT Article DE cellulose; electrospinning; oxidation ID METHYLMORPHOLINE-N-OXIDE; HYDRATE SOLUTIONS; FIBERS; CONFORMATION; MONOHYDRATE; CHLORIDE; SOLVENT; JET AB Non-woven mats of submicron-sized cellulose fibers (250-750 mn in diameter) have been obtained by electrospinning of cellulose solutions. Cellulose are directly dissolved in two solvent systems: (a) lithium chloride (LiCl)/N,N-dimethyl acetamide (DMAc) and (b) N-methylmorpholine oxide (NMMO)/water, and the effects of (i) solvent system, (ii) the degree of polymerization of cellulose, (iii) spinning conditions, Lind (iv) postspinning treatment such as coagulation with water on the miscrostructure of electrospun fibers are investigated. The scanning electron microscope (SEM) images of electrospun cellulose fibers show that applying coagulation with water right after the collection of fibers is necessary to obtain submicron scale, dry and stable cellulose fibers for both solvent systems. X-ray diffraction studies reveal that cellulose fibers obtained from LiCI/DMAc are mostly amorphous, whereas the degree of crystallinity of cellulose fibers from NMMO/water can be controlled by various process conditions including spinning temperature, flow rate, and distance between the nozzle and collector. Finally, electrospun cellulose fibers are oxidized by HNO3/H3PO4 and NaNO2, and the degradation characteristics of oxidized cellulose fibers under physiological conditions are presented. (c) 2006 Elsevier Ltd. All rights reserved. C1 Cornell Univ, Sch Chem & Biomol Engn, Ithaca, NY 14853 USA. Philip Morris Inc, Richmond, VA 23234 USA. Los Alamos Natl Lab, Chem Sci & Technol Div, Los Alamos, NM 87545 USA. RP Joo, YL (reprint author), Cornell Univ, Sch Chem & Biomol Engn, Ithaca, NY 14853 USA. EM ylj2@cornell.edu NR 33 TC 160 Z9 171 U1 14 U2 95 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 J9 POLYMER JI Polymer PD JUN 28 PY 2006 VL 47 IS 14 BP 5097 EP 5107 DI 10.1016/j.polymer.2006.05.033 PG 11 WC Polymer Science SC Polymer Science GA 068EX UT WOS:000239356400026 ER PT J AU Wright, A Gabaldon, J Burckel, DB Jiang, YB Tian, ZR Liu, J Brinker, CJ Fan, HY AF Wright, A Gabaldon, J Burckel, DB Jiang, YB Tian, ZR Liu, J Brinker, CJ Fan, HY TI Hierarchically organized nanoparticle mesostructure arrays formed through hydrothermal self-assembly SO CHEMISTRY OF MATERIALS LA English DT Article ID IN-SITU FORMATION; GOLD NANOPARTICLES; MESOPOROUS SILICA; NANOCRYSTAL-MICELLES; THIN-FILMS; NANOSTRUCTURES; MONOLAYERS; MATRICES AB We report a new self-assembly pathway that leads to supported and hierarchically organized gold nanoparticle mesostructure arrays on solid substrates such as glass slide, thermal oxide, photopolymer film, and mica. Using the nanoparticle micelle as a building block, hierarchical gold nanoparticle mesostructure arrays were prepared by a hydrothermal nucleation and growth process through self-assembly of nanoparticle micelles and organosilicates under basic conditions. Depending on the substrates used, the shape, order, and orientation of the gold nanoparticle mesostructure during nucleation and growth exhibit distinct features. Transmission electron microscopy and X-ray diffraction results revealed that gold nanoparticles were organized as a face-centered cubic mesostructure with precisely controlled interparticle spacing. Optical characterization using UV-vis spectroscopy shows a characteristic surface plasmon resonance band resulted from the ordered nanoparticle arrays. This method provides new means for colloidal self-assembly and for the fabrication of platforms for surface enhanced Raman scattering-based sensors and electric and optical nanodevices with enhanced thermal, chemical, and mechanical robustness. C1 Univ New Mexico, Dept Chem & Nucl Engn, NSF Ctr Microengn Mat, Albuquerque, NM 87131 USA. Sandia Natl Labs, Chem Synth & Nanomat Dept, Albuquerque, NM 87106 USA. RP Fan, HY (reprint author), Univ New Mexico, Dept Chem & Nucl Engn, NSF Ctr Microengn Mat, Albuquerque, NM 87131 USA. EM hfan@sandia.gov RI Tian, Z. Ryan /R-6671-2016 OI Tian, Z. Ryan /0000-0002-5644-8483 NR 41 TC 21 Z9 21 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUN 27 PY 2006 VL 18 IS 13 BP 3034 EP 3038 DI 10.1021/cm060586 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 054OA UT WOS:000238386000015 ER PT J AU Norman, TJ Zaug, JM Carr, CW AF Norman, Thaddeus J. Zaug, Joseph M. Carr, C. Wren TI High-pressure decomposition of DKDP SO CHEMISTRY OF MATERIALS LA English DT Article ID HIGH-TEMPERATURE PHASE; POTASSIUM DIHYDROGEN PHOSPHATE; KH2PO4; CRYSTALS; TRANSITIONS; SCATTERING; KD2PO4 AB Solid-solid-liquid transitions of DKDP were studied as a function of temperature along the 0.7 GPa isobar. Raman spectra of DKDP were collected at incrementally higher temperatures up to the melting transition. At higher temperatures, the PO(4) symmetric vibrational mode shifted to higher energy, which is indicative of deuterium loss, and broadened, which is indicative of deformation of the PO4 tetrahedron. Prior to melting, DKDP began to decompose to potassium oligophosphate material. Upon a return to ambient conditions, the material recovered from the melted regions contained DKDP and KDP as well as KPO(3). These results suggest that the thermal treatment of DKDP at high pressure can result in the decomposition of DKDP. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Norman, TJ (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. RI Carr, Chris/F-7163-2013 NR 21 TC 6 Z9 6 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUN 27 PY 2006 VL 18 IS 13 BP 3074 EP 3077 DI 10.1021/cm0528330 PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 054OA UT WOS:000238386000020 ER PT J AU Scholl, T Pfeilsticker, K Davis, AB Baltink, HK Crewell, S Lohnert, U Simmer, C Meywerk, J Quante, M AF Scholl, T. Pfeilsticker, K. Davis, A. B. Baltink, H. Klein Crewell, S. Loehnert, U. Simmer, C. Meywerk, J. Quante, M. TI Path length distributions for solar photons under cloudy skies: Comparison of measured first and second moments with predictions from classical and anomalous diffusion theories SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID OXYGEN A-BAND; MOLECULAR LINE ABSORPTION; DENSITY-FUNCTION DERIVATION; SCATTERING ATMOSPHERE; BACKSCATTERED RADIANCES; MODEL-CALCULATIONS; JOINT STATISTICS; OPTICAL DEPTH; TOP HEIGHT; SPECTROSCOPY AB [ 1] Using high-resolution oxygen A band spectrometry (lambda/Delta lambda = 60000) in the 767.7 - 770.7 nm wavelength range, we investigate the first and second moments of the distributions of path lengths of photons in transmitted skylight for different cloud conditions. Our observations are supported by measurements of column liquid water path by multichannel microwave radiometry, cloud structure by millimeter cloud radar observations, and cloud base by a laser ceilometer. For the investigated multilayer cloud covers ( decks of stratus, cumulus, altostratus, and cirrus), our measurements indicate that the photon path statistics are mostly governed by anomalous diffusion, whereby classical diffusion occurs in the limiting case of a single compact ( plane parallel) cloud layer. The ratio for the inferred second and first moments of the path lengths confirms the relation recently derived by Davis and Marshak ( 2002) for photon diffusion in single optically thick cloud layers and extends it to more complex cloud geometry. C1 Heidelberg Univ, Inst Umweltphys, D-69120 Heidelberg, Germany. Los Alamos Natl Lab, Space & Remote Sensing Sci Grp, Los Alamos, NM 87545 USA. Royal Netherlands Meteorol Inst, NL-3730 AE De Bilt, Netherlands. Univ Bonn, Inst Meteorol, D-53121 Bonn, Germany. GKSS Forschungszentrum Geesthacht GmbH, D-21502 Geesthacht, Germany. RP Scholl, T (reprint author), Heidelberg Univ, Inst Umweltphys, INF 229, D-69120 Heidelberg, Germany. EM thomas.scholl@iup.uni-heidelberg.de; klaus.pfeilsticker@iup.uni-heidelberg.de RI Lohnert, Ulrich/C-3303-2013; Simmer, Clemens/M-4949-2013; Crewell, Susanne/O-1640-2013 OI Lohnert, Ulrich/0000-0002-9023-0269; Simmer, Clemens/0000-0003-3001-8642; Crewell, Susanne/0000-0003-1251-5805 NR 46 TC 13 Z9 13 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 27 PY 2006 VL 111 IS D12 AR D12211 DI 10.1029/2004JD005707 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 062IR UT WOS:000238938300001 ER PT J AU Unger, N Shindell, DT Koch, DM Amann, M Cofala, J Streets, DG AF Unger, Nadine Shindell, Drew T. Koch, Dorothy M. Amann, Markus Cofala, Janusz Streets, David G. TI Influences of man-made emissions and climate changes on tropospheric ozone, methane, and sulfate at 2030 from a broad range of possible futures SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID GENERAL-CIRCULATION MODEL; REGIONAL EMISSIONS; GREENHOUSE-GAS; GLOBAL-MODEL; CHEMISTRY; SIMULATIONS; PRECURSORS; TRANSPORT; POLLUTION; IMPACTS AB [ 1] We apply the Goddard Institute for Space Studies composition-climate model to an assessment of tropospheric O-3, CH4, and sulfate at 2030. We compare four different anthropogenic emissions forecasts: A1B and B1 from the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios and Current Legislation (CLE) and Maximum Feasible Reduction (MFR) from the International Institute for Applied Systems Analysis. The projections encompass a wide range of possible man-made emissions changes. The A1B, B1, and CLE forecasts all suggest large increases in surface O3 and sulfate baseline pollution at tropical and subtropical latitudes, especially over the Indian subcontinent, where the pollution increases may be as large as 100%. The ranges of annual mean regional ground level O-3 and sulfate changes across all scenarios are - 10 to + 30 ppbv and - 1200 to + 3000 pptv, respectively. Physical climate changes reduce future surface O3, but tend to increase ground level sulfate locally over North Africa because of an enhancement of aqueous-phase SO2 oxidation. For all examined future scenarios the combined sum of the CH4, O-3, and sulfate radiative forcings is positive, even for the MFR scenario, because of the large reduction in sulfate. For A1B the forcings are as much as half of that of the preindustrial to present- day forcing for each species. For MFR the sign of the forcing for each species is reversed with respect to the other scenarios. At 2030, global changes in climate-sensitive natural emissions of CH4 from wetlands, NOx from lightning, and dimethyl sulfide from the ocean appear to be small (< 5%). C1 Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY 10025 USA. Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. Argonne Natl Lab, Argonne, IL 60439 USA. RP Unger, N (reprint author), Columbia Univ, NASA, Goddard Inst Space Studies, 2880 Broadway,Suite 660, New York, NY 10025 USA. EM nunger@giss.nasa.gov RI Shindell, Drew/D-4636-2012; Magana, Felipe/B-6966-2013; Unger, Nadine/M-9360-2015; OI Streets, David/0000-0002-0223-1350 NR 49 TC 49 Z9 50 U1 0 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 27 PY 2006 VL 111 IS D12 AR D12313 DI 10.1029/2005JD006518 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 062IR UT WOS:000238938300004 ER PT J AU Zhu, YQ Burgaz, E Gido, SP Staudinger, U Weidisch, R Uhrig, D Mays, JW AF Zhu, YQ Burgaz, E Gido, SP Staudinger, U Weidisch, R Uhrig, D Mays, JW TI Morphology and tensile properties of multigraft copolymers with regularly spaced tri-, tetra-, and hexafunctional junction points SO MACROMOLECULES LA English DT Article ID DOUBLE-GRAFT-COPOLYMERS; STAR BLOCK-COPOLYMERS; MECHANICAL-PROPERTIES; BRANCH-POINTS; MOLECULAR ARCHITECTURE; CHAIN ARCHITECTURE; DIBLOCK COPOLYMERS; BEHAVIOR; FUNCTIONALITY; MICROPHASES AB The effect of chain architecture on the morphological and tensile properties of series of multigraft copolymers, with regularly spaced tri-, tetra-, and hexafunctional junction points, was investigated using transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), and tensile testing. The materials were synthesized by coupling difunctional polyisoprene (PI) spacers and living polystyrene ( PS) branches, made by anionic polymerization, with chlorosilanes of different functionalities. Since the coupling process is a step-growth polymerization, yielding polydisperse products, fractionation was utilized to separate each material into three fractions ( high, middle, and low molecular weight), each of low polydispersity. All three fractions have the same chain architecture on a per junction point basis but differ in the number of junction point units per molecule. By applying the constituting block copolymer concept, the physical behavior of these molecules was compared with current theories. It was found that morphological behavior of these graft copolymers can be predicted using theoretical approaches and is independent on the number of junction points. The number of the junction points, however, greatly influences the long-range order of microphase separation. Additionally, two new parameters for adjusting mechanical properties of multigraft copolymers were found in this investigation: ( 1) functionality of the graft copolymerstri-, tetra-, or hexafunctionalsand ( 2) number of junction points per molecule. An increase in functionality causes a change in morphology, resulting in a high level of tensile strength for tetrafunctional ( cylindrical) and hexafunctional ( lamellae) multigraft copolymers, leading to about the twice the strength of the spherical trifunctional multigrafts of similar overall composition. Tetrafunctional multigraft copolymers show a surprisingly high strain at break, far exceeding that of commercial block copolymer thermoplastic elastomers (TPEs). Strain at break and tensile strength increase linearly with the number of junction points per molecule. Hysteresis experiments at about 300-900% deformation demonstrate that multifunctional multigraft copolymers have improved high elasticity as compared to commercial TPEs like Kraton or Styroflex. C1 Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. Leibniz Inst Polymer Res Dresden, D-01069 Dresden, Germany. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Gido, SP (reprint author), Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. EM gido@mail.pse.umass.edu; roland.weidisch@uni-jena.de RI Umlauf, Ursula/D-3356-2014; Uhrig, David/A-7458-2016 OI Uhrig, David/0000-0001-8447-6708 NR 29 TC 44 Z9 44 U1 7 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD JUN 27 PY 2006 VL 39 IS 13 BP 4428 EP 4436 DI 10.1021/ma060067s PG 9 WC Polymer Science SC Polymer Science GA 054NZ UT WOS:000238385900027 ER PT J AU Olsen, BD Jang, SY Luning, JM Segalman, RA AF Olsen, Bradley D. Jang, Sung-Yeon Luening, Jan M. Segalman, Rachel A. TI Higher order liquid crystalline structure in low-polydispersity DEH-PPV SO MACROMOLECULES LA English DT Article ID SCANNING OPTICAL MICROSCOPY; LIGHT-EMITTING-DIODES; CONJUGATED POLYMER-FILMS; PARA-PHENYLENE VINYLENE; FLEXIBLE SIDE-CHAINS; POLY(P-PHENYLENE VINYLENE); BLOCK-COPOLYMERS; MEH-PPV; SEMICONDUCTING POLYMERS; INTERCHAIN INTERACTIONS AB Monodisperse, low molecular weight poly(2,5-di(2'-ethylhexyloxy)-1,4-phenylenevinylene) (DEH-PPV) demonstrates significantly better structural order than polydisperse PPVs. Since optical and electrical properties of polymer electronics are closely related to the structure and morphology of the active layer, morphological control is important for the fabrication of PPV-based devices. Soluble, monodisperse DEH-PPVs with a range of molecular weights showed a sequence of transitions through crystalline, smectic, nematic, and isotropic phases upon heating, and the transition temperatures increased sharply with increasing molecular weight. The layer spacing of the smectic phase is in good agreement with the length of a PPV molecule. The Maier-Saupe parameter for this polymeric system is estimated, and both energetic and entropic contributions are found to be important in describing the liquid crystalline interaction. Thin films revealed that the PPV molecules ordered into thermally stable layers a single molecule thick. The layers arranged into grains that were aligned by shearing. The orientation of molecules within the aligned layers was characterized by polarization-dependent X-ray absorption spectroscopy, and the PPV molecular axis was found to align parallel to the shear direction while the layers aligned perpendicular to the shear direction. Low polydispersity is critical to forming these types of highly ordered structures, and an analogous PPV sample with polydispersity greater than 5 does not form smectic layers. C1 Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Mat Sci, Stanford, CA 94309 USA. Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. RP Segalman, RA (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM segalman@berkeley.edu OI Segalman, Rachel/0000-0002-4292-5103 NR 63 TC 35 Z9 35 U1 1 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD JUN 27 PY 2006 VL 39 IS 13 BP 4469 EP 4479 DI 10.1021/ma060164l PG 11 WC Polymer Science SC Polymer Science GA 054NZ UT WOS:000238385900032 ER PT J AU Eswaramoorthy, S Bonanno, JB Burley, SK Swaminathan, S AF Eswaramoorthy, Subramaniam Bonanno, Jeffrey B. Burley, Stephen K. Swaminathan, Subramanyam TI Mechanism of action of a flavin-containing monooxygenase SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE three-dimensional structure; xenobiotics; methimazole ID BAEYER-VILLIGER MONOOXYGENASE; MULTIPLE SEQUENCE ALIGNMENT; CRYSTAL-STRUCTURE; RESOLUTION; IDENTIFICATION; REPLACEMENT; REFINEMENT; DIOXYGEN; SEARCH; LIVER AB Elimination of nonnutritional and insoluble compounds is a critical task for any living organism. Flavin-containing monooxygenases (FMOs) attach an oxygen atom to the insoluble nucleophilic compounds to increase solubility and thereby increase excretion. Here we analyze the functional mechanism of FMO from Schizosaccharomyces pombe using the crystal structures of the wild type and protein-cofactor and protein-substrate complexes. The structure of the wild-type FMO revealed that the prosthetic group FAD is an integral part of the protein. FMO needs NADPH as a cofactor in addition to the prosthetic group for its catalytic activity. Structures of the protein-cofactor and protein-substrate complexes provide insights into mechanism of action. We propose that FMOs exist in the cell as a complex with a reduced form of the prosthetic group and NADPH cofactor, readying them to act on substrates. The 4 alpha-hydroperoxyflavin form of the prosthetic group represents a transient intermediate of the monooxygenation process. The oxygenated and reduced forms of the prosthetic group help stabilize interactions with cofactor and substrate alternately to permit continuous enzyme turnover. C1 Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. New York Struct Biol Ctr, New York, NY 10027 USA. SGX Pharmaceut Inc, San Diego, CA 92121 USA. RP Swaminathan, S (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM swami@bnl.gov FU NIGMS NIH HHS [GM 62529, P50 GM062529] NR 30 TC 62 Z9 64 U1 3 U2 17 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 27 PY 2006 VL 103 IS 26 BP 9832 EP 9837 DI 10.1073/pnas.0602398103 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 061LC UT WOS:000238872900017 PM 16777962 ER PT J AU Chen, KG Valencia, JC Lai, B Zhang, GF Paterson, JK Rouzaud, F Berens, W Wincovitch, SM Garfield, SH Leapman, RD Hearing, VJ Gottesman, MM AF Chen, Kevin G. Valencia, Julio C. Lai, Barry Zhang, Guofeng Paterson, Jill K. Rouzaud, Francois Berens, Werner Wincovitch, Stephen M. Garfield, Susan H. Leapman, Richard D. Hearing, Vincent J. Gottesman, Michael M. TI Melanosomal sequestration of cytotoxic drugs contributes to the intractability of malignant melanomas SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE cancer; melanosomes; skin; tumor therapy; multidrug resistance ID RESISTANT CELL-LINES; EXPRESSION; DOXORUBICIN; TYROSINASE; APOPTOSIS; PLATINUM; GENE AB Multidrug resistance mechanisms underlying the intractability of malignant melanomas remain largely unknown. In this study, we demonstrate that the development of multidrug resistance in melanomas involves subcellular sequestration of intracellular cytotoxic drugs such as cis-diaminedichloroplatinum II (cisplatin; CDDP). CDDP is initially sequestered in subcellular organelles such as melanosomes, which significantly reduces its nuclear localization when compared with nonmelanoma/KB-3-1 epidermoid carcinoma cells. The melanosomal accumulation of CDDP remarkably modulates melanogenesis through a pronounced increase in tyrosinase activity. The altered melanogenesis manifested an approximate to 8-fold increase in both intracellular pigmentation and extracellular transport of melanosomes containing CDDP. Thus, our experiments provide evidence that melanosomes contribute to the refractory properties of melanoma cells by sequestering cytotoxic drugs and increasing melanosome-mediated drug export. Preventing melanosomal sequestration of cytotoxic drugs by inhibiting the functions of melanosomes may have great potential as an approach to improving the chemosensitivity of melanoma cells. C1 NCI, Cell Biol Lab, NIH, Bethesda, MD 20892 USA. NCI, Expt Carcinogenesis Lab, NIH, Bethesda, MD 20892 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. Off Res Serv, Div Bioengn & Phys Sci, NIH, Bethesda, MD 20892 USA. RP Gottesman, MM (reprint author), NCI, Cell Biol Lab, NIH, Bldg 37,Room 2108, Bethesda, MD 20892 USA. EM mgottesman@nih.gov RI Chen, Kevin/D-6769-2011 OI Chen, Kevin/0000-0003-2983-6330 FU Intramural NIH HHS [Z99 NS999999] NR 20 TC 93 Z9 100 U1 2 U2 8 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 27 PY 2006 VL 103 IS 26 BP 9903 EP 9907 DI 10.1073/pnas.0600213103 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 061LC UT WOS:000238872900029 PM 16777967 ER PT J AU Christen, HM Jellison, GE Ohkubo, I Huang, S Reeves, ME Cicerrella, E Freeouf, JL Jia, Y Schlom, DG AF Christen, HM Jellison, GE Ohkubo, I Huang, S Reeves, ME Cicerrella, E Freeouf, JL Jia, Y Schlom, DG TI Dielectric and optical properties of epitaxial rare-earth scandate films and their crystallization behavior SO APPLIED PHYSICS LETTERS LA English DT Article ID EARTH/TRANSITION METAL-OXIDES; HIGH-K DIELECTRICS; SPECTROSCOPIC ELLIPSOMETRY; MICROSCOPY; CONSTANTS; SILICON; GROWTH AB Rare-earth scandates (ReScO3, with Re=Y, La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, i.e., the entire series for which the individual oxides are chemically stable in contact with Si) were deposited in a temperature-gradient pulsed laser deposition system onto LaAlO3 substrates. The crystallization temperature depends monotonically on the Re atomic number and the Goldschmidt tolerance factor, with crystallization temperatures as low as 650 degrees C for LaScO3 and PrScO3. The dielectric constants of the crystalline films K approximate to 30 (determined by microwave microscopy) are significantly larger than those of their amorphous counterparts. In combination with the large observed band gaps (E-g > 5.5 eV, determined by ellipsometry), these results indicate the potential of these materials as high-K dielectrics for field-effect transistor applications. (c) 2006 American Institute of Physics. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Univ Tokyo, Dept Appl Chem, Sch Engn, Tokyo 1138656, Japan. George Washington Univ, Dept Phys, Washington, DC 20052 USA. Portland State Univ, Dept Phys, Portland, OR 97207 USA. Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Christen, HM (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM christenhm@ornl.gov RI Christen, Hans/H-6551-2013; Schlom, Darrell/J-2412-2013; OHKUBO, Isao/B-9553-2013 OI Christen, Hans/0000-0001-8187-7469; Schlom, Darrell/0000-0003-2493-6113; OHKUBO, Isao/0000-0002-4187-0112 NR 22 TC 50 Z9 51 U1 3 U2 35 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 26 PY 2006 VL 88 IS 26 AR 262906 DI 10.1063/1.2213931 PG 3 WC Physics, Applied SC Physics GA 059EX UT WOS:000238717200053 ER PT J AU Jeong, IK Lee, JK AF Jeong, I. -K. Lee, J. K. TI Local structure and medium-range ordering in relaxor ferroelectric Pb(Zn1/3Nb2/3)O-3 studied using neutron pair distribution function analysis SO APPLIED PHYSICS LETTERS LA English DT Article ID X-RAY-DIFFRACTION; DIFFUSE-SCATTERING; CRYSTAL-STRUCTURE; SINGLE-CRYSTALS; PHASE; PROGRAM; MOTION AB We studied an evolution of local structure and medium-range ordering in relaxor ferroelectric Pb(Zn1/3Nb2/3)O-3 (PZN) from 550 to 15 K using neutron pair distribution function analysis. We show that the local structure of PZN is distorted at all temperatures studied. With decreasing temperature, a medium-range ordering of local polarizations develops with no global rhombohedral phase transition below T-M. Instead, the crystal structure can be described as a mixture of polar nanoregions in a disordered lattice, similar to the case of Pb(Mg1/3Nb2/3)O-3. (c) 2006 American Institute of Physics. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Jeong, IK (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jeong@lanl.gov NR 28 TC 20 Z9 20 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 26 PY 2006 VL 88 IS 26 AR 262905 DI 10.1063/1.2217162 PG 3 WC Physics, Applied SC Physics GA 059EX UT WOS:000238717200052 ER PT J AU Kim, T Hanson, JN Gruverman, A Kingon, AI Streiffer, SK AF Kim, Taeyun Hanson, Jacqueline N. Gruverman, Alexei Kingon, Angus I. Streiffer, S. K. TI Ferroelectric behavior in nominally relaxor lead lanthanum zirconate titanate thin films prepared by chemical solution deposition on copper foil SO APPLIED PHYSICS LETTERS LA English DT Article ID MEMORY APPLICATIONS; ELECTRODES; CERAMICS; PLZT AB We demonstrate that (Pb0.9La0.1)(Zr0.65Ti0.35)(0.975)O-3 (PLZT) (10/65/35) thin films that have a nominally relaxor composition and that are deposited by chemical solution deposition onto copper foil show polarization hysteresis. Ferroelectric domain switching and a shift in Curie temperature are also observed. This is in contrast to the non-hysteretic behavior of films with identical composition prepared on Pt/SiO2/Si substrates. This suggests that the mismatch in coefficient of thermal expansion between PLZT and copper induces a compressive strain in the PLZT during cooling after high temperature crystallization under low pO(2), and causes an out-of-plane polarization. (c) 2006 American Institute of Physics. C1 N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Kim, T (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. EM tkim@unity.ncsu.edu RI Streiffer, Stephen/A-1756-2009; Gruverman, alexei/P-3537-2014 OI Gruverman, alexei/0000-0003-0492-2750 NR 18 TC 24 Z9 26 U1 4 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 26 PY 2006 VL 88 IS 26 AR 262907 DI 10.1063/1.2217254 PG 3 WC Physics, Applied SC Physics GA 059EX UT WOS:000238717200054 ER PT J AU Krupenkin, T Lifton, VA Tran, A Vuillemin, J Carr, DW AF Krupenkin, T Lifton, VA Tran, A Vuillemin, J Carr, DW TI Stress control structures for microelectromechanical systems using structural mechanics approach SO APPLIED PHYSICS LETTERS LA English DT Article ID CURVATURE AB A method of stress control in microelectromechanical systems (MEMS) devices is presented that consists of creating counterbalancing structures to position stressed layers at the neutral plane of the device, eliminating the bending momentum acting on the device. Upon metallization, many MEMS elements such as silicon membranes show substantial bow under the stress developed as a result of the difference in the thermal expansion coefficients of a metal and silicon. The proposed membranes with the counterbalancing structures remain flat in the entire test temperature range (25-150 degrees C). The method gives material-independent solution to stress-induced curvature problems in a variety of ultrathin devices. (c) 2006 American Institute of Physics. C1 Lucent Technol Inc, Bell Labs, Murray Hill, NJ 07974 USA. mPhase Technol Inc, Little Falls, NJ 07424 USA. Rensselaer Polytech Inst, Troy, NY 12180 USA. Bascom Turner Instruments, Norwood, MA 02062 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Krupenkin, T (reprint author), Lucent Technol Inc, Bell Labs, Murray Hill, NJ 07974 USA. EM tnk@lucent.com RI Lifton, Victor/B-6108-2008 OI Lifton, Victor/0000-0001-9752-4182 NR 10 TC 3 Z9 3 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 26 PY 2006 VL 88 IS 26 AR 261916 DI 10.1063/1.2218771 PG 3 WC Physics, Applied SC Physics GA 059EX UT WOS:000238717200031 ER PT J AU Lee, MH Sordelet, DJ AF Lee, MH Sordelet, DJ TI Evidence for adiabatic heating during fracture of W-reinforced metallic glass composites SO APPLIED PHYSICS LETTERS LA English DT Article ID SUPERCOOLED LIQUID; AMORPHOUS-ALLOYS; SHEAR BANDS; TEMPERATURE; PLASTICITY AB At appropriate strain rates below their glass transition temperature, amorphous alloys deform inhomogeneously by strain localization within narrow shear planes. In the current study, we present experimental evidence of viscous flow by adiabatic heating at the fracture surface of W-reinforced Hf-based metallic glass composites under quasistatic uniaxial compressive deformation. Also, based on microstructural analysis, estimation of the temperature rise in a shear band shows that when fracture occurs, it releases a high level of strain energy, which when converted to heat, reaches temperatures sufficiently high enough to induce melting or softening of the W in the composite, producing vein patterns. C1 Iowa State Univ, Mat & Engn Phys Program, Ames Lab, Ames, IA 50011 USA. RP Lee, MH (reprint author), Iowa State Univ, Mat & Engn Phys Program, Ames Lab, Ames, IA 50011 USA. EM mhlee@ameslab.gov NR 18 TC 11 Z9 12 U1 2 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 26 PY 2006 VL 88 IS 26 AR 261902 DI 10.1063/1.2208269 PG 3 WC Physics, Applied SC Physics GA 059EX UT WOS:000238717200017 ER PT J AU Luther, JM Johnston, SW Kurtz, SR Ahrenkiel, RK Collins, RT AF Luther, JM Johnston, SW Kurtz, SR Ahrenkiel, RK Collins, RT TI Temperature-dependent dark current measurements in GaAsN heterojunction diodes SO APPLIED PHYSICS LETTERS LA English DT Article ID SPECTROSCOPY; ALLOYS AB Temperature- and bias-dependent current measurements were performed on n(+)-GaAs/p-GaAs1-xNx heterojunction diodes. The samples studied are in the dilute regime and contain less than 1.7% nitrogen with respect to arsenic. Current-voltage, thermally stimulated current, and current transient (after voltage change) measurements provide unique insight into the defect participation in carrier transport within the depletion region. We will present the data obtained from these measurements, which show an activation energy of 0.21 eV and may be related to a key defect measured by capacitance transients in the literature. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. Colorado Sch Mines, Golden, CO 80401 USA. RP Luther, JM (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM joseph_luther@nrel.gov RI Collins, Reuben/O-2545-2014 OI Collins, Reuben/0000-0001-7910-3819 NR 14 TC 4 Z9 4 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 26 PY 2006 VL 88 IS 26 AR 263502 DI 10.1063/1.2215604 PG 3 WC Physics, Applied SC Physics GA 059EX UT WOS:000238717200078 ER PT J AU Suenaga, M Li, Q AF Suenaga, Masaki Li, Qiang TI Effects of magnetic substrates on ac losses of YBa2Cu3O7 films in perpendicular ac magnetic fields SO APPLIED PHYSICS LETTERS LA English DT Article ID CRITICAL-CURRENT DENSITY; YBCO COATED CONDUCTORS; CIRCULAR DISKS; CRITICAL-STATE; SUPERCONDUCTING FILMS; STRIP; TAPES AB Effects of a magnetic substrate on the ac losses of superconducting films were investigated by measuring the losses for octagonal disks of an YBa2Cu3O7 layer on a magnetic Ni-5 at. % W substrate in perpendicular ac magnetic fields at 20 Hz and 77 K. At low fields, the losses depended on ac magnetic field amplitude B and film thickness t as proportional to B-3/t instead of proportional to B-4/t(3) for a superconducting film on a nonmagnetic substrate. These results are described by considering the formation of a virtual infinite stack of superconducting films due to the magnetic mirror effect. (c) 2006 American Institute of Physics. C1 Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Suenaga, M (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. EM mas@bnl.gov NR 20 TC 19 Z9 19 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 26 PY 2006 VL 88 IS 26 AR 262501 DI 10.1063/1.2218305 PG 3 WC Physics, Applied SC Physics GA 059EX UT WOS:000238717200042 ER PT J AU Williams, BS Kumar, S Qin, Q Hu, Q Reno, JL AF Williams, BS Kumar, S Qin, Q Hu, Q Reno, JL TI Terahertz quantum cascade lasers with double-resonant-phonon depopulation SO APPLIED PHYSICS LETTERS LA English DT Article ID CONTINUOUS-WAVE OPERATION; ROOM-TEMPERATURE; MU-M; SCATTERING AB We present two different terahertz quantum cascade laser (QCL) designs based on GaAs/Al0.3Ga0.7As heterostructures that feature a depopulation mechanism of two longitudinal-optical phonon scattering events. This scheme is intended to improve high temperature operation by reducing thermal backfilling of the lower radiative state. The better of these two devices displays a threshold current density of 170 A/cm(2) at 5 K and lases up to 138 K in pulsed mode and 105 K in continuous-wave mode. However, contrary to expectation, we observed no improvement in temperature performance compared to single-resonant-phonon designs, which suggests that the thermal backfilling is not yet a limiting factor for high temperature terahertz QCL operation. C1 MIT, Dept Elect Engn & Comp Sci, Elect Res Lab, Cambridge, MA 02139 USA. Sandia Natl Labs, Dept 1123, Albuquerque, NM 87185 USA. RP Williams, BS (reprint author), MIT, Dept Elect Engn & Comp Sci, Elect Res Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM bwilliam@mit.edu RI Williams, Benjamin/B-4494-2013 OI Williams, Benjamin/0000-0002-6241-8336 NR 15 TC 42 Z9 43 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 26 PY 2006 VL 88 IS 26 AR 261101 DI 10.1063/1.2216112 PG 3 WC Physics, Applied SC Physics GA 059EX UT WOS:000238717200001 ER PT J AU Woo, W Feng, ZL Wang, XL An, K Hubbard, CR David, SA Choo, H AF Woo, W Feng, ZL Wang, XL An, K Hubbard, CR David, SA Choo, H TI In situ neutron diffraction measurement of transient temperature and stress fields in a thin plate SO APPLIED PHYSICS LETTERS LA English DT Article ID RESIDUAL-STRESS; STRAINS; ALLOY; HEAT AB Separating the elastic and thermal strains has been a long standing problem for in situ neutron diffraction measurement of transient temperature and stress fields. Using the plane stress condition, we demonstrate a method to decompose the thermal and elastic strains from the measured lattice spacing changes. The method was validated using a thin plate subjected to a local moving heat source. The methodology developed herein has practical applications for a variety of materials processing technologies such as welding, forming, and heat treatment. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Feng, ZL (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM fengz@ornl.gov RI Choo, Hahn/A-5494-2009; Feng, Zhili/H-9382-2012; An, Ke/G-5226-2011; Wang, Xun-Li/C-9636-2010 OI Choo, Hahn/0000-0002-8006-8907; Feng, Zhili/0000-0001-6573-7933; An, Ke/0000-0002-6093-429X; WOO, Wanchuck/0000-0003-0350-5357; Wang, Xun-Li/0000-0003-4060-8777 NR 14 TC 9 Z9 9 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 26 PY 2006 VL 88 IS 26 AR 261903 DI 10.1063/1.2209888 PG 3 WC Physics, Applied SC Physics GA 059EX UT WOS:000238717200018 ER PT J AU Yue, GZ Yan, BJ Ganguly, G Yang, J Guha, S Teplin, CW AF Yue, GZ Yan, BJ Ganguly, G Yang, J Guha, S Teplin, CW TI Material structure and metastability of hydrogenated nanocrystalline silicon solar cells SO APPLIED PHYSICS LETTERS LA English DT Article ID INTRINSIC MICROCRYSTALLINE SILICON; CHEMICAL-VAPOR-DEPOSITION; CRYSTALLINE SILICON; THIN-FILMS; DILUTION AB We find that the volume fraction of amorphous component in hydrogenated nanocrystalline silicon intrinsic layers is not necessarily the determining factor for the light-induced metastability ofn-i-p solar cells. Small grains and/or intermediate range order may play an important role in improving the stability. The distribution of nanocrystallites along the growth direction is also important. Based on the findings, we have optimized the hydrogen dilution profiling for controlling the structural evolution and have reduced the light-induced degradation of solar cells. As a result, we have achieved initial and stable active-area efficiencies of 14.1% and 13.2%, respectively, using ana-Si:H/nc-Si:H/nc-Si:H triple-junction structure. C1 United Solar Ovon Corp, Troy, MI 48084 USA. Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Yue, GZ (reprint author), United Solar Ovon Corp, 1100 W Maple Rd, Troy, MI 48084 USA. EM gyue@uni-solar.com NR 17 TC 44 Z9 45 U1 3 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 26 PY 2006 VL 88 IS 26 AR 263507 DI 10.1063/1.2216022 PG 3 WC Physics, Applied SC Physics GA 059EX UT WOS:000238717200083 ER PT J AU Zeng, YJ Ye, ZZ Xu, WZ Lu, JG He, HP Zhu, LP Zhao, BH Che, Y Zhang, SB AF Zeng, YJ Ye, ZZ Xu, WZ Lu, JG He, HP Zhu, LP Zhao, BH Che, Y Zhang, SB TI p-type behavior in nominally undoped ZnO thin films by oxygen plasma growth SO APPLIED PHYSICS LETTERS LA English DT Article ID VAPOR-PHASE EPITAXY; ZINC-OXIDE; N-TYPE; EXCITATION SPECTROSCOPY; CONDUCTIVITY; DEPENDENCE; HYDROGEN; DEFECTS; DOPANT AB We report on intrinsic p-type ZnO thin films by plasma-assisted metal-organic chemical vapor deposition. The optimal results give a resistivity of 12.7 Omega cm, a Hall mobility of 2.6 cm(2)/V s, and a hole concentration of 1.88 x 10(17) cm(-3). The oxygen concentration is increased in the intrinsic p-type ZnO, compared with the n-type layer. Two acceptor states, with the energy levels located at 160 and 270 meV above the valence band maximum, are identified by temperature-dependent photoluminescence. The origin of intrinsic p-type behavior has been ascribed to the formation of zinc vacancy and some complex acceptor center. C1 Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China. IMRA Amer Inc, Ann Arbor, MI 48105 USA. Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Ye, ZZ (reprint author), Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China. EM yezz@zju.edu.cn RI Krausnick, Jennifer/D-6291-2013; Zhang, Shengbai/D-4885-2013; Zeng, Yujia/F-5221-2016; OI Zhang, Shengbai/0000-0003-0833-5860; He, Haiping/0000-0001-8246-0286 NR 23 TC 55 Z9 59 U1 2 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 26 PY 2006 VL 88 IS 26 AR 262103 DI 10.1063/1.2217165 PG 3 WC Physics, Applied SC Physics GA 059EX UT WOS:000238717200038 ER PT J AU Madland, DG AF Madland, DG TI Total prompt energy release in the neutron-induced fission of U-235, U-238, and Pu-239 SO NUCLEAR PHYSICS A LA English DT Article DE energy release and energy deposition in neutron-induced fission; experiment and Los Alamos model; U-235; U-238; Pu-239 AB This study addresses, for the first time, the total prompt energy release and its components for the fission of U-235, U-238, and Pu-239 as a function of the kinetic energy of the neutron inducing the fission. The components are extracted from experimental measurements, where they exist, together with model-dependent calculation, interpolation, and extrapolation. While the components display clear dependencies upon the incident neutron energy, their sums display only weak, yet definite, energy dependencies. Also addressed is the total prompt energy deposition in fission for the same three systems. Results are presented in equation form. New measurements are recommended as a consequence of this study. (c) 2006 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Madland, DG (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM dgm@lanl.gov NR 19 TC 55 Z9 56 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD JUN 26 PY 2006 VL 772 IS 3-4 BP 113 EP 137 DI 10.1016/j.nuclphysa.2006.03.013 PG 25 WC Physics, Nuclear SC Physics GA 058CI UT WOS:000238641600001 ER PT J AU Lappi, T McLerran, L AF Lappi, T McLerran, L TI Some features of the glasma SO NUCLEAR PHYSICS A LA English DT Article ID HEAVY-ION COLLISIONS; GLUON DISTRIBUTION-FUNCTIONS; NUCLEUS-NUCLEUS COLLISIONS; ENERGY PA-COLLISIONS; TRANSVERSE-MOMENTUM; SEMIHARD PROCESSES; FIELD-THEORY; CONDENSATE; MODEL; QUARK AB We discuss high energy hadronic collisions within the theory of the color glass condensate. We point out that the initial electric and magnetic fields produced in such collisions are longitudinal. This leads to a novel string like description of the collisions, and a large Chern-Simons charge density made immediately after the collision. The presence of the longitudinal magnetic field suggests that essential to the description of these collisions is the decay of Chern-Simons charge. Published by Elsevier B.V. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. RP Lappi, T (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM tvv@quark.phy.bnl.gov NR 63 TC 275 Z9 275 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD JUN 26 PY 2006 VL 772 IS 3-4 BP 200 EP 212 DI 10.1016/j.nuclphysa.2006.04.001 PG 13 WC Physics, Nuclear SC Physics GA 058CI UT WOS:000238641600004 ER PT J AU Naudeau, ML Law, RJ Luk, TS Nelson, TR Cameron, SM Rudd, JV AF Naudeau, M. L. Law, R. J. Luk, T. S. Nelson, T. R. Cameron, S. M. Rudd, J. V. TI Observation of nonlinear optical phenomena in air and fused silica using a 100 GW, 1.54 mu m source SO OPTICS EXPRESS LA English DT Article ID LASER-PULSES; GENERATION; POWER; PROPAGATION; ATMOSPHERE; MEDIA AB A 100-GW optical parametric chirped-pulse amplifier system is used to study nonlinear effects in the 1.54 mu m regime. When focusing this beam in air, strong third-harmonic generation (THG) is observed, and both the spectra and efficiency are measured. Broadening is observed on only the blue side of the third-harmonic signal and an energy conversion efficiency of 0.2% is achieved. When propagated through a 10-cm block of fused silica, a collimated beam is seen to collapse and form multiple filaments. The measured spectral features span 400-2100 nm. The spectrum is dominated by previously unobserved Stokes emissions and broad emissions in the visible. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Naudeau, ML (reprint author), Sandia Natl Labs, POB 5800,MS1153, Albuquerque, NM 87185 USA. EM mlnaude@sandia.gov NR 15 TC 24 Z9 24 U1 0 U2 6 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUN 26 PY 2006 VL 14 IS 13 BP 6194 EP 6200 DI 10.1364/OE.14.006194 PG 7 WC Optics SC Optics GA 056VM UT WOS:000238553200039 PM 19516791 ER PT J AU Gray, LJ Garzon, M Mantic, V Graciani, E AF Gray, LJ Garzon, M Mantic, V Graciani, E TI Galerkin boundary integral analysis for the axisymmetric Laplace equation SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE axisymmetric Laplace; boundary integral equation; Galerkin approximation; singular integration ID POTENTIAL GRADIENT; ELEMENT METHOD; ELASTICITY; FORMULATION AB The boundary integral equation for the axisymmetric Laplace equation is solved by employing modified Galerkin weight functions. The alternative weights smooth out the singularity of the Green's function at the symmetry axis, and restore symmetry to the formulation. As a consequence, special treatment of the axis equations is avoided, and a symmetric-Galerkin formulation would be possible. For the singular integration, the integrals containing a logarithmic singularity are converted to a non-singular form and evaluated partially analytically and partially. numerically. The modified weight functions, together with a boundary limit definition, also result in a simple algorithm for the post-processing of the surface gradient. Published in 2005 by John Wiley & Sons, Ltd. C1 Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. Univ Oviedo, Dept Appl Math, Oviedo, Spain. Univ Seville, Elast & Strength Mat Grp, Seville 41092, Spain. RP Gray, LJ (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, POB 2008, Oak Ridge, TN 37831 USA. EM ljg@ornl.gov; maria@orion.ciencias.uniovi.es; mantic@esi.us.es; graciani@esi.us.es RI Mantic, Vladislav/G-1111-2010; Graciani, Enrique/I-5009-2015 OI Mantic, Vladislav/0000-0002-7569-7442; Graciani, Enrique/0000-0002-0631-9165 NR 34 TC 14 Z9 14 U1 0 U2 1 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0029-5981 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD JUN 25 PY 2006 VL 66 IS 13 BP 2014 EP 2034 DI 10.1002/nme.1613 PG 21 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 058ZQ UT WOS:000238703500002 ER PT J AU Kulkarni, A Goland, A Herman, H Allen, AJ Dobbins, T DeCarlo, F Ilavsky, J Long, GG Fang, S Lawton, P AF Kulkarni, Anand Goland, Allen Herman, Herbert Allen, Andrew J. Dobbins, Tabbetha DeCarlo, Francesco Ilavsky, Jan Long, Gabrielle G. Fang, Stacy Lawton, Paul TI Advanced neutron and X-ray techniques for insights into the microstructure of EB-PVD thermal barrier coatings SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE thermal barrier coatings; EB PVD; small-angle neutron scattering; ultra small-angle X-ray scattering; X-ray microtomography; microstructure characterization; porosity-property correlations ID PLASMA-SPRAYED DEPOSITS; GAS-TURBINE ENGINE; ANGLE; SCATTERING; MICROTOMOGRAPHY AB The ongoing quest to increase gas turbine efficiency and performance (increased thrust) provides a driving force for materials development. While improved engine design and usage of novel materials provide solutions for increased engine operating temperatures, and hence fuel efficiency, reliability issues remain. Thermal barrier coatings (TBCs), deposited onto turbine components using the electron-beam physical vapor deposition (EB-PVD) process, exhibit unique pore architectures capable of bridging the technological gap between insulation/life extension and prime reliance. This article explores the potential of advanced X-ray and neutron techniques for comprehension of an EB-PVD TBC coating microstructure. While conventional microscopy reveals a hierarchy of voids, complementary advanced techniques allow quantification of these voids in terms of component porosities, anisotropy, size and gradient through the coating thickness. In addition, the derived microstructural parameters obtained both further knowledge of the nature and architecture of the porosity, and help establish its influence on the resultant thermal and mechanical properties. (c) 2006 Elsevier B.V. All rights reserved. C1 SUNY Stony Brook, Stony Brook, NY 11794 USA. NIST, Gaithersburg, MD 20899 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Chromalloy Gas Turbine Corp, Orangeburg, NY 10962 USA. RP Herman, H (reprint author), SUNY Stony Brook, Stony Brook, NY 11794 USA. EM hherman@ms.cc.sunysb.edu RI Ilavsky, Jan/D-4521-2013; USAXS, APS/D-4198-2013; OI Ilavsky, Jan/0000-0003-1982-8900; Dobbins, Tabbetha/0000-0002-2427-3746 NR 27 TC 23 Z9 25 U1 1 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JUN 25 PY 2006 VL 426 IS 1-2 BP 43 EP 52 DI 10.1016/j.msea.2006.03.070 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 093EZ UT WOS:000241152000007 ER PT J AU Totemeier, TC Simpson, JA Tian, H AF Totemeier, T. C. Simpson, J. A. Tian, H. TI Effect of weld intercooling temperature on the structure and impact strength of ferritic-martensitic steels SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE ferritic-martensitic steel; welding; impact strength; microstructure ID CREEP-RUPTURE STRENGTH; 12CR-MO-V STEEL; BEHAVIOR; WELDMENTS AB The effect of inadequate weld intercooling (cooling prior to post-weld heat treatment) on the structure and impact properties of 9Cr-1MoVNb (ASME Grade 91) and 12Cr-1Mo-WV (Type 422 stainless) steels was studied. A range of weld intercooling conditions were simulated by air-cooling the two steels from the standard 1050 degrees C normalization temperature to temperatures ranging from 250 to 450 degrees C for Grade 91 and 100 to 300 degrees C for Type 422, and then immediately tempering at 760 degrees C for 2 h. For Grade 91 steel, austenite retained at the intercooling temperature transformed to ferrite during tempering; final microstructures were mixtures of ferrite and tempered martensite. For Type 422 steel, austenite retained at the intercooling temperature was stable in the tempering condition and formed martensite upon cooling to room temperature; final microstructures were mixtures of tempered and untempered martensite. Hardness and impact properties of the two steels reflected the changes in microstructure with intercooling temperature. (c) 2006 Elsevier B.V. All rights reserved. C1 Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Totemeier, TC (reprint author), Idaho Natl Lab, POB 1625,MS 2218, Idaho Falls, ID 83415 USA. EM terry.totemeier@inl.gov NR 29 TC 6 Z9 6 U1 1 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JUN 25 PY 2006 VL 426 IS 1-2 BP 323 EP 331 DI 10.1016/j.msea.2006.04.023 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 093EZ UT WOS:000241152000044 ER PT J AU Wang, JAJ Wright, IG Lance, MJ Liu, KC AF Wang, Jy-An John Wright, Ian G. Lance, Michael J. Liu, Ken C. TI A new approach for evaluating thin film interface fracture toughness SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE interface fracture toughness; thin film coating material; bi-material interface; composite material; spiral notch; torsion test ID THERMAL BARRIER COATINGS; BIMATERIAL INTERFACES; CRACKS; MECHANISMS; STRESS; OXIDATION; SYSTEMS; MODEL; SPALLATION; STRENGTH AB A material configuration of central importance in microelectronics, optoelectronics, and thermal barrier coating technology is a thin film of one material deposited onto a substrate of a different material. Fabrication of such a structure inevitably gives rise to stress in the film due to lattice mismatch, differing coefficient of thermal expansion, chemical reactions, or other physical effects. Therefore, in general, the weakest link in this composite system often resides at the interface between the thin film and substrate. In order to make multi-layered electronic devices and structural composites with long-term reliability, the fracture behavior of the material interfaces must be known. This project is intended to address the problems associated with the deficiency of the existing methods, which show severe scatter in the existing data and the procedure dependence in thin film/coating evaluation methods, and offers an innovative testing procedure for the determination of interface fracture toughness applicable to thin coating materials in general. (c) 2006 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. RP Wang, JAJ (reprint author), Oak Ridge Natl Lab, Div Met & Ceram, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM Wangja@ornl.gov RI Lance, Michael/I-8417-2016; OI Lance, Michael/0000-0001-5167-5452; Wang, Jy-An/0000-0003-2402-3832 NR 55 TC 9 Z9 9 U1 0 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JUN 25 PY 2006 VL 426 IS 1-2 BP 332 EP 345 DI 10.1016/j.msea.2006.04.022 PG 14 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 093EZ UT WOS:000241152000045 ER PT J AU Whitfield, TW Martyna, GJ AF Whitfield, TW Martyna, GJ TI A unified formalism for many-body polarization and dispersion: The quantum Drude model applied to fluid xenon SO CHEMICAL PHYSICS LETTERS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; WATER; POTENTIALS; KRYPTON; FORCES; ARGON; LATTICE; SYSTEMS; 2-BODY; DIPOLE AB In order to model both the full many-body polarization and dispersion interactions in atomic and molecular systems, a system of quantized Drude oscillators is introduced. The quantization is carried out using imaginary-time path integration, leading to an O(N) simulation method. As a test case, the model is parameterized for xenon.. and is shown to give quantitative agreement with experiment over a broad range of thermodynamic state points. (c) 2006 Elsevier B.V. All rights reserved. C1 IBM Corp, Thomas J Watson Res Ctr, Div Phys Sci, Yorktown Hts, NY 10598 USA. RP Whitfield, TW (reprint author), Argonne Natl Lab, Div Biosci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM twhitfie@mcs.anl.gov; martyna@us.ibm.com NR 35 TC 17 Z9 17 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUN 24 PY 2006 VL 424 IS 4-6 BP 409 EP 413 DI 10.1016/j.cplett.2006.04.035 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 059LL UT WOS:000238734200034 ER PT J AU Commer, M Newman, GA AF Commer, M Newman, GA TI An accelerated time domain finite difference simulation scheme for three-dimensional transient electromagnetic modeling using geometric multigrid concepts SO RADIO SCIENCE LA English DT Article ID DIFFUSION; EQUATIONS; COEFFICIENTS; MEDIA AB [ 1] The fact that the transient electromagnetic (TEM) field is smoothed gradually in space with time allows for a reduced spatial sampling rate of the EM field. On the basis of concepts known from multigrid methods, we have developed a restriction operator in order to map the EM field and the material properties from a fine to a coarser finite difference mesh during a forward field simulation with an explicit time-stepping scheme. Two advantages follow. First, the grid size can be reduced. Field restriction involves reducing the number of grid nodes by a factor of 2 for each Cartesian direction. Second, as can be seen from the Courant-Friedrichs-Levy condition, the larger grid spacing allows for proportionally larger time step sizes. After field restriction, a material averaging scheme is employed in order to calculate the underlying effective medium on the coarse simulation grid. Example results show a factor of up to 5 decrease in solution run time, compared to a scheme that uses a constant grid. Key to the accuracy of the approach is knowledge of the proper time range to restrict the fields. An adequate criterion to decide during run time when to restrict involves an error measure for the locations of interest between the fields on the fine mesh and the restricted fields. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Commer, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd,MS90R1116, Berkeley, CA 94720 USA. EM mcommer@lbl.gov RI Newman, Gregory/G-2813-2015; Commer, Michael/G-3350-2015 OI Commer, Michael/0000-0003-0015-9217 NR 24 TC 9 Z9 9 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0048-6604 J9 RADIO SCI JI Radio Sci. PD JUN 24 PY 2006 VL 41 IS 3 AR RS3007 DI 10.1029/2005RS003413 PG 15 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications GA 057OE UT WOS:000238604300002 ER PT J AU Chen, Y Borowicz, S Fackenthal, J Collart, FR Myatt, E Moy, S Babnigg, G Wilton, R Boernke, WE Schiffer, M Stevens, FJ Olopade, OI AF Chen, Y Borowicz, S Fackenthal, J Collart, FR Myatt, E Moy, S Babnigg, G Wilton, R Boernke, WE Schiffer, M Stevens, FJ Olopade, OI TI Primary structure-based function characterization of BRCT domain replicates in BRCA1 SO BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS LA English DT Article DE breast cancer; BRCA1; p53; domain recognition; Psi-BLAST; homology ID SIZE-EXCLUSION CHROMATOGRAPHY; PROTEIN PROTEIN-INTERACTION; LOW SEQUENCE IDENTITY; P53 TUMOR-SUPPRESSOR; BREAST-CANCER; PSI-BLAST; PHOSPHOPEPTIDE RECOGNITION; CONSERVATIVE APPLICATION; EFFICIENT RECOGNITION; BACH1 PHOSPHOPEPTIDE AB BRCA1 is a large protein that exhibits a multiplicity of functions in its apparent role in DNA repair. Certain mutations of BRCA1 are known to have exceptionally high penetrance with respect to familial breast and ovarian cancers. The structures of the N-terminus and C-terminus of the protein have been determined. The C-terminus unit consists of two sigma-beta-alpha domains designated BRCT. We predicated two homologous BRCT regions in the BRCA1 internal region, and subsequently produced and purified these protein domains. Both recombinant domains show significant self-association capabilities as well as a preferential tendency to interact with each other. These results suggest a possible regulatory mechanism for BRCA1 function. We have demonstrated p53-binding activity by an additional region, and confirmed previous results showing that two regions of BRCA1 protein bind p53 in vitro. Based on sequence analysis, we predict five p53-binding sites. Our comparison of binding by wild-type and mutant domains indicates the sequence specificity of BRCA1-p53 interaction. (c) 2006 Elsevier Inc. All rights reserved. C1 Univ Chicago, Med Ctr, Ctr Clin Canc Genet, Chicago, IL 60637 USA. Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. Nebraska Wesleyan Univ, Dept Biol, Lincoln, NE 68504 USA. RP Olopade, OI (reprint author), Univ Chicago, Med Ctr, Ctr Clin Canc Genet, Chicago, IL 60637 USA. EM folopade@medicine.bsd.uchicago.edu OI Collart, Frank/0000-0001-6942-4483 FU NCI NIH HHS [CA089085]; NIA NIH HHS [AG18001]; NIDDK NIH HHS [DK43957] NR 48 TC 3 Z9 3 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0006-291X J9 BIOCHEM BIOPH RES CO JI Biochem. Biophys. Res. Commun. PD JUN 23 PY 2006 VL 345 IS 1 BP 188 EP 196 DI 10.1016/j.bbrc.2006.03.239 PG 9 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 047KH UT WOS:000237877700027 PM 16677609 ER PT J AU Yao, NY Johnson, A Bowman, GD Kuriyan, J O'Donnell, M AF Yao, Nina Y. Johnson, Aaron Bowman, Greg D. Kuriyan, John O'Donnell, Mike TI Mechanism of proliferating cell nuclear antigen clamp opening by replication factor C SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID POLYMERASE III HOLOENZYME; LAGGING-STRAND REPLICATION; DNA-DAMAGE CHECKPOINT; ESCHERICHIA-COLI; SLIDING CLAMPS; LOADER COMPLEX; STRUCTURAL-ANALYSIS; CRYSTAL-STRUCTURE; GAMMA COMPLEX; DELTA-SUBUNIT AB The eukaryotic replication factor C (RFC) clamp loader is an AAA+spiral-shaped heteropentamer that opens and closes the circular proliferating cell nuclear antigen (PCNA) clamp processivity factor on DNA. In this study, we examined the roles of individual RFC subunits in opening the PCNA clamp. Interestingly, Rfc1, which occupies the position analogous to the delta clamp-opening subunit in the Escherichia coli clamp loader, is not required to open PCNA. The Rfc5 subunit is required to open PCNA. Consistent with this result, Rfc2 (.) 3 (.) 4 (.) 5 and Rfc2 (.) 5 subassemblies are capable of opening and unloading PCNA from circular DNA. Rfc5 is positioned opposite the PCNA interface from Rfc1, and therefore, its action with Rfc2 in opening PCNA indicates that PCNA is opened from the opposite side of the interface that the E. coli delta wrench acts upon. This marks a significant departure in the mechanism of eukaryotic and prokaryotic clamp loaders. Interestingly, the Rad (.) RFC DNA damage checkpoint clamp loader unloads PCNA clamps from DNA. We propose that Rad (.) RFC may clear PCNA from DNA to facilitate shutdown of replication in the face of DNA damage. C1 Rockefeller Univ, Howard Hughes Med Inst, New York, NY 10021 USA. Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Howard Hughes Med Inst, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP O'Donnell, M (reprint author), Rockefeller Univ, Howard Hughes Med Inst, 1230 York Ave, New York, NY 10021 USA. EM odonnel@mail.rockefeller.edu FU NIGMS NIH HHS [F32 GM066586-02, F32 GM066586-01, F32 GM066586] NR 43 TC 41 Z9 41 U1 4 U2 6 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD JUN 23 PY 2006 VL 281 IS 25 BP 17528 EP 17539 DI 10.1074/jbc.M601273200 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 053SV UT WOS:000238326300079 PM 16608854 ER PT J AU Mezei, F AF Mezei, F TI Accelerator requirements for next generation neutron sources SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE spallation sources; neutron scattering; linear accelerators; high-power accelerators; long pulse spallation sources AB The most powerful accelerator-driven neutron sources for condensed matter research use proton beam spallation in pulsed mode of operation. The facilities built by now or being constructed provide substantial advantages compared to existing fission reactor sources, which are related to the increased efficiency of using the neutrons available due to the pulsed nature of the beam. On the other hand, the time average flux of these sources remains below that of fission reactors, and this assures continuing superiority for the most powerful reactors in some applications. The challenge for the next generation of accelerator-based neutron sources is to enhance the time average neutron flux well above that of the most powerful reactor sources. This can be achieved with high-power linear accelerators operating at peak H+ beam currents above 100 mA in ms long pulses and at about 3 GeV proton beam energy or somewhat higher. The total proton beam power will be in the range of 10 MW or more, while the beam quality can be relaxed compared to accelerators designed for H-beams and injection capability. (c) 2006 Elsevier B.V. All rights reserved. C1 Hahn Meitner Inst Berlin GmbH, D-141109 Berlin, Germany. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Mezei, F (reprint author), Hahn Meitner Inst Berlin GmbH, D-141109 Berlin, Germany. EM mezei@hmi.de NR 1 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 553 EP 556 DI 10.1016/j.nima.2006.02.007 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500004 ER PT J AU Nuenighoff, K Pohl, C Bollini, V Bubak, A Conrad, H Filges, D Glueckler, H Goldenbaum, F Hansen, G Lensing, B Neef, RD Paul, N Pysz, K Schaal, H Soltner, H Stelzer, H Tietze-Jaensch, H Ninaus, W Wohlmuther, M Ferguson, P Gallmeier, F Iverson, E Koulikov, S Smirnov, A AF Nuenighoff, Kay Pohl, Chistoph Bollini, Virgini Bubak, Arek Conrad, Harald Filges, Detlef Glueckler, Harald Goldenbaum, Frank Hansen, Guenther Lensing, Burkhard Neef, Ralf-Dieter Paul, Norbert Pysz, Krzysztof Schaal, Hartwig Soltner, Helmut Stelzer, Hermann Tietze-Jaensch, Holger Ninaus, Waldemar Wohlmuther, Michael Ferguson, Phillip Gallmeier, Franz Iverson, Eric Koulikov, Sergey Smirnov, Alexander TI Investigations of the neutron performance of a methane hydrate moderator SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE methane hydrate; moderation of neutrons; spallation; radiation transport AB The increasing interest of neutron scattering scientists in multi-spectral moderators motivated the search for reliable moderator materials fulfilling these requirements. One very elegant approach is methane hydrate as a moderator material, a material, where a methane molecule is encaged by six water molecules on average, leads to a combination of the neutron scattering properties of solid methane and ice. In this contribution the investigation of methane hydrate at T = 20 K and the analysis of the resulting spectra will be discussed. The second part of the paper deals with the observed differences between simulation and experiment in the cold energy range. It will be shown that the stainless steel beam and its possibility to reflect cold neutrons-a neutron optical effect not included in MCNPX-is responsible for the disagreement. (c) 2006 Elsevier B.V. All rights reserved. C1 Forschungszentrum Julich, Julich, Germany. Graz Univ Technol, A-8010 Graz, Austria. Paul Scherrer Inst, Villigen, Switzerland. Spallat Neutrol Source, Oak Ridge, TN USA. Joint Inst Nucl Res, Dubna, Russia. RP Nuenighoff, K (reprint author), Forschungszentrum Julich, Postfach 1913, Julich, Germany. EM k.nuenighoff@fz-juelich.de; d.filges@fz-juelich.de; f.goldenbaum@fz-juelich.de; gallmeierfz@ornl.gov; iversoneb@ornl.gov RI Bubak, Arkadiusz/F-5902-2013; OI Iverson, Erik /0000-0002-7920-705X; Bubak, Arkadiusz/0000-0001-7643-1534; Ferguson, Phillip/0000-0002-7661-4223 NR 4 TC 0 Z9 0 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 565 EP 568 DI 10.1016/j.nima.2006.02.010 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500007 ER PT J AU Reyes, S Boles, JL Ahle, LE Stein, W AF Reyes, Susana Boles, Jason L. Ahle, Larry E. Stein, Werner TI Neutronics and radiation field studies for the RIA fragmentation target area SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE rare isotope accelerator; fragmentation beam dump; radiation damage; neutron activation AB Neutronics simulations and activation evaluations are currently in progress as part of the pre-conceptual research and development effort for the Rare Isotope Accelerator (RIA). The RIA project involves generating heavy element ion beams with powers up to 400 kW for use in a fragmentation target line to produce selected ion beams for physics research experiments. Designing a fragmentation beam dump for RIA is one of the most critical challenges for such a facility. Here, we present the results from neutronics and radiation field assessments for various beam dump concepts that can meet requirements for the RIA fragmentation line. Preliminary results from heavy ion transport including radiation damage evaluations for the RIA fragmentation beam dump are also presented. Initial neutronics and activation studies will be incorporated with other target area considerations to identify important challenges and explore possible solutions. (c) 2006 Elsevier B.V. All rights reserved. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Reyes, S (reprint author), Lawrence Livermore Natl Lab, POB 808,L-446, Livermore, CA 94550 USA. EM reyes20@llnl.gov NR 7 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 610 EP 613 DI 10.1016/j.nima.2006.02.124 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500015 ER PT J AU Mansur, LK AF Mansur, LK TI Materials issues in high power accelerators SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE accelerator materials; radiation effects; embrittlement; corrosion; cavitation erosion; fatigue ID MECHANICAL-PROPERTIES; STAINLESS-STEELS; IRRADIATION; TARGET; SNS; TEMPERATURE; MERCURY; ALLOYS; PROTON AB High power accelerators present a broad array of materials issues for scientists and design engineers. Some materials considerations are unique to accelerators per se, or to a particular accelerator. For example, high intensity stress waves and the resulting cavitation erosion in heavy liquid metal targets may occur where the sharpness of the beam pulse produces shock by thermal expansion. Other irradiation environment properties and materials response are similar to those for fission or fusion reactors. For example, the high displacement doses in the target structures of high power accelerators, produced by the impinging beam and the spallation neutrons, are of similar magnitude to those in high flux reactor cores and first walls of future fusion reactors. In addition to the central issue of radiation effects in metallic structural alloys, designers will be concerned with radiation effects in polymers and ceramics, which may be employed as seals, sensors, or insulators. Other applications place demands on materials that are not related to radiation but to other aspects of aggressive environments, such as compatibility of materials with special purpose fluids. Examples are discussed of problems, materials research and development solutions and recent experimental and calculational results. (c) 2006 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Mansur, LK (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM mansurlk@ornl.gov NR 38 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 666 EP 675 DI 10.1016/j.nima.2006.02.145 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500028 ER PT J AU Griffin, P King, D Kolb, N AF Griffin, P King, D Kolb, N TI Application of spallation neutron sources in support of radiation hardness studies SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE displacement; 1-Mev; dpa; NIEL; radiation hardness; gain; bipolar; transistor; BJT; HBT; defects; DLTS AB High-power spallation neutron sources offer a unique opportunity to gather critical measurements on the very early transient displacement damage in semiconductors. This paper discusses the important attributes of spallation neutron facilities used for investigating the transient radiation hardness of semiconductors. By comparing the attributes of some different types of radiation facilities currently used for semiconductor damage characterization, a new and important role for spallation neutron sources is identified. Comparisons are made between the attributes of the spallation neutron source and fast-burst reactors, water-moderated reactors, ion microbearns, and electron accelerators. By incorporating electromagnetic shielding, photocurrent shunts and new experimental techniques, testing at spallation neutron sources has permitted the earliest measurements of transient gain to be lowered from the previous time of 250 mu s, achieved at fast-burst reactors, to 8 mu s. This is over a factor of 30 improvement in the test capability. (c) 2006 Elsevier B.V. All rights reserved. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Ktech Corp Inc, Albuquerque, NM 87123 USA. RP Griffin, P (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM pjgriff@sandia.gov NR 8 TC 1 Z9 1 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 684 EP 687 DI 10.1016/j.nima.2006.02.021 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500031 ER PT J AU Wells, DP Hunt, AW Tchelidze, L Kumar, J Smith, K Thompson, S Selim, F Williams, J Harmon, JF Maloy, S Roy, A AF Wells, DP Hunt, AW Tchelidze, L Kumar, J Smith, K Thompson, S Selim, F Williams, J Harmon, JF Maloy, S Roy, A TI Gamma-induced positron annihilation spectroscopy and application to radiation-damaged alloys SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE positron; radiation damage; material defects; positron annihilation spectroscopy AB Radiation damage and other defect studies of materials are limited to thin samples because of inherent limitations of well-established techniques such as diffraction methods and traditional positron annihilation spectroscopy (PAS) [P. Hautojarvi, et al., Positrons in Solids, Springer, Berlin, 1979, K.G. Lynn, et al., Appl. Phys. Lett. 47 (1985) 239]. This limitation has greatly hampered industrial and insitu applications. ISU has developed new methods that use pair-production to produce positrons throughout the volume of thick samples [F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 192 (2002) 197, F.A. Selim, D.P. Wells, et al., Nucl. Instru. Meth. A 495 (2002) 154, F.A. Selim, et al., J. Rad. Phys. Chem. 68 (2004) 427, F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. 13 241 (2005) 253, A.W. Hunt, D.P. Wells, et al., Nucl. Instr. and Meth. B. 241 (2005) 262]. Unlike prior work at other laboratories that use bremsstrahlung beams to create positron beams (via pair-production) that are then directed at a sample of interest, we produce electron-positron pairs directly in samples of interest, and eliminate the intermediate step of a positron beam and its attendant penetrability limitations. Our methods include accelerator-based brernsstrahlung-induced pair-production in the sample for positron annihilation energy spectroscopy measurements (PAES), coincident proton-capture gamma-rays (where one of the gammas is used for pair-production in the sample) for positron annihilation lifetime spectroscopy (PALS), or photo-nuclear activation of samples for either type of measurement. The positrons subsequently annihilate with sample electrons, emitting coincident 511 keV gamma-rays [F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 192 (2002) 197, F.A. Selim, D.P. Wells, et al., Nucl. Instru. Meth. A 495 (2002) 154, F.A. Selim, et al., J. Rad. Phys. Chem. 68 (2004) 427, F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 241 (2005) 253, A.W. Hunt, D.P. Wells, et al., Nucl. Instr. and Meth. B. 241 (2005) 262]. These gamma-ray photons are then either measured with a high-resolution germanium detector (PAES) or fast scintillators (PALS) and subsequently analyzed using standard positron data analysis methods. The high penetrability of few MeV photons allows one to study defects and characterize materials in thick samples up to hundreds of g/cm(2) (approximately a meter in steel), a thickness that is completely inaccessible by any other non-destructive technique. We have demonstrated the proof-of-principle of these techniques to probe tensile strain in thick steel alloys and other metals, to measure positron lifetimes in bulk samples of lead, copper and aluminium with positron lifetime spectra that are free of the surface and source background lifetimes that complicate conventional positron lifetime measurements, and demonstrated the activation technique for damage studies of copper and single-crystal iron [F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 192 (2002) 197, F.A. Selim, D.P. Wells, et al., Nucl. Instru. Meth. A 495 (2002) 154, F.A. Selim, et al., J. Rad. Phys. Chem. 68 (2004) 427]. We have also demonstrated the potential application of these techniques to 3-D imaging of defect density in thick structural materials [F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 241 (2005) 253, AW. Hunt, D.P. Wells, et al., Nucl. Instr. and Meth. B. 241 (2005) 262]. (c) 2006 Elsevier B.V. All rights reserved. C1 Idaho State Univ, Dept Phys, Pocatello, ID 83209 USA. Idaho State Univ, Idaho Acceerator Ctr, Pocatello, ID 83209 USA. Los Alamos Natl Lab, Los Alamos, NM USA. Univ Nevada, Las Vegas, NV 89154 USA. RP Wells, DP (reprint author), Idaho State Univ, Dept Phys, Pocatello, ID 83209 USA. EM wells@physics.isu.edu RI Selim, Farida/N-8077-2016; OI Maloy, Stuart/0000-0001-8037-1319 NR 8 TC 10 Z9 11 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 688 EP 691 DI 10.1016/j.nima.2006.02.150 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500032 ER PT J AU Li, N Zhang, JS Sencer, BH Koury, D AF Li, N Zhang, JS Sencer, BH Koury, D TI Surface treatment and history-dependent corrosion in lead alloys SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE corrosion; kinetic model of oxidation; shot-peening; surface treatment ID TEMPERATURE AB In oxygen-controlled lead and lead-bismuth eutectic (LBE), steel corrosion may be strongly history dependent. This is due to the competition between liquid metal dissolution corrosion and oxidation as a "self-healing" protection barrier. Such effects can be observed from corrosion testing of a variety of surface-treated materials, such as cold working, shot peening, pre-oxidation, etc. Shot peening of austenitic steels produces surface-layer microstructural damages and grain compression, which could contribute to increased Cr migration to the surface and enhance the protection through an impervious oxide. Pre-oxidation under conditions different from operating ones may form more protective oxides, reduce oxygen and metal ion migration through the oxides, and achieve better protection for longer durations. Corrosion and oxidation modeling and analysis reveal the potential for significantly reducing long-term corrosion rates by initial and early-stage conditioning of steels for Pb/LBE services. (c) 2006 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Los Alamos, NM 87544 USA. Univ Nevada, Las Vegas, NV 89154 USA. RP Li, N (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA. EM ningli@lanl.gov RI Zhang, Jinsuo/H-4717-2012 OI Zhang, Jinsuo/0000-0002-3412-7769 NR 7 TC 5 Z9 5 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 695 EP 697 DI 10.1016/j.nima.2006.02.023 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500034 ER PT J AU Nakamura, T Heilbronn, L AF Nakamura, T Heilbronn, L TI Overview of secondary particle production and transport by high-energy heavy ions SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE heavy-ion projectile; thick target yield; thin target yield; neutron shielding; spallation products; mass-yield distribution ID QUANTUM MOLECULAR-DYNAMICS AB With increasing multi-purpose use of high-energy heavy-ion accelerators, secondary particle production and transport by high-energy heavy ions is a topic of current interest. This overview gives a brief summary on the experimental results on double differential neutron production cross-section data (DDX), thick target neutron production yield data (TTY), heavy-ion produced neutron transport data, and spallation products production cross-section data for heavy ions of energies above about 100MeV/nucleon. (c) 2006 Elsevier B.V. All rights reserved. C1 Tohoku Univ, Ctr Cyclotron & Radioisotope, Aoba Ku, Sendai, Miyagi 9808578, Japan. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Nakamura, T (reprint author), Tohoku Univ, Ctr Cyclotron & Radioisotope, Aoba Ku, Sendai, Miyagi 9808578, Japan. EM nakamura@cyric.tohoku.ac.jp RI Heilbronn, Lawrence/J-6998-2013 OI Heilbronn, Lawrence/0000-0002-8226-1057 NR 10 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 706 EP 709 DI 10.1016/j.nima.2006.02.027 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500037 ER PT J AU Ridikas, D Giacri, ML Chadwick, MB David, JC Dore, D Ledoux, X Van Lauwe, A Wilson, WB AF Ridikas, D Giacri, ML Chadwick, MB David, JC Dore, D Ledoux, X Van Lauwe, A Wilson, WB TI Status of the photonuclear activation file: Reaction cross-sections, fission fragments and delayed neutrons SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE photonuclear reactions; photofission; delayed neutrons ID YIELDS AB Recently a renewed interest in photonuclear reactions has appeared. It is motivated by a number of different applications where progress in reliable and, in some cases, very high-intensity electron accelerators was awaited. In particular, today's interest is linked to the nuclear material interrogation and non-destructive nuclear waste characterization, both based either on prompt neutron, or delayed neutron, or delayed gamma detection following photofission. The knowledge of photonuclear reactions is also extremely important in the design of electron accelerators used for medical applications, nuclear physics, photoneutron sources, radioactive ion beam production, etc. In this paper we present the photonuclear activation file (PAF) under development to be included into any material depletion code. By now the PAF contains the photonuclear cross-sections for more than 600 isotopes, fission fragment distributions and delayed neutron evaluations for most of the actinides in the photon energy range from 0 up to 25 MeV. Theoretical predictions, evaluated data files and available experimental data were used to construct the PAF, and some benchmarks are in progress to ensure its quality. The release of the first version of PAF is planned in 2006. (c) 2006 Elsevier B.V. All rights reserved. C1 CEA Saclay, DSM, DAPNIA, SPhN, F-91191 Gif Sur Yvette, France. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. CEA, DIF, DAM, DPTA,SPN, F-91680 Bruyeres Le Chatel, France. RP Ridikas, D (reprint author), CEA Saclay, DSM, DAPNIA, SPhN, F-91191 Gif Sur Yvette, France. EM ridikas@cea.fr NR 10 TC 12 Z9 12 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 710 EP 713 DI 10.1016/j.nima.2006.02.028 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500038 ER PT J AU Pronskikh, VS Mashnik, SG AF Pronskikh, VS Mashnik, SG TI Deuteron-nucleus integral cross-sections at energies above 20 MeV SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE optical model; integral cross-sections; systematics AB An equation derived from optical model of nuclear interactions for description of integral deuteron-nucleus cross-sections with coefficients obtained by least squares fit to compiled experimental data is proposed. It includes a term reflecting the charge asymmetry of colliding nuclei in a form conserving the symmetry of the entire formula with respect to exchange of projectile and target nuclei. Calculations using the new equation are compared with the data available as well as other systematics. (c) 2006 Elsevier B.V. All rights reserved. C1 Joint Inst Nucl Res, Dubna 141980, Russia. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Pronskikh, VS (reprint author), Joint Inst Nucl Res, Dubna 141980, Russia. EM Vitali.Pronskikh@jinr.ru; mashnik@lanl.gov NR 4 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 714 EP 716 DI 10.1016/j.nima.2006.02.029 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500039 ER PT J AU Kodeli, I Sartori, E Kirk, B AF Kodeli, I. Sartori, E. Kirk, B. TI Recent accelerator experiments updates in Shielding INtegral Benchmark Archive Database (SINBAD) SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE benchmark experiments; accelerator shielding; radiation transport AB SINBAD is an internationally established set of radiation shielding and dosimetry data relative to experiments relevant in reactor shielding, fusion blanket neutronics and accelerator shielding. In addition to the characterization of the radiation source, it describes shielding materials and instrumentation and the relevant detectors. The experimental results, be it dose, reaction rates or unfolded spectra are presented in tabular ASCII form that can easily be exported to different computer environments for further use. Most sets in SINBAD also contain the computer model used for the interpretation of the experiment and, where available, results from uncertainty analysis. The set of primary documents used for the benchmark compilation and evaluation are provided in computer readable form. SINBAD is available free of charge from RSICC and from the NEA Data Bank. (c) 2006 Elsevier B.V. All rights reserved. C1 OECD, NEA Data Bank, F-92130 Issy Les Moulineaux, France. OECD, Nucl Energy Agcy, F-92130 Issy Les Moulineaux, France. Oak Ridge Natl Lab, RSICC, Oak Ridge, TN 37831 USA. RP Kodeli, I (reprint author), OECD, NEA Data Bank, 12 Bd Iles, F-92130 Issy Les Moulineaux, France. EM ivo.kodeli@oecd.org NR 4 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 725 EP 728 DI 10.1016/j.nima.2006.02.032 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500042 ER PT J AU Romano, C Danon, Y Haight, RC Wender, SA Vieira, DJ Bond, EM Rundberg, RS Wilhelmy, JB O'Donnell, JM Michaudon, AF Bredeweg, TA Rochman, D Granier, T Ethvignot, T AF Romano, C Danon, Y Haight, RC Wender, SA Vieira, DJ Bond, EM Rundberg, RS Wilhelmy, JB O'Donnell, JM Michaudon, AF Bredeweg, TA Rochman, D Granier, T Ethvignot, T TI Measurements of (n,alpha) cross-section of small samples using a lead-slowing-down-spectrometer SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE lead-slowing-down spectrometer; lithium; alpha; cross-section; neutron reactions AB At the Los Alamos Neutron Science Center (LANSCE) a compensated ionization chamber (CIC) was placed in a lead slowing down spectrometer (LSDS) to measure the Li-6(n,alpha)H-3 cross-section as a feasibility test for further work. The LSDS consists of a 1.2 m cube of lead with a tungsten target in the center where spallation neutrons are produced when bombarded with pulses of 800 MeV protons. The resulting neutron flux is of the order of 10(14)n/cm(2)/s which allows the cross-section measurement of samples of the order of 10's of nanograms. The initial experiment measured a 91 mu g sample of natural lithium flouride. Cross-section measurements were obtained in the 0.1 eV-2 keV energy range. A 62 mu g sample was placed in the chamber with a higher neutron beam intensity, and data was obtained in the 0.1-300 eV range. Adjustments in chamber dimensions and electronic configuration will improve gamma flash compensation at high beam intensity, decrease the dead time, and increase the energy range where data can be obtained. The intense neutron flux will allow the use of a smaller sample. (c) 2006 Elsevier B.V. All rights reserved. C1 Rensselaer Polytech Inst, Troy, NY 12180 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Brookhaven Natl Lab, NNDC, Upton, NY 11973 USA. CEA, DAM, F-91680 Bruyeres Le Chatel, France. RP Romano, C (reprint author), Rensselaer Polytech Inst, 110 8th St, Troy, NY 12180 USA. EM romanc2@rpi.edu; danony@rpi.edu RI Danon, Yaron/B-5159-2009; OI Rochman, Dimitri/0000-0002-5089-7034; Wender, Stephen/0000-0002-2446-5115; Bond, Evelyn/0000-0001-7335-4086 NR 3 TC 6 Z9 6 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 771 EP 773 DI 10.1016/j.nima.2006.02.052 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500054 ER PT J AU Kawano, T Talou, P Chadwick, MB AF Kawano, T Talou, P Chadwick, MB TI Production of isomers by neutron-induced inelastic scattering on Ir-193 and influence of spin distribution in the pre-equilibrium process SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE isomer production; Ir-193; GEANIE; gamma-ray production; Feshbach Kerman-Koonin; pre-equilibrium process ID MULTISTEP COMPOUND; STATISTICAL-THEORY; CROSS-SECTIONS AB We present calculations of the production cross-section of isomeric-state for Ir-193. The isomer was produced by neutron inelastic scattering, and several gamma-ray production cross-sections were measured at LANSCE with the GEANIE detector. The total isomer production cross-section is then inferred by combining the experimental data with the GNASH statistical model calculations. The spin distribution is calculated with the Feshbach-Kerman-Koonin (FKK) quantum mechanical pre-equilibrium theory, and it is incorporated with the GNASH results. We found that the inclusion of FKK has a significant impact on the isomer production cross-sections at high energies. (c) 2006 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kawano, T (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM kawano@lanl.gov; talou@lanl.gov NR 11 TC 13 Z9 13 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 774 EP 777 DI 10.1016/j.nima.2006.02.053 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500055 ER PT J AU Jammes, C Geslot, B Imel, G AF Jammes, C Geslot, B Imel, G TI Advantage of the area-ratio pulsed neutron source technique for ADS reactivity calibration SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE ADS; pulsed neutron source; area-ratio method; estimator convergence; robustness; space effects ID KINETIC-MODEL; REACTORS AB In this work, one shows the area-ratio pulsed neutron source (PNS) technique is as good candidate for reactivity calibration of accelerator-driven systems (ADS). Some properties of that method are discussed. One starts with a newly developed point-kinetics model that is able to simulate the PNS histogram experimentally obtained. The question of the convergence rate of the estimator based on that method is addressed. Some simulations that are in good agreements with experimental data reveal the convergence time is clearly longer than the flux stabilization time due to the delayed neutron. The sensitivity of the area-ratio estimator to the pulse width, the time discretization and the source strength variation is then explored. Finally, the initial model is extended to a reflected neutronic system. It is thus shown that the area-ratio reactivity estimator still provides satisfactory results in the core and reflector region. (c) 2006 Elsevier B.V. All rights reserved. C1 CEA, Ctr Cadarache, DEN, CAD,DER,SPEx,LPE, F-13108 St Paul Les Durance, France. Argonne Natl Lab, Argonne, IL 60439 USA. RP Jammes, C (reprint author), CEA, Ctr Cadarache, DEN, CAD,DER,SPEx,LPE, F-13108 St Paul Les Durance, France. EM christian.jammes@cea.fr RI Jammes, Christian/H-3245-2013 OI Jammes, Christian/0000-0002-5970-7719 NR 14 TC 12 Z9 12 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 778 EP 784 DI 10.1016/j.nima.2006.02.054 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500056 ER PT J AU Iwamoto, Y Taniguchi, S Nakao, N Itoga, T Nakamura, T Nakane, Y Nakashima, H Satoh, D Yashima, H Yamakawa, H Oishi, K Uwamino, Y Tamii, A Hatanaka, K Baba, M AF Iwamoto, Yosuke Taniguchi, Shingo Nakao, Noriaki Itoga, Toshiro Nakamura, Takashi Nakane, Yoshihiro Nakashima, Hiroshi Satoh, Daiki Yashima, Hiroshi Yamakawa, Hiroshi Oishi, Koji Uwamino, Yoshitomo Tamii, Atsushi Hatanaka, Kichiji Baba, Mamoru TI Measurement of neutron spectra produced in the forward direction from thick graphite, Al, Fe and Pb targets bombarded by 350 MeV protons SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE thick target; neutron energy spectra; NE213; 0-degree; MCNPX; PHITS; MARS15 ID STOPPING-LENGTH TARGETS; 256-MEV PROTONS; ENERGY-RANGE; YIELDS AB Neutron energy spectra at 0-degree produced from stopping-length graphite, Al, Fe and Pb targets bombarded by 350 MeV protons were measured at the neutron TOF course at RCNP of Osaka University. The experiments were performed by the time-of-flight technique with the flight path length of 11.4 and 95 m, and neutron energy spectra were obtained in the energy range from 10 MeV upto the maximum energy 350 MeV. Monte Carlo calculations by MCNPX, PHITS and MARS 15 were performed to compare the obtained experimental data, and these simulation results at 0-degree generally underestimated the experimental data for all targets in the energy range above 20 MeV. (c) 2006 Elsevier B.V. All rights reserved. C1 Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan. Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. Tohoku Univ, Ctr Cyclotron & Radioisotope, Aoba Ku, Sendai, Miyagi 9808578, Japan. Kyoto Univ, Inst Res Reactor, Osaka 5900494, Japan. Shimizu Corp, Koto Ku, Tokyo 1358530, Japan. RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. Osaka Univ, RCNP, Ibaraki, Osaka 5670047, Japan. RP Iwamoto, Y (reprint author), Japan Atom Energy Agcy, 2-4 Shirakata Shirane, Tokai, Ibaraki 3191195, Japan. EM iwamoto.yosuke@jaea.go.jp RI Iwamoto, Yosuke/G-5959-2012; OI Iwamoto, Yosuke/0000-0003-4688-6508 NR 12 TC 5 Z9 5 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 789 EP 792 DI 10.1016/j.nima.2006.02.056 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500058 ER PT J AU McLean, TD Olsher, RH Devine, RT Romero, LL Fallu-Labruyere, A Grudberg, P Tan, H Chu, YX AF McLean, TD Olsher, RH Devine, RT Romero, LL Fallu-Labruyere, A Grudberg, P Tan, H Chu, YX TI CHELSI: Recent developments in the design and performance of a high-energy neutron spectrometer SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE neutron spectroscopy; charged particle; CsI; LANSCE ID FLUORESCENT RESPONSE; CSI(TL); IONS AB The intrinsic pulse shape discrimination properties of CsI(Tl) form the basis of a high-energy neutron (> 20MeV) spectrometer (CHELSI) currently being developed at LANL that shows promise in satisfying the requirements of an ideal survey meter; lightweight, portable and real time display of dose. Charged particle spallation products generated in the scintillator via neutron interactions are identified on the basis of pulse shape using digital pulse processing. Conservative estimates of dose rate can be given in real time based on count rates and pulse height distributions. More accurate dose measurements can be done off-line using unfolding methods to analyze stored pulse shape versus energy data. As a precursor to the development of a portable instrument, data has been obtained using a 1" x 1" CsI-based probe and a digital spectrometer. This system has been used to collect data on the 90 m flight path at the LANSCE/WNR facility at an average neutron energy of 335 MeV. The spectrometer has the capability, in addition to storing individual waveforms for later analysis, of recording time-of-flight data and calculating a pulse shape parameter and pulse height for each scintillation event in real time. Combining these data with traditional multichannel analyzer data has yielded a set of empirical response functions with respect to neutron energy. Analysis of the charged particle spectra has yielded an overall average count rate of 0.12 +/- 0.02 cps/mu Sv h for a 1" x 1" CsI(Tl) scintillator in this neutron field. (c) 2006 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. XIA LLC, Newark, CA 94560 USA. RP McLean, TD (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM tmclean@lanl.gov NR 8 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 793 EP 796 DI 10.1016/j.nima.2006.02.057 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500059 ER PT J AU Titarenko, YE Batyaev, VF Mulambetov, RD Zhivun, VM Barashenkov, VS Mashnik, SG Shubin, YN Ignatyuk, AV AF Titarenko, Yury E. Batyaev, Viacheslav F. Mulambetov, Ruslan D. Zhivun, Valery M. Barashenkov, Vladilen S. Mashnik, Stepan G. Shubin, Yury N. Ignatyuk, Anatoly V. TI Excitation functions of product nuclei from 40 to 2600 MeV proton-irradiated Pb-206,Pb-207,Pb-208,Pb-nat and Bi-209 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE nuclear reaction; spallation; fission; fragmentation; residual nuclides; cross-sections; Monte Carlo simulation ID KINETIC ENERGIES; RADIONUCLIDES; SIMULATION; YIELDS AB 5972 nuclide yields from proton-irradiated Pb-206,Pb-207,Pb-208,Pb-nat and Bi-209 thin targets have been measured for 11 proton energies within the range 0.04-2.6 GeV. The measured data have been compared with data obtained at other laboratories as well as with theoretical simulations by seven codes. We found that the predictive power of the tested codes is different but is satisfactory for most of the nuclides in the spallation region, though none of the codes agree well with the data in the whole mass region of product nuclides and all should be improved further. (c) 2006 Elsevier B.V. All rights reserved. C1 Inst Theoret & Expt Phys, Moscow 117218, Russia. Joint Inst Nucl Res, Dubna 141980, Russia. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Obninsk Phys & Power Engn Inst, Obninsk 249020, Russia. RP Titarenko, YE (reprint author), Inst Theoret & Expt Phys, Moscow 117218, Russia. EM yury.titarenko@itep.ru NR 14 TC 13 Z9 15 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 801 EP 805 DI 10.1016/j.nima.2006.02.059 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500061 ER PT J AU James, MR McKinney, GW Hendricks, JS Moyers, M AF James, MR McKinney, GW Hendricks, JS Moyers, M TI Recent enhancements in MCNPX: Heavy-ion transport and the LAQGSM physics model SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE MCNPX; MCNP; Monte Carlo; heavy ion; LAQGSM; spallation AB Calculations involving the transport of energetic heavy ions have recently received more attention from projects such as the Rare Isotope Accelerator (RIA) and from areas such as space radiation shielding. In these areas, the transport and reactions must be calculated for heavy ions such as Fe-56 or U-238 traveling at energies of >= 1 GeV/nucleon. To serve these needs, recent upgrades to the particle transport code MCNPX have expanded the previously useful ion transport capability from a small suite of light ions (deuterons, tritons, He-3, and alpha particles) to a nearly complete list of those heavy and light ions that span the Table of Isotopes. To enable nuclear spallation from energetic collisions of these ions and targets, the LAQGSM physics model has been integrated into the MCNPX code. This physics model supplements the existing physics models already contained in the code, only one of which, ISABEL, could handle heavy-ion collisions (and then only over a limited range of masses and energies). The implementation of these new features now greatly expands the usefulness of MCNPX in energetic ion transport. The heavy-ion transport feature also allows the transport of residuals from all nuclear reactions that occur in the physics model regime, even when initiated by non-heavy ions. The implementation and use of heavy ions in MCNPX is explained. Also, computations with MCNPX are compared with benchmark experiments to show agreement with results. (c) 2006 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Loma Linda Univ, Med Ctr, Loma Linda, CA 92354 USA. RP James, MR (reprint author), Los Alamos Natl Lab, POB 1663,K575, Los Alamos, NM 87545 USA. EM mrjames@lanl.gov NR 8 TC 19 Z9 19 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 819 EP 822 DI 10.1016/j.nima.2006.02.063 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500065 ER PT J AU Talou, P Kawano, T Young, PG Chadwick, MB AF Talou, P Kawano, T Young, PG Chadwick, MB TI The McGNASH nuclear reaction code and its use for gas production cross-section calculations SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE statistical nuclear reaction; GNASH; McGNASH; pre-equilibrium reaction; hybrid Monte-Carlo simulation; gas production cross-sections; accelerator applications; advanced fuel cycle initiative ID PRECOMPOUND DECAY MODEL; ANGULAR-DISTRIBUTIONS AB The McGNASH nuclear reaction code being developed at Los Alamos is presented. It is a modern version of the well-known GNASH code, which implements the Hauser-Feshbach theory of the compound nucleus evaporation and takes into account corrections from the pure statistical formalism (direct reactions, pre-equilibrium processes, etc.). Its use spans neutron-, proton- and photon-induced reactions on target nuclei starting from A similar or equal to 20 and up, and for incident energies from tens of keV up to about 200 MeV. Its application to the determination of gas production cross-sections for the Advanced Fuel Cycle Initiative is presented. (c) 2006 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Nucl Phys Grp, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, ASC Program, PADNWP, Los Alamos, NM 87545 USA. RP Talou, P (reprint author), Los Alamos Natl Lab, Nucl Phys Grp, T-16, Los Alamos, NM 87545 USA. EM talou@lanl.gov NR 12 TC 7 Z9 7 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 823 EP 826 DI 10.1016/j.nima.2006.02.064 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500066 ER PT J AU Rabiti, C Lohnert, G Maschek, W Rinciski, A AF Rabiti, Cristian Lohnert, G. Maschek, W. Rinciski, A. TI Modelling of fast source transients in PDS-XADS with VARIANT-KIN3D SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE sub-critical systems; accelerator driven systems; time dependent neutron transport; spherical harmonics; simplified spherical harmonics; time step control ID SPHERICAL-HARMONICS AB In a system with an external neutron source such as an Accelerator Driven System (ADS), transients can be induced by a fast variation of the source amplitude. In this paper we present new capabilities of the VARIANT-KIN3D code for analyses of these transients. The code solves the time dependent neutron transport equation by using the spherical harmonics (PN) and simplified spherical harmonics (SPN) methods. Recently a more accurate time discretization scheme and an automatic time step control option have been implemented in KIN3D. In the paper we consider a fast transient in a 3D HEX-Z model representing the PDS-XADS (an ADS designed by ANSALDO). We consider responses of several detectors, placed at different axial and radial positions. The same transient is simulated with different options for angular discretization of the neutron transport equation. As expected, we observed that angular discretization influences the transient results. The influence is observed with respect to both time and spatial distributions of the detector rates. The new code version is able to deal with fast source induced transients and therefore may serve as an interesting tool for investigating the ADS physics. (c) 2006 Elsevier B.V. All rights reserved. C1 [Rabiti, Cristian; Maschek, W.; Rinciski, A.] Forschungszentrum Karlsruhe, IKET, D-76344 Eggenstein Leopoldshafen, Germany. [Lohnert, G.] IKE Univ, D-70550 Stuttgart, Germany. RP Rabiti, C (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM crabiti@anl.gov NR 6 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 834 EP 837 DI 10.1016/j.nima.2006.02.066 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500069 ER PT J AU Naberezhnev, DG Gohar, Y Bailey, J Belch, H AF Naberezhnev, DG Gohar, Y Bailey, J Belch, H TI Physics analyses of an accelerator-driven sub-critical assembly SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE sub-critical assembly; external neutron source; electron accelerator; low-enrichment uranium; isotope production AB Physics analyses have been performed for an accelerator-driven sub-critical assembly as a part of the Argonne National Laboratory activity in preparation for a joint conceptual design with the Kharkov Institute of Physics and Technology (KIPT) of Ukraine. KIPT has a plan to construct an accelerator-driven sub-critical assembly targeted towards the medical isotope production and the support of the Ukraine nuclear industry. The external neutron source is produced either through photonuclear reactions in tungsten or uranium targets, or deuteron reactions in a beryllium target. KIPT intends using the high-enriched uranium (HEU) for the fuel of the sub-critical assembly. The main objective of this paper is to study the possibility of utilizing low-enriched uranium (LEU) fuel instead of HEU fuel without penalizing the sub-critical assembly performance, in particular the neutron flux level. In the course of this activity, several studies have been carried out to investigate the main choices for the system's parameters. The external neutron source has been characterized and a pre-conceptual target design has been developed. Several sub-critical configurations with different fuel enrichments and densities have been considered. Based on our analysis, it was shown that the performance of the LEU fuel is comparable with that of the HEU fuel. The LEU fuel sub-critical assembly with 200-MeV electron energy and 100-kW electron beam power has an average total flux of similar to 2.50 x 10(13) n/s cm(2) in the irradiation channels. The corresponding total facility power is similar to 204 kW divided into 91 and 113 kW deposited in the target and sub-critical assemblies, respectively. (c) 2006 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Naberezhnev, DG (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dimitri@anl.gov NR 6 TC 6 Z9 6 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 841 EP 844 DI 10.1016/j.nima.2006.02.068 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500071 ER PT J AU Gohar, Y Bolshinsky, I Naberezhnev, D Duo, J Belch, H Bailey, J AF Gohar, Y Bolshinsky, I Naberezhnev, D Duo, J Belch, H Bailey, J TI Accelerator-driven subcritical facility: Conceptual design development SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE accelerator driven system; electron accelerator; low enriched uranium; subcritical assembly; neutron source AB A conceptual design development of an accelerator-driven subcritical facility has been carried out in the preparation of a joint activity with Kharkov Institute of Physics and Technology of Ukraine. The main functions of the facility are the medical isotope production and the support of the Ukraine nuclear industry. An electron accelerator is considered to drive the subcritical assembly. The neutron source intensity and spectrum have been studied. The energy deposition, spatial neutron generation, neutron utilization fraction, and target dimensions have been quantified to define the main target performance parameters, and to select the target material and beam parameters. Different target conceptual designs have been developed based the engineering requirements including heat transfer, thermal hydraulics, structure, and material issues. The subcritical assembly is designed to obtain the highest possible neutron flux level with a K-eff of 0.98. Different fuel materials, uranium enrichments, and reflector materials are considered in the design process. The possibility of using low enrichment uranium without penalizing the facility performance is carefully evaluated. The mechanical design of the facility has been developed to maximize its utility and minimize the time for replacing the target and the fuel assemblies. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements, upgrades, and new missions. In addition, it has large design margins to accommodate different operating conditions and parameters. In this paper, the conceptual design and the design analyses of the facility will be presented. (c) 2006 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Argonne, IL 60439 USA. Idaho Natl Engn Lab, Idaho Falls, ID 83403 USA. Penn State Univ, University Pk, PA 16802 USA. RP Gohar, Y (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gohar@anl.gov; dimitri@anl.gov NR 3 TC 16 Z9 16 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 870 EP 874 DI 10.1016/j.nima.2006.02.158 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500078 ER PT J AU Remec, I Gabriel, TA Wendel, MW Conner, DL Burgess, TW Ronningen, RM Blideanu, V Bollen, G Boles, JL Reyes, S Ahle, LE Stein, W AF Remec, I Gabriel, TA Wendel, MW Conner, DL Burgess, TW Ronningen, RM Blideanu, V Bollen, G Boles, JL Reyes, S Ahle, LE Stein, W TI Particle and radiation simulations for the proposed rare isotope accelerator facility SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE rare isotope accelerator; ISOL; radiation fields; PHITS; MCNPX; MARS15 AB The Rare Isotope Accelerator (RIA) facility, planned to be built in the USA, will be capable of delivering diverse beams, from protons to uranium ions, with energies from 1 GeV to at least 400 MeV per nucleon to rare isotope-producing targets. High beam power-400 kW-will allow RIA to become the most powerful rare isotope beam facility in the world; however, it also creates challenges for the design of the isotope-production targets. This paper focuses on the isotope-separator-on-line (ISOL) target work, particularly the radiation transport aspects of the two-step fission target design. Simulations were performed with the PHITS, MCNPX, and MARS15 computer codes. A two-step ISOL target considered here consists of a mercury or tungsten primary target in which primary beam interactions release neutrons, which in turn induce fissions-and produce rare isotopes-in the secondary target filled with fissionable material. Three primary beams were considered: 1-GeV protons, 622-MeV/u deuterons, and 777-MeV/u He-3 ions. The proton and deuterium beams were found to be about equivalent in terms of induced fission rates and heating rates in the target, while the 3 He beam, without optimizing the target geometry, was less favorable, producing about 15% fewer fissions and about 50% higher heating rates than the proton beam at the same beam power. (c) 2006 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Remec, I (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM remeci@ornl.gov NR 8 TC 2 Z9 2 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 896 EP 899 DI 10.1016/j.nima.2006.02.103 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500084 ER PT J AU Lisowski, PW Schoenberg, KF AF Lisowski, PW Schoenberg, KF TI The Los Alamos Neutron Science Center SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE national and international laboratory facilities; linear accelerators; neutron sources; neutron spectroscopy; neutron scattering AB The Los Alamos Neutron Science Center, or LANSCE, uses the first truly high-current medium-energy proton linear accelerator, which operated originally at a beam power of I MW for medium-energy nuclear physics. Today LANSCE continues operation as one of the most versatile accelerator-based user facilities in the world. During eight months of annual operation, scientists from around the world work at LANSCE to execute an extraordinarily broad program of defense and civilian research. Several areas operate simultaneously. The Lujan Neutron Scattering Center (Lujan Center) is a moderated spallation source (meV to keV), the Weapons Neutron Research Facility (WNR) is a bare spallation neutron source (keV to 800MeV), and a new ultra-cold neutron source will be operational in 2005. These sources give LANSCE the ability to produce and use neutrons with energies that range over 14 orders of magnitude. LANSCE also supplies beam to WNR and two other areas for applications requiring protons. In a proton radiography (pRad) area, a sequence of narrow proton pulses is transmitted through shocked materials and imaged to study dynamic properties. In 2005, LANSCE began operating a facility that uses 100-MeV protons to produce medical radioisotopes. To sustain a vigorous program beyond this decade, LANSCE has embarked on a project to refurbish key elements of the facility and to plan capabilities beyond those that presently exist. (c) 2006 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Lisowski, PW (reprint author), Los Alamos Natl Lab, POB 663, Los Alamos, NM 87544 USA. EM lisowski@lanl.gov NR 8 TC 90 Z9 92 U1 3 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 910 EP 914 DI 10.1016/j.nima.2006.02.178 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500088 ER PT J AU Bollen, G Baek, I Blideanu, V Lawton, D Mantica, PF Morrissey, DJ Ronningen, RM Sherrill, BS Zeller, A Beene, JR Burgess, T Carter, K Carrol, A Conner, D Gabriel, T Mansur, L Remec, I Rennich, M Stracener, D Wendel, M Ahle, L Boles, J Reyes, S Stein, W Heilbronn, L AF Bollen, G Baek, I Blideanu, V Lawton, D Mantica, PF Morrissey, DJ Ronningen, RM Sherrill, BS Zeller, A Beene, JR Burgess, T Carter, K Carrol, A Conner, D Gabriel, T Mansur, L Remec, I Rennich, M Stracener, D Wendel, M Ahle, L Boles, J Reyes, S Stein, W Heilbronn, L TI Rare isotope accelerator - conceptual design of target areas SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE radioactive beam production; high-power targets; radiation transport AB The planned rare isotope accelerator facility RIA in the US would become the most powerful radioactive beam facility in the world. RIA's driver accelerator will be a device capable of providing beams from protons to uranium at energies of at least 400 MeV per nucleon, with beam power up to 400 kW. Radioactive beam production relies on both the in-flight separation of fast beam fragments and on the ISOL technique. In both cases the high beam power poses major challenges for target technology and handling and on the design of the beam production areas. This paper will give a brief overview of RIA and discuss aspects of ongoing conceptual design work for the RIA target areas. (c) 2006 Elsevier B.V. All rights reserved. C1 Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Bollen, G (reprint author), Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. EM bollen@nscl.msu.edu RI Heilbronn, Lawrence/J-6998-2013; Sherrill, Bradley/B-3378-2011; OI Heilbronn, Lawrence/0000-0002-8226-1057; Rennich, Mark/0000-0001-6945-0075 NR 8 TC 2 Z9 2 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 915 EP 920 DI 10.1016/j.nima.2006.02.106 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500089 ER PT J AU Riemer, BW Gabriel, TA Haines, JR McManamy, TJ AF Riemer, BW Gabriel, TA Haines, JR McManamy, TJ TI Requirements for a high-power target test facility SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE spallation; accelerator; targets; cavitation AB Future advances in several research areas are being based around accelerator facilities that employ targets for generating neutrons, neutrinos or rare isotopes. The demand for higher neutron intensities and particle or isotope production is driving facilities to higher accelerator powers and more intense beams on targets. The challenges to target development are significant for accepting higher power levels while maintaining reasonable lifetimes. In the case of short-pulse liquid metal spallation targets the most significant issue is cavitation damage erosion. Although research and development is underway, long-term progress is hampered by lack of a test facility that provides prototypic beam in a flexible testing and analysis environment. The requirements of such a facility are significant, but it was recognized by some in the spallation neutron source community that many of its features would be useful for the development of targets in other research areas. This paper outlines the requirements of a desired facility that serves not only the spallation source community, but also those of other research areas. The scope of requirements includes beam parameters, test cell infrastructure, remote handling, post-irradiation examination and waste handling. Discussion and consensus between the potential users is hoped to lead to collaboration towards making the facility a reality. Published by Elsevier B.V. C1 Oak Ridge Natl Lab, Spallat Neutron Source Project, Oak Ridge, TN 37831 USA. RP Riemer, BW (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source Project, POB 2008, Oak Ridge, TN 37831 USA. EM riemerbw@ornl.gov OI Riemer, Bernard/0000-0002-6922-3056 NR 2 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 921 EP 923 DI 10.1016/j.nima.2006.02.107 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500090 ER PT J AU Graves, V Spampinato, P Gabriel, T Kirk, H Simos, N Tsang, T McDonald, K Titus, P Fabich, A Haseroth, H Lettry, J AF Graves, V Spampinato, P Gabriel, T Kirk, H Simos, N Tsang, T McDonald, K Titus, P Fabich, A Haseroth, H Lettry, J TI A free-jet Hg target operating in a high magnetic field intersecting a high-power proton beam SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE mercury jet; muon collider target; high-field solenoid; syringe pump; titanium alloy window AB A proof-of-principal experiment to investigate the interaction of a proton beam, high magnetic field, and high-Z target is planned to take place at CERN in early 2007. This experiment is part of the Muon Collider Collaboration, with participants from Brookhaven National Laboratory, Princeton University, Massachusetts Institute Of Technology, European Organization for Nuclear Research-CERN, Rutherford Appleton Laboratory, and Oak Ridge National Laboratory. An unconstrained mercury jet target system that interacts with a high power (1 MW) proton beam in a high magnetic field (15 T) is being designed. The Hg jet diameter is 1-cm with a velocity up to 20 m/s. A laser optical diagnostic system will be incorporated into the target design to permit observation of the dispersal of the jet resulting from interaction with a 24 GeV proton beam with up to 20 x 10(12) ppp. The target system includes instruments for sensing mercury vapor, temperature, flow rate, and sump tank level, and the means to position the jet relative to the magnetic axis of a solenoid and the proton beam. The design considerations for the system include all issues dealing with safely handling approximately 231 of Hg, transporting the target system and the mercury to CERN, decommissioning the experiment, and returning the mildly activated equipment and Hg to the US. (c) 2006 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Princeton Univ, Princeton, NJ 08544 USA. MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. CERN, CH-1211 Geneva 23, Switzerland. RP Graves, V (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM gravesvb@ornl.gov NR 1 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 928 EP 931 DI 10.1016/j.nima.2006.02.109 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500092 ER PT J AU Popova, I Gallmeier, F AF Popova, I Gallmeier, F TI Shielding solutions at the SNS target/accelerator interface SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE shielding; radiation; accelerator AB At the Spallation Neutron Source (SNS), a 1.4 MW proton beam at 1 GeV energy intercepts the liquid mercury target and sets free neutrons and a range of other particles. A fraction of the particles is scattered back into the last section of the accelerator tunnel, upstream from the target, and increases the already present radiation field caused by proton beam losses. The accelerator structures are exposed to high radiation fields limiting their lifetime and causing activation. Much higher activation is expected in the target and surrounding structural materials. These components become highly intense decay gamma sources and shine back into the accelerator tunnel even after beam termination. All these issues were investigated to support material selection, shielding design and maintenance planning. (c) 2006 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Popova, I (reprint author), Oak Ridge Natl Lab, POB 2008,MS6475, Oak Ridge, TN 37831 USA. EM popovai@ornl.gov OI Popova, Irina/0000-0001-9965-9902 NR 6 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 940 EP 945 DI 10.1016/j.nima.2006.02.111 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500095 ER PT J AU Gallmeier, FX Ferguson, PD Iverson, EB Popova, II Lu, W AF Gallmeier, FX Ferguson, PD Iverson, EB Popova, II Lu, W TI Neutron beamline shielding calculations at the SNS SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE neutron transport; neutron optics; shielding AB A world-class accelerator driven short pulsed neutron source is in the final stages of construction at the Oak Ridge National Laboratory. A 1.4 MW proton beam at 1 GeV energy directed on a mercury target will free neutrons through spallation reactions that will be moderated to thermal and subthermal energies and serve neutron scattering instruments at up to 24 beamlines. At spallation neutron sources, the neutron beams are contaminated by a large fraction of fast neutrons with energies up to the energy of the proton beam incident on the mercury target. Results of design calculations for the Cold Neutron Chopper Spectrometer are presented as an example to demonstrate the neutronics design analyses that are being performed to optimize the lateral beamline shielding as well as the sample and detector area with, regard to guaranteeing personal safety, minimizing neutron background and cost. (c) 2006 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Gallmeier, FX (reprint author), Oak Ridge Natl Lab, POB 2008,MS 6475, Oak Ridge, TN 37831 USA. EM gallmeierfz@ornl.gov OI Popova, Irina/0000-0001-9965-9902; Ferguson, Phillip/0000-0002-7661-4223; Iverson, Erik /0000-0002-7920-705X NR 7 TC 4 Z9 6 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 946 EP 949 DI 10.1016/j.nima.2006.02.112 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500096 ER PT J AU Nakao, N Taniguchi, S Rokni, SH Roesler, S Brugger, M Hagiwara, M Vincke, H Khater, H Prinz, AA AF Nakao, N Taniguchi, S Rokni, SH Roesler, S Brugger, M Hagiwara, M Vincke, H Khater, H Prinz, AA TI Measurement of neutron energy spectra behind shielding of a 120 GeV/c hadron beam facility SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE shielding experiment; NE213; scintillator; CERF; Monte Carlo AB Neutron energy spectra were measured behind the lateral shield of the CERF (CERN-EU High Energy Reference Field) facility at CERN with a 120GeV/c positive hadron beam (mainly a mixture of protons and pions) on a cylindrical copper target (7-cm diameter x 50-cm long). NE213 organic liquid scintillator (12.7-cm diameter x 12.7-cm long) was located at various longitudinal positions behind shields of 80- and 160-cm thick concrete and 40-cm thick iron. Neutron energy spectra in the energy range between 12 and 380 MeV were obtained by unfolding the measured pulse height spectra with the detector response functions which have been experimentally verified in the neutron energy range up to 380 MeV in separate experiments. The corresponding MARS 15 Monte Carlo simulations generally gave good agreements with the experimental energy spectra. (c) 2006 Elsevier B.V. All rights reserved. C1 Stanford Linear Accelerator Ctr, Menlo Pk, CA 94022 USA. CERN, CH-1211 Geneva 23, Switzerland. Tohoku Univ, Cyclotron Radiosotope Ctr, CYRIC, Sendai, Miyagi 9808579, Japan. RP Nakao, N (reprint author), Stanford Linear Accelerator Ctr, Menlo Pk, CA 94022 USA. EM nakao@slac.stanford.edu NR 4 TC 2 Z9 2 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 950 EP 953 DI 10.1016/j.nima.2006.02.113 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500097 ER PT J AU Taniguchi, S Nakao, N Yamakawa, H Oishi, K Nakamura, T Tamii, A Hatanaka, K Saito, T AF Taniguchi, S Nakao, N Yamakawa, H Oishi, K Nakamura, T Tamii, A Hatanaka, K Saito, T TI Measurement of response functions of organic liquid scintillator for neutron energy range up to 390 MeV SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE NE213 (organic liquid scintillator); response function; neutron measurement; TOF; quasi-monoenergetic neutron AB The neutron response functions of 12.7 cm diameter by 12.7 cm long NE213 organic liquid scintillator have been measured in the energy range up to 390 MeV at the Research Center for Nuclear Physics (RCNP) of Osaka University. The continuous energy neutrons were produced by the 392 MeV proton bombardment on a 20-cm thick aluminum target and the response functions of the time-of-flight (TOF)-gated monoenergetic neutrons in a wide energy range up to 390 MeV were simultaneously measured. The quasi-monoenergetic neutrons were also produced via Li-7(p,n)Be-7 reaction by the 392-MeV proton beam bombardment on a 1.0-cm thick Li-7 target, and the TOF-gated 388-MeV peak neutrons were used to obtain the response function at this energy. The measured results show that the response functions for monoenergetic neutrons below 100 MeV have a recoil proton plateau and an edge around the maximum light output which increases with increasing neutron energy, while on the other hand, for energies above 100 MeV, the plateau and the edge become unclear because the proton range starts to exceed the detector size allowing protons to escape. (c) 2006 Elsevier B.V. All rights reserved. C1 Japan Synchrotron Radiat Res Lab, Sayo, Hyogo 6795198, Japan. Stanford Linear Accelerator Ctr, Menlo Pk, CA 94022 USA. Shimizu Corp, Koto Ku, Tokyo 1358530, Japan. Tohoku Univ, Cycrotron & Radioisotope Ctr, Aoba Ku, Sendai, Miyagi 9808579, Japan. Osaka Univ, Res Ctr Nucl Phys, Osaka 5670047, Japan. RP Taniguchi, S (reprint author), Japan Synchrotron Radiat Res Lab, Koto 1-1-1, Sayo, Hyogo 6795198, Japan. EM shingo@spring8.or.jp NR 4 TC 6 Z9 6 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 954 EP 957 DI 10.1016/j.nima.2006.02.114 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500098 ER PT J AU Mao, XS Fasso, A Nakao, N Rokni, SH Heinz, HV AF Mao, XS Fasso, A Nakao, N Rokni, SH Heinz, HV TI The Linac coherent light source at SLAC. Radiological considerations and shielding calculations SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE X-ray free electron laser; radiological considerations; shielding AB The Linac Coherent Light Source (LCLS) at SLAC will be the world's first X-ray free electron laser when it becomes operational in 2009. Pulses of X-ray laser light from LCLS will be many orders of magnitude brighter and several orders of magnitude shorter than what can be produced by other X-ray sources available in the world. These characteristics will enable frontier new science in many areas. This paper describes the LCLS beam parameters and its lay-out. Results of the Monte Carlo calculations for the shielding design of the electron dump line, radiation damage to undulator, the residual radiation and the soil activation around the electron dump are presented. (c) 2006 Elsevier B.V. All rights reserved. C1 Stanford Linear Accelerator Ctr, Menlo Pk, CA 94022 USA. RP Mao, XS (reprint author), Stanford Linear Accelerator Ctr, Menlo Pk, CA 94022 USA. EM mao@slac.stanford.edu NR 9 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 958 EP 962 DI 10.1016/j.nima.2006.02.115 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500099 ER PT J AU Mao, XS Rokni, SH Vincke, H AF Mao, XS Rokni, SH Vincke, H TI Radiation safety analysis for the experimental hutches at the Linac coherent light source at SLAC SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE Linac Coherent Light Source (LCLS); SLAC; Monte-Carlo calculation; FLUKA; shielding AB The Linac Coherent Light Source (LCLS), the world's first X-ray free electron laser, will be constructed at the Stanford Linear Accelerator Center (SLAC) and is expected to be completed in 2009. A two-mirror system will be used in order to reduce background radiation in near and far experimental hutches. This paper describes the layout of the two-mirror system and also reports on the shielding requirements for the experimental hutches. Two beam loss scenarios for radiation sources are discussed: losses from the high energy electron beam hitting beam components and X-rays produced in the 130 in long undulator and scattered on X-ray mirrors. The FLUKA Monte-Carlo particle transport code was used for the shielding design and for the determination of the radiation levels around the experimental hutches. (c) 2006 Elsevier B.V. All rights reserved. C1 Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Vincke, H (reprint author), Stanford Linear Accelerator Ctr, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM hvincke@slac.stanford.edu NR 6 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 963 EP 966 DI 10.1016/j.nima.2006.02.116 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500100 ER PT J AU Jones, JL Norman, DR Haskell, KJ Sterbentz, JW Yoon, WY Watson, SM Johnson, JT Zabriskie, JM Bennett, BD Watson, RW Moss, CE Harmon, JF AF Jones, JL Norman, DR Haskell, KJ Sterbentz, JW Yoon, WY Watson, SM Johnson, JT Zabriskie, JM Bennett, BD Watson, RW Moss, CE Harmon, JF TI Detection of shielded nuclear material in a cargo container SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 7th International Conference on Accelerator Applications CY AUG 28-SEP 01, 2005 CL Venice, ITALY DE nuclear smuggling; cargo containers; active interrogation; photofission; neutron signature; gamma-ray signature AB The Idaho National Laboratory, along with Los Alamos National Laboratory and the Idaho State University's Idaho Accelerator Center, are developing electron accelerator-based, photonuclear inspection technologies for the detection of shielded nuclear material within air-, rail-, and especially, maritime-cargo transportation containers. This paper describes a developing prototypical cargo container inspection system utilizing the Pulsed Photonuclear Assessment (PPA) technology, incorporates interchangeable, well-defined, contraband shielding structures (i.e., "calibration" pallets) providing realistic detection data for induced radiation signatures from smuggled nuclear material, and provides various shielded nuclear material detection results. Using a 4.8-kg quantity of depleted uranium, neutron and gamma-ray detection responses are presented for well-defined shielded and unshielded configurations evaluated in a selected cargo container inspection configuration. (c) 2006 Elsevier B.V. All rights reserved. C1 Idaho Natl Lab, Idaho Falls, ID 83415 USA. Los Alamos Natl Lab, Los Alamos, NM USA. Idaho State Univ, Pocatello, ID 83201 USA. RP Jones, JL (reprint author), Idaho Natl Lab, POB 1625,MS 2802, Idaho Falls, ID 83415 USA. EM james.jones@inl.gov RI Johnson, James/B-9689-2017 OI Johnson, James/0000-0002-3434-4413 NR 3 TC 26 Z9 28 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 23 PY 2006 VL 562 IS 2 BP 1085 EP 1088 DI 10.1016/j.nima.2006.02.101 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 059XC UT WOS:000238764500130 ER PT J AU Aga, RS Morris, JR Hoyt, JJ Mendelev, M AF Aga, RS Morris, JR Hoyt, JJ Mendelev, M TI Quantitative parameter-free prediction of simulated crystal-nucleation times SO PHYSICAL REVIEW LETTERS LA English DT Article ID INTERFACIAL FREE-ENERGY; KINETICS; COLLOIDS; MELT AB We present direct comparisons between simulated crystal-nucleation times and theoretical predictions using a model of aluminum, and demonstrate that a quantitative prediction can be made. All relevant thermodynamic properties of the system are known, making the agreement of our simulation data with nucleation theories free of any adjustable parameters. The role of transient nucleation is included in the classical nucleation theory approach, and shown to be necessary to understand the observed nucleation times. The calculations provide an explanation on why nucleation is difficult to observe in simulations at moderate undercoolings. Even when the simulations are significantly larger than the critical nucleus, and when simulation times are sufficiently long, at moderate undercoolings the small concentration of critical nuclei makes the probability of the nucleation low in molecular dynamics simulations. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Tennessee, Knoxville, TN 37996 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Ames Lab, Ames, IA 50011 USA. RP Aga, RS (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM agars@ornl.gov; morrisj@ornl.gov RI Morris, J/I-4452-2012 OI Morris, J/0000-0002-8464-9047 NR 23 TC 28 Z9 28 U1 1 U2 14 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 23 PY 2006 VL 96 IS 24 AR 245701 DI 10.1103/PhysRevLett.96.245701 PG 4 WC Physics, Multidisciplinary SC Physics GA 055YS UT WOS:000238487900035 PM 16907254 ER PT J AU Aubert, B Barate, R Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Pappagallo, M Pompili, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Breon, AB Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Gritsan, AV Groysman, Y Jacobsen, RG Kadel, RW Kadyk, J Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Fritsch, M Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Chevalier, N Cottingham, WN Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, AE Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Yushkov, AN Best, D Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Buchanan, C Hartfiel, BL Weinstein, AJR Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L del Re, D Hadavand, HK Hill, EJ MacFarlane, DB Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Mazur, MA Richman, JD Verkerke, W Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dubois-Felsmann, GP Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, P Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Rankin, P Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Harton, JL Soffer, A Toki, WH Wilson, RJ Zeng, Q Aleksan, R Emery, S Gaidot, A Ganzhur, SF Giraud, PF Graziani, G de Monchenault, GH Kozanecki, W Legendre, M London, GW Mayer, B Vasseur, G Yeche, C Zito, M Altenburg, D Feltresi, E Hauke, A Spaan, B Brandt, T Brose, J Dickopp, M Klose, V Lacker, HM Nogowski, R Otto, S Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Bernard, D Bonneaud, GR Grenier, P Schrenk, S Thiebaux, C Vasileiadis, G Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Xie, Y Andreotti, M Azzolini, V Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Piemontese, L Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Patteri, P Peruzzi, IM Piccolo, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, M Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Won, E Wu, J Dubitzky, RS Langenegger, U Marks, J Schenk, S Uwer, U Martinez-Vidal, F Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Morton, GW Nash, JA Nikolich, MB Taylor, GP Vazquez, WP Charles, MJ Mader, WF Mallik, U Mohapatra, AK Cochran, J Crawley, HB Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Yi, J Biasini, M Covarelli, R Pacetti, S Pioppi, M Arnaud, N Davier, M Giroux, X Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Petersen, TC Pierini, M Plaszczynski, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wormser, G Cheng, CH Lange, DJ Simani, MC Wright, DM Bevan, AJ Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Parry, RJ Payne, DJ Schofield, KC Touramanis, C Cormack, CM Di Lodovico, F Menges, W Sacco, R Brown, CL Cowan, G Flaecher, HU Green, MG Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, D Davis, CL Allison, J Barlow, NR Barlow, RJ Edgar, CL Hodgkinson, MC Kelly, MP Lafferty, GD Naisbit, MT Williams, JC Chen, C Hulsbergen, WD Jawahery, A Kovalskyi, D Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Kofler, R Koptchev, VB Li, X Moore, TB Saremi, S Staengle, H Willocq, S Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Taras, P Viaud, B Nicholson, H Baak, M Bulten, H Raven, G Snoek, HL Wilden, L Cavallo, N De Nardo, G Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Brau, J Frey, R Igonkina, O Lu, M Potter, CT Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Briand, H Chauveau, J David, P de la Vaissiere, C Del Buono, L Hamon, O John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Guo, QH Panetta, J Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganit, M Neri, N Paoloni, E Rama, M Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, Y Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Li Gioi, L Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Schroder, H Wagner, G Waldi, R Adye, T De Groot, N Franek, B Gopal, GP Olaiya, EO Wilson, FF Purohit, MV Weidemann, AW Wilson, JR Yumiceva, FX Abe, T Allen, MT Aston, D Bartoldus, R Berger, N Boyarski, AM Buchmueller, OL Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dujmic, D Dunwoodie, W Fan, S Field, RC Glanzman, T Gowdy, SJ Hadig, T Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Libby, J Luitz, S Luth, V Lynch, HL Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Ahmed, M Ahmed, S Alam, MS Bula, R Ernst, JA Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Bona, M Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Panvini, RS Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Graham, M Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Pan, Y Prepost, R Tan, P von Wimmersperg-Toeller, JH Wu, SL Yu, Z Neal, H Schott, G AF Aubert, B. Barate, R. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Pappagallo, M. Pompili, A. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Breon, A. B. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Day, C. T. Gill, M. S. Gritsan, A. V. Groysman, Y. Jacobsen, R. G. Kadel, R. W. Kadyk, J. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Oddone, P. J. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Fritsch, M. Goetzen, K. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Chevalier, N. Cottingham, W. N. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Teodorescu, L. Blinov, A. E. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Kravchenko, E. A. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Yushkov, A. N. Best, D. Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Buchanan, C. Hartfiel, B. L. Weinstein, A. J. R. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. del Re, D. Hadavand, H. K. Hill, E. J. MacFarlane, D. B. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Mazur, M. A. Richman, J. D. Verkerke, W. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dubois-Felsmann, G. P. Dvoretskii, A. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Andreassen, R. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Blanc, F. Bloom, P. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nauenberg, U. Olivas, A. Rankin, P. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Harton, J. L. Soffer, A. Toki, W. H. Wilson, R. J. Zeng, Q. Aleksan, R. Emery, S. Gaidot, A. Ganzhur, S. F. Giraud, P. -F. Graziani, G. Hamel de Monchenault, G. Kozanecki, W. Legendre, M. London, G. W. Mayer, B. Vasseur, G. Yeche, Ch. Zito, M. Altenburg, D. Feltresi, E. Hauke, A. Spaan, B. Brandt, T. Brose, J. Dickopp, M. Klose, V. Lacker, H. M. Nogowski, R. Otto, S. Petzold, A. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Bernard, D. Bonneaud, G. R. Grenier, P. Schrenk, S. Thiebaux, Ch. Vasileiadis, G. Verderi, M. Bard, D. J. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Xie, Y. Andreotti, M. Azzolini, V. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Piemontese, L. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Patteri, P. Peruzzi, I. M. Piccolo, M. Zallo, A. Buzzo, A. Capra, R. Contri, R. Lo Vetere, M. Macri, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Won, E. Wu, J. Dubitzky, R. S. Langenegger, U. Marks, J. Schenk, S. Uwer, U. Martinez-Vidal, F. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Gaillard, J. R. Morton, G. W. Nash, J. A. Nikolich, M. B. Taylor, G. P. Vazquez, W. P. Charles, M. J. Mader, W. F. Mallik, U. Mohapatra, A. K. Cochran, J. Crawley, H. B. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Yi, J. Biasini, M. Covarelli, R. Pacetti, S. Pioppi, M. Arnaud, N. Davier, M. Giroux, X. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Petersen, T. C. Pierini, M. Plaszczynski, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wormser, G. Cheng, C. H. Lange, D. J. Simani, M. C. Wright, D. M. Bevan, A. J. Chavez, C. A. Forster, Ian J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Parry, R. J. Payne, D. J. Schofield, K. C. Touramanis, C. Cormack, C. M. Di Lodovico, F. Menges, W. Sacco, R. Brown, C. L. Cowan, G. Flaecher, H. U. Green, M. G. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Brown, D. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Edgar, C. L. Hodgkinson, M. C. Kelly, M. P. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Chen, C. Hulsbergen, W. D. Jawahery, A. Kovalskyi, D. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Kofler, R. Koptchev, V. B. Li, X. Moore, T. B. Saremi, S. Staengle, H. Willocq, S. Cowan, R. Koeneke, K. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Reidy, J. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Taras, P. Viaud, B. Nicholson, H. Baak, M. Bulten, H. Raven, G. Snoek, H. L. Wilden, L. Cavallo, N. De Nardo, G. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Pulliam, T. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Brau, J. Frey, R. Igonkina, O. Lu, M. Potter, C. T. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Galeazzi, F. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Briand, H. Chauveau, J. David, P. de la Vaissiere, C. Del Buono, L. Hamon, O. John, M. J. J. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Behera, P. K. Gladney, L. Guo, Q. H. Panetta, J. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganit, M. Neri, N. Paoloni, E. Rama, M. Rizzo, G. Walsh, J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Li Gioi, L. Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Schroeder, H. Wagner, G. Waldi, R. Adye, T. De Groot, N. Franek, B. Gopal, G. P. Olaiya, E. O. Wilson, F. F. Purohit, M. V. Weidemann, A. W. Wilson, J. R. Yumiceva, F. X. Abe, T. Allen, M. T. Aston, D. Bartoldus, R. Berger, N. Boyarski, A. M. Buchmueller, O. L. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dong, D. Dorfan, J. Dujmic, D. Dunwoodie, W. Fan, S. Field, R. C. Glanzman, T. Gowdy, S. J. Hadig, T. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Libby, J. Luitz, S. Luth, V. Lynch, H. L. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Ahmed, M. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schwitters, R. F. Izen, J. M. Kitayama, I. Lou, X. C. Ye, S. Bianchi, F. Bona, M. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Grancagnolo, S. Lanceri, L. Vitale, L. Panvini, R. S. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Eichenbaum, A. M. Flood, K. T. Graham, M. Hollar, J. J. Johnson, J. R. Kutter, P. E. Li, H. Liu, R. Mellado, B. Mihalyi, A. Pan, Y. Prepost, R. Tan, P. von Wimmersperg-Toeller, J. H. Wu, S. L. Yu, Z. Neal, H. Schott, G. CA BARBAR Collaboration TI Search for the rare decay B-0 ->tau(+)tau(-) at BABAR SO PHYSICAL REVIEW LETTERS LA English DT Article AB We present the results of a search for the decay B-0 ->tau(+)tau(-) in a data sample of (232 +/- 3)x10(6) Upsilon(4S)-> BB decays using the BABAR detector. Certain extensions of the standard model predict measurable levels of this otherwise rare decay. We reconstruct fully one neutral B meson and seek evidence for the signal decay in the rest of the event. We find no evidence for signal events and obtain B(B-0 ->tau(+)tau(-))< 4.1x10(-3) at the 90% confidence level. C1 Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. Univ Bari, Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, LLR, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. Univ Ferrara, Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Univ Genoa, Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, D-69120 Heidelberg, Germany. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Accelerateur Lineaire Lab, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 72E, Merseyside, England. Queen Mary Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Univ Milan, Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Lab Rene JA Levesque, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. NIKHEF H, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Univ Naples Federico II, Ist Nazl Fis Nucl, I-80126 Naples, Italy. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Univ Padua, Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl HE, F-75252 Paris, France. Univ Paris 07, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Univ Pisa, Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Univ Roma La Sapienza, Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Univ Turin, Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Univ Trieste, Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Vanderbilt Univ, Nashville, TN 37235 USA. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. RP Aubert, B (reprint author), Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Oyanguren, Arantza/K-6454-2014; Della Ricca, Giuseppe/B-6826-2013; Mir, Lluisa-Maria/G-7212-2015; Kravchenko, Evgeniy/F-5457-2015; M, Saleem/B-9137-2013; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Rotondo, Marcello/I-6043-2012; Neri, Nicola/G-3991-2012; Grancagnolo, Sergio/J-3957-2015; Lo Vetere, Maurizio/J-5049-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Forti, Francesco/H-3035-2011; Luppi, Eleonora/A-4902-2015; Martinez Vidal, F*/L-7563-2014; Monge, Maria Roberta/G-9127-2012; Kolomensky, Yury/I-3510-2015; Di Lodovico, Francesca/L-9109-2016; Lista, Luca/C-5719-2008; Cavallo, Nicola/F-8913-2012; Morandin, Mauro/A-3308-2016; Bellini, Fabio/D-1055-2009; Patrignani, Claudia/C-5223-2009; Calabrese, Roberto/G-4405-2015; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; de Groot, Nicolo/A-2675-2009; Peters, Klaus/C-2728-2008; Roe, Natalie/A-8798-2012 OI Cavoto, Gianluca/0000-0003-2161-918X; Barlow, Roger/0000-0002-8295-8612; Raven, Gerhard/0000-0002-2897-5323; Oyanguren, Arantza/0000-0002-8240-7300; Della Ricca, Giuseppe/0000-0003-2831-6982; Mir, Lluisa-Maria/0000-0002-4276-715X; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Egede, Ulrik/0000-0001-5493-0762; Rotondo, Marcello/0000-0001-5704-6163; Neri, Nicola/0000-0002-6106-3756; Grancagnolo, Sergio/0000-0001-8490-8304; Lo Vetere, Maurizio/0000-0002-6520-4480; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Forti, Francesco/0000-0001-6535-7965; Luppi, Eleonora/0000-0002-1072-5633; Martinez Vidal, F*/0000-0001-6841-6035; Monge, Maria Roberta/0000-0003-1633-3195; Kolomensky, Yury/0000-0001-8496-9975; Di Lodovico, Francesca/0000-0003-3952-2175; Morandin, Mauro/0000-0003-4708-4240; Bellini, Fabio/0000-0002-2936-660X; Patrignani, Claudia/0000-0002-5882-1747; Calabrese, Roberto/0000-0002-1354-5400; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Peters, Klaus/0000-0001-7133-0662; NR 11 TC 86 Z9 86 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 23 PY 2006 VL 96 IS 24 AR 241802 DI 10.1103/PhysRevLett.96.241802 PG 7 WC Physics, Multidisciplinary SC Physics GA 055YS UT WOS:000238487900011 PM 16907295 ER PT J AU Barzykin, V Pines, D AF Barzykin, V Pines, D TI Phenomenological model of protected behavior in the pseudogap state of underdoped cuprate superconductors SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-T-C; COPPER-OXIDE SUPERCONDUCTORS; HEISENBERG-ANTIFERROMAGNET; MAGNETIC FLUCTUATIONS; PHASE-SEPARATION; NMR; LA2-XSRXCUO4; RELAXATION; YBA2CU3O7; LIQUID AB By extending previous work on the scaling of low frequency magnetic properties of the 2-1-4 cuprates to the 1-2-3 materials, we arrive at a consistent phenomenological description of protected behavior in the pseudogap state of the magnetically underdoped cuprates. Between zero hole doping and a doping level of similar to 0.22, it reflects the presence of a mixture of an insulating spin liquid that produces the measured magnetic scaling behavior and a Fermi liquid that becomes superconducting for doping levels x > 0.06. Our analysis suggests the existence of two quantum critical points, at doping levels x similar to 0.05 and x similar to 0.22, and that d-wave superconductivity in the pseudogap region arises from quasiparticle-spin liquid interaction, i.e., magnetic interactions between quasiparticles in the Fermi liquid induced by their coupling to the spin liquid excitations. C1 Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Barzykin, V (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. NR 32 TC 12 Z9 13 U1 0 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 23 PY 2006 VL 96 IS 24 AR 247002 DI 10.1103/PhysRevLett.96.247002 PG 4 WC Physics, Multidisciplinary SC Physics GA 055YS UT WOS:000238487900052 PM 16907271 ER PT J AU Baumberger, F Ingle, NJC Meevasana, W Shen, KM Lu, DH Perry, RS Mackenzie, AP Hussain, Z Singh, DJ Shen, ZX AF Baumberger, F. Ingle, N. J. C. Meevasana, W. Shen, K. M. Lu, D. H. Perry, R. S. Mackenzie, A. P. Hussain, Z. Singh, D. J. Shen, Z. -X. TI Fermi surface and quasiparticle excitations of Sr2RhO4 SO PHYSICAL REVIEW LETTERS LA English DT Article ID SUPERCONDUCTOR SR2RUO4; PHASE AB The electronic structure of the layered 4d transition metal oxide Sr2RhO4 is investigated by angle resolved photoemission. We find well-defined quasiparticle excitations with a highly anisotropic dispersion, suggesting a quasi-two-dimensional Fermi-liquid-like ground state. Markedly different from the isostructural Sr2RuO4, only two bands with dominant Rh 4d(xz,zy) character contribute to the Fermi surface. A quantitative analysis of the photoemission quasiparticle band structure is in excellent agreement with bulk data. In contrast, it is found that state-of-the-art density functional calculations in the local density approximation differ significantly from the experimental findings. C1 Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. Stanford Univ, Dept Phys, Stanford, CA 94305 USA. Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. RP Baumberger, F (reprint author), Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. RI Baumberger, Felix/A-5170-2008; Shen, Kyle/B-3693-2008; Singh, David/I-2416-2012; Mackenzie, Andrew/K-6742-2015 OI Baumberger, Felix/0000-0001-7104-7541; NR 26 TC 26 Z9 27 U1 2 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 23 PY 2006 VL 96 IS 24 AR 246402 DI 10.1103/PhysRevLett.96.246402 PG 4 WC Physics, Multidisciplinary SC Physics GA 055YS UT WOS:000238487900041 PM 16907260 ER PT J AU Hannon, JB Sun, J Pohl, K Kellogg, GL AF Hannon, JB Sun, J Pohl, K Kellogg, GL TI Origins of nanoscale heterogeneity in ultrathin films SO PHYSICAL REVIEW LETTERS LA English DT Article ID ENERGY-ELECTRON-DIFFRACTION; CU(100); SURFACE; ALLOY AB A key challenge in thin-film growth is controlling structure and composition at the atomic scale. We have used spatially resolved electron scattering to measure how the three-dimensional composition profile of an alloy film evolves with time at the nanometer length scale. We show that heterogeneity during the growth of Pd on Cu(001) arises naturally from a generic step-overgrowth mechanism relevant in many growth systems. C1 IBM Corp, Div Res, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Hannon, JB (reprint author), IBM Corp, Div Res, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. EM jbhannon@us.ibm.com RI Sun, Jiebing/B-5678-2012 NR 15 TC 26 Z9 26 U1 0 U2 9 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 23 PY 2006 VL 96 IS 24 AR 246103 DI 10.1103/PhysRevLett.96.246103 PG 4 WC Physics, Multidisciplinary SC Physics GA 055YS UT WOS:000238487900038 PM 16907257 ER PT J AU Lu, LC Burnstein, RA Chakravorty, A Chen, YC Choong, WS Clark, K Dukes, EC Durandet, C Felix, J Fu, Y Gidal, G Gustafson, HR Holmstrom, T Huang, M James, C Jenkins, CM Jones, TD Kaplan, DM Longo, MJ Luebke, W Luk, KB Nelson, KS Park, HK Perroud, JP Rajaram, D Rubin, HA Volk, J White, CG White, SL Zyla, P AF Lu, L. C. Burnstein, R. A. Chakravorty, A. Chen, Y. C. Choong, W. -S. Clark, K. Dukes, E. C. Durandet, C. Felix, J. Fu, Y. Gidal, G. Gustafson, H. R. Holmstrom, T. Huang, M. James, C. Jenkins, C. M. Jones, T. D. Kaplan, D. M. Longo, M. J. Luebke, W. Luk, K. -B. Nelson, K. S. Park, H. K. Perroud, J. -P. Rajaram, D. Rubin, H. A. Volk, J. White, C. G. White, S. L. Zyla, P. CA HyperCP Collaboration TI Measurement of the asymmetry in the decay (Omega)over-bar(+)->(Lambda)over-barK(+)->(p)over-bar-pi(+) K+ SO PHYSICAL REVIEW LETTERS LA English DT Article ID HYPERCP EXPERIMENT; OMEGA; VIOLATION; LIFETIME; SPIN AB The asymmetry in the p angular distribution in the sequential decay Omega(+)->Lambda K+-> p pi K-+(+) has been measured to be alpha Omega alpha Lambda = [+1: 16 +/- 0: 18 (stat)+/- 0: 17(syst)] x 10(-2) using 1.89 x 10(6) unpolarized Omega(+) decays recorded by the HyperCP (E871) experiment at Fermilab. Using the known value of alpha(Lambda), and assuming that alpha Lambda = -alpha(Lambda), alpha(Omega) = [-1:81 +/- 0: 28(stat)+/- 0: 26(syst)] x 10(-2). A comparison between this measurement of alpha(Omega)alpha(Lambda) and recent measurements of alpha(Omega)alpha(Lambda) made by HyperCP shows no evidence of a violation of CP symmetry. C1 Univ Virginia, Charlottesville, VA 22904 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Univ Calif Berkeley, Berkeley, CA 94720 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Guanajuato, Leon 37000, Mexico. IIT, Chicago, IL 60616 USA. Univ Lausanne, CH-1015 Lausanne, Switzerland. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Univ S Alabama, Mobile, AL 36688 USA. RP Dukes, EC (reprint author), Univ Virginia, Charlottesville, VA 22904 USA. EM craigdukes@virginia.edu NR 22 TC 3 Z9 3 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 23 PY 2006 VL 96 IS 24 AR 242001 DI 10.1103/PhysRevLett.96.242001 PG 4 WC Physics, Multidisciplinary SC Physics GA 055YS UT WOS:000238487900012 ER PT J AU Malthe-Sorenssen, A Jamtveit, B Meakin, P AF Malthe-Sorenssen, A Jamtveit, B Meakin, P TI Fracture patterns generated by diffusion controlled volume changing reactions SO PHYSICAL REVIEW LETTERS LA English DT Article ID CRACK; MODEL AB A simple two-dimensional model was developed for the growth of fractures in a chemically decomposing solid. Simulations were carried out under rapid chemical decomposition conditions for which the kinetics of fracture growth is controlled by diffusion of the volatile reaction product or the kinetics of evaporation. The growth of the fracture pattern is self-sustaining due to the volume reduction associated with the decomposition process. Consistent with the theoretical analysis of Yakobson [Phys. Rev. Lett. 67, 1590 (1991)], the fracture front propagates with a constant velocity v similar or equal to k(2/3)(Dl(0))(1/3) under evaporation controlled conditions and v similar or equal to D/l(0) under diffusion controlled conditions, where k is the evaporation rate constant, D is the diffusion constant for the volatile reaction product in the solid, and l(0) is the critical stable crack length. Under diffusion controlled conditions, the front width w scales as w similar or equal to(kl(0)/)D. C1 Univ Oslo, N-0316 Oslo, Norway. Idaho Natl Engn Lab, Idaho Falls, ID 83415 USA. RP Malthe-Sorenssen, A (reprint author), Univ Oslo, Box 1048 Blindern, N-0316 Oslo, Norway. RI Malthe-Sorenssen, Anders/C-2015-2015; OI Malthe-Sorenssen, Anders/0000-0001-8138-3995; Jamtveit, Bjorn/0000-0001-5700-1803 NR 16 TC 28 Z9 28 U1 0 U2 13 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 23 PY 2006 VL 96 IS 24 AR 245501 DI 10.1103/PhysRevLett.96.245501 PG 4 WC Physics, Multidisciplinary SC Physics GA 055YS UT WOS:000238487900032 PM 16907251 ER PT J AU Matan, K Grohol, D Nocera, DG Yildirim, T Harris, AB Lee, SH Nagler, SE Lee, YS AF Matan, K Grohol, D Nocera, DG Yildirim, T Harris, AB Lee, SH Nagler, SE Lee, YS TI Spin waves in the frustrated kagome lattice antiferromagnet KFe3(OH)(6)(SO4)(2) SO PHYSICAL REVIEW LETTERS LA English DT Article ID HEISENBERG-ANTIFERROMAGNET; WEAK FERROMAGNETISM; ORDER; FLUCTUATIONS; ICE AB The spin wave excitations of the S=5/2 kagome lattice antiferromagnet KFe3(OH)(6)(SO4)(2) have been measured using high-resolution inelastic neutron scattering. We directly observe a flat mode which corresponds to a lifted "zero energy mode," verifying a fundamental prediction for the kagome lattice. A simple Heisenberg spin Hamiltonian provides an excellent fit to our spin wave data. The antisymmetric Dzyaloshinskii-Moriya interaction is the primary source of anisotropy and explains the low-temperature magnetization and spin structure. C1 MIT, Dept Phys, Cambridge, MA 02139 USA. MIT, Dept Chem, Cambridge, MA 02139 USA. NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. Oak Ridge Natl Lab, Ctr Neutron Scattering, Oak Ridge, TN 37831 USA. RP Matan, K (reprint author), MIT, Dept Phys, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI yildirim, taner/A-1290-2009; Nagler, Stephen/B-9403-2010; Nagler, Stephen/E-4908-2010; harris, A Brooks/C-8640-2013 OI Nagler, Stephen/0000-0002-7234-2339; NR 26 TC 73 Z9 73 U1 1 U2 22 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 23 PY 2006 VL 96 IS 24 AR 247201 DI 10.1103/PhysRevLett.96.247201 PG 4 WC Physics, Multidisciplinary SC Physics GA 055YS UT WOS:000238487900055 PM 16907274 ER PT J AU Schultz, PA AF Schultz, Peter A. TI Theory of defect levels and the "band gap problem" in silicon SO PHYSICAL REVIEW LETTERS LA English DT Article ID PERIODIC BOUNDARY-CONDITIONS; DENSITY-FUNCTIONAL THEORY; AB-INITIO CALCULATIONS; NEGATIVE-U PROPERTIES; INTERSTITIAL BORON; SPIN RESONANCE; POINT-DEFECTS; SYSTEMS; PSEUDOPOTENTIALS; SEMICONDUCTORS AB Quantitative predictions of defect properties in semiconductors using density functional theory have been crippled by two issues: the supercell approximation, which has incorrect boundary conditions for an isolated defect, and approximate functionals, that drastically underestimate the band gap. I describe modifications to the supercell method that incorporate boundary conditions appropriate to point defects, identify a common electron reservoir for net charge for all defects, deal with defect banding, and incorporate bulk polarization. The computed level spectrum for an extended set of silicon defects spans the experimental gap, i.e., exhibits no band gap problem, and agrees remarkably well with experiment. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Schultz, PA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM paschul@sandia.gov NR 32 TC 80 Z9 81 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 23 PY 2006 VL 96 IS 24 AR 246401 DI 10.1103/PhysRevLett.96.246401 PG 4 WC Physics, Multidisciplinary SC Physics GA 055YS UT WOS:000238487900040 PM 16907259 ER PT J AU Voulgarakis, NK Redondo, A Bishop, AR Rasmussen, KO AF Voulgarakis, NK Redondo, A Bishop, AR Rasmussen, KO TI Probing the mechanical unzipping of DNA SO PHYSICAL REVIEW LETTERS LA English DT Article ID DENATURATION; INITIATION; CHAINS; MODEL AB A study of the micromechanical unzipping of DNA in the framework of the Peyrard-Bishop-Dauxois model is presented. We introduce a Monte Carlo technique that allows accurate determination of the dependence of the unzipping forces on unzipping speed and temperature. Our findings agree quantitatively with experimental results for homogeneous DNA, and for lambda-phage DNA we reproduce the recently obtained experimental force-temperature phase diagram. Finally, we argue that there may be fundamental differences between in vivo and in vitro DNA unzipping. C1 Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Voulgarakis, NK (reprint author), Los Alamos Natl Lab, Theoret Div, POB 1663, Los Alamos, NM 87545 USA. RI Rasmussen, Kim/B-5464-2009; Voulgarakis, Nikolaos/A-8711-2010 OI Rasmussen, Kim/0000-0002-4029-4723; NR 22 TC 27 Z9 28 U1 1 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 23 PY 2006 VL 96 IS 24 AR 248101 DI 10.1103/PhysRevLett.96.248101 PG 4 WC Physics, Multidisciplinary SC Physics GA 055YS UT WOS:000238487900063 PM 16907282 ER PT J AU Davison, BH Ragauskas, AJ Templer, R Tschaplinski, TJ Mielenz, JR AF Davison, BH Ragauskas, AJ Templer, R Tschaplinski, TJ Mielenz, JR TI Measuring the efficiency of biomass energy - Response SO SCIENCE LA English DT Letter C1 Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37831 USA. Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. Univ London Imperial Coll Sci Technol & Med, Div Biol, London SW7 2AZ, England. RP Davison, BH (reprint author), Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37831 USA. RI Davison, Brian/D-7617-2013 OI Davison, Brian/0000-0002-7408-3609 NR 3 TC 3 Z9 3 U1 2 U2 18 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUN 23 PY 2006 VL 312 IS 5781 BP 1744 EP 1745 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 055LS UT WOS:000238452800023 ER PT J AU Downing, M AF Downing, M TI Harvesting our meadows for biofuel? Response SO SCIENCE LA English DT Letter C1 Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Downing, M (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. NR 0 TC 1 Z9 1 U1 0 U2 0 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUN 23 PY 2006 VL 312 IS 5781 BP 1745 EP 1746 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 055LS UT WOS:000238452800025 ER PT J AU Lynd, L Greene, N Dale, B Laser, M Lashof, D Wang, M Wyman, C AF Lynd, L Greene, N Dale, B Laser, M Lashof, D Wang, M Wyman, C TI Energy returns on ethanol production SO SCIENCE LA English DT Letter C1 Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. Nat Resources Def Council, New York, NY 10011 USA. Michigan State Univ, Dept Chem Engn, E Lansing, MI 48824 USA. Nat Resources Def Council, Climate Ctr, Washington, DC 20005 USA. Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol, Riverside, CA 92507 USA. RP Lynd, L (reprint author), Dartmouth Coll, Thayer Sch Engn, 8000 Cummings Hall, Hanover, NH 03755 USA. RI Lynd, Lee/N-1260-2013 OI Lynd, Lee/0000-0002-5642-668X NR 3 TC 14 Z9 14 U1 0 U2 16 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUN 23 PY 2006 VL 312 IS 5781 BP 1746 EP 1747 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 055LS UT WOS:000238452800028 PM 16800049 ER PT J AU Farrell, AE AF Farrell, AE TI Ethanol can contribute to energy and environmental goals (vol 311, pg 506, 2006) SO SCIENCE LA English DT Correction C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Farrell, AE (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. NR 1 TC 6 Z9 8 U1 3 U2 41 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUN 23 PY 2006 VL 312 IS 5781 BP 1748 EP 1748 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 055LS UT WOS:000238452800035 ER PT J AU de Pater, I Adamkovics, M Bouchez, AH Brown, ME Gibbard, SG Marchis, F Roe, HG Schaller, EL Young, E AF de Pater, I Adamkovics, M Bouchez, AH Brown, ME Gibbard, SG Marchis, F Roe, HG Schaller, EL Young, E TI Titan imagery with Keck adaptive optics during and after probe entry SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID MIDLATITUDE CLOUDS; MU-M; ATMOSPHERE; SURFACE; WINDS; ABSORPTION; TELESCOPE; EVOLUTION; GEMINI; STARS AB [ 1] We present adaptive optics data from the Keck telescope, taken while the Huygens probe descended through Titan's atmosphere and on the days following touchdown. No probe entry signal was detected. Our observations span a solar phase angle range from 0.05 degrees up to 0.8 degrees, with the Sun in the west. Contrary to expectations, the east side of Titan's stratosphere was usually brightest. Compiling images obtained with Keck and Gemini over the past few years reveals that the east-west asymmetry can be explained by a combination of the solar phase angle effect and an enhancement in the haze density on Titan's morning hemisphere. While stratospheric haze was prominent over the northern hemisphere, tropospheric haze dominated the south, from the south pole up to latitudes of similar to 45 degrees S. At 2.1 mu m this haze forms a polar cap, while at 1.22 mu m it appears in the form of a collar at 60 degrees S. A few small clouds were usually present near the south pole, at altitudes of 30 - 40 km. Our narrowband J, H, K images of Titan's surface compare extremely well with that obtained by Cassini ISS, down to the small-scale features. The surface contrast between dark and bright areas may be larger at 2 mu m than at 1.6 and 1.3 mu m, which would imply that the dark areas may be covered by a coarser-grained frost than the bright regions and/or that there is additional 2 mu m absorption there. C1 Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. CALTECH, Opt Observ, Pasadena, CA 91125 USA. CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. SW Res Inst, Boulder, CO 80302 USA. RP de Pater, I (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM imke@astro.berkeley.edu NR 41 TC 6 Z9 6 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUN 22 PY 2006 VL 111 IS E7 AR E07S05 DI 10.1029/2005JE002620 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 057ND UT WOS:000238601600001 ER PT J AU Gary, SP Yin, L Winske, D AF Gary, S. Peter Yin, Lin Winske, Dan TI Alfven-cyclotron scattering of solar wind ions: Hybrid simulations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PITCH-ANGLE DIFFUSION; VELOCITY DISTRIBUTIONS; TEMPERATURE ANISOTROPY; HEAVY-IONS; PROTON; WAVES; ACCELERATION; CORONA; RESONANCE; PLASMA AB [ 1] This paper describes results from ensembles of hybrid simulations of steady, homogeneous, collisionless plasmas characterized by average solar wind parameters near 1 AU upon which damped, resonant Alfven-cyclotron fluctuations are imposed. The applied fluctuations propagate parallel to the background magnetic field B-o. The ensembles yield late-time proton and alpha particle responses to such fluctuations as functions of the initial magnitude of the applied fluctuating magnetic field energy and the initial nu(alpha p)/nu(A) ( where nu(alpha p) is the alpha/proton relative speed and nu(A) is the Alfven speed). The simulations show a strong, consistent negative correlation between the alpha temperature anisotropy T-perpendicular to alpha/ T-parallel to alpha ( where the directional subscripts refer to directions perpendicular and parallel to B-o) and nu(alpha p)/nu(A). On average the simulations also show a weaker, positive correlation between the proton temperature anisotropy and nu(alpha p)/nu(A). Both correlations are in agreement with statistical observations from the solar wind near 1 AU, thereby confirming earlier conclusions that such observations are signatures of Alfven-cyclotron scattering of ions in the solar wind. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Gary, SP (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM pgary@lanl.gov; lyin@lanl.gov; winske@lanl.gov OI Yin, Lin/0000-0002-8978-5320 NR 47 TC 21 Z9 21 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN 22 PY 2006 VL 111 IS A6 AR A06105 DI 10.1029/2005JA011552 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 057NT UT WOS:000238603200007 ER PT J AU Arrowsmith, AN Chikan, V Leone, SR AF Arrowsmith, AN Chikan, V Leone, SR TI Dynamics of the CH(A(2)Delta) product from the reaction of C2H with O-2 studied by Fourier transform visible Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID 193.3 NM; ULTRAVIOLET PHOTODISSOCIATION; C2H+O(P-3) REACTION; COUPLED-CLUSTER; RATE-CONSTANT; CH; ACETYLENE; EMISSION; RADICALS; STATES AB The reaction C2H + O-2 -> CH(A(2)Delta) + CO2 is investigated using Fourier transform visible emission spectroscopy. C2H radicals, produced by 193 nm photolysis of C2H2, react with O-2 molecules at low total pressures to produce electronically excited CH(A(2)Delta). Observation of the CH(A(2)Delta - X2 Pi) electronic emission to infer nascent rotational and vibrational CH(A(2)Delta) distributions provides information about energy partitioning in the CH(A(2)Delta) fragment during the reaction. The rotational and vibrational populations of the CH(A(2)Delta) product are determined by fitting the rotationally resolved experimental spectra with simulated spectra. The CH(A(2)Delta) product is found to be rotationally and vibrationally excited with T-rot congruent to 1150 K and T-vib = 1900 K. The mechanism for this reaction proceeds through one of two five-atom intermediates and requires a crossing between electronic potential surfaces. The rotational excitation suggests a bent geometry for the final intermediate of this reaction before dissociation to products, and the vibrational excitation involves an elongation of the C-H bond from the compressed transition state to the final CH(A) state. C1 Univ Colorado, Natl Inst Standards & Technol, Boulder, CO 80309 USA. Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Leone, SR (reprint author), Univ Colorado, Natl Inst Standards & Technol, Boulder, CO 80309 USA. NR 42 TC 3 Z9 3 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 22 PY 2006 VL 110 IS 24 BP 7521 EP 7526 DI 10.1021/jp061246e PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 053DH UT WOS:000238284400002 PM 16774192 ER PT J AU Engelke, R Sheffield, SA Stacy, HL AF Engelke, R Sheffield, SA Stacy, HL TI Effect of deuteration on the diameter-effect curve of liquid nitromethane SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID CHEMICAL-REACTION-ZONE; ACI ION; AMINE SENSITIZATION; HIGH-PRESSURE; DETONATION; KINETICS AB The detonation properties of liquid nitromethane [CH3NO2] are probably the most thoroughly studied of any condensed-phase explosive. Because it is homogeneous (i.e., lacks hot-spot phenomena), it provides a window into the underlying chemical processes induced by a passing shock or detonation wave-such information is submerged in the complex fluid mechanics when heterogeneous explosives are detonated. In this paper, we provide experimental data and data analysis of the effect that deuterating nitromethane's methyl group has on some aspects of the processes that occur in the detonating liquid material. In the experimental part of this study, we report diameter-effect curves (i. e., inverse charge internal radius vs steady detonation speed) for pure CH3NO2 and pure CD3NO2 confined in right-circular cylinders of C-260 brass. Large differences in the infinite-medium (i. e., plane wave) detonation speed and in the failure diameter of the two materials are observed. Interpretations of the observations based on physical and chemical theory are given. The observed large decrease in deuterated nitromethane's infinite-medium detonation speed, relative to the protonated material, is interpreted in terms of the Zeldovitch, von Neumann, and Doering theory of steady-state detonation. We also estimate the relative size of the steady plane-wave reaction-zone length of the two materials. We interpret the observed increases in NM's failure diameter and its steady one-dimensional chemical-reaction-zone length due to deuteration in terms of the quantity of NM aci ion present. The new results are placed in the context of earlier work on detonating liquid nitromethane. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Engelke, R (reprint author), Los Alamos Natl Lab, MS P952, Los Alamos, NM 87545 USA. EM engelke@cybermesa.com NR 29 TC 6 Z9 6 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 22 PY 2006 VL 110 IS 24 BP 7744 EP 7748 DI 10.1021/jp0616314 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 053DH UT WOS:000238284400033 PM 16774223 ER PT J AU Drake, IJ Zhang, YH Briggs, D Lim, B Chau, T Bell, AT AF Drake, IJ Zhang, YH Briggs, D Lim, B Chau, T Bell, AT TI The local environment of Cu+ in Cu-Y zeolite and its relationship to the synthesis of dimethyl carbonate SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID X-RAY-ABSORPTION; SELECTIVE CATALYTIC-REDUCTION; POWDER NEUTRON-DIFFRACTION; NUCLEAR-MAGNETIC-RESONANCE; TRANSITION-METAL IONS; ALK-EDGE XANES; HIGH-RESOLUTION; OXIDATIVE CARBONYLATION; FINE-STRUCTURE; REDOX BEHAVIOR AB Cu-exchanged Y zeolite was investigated in order to determine the location of the copper cations relative to the zeolite framework and to determine which Cu cations are active for the oxidative carbonylation of methanol to dimethyl carbonate (DMC). Cu-Y zeolite was prepared by vapor-phase exchange of H-Y with CuCl. The oxidation state, local coordination, and bond distances of Al and Cu were determined using Al K-edge and Cu K-edge X-ray absorption spectroscopy (XAS). Complimentary information was obtained by H-2 temperature-programmed reduction and by in-situ infrared spectroscopy. Cu-Y has a Cu/Al ratio of unity and very little occluded CuCl. The average Al-O and Al-Cu bond distances are 1.67 angstrom and 2.79 angstrom, respectively, and the average Cu-O and Cu-Si(Al) bond distances are 1.99 angstrom and 3.13 angstrom, respectively. All of the Cu exchanged is present as Cu+ in sites I', II, and III'. Cu- Y is active for the oxidative carbonylation of methanol, and at low reactant contact time produces DMC as the primary product. With increasing reactant contact time, DMC formation decreases in preference to the formation of dimethoxy methane (DMM) and methylformate (MF). The formation of DMM and MF is attributed to the hydrogenation of DMC and the hydrogenolysis of DMM, respectively. Observation of the catalyst under reaction conditions reveals that most of the copper cations remain as Cu+, but some oxidation of Cu+ to Cu2+ does occur. It is also concluded that only those copper cations present in site II and III' positions are accessible to the reactants, and hence are catalytically active. The dominant adsorbed species on the surface are methoxy groups, and adsorbed CO is present as a minority species. The relationship of these observations to the kinetics of DMC synthesis is discussed. C1 Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Bell, AT (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM bell@cchem.berkeley.edu OI Bell, Alexis/0000-0002-5738-4645 FU NHGRI NIH HHS [HG01399] NR 75 TC 58 Z9 67 U1 1 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUN 22 PY 2006 VL 110 IS 24 BP 11654 EP 11664 DI 10.1021/jp058245r PG 11 WC Chemistry, Physical SC Chemistry GA 053DJ UT WOS:000238284600010 PM 16800460 ER PT J AU Drake, IJ Zhang, YH Gilles, MK Liu, CNT Nachimuthu, P Perera, RCC Wakita, H Bell, AT AF Drake, IJ Zhang, YH Gilles, MK Liu, CNT Nachimuthu, P Perera, RCC Wakita, H Bell, AT TI An in situ AlK-edge XAS investigation of the local environment of H+- and Cu+-exchanged USY and ZSM-5 zeolites SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID X-RAY-ABSORPTION; SOLID-STATE NMR; FLEXIBLE ALUMINUM COORDINATION; NUCLEAR-MAGNETIC-RESONANCE; AMORPHOUS SILICA-ALUMINA; DEBYE-WALLER FACTOR; ANGLE-SPINNING NMR; FINE-STRUCTURE; HIGH-RESOLUTION; MAGIC-ANGLE AB Aluminum coordination in the framework of USY and ZSM-5 zeolites containing charge-compensating cations (NH4+, H+, or Cu+) was investigated by Al K-edge EXAFS and XANES. This work was performed using a newly developed in-situ cell designed especially for acquiring soft X-ray absorption data. Both tetrahedrally and octahedrally coordinated Al were observed for hydrated H-USY and H- ZSM-5, in good agreement with Al-27 NMR analyses. Upon dehydration, water desorbed from the zeolite, and octahedrally coordinated Al was converted progressively to tetrahedrally coordinated Al. These observations confirmed the hypothesis that the interaction of water with Brlnsted acid protons can lead to octahedral coordination of Al without loss of Al from the zeolite lattice. When H+ is replaced with NH4+ or Cu+, charge compensating species that absorb less water, less octahedrally coordinated Al was observed. Analysis of Al K-edge EXAFS data indicates that the Al-O bond distance for tetrahedrally coordinated Al in dehydrated USY and ZSM-5 is 1.67 angstrom. Simulation of k(3)chi(k) for Cu+ exchanged ZSM-5 leads to an estimated distance between Cu+ and framework Al atoms of 2.79 angstrom. C1 Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. Fukuoka Univ, Adv Mat Inst, Jonan Ku, Fukuoka 8140180, Japan. Fukuoka Univ, Fac Sci, Dept Chem, Jonan Ku, Fukuoka 8140180, Japan. RP Bell, AT (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM bell@cchem.berkeley.edu OI Bell, Alexis/0000-0002-5738-4645 FU NHGRI NIH HHS [HG01399] NR 87 TC 23 Z9 23 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUN 22 PY 2006 VL 110 IS 24 BP 11665 EP 11676 DI 10.1021/jp058244z PG 12 WC Chemistry, Physical SC Chemistry GA 053DJ UT WOS:000238284600011 PM 16800461 ER PT J AU Chen, LX Xiao, SQ Yu, LP AF Chen, LX Xiao, SQ Yu, LP TI Dynamics of photoinduced electron transfer in a molecular donor-acceptor quartet SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID PHOTOSYNTHETIC REACTION CENTERS; PHOTOVOLTAIC CELLS; CHARGE SEPARATION; EXCITON DIFFUSION; SOLAR-CELLS; POLYMER COMPOSITES; THIN-FILMS; ENERGY; HETEROSTRUCTURE; HETEROJUNCTIONS AB The electronic structures and dynamics of photoinduced charge separation and recombination in a new donor/ acceptor quartet molecule with bis-oligothiophene ( BOTH) and bis-perylenediimide (BPDI) blocks attached to a benzene ring were described. Detailed transient spectroscopic studies were carried out on this compound and reference compounds at isolated molecular levels in solution. Two different dynamics of charge separation and recombination associated with two types of donor/ acceptor pair conformations in solution were observed. These results were discussed based on Marcus theory and ascribed to both through-bond and through-space electron-transfer processes associated with two different orientations of the acceptors relative to the donor group. This molecular system exhibits a more efficient charge separation than charge recombination processes in both polar and nonpolar organic solvents, indicating that the material is an interesting candidate for photovoltaic studies in solid state. C1 Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. Univ Chicago, Dept Chem, Chicago, IL 60637 USA. Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. RP Chen, LX (reprint author), Argonne Natl Lab, Div Chem, 9700 S Cass Ave, Argonne, IL 60439 USA. EM lchen@anl.gov; lupingyu@uchicago.edu NR 51 TC 38 Z9 38 U1 0 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUN 22 PY 2006 VL 110 IS 24 BP 11730 EP 11738 DI 10.1021/jp057508e PG 9 WC Chemistry, Physical SC Chemistry GA 053DJ UT WOS:000238284600020 PM 16800470 ER PT J AU Wang, CM Kwak, JH Kim, DH Szanyi, J Sharma, R Thevuthasan, S Peden, CHF AF Wang, CM Kwak, JH Kim, DH Szanyi, J Sharma, R Thevuthasan, S Peden, CHF TI Morphological evolution of Ba(NO3)(2) supported on alpha-Al2O3(0001): An in situ TEM study SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID NOX STORAGE; FT-IR; CATALYSTS; ADSORPTION; REDUCTION; BAO/AL2O3 AB A key question for the BaO-based NOx storage/reduction catalyst system is the morphological evolution of the catalyst particles during the uptake and release of NOx. Notably, because the formed product during NOx uptake, Ba(NO3)(2), requires a lattice expansion from BaO, one can anticipate that significant structural rearrangements are possible during the storage/reduction processes. Associated with the small crystallite size of high-surface area gamma-Al2O3, it is difficult to extract structural and morphological features of Ba(NO3)(2) supported on gamma-Al2O3 by any direct imaging method, including transmission electron microscopy. In this work, by choosing a model system of Ba(NO3)(2) particles supported on single-crystal alpha-Al2O3, we have investigated the structural and morphological features of Ba( NO3)(2) as well as the formation of BaO from Ba(NO3)(2) during the thermal release of NOx, using ex-situ and in-situ TEM imaging, electron diffraction, energy dispersive spectroscopy (EDS), and Wulff shape construction. We find that Ba(NO3)(2) supported on alpha-Al2O3 possesses a platelet morphology, with the interface and facets being invariably the eight {111} planes. Formation of the platelet structure leads to an enlarged interface area between Ba(NO3)(2) and alpha-Al2O3, indicating that the interfacial energy is lower than the Ba( NO3) 2 surface free energy. In fact, Wulff shape constructions indicate that the interfacial energy is similar to 1/4 of the {111} surface free energy of Ba(NO3)(2). The orientation relationship between Ba(NO3)(2) and the alpha-Al2O3 is alpha-Al2O3[0001]// Ba(NO3)(2)[111] and alpha-Al2O3(1- 210)// Ba( NO3) 2( 110). Thus, the results clearly demonstrate dramatic morphology changes in these materials during NOx release processes. Such changes are expected to have significant consequences for the operation of the practical NOx storage/reduction catalyst technology. C1 Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. Arizona State Univ, Ctr Solid State Sci, Tempe, AZ 85287 USA. RP Wang, CM (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA. EM chongmin.wang@pnl.gov RI Kwak, Ja Hun/J-4894-2014; Kim, Do Heui/I-3727-2015; OI Peden, Charles/0000-0001-6754-9928 NR 15 TC 5 Z9 5 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUN 22 PY 2006 VL 110 IS 24 BP 11878 EP 11883 DI 10.1021/jp060235i PG 6 WC Chemistry, Physical SC Chemistry GA 053DJ UT WOS:000238284600039 PM 16800490 ER PT J AU Hofft, O Borodin, A Kahnert, U Kempter, V Dang, LX Jungwirth, P AF Hofft, O Borodin, A Kahnert, U Kempter, V Dang, LX Jungwirth, P TI Surface segregation of dissolved salt ions SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID AMORPHOUS SOLID WATER; LIQUID/VAPOR INTERFACE; ELECTRON-SPECTROSCOPY; MOLECULAR-STRUCTURE; CHEMISTRY; METHANOL; ATOMS; SIMULATIONS; TEMPERATURE; DYNAMICS AB Surface segregation of iodide, but not of fluoride or cesium ions, is observed by a combination of metastable impact electron spectroscopy (MIES) and ultraviolet photoelectron spectroscopy ( UPS(HeI)) of amorphous solid water exposed to CsI or CsF vapor. The same surface ionic behavior is also derived from molecular dynamics (MD) simulations of the corresponding aqueous salt solutions. The MIES results show the propensity of iodide, but not fluoride, for the surface of the amorphous solid water film, providing thus strong evidence for the suggested presence of heavier halides ( iodide, bromide, and to a lesser extent chloride) at the topmost layer of aqueous surfaces. In contrast, no appreciable surface segregation of ions is observed in methanol, neither in the experiment nor in the simulation. Furthermore, the present results indicate that, as far as the thermodynamic aspects of solvation of alkali halides are concerned, amorphous solid water and methanol surfaces behave similarly as surfaces of the corresponding liquids. C1 Tech Univ Clausthal, Inst Phys & Phys Technol, D-38678 Clausthal Zellerfeld, Germany. Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. Acad Sci Czech Republ, Inst Organ Chem & Biochem, CR-16610 Prague, Czech Republic. Ctr Biomol & Complex Mol Syst, Prague 16610 6, Czech Republic. RP Kempter, V (reprint author), Tech Univ Clausthal, Inst Phys & Phys Technol, Leibnizstr 4, D-38678 Clausthal Zellerfeld, Germany. EM V.Kempter@tu-clausthal.de; Pavel.Jungwirth@uochb.cas.cz RI Hofft, Oliver/J-2830-2012; Jungwirth, Pavel/D-9290-2011 OI Hofft, Oliver/0000-0002-1313-3166; Jungwirth, Pavel/0000-0002-6892-3288 NR 35 TC 31 Z9 31 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUN 22 PY 2006 VL 110 IS 24 BP 11971 EP 11976 DI 10.1021/jp061437h PG 6 WC Chemistry, Physical SC Chemistry GA 053DJ UT WOS:000238284600052 PM 16800503 ER PT J AU Schrier, J Wang, LW AF Schrier, J Wang, LW TI On the size-dependent behavior of nanocrystal-ligand bonds SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID EXTENDED HUCKEL THEORY; QUANTUM DOTS; CDSE NANOCRYSTALS; SEMICONDUCTOR NANOCRYSTALS; NANOPARTICLES; GROWTH; HYDROCARBONS; MONOLAYER; CLUSTERS AB Recent experiments have indicated that 3-mercapto-1-propanol ligands display a size-dependent binding energy of attachment to the surface of II-VI semiconductor nanocrystals. Using semiempirical calculations, we exhaustively calculate the energy of this bond at each surface site, for CdSe and CdSe/CdS core/shell nanocrystals ranging from 1.8 to 4.1 nm in diameter. Our results suggest that the experimentally observed changes in binding energy are due to the distribution of surface facets on the nanocrystals, and not related to the band gap, as proposed in the experimental paper. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Schrier, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RI Schrier, Joshua/B-6838-2009 NR 25 TC 10 Z9 10 U1 2 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUN 22 PY 2006 VL 110 IS 24 BP 11982 EP 11985 DI 10.1021/jp061117y PG 4 WC Chemistry, Physical SC Chemistry GA 053DJ UT WOS:000238284600054 PM 16800505 ER PT J AU Rizzo, TG AF Rizzo, TG TI TeV-scale black hole lifetimes in extra-dimensional Lovelock gravity SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article ID SELF-INTERACTION; ENTROPY; THERMODYNAMICS; EVAPORATION; MILLIMETER; HIERARCHY; RADIANCE; TENSOR; SPACE; LHC AB We examine the mass loss rates and lifetimes of TeV-scale extra-dimensional black holes (BH) in Arkani-Hamed, Dimopoulos and Dvali-like models with Lovelock higher-curvature terms present in the action. In particular, we focus on the predicted differences between the canonical and microcanonical ensemble statistical mechanics descriptions of the Hawking radiation that result in the decay of these BH. In even numbers of extra dimensions, the employment of the microcanonical approach is shown to generally lead to a significant increase in the BH lifetime as in the case of the Einstein - Hilbert action. For odd numbers of extra dimensions, stable BH remnants occur when employing either description provided the highest order allowed Lovelock invariant is present. However, in this case, the time dependence of the mass loss rates obtained employing the two approaches will be different. These effects are in principle measurable at future colliders. C1 Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Rizzo, TG (reprint author), Stanford Linear Accelerator Ctr, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM rizzo@slac.stanford.edu NR 70 TC 30 Z9 30 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD JUN 21 PY 2006 VL 23 IS 12 BP 4263 EP 4279 DI 10.1088/0264-9381/23/12/020 PG 17 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 050YH UT WOS:000238126300020 ER PT J AU Pless, JD Philips, MLF Voigt, JA Moore, D Axness, M Krumhansl, JL Nenoff, TM AF Pless, JD Philips, MLF Voigt, JA Moore, D Axness, M Krumhansl, JL Nenoff, TM TI Desalination of brackish waters using ion-exchange media SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID INTERCALATION CHEMISTRY; TECHNOLOGIES; HYDROTALCITE; SILICATES; PERMUTITE AB An environmentally friendly method and materials study for desalinating inland brackish waters (i.e., coal bed methane produced waters) using a set of ion-exchange materials is presented. This desalination process effectively removes anions and cations in separate steps with minimal caustic waste generation. The anion-exchange material, hydrotalcite (HTC), exhibits an ion-exchange capacity (IEC) of similar to 3 mequiv g(-1). The cation-exchange material, an amorphous aluminosilicate permutite-like material, (Nax+2yAlxSi1-xO2+y), has an IEC of similar to 2.5 mequiv g(-1). These ion-exchange materials were studied and optimized because of their specific ion-exchange capacity for the ions of interest and their ability to function in the temperature and pH regions necessary for cost and energy effectiveness. Room temperature, minimum pressure column studies (once-pass through) on simulant brackish water (total dissolved solids (TDS) = 2222 ppm) resulted in water containing TDS = 25 ppm. A second once-pass through column study on actual produced water (TDS = similar to 11 000) with a high carbonate concentration used an additional lime softening step and resulted in a decreased TDS of 600 ppm. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Nenoff, TM (reprint author), Sandia Natl Labs, POB 5800,MS 1514, Albuquerque, NM 87185 USA. EM tmnenof@sandia.gov NR 20 TC 10 Z9 10 U1 3 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD JUN 21 PY 2006 VL 45 IS 13 BP 4752 EP 4756 DI 10.1021/ie060138b PG 5 WC Engineering, Chemical SC Engineering GA 052UD UT WOS:000238258500034 ER PT J AU Granite, EJ Myers, CR King, WP Stanko, DC Pennline, HW AF Granite, EJ Myers, CR King, WP Stanko, DC Pennline, HW TI Sorbents for mercury capture from fuel gas with application to gasification systems SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID ATOMIC-ABSORPTION-SPECTROMETRY; ELECTROTHERMAL ATOMIZATION; GRAPHITE-FURNACE; MASS-SPECTROMETRY; NOBLE-METALS; FLUE-GAS; SELENIUM; REMOVAL; VAPORIZATION; SPECTROSCOPY AB In regard to gasification for power generation, the removal of mercury by sorbents at elevated temperatures preserves the higher thermal efficiency of the integrated gasification combined cycle system. Unfortunately, most sorbents display poor capacity for elemental mercury at elevated temperatures. Previous experience with sorbents in flue gas has allowed for judicious selection of potential high-temperature candidate sorbents. The capacities of many sorbents for elemental mercury from nitrogen, as well as from four different simulated fuel gases at temperatures of 204-371 degrees C, have been determined. The simulated fuel gas compositions contain varying concentrations of carbon monoxide, hydrogen, carbon dioxide, moisture, and hydrogen sulfide. Promising high-temperature sorbent candidates have been identified. Palladium sorbents seem to be the most promising for high-temperature capture of mercury and other trace elements from fuel gases. A collaborative research and development agreement has been initiated between the Department of Energy's National Energy Technology Laboratory (NETL) and Johnson Matthey for optimization of the sorbents for trace element capture from high-temperature fuel gas. Future directions for mercury sorbent development for fuel gas application will be discussed. C1 US DOE, NETL, Pittsburgh, PA 15236 USA. RP Granite, EJ (reprint author), US DOE, NETL, POB 10940,M-S 58-106, Pittsburgh, PA 15236 USA. EM evan.granite@netl.doe.gov NR 34 TC 77 Z9 82 U1 1 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD JUN 21 PY 2006 VL 45 IS 13 BP 4844 EP 4848 DI 10.1021/ie060456a PG 5 WC Engineering, Chemical SC Engineering GA 052UD UT WOS:000238258500045 ER PT J AU Mancal, T Pisliakov, AV Fleming, GR AF Mancal, Tomas Pisliakov, Andrei V. Fleming, Graham R. TI Two-dimensional optical three-pulse photon echo spectroscopy. I. Nonperturbative approach to the calculation of spectra SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MULTILEVEL REDFIELD THEORY; NONLINEAR RAMAN RESPONSE; PUMP-PROBE SPECTROSCOPY; ELECTRONIC SPECTROSCOPY; ENERGY-TRANSFER; FEMTOSECOND SPECTROSCOPY; INFRARED-SPECTROSCOPY; CONDENSED-PHASE; 4-WAVE-MIXING SPECTROSCOPY; SOLVATION DYNAMICS AB The nonperturbative approach to the calculation of nonlinear optical spectra of Seidner [J. Chem. Phys. 103, 3998 (1995)] is extended to describe four-wave mixing experiments. The system-field interaction is treated nonperturbatively in the semiclassical dipole approximation, enabling a calculation of third order nonlinear spectroscopic signals directly from molecular dynamics and an efficient modeling of multilevel systems exhibiting relaxation and transfer phenomena. The method, coupled with the treatment of dynamics within the Bloch model, is illustrated by calculations of the two-dimensional three-pulse photon echo spectra of a simple model system-a two-electronic-level molecule. The nonperturbative calculations reproduce well-known results obtained by perturbative methods. Technical limitations of the nonperturbative approach in dealing with a dynamic inhomogeneity are discussed, and possible solutions are suggested. An application of the approach to an excitonically coupled dimer system with emphasis on the manifestation of complex exciton dynamics in two-dimensional optical spectra is presented in paper II Pisliakov [J. Chem. Phys. 124, 234505 (2006), following paper]. (c) 2006 American Institute of Physics. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Mancal, T (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM grfleming@lbl.gov RI Pisliakov, Andrei/C-7007-2012; Mancal, Tomas/B-9688-2014 OI Pisliakov, Andrei/0000-0003-1536-0589; Mancal, Tomas/0000-0003-1736-3054 NR 63 TC 40 Z9 41 U1 0 U2 22 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 21 PY 2006 VL 124 IS 23 AR 234504 DI 10.1063/1.2200704 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 055FS UT WOS:000238436000029 PM 16821926 ER PT J AU Pisliakov, AV Mancal, T Fleming, GR AF Pisliakov, Andrei V. Mancal, Tomas Fleming, Graham R. TI Two-dimensional optical three-pulse photon echo spectroscopy. II. Signatures of coherent electronic motion and exciton population transfer in dimer two-dimensional spectra SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID BACTERIAL REACTION CENTERS; MULTILEVEL REDFIELD THEORY; 2D IR SPECTROSCOPY; FEMTOSECOND SPECTROSCOPY; VIBRATIONAL COHERENCE; TRANSFER DYNAMICS; INFRARED-SPECTROSCOPY; ENERGY-TRANSFER; 4-WAVE-MIXING SPECTROSCOPY; CHLOROBIUM-TEPIDUM AB Using the nonperturbative approach to the calculation of nonlinear optical spectra developed in a foregoing paper [Mancal , J. Chem. Phys. 124, 234504 (2006), preceding paper], calculations of two-dimensional electronic spectra of an excitonically coupled dimer model system are presented. The dissipative exciton transfer dynamics is treated within the Redfield theory and energetic disorder within the molecular ensemble is taken into account. The manner in which the two-dimensional spectra reveal electronic couplings in the aggregate system and the evolution of the spectra in time is studied in detail. Changes in the intensity and shape of the peaks in the two-dimensional relaxation spectra are related to the coherent and dissipative dynamics of the system. It is shown that coherent electronic motion, an electronic analog of a vibrational wave packet, can manifest itself in two-dimensional optical spectra of molecular aggregate systems as a periodic modulation of both the diagonal and off-diagonal peaks. (c) 2006 American Institute of Physics. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Pisliakov, AV (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM grfleming@lbl.gov RI Pisliakov, Andrei/C-7007-2012; Mancal, Tomas/B-9688-2014 OI Pisliakov, Andrei/0000-0003-1536-0589; Mancal, Tomas/0000-0003-1736-3054 NR 79 TC 76 Z9 77 U1 3 U2 45 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 21 PY 2006 VL 124 IS 23 AR 234505 DI 10.1063/1.2200705 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 055FS UT WOS:000238436000030 PM 16821927 ER PT J AU Settersten, TB Patterson, BD Gray, JA AF Settersten, TB Patterson, BD Gray, JA TI Temperature-and species-dependent quenching of NO A (2)Sigma(+)(v(')=0) probed by two-photon laser-induced fluorescence using a picosecond laser SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ATMOSPHERIC-PRESSURE FLAMES; TRANSITION-MOMENT VARIATION; EXCITED ELECTRONIC STATES; SINGLE ROTATIONAL LEVELS; NITRIC-OXIDE; ENERGY-TRANSFER; LIFETIME MEASUREMENTS; RYDBERG STATES; A2-SIGMA+; RATES AB We report improved measurements of the temperature-dependent cross sections for the quenching of fluorescence from the A (2)Sigma(+)(v(')=0) state of NO. Cross sections were measured for gas temperatures ranging from 294 to 1300 K for quenching by NO(X (2)Pi), H2O, CO2, O-2, CO, N-2, and C2H2. The A (2)Sigma(+)(v(')=0) state was populated via two-photon excitation with a picosecond laser at 454 nm, and the decay rate of the fluorescence originating from A (2)Sigma(+)(v(')=0) was measured directly. Thermally averaged quenching cross sections were determined from the dependence of the fluorescence decay rate on the quencher gas pressure. Our measurements are compared to previous measurements and models of the quenching cross sections, and new empirical fits to the data are presented. Our new cross-section data enable predictions in excellent agreement with prior measurements of the fluorescence lifetime in an atmospheric-pressure methane-air diffusion flame. The agreement resolves discrepancies between the lifetime measurements and predictions based on the previous quenching models, primarily through improved models for the quenching by H2O, CO2, and O-2 at temperatures less than 1300 K. (c) 2006 American Institute of Physics. C1 Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. Ohio No Univ, Dept Chem, Ada, OH 45810 USA. RP Settersten, TB (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM tbsette@sandia.gov RI Settersten, Thomas/B-3480-2009 OI Settersten, Thomas/0000-0002-8017-0258 NR 57 TC 35 Z9 35 U1 2 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 21 PY 2006 VL 124 IS 23 AR 234308 DI 10.1063/1.2206783 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 055FS UT WOS:000238436000022 PM 16821919 ER PT J AU Tirumala, VR Ilavsky, J Ilavsky, M AF Tirumala, VR Ilavsky, J Ilavsky, M TI Effect of chemical structure on the volume-phase transition in neutral and weakly charged poly(N-alkyl(meth)acrylamide) hydrogels studied by ultrasmall-angle X-ray scattering SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID N-ISOPROPYLACRYLAMIDE GELS; COIL-GLOBULE TRANSITION; AQUEOUS NACL SOLUTIONS; SWOLLEN GELS; POLYMER GELS; POLY(N-ISOPROPYLACRYLAMIDE) HYDROGELS; NANOCOMPOSITE HYDROGELS; SPATIAL INHOMOGENEITY; DENSITY-FLUCTUATIONS; FTIR SPECTROSCOPY AB Neutral poly(N-isopropylacrylamide) (PIPAAm), poly(N,N-diethylacrylamide) (PDEAAm), and poly(N-isopropylmethacrylamide) (PIPMAm) hydrogels and their weakly charged counterparts prepared by copolymerizing with sodium methacrylate (x(MNa)=0,0.025,0.05) were studied using ultrasmall-angle x-ray scattering. The volume-phase transition in hydrogels was observed as an increase in the inhomogeneity correlation length of the networks. The change in inhomogeneity correlation length was abrupt in neutral PIPAAm and PIPMAm gels with increase in temperature but was continuous in neutral PDEAAm gels. Addition of ionic comonomer to the network backbone suppressed the volume-phase transition in poly(N-alkylacrylamide)s but not in PIPMAm. The observed differences in temperature-induced volume change of these three polymers in water cannot be rationalized based on their relative hydrophobicity and are instead explained by considering the hydrogen-bonding constraints on their thermal fluctuations. Both PIPAAm and PDEAAm undergo volume collapse since their thermal fluctuations are constrained by hydrogen bonding with water to an extent that beyond a critical temperature they seek entropic compensation. Although thermal fluctuations in both PIPAAm and PIPMAm are equally constrained, thermal energy of the latter can be relaxed via the rotation of alpha-methyl groups allowing it greater flexibility. Compared to N-alkylacrylamides, N-alkylmethacrylamide can thus sustain hydrogen bonding to relatively higher temperatures before seeking entropic compensation by undergoing volume collapse. (c) 2006 American Institute of Physics. C1 Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. Charles Univ, Fac Math & Phys, CR-12116 Prague, Czech Republic. RP Tirumala, VR (reprint author), NIST, Div Polymers, Gaithersburg, MD 20899 USA. EM vijay.tirumala@nist.gov RI Ilavsky, Jan/D-4521-2013; USAXS, APS/D-4198-2013 OI Ilavsky, Jan/0000-0003-1982-8900; NR 61 TC 17 Z9 17 U1 0 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 21 PY 2006 VL 124 IS 23 AR 234911 DI 10.1063/1.2205364 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 055FS UT WOS:000238436000060 PM 16821957 ER PT J AU Kietzmann, A Redmer, R Hensel, F Desjarlais, MP Mattsson, TR AF Kietzmann, A. Redmer, R. Hensel, F. Desjarlais, M. P. Mattsson, T. R. TI Structure of expanded fluid Rb and Cs: a quantum molecular dynamics study SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; LIQUID RUBIDIUM; ELECTRICAL-CONDUCTIVITY; CESIUM; TRANSITION; SIMULATION; METALS; DENSITY; PSEUDOPOTENTIALS AB We have performed quantum molecular dynamics simulations for expanded fluid Rb and Cs. We compare the pair correlation functions with results derived from neutron and x-ray scattering experiments. The experimentally observed structural changes with the density and temperature variation are reproduced. The density of states and the electronic charge density extracted from the simulations indicate a crossover from metallic to nonmetallic behaviour near the critical point due to a localization of electrons at nuclei. C1 Univ Rostock, Inst Phys, D-18051 Rostock, Germany. Univ Marburg, Fachbereich Chem, D-35032 Marburg, Germany. Sandia Natl Labs, Pulsed Power Sci Ctr, Albuquerque, NM 87185 USA. RP Kietzmann, A (reprint author), Univ Rostock, Inst Phys, D-18051 Rostock, Germany. RI Mattsson, Thomas/B-6057-2009; Redmer, Ronald/F-3046-2013 NR 36 TC 9 Z9 9 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 21 PY 2006 VL 18 IS 24 BP 5597 EP 5605 DI 10.1088/0953-8984/18/24/002 PG 9 WC Physics, Condensed Matter SC Physics GA 057JS UT WOS:000238592700004 ER PT J AU Wilkins, SB Stojic, N Beale, TAW Binggeli, N Hatton, PD Bencok, P Stanescu, S Mitchell, JF Abbamonte, P Altarelli, M AF Wilkins, SB Stojic, N Beale, TAW Binggeli, N Hatton, PD Bencok, P Stanescu, S Mitchell, JF Abbamonte, P Altarelli, M TI Separating the causes of orbital ordering in LaSr2Mn2O7 using resonant soft x-ray diffraction SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID MANGANITE LA2-2XSR1+2XMN2O7; ABSORPTION-SPECTROSCOPY; DOUBLE EXCHANGE; OXIDES; FILMS AB Resonant soft x-ray diffraction has been used to probe the temperature dependent orbital and magnetic structure of LaSr2Mn2O7. Previous crystallographic studies have shown that this material has almost no MnO6 oxygen displacements due to Jahn-Teller distortions at low temperatures. Within the low-temperature A-type antiferromagnetic phase, we found strong intensity at the ( 1 4, 1 4, 0) orbital and ( 0, 0, 1) magnetic reflections. This shows that even in the near absence of Jahn-Teller distortions, this compound is strongly orbitally ordered. A fit to the Mn L-edge resonance spectra demonstrates the presence of orbital ordering of the Mn3+ ions with virtually no Jahn-Teller crystal field in addition to possible Mn3+ and Mn2+-like valence fluctuations. C1 European Synchrotron Radiat Facil, F-38043 Grenoble, France. Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy. Univ Durham, Dept Phys, Durham DH1 3LE, England. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. DESY, European XFEL Project Team, D-22607 Hamburg, Germany. RP Wilkins, SB (reprint author), European Synchrotron Radiat Facil, BP 220, F-38043 Grenoble, France. EM wilkins@esrf.fr RI Hatton, Peter/J-8445-2014; OI Stanescu, Stefan/0000-0002-4543-1774 NR 30 TC 14 Z9 14 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 21 PY 2006 VL 18 IS 24 BP L323 EP L329 DI 10.1088/0953-8984/18/24/L01 PG 7 WC Physics, Condensed Matter SC Physics GA 057JS UT WOS:000238592700001 ER PT J AU Venkataraman, S Biswas, K Wei, BC Sordelet, DJ Eckert, J AF Venkataraman, S. Biswas, K. Wei, B. C. Sordelet, D. J. Eckert, J. TI On the fragility of Cu47Ti33Zr11Ni8Si1 metallic glass SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID SUPERCOOLED LIQUID REGION; BULK AMORPHOUS-ALLOYS; FORMING ABILITY; VISCOUS-FLOW; CRYSTALLIZATION BEHAVIOR; THERMODYNAMIC CONNECTION; MECHANICAL-PROPERTIES; RANGE ORDER; AL ALLOYS; ZR-TI AB This study reports on calorimetric measurements of the glass transition at various heating rates stretching over three orders of magnitude for Cu47Ti33Zr11Ni8Si1 metallic glass powders synthesized by gas-atomization and subjected to varying thermal treatments. A Vogel-Fulcher-Tammann-type relation was fitted to the data recorded for the heating rate dependent shift of the glass transition. The fragility of the alloy is evaluated in terms of the fragility parameter. Its value is 44 for the as-prepared Cu47Ti33Zr11Ni8Si1 metallic glass powder and decreases with increasing annealing treatment temperature. The decrease in the fragility parameter is due to partial crystallization, which shifts the composition of the remaining supercooled liquid to that of a strong glass-forming alloy. C1 Tech Univ Darmstadt, FG Phys Met, FB Mat & Geowissensch 11, D-64287 Darmstadt, Germany. Leibniz Inst Festkorper & Werkstoffforsch Dresden, D-01069 Dresden, Germany. Chinese Acad Sci, Inst Mech, Natl Micrograv Lab, Beijing 100080, Peoples R China. Iowa State Univ, Mat & Engn Phys Program, Ames Lab, USDOE, Ames, IA 50014 USA. RP Venkataraman, S (reprint author), Tech Univ Darmstadt, FG Phys Met, FB Mat & Geowissensch 11, Petersenstr 23, D-64287 Darmstadt, Germany. EM s.venkataraman@phm.tu-darmstadt.de RI BISWAS, KAUSHIK/F-7054-2010 NR 78 TC 4 Z9 4 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD JUN 21 PY 2006 VL 39 IS 12 BP 2600 EP 2608 DI 10.1088/0022-3727/39/12/020 PG 9 WC Physics, Applied SC Physics GA 058OG UT WOS:000238673700021 ER PT J AU Cabella, P Hansen, FK Liguori, M Marinucci, D Matarrese, S Moscardini, L Vittorio, N AF Cabella, P. Hansen, F. K. Liguori, M. Marinucci, D. Matarrese, S. Moscardini, L. Vittorio, N. TI The integrated bispectrum as a test of cosmic microwave background non-Gaussianity: detection power and limits on f(NL) with WMAP data SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods : numerical; methods : statistical; cosmic microwave background; cosmology : observations; cosmology : theory ID PRIMORDIAL NON-GAUSSIANITY; MAPS; PERTURBATIONS; INFLATION; CONSTRAINTS; FIELDS AB We propose a fast and efficient bispectrum statistic for cosmic microwave background (CMB) temperature anisotropies to constrain the amplitude of the primordial non-Gaussian signal measured in terms of the non-linear coupling parameter f(NL). We show how the method can achieve a remarkable computational advantage by focusing on subsets of the multipole configurations, where the non-Gaussian signal is more concentrated. The detection power of the test increases roughly linearly with the maximum multipole, as shown in the ideal case of an experiment without noise and gaps. The CPU-time scales as l(max)(3) instead of l(max)(5) for the full bispectrum, which for Planck resolution l(max) similar to 3000 means an improvement in speed of a factor of 10(7) compared with the full bispectrum analysis with minor loss in precision. This approach is complementary to the fast method introduced by Komatsu, Spergel & Wandelt using a reconstruction of the primordial fluctuation field. We find that the introduction of a galactic cut partially destroys the optimality of the configuration, which will then need to be dealt with in the future. We find for an ideal experiment with l(max) = 2000 that upper limits of f(NL) < 8 can be obtained at 1 sigma. For the case of the WMAP experiment, we would be able to put limits of inline vertical bar f(NL)vertical bar < 40 if no galactic cut were present. Using the real data with a galactic cut, we obtain an estimate of -80 < f(NL) < 80 and -160 < f(NL) < 160 at 1 and 2 sigma, respectively. C1 Univ Oxford, Oxford OX1 3RH, England. Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy. Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. RP Cabella, P (reprint author), Univ Oxford, Denys Wilkinson Bldg,Keble Rd, Oxford OX1 3RH, England. EM paolo.cabella@roma2.infn.it; f.k.hansen@astro.uio.no; michele.liguori@pd.infn.it; marinucc@mat.uniroma2.it; sabino.matarrese@pd.infn.it; lauro.moscardini@unibo.it; nicola.vittorio@roma2.infn.it NR 37 TC 27 Z9 27 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN 21 PY 2006 VL 369 IS 2 BP 819 EP 824 DI 10.1111/j.1365-2966.2006.10339.x PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 050QW UT WOS:000238104000022 ER PT J AU Connor, DM Sayers, D Sumner, DR Zhong, Z AF Connor, D. M. Sayers, D. Sumner, D. R. Zhong, Z. TI Diffraction enhanced imaging of controlled defects within bone, including bone-metal gaps SO PHYSICS IN MEDICINE AND BIOLOGY LA English DT Article ID BREAST-CANCER SPECIMENS; ARTICULAR-CARTILAGE; SYNCHROTRON-RADIATION; COMPUTED-TOMOGRAPHY; RADIOGRAPHY; CONTRAST; REFRACTION; MECHANISMS; TISSUE AB Gap regions between a bone and an implant, whether existing upon insertion or developing over time, can lead to implant failure. Currently, planar x-ray imaging and CT are the most commonly used methods to evaluate the gap region. An alternative to these available clinical imaging modalities could help to better evaluate bone resorption. Previous experiments with diffraction enhanced imaging (DEI) have shown significant contrast advantages over monochromatic synchrotron radiation (SR) imaging. DEI and planar SR radiography images of bone samples with drill holes and gap regions of known geometry were acquired at the NSLS beamline X15A (Upton, NY, USA). The images acquired with DEI show measurable contrast-to-noise gains when compared to the images acquired using SR radiography. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. N Carolina State Univ, Raleigh, NC 27695 USA. Rush Med Coll, Chicago, IL 60612 USA. RP Connor, DM (reprint author), Brookhaven Natl Lab, Bldg 725D, Upton, NY 11973 USA. EM connord@bnl.gov FU NIAMS NIH HHS [AR48292] NR 37 TC 22 Z9 22 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0031-9155 J9 PHYS MED BIOL JI Phys. Med. Biol. PD JUN 21 PY 2006 VL 51 IS 12 BP 3283 EP 3300 DI 10.1088/0031-9155/51/12/019 PG 18 WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Engineering; Radiology, Nuclear Medicine & Medical Imaging GA 062LG UT WOS:000238945300019 PM 16757877 ER PT J AU Molina, A Walsh, PM Shaddix, CR Sickafoose, SM Blevins, LG AF Molina, Alejandro Walsh, Peter M. Shaddix, Christopher R. Sickafoose, Shane M. Blevins, Linda G. TI Laser-induced breakdown spectroscopy of alkali metals in high-temperature gas SO APPLIED OPTICS LA English DT Article ID EMISSION-SPECTROSCOPY; HIGH-PRESSURE; PHOTOFRAGMENTATION; SPECTROMETRY; EXPLORATION; AEROSOLS; MONITOR; PLASMA; OXYGEN; SPARK AB Laser-induced breakdown spectroscopy (LIBS) measurements of alkali in the high-temperature exhaust of a glass furnace show an attenuation of the Na and K LIBS signals that correlates with the stoichiometry of the bath gas surrounding the spark. The results are explained as being due to (1) a strong increase in the concentration of atomic Na and K, resulting in neutral line signal absorption by these atoms, and to (2) a change of phase of the major Na- and K-containing species from an aerosol to a gaseous phase when the gas mixture becomes fuel rich, resulting in a reduced LIBS emission intensity. LIBS sampling at lower temperatures, or in a consistently oxidizing environment, or both are suggested strategies for circumventing these difficulties. (c) 2006 Optical Society of America. C1 Sandia Natl Labs, Livermore, CA 94550 USA. Univ Alabama Birmingham, Birmingham, AL 35294 USA. RP Molina, A (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM amolina@sandia.gov NR 36 TC 14 Z9 15 U1 2 U2 11 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JUN 20 PY 2006 VL 45 IS 18 BP 4411 EP 4423 DI 10.1364/AO.45.004411 PG 13 WC Optics SC Optics GA 054HE UT WOS:000238366600023 PM 16778950 ER PT J AU Coil, AL Newman, JA Cooper, MC Davis, M Faber, SM Koo, DC Willmer, CNA AF Coil, AL Newman, JA Cooper, MC Davis, M Faber, SM Koo, DC Willmer, CNA TI The DEEP2 galaxy redshift survey: Clustering of galaxies as a function of luminosity at z=1 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies : high-redshift; large-scale structure of universe ID LYMAN BREAK GALAXIES; HALO OCCUPATION DISTRIBUTION; ANGULAR-CORRELATION FUNCTION; DARK-MATTER HALOES; LARGE-SCALE; COLOR DEPENDENCE; BIAS; EVOLUTION; MODEL; DENSITY AB We measure the clustering of DEEP2 galaxies at z = 1 as a function of luminosity on scales 0.1-20 h(-1) Mpc. Drawing from a parent catalog of 25,000 galaxies at 0.7 < z < 1.3 in the full DEEP2 survey, we create volume-limited samples having upper luminosity limits between M-B = -19 and -20.5, roughly 0.2 - 1L* at z = 1. We find that brighter galaxies are more strongly clustered than fainter galaxies and that the slope of the correlation function does not depend on luminosity for L < L*. The brightest galaxies, with L < L*, have a steeper slope. The clustering scale length, r(0), varies from 3.69 +/- 0.14 for the faintest sample to 4.43 +/- 0.14 for the brightest sample. The relative bias of galaxies as a function of L/L* is steeper than the relation found locally for SDSS galaxies by Zehavi et al. in 2005 over the luminosity range that we sample. The absolute bias of galaxies at z similar to 1 is scale dependent on scales r(p) < 1 h(-1) Mpc, and rises most significantly on small scales for the brightest samples. For a concordance cosmology, the large-scale bias varies from 1.26 +/- 0.04 to 1.54 +/- 0.05 as a function of luminosity and implies that DEEP2 galaxies reside in dark matter halos with a minimum mass of similar to(1-3) x 10(12) h(-1) M circle dot. C1 Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. Lawrence Berkeley Natl Lab, Inst Nucl & Particle Astrophys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. Univ Calif Santa Cruz, Univ Calif Observ, Lick Observ, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. NR 39 TC 88 Z9 88 U1 0 U2 4 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2006 VL 644 IS 2 BP 671 EP 677 DI 10.1086/503601 PN 1 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 053XS UT WOS:000238340100002 ER PT J AU Heng, K McCray, R Zhekov, SA Challis, PM Chevalier, RA Crotts, APS Fransson, C Garnavich, P Kirshner, RP Lawrence, SS Lundqvist, P Panagia, N Pun, CSJ Smith, N Sollerman, J Wang, LF AF Heng, K McCray, R Zhekov, SA Challis, PM Chevalier, RA Crotts, APS Fransson, C Garnavich, P Kirshner, RP Lawrence, SS Lundqvist, P Panagia, N Pun, CSJ Smith, N Sollerman, J Wang, LF TI Evolution of the reverse shock emission from SNR 1987A SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; shock waves; supernova remnants; supernovae : individual (SN 1987A) ID SPACE-TELESCOPE OBSERVATIONS; SUPERNOVA REMNANT 1987A; LARGE-MAGELLANIC-CLOUD; VELOCITY LY-ALPHA; CIRCUMSTELLAR RING; X-RAY; LIGHT ECHOES; HOT-SPOTS; H-ALPHA; SN-1987A AB We present new ( 2004 July) G750L and G140L Space Telescope Imaging Spectrograph ( STIS) data of the H alpha and Ly alpha emission from supernova remnant ( SNR) 1987A. With the aid of earlier data, from 1997 October to 2002 October, we track the local evolution of Ly alpha emission and both the local and global evolution of H alpha emission. The most recent observations allow us to directly compare the H alpha and Ly alpha emission from the same slit position and at the same epoch. Consequently, we find clear evidence that, unlike H alpha, Ly alpha is reflected from the debris by resonant scattering. In addition to emission that we can clearly attribute to the surface of the reverse shock, we also measure comparable emission, in both H alpha and Ly alpha, that appears to emerge from supernova debris interior to the surface. New observations taken through slits positioned slightly eastward and westward of a central slit show a departure from cylindrical symmetry in the H alpha surface emission. Using a combination of old and new observations, we construct a light curve of the total H alpha flux, F, from the reverse shock, which has increased by a factor of similar to 4 over about 8 yr. However, due to large systematic uncertainties, we are unable to discern between the two limiting behaviors of the flux: F proportional to t ( self-similar expansion) and F proportional to t(5) ( halting of the reverse shock). Such a determination is important for constraining the rate of hydrogen atoms crossing the shock, which is relevant to the question of whether the reverse shock emission will vanish in less than or similar to 7 yr. Future deep, low- or moderate-resolution spectra are essential for accomplishing this task. C1 Univ Colorado, JILA, Boulder, CO 80309 USA. Bulgarian Acad Sci, Space Res Inst, BU-1000 Sofia, Bulgaria. Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA. Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. Stockholm Observ, Dept Astron, AlbaNova, SE-10691 Stockholm, Sweden. Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. 151 Hofstra Univ, Dept Phys & Astron, Hempstead, NY 11590 USA. Space Telescope Sci Inst, Baltimore, MD 21218 USA. Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China. Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen O, Denmark. EO Lawrence Berkeley Natl Lab, Inst Nucl & Particle Phys, Berkeley, CA 94720 USA. RP Heng, K (reprint author), Univ Colorado, JILA, 440 UCB, Boulder, CO 80309 USA. EM hengk@colorado.edu; dick@jila.colorado.edu OI Sollerman, Jesper/0000-0003-1546-6615 NR 36 TC 23 Z9 24 U1 0 U2 4 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2006 VL 644 IS 2 BP 959 EP 970 DI 10.1086/503896 PN 1 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 053XS UT WOS:000238340100027 ER PT J AU Pruet, J Hoffman, RD Woosley, SE Janka, HT Buras, R AF Pruet, J Hoffman, RD Woosley, SE Janka, HT Buras, R TI Nucleosynthesis in early supernova winds. II. The role of neutrinos SO ASTROPHYSICAL JOURNAL LA English DT Article DE nuclear reactions, nucleosynthesis, abundances; supernovae : general ID R-PROCESS NUCLEOSYNTHESIS; NEUTRON STAR WINDS; DRIVEN WINDS; P-PROCESS; MASSIVE STARS; EVOLUTION; CAPTURE; NUCLEI; ABUNDANCES; EXPLOSION AB One of the outstanding unsolved riddles of nuclear astrophysics is the origin of the so-called p-process nuclei from A 92 to 126. Both the lighter and heavier p-process nuclei are adequately produced in the neon and oxygen shells of ordinary Type II supernovae, but the origin of these intermediate isotopes, especially Mo-92,Mo- 94 and Ru-96,Ru-98, has long been mysterious. Here we explore the production of these nuclei in the neutrino-driven wind from a young neutron star. We consider such early times that the wind still contains a proton excess because the rates for nu(e) and positron captures on neutrons are faster than those for the inverse captures on protons. Following a suggestion by Frohlich and coworkers, we also include the possibility that - in addition to the protons, alpha-particles, and heavy seed - a small flux of neutrons is maintained by the reaction p( (nu) over bar (e); e(+)) n. This flux of neutrons is critical in bridging the long waiting points along the path of the rp-process by ( n, p) reactions. Using the unmodified ejecta histories from a recent two-dimensional supernova model by Janka and coworkers, we find synthesis of p-rich nuclei up to Pd-102, although our calculations do not show efficient production of Mo-92. If the entropy of these ejecta is increased by a factor of 2, the synthesis extends to Te-120. Still larger increases in entropy, which might reflect the role of magnetic fields or vibrational energy input neglected in the hydrodynamical model, result in the production of nuclei up to A approximate to 170. Elements synthesized in these more extreme outflows include numerous s- and p-process nuclei, and even some r-process nuclei can be synthesized in these proton-rich conditions. C1 Lawrence Livermore Natl Lab, N Div, Livermore, CA 94550 USA. Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. Max Planck Inst Astrophys, D-85741 Garching, Germany. RP Pruet, J (reprint author), Lawrence Livermore Natl Lab, N Div, POB 808, Livermore, CA 94550 USA. EM pruet1@llnl.gov; rdhoffman@llnl.gov; woosley@ucolick.org; thj@mpa-garching.mpg.de; rburas@mpa-garching.mpg.de RI Buras-Schnell, Robert/B-3170-2011 OI Buras-Schnell, Robert/0000-0002-4217-4522 NR 35 TC 151 Z9 154 U1 0 U2 6 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2006 VL 644 IS 2 BP 1028 EP 1039 DI 10.1086/503891 PN 1 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 053XS UT WOS:000238340100032 ER PT J AU Johnson, RE Smith, HT Tucker, OJ Liu, M Burger, MH Sittler, EC Tokar, RL AF Johnson, RE Smith, HT Tucker, OJ Liu, M Burger, MH Sittler, EC Tokar, RL TI The Enceladus and OH tori at Saturn SO ASTROPHYSICAL JOURNAL LA English DT Article DE planets and satellites : individual (Enceladus, Saturn) ID E-RING; NEUTRAL CLOUD; ATMOSPHERE; PLASMA; REDISTRIBUTION; PLUME; MODEL; ION AB The remarkable observation that Enceladus, a small icy satellite of Saturn, is actively venting has led to the suggestion that ejected water molecules are the source of the toroidal atmosphere observed at Saturn for over a decade using the Hubble Space Telescope (HST). Here we show that the venting leads directly to a new feature, a narrow Enceladus neutral torus. The larger torus, observed using HST, is populated by charge exchange, the process that limits the lifetime of the neutrals in the Enceladus torus. C1 Univ Virginia, Engn Phys & Astron Dept, Charlottesville, VA 22904 USA. NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Johnson, RE (reprint author), Univ Virginia, Engn Phys & Astron Dept, Charlottesville, VA 22904 USA. EM rej@virginia.edu RI Smith, Howard/H-4662-2016 OI Smith, Howard/0000-0003-3537-3360 NR 21 TC 88 Z9 88 U1 1 U2 4 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2006 VL 644 IS 2 BP L137 EP L139 DI 10.1086/505750 PN 2 PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 053XY UT WOS:000238340700010 ER PT J AU Xiao, HY Zu, XT He, X Gao, F AF Xiao, HY Zu, XT He, X Gao, F TI Sb adsorption on Cu(110), (100), and (111) surfaces SO CHEMICAL PHYSICS LA English DT Article DE density-functional calculations; antimony; copper; surface alloy ID LOW-ENERGY-ELECTRON; GENERALIZED GRADIENT APPROXIMATION; LOCAL-DENSITY APPROXIMATION; ION-SCATTERING SPECTROSCOPY; STRUCTURAL-ANALYSIS; MOLECULAR-DYNAMICS; ATOMIC-STRUCTURE; DIFFRACTION; RELAXATION; AG(111) AB The adsorption of antimony on the (I 10), (10 0) and (I 11) surfaces of Cu has been studied using gradient-corrected density-functional calculations. Our calculations showed that all the surfaces are active for Sb adsorption and surface alloys are formed in which Sb atoms substitute Cu atom in the outermost layer, in excellent agreement with experiments. The vacancy formation energy for (I 10) surface is found to be the smallest and the Sb/Cu(110)c(2 x 2) surface alloy turns out to be energetically the most favorable. Our results are found to agree well with the available experimental and theoretical work. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. Chinese Acad Sci, Int Ctr Mat Phys, Shenyang 110015, Peoples R China. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zu, XT (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM xiaotaozu@yahoo.com RI Xiao, Haiyan/A-1450-2012; Gao, Fei/H-3045-2012 NR 42 TC 9 Z9 9 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-0104 J9 CHEM PHYS JI Chem. Phys. PD JUN 20 PY 2006 VL 325 IS 2 BP 519 EP 524 DI 10.1016/j.chemphys.2006.01.029 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 059IQ UT WOS:000238726900036 ER PT J AU Sawhney, R Sehl, ME Sanati, H Satariano, WA Naeim, A AF Sawhney, R. Sehl, M. E. Sanati, H. Satariano, W. A. Naeim, A. TI Activity limitation and clustering of symptoms in breast cancer patients. SO JOURNAL OF CLINICAL ONCOLOGY LA English DT Meeting Abstract CT 42nd Annual Meeting of the American-Society-of-Clinical-Oncology CY JUN 02-06, 2006 CL Atlanta, GA SP Amer Soc Clin Oncol C1 Univ Calif Los Angeles, David Geffen Sch Med, Los Angeles, CA USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC CLINICAL ONCOLOGY PI ALEXANDRIA PA 330 JOHN CARLYLE ST, STE 300, ALEXANDRIA, VA 22314 USA SN 0732-183X J9 J CLIN ONCOL JI J. Clin. Oncol. PD JUN 20 PY 2006 VL 24 IS 18 SU S BP 478S EP 478S PN 1 PG 1 WC Oncology SC Oncology GA 063HN UT WOS:000239009403212 ER PT J AU McIntire, TM Smalley, SR Newberg, JT Lea, AS Hemminger, JC Finlayson-Pitts, BJ AF McIntire, TM Smalley, SR Newberg, JT Lea, AS Hemminger, JC Finlayson-Pitts, BJ TI Substrate changes associated with the chemistry of self-assembled monolayers on silicon SO LANGMUIR LA English DT Article ID RAY PHOTOELECTRON-SPECTROSCOPY; AUGER ELECTRON SPECTROSCOPY; HYDROGEN PEROXIDE SOLUTIONS; GAS-PHASE OZONE; ALKYLSILOXANE MONOLAYERS; ORGANIC AEROSOLS; REACTIVE UPTAKE; MINERAL DUST; THIN-FILMS; SURFACE AB Alkylsiloxane self-assembled monolayers ( SAMs) are used in the semiconductor industry and, more recently, as proxies for organics adsorbed on airborne mineral dust and on buildings and construction materials. A number of methods have been used for removing the SAM from the substrate after reaction or use, particularly plasmas or piranha ( H2SO4/H2O2) solution. However, when the substrates are reused to make new SAMs, the impact of the cleaning methods on the chemistry of subsequently formed SAMs on the surface is not known. Here we report atomic force microscopy, X-ray photoelectron spectroscopy, Auger electron spectroscopy, and Fourier transform infrared studies of changes in a silicon substrate upon repetitive deposition and removal of SAMs by these two methods. It is shown that a thicker layer of silicon oxide is formed, and the surface becomes irregular and roughened, particularly after the piranha treatment. This layer of silica impacts the structure of the SAMs attached to it and can serve as a reservoir for trace gases that adsorb on it, potentially contributing to the subsequent reactions of the SAM. The implications for the use of such surfaces as a proxy for reactions of organics on airborne dust particles and on structures in the boundary layer are discussed. C1 Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Finlayson-Pitts, BJ (reprint author), Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. EM bjfinlay@uci.edu RI Newberg, John/E-8961-2010; OI Lea, Alan/0000-0002-4232-1553 NR 55 TC 12 Z9 13 U1 2 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUN 20 PY 2006 VL 22 IS 13 BP 5617 EP 5624 DI 10.1021/la060153l PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 052FH UT WOS:000238217000021 PM 16768485 ER PT J AU Bu, W Vaknin, D Travesset, A AF Bu, Wei Vaknin, David Travesset, Alex TI How accurate is Poisson-Boltzmann theory for monovalent ions near highly charged interfaces? SO LANGMUIR LA English DT Article ID AIR-WATER-INTERFACE; ARACHIDIC ACID MONOLAYERS; SURFACE ACTIVE SUBSTANCE; DOUBLE-LAYER THEORY; X-RAY-DIFFRACTION; ABSORPTION SPECTROSCOPY; SODIUM DODECYLSULFATE; STRUCTURAL-PROPERTIES; AIR/WATER INTERFACE; HYDRATION FORCES AB Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface. A lipid phosphate (dihexadecyl hydrogen-phosphate) was spread as a monolayer at the air-water interface to control surface charge density. Using anomalous reflectivity off and at the L-3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. Five decades in bulk concentrations are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. The increase of Cs+ concentration modifies the contact value potential, thereby causing proton release. This process effectively modifies surface charge density and enables exploration of ion distributions as a function of effective surface charge-density. The experimentally obtained ion distributions are compared to distributions calculated by Poisson-Boltzmann theory accounting for the variation of surface charge density due to proton release and binding. We also discuss the accuracy of our experimental results in discriminating possible deviations from Poisson-Boltzmann theory. C1 Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Vaknin, D (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Vaknin, David/B-3302-2009; Bu, Wei/Q-1390-2016 OI Vaknin, David/0000-0002-0899-9248; Bu, Wei/0000-0002-9996-3733 NR 48 TC 42 Z9 43 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUN 20 PY 2006 VL 22 IS 13 BP 5673 EP 5681 DI 10.1021/la053400e PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 052FH UT WOS:000238217000029 PM 16768493 ER PT J AU Jiang, DE Sumpter, BG Dai, S AF Jiang, De-en Sumpter, Bobby G. Dai, Sheng TI Olefin adsorption on silica-supported silver salts - A DFT study SO LANGMUIR LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; LIGHT-HYDROCARBON SEPARATION; TOTAL-ENERGY CALCULATIONS; NEUTRON TOTAL SCATTERING; AUGMENTED-WAVE METHOD; PI-COMPLEXATION; OLEFIN/PARAFFIN SEPARATIONS; PARAFFIN SEPARATION; UNSATURATED-COMPOUNDS; MESOPOROUS SILICA AB Recent experiments have shown that silver salts supported on mesoporous silicas display excellent adsorption selectivities of ethylene over ethane and propylene over propane. Employing the techniques of density functional theory, we have investigated the fundamental bases of this separation process by examining silver salts dispersed on model silica surfaces. Our model system includes Ag+ cations, their counteranions, silica supports, and surface silanols. Both adsorption geometries and energetics of ethylene and propylene were explored. Our results indicate that the nature of the Ag-olefin interaction is predominantly hybridization between Ag d and olefin d states, which is supported by analyses of electron density difference plots and density of states. The counteranions, such as NO3-, were found to interact strongly with surface silanols through multiple hydrogen bonds but have limited effect on the adsorption energy of olefins on the Ag+ cations. The current work supports recent experiments, which indicate that Ag-salt/silica may be a very promising adsorbent for olefin/paraffin separation. C1 Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Jiang, DE (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. EM jiangd@ornl.gov RI Jiang, De-en/D-9529-2011; Sumpter, Bobby/C-9459-2013; Dai, Sheng/K-8411-2015 OI Jiang, De-en/0000-0001-5167-0731; Sumpter, Bobby/0000-0001-6341-0355; Dai, Sheng/0000-0002-8046-3931 NR 59 TC 17 Z9 17 U1 2 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUN 20 PY 2006 VL 22 IS 13 BP 5716 EP 5722 DI 10.1021/la053415c PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 052FH UT WOS:000238217000035 PM 16768499 ER PT J AU Flaud, JM Lafferty, WJ Sams, RL Sharpe, SW AF Flaud, JM Lafferty, WJ Sams, RL Sharpe, SW TI High resolution spectroscopy of (H2CO)-C-12-O-16 in the 1.9 to 2.56 mu m spectral range SO MOLECULAR PHYSICS LA English DT Article ID VIBRATIONALLY EXCITED-STATES; QUARTIC FORCE-FIELD; MICROWAVE-SPECTRUM; LINE POSITIONS; FORMALDEHYDE; H2CO; BANDS; V6; V4; STRENGTHS AB Infrared spectra of H2CO covering the 1.9 mu m - 2.5 mu m spectral domain have been recorded at high resolution (0.005 cm(-1)) using Fourier transform spectroscopy leading to the observation and analysis of the nu(1)+nu(6), nu(2)+nu(4)+nu(6), 2 nu(3)+nu(6), nu(3)+nu(5), nu(1)+nu(2), nu(2)+nu(5), 2 nu(2)+nu(6) and 3 nu(2) bands. The line frequencies were calculated using effective ( empirical) Hamiltonian models, which account for the main Coriolis and vibrational interactions. Using an interactive scheme it was possible to least-squares fit the observed energy levels to within a few thousandths of a cm(-1). The observed-calculated differences do not match the spectral precision (similar to 0.0008 cm(-1)), but, given the congestion in the spectrum resulting from the density of the vibrational states as well as the large centrifugal distortion and Coriolis and anharmonic coupling effects, we believe that a reasonable agreement was obtained. From the fittings the following band centers were derived [GRAPHICS] where the expanded uncertainties are one standard deviation (i.e. k = 1). Finally a number of line intensities were measured having uncertainties of about 25%, which permits the determination of the main terms appearing in the expansion of the transition moments. A comprehensive list of line frequencies and intensities has been generated. C1 CNRS, LISA, F-75700 Paris, France. Univ Paris 07, F-75221 Paris 05, France. Univ Paris 12, F-94010 Creteil, France. NIST, Gaithersburg, MD 20899 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Flaud, JM (reprint author), CNRS, LISA, F-75700 Paris, France. EM flaud@lisa.univ-paris12.fr NR 30 TC 7 Z9 7 U1 0 U2 6 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0026-8976 J9 MOL PHYS JI Mol. Phys. PD JUN 20 PY 2006 VL 104 IS 12 BP 1891 EP 1903 DI 10.1080/00268970600641568 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 050WG UT WOS:000238119300010 ER PT J AU Benzerara, K Menguy, N Lopez-Garcia, P Yoon, TH Kazmierczak, J Tyliszczak, T Guyot, F Brown, GE AF Benzerara, Karim Menguy, Nicolas Lopez-Garcia, Purificacion Yoon, Tae-Hyun Kazmierczak, Jozef Tyliszczak, Tolek Guyot, Francois Brown, Gordon E., Jr. TI Nanoscale detection of organic signatures in carbonate microbialites SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE aragonite; biosignature; biomineralization; spectromicroscopy ID MODERN MARINE STROMATOLITES; CALCIUM-CARBONATE; ELECTRON-MICROSCOPY; LAKE VAN; X-RAY; PRECIPITATION; SPECTROSCOPY; BIOFILMS; TEM; CALCIFICATION AB Microbialites are sedimentary deposits associated with microbial mat communities and are thought to be evidence of some of the oldest life on Earth. Despite extensive studies of such deposits, little is known about the role of microorganisms in their formation. In addition, unambiguous criteria proving their biogenicity have yet to be established. In this study, we characterize modern calcareous microbialites from the alkaline Lake Van, Turkey, at the nanometer scale by combining x-ray and electron microscopies. We describe a simple way to locate microorganisms entombed in calcium carbonate precipitates by probing aromatic carbon functional groups and peptide bonds. Near-edge x-ray absorption fine structure spectra at the C and IN K-edges provide unique signatures for microbes. Aragonite crystals, which range in size from 30 to 100 nm, comprise the largest part of the microbialites. These crystals are surrounded by a 10-nm-thick amorphous calcium carbonate layer containing organic molecules and are embedded in an organic matrix, likely consisting of polysaccharides, which helps explain the unusual sizes and shapes of these crystals. These results provide biosignatures for these deposits and suggest that microbial organisms significantly impacted the mineralogy of Lake Van carbonates. C1 Stanford Univ, Dept Geol & Environm Sci, Surface & Aqueous Geochem Grp, Stanford, CA 94305 USA. Univ Paris 06 & 7, UMR 7590, Inst Mineral & Phys Milieux Condenses, CNRS,Dept Mineral,Inst Phys Globe Paris, F-75015 Paris, France. Univ Paris 11, CNRS, UMR 8079, Unite Ecol Systemat & Evolut, F-91405 Orsay, France. Hanyang Univ, Dept Chem, Seoul 133791, South Korea. Polish Acad Sci, Inst Paleobiol, PL-00818 Warsaw, Poland. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Stanford Linear Accelerator Ctr, Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Benzerara, K (reprint author), Stanford Univ, Dept Geol & Environm Sci, Surface & Aqueous Geochem Grp, Stanford, CA 94305 USA. EM benzerar@impmc.jussieu.fr RI MENGUY, Nicolas/F-5607-2012; Benzerara, Karim/J-1532-2016; GUYOT, Francois/C-3824-2016; IMPMC, Geobio/F-8819-2016; Lopez-Garcia, Purificacion/B-6775-2012 OI MENGUY, Nicolas/0000-0003-4613-2490; Benzerara, Karim/0000-0002-0553-0137; GUYOT, Francois/0000-0003-4622-2218; Lopez-Garcia, Purificacion/0000-0002-0927-0651 NR 44 TC 121 Z9 123 U1 2 U2 26 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 20 PY 2006 VL 103 IS 25 BP 9440 EP 9445 DI 10.1073/pnas.0603255103 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 058JD UT WOS:000238660400013 PM 16772379 ER PT J AU Wyrobek, AJ Eskenazi, B Young, S Arnheim, N Tiemann-Boege, I Jabs, EW Glaser, RL Pearson, FS Evenson, D AF Wyrobek, AJ Eskenazi, B Young, S Arnheim, N Tiemann-Boege, I Jabs, EW Glaser, RL Pearson, FS Evenson, D TI Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies in sperm SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE DNA fragmentation; human sperm; achondroplasia; sperm FISH; Apert syndrome ID ASSISTED REPRODUCTIVE TECHNIQUES; STRUCTURE ASSAY PARAMETERS; IN-SITU HYBRIDIZATION; PATERNAL-AGE; CHROMOSOMAL-ABNORMALITIES; INTRAUTERINE INSEMINATION; MULTICOLOR FISH; FGFR2 MUTATIONS; LINEAR INCREASE; HUMAN-FERTILITY AB This study compares the relative effects of advancing male age on multiple genomic defects in human sperm [DNA fragmentation index (DRI), chromatin integrity, gene mutations, and numerical chromosomal abnormalities], characterizes the relationships among these defects and with semen quality, and estimates the incidence of susceptible individuals for a well characterized nonclinical nonsmoking group of 97 men (22-80 years). Adjusting for confounders, we found major associations between age and the frequencies of sperm with DFI and fibroblast growth factor receptor 3 gene (FGFR3) mutations associated with achondroplasia (P < 0.01) with no evidence for age thresholds. However, we found no associations between age and the frequencies of sperm with immature chromatin, aneuploidies/diploidies, FGFR2 mutations (Apert syndrome), or sex ratio in this cohort. There were also no consistent correlations among genomic and semen-quality end-points, except between DFI and sperm motility (r = -0.65, P < 0.001). These findings suggest there are multiple spermatogenic targets for genomically defective sperm with substantially variable susceptibilities to age. Our findings predict that as healthy males age, they have decreased pregnancy success with trends beginning in their early reproductive years, increased risk for producing offspring with achondroplasia mutations, and risk of fathering offspring with Apert syndrome that may vary across cohorts, but with no increased risk for fathering aneuploid offspring (Down, Klinefelter, Turner, triple X, and XYY syndromes) or triploid embryos. Our findings also suggest that the burden of genomic damage in sperm cannot be inferred from semen quality, and that a small fraction of men are at increased risk for transmitting multiple genetic and chromosomal defects. C1 Lawrence Berkeley Lab, Div Life Sci, Sch Publ Hlth, Berkeley, CA 94720 USA. Lawrence Livermore Natl Lab, Biosci Directorate, Livermore, CA 94550 USA. Univ So Calif, Mol & Computat Biol Program, Los Angeles, CA 90089 USA. Johns Hopkins Univ, Dept Pediat, Ctr Craniofacial Dev & Disorders, Inst Med Genet, Baltimore, MD 21205 USA. Johns Hopkins Univ, Dept Med, Ctr Craniofacial Dev & Disorders, Inst Med Genet, Baltimore, MD 21205 USA. Johns Hopkins Univ, Dept Surg, Ctr Craniofacial Dev & Disorders, Inst Med Genet, Baltimore, MD 21205 USA. Massachusetts Coll Liberal Arts, Dept Biol, N Adams, MA 01247 USA. S Dakota State Univ, Dept Chem & Biochem, Brookings, SD 57007 USA. RP Wyrobek, AJ (reprint author), Lawrence Berkeley Lab, Div Life Sci, Sch Publ Hlth, 1 Cyclotron Rd,Mailstop 74R157, Berkeley, CA 94720 USA. EM ajwyrobek@gmail.com RI Tiemann-Boege, Irene/H-4437-2012; OI Tiemann-Boege, Irene/0000-0002-3621-7020; Jabs, Ethylin/0000-0001-8983-5466 FU NIEHS NIH HHS [P42 ES 04705, P42 ES004705]; NIGMS NIH HHS [R37 GM036745, GM 36745, R01 GM036745] NR 70 TC 183 Z9 196 U1 5 U2 17 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 20 PY 2006 VL 103 IS 25 BP 9601 EP 9606 DI 10.1073/pnas.0506468103 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 058JD UT WOS:000238660400040 PM 16766665 ER PT J AU Dilmanian, FA Zhong, Z Bacarian, T Benveniste, H Romanelli, P Wang, RL Welwart, J Yuasa, T Rosen, EM Anschel, DJ AF Dilmanian, FA Zhong, Z Bacarian, T Benveniste, H Romanelli, P Wang, RL Welwart, J Yuasa, T Rosen, EM Anschel, DJ TI Interlaced x-ray microplanar beams: A radiosurgery approach with clinical potential SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE radiation therapy; synchrotron x rays; tissue repair; tissue sparing; x-ray microbeam ID MICROBEAM RADIATION-THERAPY; MONTE-CARLO-SIMULATION; CENTRAL-NERVOUS-SYSTEM; STEREOTACTIC RADIOSURGERY; SYNCHROTRON-WIGGLER; GOLD NANOPARTICLES; DOSE DISTRIBUTIONS; CONTRAST AGENT; SPINAL-CORD; EGS4 CODE AB Studies have shown that x-rays delivered as arrays of parallel microplanar beams (microbeams), 25- to 90-mu m thick and spaced 100-300 mu m on-center, respectively, spare normal tissues including the central nervous system (CNS) and preferentially damage tumors. However, such thin microbeams can only be produced by synchrotron sources and have other practical limitations to clinical implementation. To approach this problem, we first studied CNS tolerance to much thicker beams. Three of four rats whose spinal cords were exposed transaxially to four 400-Gy, 0.68-mm microbeams, spaced 4 mm, and all four rats irradiated to their brains with large, 170-Gy arrays of such beams spaced 1.36 mm, all observed for 7 months, showed no paralysis or behavioral changes. We then used an interlacing geometry in which two such arrays at a 90 angle produced the equivalent of a contiguous beam in the target volume only. By using this approach, we produced 90-,120-, and 150-Gy 3.4 x 3.4 x 3.4 mm(3) exposures in the rat brain. MRIs performed 6 months later revealed focal damage within the target volume at the 120- and 150-Gy doses but no apparent damage elsewhere at 120 Gy. Monte Carlo calculations indicated a 30-mu m dose falloff (80-20%) at the edge of the target, which is much less than the 2- to 5-mm value for conventional radiotherapy and radiosurgery. These findings strongly suggest potential application of interlaced microbeams to treat tumors or to ablate nontumorous abnormalities with minimal damage to surrounding normal tissue. C1 Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. Brookhaven Natl Lab, Natl Synchrotron Light Source Dept, Upton, NY 11973 USA. Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. SUNY Stony Brook, Dept Anesthesiol, Stony Brook, NY 11794 USA. SUNY Stony Brook, Dept Neurol, Stony Brook, NY 11794 USA. IRCCS, Dept Neurosurg, Neuromed Med Ctr, I-86077 Pozzilli, Italy. Georgetown Univ, Lombardi Comprehens Canc Ctr, Washington, DC 20057 USA. RP Dilmanian, FA (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. EM dilmanian@bnl.gov RI Yuasa, Tetsuya/F-5006-2013 FU NINDS NIH HHS [R21 NS043231, R21 NS 43231] NR 46 TC 75 Z9 75 U1 0 U2 3 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 20 PY 2006 VL 103 IS 25 BP 9709 EP 9714 DI 10.1073/pnas.0603567103 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 058JD UT WOS:000238660400058 PM 16760251 ER PT J AU Newman, BD Wilcox, BP Archer, SR Breshears, DD Dahm, CN Duffy, CJ McDowell, NG Phillips, FM Scanlon, BR Vivoni, ER AF Newman, Brent D. Wilcox, Bradford P. Archer, Steven R. Breshears, David D. Dahm, Clifford N. Duffy, Christopher J. McDowell, Nate G. Phillips, Fred M. Scanlon, Bridget R. Vivoni, Enrique R. TI Ecohydrology of water-limited environments: A scientific vision SO WATER RESOURCES RESEARCH LA English DT Review ID PLANT-ATMOSPHERE CONTINUUM; PONDEROSA PINE HILLSLOPE; VAPOR-PRESSURE DEFICIT; DESERT VADOSE ZONES; LAND-COVER CHANGE; ART. NO. 1179; SOIL-WATER; RAINFALL VARIABILITY; AMERICAN SOUTHWEST; UNITED-STATES AB [ 1] Water-limited environments occupy about half of the Earth's land surface and contain some of the fastest growing population centers in the world. Scarcity or variable distributions of water and nutrients make these environments highly sensitive to change. Given the importance of water-limited environments and the impacts of increasing demands on water supplies and other natural resources, this paper highlights important societal problems and scientific challenges germane to these environments and presents a vision on how to accelerate progress. We argue that improvements in our fundamental understanding of the links between hydrological, biogeochemical, and ecological processes are needed, and the way to accomplish this is by fostering integrated, interdisciplinary approaches to problem solving and hypothesis testing through place-based science. Such an ecohydrological approach will create opportunities to develop new methodologies and ways of thinking about these complex environmental systems and help us improve forecasts of environmental change. C1 Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. Texas A&M Univ, Dept Rangeland Ecol & Management, College Stn, TX 77843 USA. Univ Arizona, Sch Nat Resources, Inst Study Planet Earth, Tucson, AZ 85721 USA. Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA. Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA. New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87801 USA. Univ Texas, Bur Econ Geol, Austin, TX 78713 USA. RP Newman, BD (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, MS J495, Los Alamos, NM 87545 USA. EM bnewman@lanl.gov RI Vivoni, Enrique/E-1202-2012; Breshears, David/B-9318-2009; Scanlon, Bridget/A-3105-2009 OI Vivoni, Enrique/0000-0002-2659-9459; Breshears, David/0000-0001-6601-0058; Scanlon, Bridget/0000-0002-1234-4199 NR 194 TC 183 Z9 186 U1 13 U2 129 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD JUN 20 PY 2006 VL 42 IS 6 AR W06302 DI 10.1029/2005WR004141 PG 15 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 057OU UT WOS:000238605900002 ER PT J AU Dunaevsky, A Raitses, Y Fisch, NJ AF Dunaevsky, A. Raitses, Y. Fisch, N. J. TI Plasma acceleration from radio-frequency discharge in dielectric capillary SO APPLIED PHYSICS LETTERS LA English DT Article ID FREE DOUBLE-LAYER; ATMOSPHERIC-PRESSURE; EXPANSION; THRUSTERS AB A capacitive rf discharge was demonstrated in a dielectric capillary for generation of quasineutral plasma flow with energies of several tens of eV. A potential gradient at the open end of the capillary and high-temperature electrons in the capillary discharge promote the ion acceleration. The plasma flow was generated from a ceramic capillary with inner diameter of similar to 0.8 mm and a length of similar to 10 mm, at a gas flow rate of 2-10 SCCM (SCCM denotes cubic centimeter per minute at STP) and input power of 15-20 W. The ion energy spectrum consists of high-energy accelerated ions and a low-energy tail formed due to ionization in the acceleration region. The relatively wide plume angle of similar to 65 degrees indicates that the acceleration region is placed outside the capillary and has a convex shape. Estimated total efficiency at 2 SCCM Xe flow rate and 15 W input power reaches 2%-3%. This approach may be attractive for micropropulsion applications due to its simplicity, low weight and small dimensions of the source, and the absence of a cathode neutralizer. (c) 2006 American Institute of Physics. C1 Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08540 USA. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Dunaevsky, A (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08540 USA. EM alex.dunaevsky@philips.com NR 23 TC 23 Z9 23 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 19 PY 2006 VL 88 IS 25 AR 251502 DI 10.1063/1.2214127 PG 3 WC Physics, Applied SC Physics GA 055YR UT WOS:000238487800022 ER PT J AU El-Kady, I Taha, MMR Su, MF AF El-Kady, I. Taha, M. M. Reda Su, M. F. TI Application of photonic crystals in submicron damage detection and quantification SO APPLIED PHYSICS LETTERS LA English DT Article AB We propose the use of photonic crystals (PC) for submicron damage detection and quantification. The idea is based on the inherent tie between PC topology and its corresponding spectral frequency response. We demonstrate using a simulation model that a PC sensor attached to a polymer substrate will experience significant changes in its band gap profile when microdamage is induced in the substrate. A damage metric, developed using principles of fuzzy pattern recognition, is used to quantify the change in the spectral response in relation to the level of induced damage. Finally, different damage scenarios demonstrating coincidence with results are examined and reported. (c) 2006 American Institute of Physics. C1 Sandia Natl Labs, Dept Photon Microsyst Technol, Albuquerque, NM 87185 USA. Univ New Mexico, Dept Civil Engn, Albuquerque, NM 87131 USA. Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA. RP El-Kady, I (reprint author), Sandia Natl Labs, Dept Photon Microsyst Technol, POB 5800, Albuquerque, NM 87185 USA. EM ielkady@sandia.gov RI El-Kady, Ihab/D-2886-2013 OI El-Kady, Ihab/0000-0001-7417-9814 NR 11 TC 9 Z9 9 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 19 PY 2006 VL 88 IS 25 AR 253109 DI 10.1063/1.2212050 PG 3 WC Physics, Applied SC Physics GA 055YR UT WOS:000238487800076 ER PT J AU Hsu, JWP Tallant, DR Simpson, RL Missert, NA Copeland, RG AF Hsu, J. W. P. Tallant, D. R. Simpson, R. L. Missert, N. A. Copeland, R. G. TI Luminescent properties of solution-grown ZnO nanorods SO APPLIED PHYSICS LETTERS LA English DT Article ID ROOM-TEMPERATURE; ZINC-OXIDE; NANOSTRUCTURES; PHOTOLUMINESCENCE; EVAPORATION; ARRAYS; GREEN; FILMS AB The optical properties of solution-grown ZnO nanorods were investigated using photoluminescence and cathodoluminescence. The as-grown nanorods displayed a broad yellow-orange sub-band-gap luminescence and a small near-band-gap emission peak. The sub-band-gap luminescence can only be observed when exciting above band gap. Scanning cathodoluminescence experiments showed that the width of the sub-band-gap luminescence is not due to an ensemble effect. Upon reduction, the sub-band-gap luminescence disappeared and the near-band-gap emission increased. Compared to ZnO powders that are stoichiometric and oxygen deficient, we conclude that the yellow-orange sub-band-gap luminescence most likely arises from bulk defects that are associated with excess oxygen. (c) 2006 American Institute of Physics. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Hsu, JWP (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jwhsu@sandia.gov NR 18 TC 85 Z9 86 U1 2 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 19 PY 2006 VL 88 IS 25 AR 252103 DI 10.1063/1.2214137 PG 3 WC Physics, Applied SC Physics GA 055YR UT WOS:000238487800037 ER PT J AU Li, G Kim, CH Zhou, Z Shinar, J Okumoto, K Shirota, Y AF Li, G. Kim, C. H. Zhou, Z. Shinar, J. Okumoto, K. Shirota, Y. TI Combinatorial study of exciplex formation at the interface between two wide band gap organic semiconductors SO APPLIED PHYSICS LETTERS LA English DT Article ID LIGHT-EMITTING-DIODES; ELECTROLUMINESCENT DEVICES; EMISSION; FABRICATION; EFFICIENCY; MOLECULES; COLOR AB Combinatorial screening of exciplex formation in blends of 4,4('),4(')-tris[2-naphthyl (phenyl)-amino] triphenylamine (2-TNATA), and 2,2('),7,7(')-tetrakis(2,2(')-diphenylvinyl) spiro-9,9(')-bifluorene (spiro-DPVBi) is described. The blended layer was incorporated in ITO/[2-TNATA]/[1:1 2-TNATA:spiro-DPVBi]/[N, N-' - diphenyl - N, N-' - bis (1-naphthylphenyl) - 1, 1(') - bi-phenyl - 4, 4(')-diamine (NPB)]/[spiro-DPVBi]/[tris(8-hydroxy quinoline) Al]/CsF/Al organic light-emitting devices; the thickness of the blend and NPB layers were varied systematically. The electroluminescence quantum yield decreased as the blended layer thickness increased. The NPB spacer layer reduced the exciplex formation; an 8-nm-thick layer completely suppressed it. (c) 2006 American Institute of Physics. C1 Iowa State Univ, Ames Lab, USDOE, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Osaka Univ, Fac Engn, Dept Appl Chem, Suita, Osaka 565, Japan. Fukui Univ Technol, Fukui 9108505, Japan. RP Shinar, J (reprint author), Iowa State Univ, Ames Lab, USDOE, Ames, IA 50011 USA. EM shinar@ameslab.gov RI Li, Gang/A-5667-2012 OI Li, Gang/0000-0001-8399-7771 NR 13 TC 51 Z9 52 U1 3 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 19 PY 2006 VL 88 IS 25 AR 253505 DI 10.1063/1.2202391 PG 3 WC Physics, Applied SC Physics GA 055YR UT WOS:000238487800086 ER PT J AU Li, YL AF Li, Yuelin TI Electro-optical sampling at near-zero optical bias SO APPLIED PHYSICS LETTERS LA English DT Article ID TERAHERTZ PULSES; RADIATION; BEAM AB We report a detailed study of distortion effects in electro-optical sampling measurement at near-zero optical bias. It is found that when the induced optical retardation has a dynamic range larger than the optical bias, a false polarity change of the field can be observed merely due to the amplitude change of the field under investigation. The distortion cannot be corrected in general. However, when the optical bias is known, this phenomenon can be exploited to derive the absolute field amplitude under study. (c) 2006 American Institute of Physics. C1 Argonne Natl Lab, Accelerator Syst Div, Argonne, IL 60439 USA. RP Li, YL (reprint author), Argonne Natl Lab, Accelerator Syst Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ylli@aps.anl.gov OI Li, Yuelin/0000-0002-6229-7490 NR 21 TC 4 Z9 4 U1 2 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 19 PY 2006 VL 88 IS 25 AR 251108 DI 10.1063/1.2214143 PG 3 WC Physics, Applied SC Physics GA 055YR UT WOS:000238487800008 ER PT J AU Naito, M Ishimaru, M Hirotsu, Y Valdez, JA Sickafus, KE AF Naito, Muneyuki Ishimaru, Manabu Hirotsu, Yoshihiko Valdez, James A. Sickafus, Kurt E. TI Solid phase crystallization of amorphous Fe-Si layers synthesized by ion implantation SO APPLIED PHYSICS LETTERS LA English DT Article ID BETA-FESI2; PHOTOLUMINESCENCE; ABSORPTION; ORIGIN AB Microstructural changes of ion-beam-synthesized amorphous Fe-Si layers on thermal annealing were investigated using transmission electron microscopy. Single crystal Si(111) substrates were irradiated with 120 keV Fe+ ions at cryogenic temperature to a fluence of 4.0x10(17) cm(-2), followed by thermal annealing at 200-700 degrees C. The amorphous Fe-Si layer in the as-implanted sample crystallized to polycrystalline epsilon-FeSi and beta-FeSi2 layers after annealing at 500 degrees C for 2 h.epsilon-FeSi transformed into beta-FeSi2 and the beta-FeSi2 region extended with increasing annealing temperature. Excess Fe atoms from epsilon-to-beta phase transformation migrate toward the Si substrate via beta-FeSi2 grain boundaries. We discuss the recrystallization process of amorphous Fe-Si thin layers and the growth mechanism of beta-FeSi2 thin layers formed in high-dose Fe ion-implanted Si. (c) 2006 American Institute of Physics. C1 Osaka Univ, Inst Sci & Ind Res, Ibaraki 5670047, Japan. Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Naito, M (reprint author), Osaka Univ, Inst Sci & Ind Res, Ibaraki 5670047, Japan. EM naito22@sanken.osaka-u.ac.jp NR 13 TC 5 Z9 5 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 19 PY 2006 VL 88 IS 25 AR 251904 DI 10.1063/1.2216358 PG 3 WC Physics, Applied SC Physics GA 055YR UT WOS:000238487800026 ER PT J AU O'Hara, JF Zide, JMO Gossard, AC Taylor, AJ Averitt, RD AF O'Hara, John F. Zide, J. M. O. Gossard, A. C. Taylor, A. J. Averitt, R. D. TI Enhanced terahertz detection via ErAs : GaAs nanoisland superlattices SO APPLIED PHYSICS LETTERS LA English DT Article ID 1.55 MU-M; SUBPICOSECOND CARRIER DYNAMICS; TEMPERATURE-GROWN GAAS; RADIATION; SPECTROSCOPY; EXCITATION; PROBE AB We demonstrate enhanced terahertz detection using photoconductive antennas based on self-assembled ErAs:GaAs nanoisland superlattices. Three detectors are compared; one each fabricated on low-temperature grown GaAs, radiation-damaged silicon-on-sapphire, and an ErAs:GaAs superlattice. The ErAs:GaAs based detector shows a strong enhancement in terahertz detection efficiency with respect to incident optical power, though optical saturation occurs more rapidly. Detected terahertz bandwidth and signal-to-noise ratios are simultaneously maintained or improved. (c) 2006 American Institute of Physics. C1 Los Alamos Natl Lab, MST, CINT, Los Alamos, NM 87545 USA. Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. RP O'Hara, JF (reprint author), Los Alamos Natl Lab, MST, CINT, Los Alamos, NM 87545 USA. EM johara@lanl.gov RI Zide, Joshua/B-5105-2010 OI Zide, Joshua/0000-0002-6378-7221 NR 16 TC 55 Z9 55 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 19 PY 2006 VL 88 IS 25 AR 251119 DI 10.1063/1.2216026 PG 3 WC Physics, Applied SC Physics GA 055YR UT WOS:000238487800019 ER PT J AU Chou, YS Stevenson, JW Hardy, J Singh, P AF Chou, YS Stevenson, JW Hardy, J Singh, P TI Material degradation during isothermal ageing and thermal cycling of hybrid mica seals under solid oxide fuel cell exposure conditions SO JOURNAL OF POWER SOURCES LA English DT Article DE ageing; thermal cycling; leak rate; mica seal; phlogopite; SOFC ID SOFC; CRYSTALLIZATION; SEALANTS AB Hybrid phlogopite mica seals with glass interlayers were evaluated in terms of materials degradation in a combined ageing and thermal cycling test. Three glass interlayers were investigated: a standard Ba-Ca-Al silicate glass (G18), a modified Ba-ca-Al silicate glass with a nucleation agent added (G18m), and a borosilicate glass (G6). The hybrid phlogopite mica seals were aged at 800 degrees C for similar to 500 to similar to 1000 h in moist, dilute hydrogen fuel, and then subjected to short-term thermal cycling between similar to 100 and 800 degrees C. Seals with G 18 and G18m glass interlayers showed very poor thermal cycle stability after isothermal ageing. Seals with borosilicate glass interlayers showed very good thermal cycle stability with constant, low leakage (< 0.01 sccrn cm(-1) at 0.2 psi) after ageing for 508 h followed by 56 thermal cycles. Post-mortem analyses showed degradation of the mica due to interaction with the interlayer glasses. Leak paths were identified and correlated to the measured leak rates. (c) 2005 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Div Mat, Richland, WA 99354 USA. RP Chou, YS (reprint author), Pacific NW Natl Lab, Div Mat, K2-44,POB 999, Richland, WA 99354 USA. EM yeong-shyung.chou@pnl.gov RI Singh, Prabhakar/M-3186-2013; Hardy, John/E-1938-2016 OI Hardy, John/0000-0002-1699-3196 NR 18 TC 27 Z9 30 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUN 19 PY 2006 VL 157 IS 1 BP 260 EP 270 DI 10.1016/j.jpowsour.2005.07.027 PG 11 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 057HW UT WOS:000238587900032 ER PT J AU Bloom, I Christophersen, JP Abraham, DP Gering, KL AF Bloom, Ira Christophersen, Jon P. Abraham, Daniel P. Gering, Kevin L. TI Differential voltage analyses of high-power lithium-ion cells - 3. Another anode phenomenon SO JOURNAL OF POWER SOURCES LA English DT Article DE battery; differential voltage analysis; lithium-ion; aging ID SURFACE-REACTIONS; INTERCALATION; ELECTROLYTES; CARBONATE; MECHANISM AB We characterized high-power lithium-ion cells in terms of performance and cycle and calendar life at 45 C. Among other parameters, we measured the C/25 capacity every 4 weeks during the test. Differentiation of the C/25 voltage versus capacity data with respect to capacity (dV/dQ) has been used to elucidate another type of side reaction at the anode. In cycle-life cells, with their higher capacity throughput, the analysis showed that one phase transition (a peak in the profile) was disappearing with time. In contrast, this effect was not seen in calendar-life cells. (c) 2005 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Electrochem Technol Program, Argonne, IL 60439 USA. Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Bloom, I (reprint author), Argonne Natl Lab, Electrochem Technol Program, 9700 S Cass Ave, Argonne, IL 60439 USA. EM bloom@cmt.anl.gov NR 13 TC 30 Z9 32 U1 2 U2 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUN 19 PY 2006 VL 157 IS 1 BP 537 EP 542 DI 10.1016/j.jpowsour.2005.07.054 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 057HW UT WOS:000238587900068 ER PT J AU Horava, P Keeler, CA AF Horava, Petr Keeler, Cynthia A. TI Thermodynamics of noncritical M-theory and the topological A-model SO NUCLEAR PHYSICS B LA English DT Article ID STRING THEORY; 2-DIMENSIONAL QCD; FINITE-TEMPERATURE; SUPERSTRINGS AB In [P. Horava, C.A. Keeler, Noncritical M-theory in 2 + I dimensions as a nonrelativistic Fermi liquid, hep-th/0508024], noncritical M-theory for two-dimensional type 0A and 013 strings was defined in terms of a double-scaled theory of nonrelativistic fermions in 2 + I dimensions. Here we study this noncritical M-theory at finite temperature. We derive the exact expression for the free energy of its vacuum solution, as a function of a coupling constant gm and the radius R of the thermal circle. We show that at high temperature, the theory is effectively described by another M-theory solution, whose effective loop-counting coupling scales in a novel way characteristic of M-theory, as T-3. Our calculations further suggest that noncritical M-theory is dual to the closed string theory of the topological A-model on a Calabi-Yau, with the radius R of the Euclidean time circle in M-theory playing the role of the string coupling constant of the A-model. In this correspondence, T-duality on the Euclidean time circle of noncritical M-theory implies an S-duality for the topological A-model. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Horava, P (reprint author), Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. EM horava@berkeley.edu; ckeeler@berkeley.edu NR 75 TC 6 Z9 6 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 J9 NUCL PHYS B JI Nucl. Phys. B PD JUN 19 PY 2006 VL 745 IS 1-2 BP 1 EP 28 DI 10.1016/j.nuclphysb.2006.02.039 PG 28 WC Physics, Particles & Fields SC Physics GA 049SK UT WOS:000238036800001 ER PT J AU Nomura, Y Poland, D Tweedie, B AF Nomura, Yasunori Poland, David Tweedie, Brock TI Minimally fine-tuned supersymmetric standard models with intermediate-scale supersymmetry breaking SO NUCLEAR PHYSICS B LA English DT Article ID ELECTROWEAK BREAKING; PARTICLE PHYSICS; EXTRA DIMENSION; MU-PROBLEM; MASS; SUPERGRAVITY; UNIFICATION; HIERARCHY; U(1) AB We construct realistic supersymmetric theories in which the correct scale for electroweak symmetry breaking is obtained without significant fine-tuning. We consider two classes of models. In one class super-symmetry breaking is transmitted to the supersymmetric standard model sector through Dirac gaugino mass terms generated by a D-term vacuum expectation value of a U(l) gauge field. In the other class the supersymmetry breaking sector is separated from the supersymmetric standard model sector in an extra dimension, and the transmission of supersymmetry breaking occurs through gauge mediation. In both these theories the Higgs sector contains two Higgs doublets and a singlet, but unlike the case for the next-to-minimal supersymmetric standard model the singlet field is not responsible for generating the supersymmetric or supersymmetry breaking mass for the Higgs doublets. These masses, as well as the mass for the singlet, are generated through gravitational-strength interactions. The scale at which the squark and slepton masses are generated is of order 1-100 TeV, and the generated masses do not respect the unified mass relations. We find that electroweak symmetry breaking in these theories is caused by an interplay between the top-stop radiative correction and the holomorphic supersymmetry breaking mass for the Higgs doublets and that the fine-tuning can be reduced to the level of 20%. The theories have rich phenomenology, including a variety of possibilities for the lightest supersymmetric particle. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Tweedie, B (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM brock@berkeley.edu RI Poland, David/A-8689-2015; OI Poland, David/0000-0003-3854-2430; Nomura, Yasunori/0000-0002-1497-1479 NR 60 TC 31 Z9 31 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 EI 1873-1562 J9 NUCL PHYS B JI Nucl. Phys. B PD JUN 19 PY 2006 VL 745 IS 1-2 BP 29 EP 48 DI 10.1016/j.nuclphysb.2006.03.034 PG 20 WC Physics, Particles & Fields SC Physics GA 049SK UT WOS:000238036800002 ER PT J AU Walter, MD Berg, DJ Andersen, RA AF Walter, MD Berg, DJ Andersen, RA TI Coordination complexes of decamethylytterbocene with 4,4 '-disubstituted bipyridines: An experimental study of spin coupling in lanthanide complexes SO ORGANOMETALLICS LA English DT Article ID MAGNETIC-RESONANCE SHIFTS; LIGANDS; 2,2'-BIPYRIDYL; NICKEL(2); STATE AB The paramagnetic 1:1 coordination complexes of (C5Me5)(2)Yb with a series of 4,4'-disubstituted bipyridines, bipy-X, where X is Me, t-Bu, OMe, Ph, CO2Me, and CO2Et, have been prepared. All of the complexes are paramagnetic, and the values of the magnetic susceptibility as a function of temperature show that these values are less than expected for the cations, [(C5Me5)(2)Yb(III)(bipy-X)](+), which have been isolated as the cation-anion ion pairs [(C5Me5)(2)Yb(III)(bipy-X)](+)[(C5Me5)(2)YbI2](-), where X is CO2Et, OMe, and Me. The H-1 NMR chemical shifts (293 K) for the methine resonances located at the 6,6' site in the bipy-X ring show a linear relationship with the values of chi T (300 K) for the neutral complexes, which illustrates that the molecular behavior does not depend on the phase, with one exception, viz., (C5Me5)(2)Yb(bipy-Me). Single crystals of the 4,4'-dimethylbipyridine complex undergo an irreversible, abrupt first-order phase change at 228 K that shatters the single crystals. The magnetic susceptibility, represented in a chi vs T plot, on this complex, in polycrystalline form undergoes reversible abrupt changes in the temperature regime 205-212 K, which is suggested to be due to the way the individual molecular units pack in the unit cell. A qualitative model is proposed that accounts for the subnormal magnetic moments in these ytterbocene-bipyridine complexes. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Andersen, RA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Berkeley, CA 94720 USA. EM raandersen@lbl.gov RI Walter, Marc/E-4479-2012 NR 26 TC 43 Z9 43 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD JUN 19 PY 2006 VL 25 IS 13 BP 3228 EP 3237 DI 10.1021/om051051d PG 10 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 051SD UT WOS:000238180200019 ER PT J AU Mecikalski, JR Bedka, KM Turner, DD Feltz, WF Paech, SJ AF Mecikalski, J. R. Bedka, K. M. Turner, D. D. Feltz, W. F. Paech, S. J. TI Ability to quantify coherent turbulent structures in the convective boundary layer using thermodynamic profiling instruments SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID EMITTED RADIANCE INTERFEROMETER; INTENSIVE OBSERVATION PERIODS; WATER-VAPOR; LIDAR OBSERVATIONS; ROLL VORTICES; AIRCRAFT OBSERVATIONS; RAMAN LIDAR; INITIATION; VARIABILITY; CLOUDS AB [ 1] Water vapor mixing ratio data from the Raman lidar and Atmospheric Emitted Radiance Interferometer (AERI) are analyzed toward inferring the presence of organized, three-dimensional, turbulent features within convective boundary layers (CBLs). The Raman lidar and AERI instruments provide unique, high-quality data sets, from 200-m to similar to 3-km altitude at <= 1-min temporal resolution profiles of water vapor. CBLs under the influence of solar heating for two fair-weather days over the Atmospheric Radiation Measurement ( ARM) Central Facility near Lamont, Oklahoma, during the International H(2)0 Project 2002 ( IHOP_2002), and 1 day during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers ( CRYSTAL)-Florida Area Cirrus Experiment ( FACE) 2002 experiment, are evaluated. This research provides a means of inferring the presence of coherent, convectively driven circulation ( momentum) signatures exclusively from high-temporal resolution water vapor profiles. Spectral and statistical analysis of Raman lidar water vapor-time series reveal the passage of coherent turbulent structures, including horizontal convective rolls (HCRs), within the CBL over the ARM site at similar to 8 and 12 min intervals for 2 days during IHOP_2002. AERI data collected during CRYSTAL-FACE also indicate similar structures, with meteorological conditions on this day also dictating the presence of cloud streets over the AERI ( every 12 and 28 min). Radiosonde, satellite, and ceilometer analyses provide information about the favored stability and CBL cloud patterns, as well as a check on our spectral analysis. Evidence within the perturbation water vapor time series from these two instruments is well correlated with HCRs and other cumulus patterns seen in 1 km resolution GOES visible satellite imagery. C1 Univ Alabama, Dept Atmospher Sci, NSSTC, Huntsville, AL 35805 USA. Univ Wisconsin, Cooperat Inst Meteorol Satellite Studies, Madison, WI USA. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Mecikalski, JR (reprint author), Univ Alabama, Dept Atmospher Sci, NSSTC, 320 Sparkman Dr, Huntsville, AL 35805 USA. EM john.mecikalski@nsstc.uah.edu NR 59 TC 2 Z9 2 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 17 PY 2006 VL 111 IS D12 AR D12203 DI 10.1029/2005JD006456 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 057BT UT WOS:000238570700004 ER PT J AU Varnum, SM Warner, MG Dockendorff, B Anheier, NC Lou, JL Marks, JD Smith, LA Feldhaus, MJ Grate, JW Bruckner-Lea, CJ AF Varnum, SM Warner, MG Dockendorff, B Anheier, NC Lou, JL Marks, JD Smith, LA Feldhaus, MJ Grate, JW Bruckner-Lea, CJ TI Enzyme-amplified protein microarray and a fluidic renewable surface fluorescence immunoassay for botulinum neurotoxin detection using high-affinity recombinant antibodies SO ANALYTICA CHIMICA ACTA LA English DT Article DE immunoassay; protein microarray; renewable microcolumn sensor; monoclonal antibody; botulinum neurotoxin A ID LINKED-IMMUNOSORBENT-ASSAY; FLOW-INJECTION; ENVIRONMENTAL-SAMPLES; FUNCTIONAL ASSAYS; ESCHERICHIA-COLI; BEAD INJECTION; MICROCOLUMNS; PURIFICATION; SYSTEM; ELISA AB Two immunoassay platforms were developed for either the sensitive or rapid detection of botulinum neurotoxin A (BoNT/A), using high-affinity recombinant monoclonal antibodies against the receptor binding domain of the heavy chain of BoNT/A. These antibodies also bind the same epitopes of the receptor binding domain present on a nontoxic recombinant heavy chain fragment used for assay development and testing in the current study. An enzyme-linked immunosorbent assay (ELISA) microarray using tyramide amplification for localized labeling was developed for the specific and sensitive detection of BoNT. This assay has the sensitivity to detect BoNT in buffer and blood plasma samples down to 14 fM (1.4 pg mL(-1)). Three capture antibodies and one antibody combination were compared in the development of this assay. Using a selected pair from the same set of recombinant monoclonal antibodies, a renewable surface microcolumn sensor was developed for the rapid detection of BoNT/A in an automated fluidic system. The ELISA microarray assay, because of its sensitivity, offers a screening test with detection limits comparable to the mouse bioassay, with results available in hours instead of days. The renewable surface assay is less sensitive but much faster, providing results in less than 10 min. (c) 2006 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Fundamental Sci Directorate, Richland, WA 99352 USA. Univ Calif San Francisco, Dept Anesthesia, San Francisco, CA 94110 USA. USA, Med Res Inst Infect Dis, Ft Detrick, MD 21702 USA. RP Varnum, SM (reprint author), Pacific NW Natl Lab, Fundamental Sci Directorate, Richland, WA 99352 USA. EM susan.varnum@pnl.gov NR 39 TC 31 Z9 33 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0003-2670 J9 ANAL CHIM ACTA JI Anal. Chim. Acta PD JUN 16 PY 2006 VL 570 IS 2 BP 137 EP 143 DI 10.1016/j.aca.2006.04.047 PG 7 WC Chemistry, Analytical SC Chemistry GA 057WZ UT WOS:000238627200001 PM 17723391 ER PT J AU Wagner, D Maser, J Moric, I Vogt, S Kern, WV Bermudez, LE AF Wagner, D Maser, J Moric, I Vogt, S Kern, WV Bermudez, LE TI Elemental analysis of the Mycobacterium avium phagosome in Balb/c mouse macrophages SO BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS LA English DT Article DE mycobacteria; phagosomes; metals; inbred mice; iron; potassium channel; chlorine; killing ID K-ATP CHANNELS; EXPERIMENTAL LEISHMANIASIS; CELL-DIFFERENTIATION; NATURAL-RESISTANCE; BRUCELLA-ABORTUS; INTERFERON-GAMMA; TUBERCULOSIS; NRAMP1; MICE; SUSCEPTIBILITY AB Using a hard X-ray microprobe, we showed recently that in unstimulated peritoneal macrophages from C57BL/6 mice, the phagosome of pathogenic mycobacteria (Mycobacterium tuberculosis and Mycobacterium aviun?) can accumulate iron. We expanded our studies to the M. avium infection of peritoneal macrophages of Balb/c mice that show a similar degree of M. tuberculosis and M. avium-related chronic disease, but a higher susceptibility towards other intracellular pathogens such as Listeria monocytogenes, Leishmania major, or Brucella abortus as compared to C57BL/6 mice. Similar to C57BL/6 macrophages, the iron concentration in Balb/c macrophages increased significantly after 24 h of infection. A significant increase of the chlorine and potassium concentrations was observed in the Balb/c phagosomes between I and 24 h, in contrast with macrophages from C57BL/6 mice. The absolute elemental concentrations of calcium and zinc were higher in the mycobacterial phagosomes of Balb/c mice. We hypothesize that a potassium channel is abundant in the phagosome in macrophages that may be related to microbiocidal killing, similar to the requirement of potassium channels for microbiocidal function in neutrophils. (c) 2006 Elsevier Inc. All rights reserved. C1 Univ Freiburg, Dept Internal Med, Div Infect Dis, Freiburg, Germany. Argonne Natl Lab, Argonne, IL 60439 USA. Oregon State Univ, Coll Vet Med, Dept Biomed Sci, Corvallis, OR 97331 USA. Oregon State Univ, Coll Sci, Dept Microbiol, Corvallis, OR 97331 USA. RP Wagner, D (reprint author), Univ Freiburg, Dept Internal Med, Div Infect Dis, Freiburg, Germany. EM Dirk.Wagner@uniklinik-freiburg.de RI Wagner, Dirk/G-4598-2013; Maser, Jorg/K-6817-2013; Vogt, Stefan/B-9547-2009; Wagner, Dirk/D-9778-2016; Vogt, Stefan/J-7937-2013 OI Vogt, Stefan/0000-0002-8034-5513; Wagner, Dirk/0000-0002-3271-5815; Vogt, Stefan/0000-0002-8034-5513 FU NIAID NIH HHS [R01-AI 47010] NR 44 TC 13 Z9 13 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0006-291X J9 BIOCHEM BIOPH RES CO JI Biochem. Biophys. Res. Commun. PD JUN 16 PY 2006 VL 344 IS 4 BP 1346 EP 1351 DI 10.1016/j.bbrc.2006.04.048 PG 6 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 044NL UT WOS:000237679200042 PM 16650826 ER PT J AU Loots, GG Chain, PSG Mabery, S Rasley, A Garcia, E Ovcharenko, I AF Loots, Gabriela G. Chain, Patrick S. G. Mabery, Shalini Rasley, Amy Garcia, Emilio Ovcharenko, Ivan TI Array2BIO: from microarray expression data to functional annotation of co-regulated genes SO BMC BIOINFORMATICS LA English DT Article ID GENOME; BROWSER AB Background: There are several isolated tools for partial analysis of microarray expression data. To provide an integrative, easy-to-use and automated toolkit for the analysis of Affymetrix microarray expression data we have developed Array2BIO, an application that couples several analytical methods into a single web based utility. Results: Array2BIO converts raw intensities into probe expression values, automatically maps those to genes, and subsequently identifies groups of co-expressed genes using two complementary approaches: (1) comparative analysis of signal versus control and ( 2) clustering analysis of gene expression across different conditions. The identified genes are assigned to functional categories based on Gene Ontology classification and KEGG protein interaction pathways. Array2BIO reliably handles low-expressor genes and provides a set of statistical methods for quantifying expression levels, including Benjamini-Hochberg and Bonferroni multiple testing corrections. An automated interface with the ECR Browser provides evolutionary conservation analysis for the identified gene loci while the interconnection with Creme allows prediction of gene regulatory elements that underlie observed expression patterns. Conclusion: We have developed Array2BIO-a web based tool for rapid comprehensive analysis of Affymetrix microarray expression data, which also allows users to link expression data to Dcode.org comparative genomics tools and integrates a system for translating co-expression data into mechanisms of gene co-regulation. Array2BIO is publicly available at http://array2bio.dcode.org. C1 Lawrence Livermore Natl Lab, Biosci Directorate, Livermore, CA 94550 USA. Lawrence Livermore Natl Lab, Computat Directorate, Livermore, CA 94550 USA. Dept Energy Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Ovcharenko, I (reprint author), Lawrence Livermore Natl Lab, Biosci Directorate, Livermore, CA 94550 USA. EM loots1@llnl.gov; chain2@llnl.gov; mabery1@llnl.gov; rasley2@llnl.gov; garcia12@llnl.gov; ovcharenko1@llnl.gov RI chain, patrick/B-9777-2013 NR 12 TC 8 Z9 9 U1 1 U2 1 PU BIOMED CENTRAL LTD PI LONDON PA MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD JUN 16 PY 2006 VL 7 AR 307 DI 10.1186/1471-2105-7-307 PG 8 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 067LU UT WOS:000239304800001 PM 16780584 ER PT J AU Zhang, XW Gureasko, J Shen, K Cole, PA Kuriyan, J AF Zhang, Xuewu Gureasko, Jodi Shen, Kui Cole, Philip A. Kuriyan, John TI An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor SO CELL LA English DT Article ID PROTEIN-TYROSINE KINASE; CRYSTAL-STRUCTURE; EGF RECEPTOR; LUNG CANCERS; GENE-MUTATIONS; GEFITINIB; INHIBITOR; COMPLEX; PHOSPHORYLATION; DIMERIZATION AB The mechanism by which the epidermal growth factor receptor (EGFR) is activated upon dimerization has eluded definition. We find that the EGFR kinase domain can be activated by increasing its local concentration or by mutating a leucine (L834R) in the activation loop, the phosphorylation of which is not required for activation. This suggests that the kinase domain is intrinsically autoinhibited, and an intermolecular interaction promotes its activation. Using further mutational analysis and crystallography we demonstrate that the autoinhibited conformation of the EGFR kinase domain resembles that of Src and cyclin-dependent kinases (CDKs). EGFR activation results from the formation of an asymmetric dimer in which the C-terminal lobe of one kinase domain plays a role analogous to that of cyclin in activated CDK/cyclin complexes. The CDK/cyclin-like complex formed by two kinase domains thus explains the activation of EGFR.-family receptors by homo- or heterodimerization. C1 Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Johns Hopkins Univ, Sch Med, Dept Pharmacol, Baltimore, MD 21205 USA. RP Zhang, XW (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM kuriyan@berkeley.edu FU NCI NIH HHS [R01 CA74305, R01 CA96504] NR 41 TC 740 Z9 755 U1 2 U2 77 PU CELL PRESS PI CAMBRIDGE PA 1100 MASSACHUSETTS AVE, CAMBRIDGE, MA 02138 USA SN 0092-8674 J9 CELL JI Cell PD JUN 16 PY 2006 VL 125 IS 6 BP 1137 EP 1149 DI 10.1016/j.cell.2006.05.013 PG 13 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 057NO UT WOS:000238602700018 PM 16777603 ER PT J AU Steiner, SA Porter, MD Fritz, JS AF Steiner, SA Porter, MD Fritz, JS TI Ultrafast concentration and speciation of chromium(III) and (VI) SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article; Proceedings Paper CT 18th International Ion Chromatography Symposium CY SEP 18-21, 2005 CL Montreal, CANADA DE chromium; speciation; colorimetric solid-phase extraction (CSPE); diffuse reflectance spectroscopy ID SOLID-PHASE EXTRACTION; ATOMIC-ABSORPTION-SPECTROMETRY; FLOW-INJECTION ANALYSIS; PRECONCENTRATION; SAMPLES; CR(VI); VI; CHROMATOGRAPHY; COMPLEXATION; SELECTIVITY AB There is an increasing need to know the concentrations of chromium(III) and (VI) separately rather than only the total chromium content. A method is described for accomplishing this very quickly using only low-cost, portable equipment. Two small, resin-loaded extraction disks are placed one on top of the other in a plastic holder. Then a syringe containing the aqueous sample is attached to the holder and the sample is pushed through the disks. In a matter of seconds, all of the chromium(VI) is retained on the top anion-exchange disk and chromium(III) is extracted by the second cation-exchange disk. The concentrations on each disk are several hundredfold higher than they were in the original sample. The amounts of chromium(III) and (VI) extracted are measured directly on the surface of the respective disks by diffuse reflectance spectroscopy (DRS). Despite the low molar absorptivity of chromium(HI) in aqueous solution, the concentration on the upper most layer on the extraction disk is high enough to permit the determination of chromium(III) in samples at the low mg/L range. Chromium(VI) can also be determined at low to sub-mg/L concentrations. A study of the cation-exchange disks was undertaken to compare the performance characteristics of disks containing sulfonated resins and those with iminodiacetate functionality. In addition, data are presented to show the effects of heating the iminodiacetate disks after the initial extraction. The disks were heated in hot water for 15-30 min to complete the slow complexation reaction on the surface. (c) 2006 Elsevier B.V. All rights reserved. C1 Iowa State Univ, Ames Lab, Inst Combinatorial Discovery, US Dept Energy, Ames, IA 50011 USA. Univ Wisconsin, Dept Chem & Engn Phys, Platteville, WI 53818 USA. RP Fritz, JS (reprint author), Iowa State Univ, Ames Lab, Inst Combinatorial Discovery, US Dept Energy, Ames, IA 50011 USA. EM kniss@ameslab.gov NR 21 TC 18 Z9 18 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD JUN 16 PY 2006 VL 1118 IS 1 BP 62 EP 67 DI 10.1016/j.chroma.2006.01.117 PG 6 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 056KU UT WOS:000238522500011 PM 16476436 ER PT J AU Chen, YX Ye, ML Cui, HR Wu, FY Zhu, Y Fritz, JS AF Chen, YX Ye, ML Cui, HR Wu, FY Zhu, Y Fritz, JS TI Determination of glycerophosphate and other anions in dentifrices by ion chromatography SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article; Proceedings Paper CT 18th International Ion Chromatography Symposium CY SEP 18-21, 2005 CL Montreal, CANADA DE ion chromatography; fluoride; monofluorophaosphate; calcium glycerophosphate; anions ID CAPILLARY-ELECTROPHORESIS; INORGANIC ANIONS; FLUORIDE; MONOFLUOROPHOSPHATE; TOOTHPASTE AB Simple, reliable and sensitive analytical methods to determine the anions. such as fluoride, monofluorophaosphate, glycerophosphate related to anticaries are necessary for basic investigations of anticaries and quality control of dentifrices. A method for the simultaneous determination of organic acids, organic anions and inorganic anions in the sample of commercial toothpaste is proposed. Nine anions (fluoride, chloride, nitrite, nitrate, sulfate, phosphate, monofluorophaosphate, glycerophosphate and oxalic acid) were analyzed by means of ion chromatography using a gradient elution with KOH as mobile phase, IonPac AS18 as the separation column and suppressed conductivity detection. Optimized analytical conditions were further validated in terms of accuracy, precision and total uncertainty and the results showed the reliability of the IC method. The relative standard deviations (RSD) of the retention time and peak area of all species were less than 0.170 and 1.800%. respectively. The correlation coefficients for target analytes ranged from 0.9985 to 0.9996. The detection limit (signal to noise ratio of 3:1) of this method was at low ppb level (< 15 ppb). The spiked recoveries for the anions were 96-103%. The method was applied to toothpaste without interferences. (c) 2006 Elsevier B.V. All rights reserved. C1 Zhejiang Univ, Dept Chem, Zhengzhou 310028, Peoples R China. Hubei Entry Exit Inspect & Quarantine Bur, Technol Ctr, Wuhan 430022, Peoples R China. US DOE, Ames Lab, Ames, IA USA. Iowa State Univ, Dept Chem, Ames, IA USA. RP Zhu, Y (reprint author), Zhejiang Univ, Dept Chem, Xixi Campus, Zhengzhou 310028, Peoples R China. EM zhuyan@zju.edu.cn NR 13 TC 12 Z9 15 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD JUN 16 PY 2006 VL 1118 IS 1 BP 155 EP 159 DI 10.1016/j.chroma.2006.01.137 PG 5 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 056KU UT WOS:000238522500026 PM 16516904 ER PT J AU Borovsky, JE Steinberg, JT AF Borovsky, Joseph E. Steinberg, John T. TI The "calm before the storm'' in CIR/magnetosphere interactions: Occurrence statistics, solar wind statistics, and magnetospheric preconditioning SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID DENSE PLASMA SHEET; RING CURRENT; MAGNETIC-FIELD; PLASMASPHERIC MATERIAL; EARTHS MAGNETOSPHERE; GEOSYNCHRONOUS ORBIT; GEOMAGNETIC ACTIVITY; OUTER PLASMASPHERE; ART.; IONOSPHERE AB [ 1] Intervals of extreme geomagnetic calm just prior to recurring high-speed-stream-driven storms are noted and studied. These calm intervals may be important for preconditioning the magnetosphere for the ensuing storms. It is argued that this preconditioning causes ( 1) a decay of the number density of relativistic electrons in the outer radiation belt, ( 2) a mass loading of the convection of the middle magnetosphere during the early phase of the storms, ( 3) dumping of the outer electron radiation belt by the formation of a plasmaspheric drainage plume at the onset of the storm, and ( 4) a contribution to the inner plasma sheet and ring current by the convection of cool dense plasma into the dipole. Calm intervals tend to occur when uncompressed slow wind passes the Earth immediately prior to the CIR. Using 73 years of geomagnetic data, it is shown that the occurrence rate of calms before recurring storms is substantially greater than random occurrence probability would predict, even though the properties of the wind that drives calms before storms are statistically similar to the properties of the wind that drives quiet intervals during solar minimum. The recurrence of storms and calms are studied and it is found that both tend to recur with a 27-day period ( strongest during declining phase) and that the persistence of calm recurrence ( similar to 3 solar rotations) is greater than the persistence of storm recurrence ( similar to 2 solar rotations). An argument is given as to why there is a tendency for calms to occur just prior to high-speed-stream-driven storms. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Borovsky, JE (reprint author), Los Alamos Natl Lab, POB 1663,MS D466, Los Alamos, NM 87545 USA. EM jborovsky@lanl.gov OI Steinberg, John/0000-0003-2491-1661 NR 86 TC 77 Z9 77 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN 16 PY 2006 VL 111 IS A7 AR A07S10 DI 10.1029/2005JA011397 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 057CS UT WOS:000238573500001 ER PT J AU Abulencia, A Acosta, D Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arguin, JF Arisawa, T Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Bachacou, H Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Belloni, A Ben Haim, E Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carron, S Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chapman, J Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Chu, PH Chuang, SH Chung, K Chung, WH Chung, YS Ciljak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Cresciolo, F Cruz, A Almenar, CC Cuevas, J Culbertson, R Cyr, D DaRonco, S D'Auria, S D'Onofrio, M Dagenhart, D de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G Dell'Orso, M Paoli, FD Demers, S Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Dionisi, C Dittmann, JR DiTuro, P Dorr, C Donati, S Donega, M Dong, P Donini, J Dorigo, T Dube, S Ebina, K Efron, J Ehlers, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Flores-Castillo, LR Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Sciveres, MG Garfinkel, AF Gay, C Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, A Gibson, K Ginsburg, C Giokaris, N Giolo, K Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Gotra, Y Goulianos, K Gresele, A Griffiths, M Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Hahn, K Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, M Harper, S Harr, RF Harris, RM Hatakeyama, K Hauser, J Hays, C Heijboer, A Heinemann, B Heinrich, J Herndon, M Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Huston, J Incandela, J Introzzi, G Iori, M Ishizawa, Y Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jensen, H Jeon, EJ Jindariani, S Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Kang, J Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kobayashi, H Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kovalev, A Kraan, A Kraus, J Kravchenko, I Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kuhlmann, SE Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Maki, T Maksimovic, P Malde, S Manca, G Margaroli, F Marginean, R Marino, C Martin, A Martin, V Martinez, M Maruyama, T Matsunaga, H Mattson, ME Mazini, R Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A von der Mey, M Miao, T Miladinovic, N Miles, J Miller, R Miller, JS Mills, C Milnik, M Miquel, R Mitra, A Mitselmakher, G Miyamoto, A Moggi, N Mohr, B Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Nachtman, J Naganoma, J Nahn, S Nakano, I Napier, A Naumov, D Necula, V Neu, C Neubauer, MS Nielsen, J Nigmanov, T Nodulman, L Norniella, O Nurse, E Ogawa, T Oh, SH Oh, YD Okusawa, T Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Paoletti, R Papadimitriou, V Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Rakitin, A Rappoccio, S Ratnikov, F Reisert, B Rekovic, V van Remortel, N Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robertson, WJ Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Rott, C Ruiz, A Russ, J Rusu, V Saarikko, H Sabik, S Safonov, A Sakumoto, WK Salamanna, G Salto, O Saltzberg, D Sanchez, C Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfiligoi, I Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Sjolin, J Skiba, A Slaughter, AJ Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spezziga, M Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Staveris-Polykalas, A Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sumorok, K Sun, H Suzuki, T Taffard, A Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tanimoto, N Tecchio, M Teng, PK Terashi, K Tether, S Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Tonnesmann, M Torre, S Torretta, D Tourneur, S Trischuk, W Tsuchiya, R Tsuno, S Turini, N Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vaiciulis, A Vallecorsa, S Varganov, A Vataga, E Velev, G Veramendi, G Veszpremi, V Vidal, R Vila, I Vilar, R Vine, T Vollrath, I Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, W Wallny, R Walter, T Wan, Z Wang, SM Warburton, A Waschke, S Waters, D Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zetti, F Zhang, X Zhou, J Zucchelli, S AF Abulencia, A. Acosta, D. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Ambrose, D. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arguin, J. -F. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Bachacou, H. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Bedeschi, F. Behari, S. Belforte, S. Bellettini, G. Bellinger, J. Belloni, A. Ben Haim, E. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carron, S. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chapman, J. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Chu, P. H. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciljak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Cresciolo, F. Cruz, A. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cyr, D. DaRonco, S. D'Auria, S. D'Onofrio, M. Dagenhart, D. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. Dell'Orso, M. Paoli, F. Delli Demers, S. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Dionisi, C. Dittmann, J. R. DiTuro, P. Doerr, C. Donati, S. Donega, M. Dong, P. Donini, J. Dorigo, T. Dube, S. Ebina, K. Efron, J. Ehlers, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Flores-Castillo, L. R. Foland, A. Forrester, S. Foster, G. W. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Sciveres, M. Garcia Garfinkel, A. F. Gay, C. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, A. Gibson, K. Ginsburg, C. Giokaris, N. Giolo, K. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Gotra, Y. Goulianos, K. Gresele, A. Griffiths, M. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Hahn, K. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hatakeyama, K. Hauser, J. Hays, C. Heijboer, A. Heinemann, B. Heinrich, J. Herndon, M. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ishizawa, Y. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jensen, H. Jeon, E. J. Jindariani, S. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Kang, J. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kobayashi, H. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kovalev, A. Kraan, A. Kraus, J. Kravchenko, I. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kuhlmann, S. E. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Loverre, P. Lu, R. -S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Maki, T. Maksimovic, P. Malde, S. Manca, G. Margaroli, F. Marginean, R. Marino, C. Martin, A. Martin, V. Martinez, M. Maruyama, T. Matsunaga, H. Mattson, M. E. Mazini, R. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. von der Mey, M. Miao, T. Miladinovic, N. Miles, J. Miller, R. Miller, J. S. Mills, C. Milnik, M. Miquel, R. Mitra, A. Mitselmakher, G. Miyamoto, A. Moggi, N. Mohr, B. Moore, R. Morello, M. Fernandez, P. Movilla Mulmenstadt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Nachtman, J. Naganoma, J. Nahn, S. Nakano, I. Napier, A. Naumov, D. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nigmanov, T. Nodulman, L. Norniella, O. Nurse, E. Ogawa, T. Oh, S. H. Oh, Y. D. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Paoletti, R. Papadimitriou, V. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Rakitin, A. Rappoccio, S. Ratnikov, F. Reisert, B. Rekovic, V. van Remortel, N. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robertson, W. J. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Rott, C. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Sabik, S. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Saltzberg, D. Sanchez, C. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfiligoi, I. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Sjolin, J. Skiba, A. Slaughter, A. J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spezziga, M. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sumorok, K. Sun, H. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Takikawa, K. Tanaka, M. Tanaka, R. Tanimoto, N. Tecchio, M. Teng, P. K. Terashi, K. Tether, S. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Tonnesmann, M. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tsuchiya, R. Tsuno, S. Turini, N. Ukegawa, F. Unverhau, T. Uozumi, S. Usynin, D. Vaiciulis, A. Vallecorsa, S. Varganov, A. Vataga, E. Velev, G. Veramendi, G. Veszpremi, V. Vidal, R. Vila, I. Vilar, R. Vine, T. Vollrath, I. Volobouev, I. Volpi, G. Wurthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wallny, R. Walter, T. Wan, Z. Wang, S. M. Warburton, A. Waschke, S. Waters, D. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zetti, F. Zhang, X. Zhou, J. Zucchelli, S. CA CDF Collaboration TI Observation of B-s(0)->psi(2S)phi and measurement of the ratio of branching fractions B(B-s(0)->psi(2S)phi)/B(B-s(0)-> J/psi phi) SO PHYSICAL REVIEW LETTERS LA English DT Article ID CDF; DETECTOR AB We report the first observation of B-s(0)->psi(2S)phi decay in pp collisions at root s=1.96 TeV using 360 pb(-1) of data collected by the CDF II detector at the Fermilab Tevatron. We observe 20.2 +/- 5.0 and 12.3 +/- 4.1 B-s(0)->psi(2S)phi candidates, in psi(2S)->mu(+)mu(-) and psi(2S)-> J/psi pi(+)pi(-) decay modes, respectively. We present a measurement of the relative branching fraction B(B-s(0)->psi(2S)phi)/B(B-s(0)-> J/psi phi)=0.52 +/- 0.13(stat)+/- 0.04(syst)+/- 0.06(BR) using the psi(2S)->mu(+)mu(-) decay mode. C1 Univ Illinois, Urbana, IL 61801 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. Baylor Univ, Waco, TX 76798 USA. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva 4, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00044 Helsinki, Finland. Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7Z3, Merseyside, England. UCL, London WC1E 6BT, England. Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. MIT, Inst Theoret & Expt Phys, Moscow 117259, Russia. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Paris 06, LPNHE, UMR7585, F-75005 Paris, France. CNRS, IN2P3, F-75700 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl, Siena, Italy. Scuola Normale Super Pisa, I-56127 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-000185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Abulencia, A (reprint author), Univ Illinois, Urbana, IL 61801 USA. RI Ruiz, Alberto/E-4473-2011; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Canelli, Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012 OI Ruiz, Alberto/0000-0002-3639-0368; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Canelli, Florencia/0000-0001-6361-2117; Scodellaro, Luca/0000-0002-4974-8330; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399 NR 19 TC 10 Z9 10 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 16 PY 2006 VL 96 IS 23 AR 231801 DI 10.1103/PhysRevLett.96.231801 PG 7 WC Physics, Multidisciplinary SC Physics GA 053OX UT WOS:000238315600015 ER PT J AU Aubert, B Barate, R Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Best, DS Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Brown, CL Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Kelly, MP Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Willocq, SY Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G del Re, D Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Potter, CT Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Li Gioi, L Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Vasseur, G Yeche, C Zito, M Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Boyarski, AM Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Li, S Libby, J Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perl, M Perazzo, A Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Hollar, JJ Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Mohapatra, AK Pan, Y Pierini, M Prepost, R Tan, P Wu, SL Yu, Z Neal, H AF Aubert, B Barate, R Bona, M Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Charles, E Gill, MS Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Best, DS Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L Hadavand, HK Hill, EJ Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Spaan, B Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Grenier, P Latour, E Thiebaux, C Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Fritsch, M Schott, G Arnaud, N Davier, M Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ Di Lodovico, F Menges, W Sacco, R Brown, CL Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Kelly, MP Lafferty, GD Naisbit, MT Williams, JC Yi, JI Chen, C Hulsbergen, WD Jawahery, A Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Saremi, S Staengle, H Willocq, SY Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G del Re, D Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Potter, CT Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Li Gioi, L Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Ebert, M Schroder, H Waldi, R Adye, T De Groot, N Franek, B Olaiya, EO Wilson, FF Emery, S Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Vasseur, G Yeche, C Zito, M Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Boyarski, AM Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Li, S Libby, J Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perl, M Perazzo, A Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schilling, CJ Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Hollar, JJ Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Mohapatra, AK Pan, Y Pierini, M Prepost, R Tan, P Wu, SL Yu, Z Neal, H CA BABAR Collaboration TI Observation of Upsilon(4S) decays to pi(+)pi(-)Upsilon(1S) and pi(+)pi(-)Upsilon(2S) SO PHYSICAL REVIEW LETTERS LA English DT Article AB We present the first measurement of Upsilon(4S) decays to pi(+)pi(-)Upsilon(1S) and pi(+)pi(-)Upsilon(2S) based on a sample of 230x10(6)Upsilon(4S) mesons collected with the BABAR detector. We measure the product branching fractions B(Upsilon(4S)->pi(+)pi(-)Upsilon(1S))xB(Upsilon(1S)->mu(+)mu(-))=(2.23 +/- 0.25(stat)+/- 0.27(syst))x10(-6) and B(Upsilon(4S)->pi(+)pi(-)Upsilon(2S))xB(Upsilon(2S)->mu(+)mu(-))=(1.69 +/- 0.26(stat)+/- 0.20(syst))x10(-6), from which we derive the partial widths Gamma(Upsilon(4S)->pi(+)pi(-)Upsilon(1S))=(1.8 +/- 0.4) keV and Gamma(Upsilon(4S)->pi(+)pi(-)Upsilon(2S))=(2.7 +/- 0.8) keV. C1 Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Univ Bari, Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, LLR, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Univ Ferrara, Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dept Fis, I-16146 Genoa, Italy. Univ Genoa, Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. Univ London, Queen Mary, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Univ Milan, Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. Univ Naples Federico II, Ist Nazl Fis Nucl, I-80126 Naples, Italy. Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Univ Padua, Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Perugia, Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Scuola Normale Super Pisa, Dipartimento Fis, I-56127 Pisa, Italy. Univ Pisa, Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Univ Roma La Sapienza, Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM, Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Univ Turin, Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Univ Trieste, Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53705 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Peters, Klaus/C-2728-2008; de Groot, Nicolo/A-2675-2009; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Della Ricca, Giuseppe/B-6826-2013; Cavallo, Nicola/F-8913-2012; Saeed, Mohammad Alam/J-7455-2012; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Grancagnolo, Sergio/J-3957-2015; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016 OI Peters, Klaus/0000-0001-7133-0662; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Della Ricca, Giuseppe/0000-0003-2831-6982; Saeed, Mohammad Alam/0000-0002-3529-9255; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Cristinziani, Markus/0000-0003-3893-9171; Wilson, Robert/0000-0002-8184-4103; Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Grancagnolo, Sergio/0000-0001-8490-8304; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240 NR 0 TC 33 Z9 33 U1 0 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 16 PY 2006 VL 96 IS 23 AR 232001 DI 10.1103/PhysRevLett.96.232001 PG 7 WC Physics, Multidisciplinary SC Physics GA 053OX UT WOS:000238315600018 PM 16803371 ER PT J AU Chacko, Z Goh, HS Harnik, R AF Chacko, Z. Goh, Hock-Seng Harnik, Roni TI Natural electroweak breaking from a mirror symmetry SO PHYSICAL REVIEW LETTERS LA English DT Article ID PARITY CONSERVATION; COMPOSITE HIGGS; SU(2); U(1) AB We present "twin Higgs models," simple realizations of the Higgs boson as a pseudo Goldstone boson that protect the weak scale from radiative corrections up to scales of order 5-10 TeV. In the ultraviolet these theories have a discrete symmetry which interchanges each standard model particle with a corresponding particle which transforms under a twin or a mirror standard model gauge group. In addition, the Higgs sector respects an approximate global symmetry. When this global symmetry is broken, the discrete symmetry tightly constrains the form of corrections to the pseudo Goldstone Higgs potential, allowing natural electroweak symmetry breaking. Precision electroweak constraints are satisfied by construction. These models demonstrate that, contrary to the conventional wisdom, stabilizing the weak scale does not require new light particles charged under the standard model gauge groups. C1 Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Chacko, Z (reprint author), Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. NR 25 TC 198 Z9 198 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 16 PY 2006 VL 96 IS 23 AR 231802 DI 10.1103/PhysRevLett.96.231802 PG 4 WC Physics, Multidisciplinary SC Physics GA 053OX UT WOS:000238315600016 PM 16803369 ER PT J AU Chen, J Ratera, I Park, JY Salmeron, M AF Chen, Jinyu Ratera, Imma Park, Jeong Young Salmeron, Miquel TI Velocity dependence of friction and hydrogen bonding effects SO PHYSICAL REVIEW LETTERS LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; ATOMIC-FORCE MICROSCOPY; STICK-SLIP MOTION; ULTRATHIN FILMS; SURFACE; MICA; MOLECULES; CONTACT AB We show that the friction force varies with the sliding velocity in a manner that depends on the chemical nature of the interface. Surfaces terminated with the hydrogen acceptor and donor moieties capable of forming H-bond networks exhibit a friction that decreases with sliding velocity, a behavior that is opposite to that of surfaces where no such networks can form. We explain the results with a model where the domains of glassy H-bond networks are disrupted at a critical applied stress leading to slippage. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM mbsalmeron@lbl.gov RI Park, Jeong Young/A-2999-2008; Ratera, Imma/E-2353-2014 OI Ratera, Imma/0000-0002-1464-9789 NR 32 TC 55 Z9 56 U1 3 U2 29 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 16 PY 2006 VL 96 IS 23 AR 236102 DI 10.1103/PhysRevLett.96.236102 PG 4 WC Physics, Multidisciplinary SC Physics GA 053OX UT WOS:000238315600034 PM 16803387 ER PT J AU Choi, CH Usheva, A Kalosakas, G Rasmussen, KO Bishop, AR AF Choi, CH Usheva, A Kalosakas, G Rasmussen, KO Bishop, AR TI Comment on "Can one predict DNA transcription start sites by studying bubbles?" SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material C1 Beth Israel Deaconess Med Ctr, Boston, MA 02215 USA. Harvard Univ, Sch Med, Boston, MA 02215 USA. Max Planck Inst Phys Complex Syst, D-01187 Dresden, Germany. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Choi, CH (reprint author), Beth Israel Deaconess Med Ctr, 99 Brookline Ave, Boston, MA 02215 USA. RI Rasmussen, Kim/B-5464-2009; Kalosakas, George/L-6211-2013 OI Rasmussen, Kim/0000-0002-4029-4723; Kalosakas, George/0000-0001-7763-718X NR 4 TC 18 Z9 18 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 16 PY 2006 VL 96 IS 23 AR 239801 DI 10.1103/PhysRevLett.96.239801 PG 1 WC Physics, Multidisciplinary SC Physics GA 053OX UT WOS:000238315600063 PM 16803416 ER PT J AU Melnikov, K Petriello, F AF Melnikov, Kirill Petriello, Frank TI W boson production cross section at the large hadron collider with O(alpha(2)(s)) corrections SO PHYSICAL REVIEW LETTERS LA English DT Article ID LARGE TRANSVERSE-MOMENTUM; LEPTON-PAIR PRODUCTION; TO-LEADING ORDER; FEYNMAN-INTEGRALS; QCD; ANNIHILATION; COLLISIONS; ALGORITHM; LHC; E+E AB We compute the O(alpha(2)(s)) QCD corrections to the fully differential cross section pp -> WX -> l nu X, retaining all effects from spin correlations. The knowledge of these corrections makes it possible to calculate with high precision the W boson production rate and acceptance at the CERN Large Hadron Collider (LHC), subject to realistic cuts on the lepton and missing energy distributions. For certain choices of cuts we find large corrections when going from next-to-leading order (NLO) to next-to-next-to-leading order in perturbation theory. These corrections are significantly larger than those obtained by parton-shower event generators merged with NLO calculations. Our result may be used to assess and significantly reduce the QCD uncertainties in the many studies of W boson production planned at the LHC. C1 Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Melnikov, K (reprint author), Univ Hawaii, Dept Phys & Astron, 2505 Correa Rd, Honolulu, HI 96822 USA. NR 43 TC 106 Z9 106 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 16 PY 2006 VL 96 IS 23 AR 231803 DI 10.1103/PhysRevLett.96.231803 PG 4 WC Physics, Multidisciplinary SC Physics GA 053OX UT WOS:000238315600017 PM 16803370 ER PT J AU Moreno, J Fishman, RS Jarrell, M AF Moreno, Juana Fishman, Randy S. Jarrell, Mark TI Transition temperature of a magnetic semiconductor with angular momentum j SO PHYSICAL REVIEW LETTERS LA English DT Article ID TO-POLARON CROSSOVER; MEAN-FIELD THEORY; CURIE-TEMPERATURE; DOUBLE-EXCHANGE; HIGH DIMENSIONS; HUBBARD-MODEL; FERMIONS; LATTICE AB We employ dynamical mean-field theory to identify the materials properties that optimize T-c for a generalized double-exchange model. We reach the surprising conclusion that T-c achieves a maximum when the band angular momentum j equals 3/2 and when the masses in the m(j)=+/- 1/2 and +/- 3/2 subbands are equal. However, we also find that T-c is significantly reduced as the ratio of the masses decreases from one. Consequently, the search for dilute-magnetic semiconductor materials with high T-c should proceed on two fronts. In semiconductors with p bands, such as the currently studied Mn-doped Ge and GaAs semiconductors, T-c may be optimized by tuning the band masses through strain engineering or artificial nanostructures. On the other hand, semiconductors with s or d bands with nearly equal effective masses might prove to have higher T-c's than p-band materials with disparate effective masses. C1 Univ N Dakota, Dept Phys, Grand Forks, ND 58202 USA. Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA. RP Moreno, J (reprint author), Univ N Dakota, Dept Phys, Grand Forks, ND 58202 USA. RI Moreno, Juana/D-5882-2012; Fishman, Randy/C-8639-2013 NR 39 TC 8 Z9 8 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 16 PY 2006 VL 96 IS 23 AR 237204 DI 10.1103/PhysRevLett.96.237204 PG 4 WC Physics, Multidisciplinary SC Physics GA 053OX UT WOS:000238315600045 PM 16803398 ER PT J AU Rodriguez, BJ Jesse, S Baddorf, AP Kalinin, SV AF Rodriguez, Brian J. Jesse, Stephen Baddorf, A. P. Kalinin, Sergei V. TI High resolution electromechanical imaging of ferroelectric materials in a liquid environment by piezoresponse force microscopy SO PHYSICAL REVIEW LETTERS LA English DT Article ID THIN-FILMS; HETEROSTRUCTURES AB High-resolution imaging of ferroelectric materials using piezoresponse force microscopy (PFM) is demonstrated in an aqueous environment. The elimination of both long-range electrostatic forces and capillary interactions results in a localization of the ac field to the tip-surface junction and allows the tip-surface contact area to be controlled. This approach results in spatial resolutions approaching the limit of the intrinsic domain-wall width. Imaging at frequencies corresponding to high-order cantilever resonances minimizes the viscous damping and added mass effects on cantilever dynamics and allows sensitivities comparable to ambient conditions. PFM in liquids will provide novel opportunities for high-resolution studies of ferroelectric materials, imaging of soft polymer materials, and imaging of biological systems in physiological environments on, ultimately, the molecular level. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012; Rodriguez, Brian/A-6253-2009; Jesse, Stephen/D-3975-2016; Baddorf, Arthur/I-1308-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Rodriguez, Brian/0000-0001-9419-2717; Jesse, Stephen/0000-0002-1168-8483; Baddorf, Arthur/0000-0001-7023-2382 FU NHGRI NIH HHS [R01 HG002647] NR 25 TC 51 Z9 52 U1 1 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 16 PY 2006 VL 96 IS 23 AR 237602 DI 10.1103/PhysRevLett.96.237602 PG 4 WC Physics, Multidisciplinary SC Physics GA 053OX UT WOS:000238315600051 PM 16803404 ER PT J AU Seidl, R Hasuko, K Abe, K Adachi, I Aihara, H Anipko, D Asano, Y Aushev, T Bakich, AM Balagura, V Barberio, E Bartel, W Bay, A Bitenc, U Bizjak, I Blyth, S Bozek, A Bracko, M Browder, TE Chang, P Chen, A Cheon, BG Choi, Y Choi, YK Chuvikov, A Dalseno, J Danilov, M Dash, M Dragic, J Eidelman, S Fratina, S Gabyshev, N Gershon, T Go, A Gokhroo, G Golob, B Gorisek, A Perdekamp, MG Ha, HC Hayasaka, K Hayashii, H Hazumi, M Hokuue, T Hoshi, Y Hou, S Hou, WS Iijima, T Inami, K Ishikawa, A Itoh, R Iwasaki, M Iwasaki, Y Kang, JH Kapusta, P Katayama, N Kawai, H Kawasaki, T Khan, HR Kichimi, H Kim, SK Kim, SM Kulasiri, R Kumar, R Kuo, CC Kuzmin, A Kwon, YJ Lange, JS Lee, J Lesiak, T Li, J Limosani, A Lin, SW Liventsev, D Mandl, F Matsumoto, T Matyja, A Mitaroff, W Miyake, H Miyata, H Miyazaki, Y Mizuk, R Mori, T Nakamura, I Nakano, E Nakao, M Natkaniec, Z Nishida, S Nitoh, O Ogawa, A Ogawa, S Ohshima, T Okabe, T Okuno, S Olsen, SL Ozaki, H Pakhlov, P Palka, H Park, CW Park, H Parslow, N Peak, LS Pestotnik, R Piilonen, LE Sakai, Y Sato, N Satoyama, N Schietinger, T Schneider, O Schumann, J Senyo, K Sevior, ME Shapkin, M Shibuya, H Somov, A Soni, N Stamen, R Stanic, S Staric, M Sumisawa, K Takasaki, F Tamai, K Tanaka, M Taylor, GN Teramoto, Y Tian, XC Tsukamoto, T Uehara, S Uglov, T Uno, S Urquijo, P Usov, Y Varner, G Villa, S Wang, CC Wang, CH Watanabe, Y Won, E Xie, QL Yabsley, BD Yamaguchi, A Yamashita, Y Yamauchi, M Ying, J Yusa, Y Zhang, LM Zhang, ZP Zhilich, V Zurcher, D AF Seidl, R. Hasuko, K. Abe, K. Adachi, I. Aihara, H. Anipko, D. Asano, Y. Aushev, T. Bakich, A. M. Balagura, V. Barberio, E. Bartel, W. Bay, A. Bitenc, U. Bizjak, I. Blyth, S. Bozek, A. Bracko, M. Browder, T. E. Chang, P. Chen, A. Cheon, B. G. Choi, Y. Choi, Y. K. Chuvikov, A. Dalseno, J. Danilov, M. Dash, M. Dragic, J. Eidelman, S. Fratina, S. Gabyshev, N. Gershon, T. Go, A. Gokhroo, G. Golob, B. Gorisek, A. Perdekamp, M. Grosse Ha, H. C. Hayasaka, K. Hayashii, H. Hazumi, M. Hokuue, T. Hoshi, Y. Hou, S. Hou, W. -S. Iijima, T. Inami, K. Ishikawa, A. Itoh, R. Iwasaki, M. Iwasaki, Y. Kang, J. H. Kapusta, P. Katayama, N. Kawai, H. Kawasaki, T. Khan, H. R. Kichimi, H. Kim, S. K. Kim, S. M. Kulasiri, R. Kumar, R. Kuo, C. C. Kuzmin, A. Kwon, Y. -J. Lange, J. S. Lee, J. Lesiak, T. Li, J. Limosani, A. Lin, S. -W. Liventsev, D. Mandl, F. Matsumoto, T. Matyja, A. Mitaroff, W. Miyake, H. Miyata, H. Miyazaki, Y. Mizuk, R. Mori, T. Nakamura, I. Nakano, E. Nakao, M. Natkaniec, Z. Nishida, S. Nitoh, O. Ogawa, A. Ogawa, S. Ohshima, T. Okabe, T. Okuno, S. Olsen, S. L. Ozaki, H. Pakhlov, P. Palka, H. Park, C. W. Park, H. Parslow, N. Peak, L. S. Pestotnik, R. Piilonen, L. E. Sakai, Y. Sato, N. Satoyama, N. Schietinger, T. Schneider, O. Schumann, J. Senyo, K. Sevior, M. E. Shapkin, M. Shibuya, H. Somov, A. Soni, N. Stamen, R. Stanic, S. Staric, M. Sumisawa, K. Takasaki, F. Tamai, K. Tanaka, M. Taylor, G. N. Teramoto, Y. Tian, X. C. Tsukamoto, T. Uehara, S. Uglov, T. Uno, S. Urquijo, P. Usov, Y. Varner, G. Villa, S. Wang, C. C. Wang, C. H. Watanabe, Y. Won, E. Xie, Q. L. Yabsley, B. D. Yamaguchi, A. Yamashita, Y. Yamauchi, M. Ying, J. Yusa, Y. Zhang, L. M. Zhang, Z. P. Zhilich, V. Zurcher, D. CA Belle Collaboration TI Measurement of azimuthal asymmetries in inclusive production of hadron pairs in e(+)e(-) annihilation at Belle SO PHYSICAL REVIEW LETTERS LA English DT Article ID FRAGMENTATION AB The Collins effect connects transverse quark spin with a measurable azimuthal dependence in the yield of hadronic fragments around the quark's momentum vector. Using two different reconstruction methods, we find evidence of statistically significant azimuthal asymmetries for charged pion pairs in e(+)e(-) annihilation at a center-of-mass energy of 10.52 GeV, which can be attributed to a transverse polarization of the primordial quarks. The measurement was performed using a sample of 79x10(6) hadronic events collected with the Belle detector. C1 Princeton Univ, Upton, NY 11973 USA. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Chiba Univ, Chiba, Japan. Chonnam Natl Univ, Kwangju 500757, South Korea. Univ Cincinnati, Cincinnati, OH 45221 USA. Deutsch Electronen Synchrotron, Hamburg, Germany. Univ Frankfurt, D-6000 Frankfurt, Germany. Univ Hawaii, Honolulu, HI 96822 USA. Natl Lab High Energy Phys, KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan. Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. Inst High Energy Phys, Vienna, Austria. Inst High Energy Phys, Protvino, Russia. Inst Theoret & Expt Phys, Moscow 117259, Russia. Jozef Stefan Inst, Ljubljana, Slovenia. Kanagawa Univ, Yokohama, Kanagawa, Japan. Korea Univ, Seoul 136701, South Korea. Kyungpook Natl Univ, Taegu 702701, South Korea. Swiss Fed Inst Technol, EPFL, CH-1015 Lausanne, Switzerland. Univ Ljubljana, Ljubljana, Slovenia. Univ Maribor, SLO-2000 Maribor, Slovenia. Univ Melbourne, Parkville, Vic 3052, Australia. Nagoya Univ, Nagoya, Aichi, Japan. Nara Womens Univ, Nara 630, Japan. Natl Cent Univ, Chungli 32054, Taiwan. Natl United Univ, Miaoli, Taiwan. Natl Taiwan Univ, Dept Phys, Taipei 10764, Taiwan. H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. Nippon Dent Univ, Niigata, Japan. Niigata Univ, Niigata, Japan. Nova Gorica Polytech, Nova Gorica, Italy. Osaka City Univ, Osaka 558, Japan. Osaka Univ, Osaka, Japan. Panjab Univ, Chandigarh 160014, India. Peking Univ, Beijing 100871, Peoples R China. Brookhaven Natl Lab, Res Ctr, RIKEN, Upton, NY 11973 USA. Univ Sci & Technol China, Hefei 230026, Peoples R China. Seoul Natl Univ, Seoul, South Korea. Shinshu Univ, Nagano, Japan. Sungkyunkwan Univ, Suwon 440746, South Korea. Univ Sydney, Sydney, NSW 2006, Australia. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Toho Univ, Funabashi, Chiba 274, Japan. Tohoku Gakuin Univ, Tagajo, Miyagi 985, Japan. Tohoku Univ, Sendai, Miyagi 980, Japan. Univ Tokyo, Dept Phys, Tokyo 113, Japan. Tokyo Inst Technol, Tokyo 152, Japan. Tokyo Metropolitan Univ, Tokyo 158, Japan. Tokyo Univ Agr & Technol, Tokyo, Japan. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. Yonsei Univ, Seoul 120749, South Korea. RP Seidl, R (reprint author), Princeton Univ, Upton, NY 11973 USA. RI Abe, Kazuo/F-6576-2010; Aihara, Hiroaki/F-3854-2010; Nitoh, Osamu/C-3522-2013; Tian, Xinchun/L-2060-2013; Kim, Sun Kee/G-2042-2015; Pakhlov, Pavel/K-2158-2013; Uglov, Timofey/B-2406-2014; Danilov, Mikhail/C-5380-2014; Mizuk, Roman/B-3751-2014; dong, liaoyuan/A-5093-2015; OI CHANG, PAO-TI/0000-0003-4064-388X; Aihara, Hiroaki/0000-0002-1907-5964; Tian, Xinchun/0000-0002-6246-0470; Kim, Sun Kee/0000-0002-0013-0775; Pakhlov, Pavel/0000-0001-7426-4824; Uglov, Timofey/0000-0002-4944-1830; Danilov, Mikhail/0000-0001-9227-5164; Jen, Chun-Min/0000-0003-4070-8866; dong, liaoyuan/0000-0002-4773-5050; HSIUNG, YEE/0000-0003-4801-1238 NR 14 TC 99 Z9 99 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 16 PY 2006 VL 96 IS 23 AR 232002 DI 10.1103/PhysRevLett.96.232002 PG 6 WC Physics, Multidisciplinary SC Physics GA 053OX UT WOS:000238315600019 PM 16803372 ER PT J AU Yuzbashyan, EA Dzero, M AF Yuzbashyan, Emil A. Dzero, Maxim TI Dynamical vanishing of the order parameter in a fermionic condensate SO PHYSICAL REVIEW LETTERS LA English DT Article ID GAP AB We analyze the dynamics of a condensate of ultracold atomic fermions following an abrupt change of the pairing strength. At long times, the system goes to a nonstationary steady state, which we determine exactly. The superfluid order parameter asymptotes to a constant value. We show that the order parameter vanishes when the pairing strength is decreased below a certain critical value. In this case, the steady state of the system combines properties of normal and superfluid states-the gap and the condensate fraction vanish, while the superfluid density is nonzero. C1 Rutgers State Univ, Ctr Matter Theory, Dept Phys & Astron, Piscataway, NJ 08854 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Ames Lab, Ames, IA 50011 USA. RP Yuzbashyan, EA (reprint author), Rutgers State Univ, Ctr Matter Theory, Dept Phys & Astron, Piscataway, NJ 08854 USA. NR 22 TC 76 Z9 76 U1 3 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 16 PY 2006 VL 96 IS 23 AR 230404 DI 10.1103/PhysRevLett.96.230404 PG 4 WC Physics, Multidisciplinary SC Physics GA 053OX UT WOS:000238315600004 PM 16803357 ER PT J AU Henry, MC Yonker, CR AF Henry, MC Yonker, CR TI Supercritical fluid chromatography, pressurized liquid extraction, and supercritical fluid extraction SO ANALYTICAL CHEMISTRY LA English DT Review ID ACCELERATED SOLVENT-EXTRACTION; CARBON-DIOXIDE EXTRACTION; POLYCYCLIC AROMATIC-HYDROCARBONS; COUNTER-CURRENT CHROMATOGRAPHY; HOT-WATER EXTRACTION; MASS-SPECTROMETRY; STATIONARY PHASES; GAS-CHROMATOGRAPHY; DRUG DISCOVERY; POLYCHLORINATED-BIPHENYLS C1 Battelle Pacific NW Natl Lab, Richland, WA 99352 USA. GlaxoSmithKline Inc, King Of Prussia, PA 19406 USA. RP Yonker, CR (reprint author), Battelle Pacific NW Natl Lab, POB 999,K2-57, Richland, WA 99352 USA. EM Clem.Yonker@pnnl.gov NR 113 TC 45 Z9 47 U1 6 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUN 15 PY 2006 VL 78 IS 12 BP 3909 EP 3915 DI 10.1021/ac0605703 PG 7 WC Chemistry, Analytical SC Chemistry GA 052RZ UT WOS:000238252600006 PM 16771531 ER PT J AU Koeniger, SL Merenbloom, SI Valentine, SJ Jarrold, MF Udseth, HR Smith, RD Clemmer, DE AF Koeniger, SL Merenbloom, SI Valentine, SJ Jarrold, MF Udseth, HR Smith, RD Clemmer, DE TI An IMS-IMS analogue of MS-MS SO ANALYTICAL CHEMISTRY LA English DT Article ID ION MOBILITY SPECTROMETRY; FLIGHT MASS-SPECTROMETRY; COLLISION-INDUCED DISSOCIATION; PHASE BRADYKININ IONS; FIELD DRIFT-TUBE; GAS-PHASE; ELECTROSPRAY-IONIZATION; UBIQUITIN IONS; H/D EXCHANGE; MULTIDIMENSIONAL SEPARATIONS AB The development of a new ion mobility/mass spectrometry instrument that incorporates a multifield drift tube/ion funnel design is described. In this instrument, individual components from a mixture of ions can be resolved and selected on the basis of mobility differences prior to collisional activation inside the drift tube. The fragment ions that are produced can be dispersed again in a second ion mobility spectrometry (IMS) region prior to additional collisional activation and MS analysis. The result is an IMS-IMS analogue of MS-MS. Here, we describe the preliminary instrumental design and experimental approach. We illustrate the approach by examining the highly characterized bradykinin and ubiquitin systems. Mobility-resolved fragment ions of bradykinin show that b-type ions are readily discernible fragments, because they exist as two easily resolvable structural types. Current limitations and future directions are briefly discussed. C1 Indiana Univ, Dept Chem, Bloomington, IN 47405 USA. Predict Physiol & Med, Bloomington, IN 47403 USA. Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Clemmer, DE (reprint author), Indiana Univ, Dept Chem, Bloomington, IN 47405 USA. EM clemmer@indiana.edu RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NCRR NIH HHS [P41-RR018942, RR 18522]; NIA NIH HHS [AG-024547-01] NR 81 TC 147 Z9 148 U1 4 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUN 15 PY 2006 VL 78 IS 12 BP 4161 EP 4174 DI 10.1021/ac051060w PG 14 WC Chemistry, Analytical SC Chemistry GA 052RZ UT WOS:000238252600022 PM 16771547 ER PT J AU Goldberg, Z Rocke, DM Schwietert, C Berglund, SR Santana, A Jones, A Lehmann, J Stern, R Lu, RX Siantar, CH AF Goldberg, Z Rocke, DM Schwietert, C Berglund, SR Santana, A Jones, A Lehmann, J Stern, R Lu, RX Siantar, CH TI Human in vivo dose-response to controlled, low-dose low linear energy transfer ionizing radiation exposure SO CLINICAL CANCER RESEARCH LA English DT Article ID FALSE DISCOVERY RATE; NF-KAPPA-B; GENE-EXPRESSION; INDUCED APOPTOSIS; HUMAN KERATINOCYTES; INDUCED ACTIVATION; PROTEIN-KINASE; TUMOR-CELLS; PATHWAY; IRRADIATION AB Purpose: The effect of low doses of low-linear energy transfer (photon) ionizing radiation (LDIR, <10 cGy) on human tissue when exposure is under normal physiologic conditions is of significant interest to the medical and scientific community in therapeutic and other contexts. Although, to date, there has been no direct assessment of the response of human tissue to LDIR when exposure is under normal physiologic conditions of intact three-dimensional architecture, vasculature, and cell-cell contacts (between epithelial cells and between epithelial and stromal cells). Experimental Design: In this article, we present the first data on the response of human tissue exposed in vivo to LDIR with precisely controlled and calibrated doses. We evaluated transcriptomic responses to a single exposure of LDIR in the normal skin of men undergoing therapeutic radiation for prostate cancer (research protocol, Health Insurance Portability and Accountability Act - compliant, Institutional Review Board - approved). Using newly developed biostatistical tools that account for individual splice variants and the expected variability of temporal response between humans even when the outcome is measured at a single time, we show a dose-response pattern in gene expression in a number of pathways and gene groups that are biologically plausible responses to LDIR. Results: Examining genes and pathways identified as radiation-responsive in cell culture models, we found seven gene groups and five pathways that were altered in men in this experiment. These included the Akt/phosphoinositide-3-kinase pathway, the growth factor pathway, the stress/ apoptosis pathway, and the pathway initiated by transforming growth factor-beta signaling, whereas gene groups with altered expression included the keratins, the zinc finger proteins and signaling molecules in the mitogen-activated protein kinase gene group. We show that there is considerable individual variability in radiation response that makes the detection of effects difficult, but still feasible when analyzed according to gene group and pathway. Conclusions: These results show for the first time that low doses of radiation have an identifiable biosignature in human tissue, irradiated in vivo with normal intact three-dimensional architecture, vascular supply, and innervation. The genes and pathways show that the tissue (a) does detect the injury, (b) initiates a stress/inflammatory response, (c) undergoes DNA remodeling, as suggested by the significant increase in zinc finger protein gene expression, and (d) initiates a "pro-survival" response. The ability to detect a distinct radiation response pattern following LDIR exposure has important implications for risk assessment in both therapeutic and national defense contexts. C1 Univ Calif Davis, Ctr Canc, Dept Radiat Oncol, Sacramento, CA 95817 USA. Univ Calif Davis, Dept Stat, Davis, CA 95616 USA. Univ Calif Davis, Div Biostat, Davis, CA 95616 USA. Lawrence Livermore Natl Lab, Livermore, CA USA. RP Goldberg, Z (reprint author), Univ Calif Davis, Ctr Canc, Dept Radiat Oncol, 4501 X St,Suite G-149, Sacramento, CA 95817 USA. EM zgoldberg@ucdavis.edu RI Rocke, David/I-7044-2013 OI Rocke, David/0000-0002-3958-7318 FU NCI NIH HHS [P30 CA093373-04]; NIEHS NIH HHS [P42-ES04699] NR 49 TC 32 Z9 36 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1078-0432 J9 CLIN CANCER RES JI Clin. Cancer Res. PD JUN 15 PY 2006 VL 12 IS 12 BP 3723 EP 3729 DI 10.1158/1078-0432.CCR-05-2625 PG 7 WC Oncology SC Oncology GA 054YS UT WOS:000238415100011 PM 16778099 ER PT J AU Roeper, DF Chidambaram, D Halada, GP Clayton, CR AF Roeper, DF Chidambaram, D Halada, GP Clayton, CR TI Development of an environmentally friendly protective coating for the depleted uranium-0.75 wt.% titanium alloy - Part IV. Vibrational spectroscopy of the coating SO ELECTROCHIMICA ACTA LA English DT Article DE uranium alloys; corrosion; molybdate coatings; Raman; FT-IR ID CORROSION-RESISTANT COATINGS; MICRO-RAMAN SPECTROSCOPY; MOLYBDENUM OXIDE; AQUEOUS-SOLUTION; STEEL SURFACES; NUCLEAR-FUEL; TI ALLOY; SPECTRA; MOLYBDATES; XPS AB Molybdenum oxide based conversion coatings have been formed on the surface of the depleted uranium-0.75 wt.% titanium alloy and the coating structure was found to undergo changes as it ages. Raman and Fourier transform infrared (FT-IR) spectroscopies have been performed to examine these changes. Raman spectroscopic measurements indicate that the coating is based on an octamolybdate structure and FT-IR experiments show that uranyl hydroxide is present in the as-made coating but no longer apparent in the aged coatings, supporting the proposed mechanism describing the aging of the coating. Both techniques show that none of the molybdenum is in the form of tetrahedral molybdates. (c) 2006 Elsevier Ltd. All rights reserved. C1 SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. RP Roeper, DF (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. EM droeper@notes.cc.sunysb.edu RI Chidambaram, Dev/B-2967-2008 NR 70 TC 9 Z9 10 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD JUN 15 PY 2006 VL 51 IS 23 BP 4815 EP 4820 DI 10.1016/j.electacta.2006.01.027 PG 6 WC Electrochemistry SC Electrochemistry GA 056XO UT WOS:000238558600003 ER PT J AU Krupka, KM Schaef, HT Arey, BW Heald, SM Deutsch, WJ Lindberg, MJ Cantrell, KJ AF Krupka, KM Schaef, HT Arey, BW Heald, SM Deutsch, WJ Lindberg, MJ Cantrell, KJ TI Residual waste from Hanford tanks 241-C-203 and 241-C-204. 1. Solids characterization SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article AB Bulk X-ray diffraction (XRD), synchrotron X-ray micro-diffraction (AXRD), and scanning electron microscopy/ energy-dispersive X-ray spectroscopy (SEM/EDS) were used to characterize solids in residual sludge from singleshell underground waste tanks C-203 and C-204 at the U. S. Department of Energy's Hanford Site in southeastern Washington state. Cejkaite [Na-4(UO2)(CO3)(3)] was the dominant crystalline phase in the C-203 and C-204 sludges. This is one of the few occurrences of cejkaite reported in the literature and may be the first documented occurrence of this phase in radioactive wastes from DOE sites. Characterization of residual solids from water leach and selective extraction tests indicates that cejkaite has a high solubility and a rapid rate of dissolution in water at ambient temperature and that these sludges may also contain poorly crystalline Na2U2O7 [or clarkeite Na[(UO2)O(OH)](H2O)(0-1)] as well as nitratine (soda niter, NaNO3), goethite [alpha-FeO(OH)], and maghemite (gamma-Fe2O3). Results of the SEM/EDS analyses indicate that the C-204 sludge also contains a solid that lacks crystalline form and is composed of Na, Al, P, O, and possibly C. Other identified solids include Fe oxides that often also contain Cr and Ni and occur as individual particles, coatings on particles, and botryoidal aggregates; a porous-looking material (or an aggregate of submicrometer particles) that typically contain Al, Cr, Fe, Na, Ni, Si, U, P, O, and C; Si oxide (probably quartz); and Na-Al silicate(s). The latter two solids probably represent minerals from the Hanford sediment, which were introduced into the tank during prior sampling campaigns or other tank operation activities. The surfaces of some Fe-oxide particles in residual solids from the water leach and selective extraction tests appear to have preferential dissolution cavities. If these Fe oxides contain contaminants of concern, then the release of these contaminants into infiltrating water would be limited by the dissolution rates of these Fe oxides, which in general have low to very low solubilities and slow dissolution rates at near neutral to basic pH values under oxic conditions. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Krupka, KM (reprint author), Pacific NW Natl Lab, POB 999,MSIN K6-81, Richland, WA 99352 USA. EM ken.krupka@pnl.gov NR 20 TC 13 Z9 13 U1 1 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUN 15 PY 2006 VL 40 IS 12 BP 3749 EP 3754 DI 10.1021/es051155f PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 052FJ UT WOS:000238217200017 PM 16830537 ER PT J AU Cantrell, KJ Krupka, KM Deutsch, WJ Lindberg, MJ AF Cantrell, KJ Krupka, KM Deutsch, WJ Lindberg, MJ TI Residual waste from Hanford tanks 241-C-203 and 241-C-204. 2. Contaminant release model SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SYSTEM AB Release of U and Tc-99 from residual sludge in Hanford waste tanks 241-C-203 and 241-C-204 at the U.S. Department of Energy's (DOE) Hanford Site in southeastern Washington state was quantified by water-leaching, selective extractions, empirical solubility measurements, and thermodynamic modeling. A contaminant release model was developed based on these experimental results and solid-phase characterization results presented elsewhere. Uranium release was determined to be controlled by two phases and occurred in three stages. In the first stage, U release is controlled by the solubility of cejkaite, which is suppressed by high concentrations of sodium released from the dissolution of NaNO3 in the residual sludges. Equilibrium solubility calculations indicate the U released during this stage will have a maximum concentration of 0.021 M. When all the NaNO3 has dissolved from the sludge, the solubility of the remaining cejkaite will increase to 0.28 M. After cejkaite has completely dissolved, the majority of the remaining U is in the form of poorly crystalline Na2U2O7 [or clarkeite Na[(UO2)O(OH)](H2O)(0-1)]. In contact with Hanford groundwater this phase is not stable, and becquerelite becomes the U solubility controlling phase, with a calculated equilibrium concentration of 1.2 x 10(-4) M. For Tc, a significant fraction of its concentration in the residual sludge was determined to be relatively insoluble (20 wt % for C-203 and 80 wt % for C-204). Because of the low concentrations of Tc in these sludge materials, the characterization studies did not identify any discrete Tc solids phases. Release of the soluble fraction of Tc was found to occur concomitantly with NO3-. It was postulated that a NaNO3-NaTcO4 solid solution could be responsible for this behavior. The Tc release concentrations for the soluble fraction were estimated to be 2.4 x 10(-6) M for C-203 and 2.7 x 10(-5) M for C-204. Selective extraction results indicated that the recalcitrant fraction of Tc was associated with Fe oxides. Release of the recalcitrant fraction of Tc was assumed to be controlled by dissolution of Fe oxide in the form of ferrihydrite. Based on this assumption and measured values for the ratio of recalcitrant Tc to total Fe in each bulk sludge, the release concentration of the recalcitrant fraction of Tc was calculated to be 3.9 x 10(-12) M for C-203 and 10.0 x 10(-12) M for C-204. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Cantrell, KJ (reprint author), Pacific NW Natl Lab, POB 999,Mail Stop K6-81, Richland, WA 99352 USA. EM kirk.cantrell@pnl.gov NR 26 TC 7 Z9 7 U1 1 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUN 15 PY 2006 VL 40 IS 12 BP 3755 EP 3761 DI 10.1021/es0511568 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 052FJ UT WOS:000238217200018 PM 16830538 ER PT J AU Greathouse, JA Cygan, RT AF Greathouse, JA Cygan, RT TI Water structure and aqueous uranyl(VI) adsorption equilibria onto external surfaces of beidellite, montmorillonite, and pyrophyllite: Results from molecular simulations SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID COMPUTER-SIMULATION; DYNAMICS SIMULATION; SORPTION COMPLEXES; URANIUM; U(VI); HYDROXIDE; BINDING; MODEL; CLAY AB Molecular dynamics simulations were performed to provide a systematic study of aqueous uranyl adsorption onto the external surface of 2: 1 dioctahedral clays. Our understanding of this key process is critical in predicting the fate of radioactive contaminants in natural groundwaters. These simulations provide atomistic detail to help explain experimental trends in uranyl adsorption onto natural media containing smectite clays. Aqueous uranyl concentrations ranged from 0.027 to 0.162 M. Sodium ions and carbonate ions ( 0.027-0.243 M) were also present in the aqueous regions to more faithfully model a stream of uranyl-containing groundwater contacting a mineral system comprised of Na-smectite. No adsorption occurred near the pyrophyllite surface, and there was little difference in uranyl adsorption onto the beidellite and montmorillonite, despite the difference in location of clay layer charge between the two. At low uranyl concentration, the pentaaquouranyl complex dominates in solution and readily adsorbs to the clay basal plane. At higher uranyl ( and carbonate) concentrations, the mono( carbonato) complex forms in solution, and uranyl adsorption decreases. Sodium adsorption onto beidellite occurred both as inner- and outer-sphere surface complexes, again with little effect on uranyl adsorption. Uranyl surface complexes consisted primarily of the pentaaquo cation ( 85%) and to a lesser extent the mono( carbonato) species ( 15%). Speciation diagrams of the aqueous region indicate that the mono( carbonato) uranyl complex is abundant at high ionic strength. Oligomeric uranyl complexes are observed at high ionic strength, particularly near the pyrophyllite and montmorillonite surfaces. Atomic density profiles of water oxygen and hydrogen atoms are nearly identical near the beidellite and montmorillonite surfaces. Water structure therefore appears to be governed by the presence of adsorbed ions and not by the location of layer charge associated with the substrate. The water oxygen density near the pyrophyllite surface is similar to the other cases, but the hydrogen density profile indicates reduced hydrogen bonding between adsorbed water molecules and the surface. C1 Sandia Natl Labs, Dept Geochem, Albuquerque, NM 87185 USA. RP Greathouse, JA (reprint author), Sandia Natl Labs, Dept Geochem, POB 5800, Albuquerque, NM 87185 USA. EM jagreat@sandia.gov NR 31 TC 85 Z9 88 U1 7 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUN 15 PY 2006 VL 40 IS 12 BP 3865 EP 3871 DI 10.1021/es052522q PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 052FJ UT WOS:000238217200034 PM 16830554 ER PT J AU Wu, WM Carley, J Fienen, M Mehlhorn, T Lowe, K Nyman, J Luo, J Gentile, ME Rajan, R Wagner, D Hickey, RF Gu, BH Watson, D Cirpka, OA Kitanidis, PK Jardine, PM Criddle, CS AF Wu, WM Carley, J Fienen, M Mehlhorn, T Lowe, K Nyman, J Luo, J Gentile, ME Rajan, R Wagner, D Hickey, RF Gu, BH Watson, D Cirpka, OA Kitanidis, PK Jardine, PM Criddle, CS TI Pilot-scale in situ bioremediation of uranium in a highly contaminated aquifer. 1. Conditioning of a treatment zone SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID FRACTURED SHALE BEDROCK; DIFFUSIVE MASS-TRANSFER; GROUNDWATER; TRANSPORT; TRICHLOROETHYLENE; BIOCURTAIN; DYNAMICS; CALCIUM; MEDIA; SOIL AB To evaluate the potential for in situ bioremediation of U( VI) to sparingly soluble U(IV), we constructed a pilot test facility at Area 3 of the U. S. Department of Energy Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC) in Oak Ridge, TN. The facility is adjacent to the former S-3 Ponds which received trillions of liters of acidic plating wastes. High levels of uranium are present, with up to 800 mg kg(-1) in the soil and 84-210 mu M in the groundwater. Ambient groundwater has a highly buffered pH of similar to 3.4 and high levels of aluminum (12-13 mM), calcium (22-25 mM), and nitrate (80-160 mM). Adjusting the pH of groundwater to similar to 5 within the aquifer would deposit extensive aluminum hydroxide precipitate. Calcium is present in the groundwater at levels that inhibit U( VI) reduction, but its removal by injection of a high pH solution would generate clogging precipitate. Nitrate also inhibits U( VI) reduction and is present at such high concentrations that its removal by in situ denitrification would generate large amounts of N-2 gas and biomass. To establish and maintain hydraulic control, we installed a four well recirculation system parallel to geologic strike, with an inner loop nested within an outer loop. For monitoring, we drilled three boreholes perpendicular to strike across the inner loop and installed multilevel sampling tubes within them. A tracer pulse with clean water established travel times and connectivity between wells and enabled the assessment of contaminant release from the soil matrix. Subsequently, a highly conductive region of the subsurface was prepared for biostimulation by removing clogging agents and inhibitors and increasing pH. For 2 months, groundwater was pumped from the hydraulically conductive zone; treated to remove aluminum, calcium, and nitrate, and supplemented with tap water; adjusted to pH 4.3-4.5; then returned to the hydraulically conductive zone. This protocol removed most of the aqueous aluminum and calcium. The pH of the injected treated water was then increased to 6.0-6.3. With additional flushing, the pH of the extracted water gradually increased to 5.5-6.0, and nitrate concentrations fell to 0.5-1.0 mM. These conditions were judged suitable for biostimulation. In a companion paper (Wu et al., Environ. Sci. Technol. 2006, 40, 3978-3987), we describe the effects of ethanol addition on in situ denitrification and U(VI) reduction and immobilization. C1 Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. Swiss Fed Inst Aquat Sci & Technol, CH-8600 Dubendorf, Switzerland. Ecovation Inc, Victor, NY 14564 USA. RP Criddle, CS (reprint author), Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. EM criddle@stanford.edu RI Fienen, Michael/D-2479-2009; Cirpka, Olaf/C-7178-2008; Gu, Baohua/B-9511-2012; 谭, 玉芳/I-8946-2014; Watson, David/C-3256-2016 OI Fienen, Michael/0000-0002-7756-4651; Cirpka, Olaf/0000-0003-3509-4118; Gu, Baohua/0000-0002-7299-2956; Watson, David/0000-0002-4972-4136 NR 25 TC 112 Z9 114 U1 8 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUN 15 PY 2006 VL 40 IS 12 BP 3978 EP 3985 DI 10.1021/es051954y PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 052FJ UT WOS:000238217200051 PM 16830571 ER PT J AU Wu, WM Carley, J Gentry, T Ginder-Vogel, MA Fienen, M Mehlhorn, T Yan, H Caroll, S Pace, MN Nyman, J Luo, J Gentile, ME Fields, MW Hickey, RF Gu, BH Watson, D Cirpka, OA Zhou, JZ Fendorf, S Kitanidis, PK Jardine, PM Criddle, CS AF Wu, Wei-Min Carley, Jack Gentry, Terry Ginder-Vogel, Matthew A. Fienen, Michael Mehlhorn, Tonia Yan, Hui Caroll, Sue Pace, Molly N. Nyman, Jennifer Luo, Jian Gentile, Margaret E. Fields, Matthew W. Hickey, Robert F. Gu, Baohua Watson, David Cirpka, Olaf A. Zhou, Jizhong Fendorf, Scott Kitanidis, Peter K. Jardine, Philip M. Criddle, Craig S. TI Pilot-scale in situ bioremedation of uranium in a highly contaminated aquifer. 2. Reduction of U(VI) and geochemical control of U(VI) bioavailability SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SULFATE-REDUCING BACTERIA; DESULFOVIBRIO-DESULFURICANS; SP-NOV; SUBSURFACE SEDIMENT; MICROBIAL REDUCTION; HEXAVALENT URANIUM; BIOREMEDIATION; BIOREDUCTION; NITRATE; IRON AB In situ microbial reduction of soluble U( VI) to sparingly soluble U(IV) was evaluated at the site of the former S-3 Ponds in Area 3 of the U. S. Department of Energy Natural and Accelerated Bioremediation Research Field Research Center, Oak Ridge, TN. After establishing conditions favorable for bioremediation (Wu, et al. Environ. Sci. Technol. 2006, 40, 3988-3995), intermittent additions of ethanol were initiated within the conditioned inner loop of a nested well recirculation system. These additions initially stimulated denitrification of matrix-entrapped nitrate, but after 2 months, aqueous U levels fell from 5 to similar to 1 AM and sulfate reduction ensued. Continued additions sustained U(VI) reduction over 13 months. X-ray near-edge absorption spectroscopy (XANES) confirmed U(VI) reduction to U(IV) within the inner loop wells, with up to 51%, 35%, and 28% solid-phase U(IV) in sediment samples from the injection well, a monitoring well, and the extraction well, respectively. Microbial analyses confirmed the presence of denitrifying, sulfate-reducing, and iron-reducing bacteria in groundwater and sediments. System pH was generally maintained at less than 6.2 with low bicarbonate level (0.75-1.5 mM) and residual sulfate to suppress methanogenesis and minimize uranium mobilization. The bioavailability of sorbed U(VI) was manipulated by addition of low-level carbonate (< 5 mM) followed by ethanol (1-1.5 mM). Addition of low levels of carbonate increased the concentration of aqueous U, indicating an increased rate of U desorption due to formation of uranyl carbonate complexes. Upon ethanol addition, aqueous U(VI) levels fell, indicating that the rate of microbial reduction exceeded the rate of desorption. Sulfate levels simultaneously decreased, with a corresponding increase in sulfide. When ethanol addition ended but carbonate addition continued, soluble U levels increased, indicating faster desorption than reduction. When bicarbonate addition stopped, aqueous U levels decreased, indicating adsorption to sediments. Changes in the sequence of carbonate and ethanol addition confirmed that carbonate-controlled desorption increased bioavailability of U(VI) for reduction. C1 Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. Stanford Univ, Dept Geog & Environm Sci, Stanford, CA 94305 USA. Miami Univ, Dept Microbiol, Oxford, OH 45056 USA. Ecovation Inc, Victor, NY 14564 USA. Swiss Fed Inst Aquat Sci & Technol, CH-8600 Dubendorf, Switzerland. RP Criddle, CS (reprint author), Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. EM criddle@stanford.edu RI Fienen, Michael/D-2479-2009; Cirpka, Olaf/C-7178-2008; Gu, Baohua/B-9511-2012; Watson, David/C-3256-2016 OI Fienen, Michael/0000-0002-7756-4651; Cirpka, Olaf/0000-0003-3509-4118; Gu, Baohua/0000-0002-7299-2956; Watson, David/0000-0002-4972-4136 NR 55 TC 178 Z9 181 U1 11 U2 93 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUN 15 PY 2006 VL 40 IS 12 BP 3986 EP 3995 DI 10.1021/es051960u PG 10 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 052FJ UT WOS:000238217200052 PM 16830572 ER PT J AU Lin, YH Cui, XL Bontha, J AF Lin, YH Cui, XL Bontha, J TI Electrically controlled anion exchange based on polypyrrole and carbon nanotubes nanocomposite for perchlorate removal SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SWITCHED ION-EXCHANGE; SOLID-PHASE MICROEXTRACTION; CONTROLLED TEMPERATURE; COMPLETE DEGRADATION; HYDROCHLORIC-ACID; FERRIC-CHLORIDE; FILMS; REDUCTION; SEPARATIONS; ELECTRODES AB A simple and highly effective process for perchlorate removal based on electrically switched ion exchange (ESIX) was developed by using polypyrrole (PPy) deposited on high surface area carbon nanotubes. The redox switching of conducting polymers such as polypyrrole is accompanied by the exchange of ions into or out of the polymer. This effect could be used for the development of an electrically switchable ion-exchanger for water purification, particularly for the removal of anions. In the research presented in this paper, the anion-exchange behavior and ion-exchange capacity of electrochemically prepared polypyrrole on glassy carbon electrodes with and without carbon nanotube (CNT) backbones are characterized using cyclic voltammetry and X-ray photoelectron spectroscopy. It has been found that the presence of carbon nanotube backbone results in an improvement in the anion exchange stability of polypyrrole, which may be due to the stronger interaction between carbon nanotubes and polypyrrole. Chronoamperometric studies show that the process of electrically switched anion exchange could be finished within 10 s. The selectivity of PPy/CNTs films for the perchlorate ion is demonstrated using cyclic voltammetry and X-ray photoelectron spectroscopy (XPS). The results of the present study point to the possibility of developing a green process for removing ClO4- from wastewater using such a novel nanostructured PPy/CNT composite thin film through an electrically switched anion exchange. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China. RP Lin, YH (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM yuehe.lin@pnl.gov RI Lin, Yuehe/D-9762-2011 OI Lin, Yuehe/0000-0003-3791-7587 NR 29 TC 43 Z9 52 U1 3 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUN 15 PY 2006 VL 40 IS 12 BP 4004 EP 4009 DI 10.1021/es052148u PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 052FJ UT WOS:000238217200054 PM 16830574 ER PT J AU Bracchi, A Huang, YL Seibt, M Schneider, S Thiyagarajan, P AF Bracchi, A. Huang, Y. -L. Seibt, M. Schneider, S. Thiyagarajan, P. TI Decomposition and metastable phase formation in the bulk metallic glass matrix composite Zr56Ti14Nb5Cu7Ni6Be12 SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SUPERCOOLED LIQUID; QUASI-CRYSTALS; ALLOYS; CU; CRYSTALLIZATION; ZR41.2TI13.8CU12.5NI10.0BE22.5; DEVITRIFICATION; MICROSTRUCTURE; PLASTICITY AB Decomposition in the undercooled liquid phase and crystallization during isothermal annealing in the glassy matrix of the bulk Zr56Ti14Nb5Cu7Ni6Be12 composite were investigated by x-ray diffraction, small angle neutron scattering (SANS), scanning electron microscopy, and transmission electron microscopy (TEM). Upon isothermal annealing near the glass transition temperature TEM images show the presence of quasicrystals, while SANS data exhibit an interference peak indicating a quasiperiodic arrangement of these metastable crystals. Samples annealed in the solid state show a transformation into the more stable Zr-2 TM-type (TM=Nb,Cu,Ni,Ti) phases. These results have been discussed on the basis of a phase separation process that determines the formation of the metastable quasicrystalline phase that is in good agreement with the behavior of other known bulk metallic glass-forming systems. C1 Univ Gottingen, Inst Phys 4, D-37077 Gottingen, Germany. Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA. RP Bracchi, A (reprint author), Univ Gottingen, Inst Phys 4, Friedrich Hund Pl 1, D-37077 Gottingen, Germany. EM alberto.bracchi@phys.uni-goettingen.de OI Seibt, Michael/0000-0002-9908-400X NR 26 TC 6 Z9 6 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2006 VL 99 IS 12 AR 123519 DI 10.1063/1.2207496 PG 5 WC Physics, Applied SC Physics GA 059JV UT WOS:000238730000039 ER PT J AU Hooks, DE Hayes, DB Hare, DE Reisman, DB Vandersall, KS Forbes, JW Hall, CA AF Hooks, DE Hayes, DB Hare, DE Reisman, DB Vandersall, KS Forbes, JW Hall, CA TI Isentropic compression of cyclotetramethylene tetranitramine (HMX) single crystals to 50 GPa SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID EQUATION-OF-STATE; SANDIA Z-ACCELERATOR; PHASE-TRANSITION; EXPERIMENTS ICE; OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE; ALUMINUM AB Single crystals of cyclotetramethylene tetranitramine (HMX) were isentropically compressed perpendicular to (010) and (011) faces at the Sandia Z-Machine. A 50 GPa ramped magnetic pressure load of about 200 ns rise time loaded four specimens of each orientation. HMX specimens were from 300-600 mu m thick. Velocity histories at the rear of each crystal were measured by Doppler velocimetry. Although a phase change in HMX at 27 GPa has been proposed based upon isothermal data, no evidence of this change is seen in our analyses between 5 and 50 GPa along the isentrope. Previous isentropic loading experiments on HMX had not shown evidence of a phase change either, but those experiments were complicated by the use of NaCl interferometer windows that have a phase change near the pressure of interest. The experiments described in this paper employed LiF interferometer windows that are known to be absent phase changes in the regime of application. Accurate determination of isentropic compressibility for HMX was not possible using data from these experiments owing to uncertainty in the very large compressibility at low pressures. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Hooks, DE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 26 TC 17 Z9 23 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2006 VL 99 IS 12 AR 124901 DI 10.1063/1.2203411 PG 6 WC Physics, Applied SC Physics GA 059JV UT WOS:000238730000112 ER PT J AU Neff, S Knobloch-Maas, R Tauschwitz, A Hoffmann, DHH Yu, SS AF Neff, S Knobloch-Maas, R Tauschwitz, A Hoffmann, DHH Yu, SS TI Study of kink instabilities in 1 m long, free-standing plasma channels used for ion beam transport SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID FUSION; CHAMBER; DENSITY; LENS; WALL; GAS AB Experiments at the Gesellschaft fur Schwerionenforschung study the transport of heavy-ion beams in plasma channels in collaboration with the Advanced Reactor Innovative Engineering Study for Inertial Fusion Energy. One important aspect of channel transport is the suppression of instabilities. The susceptibility of discharge channels for magnetohydrodynamic instabilities is studied and their growth rate is measured with a fast framing camera. The images are analyzed with a computer code, determining the growth rates of the instability during later stages of the discharge. Magnetohydrodynamical (MHD) instabilities were observed only for high pressure and even then only at late stages of the discharge. The only observed MHD modes were kink instabilities and our measurements indicate that they pose no problem for transport channels with reactor parameters. (c) 2006 American Institute of Physics. C1 Gesell Schwerionenforsch mbH, D-64291 Darmstadt, Germany. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Tech Univ Darmstadt, D-64277 Darmstadt, Germany. RP Neff, S (reprint author), Univ Nevada, Reno, NV 89557 USA. EM neff@physics.unr.edu RI Hoffmann, Dieter H.H./A-5265-2008 NR 14 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2006 VL 99 IS 12 AR 123304 DI 10.1063/1.2206694 PG 4 WC Physics, Applied SC Physics GA 059JV UT WOS:000238730000019 ER PT J AU Pruet, J McNabb, DP Hagmann, CA Hartemann, FV Barty, CPJ AF Pruet, J McNabb, DP Hagmann, CA Hartemann, FV Barty, CPJ TI Detecting clandestine material with nuclear resonance fluorescence SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SCATTERING AB We study the performance of a class of interrogation systems that exploit nuclear resonance fluorescence (NRF) to detect specific isotopes. In these systems the presence of a particular nuclide is inferred by observing the preferential attenuation of photons that strongly excite an electromagnetic transition in that nuclide. Estimates for the false positive/negative error rates, radiological dose, and detection sensitivity associated with discovering clandestine material embedded in cargo are presented. The relation between performance of the detection system and properties of the beam of interrogating photons is also considered. Bright gamma-ray sources with fine energy and angular resolution, such as those based on Thomson upscattering of laser light, are found to be associated with uniquely low radiological dose, scan times, and error rates. For this reason a consideration of NRF-based interrogation systems may provide impetus for efforts in light source development for applications related to national security and industry. (c) 2006 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Pruet, J (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM pruetl@llnl.gov NR 20 TC 74 Z9 75 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2006 VL 99 IS 12 AR 123102 DI 10.1063/1.2202005 PG 11 WC Physics, Applied SC Physics GA 059JV UT WOS:000238730000003 ER PT J AU Reichman, WJ Krol, DM Shah, L Yoshino, F Arai, A Eaton, SM Herman, PR AF Reichman, WJ Krol, DM Shah, L Yoshino, F Arai, A Eaton, SM Herman, PR TI A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID WRITING WAVE-GUIDES; INDUCED BREAKDOWN; TRANSPARENT MATERIALS; OPTICAL-PROPERTIES; VITREOUS SILICA; REPETITION RATE; INDUCED DAMAGE; PULSES; GLASS; WRITTEN AB Waveguides were written in fused silica using both a femtosecond fiber laser with a 1 MHz pulse repetition rate and a femtosecond amplified Ti:sapphire laser with a 1 kHz repetition rate. Confocal Raman and fluorescence microscopies were used to study structural changes in the waveguides written with both systems. A broad fluorescence band, centered at 650 nm, associated with nonbridging oxygen hole center (NBOHC) defects was observed after waveguide fabrication with the megahertz laser. With the kilohertz laser system these defects were only observed for pulse energies above 1 mu J. Far fewer NBOHC defects were formed with the megahertz laser than with kilohertz writing, possibly due to thermal annealing driven by heat accumulation effects at 1 MHz. When the kilohertz laser was used with pulse energies below 1 mu J, the predominant fluorescence was centered at 550 nm, a band assigned to the presence of silicon clusters (E-delta(')). We also observed an increase in the intensity of the 605 cm(-1) Raman peak relative to the total Raman intensity, corresponding to an increase in the concentration of three-membered rings in the lines fabricated with both laser systems. (c) 2006 American Institute of Physics. C1 Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. IMRA Amer Inc, Fremont, CA 94538 USA. Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada. RP Reichman, WJ (reprint author), Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. RI Eaton, Shane/A-2084-2008; Herman, Peter/A-6464-2008; Shah, Lawrence/F-4462-2014 OI Eaton, Shane/0000-0003-0805-011X; Herman, Peter/0000-0002-9157-8259; Shah, Lawrence/0000-0002-0462-5089 NR 26 TC 29 Z9 30 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2006 VL 99 IS 12 AR 123112 DI 10.1063/1.2207556 PG 5 WC Physics, Applied SC Physics GA 059JV UT WOS:000238730000013 ER PT J AU Rosen, J Anders, A Mraz, S Atiser, A Schneider, JM AF Rosen, Johanna Anders, Andre Mraz, Stanislav Atiser, Adil Schneider, Jochen M. TI Influence of argon and oxygen on charge-state-resolved ion energy distributions of filtered aluminum arcs SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID VACUUM-ARC; CROSS-SECTIONS; CATHODIC ARC; PLASMA; DEPOSITION; FILMS; GAS; ENVIRONMENT; BEAM; FLUX AB The charge-state-resolved ion energy distributions (IEDs) in filtered aluminum vacuum arc plasmas were measured and analyzed at different oxygen and argon pressures in the range of 0.5-8.0 mTorr. A significant reduction of the ion energy was detected as the pressure was increased, most pronounced in an argon environment and for the higher charge states. The corresponding average charge state decreased from 1.87 to 1.0 with increasing pressure. The IEDs of all metal ions in oxygen were fitted with shifted Maxwellian distributions. The results show that it is possible to obtain a plasma composition with a narrow charge-state distribution as well as a narrow IED. These data may enable tailoring thin film properties through selecting growth conditions that are characterized by predefined charge state and energy distributions. (c) 2006 American Institute of Physics. C1 Rhein Westfal TH Aachen, D-52056 Aachen, Germany. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Rosen, J (reprint author), Rhein Westfal TH Aachen, D-52056 Aachen, Germany. EM rosen@mch.rwth-aachen.de RI Schneider, Jochen/A-4701-2012; Rosen, Johanna/M-9284-2014; Anders, Andre/B-8580-2009 OI Anders, Andre/0000-0002-5313-6505 NR 27 TC 17 Z9 17 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2006 VL 99 IS 12 AR 123303 DI 10.1063/1.2206413 PG 5 WC Physics, Applied SC Physics GA 059JV UT WOS:000238730000018 ER PT J AU Shao, L Lee, JK Wang, YQ Nastasi, M Thompson, PE Theodore, ND Alford, TL Mayer, JW Chen, P Lau, SS AF Shao, L Lee, JK Wang, YQ Nastasi, M Thompson, PE Theodore, ND Alford, TL Mayer, JW Chen, P Lau, SS TI Effect of substrate growth temperatures on H diffusion in hydrogenated Si/Si homoepitaxial structures grown by molecular beam epitaxy SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SILICON; DEFECTS; NUCLEATION; LAYER AB We have investigated hydrogen diffusion in hydrogenated < 100 > Si/Si homoepitaxial structures, which were grown by molecular beam epitaxy at various temperatures. The substrate growth temperature can significantly affect the H diffusion behavior, with higher growth temperatures resulting in deeper H diffusion. For the Si/Si structure grown at the highest temperature of 800 degrees C, H trapping occurs at the epitaxial Si/Si substrate interface, which results in the formation of (100) oriented microcracks at the interface. The mechanism of H trapping and the potential application of these findings for the development of a method of transferring ultrathin Si layers are discussed. (c) 2006 American Institute of Physics. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. USN, Res Lab, Washington, DC 20375 USA. Freescale Semicond Inc, Adv Prod Res & Dev Lab, Tempe, AZ 85284 USA. Arizona State Univ, Dept Chem & Mat Engn, Tempe, AZ 85287 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. RP Shao, L (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM lshao@mailaps.org RI Chen, Peng/H-3384-2012 NR 18 TC 3 Z9 3 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2006 VL 99 IS 12 AR 126105 DI 10.1063/1.2204330 PG 3 WC Physics, Applied SC Physics GA 059JV UT WOS:000238730000132 ER PT J AU Lin, JL Kiladis, GN Mapes, BE Weickmann, KM Sperber, KR Lin, W Wheeler, MC Schubert, SD Del Genio, A Donner, LJ Emori, S Gueremy, JF Hourdin, F Rasch, PJ Roeckner, E Scinocca, JF AF Lin, Jia-Lin Kiladis, George N. Mapes, Brian E. Weickmann, Klaus M. Sperber, Kenneth R. Lin, Wuyin Wheeler, Matthew C. Schubert, Siegfried D. Del Genio, Anthony Donner, Leo J. Emori, Seita Gueremy, Jean-Francois Hourdin, Frederic Rasch, Philip J. Roeckner, Erich Scinocca, John F. TI Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals SO JOURNAL OF CLIMATE LA English DT Review ID MADDEN-JULIAN OSCILLATION; GENERAL-CIRCULATION MODEL; OUTGOING LONGWAVE RADIATION; COUPLED EQUATORIAL WAVES; ASIAN SUMMER MONSOON; WESTERLY WIND BURSTS; AIR-SEA INTERACTION; LARGE-SCALE MODELS; CUMULUS PARAMETERIZATION; MULTISCALE MODEL AB This study evaluates the tropical intraseasonal variability, especially the fidelity of Madden-Julian oscillation (MJO) simulations, in 14 coupled general circulation models (GCMs) participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Eight years of daily precipitation from each model's twentieth-century climate simulation are analyzed and compared with daily satellite-retrieved precipitation. Space-time spectral analysis is used to obtain the variance and phase speed of dominant convectively coupled equatorial waves, including the MJO, Kelvin, equatorial Rossby (ER), mixed Rossby-gravity (MRG), and eastward inertio-gravity (EIG) and westward inertio-gravity (WIG) waves. The variance and propagation of the MJO, defined as the eastward wavenumbers 1-6, 30-70-day mode, are examined in detail. The results show that current state-of-the-art GCMs still have significant problems and display a wide range of skill in simulating the tropical intraseasonal variability. The total intraseasonal (2-128 day) variance of precipitation is too weak in most of the models. About half of the models have signals of convectively coupled equatorial waves, with Kelvin and MRG-EIG waves especially prominent. However, the variances are generally too weak for all wave modes except the EIG wave, and the phase speeds are generally too fast, being scaled to excessively deep equivalent depths. An interesting result is that this scaling is consistent within a given model across modes, in that both the symmetric and antisymmetric modes scale similarly to a certain equivalent depth. Excessively deep equivalent depths suggest that these models may not have a large enough reduction in their "effective static stability" by diabatic heating. The MJO variance approaches the observed value in only 2 of the 14 models, but is less than half of the observed value in the other 12 models. The ratio between the eastward MJO variance and the variance of its westward counterpart is too small in most of the models, which is consistent with the lack of highly coherent eastward propagation of the MJO in many models. Moreover, the MJO variance in 13 of the 14 models does not come from a pronounced spectral peak, but usually comes from part of an over-reddened spectrum, which in turn is associated with too strong persistence of equatorial precipitation. The two models that arguably do best at simulating the MJO are the only ones having convective closures/triggers linked in some way to moisture convergence. C1 NOAA, CIRES Climate Diagnost Ctr, Boulder, CO 80305 USA. NOAA, Aeron Lab, Boulder, CO 80305 USA. Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. Lawrence Livermore Natl Lab, PCMDI, Livermore, CA USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Bur Meteorol Res Ctr, Melbourne, Vic, Australia. NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Of, Greenbelt, MD 20771 USA. NASA, Goddard Inst Space Studies, New York, NY 10025 USA. NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. Natl Inst Environm Studies, Ibaraki, Japan. CNRM, Meteo France, Toulouse, France. Univ Paris, Lab Meteorol Dynam, F-75252 Paris, France. Natl Ctr Atmospher Res, Boulder, CO 80307 USA. Max Planck Inst Meteorol, Hamburg, Germany. Canadian Ctr Climate Modelling & Anal, Victoria, BC, Canada. RP Lin, JL (reprint author), NOAA, CIRES Climate Diagnost Ctr, 325 Broadway,R-CDC1, Boulder, CO 80305 USA. EM jialin.lin@noaa.gov RI Mapes, Brian/A-5647-2010; Emori, Seita/D-1950-2012; Del Genio, Anthony/D-4663-2012; Wheeler, Matthew/C-9038-2011; Sperber, Kenneth/H-2333-2012 OI Del Genio, Anthony/0000-0001-7450-1359; Wheeler, Matthew/0000-0002-9769-1973; NR 107 TC 451 Z9 460 U1 3 U2 41 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD JUN 15 PY 2006 VL 19 IS 12 BP 2665 EP 2690 DI 10.1175/JCLI3735.1 PG 26 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 057ZT UT WOS:000238634500003 ER PT J AU Bergren, AJ Porter, MD AF Bergren, AJ Porter, MD TI The characteristics of selective heterogeneous electron transfer for optimization of redox recycling amplification systems SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY LA English DT Article DE electrochemical amplification; redox recycling; alkanethiolate; selectivity; cyclic voltammetry ID OMEGA-HYDROXY THIOL; AMPLIFIED ELECTROCHEMICAL DETECTION; AMPEROMETRIC BIOSENSOR RESPONSES; INTERFACIAL BINDING-PROPERTIES; NUCLEAR MAGNETIC RESONANCE; POLYPHENOL OXIDASE SYSTEM; CYANO-METAL COMPLEXES; COATED ELECTRODES; ANALYTICAL-CHEMISTRY; MONOLAYERS AB Selective electron transfer reactions provide many opportunities for improving the performance of electrochemical detectors. Self-assembled alkanethiolate monolayers on gold are selective for derivatized ferrocenes (FcX) over ferrocyanide (Fe(CN)(6)(4-)). These interfaces faces enable redox recycling of FcX, a process that regenerates the analyte through a homogeneous electron transfer involving Fe(CN)6 as a strongly, but not fully blocked sacrificial electron donor. Although the anodic current for FcX is enhanced using this scheme, the level of background current can also increase due to the low-level electrolysis of Fe(CN)(6)(4-). This work investigates the characteristics of selectivity with respect to heterogeneous electron transfer kinetics and its impact on the limit of detection. To this end, digital simulations are used to construct a kinetic selectivity zone diagram for two redox couples. These zones demonstrate how the differences in the heterogeneous electron transfer rate constants, as expressed by a selectivity ratio, can be exploited to maximize performance. The interplay between various levels of selectivity and amplification is explored, including the effect of the relative concentrations and formal reduction potentials of the two species on the apparent selectivity. A mathematical model is developed to relate the voltammetric sweep rate, applied potential, concentration, and electrolysis rate of the sacrificial species to the signal to background ratio. These results demonstrate a direct relationship between selectivity and the improvement in the detection limit that can be achieved. Moreover, the two couples should be approximately thermoneutral, the optimal concentration of the sacrificial species is in the low millimolar range, and the applied potential should be as close to the reversible peak potential as possible. In some cases, the voltammetric sweep rate can be increased to improve selectivity and therefore sensitivity. The insights herein provide a basis for further improvements of system performance and enable facile evaluation of prospective amplification systems. (c) 2006 Elsevier B.V. All rights reserved. C1 Iowa State Univ, US DOE, Ames Lab, Inst Combinatorial Discovery, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Porter, MD (reprint author), Iowa State Univ, US DOE, Ames Lab, Inst Combinatorial Discovery, Ames, IA 50011 USA. EM mporter@porter1.ameslab.gov RI Bergren, Adam/A-1609-2010 OI Bergren, Adam/0000-0001-5177-0038 NR 35 TC 9 Z9 9 U1 2 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0022-0728 J9 J ELECTROANAL CHEM JI J. Electroanal. Chem. PD JUN 15 PY 2006 VL 591 IS 2 BP 189 EP 200 DI 10.1016/j.jelechem.2006.04.005 PG 12 WC Chemistry, Analytical; Electrochemistry SC Chemistry; Electrochemistry GA 058YL UT WOS:000238700400008 ER PT J AU Jackson, WB Elder, R Hamburgen, W Jeans, A Kim, HJ Luo, H Mei, P Perlov, C Taussig, C Branz, H Stradin, P Wang, Q Ward, S Braymen, S Jeffery, F AF Jackson, W. B. Elder, R. Hamburgen, W. Jeans, A. Kim, H. -J. Luo, H. Mei, P. Perlov, C. Taussig, C. Branz, H. Stradin, P. Wang, Q. Ward, S. Braymen, S. Jeffery, F. TI Amorphous silicon memory arrays SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article; Proceedings Paper CT 21st International Conference on Amorphous and Nanocrystalline Semiconductors CY SEP 04-09, 2005 CL Lisbon, PORTUGAL DE silicon; devices AB This paper presents fabrication procedures, memory architectures, and structures that can enable competitive, noncrystalline, low-cost, high-capacity, nonvolatile memory in archival mobile applications such as portable music, photo, and video players. Results in this paper show that imprint lithography is capable of submicron scale features with submicron layer-to-layer alignment on flexible roll-to-roll substrates. Noncrystalline two-terminal diode-addressed cross point arrays have been fabricated and tested in illustrating the concepts. The electrical characteristics of various possible noncrystalline switch elements are presented in the context of inexpensive archival memory. (c) 2006 Elsevier B.V. All rights reserved. C1 Hewlett Packard Labs, Div Res, Palo Alto, CA 94304 USA. Natl Renewable Energy Lab, Golden, CO USA. Iowa Thin Films, Boone, IA 50036 USA. RP Jackson, WB (reprint author), Hewlett Packard Labs, Div Res, 1501 Page Mill Rd,Mail Stop 1198, Palo Alto, CA 94304 USA. EM warren.jackson@hp.com NR 4 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD JUN 15 PY 2006 VL 352 IS 9-20 BP 859 EP 862 DI 10.1016/j.jnoncrystal.2005.11.139 PG 4 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 060DQ UT WOS:000238782900004 ER PT J AU Teplin, CW Ginley, DS Branz, HM AF Teplin, Charles W. Ginley, David S. Branz, Howard M. TI A new approach to thin film crystal silicon on glass: Blaxially-textured silicon on foreign template layers SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article; Proceedings Paper CT 21st International Conference on Amorphous and Nanocrystalline Semiconductors CY SEP 04-09, 2005 CL Lisbon, PORTUGAL DE solar cells; crystal growth; nucleation; photovoltaics; chemical vapor deposition; sputtering; surfaces and interface ID ION-ASSISTED DEPOSITION; CHEMICAL-VAPOR-DEPOSITION; GROWTH; MGO AB We propose a new approach to growing photovoltaic-quality crystal silicon films on glass. Other approaches to film Si focus on increasing grain size in order to reduce the deleterious effects of grain boundaries. Instead, we propose aligning the silicon grains biaxially (both in and out of plane) so that (1) grain boundaries are 'low-angle' and have less effect on the electronic properties of the material and (2) subsequent epitaxial thickening is simplified. They key to our approach is the use of a foreign template layer that can be grown with biaxial texture directly on glass by a technique such as ion-beam-assisted deposition or inclined substrate deposition. After deposition of the template layer, silicon is then grown aligned to the template and subsequently thickened. Here, we outline this new approach to silicon on glass, describe initial experimental results and discuss challenges that must be overcome. Published by Elsevier B.V. C1 NCPV, Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Teplin, CW (reprint author), NCPV, Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM Charles_Teplin@NREL.gov; Howard_Branz@NREL.gov NR 18 TC 47 Z9 47 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD JUN 15 PY 2006 VL 352 IS 9-20 BP 984 EP 988 DI 10.1016/j.jnoncrysol.2006.01.024 PG 5 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 060DQ UT WOS:000238782900031 ER PT J AU Datta, S Xu, YQ Mahan, AH Branz, HM Cohen, JD AF Datta, Shouvik Xu, Yueqin Mahan, A. H. Branz, Howard M. Cohen, J. David TI Superior structural and electronic properties for amorphous silicon-germanium alloys deposited by a low temperature hot wire chemical vapor deposition process SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article; Proceedings Paper CT 21st International Conference on Amorphous and Nanocrystalline Semiconductors CY SEP 04-09, 2005 CL Lisbon, PORTUGAL DE amorphous semiconductors; silicon; solar cells; photovoltaics; defects; optical spectroscopy ID DENSITIES; DEFECTS; FILMS AB Very good electronic properties of hot-wire CVD a-Si,Ge:H alloys have been established by junction capacitance methods. The samples were deposited using a tantalum filament maintained at about 1800 degrees C instead of the usual 2000 degrees C tungsten filament process. Urbach energies below 45 meV were found, as well as annealed defect densities below 10(16) cm(-3), for Ge fractions up to 30 at.%. However, samples with 10(19) cm(-3) levels of oxygen exhibited much broader Urbach energies and higher defect densities. Light induced degradation was examined in detail for one a-Si,Ge:H alloy sample and compared to the behavior of PECVD grown a-Si:H alloys of similar optical gap. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Oregon, Dept Phys, Eugene, OR 97403 USA. Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Cohen, JD (reprint author), Univ Oregon, Dept Phys, Eugene, OR 97403 USA. EM dcohen@uoregon.edu NR 12 TC 8 Z9 8 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD JUN 15 PY 2006 VL 352 IS 9-20 BP 1250 EP 1254 DI 10.1016/j.jnoncrysol.2005.10.057 PG 5 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 060DQ UT WOS:000238782900094 ER PT J AU Shinar, R Ghosh, D Choudhury, B Noack, M Dalal, VL Shinar, J AF Shinar, Ruth Ghosh, Debju Choudhury, Bhaskar Noack, Max Dalal, Vikram L. Shinar, Joseph TI Luminescence-based oxygen sensor structurally integrated with an organic light-emitting device excitation source and an amorphous Si-based photodetector SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article; Proceedings Paper CT 21st International Conference on Amorphous and Nanocrystalline Semiconductors CY SEP 04-09, 2005 CL Lisbon, PORTUGAL DE sensors; luminescence; organic light emitting devices; optical properties AB Structurally integrated photoluminescence-based O-2 sensors are described. The structures are based on (1) integrating the excitation source, which is an array of organic light emitting device (OLED) pixels, with a thin-film sensing element, and (2) integrating the sensing element with the photodetector (PD), which is a p-i-n structure based on a-(Si,Ge):H. These components are fabricated on separate glass substrates that are attached back-to-back, resulting in devices with a thickness that is determined by the substrates. Initial design, testing, and issues in the OLED/sensing film/PD three-component structural integration are also reported. (c) 2006 Elsevier B.V. All rights reserved. C1 Iowa State Univ, Microelect Res Ctr, Ames, IA 50011 USA. Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, USDOE, Ames, IA 50011 USA. Iowa State Univ, Dept Phys, Ames, IA 50011 USA. RP Shinar, R (reprint author), Iowa State Univ, Microelect Res Ctr, Ames, IA 50011 USA. EM rshinar@iastate.edu NR 5 TC 23 Z9 23 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD JUN 15 PY 2006 VL 352 IS 9-20 BP 1995 EP 1998 DI 10.1016/j.jnoncrysol.2005.12.029 PG 4 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 060DQ UT WOS:000238782900268 ER PT J AU Chellappa, RS Chandra, D Gramsch, SA Hemley, RJ Lin, JF Song, Y AF Chellappa, Raja S. Chandra, Dhanesh Gramsch, Stephen A. Hemley, Russell J. Lin, Jung-Fu Song, Yang TI Pressure-induced phase transformations in LiAlH4 SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID INELASTIC NEUTRON-SCATTERING; REVERSIBLE HYDROGEN STORAGE; ALUMINUM-HYDRIDE; THERMAL-DECOMPOSITION; LIBRATIONAL MOTION; RAMAN-SCATTERING; METAL HYDRIDES; LITHIUM; SODIUM; TETRAHYDROALUMINATE AB The pressure-induced phase transformations in pure LiAlH4 have been studied using in situ Raman spectroscopy up to 7 GPa. The analyses of Raman spectra reveal a phase transition at approximately 3 GPa from the ambient pressure monoclinic alpha-LiAlH4 phase (P2(1)/c) to a high pressure phase (beta-LiAlH4, reported recently to be monoclinic with space group I4(1)/b) having a distorted [AlH4](-) tetrahedron. The Al-H stretching mode softens and shifts dramatically to lower frequencies beyond the phase transformation pressure. The high pressure,- LiAlH4 phase was pressure quenchable and can be recovered at lower pressures (similar to 1.2 GPa). The Al-H stretching mode in the quenched state further shifts to lower frequencies, suggesting a weakening of the Al-H bond. C1 Univ Nevada, Met & Mat Engn Div MS 388, Reno, NV 89557 USA. Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Western Ontario, Dept Chem, London, ON N6A 5B7, Canada. RP Chandra, D (reprint author), Univ Nevada, Met & Mat Engn Div MS 388, Reno, NV 89557 USA. EM dchandra@unr.edu RI Lin, Jung-Fu/B-4917-2011 NR 38 TC 29 Z9 29 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUN 15 PY 2006 VL 110 IS 23 BP 11088 EP 11097 DI 10.1021/jp060473d PG 10 WC Chemistry, Physical SC Chemistry GA 050QK UT WOS:000238102800014 PM 16771370 ER PT J AU Camillone, N Pak, TR Adib, K Osgood, RM AF Camillone, Nicholas, III Pak, Theodore R. Adib, Kaveh Osgood, Richard M., Jr. TI Tuning molecule-surface interactions with sub-nanometer-thick covalently bound organic monolayers SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; DISSOCIATIVE ELECTRON-ATTACHMENT; PRE-EXPONENTIAL FACTOR; GALLIUM-ARSENIDE 110; METHYL HALIDES; ALKANETHIOLATE MONOLAYERS; HELIUM DIFFRACTION; THERMAL-DESORPTION; D2O ICE; ENERGY AB Measurements of the thermal desorption of methyl bromide (MeBr) from bare and RS-functionalized GaAs(110), where R = CH(3) and CH(3)CH(2), reveal marked systematic changes in molecule-surface interactions. As the thickness of the organic spacer layer is increased, the electrostatic MeBr-GaAs(110) interaction decreases, lowering the activation energy for desorption, E(d), as well as decreasing the critical coverage required for nucleation of bulklike MeBr. On the CH(3)CH(2)S-functionalized surface, E(d) is lowered to a value roughly equal to that for desorption from three-dimensional (3-D) clusters; because the kinetics of desorption of isolated molecules differs from that for desorption from clusters, desorption of isolated molecules from the organic surface occurs at a lower temperature than desorption from the clusters. Thus, the "monolayer" desorption wave occurs at a lower temperature than the "multilayer" desorption wave. These results illustrate the role that organic chain length in nanometer-scale thin films can play in alteration of the delicate balance of interfacial interactions. C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. Columbia Univ, Dept Appl Phys, New York, NY 10027 USA. RP Camillone, N (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM nicholas@bnl.gov NR 54 TC 1 Z9 1 U1 1 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUN 15 PY 2006 VL 110 IS 23 BP 11334 EP 11343 DI 10.1021/jp0606659 PG 10 WC Chemistry, Physical SC Chemistry GA 050QK UT WOS:000238102800048 PM 16771404 ER PT J AU Evans, WC Bergfeld, D van Soest, MC Huebner, MA Fitzpatrick, J Revesz, KM AF Evans, WC Bergfeld, D van Soest, MC Huebner, MA Fitzpatrick, J Revesz, KM TI Geochemistry of low-temperature springs northwest of Yellowstone caldera: Seeking the link between seismicity, deformation, and fluid flow SO JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH LA English DT Article DE Yellowstone National Park; magmatic gas; geochemistry; carbon dioxide; helium ID BENEATH MAMMOTH MOUNTAIN; NATIONAL-PARK; CARBON-DIOXIDE; NOBLE-GASES; MAGMATIC UNREST; VOLCANIC FIELD; CALIFORNIA; CHEMISTRY; DISCHARGE; OREGON AB A comprehensive geochemical survey of springs outside the northwest margin of the Yellowstone caldera was undertaken in 2003 and 2004. This survey was designed to detect: (1) active leakage from a huge reservoir of CO2 gas recently postulated to extend from beneath the caldera into this area; and (2) lingering evidence for subsurface flow of magmatic fluids into this area during the 1985 seismic swarm and concomitant caldera subsidence. Spring temperatures are low (< 15 degrees C), but two large-discharge springs contain 14 C-dead carbon that can be identified as magmatic from calculated end-member values for delta C-13((dead)) and He-3/C-(dead) of -4 parts per thousand and 1 x 10(-10), respectively, similar to values for intra-caldera fumarolic and hot-spring gases. However, the combined discharge of magmatic C is only 5.4 tonnes/day, < 0.1% of the total output from Yellowstone. The two springs have slightly elevated He-3/He-4 ratios near 1R(A) and anomalous concentrations of Cl, Li, and B, and appear to represent minor leakage of gas-depleted, thermal waters out of the caldera. The small CO2 signal detected in the springs is difficult to reconcile with a large underlying reservoir of gas in faulted and seismically active terrain. When considered with analyses from previous decades, the results provide no evidence to associate the ten-year period of caldera deflation that began in 1985 with expulsion of magmatic fluids through the caldera rim in this area. Published by Elsevier B.V. C1 US Geol Survey, Menlo Pk, CA 94025 USA. Lawrence Berkeley Lab, Ctr Isotope Geochem, Berkeley, CA 94701 USA. US Geol Survey, Stable Isotope Lab, Reston, VA 20192 USA. RP Evans, WC (reprint author), US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA. EM wcevans@usgs.gov RI Evans, William/J-4283-2012 NR 44 TC 13 Z9 14 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0273 J9 J VOLCANOL GEOTH RES JI J. Volcanol. Geotherm. Res. PD JUN 15 PY 2006 VL 154 IS 3-4 BP 169 EP 180 DI 10.1016/j.jvolgeores.2006.01.001 PG 12 WC Geosciences, Multidisciplinary SC Geology GA 055PC UT WOS:000238461600002 ER PT J AU Shane, P Sikes, EL Guilderson, TP AF Shane, P Sikes, EL Guilderson, TP TI Tephra beds in deep-sea cores off northern New Zealand: implications for the history of Taupo Volcanic Zone, Mayor Island and White Island volcanoes SO JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH LA English DT Article DE tephra; Taupo Volcanic Zone; deep-sea cores; quaternary; volcanism ID RADIOCARBON AGE CALIBRATION; WIDESPREAD ROTOEHU TEPHRA; SOUTHWEST PACIFIC-OCEAN; LAST GLACIAL MAXIMUM; EASTERN NEW-ZEALAND; CAL KYR BP; CONTINENTAL TRANSITION; RHYOLITIC ERUPTIONS; PERALKALINE VOLCANO; KAWAKAWA TEPHRA AB Twenty piston cores were collected from water depths of similar to 650-3300 m from offshore Bay of Plenty, North Island, New Zealand. They contain tephra from I I Okataina Volcanic Centre and 4 Taupo Volcanic Centre rhyolite eruptions during the last similar to 50 kyr that produce a tephrostratigraphic framework across the tectonically and volcanically complex region of southern Havre Trough, Alderman Trough and the Bay of Plenty continental shelf. This allows correlation between offshore and onshore sequences up to 200 km from source volcanoes, covering much of Marine Isotope Stages 3 and 2. The framework temporally constrains poorly dated and newly recognised volcanic events. Macroscopic tephra layers from the peralkaline Mayor Island volcano are documented for the first time at pre-50, post-50, 40.5, 37.4, 22.2, and 14.2 ka, in addition to the well known 7 ka (Tuhua) event. These macroscopic layers represent some of the most explosive events from this volcano, and provide new marker horizons. They are dispersed up to 90 km north-cast to cast of the edifice. Minor tephra dispersal is also recorded at 17.8, 25.5, similar to 35 and pre-50 ka. The tephra contain high SiO2 (73-75.5 wt.%) glass and subordinate basaltic components, and each tephra represents a distinct magma batch that can be fingerprinted. The Mayor Island tephra form two temporal trends toward less evolved magma compositions, punctuated by a large caldera-forming event at 36 ka. The historically active, andesitic White Island volcano does not have widely dispersed tephra, and the oldest primary deposit found is similar to 21 ka. Five pre-50 ka rhyolite eruptions from an unknown Taupo Volcanic Zone source provide evidence for explosive activity in a time interval poorly documented on-land. The cores demonstrate the patchy and uneven preservation of large magnitude tephra falls caused by local faulting, bioturbation and ponding in bathymetrically complex regions. Reworked tephra layers are common and often lack indicative lithological features. Such units could easily be misinterpreted as primary events without micro-beam geochemical analyses of glass shards. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Auckland, Dept Geol, Auckland 1, New Zealand. Rutgers State Univ, Inst Marine & Coastal Sci, New Brunswick, NJ 08901 USA. Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. Univ Calif Santa Cruz, Dept Ocean Sci, Santa Cruz, CA 95064 USA. Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA. RP Shane, P (reprint author), Univ Auckland, Dept Geol, Private Bag 92019, Auckland 1, New Zealand. EM pa.shane@auckland.ac.nz OI Shane, Philip/0000-0002-7824-1184 NR 53 TC 31 Z9 31 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0273 J9 J VOLCANOL GEOTH RES JI J. Volcanol. Geotherm. Res. PD JUN 15 PY 2006 VL 154 IS 3-4 BP 276 EP 290 DI 10.1016/j.jvolgeores.2006.03.021 PG 15 WC Geosciences, Multidisciplinary SC Geology GA 055PC UT WOS:000238461600008 ER PT J AU Stewart, E Bhuiyan, MS Sathyamurthy, S Paranthaman, M AF Stewart, E. Bhuiyan, M. S. Sathyamurthy, S. Paranthaman, M. TI Studies of solution deposited cerium oxide thin films on textured Ni-alloy substrates for YBCO superconductor SO MATERIALS RESEARCH BULLETIN LA English DT Article DE epitaxial growth; sol-gel chemistry; X-ray diffraction; superconductivity ID CRITICAL-CURRENT DENSITY; CEO2 BUFFER LAYERS; SOL-GEL PROCESS; GROWTH; TAPES AB Cerium oxide (CeO2) buffer layers play an important role for the development of YBa2Cu3O7-x (YBCO) based superconducting tapes using the rolling assisted biaxially textured substrates (RABiTS) approach. The chemical solution deposition (CSD) approach has been used to grow epitaxial CeO2 films on textured Ni-3 at.% W alloy substrates with various starting precursors of ceria. Precursors such as cerium acetate, cerium acetylacetonate, cerium 2-ethylhexanoate, cerium nitrate, and cerium trifluoroacetate were prepared in suitable solvents. The optimum growth conditions for these cerium precursors were Ar-4% H-2 gas processing atmosphere, solution concentration levels of 0.2-0.5 M, a dwell time of 15 min, and a process temperature range of 1050-1150 degrees C. X-ray diffraction, AFM, SEM, and optical microscopy were used to characterize the CeO2 films. Highly textured CeO2 layers were obtained on Ni-W substrates with both cerium acetate and cerium acetylacetonate as starting precursors. YBCO films with a J(c) of 1.5 MA/cm(2) were obtained on cerium acetylacetonate-based CeO2 films with sputtered YSZ and CeO2 cap layers. (c) 2005 Elsevier Ltd. All rights reserved. C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Paranthaman, M (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM paranthamanm@ornl.gov RI Paranthaman, Mariappan/N-3866-2015 OI Paranthaman, Mariappan/0000-0003-3009-8531 NR 12 TC 19 Z9 19 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0025-5408 EI 1873-4227 J9 MATER RES BULL JI Mater. Res. Bull. PD JUN 15 PY 2006 VL 41 IS 6 BP 1063 EP 1068 DI 10.1016/j.materresbull.2005.11.015 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA 053JV UT WOS:000238302300006 ER PT J AU Rao, T Ben-Zvi, I Burrill, A Hahn, H Kayran, D Zhao, Y Kneisel, P Bluem, H Cole, M Favale, A Peterson, E Schultheiss, T Rathke, J AF Rao, T Ben-Zvi, I Burrill, A Hahn, H Kayran, D Zhao, Y Kneisel, P Bluem, H Cole, M Favale, A Peterson, E Schultheiss, T Rathke, J TI Design, construction and performance of all niobium superconducting radio frequency electron gun SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE electron gun; superconducting niobium; RF gun; photoemission AB Over the past several years Advanced Energy Systems, BNL, and JLab have been collaborating on the development and testing of a fully superconducting, all-niobium RF gun driven by a laser. This paper will review the simulations, design of the gun, and present results of its performance under various operating conditions. Cavity Q of 108 at 4 K and QE of 10(-5) at 248 nm, charge up to 0.3 nC/RF cycle and 5 nC in 12 ns have been obtained. Even at these large charges, no effects of cavity quenching have been observed. Measurements of the cavity quality factor at various operating temperatures and quantum efficiency of Nb at superconducting temperature at various cavity field gradients, laser wavelengths and laser powers are presented. Effects of laser cleaning of the cathode and future tests using this gun will also be discussed. (c) 2006 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. JLab, Newport News, VA USA. Adv Energy Syst, Medford, NY 11763 USA. RP Rao, T (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM triveni@bnl.gov RI Kayran, Dmitry/E-1876-2013 OI Kayran, Dmitry/0000-0002-1156-4384 NR 7 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 15 PY 2006 VL 562 IS 1 BP 22 EP 33 DI 10.1016/j.nima.2006.02.172 PG 12 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 055PT UT WOS:000238463400003 ER PT J AU Xiang, D Park, SJ Park, JH Parc, YW Wang, XJ AF Xiang, Dao Park, Sung-Ju Park, Jang-Ho Parc, Yong-Woon Wang, X. J. TI Reduction of thermal emittance by using p-polarized laser at oblique incidence SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE photoinjector; thermal emittance; quantum efficiency; photoemission ID METALS; PHOTOEMISSION; COMPENSATION; ACCELERATOR AB High charge low emittance electron beam is crucial for the 4th generation light source. Conventionally the beam is generated by photoinjector with laser illuminating the cathode at nearly normal incidence. In this paper attention was called to the use of laser at oblique incidence, which we believe, may be more beneficial. It is found that when the laser illuminates the cathode at oblique incidence, the quantum efficiency (QE) and thermal emittance show strong dependence on incidence angle and polarization state. By using p-polarized laser at oblique incidence, surface photoemission is initiated by the presence of the normal electric field which results in a higher QE and lower thermal emittance. With this technique, the increase in QE by almost 5 times and the reduction of thermal emittance by 40% should be quite expectable for a Copper photo-cathode with atomically smooth surface. (c) 2006 Elsevier B.V. All rights reserved. C1 Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. POSTECH, Pohang Accelerator Lab, Pohang 790784, South Korea. Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. RP Xiang, D (reprint author), Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. EM xiangdao@tsinghua.org.cn RI Xiang, Dao/P-2169-2015 NR 28 TC 14 Z9 15 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 15 PY 2006 VL 562 IS 1 BP 48 EP 52 DI 10.1016/j.nima.2006.02.137 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 055PT UT WOS:000238463400006 ER PT J AU Luo, Y AF Luo, Yun TI Transverse beam sizes and quasi emittances for linearly coupled optics SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE linear coupling; eigenmode emittance; beam size matrix AB Two transverse eigenmode rms emittances are defined statistically in the uncoupled normalized coordinate system. They are assumed to be adiabatic invariants. With linear coupling's action-angle parameterization, the strict expression for the beam size matrix in the laboratory coordinate system is obtained. It can be expressed in matrix P defined in the action-angle parameterization or in Twiss and coupling parameters defined in Edwards-Teng's parameterization, along with the eigenmode rms emittances. Numerical simulation calculations are carried out to check the analytical expressions and to verify the adiabatic eigenmode rms emittance invariants during the skew quadrupole magnet ramping. With linear coupling's matrix perturbation approach, the strict expressions of the horizontal and vertical beam sizes in the laboratory coordinate system are approximated to give the quasi horizontal and vertical beam emittances under the weak linear difference coupling situation. The predictions of quasi horizontal and vertical beam emittances from different approximations are presented and discussed. (c) 2006 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Luo, Y (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM yluo@bnl.gov NR 18 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 15 PY 2006 VL 562 IS 1 BP 57 EP 64 DI 10.1016/j.nima.2006.03.008 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 055PT UT WOS:000238463400008 ER PT J AU Brice, SJ Bugel, L Conrad, JM Fleming, B Gladstone, L Hawker, E Killewald, P May, J McKenney, S Nienaber, P Roe, B Sandberg, V Smith, D Wysocki, M AF Brice, SJ Bugel, L Conrad, JM Fleming, B Gladstone, L Hawker, E Killewald, P May, J McKenney, S Nienaber, P Roe, B Sandberg, V Smith, D Wysocki, M TI Photomultiplier tubes in the MiniBooNE experiment SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE MiniBooNE; phototube; photomultiplier tube; R1408; R5912 AB The detector for the MiniBooNE [Proposal for the MiniBooNE experiment: < http://www-boone.fnal.gov/publicpages/proposal.ps >] experiment at the Fermi National Accelerator Laboratory employs 1520 8 in. Hamamatsu models R 1408 and R5912 photomultiplier tubes with custom-designed bases. Tests were performed to determine the dark rate, charge and timing resolutions, double-pulsing rate, and desired operating voltage for each tube, so that the tubes could be sorted for optimal placement in the detector. Seven phototubes were tested to find the angular dependence of their response. After the Super-K phototube implosion accident, an analysis was performed to determine the risk of a similar accident with MiniBooNE. (c) 2006 Elsevier B.V. All rights reserved. C1 Columbia Univ, Pupin Labs, New York, NY 10027 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Yale Univ, New Haven, CT 06520 USA. Western Illinois Univ, Macomb, IL 61455 USA. Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. St Marys Univ, Winona, MN 55987 USA. Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. RP Gladstone, L (reprint author), Columbia Univ, Pupin Labs, 538 W 120th St, New York, NY 10027 USA. EM leg2102@columbia.edu NR 6 TC 9 Z9 9 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 15 PY 2006 VL 562 IS 1 BP 97 EP 109 DI 10.1016/j.nima.2006.02.180 PG 13 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 055PT UT WOS:000238463400013 ER PT J AU Lo Presti, CA Weier, DR Kouzes, RT Schweppe, JE AF Lo Presti, CA Weier, DR Kouzes, RT Schweppe, JE TI Baseline suppression of vehicle portal monitor gamma count profiles: A characterization study SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE baseline suppression; baseline depression; shadow shielding; portal monitors; plastic-scintillator; radiation detection; PVT; homeland security AB Radiation portal monitor (RPM) systems based upon polyvinyl toluene scintillator (PVT) gamma-ray detectors have been deployed to detect illicit trafficking in radioactive materials at border crossings. This report sets forth a characterization of the baseline suppression effect in gross-count gamma-ray profiles due to shadow shielding by vehicles entering RPMs. Shadow shielding is of interest because it reduces the alarm sensitivity of RPMs. This observational study investigated three types of PVT-based commercial RPM systems currently deployed at selected ports of entry in terms of spatial effects relative to detector panel positioning. Radiation portal monitor sites were characterized by driver versus passenger side, top versus bottom panel, and narrow lanes versus wide lanes as observed for a large number of vehicles. Each portal site appears to have a distinctive baseline suppression signature, based on percent maximum suppression relative to measured background. Results suggest that alarm algorithms based on gross-counts may be further refined through attention to individual site characteristics. In addition, longer vehicle transit times were often correlated with stronger baseline suppression, suggesting that baseline suppression studies should take transit time into account. (c) 2006 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kouzes, RT (reprint author), Pacific NW Natl Lab, MS K6-08,POB 999, Richland, WA 99352 USA. EM richard.kouzes@pnl.gov NR 9 TC 36 Z9 36 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 15 PY 2006 VL 562 IS 1 BP 281 EP 297 DI 10.1016/j.nima.2006.02.156 PG 17 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 055PT UT WOS:000238463400031 ER PT J AU Baturin, V Burkert, V Kim, W Majewsky, S Park, K Popov, V Smith, ES Son, D Stepanyan, SS Zorn, C AF Baturin, V Burkert, V Kim, W Majewsky, S Park, K Popov, V Smith, ES Son, D Stepanyan, SS Zorn, C TI Time-of-flight resolution of scintillating counters with Burle 85001 microchannel plate photomultipliers in comparison with Hamamatsu R2083 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE CLAS; JLAB; time-of-flight; time resolution; microchannel plate; MCP photomultiplier ID SYSTEM; CLAS AB Improvements in the time resolution of the CEBAF Large Acceptance Spectrometer (CLAS) below approximate to 50ps will be required for experiments using the planned upgraded accelerator facility at Jefferson Lab. The improved time resolution will allow particle identification using time-of-flight techniques to be used effectively up to the proposed operating energy of 12GeV. The challenge of achieving this time resolution over a relatively large area is compounded because the photomultipliers (PM) in the CLAS "time-zero" scintillating counters must operate in very high magnetic fields. Therefore, we have studied the resolution of "time-zero" prototypes with microchannel plate PMs 85001-501 from Burle. For reference and comparison, measurements were also made using the standard PMs R2083 from Hamamatsu using two timing methods. The cosmic ray method, which utilizes three identical scintillating counters (Bicron BC-408, 2 x 3 x 50cm(3)) with PMs at the ends, yields sigma(R2083) = 59.1 +/- 0.7 ps. The location method of particles from a radiative source with known coordinates has been used to compare timing resolutions of R2083 and 85001-501. This method yields sigma(R2083) = 59.5 +/- 0.7 ps and it also provides an estimate of the number of primary photoelectrons. For the microchannel plate PM from Burle the method yields sigma(85001) = 130 +/- 4 ps due to lower number of primary photoelectrons. (c) 2006 Elsevier B.V. All rights reserved. C1 Kyungpook Natl Univ, Dept Phys, Taegu 702701, South Korea. Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Kim, W (reprint author), Kyungpook Natl Univ, Dept Phys, Taegu 702701, South Korea. EM wooyoung@jlab.org NR 6 TC 3 Z9 3 U1 2 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 15 PY 2006 VL 562 IS 1 BP 327 EP 337 DI 10.1016/j.nima.2006.02.201 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 055PT UT WOS:000238463400036 ER PT J AU Tao, J Bertmore, CJ Worlton, TG Carpenter, JM Mikkelson, D Mikkelson, R Siewenie, J Hammonds, J Chatterjee, A AF Tao, J Bertmore, CJ Worlton, TG Carpenter, JM Mikkelson, D Mikkelson, R Siewenie, J Hammonds, J Chatterjee, A TI Time-of-flight neutron total scattering data analysis implemented in the software suite ISAW SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE time-of-flight neutron; data analysis; total scattering; software; glass; diffraction ID MULTIPLE-SCATTERING; AMORPHOUS MATERIALS; DIFFRACTION; LIQUID; SILICA AB Analyzing time-of-flight neutron total scattering data involves many instrument-dependent corrections, including: detector deadtime, normalization of detector counts to beam monitor counts, time-of-flight to momentum transfer Q rebinning, use of vanadium (or an equivalent standard) data for both calibration and data-merging purposes, as well as attenuation, multiple scattering, and inelastic effects. Here we review and discuss these methods in the application to data analysis of the Glass, Liquid and Amorphous Materials Diffractometer at the Intense Pulsed Neutron Source. The implementation in the Integrated Spectra Analysis Workbench (ISAW) software suite is discussed in detail. Published by Elsevier B.V. C1 Argonne Natl Lab, Div Intense Pulsed Neutron Source, Argonne, IL 60439 USA. Univ Wisconsin Stout, Dept Math Stat & Comp Sci, Menomonie, WI 54751 USA. RP Tao, J (reprint author), Argonne Natl Lab, Div Intense Pulsed Neutron Source, 9700 S Cass Ave,Bldg 360,A140, Argonne, IL 60439 USA. EM taoj@anl.gov OI Benmore, Chris/0000-0001-7007-7749 NR 30 TC 8 Z9 8 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 15 PY 2006 VL 562 IS 1 BP 422 EP 432 DI 10.1016/j.nima.2006.01.130 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 055PT UT WOS:000238463400049 ER PT J AU Ablett, JM Kao, CC Reeder, RJ Tang, Y Lanzirotti, A AF Ablett, JM Kao, CC Reeder, RJ Tang, Y Lanzirotti, A TI X27A - A new hard X-ray micro-spectroscopy facility at the National Synchrotron Light Source SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article ID SPECIATION; FLUORESCENCE; SURFACE AB A new hard X-ray micro-spectroscopy beamline has recently been installed at bending-magnet beamline X27A at the National Synchrotron Light Source, where the focus of research is primarily directed towards the environmental, geological and materials science communities. This instrument delivers moderate, similar to 10 mu m spatial resolution using achromatic dynamically bent Kirkpatrick-Baez mirrors, in addition to providing high X-ray flux throughput and selectable energy resolution. The balance between moderate spatial resolution and high flux throughput, in combination with a liquid nitrogen-cooled 13-element energy-dispersive high-purity germanium detector, is particularly well suited to the investigation of dilute and thin-film systems using the fluorescence X-ray absorption fine-structure mode of detection. In this paper, we report on the design and performance of this instrument and highlight a recent experimental study undertaken at this facility. (c) 2006 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. SUNY Stony Brook, Ctr Environm Mol Sci, Stony Brook, NY 11794 USA. Univ Chicago, Consortium Adv Radiat Source, Chicago, IL 60637 USA. RP Ablett, JM (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM jablett@bnl.gov RI Tang, Yuanzhi/G-5419-2013 NR 19 TC 22 Z9 22 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 15 PY 2006 VL 562 IS 1 BP 487 EP 494 DI 10.1016/j.nima.2006.02.179 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 055PT UT WOS:000238463400057 ER PT J AU Ritchie, B AF Ritchie, B TI Photon spin and Bose-Einstein statistics SO OPTICS COMMUNICATIONS LA English DT Article ID MAXWELL AB It is shown that Maxwell's equations for the electric and magnetic fields free of sources can be inferred from Dirac's pair of first-order equations for a zero-mass, zero-charge particle. This result is interpreted as a Lorentz invariant form of the transverse nature of photonic propagation in which only two components of the spin-1 field exist in nature. Canonical quantization of Dirac's equations leads to a time average of the electromagnetic energy in agreement with the standard result of quantum electrodynamics. It is shown that the spin-statistics theorem is not violated for canonical quantization of the Dirac field provided the mass of the particle is zero. (C) 2006 Elsevier B.V. All rights reserved. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Ritchie, B (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM ritchie1@llnl.gov NR 13 TC 6 Z9 6 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0030-4018 J9 OPT COMMUN JI Opt. Commun. PD JUN 15 PY 2006 VL 262 IS 2 BP 229 EP 233 DI 10.1016/j.optcom.2005.12.063 PG 5 WC Optics SC Optics GA 049IP UT WOS:000238010000016 ER PT J AU Dolling, G Enkrich, C Wegener, M Soukoulis, CM Linden, S AF Dolling, Gunnar Enkrich, Christian Wegener, Martin Soukoulis, Costas M. Linden, Stefan TI Low-loss negative-index metamaterial at telecommunication wavelengths SO OPTICS LETTERS LA English DT Article ID OPTICAL METAMATERIALS; REFRACTION AB We fabricate and characterize a low-loss silver-based negative-index metamaterial based on the design of a recent theoretical proposal. Comparing the measured transmittance and reflectance spectra with theory reveals good agreement. We retrieve a real part of the refractive index of Re(n)=-2 around 1.5 mu m wavelength. The maximum of the ratio of the real to the imaginary part of the refractive index is about three at a spectral position where Re(n)=-1. To the best of our knowledge, this is the best figure of merit reported for any negative-index photonic metarnaterial to date. (c) 2006 Optical Society of America. C1 Univ Karlsruhe, Inst Angew Phys, D-76131 Karlsruhe, Germany. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Forschungszentrum Karlsruhe, Helmholtz Gemeinschaft, Inst Nanotechnol, D-76021 Karlsruhe, Germany. FORTH, Inst Elect Struct & Laser, Iraklion, Crete, Greece. Univ Crete, Dept Mat Sci & Technol, Iraklion, Crete, Greece. RP Dolling, G (reprint author), Univ Karlsruhe, Inst Angew Phys, Wolfgang Gaede Str 1, D-76131 Karlsruhe, Germany. RI Soukoulis, Costas/A-5295-2008; Wegener, Martin/S-5456-2016 NR 11 TC 374 Z9 383 U1 6 U2 68 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD JUN 15 PY 2006 VL 31 IS 12 BP 1800 EP 1802 DI 10.1364/OL.31.001800 PG 3 WC Optics SC Optics GA 051JG UT WOS:000238156800008 PM 16729075 ER PT J AU Ho, N Phillips, MC Qiao, H Allen, PJ Krishnaswami, K Riley, BJ Myers, TL Anheier, NC AF Ho, N Phillips, MC Qiao, H Allen, PJ Krishnaswami, K Riley, BJ Myers, TL Anheier, NC TI Single-mode low-loss chalcogenide glass waveguides for the mid-infrared SO OPTICS LETTERS LA English DT Article ID QUANTUM-CASCADE LASERS; ROOM-TEMPERATURE; OPTICAL-FIBERS; OPERATION AB We demonstrate the design, fabrication, and characterization of single-mode low-loss waveguides for mid-infrared (MIR) wavelengths. Planar waveguide structures were fabricated from multilayer thin films of arsenic-based chalcogenide glasses followed by the creation of channel waveguides by using the photodarkening effect. Propagation losses as low as 0.5 dB/cm were measured for a quantum cascade laser end-fire coupled into the waveguides. This is a first step toward the design and fabrication of integrated optical components for MIR applications. (c) 2006 Optical Society of America C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Ho, N (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM nicolas.ho@pnl.gov OI Riley, Brian/0000-0002-7745-6730 NR 12 TC 79 Z9 79 U1 1 U2 17 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD JUN 15 PY 2006 VL 31 IS 12 BP 1860 EP 1862 DI 10.1364/OL.31.001860 PG 3 WC Optics SC Optics GA 051JG UT WOS:000238156800028 PM 16729095 ER PT J AU Bartolozzi, M Leinweber, DB Thomas, AW AF Bartolozzi, M. Leinweber, D. B. Thomas, A. W. TI Symbiosis in the Bak-Sneppen model for biological evolution with economic applications SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS LA English DT Article DE complex systems; evolution/extinction; self-organized criticality; econophysics ID SELF-ORGANIZED CRITICALITY; 1D TRAFFIC FLOW; PUNCTUATED EQUILIBRIUM; STOCK-MARKET; SOLAR-FLARES; DYNAMICS; AVALANCHES; NETWORKS; JAMS AB In the present work we extend the Bak-Sneppen model for biological evolution by introducing local interactions between species. This "environmental" perturbation modifies the intrinsic fitness of each element of the ecology, leading to higher survival probability, even for the less fit. While the system still self-organizes toward a critical state, the distribution of fitness broadens, losing the classical step-function shape. A possible application in economics is discussed, where firms are represented as evolving species linked by mutual interests. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Adelaide, Special Res CSSM, Adelaide, SA 5005, Australia. Univ Adelaide, Dept Phys, Adelaide, SA 5005, Australia. Jefferson Lab, Newport News, VA 23606 USA. RP Bartolozzi, M (reprint author), Univ Adelaide, Special Res CSSM, Rm 126,Lv1 I Phys Bldg, Adelaide, SA 5005, Australia. EM mbartolo@physics.adelaide.edu.au RI Leinweber, Derek/J-6705-2013; Thomas, Anthony/G-4194-2012 OI Leinweber, Derek/0000-0002-4745-6027; Thomas, Anthony/0000-0003-0026-499X NR 42 TC 6 Z9 6 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-4371 EI 1873-2119 J9 PHYSICA A JI Physica A PD JUN 15 PY 2006 VL 365 IS 2 BP 499 EP 508 DI 10.1016/j.physa.2005.09.061 PG 10 WC Physics, Multidisciplinary SC Physics GA 044QS UT WOS:000237687900019 ER PT J AU Chubykalo-Fesenko, O Guslienko, K Klemmer, TJ Wu, XW Chantrell, RW Weller, D AF Chubykalo-Fesenko, O Guslienko, K Klemmer, TJ Wu, XW Chantrell, RW Weller, D TI A computational and experimental study of exchange coupling in FePt self-organized magnetic arrays SO PHYSICA B-CONDENSED MATTER LA English DT Article DE magnetic recording; self-organized magnetic arrays; L1(0) alloy; exchange coupling ID NANOPARTICLES; PARTICLES; MEDIA AB A study of the magnetic properties of self-organized magnetic arrays of FePt particles has been carried out. Experimental measurements of the magnetic properties are compared with the results of a computational model taking into account the magnetostatic and exchange coupling between the particles. The magnetostatic coupling is found to be very weak, but the experimental data cannot be explained without the existence of strong exchange coupling between the particles, believed to result from the sintering of the particles during the annealing process. The best fit of the theoretical calculations to the experimental data suggests that after high temperature annealing values of K close to the bulk value can be obtained. (c) 2006 Elsevier B.V. All rights reserved. C1 CSIC, Inst Ciencia Mat, E-28049 Madrid, Spain. Argonne Natl Lab, Argonne, IL 60439 USA. Seagate Res, Pittsburgh, PA 15222 USA. RP Chubykalo-Fesenko, O (reprint author), CSIC, Inst Ciencia Mat, E-28049 Madrid, Spain. EM oksana@icmm.csic.es RI Chantrell, Roy/J-9898-2015 OI Chantrell, Roy/0000-0001-5410-5615 NR 25 TC 6 Z9 6 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD JUN 15 PY 2006 VL 382 IS 1-2 BP 235 EP 244 DI 10.1016/j.physb.2006.02.023 PG 10 WC Physics, Condensed Matter SC Physics GA 060CT UT WOS:000238780100038 ER PT J AU Xie, R Rosenmann, D Rydh, A Claus, H Karapetrov, G Kwok, WK Welp, U AF Xie, R. Rosenmann, D. Rydh, A. Claus, H. Karapetrov, G. Kwok, W. K. Welp, U. TI Anisotropic superconducting phase diagram of C6Ca SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE intercalation superconductor; phase diagram; anisotropy; specific heat ID GRAPHITE-INTERCALATION COMPOUNDS; INTERLAYER STATES; MGB2; COMPOUND AB We present a study of the anisotropic superconducting phase diagram of the new carbon intercalation superconductor C6Ca using magnetization and specific heat measurements. We observe an onset of superconductivity at 11.3 K and a transition width of about I K from heat capacity and low-field magnetization measurements. A clear step in the heat capacity confirms the bulk nature of the superconducting state. We determined an in-plane coherence length of zeta(ab) approximate to 36 nm and an anisotropy parameter of the coherence length of Gamma approximate to 3.5-4. (c) 2006 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Div Sci Mat, Argonne, IL 60439 USA. RP Welp, U (reprint author), Argonne Natl Lab, Div Sci Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM welp@anl.gov RI Rydh, Andreas/A-7068-2012; Karapetrov, Goran/C-2840-2008; OI Rydh, Andreas/0000-0001-6641-4861; Karapetrov, Goran/0000-0003-1113-0137; Xie, Ruobing/0000-0003-0266-9122 NR 32 TC 6 Z9 6 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 EI 1873-2143 J9 PHYSICA C JI Physica C PD JUN 15 PY 2006 VL 439 IS 2 BP 43 EP 46 DI 10.1016/j.physc.2006.01.040 PG 4 WC Physics, Applied SC Physics GA 056AC UT WOS:000238491900001 ER PT J AU Chekanov, S Derrick, M Magill, S Miglioranzi, S Musgrave, B Nicholass, D Repond, J Yoshida, R Mattingly, MCK Pavel, N Molina, AGY Antonelli, S Antonioli, P Bari, G Basile, M Bellagamba, L Bindi, M Boscherini, D Bruni, A Bruni, G Cifarelli, L Cindolo, F Contin, A Corradi, M De Pasquale, S Lacobucci, G Margotti, A Nania, R Polini, A Rinaldi, L Sartorelli, G Zichichi, A Aghuzumtsyan, G Bartsch, D Brock, I Goers, S Hartmann, H Hilger, E Jakob, HP Jungst, M Kind, OM Paul, E Rautenberg, J Renner, R Samson, U Schonberg, V Wang, M Wlasenko, M Brook, NH Heath, GP Morris, JD Namsoo, T Capua, M Fazio, S Mastroberardino, A Schioppa, M Susinno, G Tassi, E Kim, JY Ma, KJ Ibrahim, ZA Kamaluddin, B Abdullah, WATW Ning, Y Ren, Z Schmidke, WB Sciulli, F Chwastowski, J Eskreys, A Figiel, J Galas, A Gil, M Olkiewicz, K Stopa, P Zawiejski, L Adamczyk, L Bold, T Grabowska-Bold, I Kisielewska, D Lukasik, J Przybycien, M Suszycki, L Kotanski, A Slominski, W Adler, V Behrens, U Bloch, I Bonato, A Borras, K Coppola, N Fourletova, J Geiser, A Gladkov, D Gottlicher, P Gregor, I Gutsche, O Haas, T Hain, W Horn, C Kahle, B Kotz, U Kowalski, H Lim, H Lobodzinska, E Lohr, B Mankel, R Melzer-Pellmann, IA Montanari, A Nguyen, CN Notz, D Nuncio-Quiroz, AE Santamarta, R Schneekloth, U Stadie, H Stosslein, U Szuba, D Szuba, J Theedt, T Watt, G Wolf, G Wrona, K Youngman, C Zeuner, W Schlenstedt, S Barbagli, G Gallo, E Pelfer, PG Bamberger, A Benen, A Dobur, D Karstens, F Vlasov, NN Bussey, PJ Doyle, AT Dunne, W Ferrando, J Saxon, DH Skillicorn, IO Gialas, I Gosau, T Holm, U Klanner, R Lohrmann, E Salehi, H Schleper, R Schorner-Sadenius, T Sztuk, J Wichmann, K Wick, K Foudas, C Fry, C Long, KR Tapper, AD Kataoka, M Nagano, K Tokushuku, K Yamada, S Yamazaki, Y Barakbaev, AN Boos, EG Dossanov, A Pokrovskiy, NS Zhautykov, BO Son, D de Favereau, J Piotrzkowski, K Barreiro, F Glasman, C Jimenez, M Labarga, L del Peso, J Ron, E Terron, J Zambrana, M Corriveau, F Liu, C Walsh, R Zhou, C Tsurugai, T Antonov, A Dolgoshein, BA Rubinsky, I Sosnovtsev, V Stifutkin, A Suchkov, S Dementiev, RK Ermolov, PF Gladilin, LK Katkov, II Khein, LA Korzhavina, IA Kuzmin, VA Levchenko, BB Lukina, OY Proskuryakov, AS Shcheglova, LM Zotkin, DS Zotkin, SA Abt, I Buttner, C Caldwell, A Kollar, D Liu, X Sutiak, J Grigorescu, G Keramidas, A Koffeman, E Kooijman, P Maddox, E Tiecke, H Vazquez, M Wiggers, L Brummer, N Bylsma, B Durkin, LS Lee, A Ling, T Allfrey, PD Bell, MA Cooper-Sarkar, AM Cottrell, A Devenish, RCE Foster, B Gwenlan, C Korcsak-Gorzo, K Patel, S Roberfroid, V Robertson, A Straub, PB Uribe-Estrada, C Walczak, R Bellan, P Bertolin, A Brugnera, R Carlin, R Ciesielski, R Dal Corso, F Dusini, S Garfagnini, A Limentani, S Longhin, A Stanco, L Turcato, M Oh, BY Raval, A Whitmore, JJ Iga, Y D'Agostini, G Marini, G Nigro, A Cole, JE Hart, JC Abramowicz, H Gabareen, A Kananov, S Levy, A Kuze, M Hori, R Kagawa, S Shimizu, S Tawara, T Hamatsu, R Kaji, H Kitamura, S Ota, O Ri, YD Ferrero, MI Monaco, V Sacchi, R Solano, A Staiano, A Arneodo, M Ruspa, M Fourletov, S Martin, JF Butterworth, JM Hall-Wilton, R Jones, TW Loizides, JH Sutton, MR Targett-Adams, C Wing, M Brzozowska, B Ciborowski, J Grzelak, G Kulinski, P Luzniak, P Malka, J Nowak, RJ Pawlak, JM Tymieniecka, T Ukleja, A Ukleja, J Zarnecki, AF Eisenberg, Y Hochman, D Karshon, U Brownson, E Danielson, T Everett, A Kcira, D Reeder, DD Rosin, M Ryan, P Savin, AA Smith, WH Wolfe, H Bhadra, S Catterall, CD Cui, Y Hartner, G Menary, S Noor, U Soares, M Standage, J Whyte, J AF Chekanov, S. Derrick, M. Magill, S. Miglioranzi, S. Musgrave, B. Nicholass, D. Repond, J. Yoshida, R. Mattingly, M. C. K. Pavel, N. Molina, A. G. Yaguees Antonelli, S. Antonioli, P. Bari, G. Basile, M. Bellagamba, L. Bindi, M. Boscherini, D. Bruni, A. Bruni, G. Cifarelli, L. Cindolo, F. Contin, A. Corradi, M. De Pasquale, S. Lacobucci, G. Margotti, A. Nania, R. Polini, A. Rinaldi, L. Sartorelli, G. Zichichi, A. Aghuzumtsyan, G. Bartsch, D. Brock, I. Goers, S. Hartmann, H. Hilger, E. Jakob, H. -P. Juengst, M. Kind, O. M. Paul, E. Rautenberg, J. Renner, R. Samson, U. Schoenberg, V. Wang, M. Wlasenko, M. Brook, N. H. Heath, G. P. Morris, J. D. Namsoo, T. Capua, M. Fazio, S. Mastroberardino, A. Schioppa, M. Susinno, G. Tassi, E. Kim, J. Y. Ma, K. J. Ibrahim, Z. A. Kamaluddin, B. Abdullah, W. A. T. Wan Ning, Y. Ren, Z. Schmidke, W. B. Sciulli, F. Chwastowski, J. Eskreys, A. Figiel, J. Galas, A. Gil, M. Olkiewicz, K. Stopa, P. Zawiejski, L. Adamczyk, L. Bold, T. Grabowska-Bold, I. Kisielewska, D. Lukasik, J. Przybycien, M. Suszycki, L. Kotanski, A. Slominski, W. Adler, V. Behrens, U. Bloch, I. Bonato, A. Borras, K. Coppola, N. Fourletova, J. Geiser, A. Gladkov, D. Gottlicher, P. Gregor, I. Gutsche, O. Haas, T. Hain, W. Horn, C. Kahle, B. Kotz, U. Kowalski, H. Lim, H. Lobodzinska, E. Lohr, B. Mankel, R. Melzer-Pellmann, I. -A. Montanari, A. Nguyen, C. N. Notz, D. Nuncio-Quiroz, A. E. Santamarta, R. Schneekloth, U. Stadie, H. Stosslein, U. Szuba, D. Szuba, J. Theedt, T. Watt, G. Wolf, G. Wrona, K. Youngman, C. Zeuner, W. Schlenstedt, S. Barbagli, G. Gallo, E. Pelfer, P. G. Bamberger, A. Benen, A. Dobur, D. Karstens, F. Vlasov, N. N. Bussey, P. J. Doyle, A. T. Dunne, W. Ferrando, J. Saxon, D. H. Skillicorn, I. O. Gialas, I. Gosau, T. Holm, U. Klanner, R. Lohrmann, E. Salehi, H. Schleper, R. Schorner-Sadenius, T. Sztuk, J. Wichmann, K. Wick, K. Foudas, C. Fry, C. Long, K. R. Tapper, A. D. Kataoka, M. Nagano, K. Tokushuku, K. Yamada, S. Yamazaki, Y. Barakbaev, A. N. Boos, E. G. Dossanov, A. Pokrovskiy, N. S. Zhautykov, B. O. Son, D. de Favereau, J. Piotrzkowski, K. Barreiro, F. Glasman, C. Jimenez, M. Labarga, L. del Peso, J. Ron, E. Terron, J. Zambrana, M. Corriveau, F. Liu, C. Walsh, R. Zhou, C. Tsurugai, T. Antonov, A. Dolgoshein, B. A. Rubinsky, I. Sosnovtsev, V. Stifutkin, A. Suchkov, S. Dementiev, R. K. Ermolov, P. F. Gladilin, L. K. Katkov, I. I. Khein, L. A. Korzhavina, I. A. Kuzmin, V. A. Levchenko, B. B. Lukina, O. Yu. Proskuryakov, A. S. Shcheglova, L. M. Zotkin, D. S. Zotkin, S. A. Abt, I. Buttner, C. Caldwell, A. Kollar, D. Liu, X. Sutiak, J. Grigorescu, G. Keramidas, A. Koffeman, E. Kooijman, P. Maddox, E. Tiecke, H. Vazquez, M. Wiggers, L. Brummer, N. Bylsma, B. Durkin, L. S. Lee, A. Ling, Ty Allfrey, P. D. Bell, M. A. Cooper-Sarkar, A. M. Cottrell, A. Devenish, R. C. E. Foster, B. Gwenlan, C. Korcsak-Gorzo, K. Patel, S. Roberfroid, V. Robertson, A. Straub, P. B. Uribe-Estrada, C. Walczak, R. Bellan, P. Bertolin, A. Brugnera, R. Carlin, R. Ciesielski, R. Dal Corso, F. Dusini, S. Garfagnini, A. Limentani, S. Longhin, A. Stanco, L. Turcato, M. Oh, B. Y. Raval, A. Whitmore, J. J. Iga, Y. D'Agostini, G. Marini, G. Nigro, A. Cole, J. E. Hart, J. C. Abramowicz, H. Gabareen, A. Kananov, S. Levy, A. Kuze, M. Hori, R. Kagawa, S. Shimizu, S. Tawara, T. Hamatsu, R. Kaji, H. Kitamura, S. Ota, O. Ri, Y. D. Ferrero, M. I. Monaco, V. Sacchi, R. Solano, A. Staiano, A. Arneodo, M. Ruspa, M. Fourletov, S. Martin, J. F. Butterworth, J. M. Hall-Wilton, R. Jones, T. W. Loizides, J. H. Sutton, M. R. Targett-Adams, C. Wing, M. Brzozowska, B. Ciborowski, J. Grzelak, G. Kulinski, P. Luzniak, P. Malka, J. Nowak, R. J. Pawlak, J. M. Tymieniecka, T. Ukleja, A. Ukleja, J. Zarnecki, A. F. Eisenberg, Y. Hochman, D. Karshon, U. Brownson, E. Danielson, T. Everett, A. Kcira, D. Reeder, D. D. Rosin, M. Ryan, P. Savin, A. A. Smith, W. H. Wolfe, H. Bhadra, S. Catterall, C. D. Cui, Y. Hartner, G. Menary, S. Noor, U. Soares, M. Standage, J. Whyte, J. CA ZEUS Collaboration TI Measurement of high-Q(2) deep inelastic scattering cross sections with a longitudinally polarised positron beam at HERA SO PHYSICS LETTERS B LA English DT Article ID CENTRAL TRACKING DETECTOR; ZEUS BARREL CALORIMETER; MONTE-CARLO GENERATOR; MICRO VERTEX DETECTOR; ENERGY EP COLLISIONS; QCD ANALYSIS; PARTON DISTRIBUTIONS; PROTON COLLISIONS; JET FRAGMENTATION; 1ST MEASUREMENT AB The cross sections for charged and neutral current deep inelastic scattering in e(+)p collisions with a longitudinally polarised positron beam have been measured using the ZEUS detector at HERA. The results, based on data corresponding to an integrated luminosity of 23.8 pb(-1) at root s = 318 GeV, are given for both e(+)p charged current and neutral current deep inelastic scattering for both positive and negative values of the longitudinal polarisation of the positron beam. Single differential cross sections are presented for the kinematic region Q(2) > 200 GeV2. The measured cross sections are compared to the predictions of the Standard Model. A fit to the data yields sigma(CC)(P-e = -1) = 7.4 +/- 3.9(stat.) +/- 1.2(syst.) pb, which is consistent within two standard deviations with the absence of right-handed charged currents in the Standard Model. (c) 2006 Elsevier B.V. All rights reserved. C1 Humboldt Univ, Inst Phys, Berlin, Germany. Argonne Natl Lab, Argonne, IL 60439 USA. Andrews Univ, Berrien Springs, MI 49104 USA. Univ Bologna, Bologna, Italy. Ist Nazl Fis Nucl, I-40126 Bologna, Italy. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. Univ Calabria, Dept Phys, I-87036 Cosenza, Italy. Ist Nazl Fis Nucl, Cosenza, Italy. Chonnam Natl Univ, Kwangju 500757, South Korea. Univ Malaya, Jabatan Fizik, Kuala Lumpur 50603, Malaysia. Columbia Univ, Nevis Labs, Irvington, NY 10027 USA. Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. Jagiellonian Univ, Dept Phys, Krakow, Poland. DESY, Deutsch Elektronrn Synchrotron, D-2000 Hamburg, Germany. Univ Florence, Florence, Italy. Ist Nazl Fis Nucl, I-50125 Florence, Italy. Univ Freiburg, Fak Phys, D-7800 Freiburg, Germany. Univ Glasgow, Dept Phys & Astron, Glasgow, Lanark, Scotland. Univ London Imperial Coll Sci Technol & Med, High Energy Nucl Phys Grp, Hamburg, Germany. Natl Lab High Energy Phys, KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki 305, Japan. Penn State Univ, Dept Phys, University Pk, PA 16802 USA. Polytech Univ, Sagamihara, Kanagawa, Japan. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, Rome, Italy. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel. Univ Tokyo, Dept Phys, Tokyo 113, Japan. Tokyo Metropolitan Univ, Dept Phys, Tokyo 158, Japan. Univ Turin, Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Piemonte Orientale, Turin, Italy. Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. UCL, Dept Phys & Astron, London, England. Univ Warsaw, Inst Expt Phys, Warsaw, Poland. Inst Nucl Studies, PL-00681 Warsaw, Poland. Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. York Univ, Dept Phys, N York, ON M3J 1P3, Canada. RP Chekanov, S (reprint author), Humboldt Univ, Inst Phys, Berlin, Germany. RI Ferrando, James/A-9192-2012; Gladilin, Leonid/B-5226-2011; Proskuryakov, Alexander/J-6166-2012; Dementiev, Roman/K-7201-2012; Levchenko, B./D-9752-2012; Wiggers, Leo/B-5218-2015; Tassi, Enrico/K-3958-2015; Wing, Matthew/C-2169-2008; IBRAHIM, ZAINOL ABIDIN/C-1121-2010; Fazio, Salvatore /G-5156-2010; WAN ABDULLAH, WAN AHMAD TAJUDDIN/B-5439-2010; Doyle, Anthony/C-5889-2009; Suchkov, Sergey/M-6671-2015; De Pasquale, Salvatore/B-9165-2008; dusini, stefano/J-3686-2012; Capua, Marcella/A-8549-2015; OI Ferrando, James/0000-0002-1007-7816; Gladilin, Leonid/0000-0001-9422-8636; Wiggers, Leo/0000-0003-1060-0520; Doyle, Anthony/0000-0001-6322-6195; De Pasquale, Salvatore/0000-0001-9236-0748; dusini, stefano/0000-0002-1128-0664; Watt, Graeme/0000-0003-0775-6604; Capua, Marcella/0000-0002-2443-6525; Arneodo, Michele/0000-0002-7790-7132; Longhin, Andrea/0000-0001-9103-9936; Gutsche, Oliver/0000-0002-8015-9622 NR 71 TC 21 Z9 21 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUN 15 PY 2006 VL 637 IS 4-5 BP 210 EP 222 DI 10.1016/j.physletb.2006.04.047 PG 13 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 054SP UT WOS:000238399200002 ER PT J AU Balazs, C Berger, EL Nadolsky, P Yuan, CP AF Balazs, Csaba Berger, Edmond L. Nadolsky, Pavel Yuan, C. -P. TI All-orders resummation for diphoton production at hadron colliders SO PHYSICS LETTERS B LA English DT Article DE prompt photons; all-orders resummation; tevatron run-2 phenomenology ID SMALL TRANSVERSE-MOMENTUM; DOUBLE-PHOTON PRODUCTION; TO-LEADING-ORDER; BOSON PRODUCTION; LOGARITHMIC CORRECTIONS; PAIR PRODUCTION; COLLISIONS; QCD; LHC AB We present a QCD calculation of the transverse momentum distribution of photon pairs produced at hadron colliders, including all-orders soft-gluon resummation valid at next-to-next-to-leading logarithmic accuracy. We specify the region of phase space in which the calculation is most reliable, compare our results with data from the Fermilab Tevatron, and make predictions for the Large Hadron Collider. The uncertainty of predictions for production of diphotons from fragmentation of final-state quarks is examined. Published by Elsevier B.V. C1 Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. RP Nadolsky, P (reprint author), Argonne Natl Lab, Div High Energy Phys, 9700 Cass Ave, Argonne, IL 60439 USA. EM nadolsky@hep.anl.gov NR 32 TC 29 Z9 29 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUN 15 PY 2006 VL 637 IS 4-5 BP 235 EP 240 DI 10.1016/j.physletb.2006.04.017 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 054SP UT WOS:000238399200005 ER PT J AU Becher, T Neubert, M AF Becher, Thomas Neubert, Matthias TI Toward a NNLO calculation of the (B)over-bar -> X-s gamma decay rate with a cut on photon energy: II. Two-loop result for the jet function SO PHYSICS LETTERS B LA English DT Article ID COLLINEAR EFFECTIVE THEORY; MESON DECAYS AB The complete two-loop expression for the jet function J(p(2), mu) of soft-collinear effective theory is presented, including non-logarithmic terms. Combined with our previous calculation of the soft function S(omega, mu), this result provides the basis for a calculation of the effect of a photon-energy cut in the measurement of the (B) over bar -> X-s gamma decay rate at next-to-next-to-leading order in renormalization-group improved perturbation theory. The jet function is also relevant to the resummation of Sudakov logarithms in other hard QCD processes. (c) 2006 Elsevier B.V. All rights reserved. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Cornell Univ, Inst High Energy Phenomenol, Newman Lab Elementary Particle Phys, Ithaca, NY 14853 USA. RP Becher, T (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM becher@fnal.gov NR 25 TC 98 Z9 98 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUN 15 PY 2006 VL 637 IS 4-5 BP 251 EP 259 DI 10.1016/j.physletb.2006.04.046 PG 9 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 054SP UT WOS:000238399200008 ER PT J AU Devanathan, R Weber, WJ Singhal, SC Gale, JD AF Devanathan, R. Weber, W. J. Singhal, S. C. Gale, J. D. TI Computer simulation of defects and oxygen transport in yttria-stabilized zirconia SO SOLID STATE IONICS LA English DT Article DE solid oxide fuel cell; yttria-stabilized zirconia; oxygen transport; defect energetics; molecular dynamics ID X-RAY-ABSORPTION; OXIDE FUEL-CELLS; MOLECULAR-DYNAMICS; ELECTRICAL-CONDUCTIVITY; SOLID ELECTROLYTES; DOPED ZIRCONIA; DIFFUSION; ZRO2-Y2O3; MECHANISM; ZRO2 AB We have used molecular dynamics simulations and energy minimization calculations to examine defect energetics and oxygen diffusion in ytttia-stabilized zirconia (YSZ). Oxygen vacancies prefer to be second nearest neighbors to yttrium dopants. The oxygen diffusion coefficient shows a peak at 8 mol% yttria consistent with experimental findings. The activation energy for oxygen diffusion varies from 0.6 to 1.0 eV depending on the yttria content. The Y-Zr'-V-O-Y-Zr' complex with a binding energy of -0.85 eV may play an important role in any conductivity degradation of YSZ. (c) 2006 Elsevier B.V All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. Curtin Univ Technol, Nanochem Res Inst, Dept Appl Chem, Perth, WA 6845, Australia. RP Devanathan, R (reprint author), Pacific NW Natl Lab, MS K8-93,3335 Q Ave,POB 999, Richland, WA 99352 USA. EM ram.devanathan@pnl.gov RI Weber, William/A-4177-2008; Gale, Julian/B-7987-2009; Devanathan, Ram/C-7247-2008 OI Weber, William/0000-0002-9017-7365; Gale, Julian/0000-0001-9587-9457; Devanathan, Ram/0000-0001-8125-4237 NR 37 TC 74 Z9 76 U1 5 U2 63 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 J9 SOLID STATE IONICS JI Solid State Ion. PD JUN 15 PY 2006 VL 177 IS 15-16 BP 1251 EP 1258 DI 10.1016/j.ssi.2006.06.030 PG 8 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 096BL UT WOS:000241351900002 ER PT J AU Wang, CM Engelhard, MH Azad, S Saraf, LV McCready, DE Shutthanandan, V Yu, ZQ Thevulthasan, S Watanabe, M Williams, DB AF Wang, C. M. Engelhard, M. H. Azad, S. Saraf, L. V. McCready, D. E. Shutthanandan, V. Yu, Z. Q. Thevulthasan, S. Watanabe, M. Williams, D. B. TI Distribution of oxygen vacancies and gadolinium dopants in ZrO2-CeO2 multi-layer films grown on alpha-Al2O3 SO SOLID STATE IONICS LA English DT Article DE Gd-doped ZrO2/CeO2; nano scale film; HRTEM; defect distribution ID EPITAXIAL NB-AL2O3 INTERFACES; OXIDE FUEL-CELLS; MISFIT DISLOCATIONS; FLUORITE-STRUCTURE; ATOMIC-STRUCTURE; THIN-FILMS; HETEROSTRUCTURES; 500-DEGREES-C; CONDUCTIVITY; REGIONS AB Gdolinia doped ZrO2 and CeO2 multi-layer films were deposited on alpha-Al2O3 (0001) using oxygen-plastria-assisted molecular-beam epitaxy. Oxygen vacancies and Gd dopant distributions were investigated in these multi-layer films using X-ray diffraction (XRD), conventional and high-resolution transmission electron microscopy (HRTEM), annular dark-field imaging in scanning transmission electron microscopy (STEM), X-ray energy dispersive spectroscopy (EDS) elemental mapping and X-ray photoelectron spectroscopy (XPS) depth profiling. EDS and XPS depth profiling reveal that the Gd concentration in the ZrO2 layer is lower than that in the CeO2 layer. As a result, a higher oxygen vacancy concentration exists in the CeO2 layers compared to that in the ZrO2 layers. In addition, Gd is found to segregate only at the interfaces formed during the deposition of CeO2 layers on ZrO2 layers. On the other hand, the interfaces formed during the deposition of ZrO2 layers on CeO2 layers did not show any Gd segregation. The Gd segregation behavior at every other interface is believed to be associated with the low solubility of Gd in ZrO2. (c) 2006 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA. Nanjing Normal Univ, Dept Chem, Nanjing 210097, Peoples R China. RP Wang, CM (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. EM chongmin.wang@pnl.gov RI Engelhard, Mark/F-1317-2010 NR 19 TC 9 Z9 9 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 J9 SOLID STATE IONICS JI Solid State Ion. PD JUN 15 PY 2006 VL 177 IS 15-16 BP 1299 EP 1306 DI 10.1016/j.ssi.2006.05.036 PG 8 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 096BL UT WOS:000241351900009 ER PT J AU Chowell, G Shim, E Brauer, F Diaz-Duenas, P Hyman, JM Castillo-Chavez, C AF Chowell, G Shim, E Brauer, F Diaz-Duenas, P Hyman, JM Castillo-Chavez, C TI Modelling the transmission dynamics of acute haemorrhagic conjunctivitis: Application to the 2003 outbreak in Mexico SO STATISTICS IN MEDICINE LA English DT Article DE epidemic model; parameter estimation; parameter identifiability; underreporting; acute haemorrhagic conjunctivitis; reproductive number ID HOUSEHOLD; EPIDEMIC AB We model an outbreak of acute haemorrhagic conjunctivitis (AHC) using a simple epidemic model that includes susceptible, infectious, reported, and recovered classes. The model's framework considers the impact of underreporting and behaviour changes on the transmission rate and is applied to a recent epidemic of AHC in Mexico, using a fit to the cumulative number of cases to estimate model parameters, which agree with those derived from clinical studies. The model predicts a 'mean time from symptomatic onset to diagnosis' of 1.43 days (95 per cent CI: 1-2.5) and that the final size of the Mexican epidemic was underreported by 39 per cent. We estimate that a primary infectious case generates approximately 3 secondary cases (R-0(*) = 2.64, SD 0.65). We explore the impact of interventions on the final epidemic size, and estimate a 36 per cent reduction in the transmission rate due to behaviour changes. The effectiveness of the behaviour changes in slowing the epidemic is evident at 21.90 (SD 0.19) days after the first reported case. Results therefore support current public health policy including expeditious announcement of the outbreak and public health information press releases that instruct individuals on avoiding contagion and encourage them to seek diagnosis in hospital clinics. Copyright (c) 2005 John Wiley & Sons, Ltd. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Cornell Univ, Dept Biol Stat & Computat Biol, Ithaca, NY 14853 USA. Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA. Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada. IMSS, Colima 28010, Col, Mexico. RP Chowell, G (reprint author), Los Alamos Natl Lab, Div Theoret, MS B284, Los Alamos, NM 87545 USA. EM gchowell@t7.lanl.gov; alicia@mathpost.la.asu.edu; brauer@math.ubc.ca; mac@t7.lanl.gov; chavez@math.asu.edu RI Chowell, Gerardo/A-4397-2008; Chowell, Gerardo/F-5038-2012; Castillo-Chavez, Carlos/E-1412-2014 OI Chowell, Gerardo/0000-0003-2194-2251; Castillo-Chavez, Carlos/0000-0002-1046-3901 NR 39 TC 7 Z9 7 U1 1 U2 1 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0277-6715 J9 STAT MED JI Stat. Med. PD JUN 15 PY 2006 VL 25 IS 11 BP 1840 EP 1857 DI 10.1002/sim.2352 PG 18 WC Mathematical & Computational Biology; Public, Environmental & Occupational Health; Medical Informatics; Medicine, Research & Experimental; Statistics & Probability SC Mathematical & Computational Biology; Public, Environmental & Occupational Health; Medical Informatics; Research & Experimental Medicine; Mathematics GA 050LD UT WOS:000238088000007 PM 16158395 ER PT J AU Gray, JJ El Dasher, BS Orme, CA AF Gray, J. J. El Dasher, B. S. Orme, C. A. TI Competitive effects of metal dissolution and passivation modulated by surface structure: An AFM and EBSD study of the corrosion of alloy 22 SO SURFACE SCIENCE LA English DT Article DE surface structures; anisotropy; etching; corrosion; alloy 22; EBSD; electron backscatter diffraction; AFM; atomic force microscopy ID TRANSMISSION ELECTRON-MICROSCOPY; SINGLE CRYSTAL; OXIDE FILMS; NICKEL; OXIDATION; FACES; TEMPERATURE; ENERGIES; COPPER; ZINC AB Electron backscatter diffraction (EBSD) and atomic force microscopy (AFM) are used to correlate crystallographic grain orientation with corrosion rates of polycrystalline alloy 22 following immersion in 1 and 3 molar (M) hydrochloric acid. For each acid concentration, relative corrosion rates are simultaneously characterized for approximately 50 unique grain orientations. The results demonstrate that the corrosion rate anisotropies are markedly different in the two acid concentrations. In very aggressive acidic environments (3M HQ, where electrochemical impedance spectroscopy and spectroscopic ellipsometry data demonstrate that the passive oxide film of alloy 22 is completely dissolved, alloy dissolution rates scale inversely with the average coordination number of surface atoms for a given grain orientation, where highly correlated surfaces dissolve the slowest. Thus, similar to simple metallic systems, the corrosion rates scale with the surface plane-normal crystallographic orientations as {111} < {100} < {110}. Less intuitively, in milder corrosive environments (1M HCl), where the passive film of the alloy is still intact, the dissolution does not scale inversely with surface atomic density. Rather, corrosion rates scale with crystallographic orientations as {111} < {110) < {100}. This is attributed to the fact that facets most susceptible to corrosion (least coordinated) are also the most able to form protective oxides, so that the dissolution anisotropy is a result of the delicate balance between metal dissolution and oxide growth. (c) 2006 Elsevier B.V. All rights reserved. C1 Lawrence Livermore Natl Lab, Dept Chem & Mat Sci, Livermore, CA 94550 USA. RP Gray, JJ (reprint author), Lawrence Livermore Natl Lab, Dept Chem & Mat Sci, 7000 E Ave, Livermore, CA 94550 USA. EM jjgray@llnl.gov RI Orme, Christine/A-4109-2009 NR 24 TC 31 Z9 32 U1 2 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUN 15 PY 2006 VL 600 IS 12 BP 2488 EP 2494 DI 10.1016/j.susc.2006.04.002 PG 7 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 061SV UT WOS:000238893800011 ER PT J AU Wang, J Lu, DL Thongngamdee, S Lin, YH Sadik, OA AF Wang, J Lu, DL Thongngamdee, S Lin, YH Sadik, OA TI Catalytic adsorptive stripping voltammetric measurements of trace vanadium at bismuth film electrodes SO TALANTA LA English DT Article DE vanadium; bismuth film electrode; chloranilic acid (CAA); catalytic adsorptive stripping voltammetry ID MERCURY DROP ELECTRODE; CHLORANILIC ACID; BROMATE AB Bismuth-coated glassy carbon electrodes have been successfully applied for catalytic adsorptive stripping voltammetric measurements of low levels of vanadium(V) in the presence of chloranilic acid (CAA) and bromate ion. The new protocol is based on the accumulation of the vanadium-chloranilic acid complex from an acetate buffer (pH 5.5) solution at a preplated bismuth film electrode held at -0.35 V (versus Ag/AgCl), followed by a square-wave voltammetric scan. Factors influencing the adsorptive stripping performance, including the CAA and bromate concentrations, solution pH, and accumulation potential or time have been optimized. The response compares favorably, with that observed at mercury film electrodes. A linear response is observed over the 5-25 mu g/L concentration range (2 min accumulation), along with a detection limit of 0.20 mu g/L vanadium (10 min accumulation). High stability is indicated from the reproducible response of a 50 mu g/L vanadium solution (n = 25; R.S.D. = 3.1%). Applicability to a groundwater sample is illustrated. (c) 2005 Elsevier B.V. All rights reserved. C1 Arizona State Univ, Dept Chem & Mat Engn, Tempe, AZ 85287 USA. Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. SUNY Binghamton, Dept Chem, Binghamton, NY 13902 USA. RP Wang, J (reprint author), Arizona State Univ, Dept Chem & Mat Engn, Tempe, AZ 85287 USA. EM joseph.wang@asu.edu RI Lin, Yuehe/D-9762-2011; Wang, Joseph/C-6175-2011 OI Lin, Yuehe/0000-0003-3791-7587; NR 15 TC 59 Z9 59 U1 2 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-9140 J9 TALANTA JI Talanta PD JUN 15 PY 2006 VL 69 IS 4 BP 914 EP 917 DI 10.1016/j.talanta.2005.11.029 PG 4 WC Chemistry, Analytical SC Chemistry GA 053KJ UT WOS:000238303700020 PM 18970657 ER PT J AU Du, SY Francisco, JS Schenter, GK Iordanov, TD Garrett, BC Dupuis, M Li, J AF Du, SY Francisco, JS Schenter, GK Iordanov, TD Garrett, BC Dupuis, M Li, J TI The OH radical-H2O molecular interaction potential SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TRANSFERABLE INTERACTION MODELS; ELECTRON CORRELATION METHODS; ORBITAL ANGULAR-MOMENTUM; TRIPLES CORRECTION T; AIR-WATER-INTERFACE; LEVEL AB-INITIO; LIQUID WATER; 1ST PRINCIPLES; ABSORPTION-SPECTRA; DYNAMICS AB The OH radical is one of the most important oxidants in the atmosphere due to its high reactivity. The study of hydrogen-bonded complexes of OH with the water molecules is a topic of significant current interest. In this work, we present the development of a new analytical functional form for the interaction potential between the rigid OH radical and H2O molecules. To do this we fit a selected functional form to a set of high level ab initio data. Since there is a low-lying excited state for the H2O center dot OH complex, the impact of the excited state on the chemical behavior of the OH radical can be very important. We perform a potential energy surface scan using the CCSD(T)/aug-cc-pVTZ level of electronic structure theory for both excited and ground states. To model the physics of the unpaired electron in the OH radical, we develop a tensor polarizability generalization of the Thole-type all-atom polarizable rigid potential for the OH radical, which effectively describes the interaction of OH with H2O for both ground and excited states. The stationary points of (H2O)(n)center dot OH clusters were identified as a benchmark of the potential. (c) 2006 American Institute of Physics. C1 Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA. Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. RP Du, SY (reprint author), Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. EM greg.schenter@pnl.gov RI Li, Jun/E-5334-2011; Garrett, Bruce/F-8516-2011; Schenter, Gregory/I-7655-2014 OI Li, Jun/0000-0002-8456-3980; Schenter, Gregory/0000-0001-5444-5484 NR 64 TC 39 Z9 39 U1 3 U2 27 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 14 PY 2006 VL 124 IS 22 AR 224318 DI 10.1063/1.2200701 PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 053BY UT WOS:000238279800033 PM 16784285 ER PT J AU Paliwal, A Asthagiri, D Pratt, LR Ashbaugh, HS Paulaitis, ME AF Paliwal, A. Asthagiri, D. Pratt, L. R. Ashbaugh, H. S. Paulaitis, M. E. TI An analysis of molecular packing and chemical association in liquid water using quasichemical theory SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID FREE-ENERGY CALCULATIONS; ELECTROSTATIC INTERACTIONS; HYDROPHOBIC HYDRATION; CAVITY FORMATION; DYNAMICS; THERMODYNAMICS; SYSTEMS; ALKANES; FLUID AB We calculate the hydration free energy of liquid TIP3P water at 298 K and 1 bar using a quasichemical theory framework in which interactions between a distinguished water molecule and the surrounding water molecules are partitioned into chemical associations with proximal (inner-shell) waters and classical electrostatic/dispersion interactions with the remaining (outer-shell) waters. The calculated free energy is found to be independent of this partitioning, as expected, and in excellent agreement with values derived from the literature. An analysis of the spatial distribution of inner-shell water molecules as a function of the inner-shell volume reveals that water molecules are preferentially excluded from the interior of large volumes as the occupancy number decreases. The driving force for water exclusion is formulated in terms of a free energy for rearranging inner-shell water molecules under the influence of the field exerted by outer-shell waters in order to accommodate one water molecule at the center. The results indicate a balance between chemical association and molecular packing in liquid water that becomes increasingly important as the inner-shell volume grows in size. (c) 2006 American Institute of Physics. C1 Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA. Johns Hopkins Univ, Dept Biophys, Baltimore, MD 21218 USA. RP Paliwal, A (reprint author), Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA. EM paulaitis.1@osu.edu RI Asthagiri, Dilipkumar/A-3383-2010; Pratt, Lawrence/H-7955-2012; Ashbaugh, Henry/C-9767-2011; Asthagiri, Dilipkumar/P-9450-2016 OI Pratt, Lawrence/0000-0003-2351-7451; Asthagiri, Dilipkumar/0000-0001-5869-0807 NR 31 TC 28 Z9 28 U1 2 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 14 PY 2006 VL 124 IS 22 AR 224502 DI 10.1063/1.2202350 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 053BY UT WOS:000238279800041 PM 16784293 ER PT J AU Suzuki, T Sorescu, DC Jordan, KD Yates, JT AF Suzuki, T. Sorescu, D. C. Jordan, K. D. Yates, J. T., Jr. TI The chemisorption of dibenzo[a,j]coronene on Si(001)-2x1 SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SCANNING TUNNELING MICROSCOPE; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; PENTACENE; MOLECULES; PSEUDOPOTENTIALS; SI(100); SURFACE; METALS; X-1 AB Adsorption structures of the dibenzo[a,j]coronene (C32H16) molecule on the clean Si(001)-2x1 surface were investigated by scanning tunneling microscopy (STM) in conjunction with electronic structure calculations. The dibenzo[a,j]coronene molecules were found to adsorb on three different sites: one major adsorption site and two minor adsorption sites. The formation of four to eight Si-C covalent bonds is responsible for the different surface bonding structures observed. Bond strain effects due to out-of-plane bending of the molecule play a significant role in governing the surface bond energies. The geometries of the three adsorption sites were established by comparison of the experimental and simulated STM images. By applying an electrical pulse, the molecule can be made to hop from one site to another site without breaking the dibenzo[a,j]coronene molecular structure. (c) 2006 American Institute of Physics. C1 Univ Pittsburgh, Dept Chem, Ctr Surface Sci, Pittsburgh, PA 15260 USA. US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Yates, JT (reprint author), Univ Pittsburgh, Dept Chem, Ctr Surface Sci, Pittsburgh, PA 15260 USA. EM jyates@pitt.edu NR 19 TC 3 Z9 3 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 14 PY 2006 VL 124 IS 22 AR 224708 DI 10.1063/1.2190224 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 053BY UT WOS:000238279800050 PM 16784302 ER PT J AU Weber, V Tymczak, CJ Challacombe, M AF Weber, V Tymczak, CJ Challacombe, M TI Energy gradients with respect to atomic positions and cell parameters for the Kohn-Sham density-functional theory at the Gamma point SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID LINEAR SCALING COMPUTATION; FAST MULTIPOLE METHOD; HARTREE-FOCK GRADIENTS; CURVILINEAR COORDINATE APPROXIMATION; PERIODIC BOUNDARY-CONDITIONS; WAVE BASIS-SET; GEOMETRY OPTIMIZATION; NUMERICAL-INTEGRATION; EXACT EXCHANGE; SYSTEMS AB The application of theoretical methods based on density-functional theory is known to provide atomic and cell parameters in very good agreement with experimental values. Recently, construction of the exact Hartree-Fock exchange gradients with respect to atomic positions and cell parameters within the Gamma-point approximation has been introduced [V. Weber , J. Chem. Phys. 124, 214105 (2006)]. In this article, the formalism is extended to the evaluation of analytical Gamma-point density-functional atomic and cell gradients. The infinite Coulomb summation is solved with an effective periodic summation of multipole tensors [M. Challacombe , J. Chem. Phys. 107, 9708 (1997)]. While the evaluation of Coulomb and exchange-correlation gradients with respect to atomic positions are similar to those in the gas phase limit, the gradients with respect to cell parameters needs to be treated with some care. The derivative of the periodic multipole interaction tensor needs to be carefully handled in both direct and reciprocal space and the exchange-correlation energy derivative leads to a surface term that has its origin in derivatives of the integration limits that depend on the cell. As an illustration, the analytical gradients have been used in conjunction with the QUICCA algorithm [K. Nemeth and M. Challacombe, J. Chem. Phys. 121, 2877 (2004)] to optimize one-dimensional and three-dimensional periodic systems at the density-functional theory and hybrid Hartree-Fock/density-functional theory levels. We also report the full relaxation of forsterite supercells at the B3LYP level of theory. (c) 2006 American Institute of Physics. C1 Univ Fribourg, Dept Chem, CH-1700 Fribourg, Switzerland. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Weber, V (reprint author), Univ Fribourg, Dept Chem, CH-1700 Fribourg, Switzerland. EM tymczak@lanl.gov NR 43 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 14 PY 2006 VL 124 IS 22 AR 224107 DI 10.1063/1.2202105 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 053BY UT WOS:000238279800011 PM 16784263 ER PT J AU Woods, KN Lee, SA Holman, HYN Wiedemann, H AF Woods, KN Lee, SA Holman, HYN Wiedemann, H TI The effect of solvent dynamics on the low frequency collective motions of DNA in solution and unoriented films SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ELASTIC NEUTRON-SCATTERING; ELECTRON PULSES; WATER MIXTURES; RAMAN-SPECTRA; DIELECTRIC-RELAXATION; MOLECULAR-DYNAMICS; GLASS-TRANSITION; PROTEIN DYNAMICS; B-DNA; HYDRATION AB Infrared spectroscopy is used to probe the dynamics of in vitro samples of DNA prepared as solutions and as solid unoriented films. The lowest frequency DNA mode identified in the far-infrared spectra of the DNA samples is found to shift in frequency when the solvent influence in the hydration shell is altered. The lowest frequency mode also has characteristics that are similar to beta-relaxations identified in other glass forming polymers. (c) 2006 American Institute of Physics. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Ecol, Berkeley, CA 94720 USA. Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. Stanford Univ, Dept Appl Phys, Stanford, CA 94309 USA. Stanford Univ, SSRL, Stanford, CA 94309 USA. RP Woods, KN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Ecol, Berkeley, CA 94720 USA. EM knwoods2@lbl.gov RI Holman, Hoi-Ying/N-8451-2014 OI Holman, Hoi-Ying/0000-0002-7534-2625 NR 60 TC 5 Z9 5 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 14 PY 2006 VL 124 IS 22 AR 224706 DI 10.1063/1.2200349 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 053BY UT WOS:000238279800048 PM 16784300 ER PT J AU Henderson, MG Skoug, R Donovan, E Thomsen, MF Reeves, GD Denton, MH Singer, HJ McPherron, RL Mende, SB Immel, TJ Sigwarth, JB Frank, LA AF Henderson, M. G. Skoug, R. Donovan, E. Thomsen, M. F. Reeves, G. D. Denton, M. H. Singer, H. J. McPherron, R. L. Mende, S. B. Immel, T. J. Sigwarth, J. B. Frank, L. A. TI Substorms during the 10-11 August 2000 sawtooth event SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PERIODIC MAGNETOSPHERIC SUBSTORMS; INTERPLANETARY MAGNETIC-FIELD; SOLAR-WIND CHANGES; POLAR-CAP INDEX; DYNAMIC PRESSURE; ART.; TIME; INJECTIONS; BEHAVIOR; CDAW-9 AB [ 1] Sawtooth events have been identified at geosynchronous orbit as large-amplitude quasiperiodic ( 2 - 4 hour period) modulations of the energetic electron and ion fluxes. They are called sawtooth events because the shape of the flux versus time profiles are composed of rapid increases followed by gradual decreases that resemble the teeth on a saw blade. Although much of the phenomenology associated with sawtooth events is substorm-like, there is still debate as to whether the individual teeth are substorms or not. Here we examine each of the teeth associated with the 10 - 11 August 2000 sawtooth event in detail. We find that all but one of the teeth were associated with injections at geosynchronous orbit and that most of the teeth were consistent with the hypothesis that they are predominantly caused by unusually large and longitudinally extended substorms. A few were unclear or complex, and the final flux enhancement at 1845: 36 UT was not a substorm but a solar wind shock-associated disturbance. In addition, the presence of numerous dispersionless flux perturbations in the LANL SOPA data provides support for the hypothesis that solar wind pressure variations can modulate the flux profiles to some extent. For the substorm events we find that the geosynchronous particle injections were neither globally simultaneous nor globally dispersionless but were instead consistent with a nightside/duskside source in most cases. Similarly, we show that the field dipolarizations were also not global and simultaneous. Each of the substorms was also associated with high-latitude negative H bays, middle- and low-latitude positive H bays, a partial recovery in Sym-H, and the onset of Pi2 ULF pulsations. In addition, we show that the auroral distribution develops in a systematic way during each cycle of a sawtooth substorm event. Specifically, a localized auroral onset develops on the lower branch of a thinned double-oval distribution. The location of onset is typically premidnight and often occurs to the west of intense omega band forms. This is followed by westward, eastward, and poleward expansion and the copious production of auroral streamers which can develop in complex patterns including a "spoke-like'' morphology. The double-oval configuration thins again during the stretching phase until the next onset occurs and the cycle repeats. A schematic representation of the auroral dynamics associated with sawtooth substorms is also presented. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. NOAA, Space Environm Ctr, Boulder, CO 80305 USA. Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. RP Henderson, MG (reprint author), Los Alamos Natl Lab, MS D-466, Los Alamos, NM 87545 USA. EM mghenderson@lanl.gov RI Reeves, Geoffrey/E-8101-2011; Henderson, Michael/A-3948-2011; OI Reeves, Geoffrey/0000-0002-7985-8098; Henderson, Michael/0000-0003-4975-9029; Donovan, Eric/0000-0002-8557-4155; Denton, Michael/0000-0002-1748-3710 NR 43 TC 43 Z9 43 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN 14 PY 2006 VL 111 IS A6 AR A06206 DI 10.1029/2005JA011366 PG 32 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 057CN UT WOS:000238572800002 ER PT J AU Volkow, ND Wang, GJ Telang, F Fowler, JS Logan, J Childress, AR Jayne, M Ma, YM Wong, C AF Volkow, ND Wang, GJ Telang, F Fowler, JS Logan, J Childress, AR Jayne, M Ma, YM Wong, C TI Cocaine cues and dopamine in dorsal striatum: Mechanism of craving in cocaine addiction SO JOURNAL OF NEUROSCIENCE LA English DT Article DE imaging; raclopride; addiction; caudate; putamen; conditioned responses; D-2 receptors ID NUCLEUS-ACCUMBENS CORE; SEEKING BEHAVIOR; INTRAVENOUS COCAINE; HUMAN BRAIN; EXTRACELLULAR DOPAMINE; C-11 RACLOPRIDE; RHESUS-MONKEYS; DRUG-ABUSE; RATS; RELEASE AB The ability of drugs of abuse to increase dopamine in nucleus accumbens underlies their reinforcing effects. However, preclinical studies have shown that with repeated drug exposure neutral stimuli paired with the drug (conditioned stimuli) start to increase dopamine by themselves, which is an effect that could underlie drug-seeking behavior. Here we test whether dopamine increases occur to conditioned stimuli in human subjects addicted to cocaine and whether this is associated with drug craving. We tested eighteen cocaine-addicted subjects using positron emission tomography and [C-11] raclopride (dopamine D-2 receptor radioligand sensitive to competition with endogenous dopamine). We measured changes in dopamine by comparing the specific binding of [C-11] raclopride when subjects watched a neutral video (nature scenes) versus when they watched a cocaine-cue video (scenes of subjects smoking cocaine). The specific binding of [C-11] raclopride in dorsal (caudate and putamen) but not in ventral striatum (in which nucleus accumbens is located) was significantly reduced in the cocaine-cue condition and the magnitude of this reduction correlated with self-reports of craving. Moreover, subjects with the highest scores on measures of withdrawal symptoms and of addiction severity that have been shown to predict treatment outcomes, had the largest dopamine changes in dorsal striatum. This provides evidence that dopamine in the dorsal striatum (region implicated in habit learning and in action initiation) is involved with craving and is a fundamental component of addiction. Because craving is a key contributor to relapse, strategies aimed at inhibiting dopamine increases from conditioned responses are likely to be therapeutically beneficial in cocaine addiction. C1 Natl Inst Drug Abuse, Bethesda, MD 20892 USA. Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. Univ Penn, Sch Med, Dept Psychiat, Philadelphia, PA 19104 USA. RP Volkow, ND (reprint author), Natl Inst Drug Abuse, 6001 Execut Blvd,Room 5274, Bethesda, MD 20892 USA. EM nvolkow@nida.nih.gov OI Logan, Jean/0000-0002-6993-9994 FU Intramural NIH HHS; NIDA NIH HHS [DA06278-15] NR 46 TC 542 Z9 550 U1 6 U2 54 PU SOC NEUROSCIENCE PI WASHINGTON PA 11 DUPONT CIRCLE, NW, STE 500, WASHINGTON, DC 20036 USA SN 0270-6474 J9 J NEUROSCI JI J. Neurosci. PD JUN 14 PY 2006 VL 26 IS 24 BP 6583 EP 6588 DI 10.1523/JNEUROSCI.1544-06.2006 PG 6 WC Neurosciences SC Neurosciences & Neurology GA 054KQ UT WOS:000238375900022 PM 16775146 ER PT J AU Shao, MH Liu, P Adzic, RR AF Shao, MH Liu, P Adzic, RR TI Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MOLECULAR-OXYGEN; ELECTROCHEMICAL REDUCTION; PT(111); ADSORPTION; O-2; SURFACES; SPECTROELECTROCHEMISTRY; ELECTROREDUCTION; IDENTIFICATION; SPECTROSCOPY C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Adzic, RR (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM adzic@bnl.gov OI Shao, Minhua/0000-0003-4496-0057 NR 29 TC 96 Z9 96 U1 5 U2 83 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 14 PY 2006 VL 128 IS 23 BP 7408 EP 7409 DI 10.1021/ja061246s PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 050PD UT WOS:000238099500005 PM 16756272 ER PT J AU Xiao, YM Fisher, K Smith, MC Newton, WE Case, DA George, SJ Wang, HX Sturhahn, W Alp, EE Zhao, JY Yoda, Y Cramer, SP AF Xiao, YM Fisher, K Smith, MC Newton, WE Case, DA George, SJ Wang, HX Sturhahn, W Alp, EE Zhao, JY Yoda, Y Cramer, SP TI How nitrogenase shakes - Initial information about P-cluster and FeMo-cofactor normal modes from nuclear resonance vibrational Spectroscopy (NRVS) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID IRON-MOLYBDENUM COFACTOR; UNIVERSAL FORCE-FIELD; FE/MO-S/SE CUBANE; AZOTOBACTER-VINELANDII; INTERSTITIAL ATOM; CENTRAL LIGAND; MOFE-PROTEIN; HETEROCUBANE CLUSTERS; RAMAN-SPECTRA; ACTIVE-SITE AB Nitrogenase catalyzes a reaction critical for life, the reduction of N-2 to 2NH(3), yet we still know relatively little about its catalytic mechanism. We have used the synchrotron technique of Fe-57 nuclear resonance vibrational spectroscopy (NRVS) to study the dynamics of the Fe-S clusters in this enzyme. The catalytic site FeMo-cofactor exhibits a strong signal near 190 cm(-1), where conventional Fe-S clusters have weak NRVS. This intensity is ascribed to cluster breathing modes whose frequency is raised by an interstitial atom. A variety of Fe-S stretching modes are also observed between 250 and 400 cm-1. This work is the first spectroscopic information about the vibrational modes of the intact nitrogenase FeMo-cofactor and P-cluster. C1 Virginia Tech, Dept Biochem, Blacksburg, VA 24061 USA. Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. JASRI, Sayo, Hyogo 6795198, Japan. RP Newton, WE (reprint author), Virginia Tech, Dept Biochem, Blacksburg, VA 24061 USA. EM wenewton@vt.edu; case@scripps.edu; cramer@lbl.gov RI Fisher, Karl/A-5956-2013 OI Fisher, Karl/0000-0003-3539-8939 FU NIBIB NIH HHS [R01 EB001962, R01 EB001962-15]; NIDDK NIH HHS [DK-37255, R01 DK037255]; NIGMS NIH HHS [R01 GM065440, GM-39914, GM-44380, GM-65440, R01 GM039914, R01 GM065440-08W1] NR 44 TC 41 Z9 41 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 14 PY 2006 VL 128 IS 23 BP 7608 EP 7612 DI 10.1021/ja0603655 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 050PD UT WOS:000238099500050 PM 16756317 ER PT J AU Clawson, JS Holland, GP Alam, TM AF Clawson, Jacalyn S. Holland, Gregory P. Alam, Todd M. TI Magnetic alignment of aqueous CTAB in nematic and hexagonal liquid crystalline phases investigated by spin-1 NMR SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID ALKALINE LYOTROPIC SILICATE; CETYLTRIMETHYLAMMONIUM BROMIDE; MESOPOROUS MATERIALS; ORIENTATIONAL ORDER; DEUTERIUM NMR; SURFACTANT; BEHAVIOR; FIELD; MECHANISM; SPECTROSCOPY AB Spin-1 NMR has been used to characterize the magnetically aligned neMatic and hexagonal liquid crystalline phases of aqueous cetyltrimethylammonium bromide (CTAB). A nematic/hexagonal biphasic region has been identified for the first time in this system. The nematic phase is characterized by an order parameter of smaller magnitude and greater temperature dependence. Magnetic alignment kinetic rates of the two phases differ greatly, with the nematic phase showing magnetic alignment much faster than the hexagonal phase. Equilibration has been monitored over time by measuring the change in quadrupole splitting as a function of temperature. As the sample equilibrates the temperature dependence of the splitting decreases logarithmically. This work also demonstrates how the phase and order of the liquid crystal can be manipulated during the early part of equilibration. C1 Sandia Natl Labs, Dept Elect & Nanostructured Mat, Albuquerque, NM 87185 USA. RP Alam, TM (reprint author), Sandia Natl Labs, Dept Elect & Nanostructured Mat, POB 5800, Albuquerque, NM 87185 USA. EM tmalam@sandia.gov NR 34 TC 20 Z9 21 U1 3 U2 19 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PD JUN 14 PY 2006 VL 8 IS 22 BP 2635 EP 2641 DI 10.1039/b601539e PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 061ZB UT WOS:000238912200009 PM 16738718 ER PT J AU Rasheed, A Chae, HG Kumar, S Dadmun, MD AF Rasheed, Asif Chae, Han Gi Kumar, Satish Dadmun, Mark D. TI Polymer nanotube nanocomposites: Correlating intermolecular interaction to ultimate properties SO POLYMER LA English DT Article DE carbon nanotube; polymer nanocomposite; intermolecular interaction ID LIQUID-CRYSTALLINE POLYMER; TRUE MOLECULAR COMPOSITE; WALLED CARBON NANOTUBES; MECHANICAL-PROPERTIES; RAMAN-SPECTROSCOPY; BLENDS; DEFORMATION; STRENGTH; ACCESSIBILITY; POLYURETHANE AB Polymer nanocomposite films containing 5 wt% single-walled carbon nanotubes (SWNT) or 5 wt% multi-walled carbon nanotubes (MWNT) with random copolymers of styrene and vinyl phenol were processed from dimethyl formamide solutions. Vinyl phenol mole ratio in the copolymer was 0, 10, 20, 30, and 40%. FTIR analysis indicates that the composites containing the copolymer with 20% vinyl phenol exhibit the maximum intermolecular interactions (hydrogen bonding) between the hydroxyl group of the vinyl phenol and the carbon nanotube functional groups. Tensile properties and electrical conductivity also are the highest in the samples containing the copolymer with 20% vinyl phenol. Thus, these results show that the optimization of the extent of intermolecular interactions between a polymer chain and a carbon nanotube results in an optimal increase in macroscopic properties. Moreover, the extent of intermolecular hydrogen bonding can be improved by optimizing the accessibility of the functional groups to participate in the non-covalent interaction. In this system, this optimization is realized by control of the amount of vinyl phenol in the copolymer, i.e. the copolymer composition. (c) 2006 Elsevier Ltd. All rights reserved. C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Georgia Inst Technol, Sch Polymer Text & Fiber Engn, Atlanta, GA 30332 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. RP Dadmun, MD (reprint author), Univ Tennessee, Dept Chem, 323 Buehler Hall, Knoxville, TN 37996 USA. EM dad@utk.edu RI Kumar, Satish/F-7308-2011; Chae, Han Gi/M-5427-2016; OI Chae, Han Gi/0000-0003-2196-0986; Dadmun, Mark/0000-0003-4304-6087 NR 41 TC 36 Z9 36 U1 2 U2 23 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 J9 POLYMER JI Polymer PD JUN 14 PY 2006 VL 47 IS 13 BP 4734 EP 4741 DI 10.1016/j.polymer.2006.04.016 PG 8 WC Polymer Science SC Polymer Science GA 062CF UT WOS:000238921300034 ER PT J AU Kee, HL Laible, PD Bautista, JA Hanson, DK Holten, D Kirmaier, C AF Kee, HL Laible, PD Bautista, JA Hanson, DK Holten, D Kirmaier, C TI Determination of the rate and yield of B-side quinone reduction in Rhodobacter capsulatus reaction centers SO BIOCHEMISTRY LA English DT Article ID PHOTOSYNTHETIC REACTION CENTERS; BRANCH ELECTRON-TRANSFER; BACTERIAL REACTION CENTERS; SPHAEROIDES REACTION-CENTER; REACTION-CENTER MUTANT; CHARGE-SEPARATED INTERMEDIATE; OXYGEN-EVOLVING CENTER; PHOTOSYSTEM-II; RADICAL-PAIR; PHOTOACTIVE BACTERIOPHEOPHYTIN AB In the native purple bacterial reaction center ( RC), light-driven charge separation utilizes only the A-side cofactors, with the symmetry related B-side inactive. The process is initiated by electron transfer from the excited primary donor (P*) to the A-side bacteriopheophytin (P* -> P+HA-) in similar to 3 ps. This is followed by electron transfer to the A-side quinone (P+HA- -> P(+)Q(A)(-)) in similar to 200 ps, with an overall quantum yield of similar to 100%. Using nanosecond flash photolysis and RCs from the Rhodobacter capsulatus F(L181)Y/Y(M208) F/L(M212) H mutant (designated YFH), we have probed the decay pathways of the analogous B-side state P+HB-. The rate of the P+HB- -> ground-state charge-recombination process is found to be (3.0 +/- 0.8 ns)(-1), which is much faster than the analogous (10-20 ns)(-1) rate of P+HA- -> ground state. The rate of P+HB- -> P(+)Q(B)(-) electron transfer is determined to be (3.9 +/- 0.9 ns)(-1), which is about a factor of 20 slower than the analogous A-side process P+HA- -> P(+)Q(A)(-). The yield of P+HB- -> P(+)Q(B) electron- transfer calculated from these rate constants is 44%. This value, when combined with the known 30% yield of P+HB- from P* in YFH RCs, gives an overall yield of 13% for B-side charge separation P* -> P+HB- -> P(+)Q(B)(-) in this mutant. We determine essentially the same value (15%) by comparing the P-bleaching amplitude at similar to 1 ms in YFH and wild-type RCs. C1 Washington Univ, Dept Chem, St Louis, MO 63130 USA. Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Kirmaier, C (reprint author), Washington Univ, Dept Chem, St Louis, MO 63130 USA. EM kirmaier@wustl.edu NR 64 TC 14 Z9 17 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD JUN 13 PY 2006 VL 45 IS 23 BP 7314 EP 7322 DI 10.1021/bi060277x PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 049WF UT WOS:000238047600031 PM 16752920 ER PT J AU Moon, CY Dalpian, GM Zhang, Y Wei, SH AF Moon, Chang-Youn Dalpian, Gustavo M. Zhang, Yong Wei, Su-Huai TI Study of phase selectivity of organic-inorganic hybrid semiconductors SO CHEMISTRY OF MATERIALS LA English DT Article ID STRONG QUANTUM CONFINEMENT; CDE E; NANOSTRUCTURES; NANORODS; POINTS; LEAD; SE AB A new group of hybrid organic-inorganic materials, A(II)B(VI)(en)(0.5) (A = Zn and Cd and B = S, Se, and Te), have been shown to exhibit a number of unusual structurally dependent properties that are not typically found in conventional inorganic and organic materials. However, it is puzzling that for a given inorganic component the hybrid crystal comes in different phases and often favors one over another. Using first-principles methods, we study the structural and electronic properties (e. g., stability and band gap) of the three observed phases: alpha I, alpha II, and beta. The general chemical trends are revealed and are consistent with experimental observations. A kinetic growth model is proposed to explain the experimental observation of the phase selection for these hybrid materials. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA. RP Moon, CY (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Chang_Youn_Moon@nrel.gov RI Dalpian, Gustavo/B-9746-2008 OI Dalpian, Gustavo/0000-0001-5561-354X NR 22 TC 16 Z9 16 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUN 13 PY 2006 VL 18 IS 12 BP 2805 EP 2809 DI 10.1021/cm0603811 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 049WM UT WOS:000238048400006 ER PT J AU Song, YJ Modrow, H Henry, LL Saw, CK Doomes, EE Palshin, V Hormes, J Kumar, CSSR AF Song, Yujun Modrow, Hartwig Henry, Laurence L. Saw, Cheng K. Doomes, E. E. Palshin, Vadim Hormes, Josef Kumar, Challa S. S. R. TI Microfluidic synthesis of cobalt nanoparticles SO CHEMISTRY OF MATERIALS LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; SIZE-CONTROLLED SYNTHESIS; BREAST-CANCER CELLS; NEAR-EDGE STRUCTURE; MAGNETIC-PROPERTIES; CO-NANOPARTICLES; PARTICLE-SIZE; THIN-FILMS; NANOCRYSTALS; REACTOR AB Co nanoparticles with three different crystal structures were synthesized in a microfluidic reactor through manipulation of reaction times, flow rates, and quenching procedures. Cobalt nanoparticles of face-centered cubic (beta) phase were obtained from a high flow rate of the reactants followed by in situ quenching of the reaction. hcp and is an element of-cobalt nanoparticles were obtained at a low flow rate of the reactants followed by in situ quenching and delayed quenching, respectively. The crystal structures were characterized using Co K-edge X-ray absorption near edge structure (XANES) spectroscopy, X-ray diffraction (XRD), and selected area electron diffraction ( SAED). In situ XANES measurements on Co nanoparticles coming out of the outlet of the microfluidic reactor at different flow rates seem to indicate that the difference in flow rate influences the nucleation process in a critical way and that particle growth occurs mainly outside the reactor. The magnetic properties of the cobalt nanoparticles, measured using a SQUID magnetometer system, showed significant differences among the samples and are consistent with the three different crystal structures. C1 Louisiana State Univ, Ctr Adv Microstruct & Devices, Baton Rouge, LA 70806 USA. Univ Bonn, Phys Inst, D-53115 Bonn, Germany. So Univ & A&M Coll, Dept Phys, Baton Rouge, LA 70813 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Kumar, CSSR (reprint author), Louisiana State Univ, Ctr Adv Microstruct & Devices, 6980 Jefferson Highway, Baton Rouge, LA 70806 USA. EM ckumar1@lsu.edu OI Song, Yujun/0000-0003-2474-084X NR 88 TC 99 Z9 102 U1 7 U2 54 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUN 13 PY 2006 VL 18 IS 12 BP 2817 EP 2827 DI 10.1021/cm052811d PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 049WM UT WOS:000238048400008 ER PT J AU Chylek, P Dubey, MK Lesins, G AF Chylek, P Dubey, MK Lesins, G TI Greenland warming of 1920-1930 and 1995-2005 SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID NORTH-ATLANTIC OSCILLATION; ICE-SHEET; MASS-BALANCE; TEMPERATURES AB We provide an analysis of Greenland temperature records to compare the current ( 1995 - 2005) warming period with the previous ( 1920 - 1930) Greenland warming. We find that the current Greenland warming is not unprecedented in recent Greenland history. Temperature increases in the two warming periods are of a similar magnitude, however, the rate of warming in 1920 - 1930 was about 50% higher than that in 1995 - 2005. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada. RP Chylek, P (reprint author), Los Alamos Natl Lab, MS B224, Los Alamos, NM 87545 USA. EM chylek@lanl.gov RI Dubey, Manvendra/E-3949-2010 OI Dubey, Manvendra/0000-0002-3492-790X NR 19 TC 48 Z9 49 U1 0 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 13 PY 2006 VL 33 IS 11 AR L11707 DI 10.1029/2006GL026510 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 057BK UT WOS:000238569700005 ER PT J AU Chavan, M Chen, ZQ Li, GT Schindelin, H Lennarz, WJ Li, HL AF Chavan, M Chen, ZQ Li, GT Schindelin, H Lennarz, WJ Li, HL TI Dimeric organization of the yeast oligosaccharyl transferase complex SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE electron microscopy; membrane protein purification; protein N-glycosylation ID DOLICHOL-LINKED OLIGOSACCHARIDE; BLUE NATIVE ELECTROPHORESIS; MEMBRANE-PROTEIN COMPLEXES; AMINO-ACID-SEQUENCE; SACCHAROMYCES-CEREVISIAE; N-GLYCOSYLATION; MAMMALIAN OLIGOSACCHARYLTRANSFERASE; ENDOPLASMIC-RETICULUM; ESCHERICHIA-COLI; 50-KDA SUBUNIT AB The enzyme complex oligosaccharyl transferase (OT) catalyzes N-glycosylation in the lumen of the endoplasmic reticulum. The yeast OT complex is composed of nine subunits, all of which are transmembrane proteins. Several lines of evidence, including our previous split-ubiquitin studies, have suggested an oligomeric organization of the OT complex, but the exact oligomeric nature has been unclear. By FLAG epitope tagging the Ost4p subunit of the OT complex, we purified the OT enzyme complex by using the nondenaturing detergent digitonin and a one-step immunoaffinity technique. The digitonin-solubilized OT complex was catalytically active, and all nine subunits were present in the enzyme complex. The purified OT complex had an apparent mass of approximate to 500 kDa, suggesting a dimeric configuration, which was confirmed by biochemical studies. EM showed homogenous individual particles and revealed a dimeric structure of the OT complexes that was consistent with our biochemical studies. A 3D structure of the dimeric OT complex at 25-angstrom resolution was reconstructed from EM images. We suggest that the dimeric structure of OT might be required for effective association with the translocon dimer and for its allosteric regulation during cotranslational glycosylation. C1 Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. SUNY Stony Brook, Inst Cell & Dev Biol, Stony Brook, NY 11794 USA. Univ Wurzburg, Rudolf Virchow Ctr Expt Biomed, D-97078 Wurzburg, Germany. Univ Wurzburg, Inst Biol Struct, D-97078 Wurzburg, Germany. RP Schindelin, H (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM wlennarz@notes.cc.sunysb.edu; hii@bnl.gov FU NIGMS NIH HHS [GM33185, R01 GM033185, R01 GM074985, R37 GM033185] NR 55 TC 28 Z9 28 U1 2 U2 3 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 13 PY 2006 VL 103 IS 24 BP 8947 EP 8952 DI 10.1073/pnas.0603262103 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 054ID UT WOS:000238369100011 PM 16754853 ER PT J AU Medina, M Collins, AG Takaoka, TL Kuehl, JV Boore, JL AF Medina, M Collins, AG Takaoka, TL Kuehl, JV Boore, JL TI Naked corals: Skeleton loss in Scleractinia SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article ID ANEMONE METRIDIUM-SENILE; GROUP-I INTRONS; MITOCHONDRIAL GENOME; MOLECULAR EVOLUTION; CNIDARIA; ANTHOZOA; CONTAINS; HISTORY; GENE; SYSTEMATICS AB Stony corals, which form the framework for modern reefs, are classified as Scleractinia (Cnidaria, Anthozoa, and Hexacorallia) in reference to their external aragonitic skeletons. However, persistent notions, collectively known as the "naked coral" hypothesis, hold that the scleractinian skeleton does not define a natural group. Three main lines of evidence have suggested that some stony corals are more closely related to one or more of the soft-bodied hexacorallian groups than they are to other scleractinians: (i) morphological similarities; (it) lack of phylogenetic resolution in molecular analyses of scleractinians; and (iii) discrepancy between the commencement of a diverse scleractinian fossil record at 240 million years ago (Ma) and a molecule-based origination of at least 300 Ma. No molecular evidence has been able to clearly reveal relationships at the base of a well supported clade composed of scleractinian lineages and the nonskeletonized Corallimorpharia. We present complete mitochondrial genome data that provide strong evidence that one clade of scleractinians is more closely related to Corallimorpharia than it is to a another clade of scleractinians. Thus, the scleractinian skeleton, which we estimate to have originated between 240 and 288 Ma, was likely lost in the ancestry of Corallimorpharia. We estimate that Corallimorpharia originated between 110 and 132 Ma during the late- to mid-Cretaceous, coinciding with high levels of oceanic CO2, which would have impacted aragonite solubility. Corallimorpharians escaped extinction from aragonite skeletal dissolution, but some modern stony corals may not have such fortunate fates under the pressure of increased anthropogenic CO2 in the ocean. C1 Joint Genome Inst, Dept Energy, Dept Evolutionary Genom, Walnut Creek, CA 94598 USA. NOAA, Fisheries Serv, Natl Systemat Lab, Natl Museum Nat Hist,Smithsonian Inst, Washington, DC 20013 USA. Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA. RP Medina, M (reprint author), Univ Calif, Sch Nat Sci, POB 2039, Merced, CA 95344 USA. EM mmedina@ucmerced.edu RI Collins, Allen/A-7944-2008 OI Collins, Allen/0000-0002-3664-9691 NR 36 TC 143 Z9 147 U1 4 U2 26 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 13 PY 2006 VL 103 IS 24 BP 9096 EP 9100 DI 10.1073/pnas.0602444103 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 054ID UT WOS:000238369100037 PM 16754865 ER PT J AU Das, RR Kim, DM Baek, SH Eom, CB Zavaliche, F Yang, SY Ramesh, R Chen, YB Pan, XQ Ke, X Rzchowski, MS Streiffer, SK AF Das, RR Kim, DM Baek, SH Eom, CB Zavaliche, F Yang, SY Ramesh, R Chen, YB Pan, XQ Ke, X Rzchowski, MS Streiffer, SK TI Synthesis and ferroelectric properties of epitaxial BiFeO3 thin films grown by sputtering SO APPLIED PHYSICS LETTERS LA English DT Article ID ROOM-TEMPERATURE; CRYSTAL; POLARIZATION AB We have grown epitaxial BiFeO3 thin films with smooth surfaces on (001), (101), and (111) SrTiO3 substrates using sputtering. Four-circle x-ray diffraction and cross-sectional transmission electron microscopy show that the BiFeO3 thin films have rhombohedral symmetry although small monoclinic distortions have not been ruled out. Stripe ferroelectric domains oriented perpendicular to the substrate miscut direction and free of impurity phase are observed in BiFeO3 on high miscut (4 degrees) (001) SrTiO3, which attributes to a relatively high value of remanent polarization (similar to 71 mu C/cm(2)). Films grown on low miscut (0.8 degrees) SrTiO3 have a small amount of impure phase alpha-Fe2O3 which contributes to lower the polarization values (similar to 63 mu C/cm(2)). The BiFeO3 films grown on (101) and (111) SrTiO3 exhibited remanent polarizations of 86 and 98 mu C/cm(2), respectively. (c) 2006 American Institute of Physics. C1 Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Eom, CB (reprint author), Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. EM eom@engr.wisc.edu RI Streiffer, Stephen/A-1756-2009; Baek, Seung-Hyub/B-9189-2013; Eom, Chang-Beom/I-5567-2014 NR 18 TC 160 Z9 169 U1 5 U2 72 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 12 PY 2006 VL 88 IS 24 AR 242904 DI 10.1063/1.2213347 PG 3 WC Physics, Applied SC Physics GA 053OP UT WOS:000238314800068 ER PT J AU El-Dasher, BS Gray, JJ Tringe, JW Biener, J Hamza, AV Wild, C Worner, E Koidl, P AF El-Dasher, BS Gray, JJ Tringe, JW Biener, J Hamza, AV Wild, C Worner, E Koidl, P TI Crystallographic anisotropy of wear on a polycrystalline diamond surface SO APPLIED PHYSICS LETTERS LA English DT Article ID CVD DIAMOND; FILMS; FRICTION; RAMAN AB We correlate topography and diffraction measurements to demonstrate that grain orientation profoundly influences polishing rates in polycrystalline diamond synthesized by chemical vapor deposition. Grains oriented with {111} or {100} planes perpendicular to the surface normal polish at significantly lower rates compared with grains of all other orientations when the surface is polished in continuously varying in-plane directions. These observations agree with predictions of the periodic bond chain vector model, developed previously for single crystals, and indicate that the polishing rate depends strongly on the number of periodic bond chain vectors that are within 10 degrees of the exposed surface plane. (c) 2006 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Fraunhofer Inst Appl Solid State Phys, D-79108 Freiburg, Germany. RP Tringe, JW (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM tringe2@llnl.gov NR 14 TC 10 Z9 10 U1 0 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 12 PY 2006 VL 88 IS 24 AR 241915 DI 10.1063/1.2213180 PG 3 WC Physics, Applied SC Physics GA 053OP UT WOS:000238314800033 ER PT J AU Kubota, A Reisman, DB Wolfer, WG AF Kubota, A Reisman, DB Wolfer, WG TI Dynamic strength of metals in shock deformation SO APPLIED PHYSICS LETTERS LA English DT Article AB The Hugoniot and critical shear strength of shock-compressed metals can be obtained directly from molecular dynamics simulations without recourse to surface velocity profiles and their analyses. Results from simulations in aluminum containing an initial distribution of microscopic defects are shown to agree with experimental results. (c) 2006 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Wolfer, WG (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM wolfer1@llnl.gov NR 6 TC 19 Z9 20 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 12 PY 2006 VL 88 IS 24 AR 241924 DI 10.1063/1.2210799 PG 2 WC Physics, Applied SC Physics GA 053OP UT WOS:000238314800042 ER PT J AU Lawes, G Tackett, R Adhikary, B Naik, R Masala, O Seshadri, R AF Lawes, G Tackett, R Adhikary, B Naik, R Masala, O Seshadri, R TI Positive and negative magnetocapacitance in magnetic nanoparticle systems SO APPLIED PHYSICS LETTERS LA English DT Article ID MNFE2O4 NANOPARTICLES; NANOCOMPOSITES; GAMMA-FE2O3 AB The dielectric properties of MnFe2O4 and gamma-Fe2O3 magnetic nanoparticles embedded in insulating matrices were investigated. The samples showed frequency dependent dielectric anomalies coincident with the magnetic blocking temperature and significant magnetocapacitance above this blocking temperature, as large as 0.4% at H=10 kOe. For both samples the magnetic field induced change in dielectric constant at high temperatures was proportional to the square of the sample magnetization. These measurements suggest that the dielectric properties of magnetic nanoparticles are closely related to the disposition of magnetic moments in the system. This magnetodielectric coupling is believed to arise from extrinsic effects, which are discussed in light of recent work relating magnetoresistive and magnetocapacitive behaviors. (c) 2006 American Institute of Physics. C1 Wayne State Univ, Dept Phys & Astron, Detroit, MI 48201 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA. RP Lawes, G (reprint author), Wayne State Univ, Dept Phys & Astron, Detroit, MI 48201 USA. EM glawes@wayne.edu RI Seshadri, Ram/C-4205-2013 OI Seshadri, Ram/0000-0001-5858-4027 NR 17 TC 10 Z9 10 U1 3 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 12 PY 2006 VL 88 IS 24 AR 242903 DI 10.1063/1.2213194 PG 3 WC Physics, Applied SC Physics GA 053OP UT WOS:000238314800067 ER PT J AU Wang, Q Daggubati, M Yu, R Zhang, XF AF Wang, Q Daggubati, M Yu, R Zhang, XF TI High temperature nitrogen annealing induced interstitial oxygen precipitation in silicon epitaxial layer on heavily arsenic-doped silicon wafer SO APPLIED PHYSICS LETTERS LA English DT Article ID CZOCHRALSKI SILICON; DIFFUSION AB High temperature nitrogen annealing induced interstitial oxygen (O-i) precipitation has been investigated in silicon epitaxial layers (epilayers) grown on heavily arsenic-doped Czochralski silicon wafers. Both transmission electron microscopy and secondary ion mass spectrometry data indicate a strong O-i precipitation and/or segregation in the subsurface of epilayers annealed in N-2 at 1200 degrees C. The O-i precipitates have needlelike morphology with {111} habit planes along < 110 > directions. This precipitation is facilitated by thermal nitridation-produced vacancies or nitrogen-vacancy complexes and is sensitive to annealing conditions. Annealing in Ar or in N-2 at temperature < 1125 degrees C results in no epilayer subsurface O-i precipitation. (c) 2006 American Institute of Physics. C1 Fairchild Semicond Corp, W Jordan, UT 84088 USA. Lawrence Berkeley Lab, Mat Sci Div, Berkeley, CA 94720 USA. RP Wang, Q (reprint author), Fairchild Semicond Corp, W Jordan, UT 84088 USA. EM qi.wang@fairchildsemi.com RI Yu, Rong/A-3011-2008 OI Yu, Rong/0000-0003-1687-3597 NR 13 TC 4 Z9 4 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 12 PY 2006 VL 88 IS 24 AR 242112 DI 10.1063/1.2213516 PG 3 WC Physics, Applied SC Physics GA 053OP UT WOS:000238314800054 ER PT J AU Manaa, MR AF Manaa, MR TI Enhanced energetic stability and optical activity of symmetry-reduced C-60 SO CHEMICAL PHYSICS LETTERS LA English DT Article ID RESONANCE RAMAN-SPECTRUM; DENSITY; FILMS; C60; BUCKMINSTERFULLERENE; SCATTERING; EXCHANGE; BEHAVIOR; MODES; JAHN AB Quantum chemical calculations establish that small distortions from the perfectly spherical I-h symmetry of C-60 to lower symmetries are energetically feasible. A D-3d symmetry structure proved to be the lowest energy structure, almost 0.9 kcal/mol lower than the Ih conformation. Activations of otherwise I-h silent modes, the IR G(u) at 1465 cm(-1), and the Raman G(g) around 1530 cm(-1) may require the assignments of previously identified combinations modes as fundamentals in the new structure. A recent observation attributing resonance Raman band at 281 cm(-1) as due to distortions to either D-3d or D-5d structures of C-60 in solution is discounted. (c) 2006 Elsevier B.V. All rights reserved. C1 Lawrence Livermore Natl Lab, Energet Mat Ctr, Livermore, CA 94551 USA. RP Manaa, MR (reprint author), Lawrence Livermore Natl Lab, Energet Mat Ctr, POB 808,700 E Ave,L-282, Livermore, CA 94551 USA. EM manaal@llnl.gov NR 20 TC 1 Z9 1 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUN 12 PY 2006 VL 424 IS 1-3 BP 139 EP 141 DI 10.1016/j.cplett.2006.04.059 PG 3 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 053JL UT WOS:000238301300027 ER PT J AU Improta, R Barone, V Newton, MD AF Improta, R Barone, V Newton, MD TI A parameter-free quantum-mechanical approach for calculating electron-transfer rates for large systems in solution SO CHEMPHYSCHEM LA English DT Article DE ab initio calculations; donor-acceptor systems; electron transfer; Marcus theory; pepticles ID DENSITY-FUNCTIONAL THEORY; AROMATIC RADICAL-ANIONS; CONTINUUM SOLVATION MODELS; TRANSFER EXCITED-STATES; AQUEOUS-SOLUTION; EXCITATION-ENERGIES; MATRIX-ELEMENTS; PBE0 MODEL; GAS-PHASE; AB-INITIO C1 Univ Naples Federico II, Dipartimento Chim, I-80126 Naples, Italy. CNR, Ist Biostrutture & Bioimmagini, I-80134 Naples, Italy. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Improta, R (reprint author), Univ Naples Federico II, Dipartimento Chim, Complesso Monte S Angelo,Via Cintia, I-80126 Naples, Italy. EM robimp@unina.it; newton@bnl.gov RI Barone, Vincenzo/C-7344-2008; improta, roberto/L-4971-2013 OI improta, roberto/0000-0003-1004-195X NR 47 TC 17 Z9 17 U1 1 U2 10 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1439-4235 J9 CHEMPHYSCHEM JI ChemPhysChem PD JUN 12 PY 2006 VL 7 IS 6 BP 1211 EP 1214 DI 10.1002/cphc.200600069 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 054YV UT WOS:000238415400008 PM 16680796 ER PT J AU Cheng, TY Szalda, DJ Zhang, J Bullock, RM AF Cheng, TY Szalda, DJ Zhang, J Bullock, RM TI Synthesis and structure of CpMo(CO)(dppe)H and its oxidation by Ph3C+ SO INORGANIC CHEMISTRY LA English DT Article ID TRANSITION-METAL HYDRIDES; HYDROGEN-ATOM TRANSFER; CATALYTIC IONIC HYDROGENATIONS; IRIDIUM TRIHYDRIDE COMPLEXES; CARBONYL HYDRIDES; ELECTROCHEMICAL OXIDATION; ELECTRON-TRANSFER; TRITYL CATION; SPECTROSCOPIC CHARACTERIZATION; DIHYDROGEN COMPLEXES AB The reaction of CpMo( CO)( dppe) Cl ( dppe) Ph2PCH2CH2PPh2) with Na+[AlH2(OCH2CH2OCH3)(2)](-) gives the molybdenum hydride complex CpMo( CO)( dppe) H, the structure of which was determined by X-ray crystallography. Electrochemical oxidation of CpMo(CO)(dppe) H in CH3CN is quasi-reversible, with the peak potential at - 0.15 V ( vs Fc/Fc(+)). The reaction of CpMo(CO)( dppe) H with 1 equiv of Ph3C+ BF4- in CD3CN gives [CpMo(CO)(dppe)( NCCD3)](+) as the organometallic product, along with dihydrogen and Gomberg's dimer ( which is formed by dimerization of Ph3C center dot). The proposed mechanism involves one-electron oxidation of CpMo( CO)( dppe) H by Ph3C+ to give the radical-cation complex [CpMo(CO)(dppe) H](center dot+). Proton transfer from [CpMo(CO)(dppe)H](center dot+) to CpMo( CO)(dppe) H, loss of dihydrogen from [CpMo(CO)(dppe)(H)(2)](+), and oxidation of Cp(CO)(dppe)Mo-center dot by Ph3C+ lead to the observed products. In the presence of an amine base, the stoichiometry changes, with 2 equiv of Ph3C+ being required for each 1 equiv of CpMo(CO)(dppe) H because of deprotonation of [CpMo(CO)(dppe)H](center dot+) by the amine. Protonation of CpMo(CO)( dppe) H by HOTf provides the dihydride complex [CpMo(CO)(dppe)(H)(2)](+) OTf-, which loses dihydrogen to generate CpMo(CO)(dppe)(OTf). C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Bullock, RM (reprint author), Baruch Coll, Brookhaven Natl Lab, Dept Nat Sci, New York, NY 10010 USA. EM bullock@bnl.gov RI Bullock, R. Morris/L-6802-2016 OI Bullock, R. Morris/0000-0001-6306-4851 NR 89 TC 24 Z9 24 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUN 12 PY 2006 VL 45 IS 12 BP 4712 EP 4720 DI 10.1021/ic060111k PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 049PU UT WOS:000238029400020 PM 16749835 ER PT J AU Guichon, PAM Matevosyan, HH Sandulescu, N Thomas, AW AF Guichon, PAM Matevosyan, HH Sandulescu, N Thomas, AW TI Physical origin of density dependent forces of Skyrme type within the quark meson coupling model SO NUCLEAR PHYSICS A LA English DT Article ID NUCLEAR-MATTER; FINITE NUCLEI; BAG MODEL; PARAMETRIZATION; SATURATION; SCATTERING; QCD AB A density dependent, effective nucleon-nucleon force of the Skyrme type is derived from the quark-meson coupling model-a self-consistent, relativistic quark level description of nuclear matter. This new formulation requires no assumption that the mean scalar field is small and hence constitutes a significant advance over earlier work. The similarity of the effective interaction to the widely used SkM* force encourages us to apply it to a wide range of nuclear problems, beginning with the binding energies and charge distributions of doubly magic nuclei. Finding acceptable results in this conventional arena, we apply the same effective interaction, within the Hanree-Fock-Bogoliubov approach, to the properties of nuclei far from stability. The resulting two neutron drip lines and shell quenching are quite satisfactory. Finally, we apply the relativistic formulation to the properties of dense nuclear matter in anticipation of future application to the properties of neutron stars. (c) 2006 Elsevier B.V. All rights reserved. C1 CEA Saclay, SPhN, DAPNIA, F-91191 Gif Sur Yvette, France. Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. Inst Phys & Nucl Engn, R-76900 Bucharest, Romania. CEA, DAM, Serv Phys Nucl, F-91680 Bruyeres Le Chatel, France. RP Guichon, PAM (reprint author), CEA Saclay, SPhN, DAPNIA, F-91191 Gif Sur Yvette, France. EM pguichon@cea.fr RI Thomas, Anthony/G-4194-2012; OI Thomas, Anthony/0000-0003-0026-499X; Matevosyan, Hrayr/0000-0002-4074-7411 NR 25 TC 52 Z9 52 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD JUN 12 PY 2006 VL 772 IS 1-2 BP 1 EP 19 DI 10.1016/j.nuclphysa.2006.04.002 PG 19 WC Physics, Nuclear SC Physics GA 051MG UT WOS:000238164600001 ER PT J AU Reyes, SA Tsvelik, AM AF Reyes, SA Tsvelik, AM TI High temperature limit of the order parameter correlation functions in the quantum Ising model SO NUCLEAR PHYSICS B LA English DT Article AB In this paper we use the exact results for the anisotropic two-dimensional Ising model obtained by Bugrii and Lisovyy [A.I. Bugrii, O.O. Lisovyy, Theor. Math. Phys. 140 (2004) 987] to derive the expressions for dynamical correlation functions for the quantum Ising model in one dimension at high temperatures. (c) 2006 Elsevier B.V. All rights reserved. C1 SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Tsvelik, AM (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. EM tsvelik@bnl.gov NR 7 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 J9 NUCL PHYS B JI Nucl. Phys. B PD JUN 12 PY 2006 VL 744 IS 3 BP 330 EP 339 DI 10.1016/j.nuclphys.2006.03.015 PG 10 WC Physics, Particles & Fields SC Physics GA 049ID UT WOS:000238008800005 ER PT J AU DeMange, P Negres, RA Carr, CW Radousky, HB Demos, SG AF DeMange, Paul Negres, Raluca A. Carr, Christopher W. Radousky, Harry B. Demos, Stavros G. TI Laser-induced defect reactions governing damage initiation in DKDP crystals SO OPTICS EXPRESS LA English DT Article ID POTASSIUM DIHYDROGEN PHOSPHATE; OPTICAL-MATERIALS; BULK DAMAGE; PERFORMANCE; COATINGS; KDP; NM; IRRADIATION; BREAKDOWN AB We investigate the interaction of high-power nanosecond-laser pulses at different frequencies with damage initiating defect structures in bulk KDxH2-xPO4 (DKDP) crystals in order to enhance the understanding of a) the nature and behavior of the defects involved and b) the laser-induced defect reactions leading to improvement to the material performance. The experimental results indicate that there is more than one type of defect structure giving rise to damage initiation over two different spectral ranges. Moreover, within one set of defects we observe two different damage behaviors depending on the pre-irradiation parameters, pointing to more than one defect reaction pathway. (c) 2006 Optical Society of America. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP DeMange, P (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM demange1@llnl.gov RI Carr, Chris/F-7163-2013 NR 30 TC 18 Z9 19 U1 2 U2 9 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUN 12 PY 2006 VL 14 IS 12 BP 5313 EP 5328 DI 10.1364/OE.14.005313 PG 16 WC Optics SC Optics GA 055GI UT WOS:000238437800045 PM 19516698 ER PT J AU Elder, AD Matthews, SM Swartling, J Yunus, K Frank, JH Brennan, CM Fisher, AC Kaminski, CF AF Elder, AD Matthews, SM Swartling, J Yunus, K Frank, JH Brennan, CM Fisher, AC Kaminski, CF TI The application of frequency-domain Fluorescence Lifetime Imaging Microscopy as a quantitative analytical tool for microfluidic devices SO OPTICS EXPRESS LA English DT Article ID OPTICAL LITHOGRAPHY; MICROCHANNEL; SYSTEMS AB We describe the application of wide-field frequency domain Fluorescence Lifetime Imaging Microscopy (FLIM) to imaging in microfluidic devices. FLIM is performed using low cost, intensity modulated Light Emitting Diodes (LEDs) for illumination. The use of lifetime imaging for quantitative analysis within such devices is demonstrated by mapping the molecular diffusion of iodide ions across a microchannel. (c) 2006 Optical Society of America. C1 Univ Cambridge, Dept Chem Engn, Cambridge CB2 3RA, England. Sandia Natl Labs, Livermore, CA 94551 USA. Syngenta Ltd, Huddersfield Mfg Ctr, Huddersfield HD2 1FF, W Yorkshire, England. RP Elder, AD (reprint author), Univ Cambridge, Dept Chem Engn, New Museums Site,Pembroke St, Cambridge CB2 3RA, England. EM acf42@cam.ac.uk; cfk23@cam.ac.uk RI Kaminski, Clemens/G-7488-2016 NR 28 TC 27 Z9 27 U1 1 U2 6 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUN 12 PY 2006 VL 14 IS 12 BP 5456 EP 5467 DI 10.1364/OE.14.005456 PG 12 WC Optics SC Optics GA 055GI UT WOS:000238437800058 PM 19516711 ER PT J AU Evans, JW Macintosh, B Poyneer, L Morzinski, K Severson, S Dillon, D Gavel, D Reza, L AF Evans, JW Macintosh, B Poyneer, L Morzinski, K Severson, S Dillon, D Gavel, D Reza, L TI Demonstrating sub-nm closed loop MEMS flattening SO OPTICS EXPRESS LA English DT Article ID WAVE-FRONT SENSOR; SPATIAL LIGHT-MODULATOR; ADAPTIVE OPTICS; DEFORMABLE MIRROR; TECHNOLOGY; ENGINE; SPACE AB Ground based high-contrast imaging (e.g. extrasolar giant planet detection) has demanding wavefront control requirements two orders of magnitude more precise than standard adaptive optics systems. We demonstrate that these requirements can be achieved with a 1024-Micro-Electrical-Mechanical-Systems (MEMS) deformable mirror having an actuator spacing of 340 m m and a stroke of approximately 1 m m, over an active aperture 27 actuators across. We have flattened the mirror to a residual wavefront error of 0.54 nm rms within the range of controllable spatial frequencies. Individual contributors to final wavefront quality, such as voltage response and uniformity, have been identified and characterized. (c) 2006 Optical Society of America. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Calif Santa Cruz, Lick Observ, Lab Adapt Opt, Santa Cruz, CA 95064 USA. RP Evans, JW (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM evans74@llnl.gov OI Morzinski, Katie/0000-0002-1384-0063 NR 21 TC 37 Z9 39 U1 0 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUN 12 PY 2006 VL 14 IS 12 BP 5558 EP 5570 DI 10.1364/OE.14.005558 PG 13 WC Optics SC Optics GA 055GI UT WOS:000238437800071 PM 19516724 ER PT J AU Gonis, A Kioussis, N Ciftan, M AF Gonis, A Kioussis, N Ciftan, M TI Electron correlations SO PHILOSOPHICAL MAGAZINE LA English DT Editorial Material C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Gonis, A (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PD JUN 11 PY 2006 VL 86 IS 17-18 BP 2467 EP 2468 DI 10.1080/14786430600553127 PG 2 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 043DB UT WOS:000237578400001 ER PT J AU Gonis, A AF Gonis, A. TI System Green functions for interacting quantum particles SO PHILOSOPHICAL MAGAZINE LA English DT Article; Proceedings Paper CT 3rd International Workshop on Electron Correlations and Material Properties CY JUL 04-09, 2004 CL Kos, GREECE ID EXCHANGE; LIMIT AB We propose a formalism for the study of many-particle interacting quantum systems that allows the determination of the Green function of the system as a whole and corresponding Green functions of lower order from a knowledge of any Green function of a higher order. We illustrate the formalism by means of calculations on a model single-band system described by a Hamiltonian of tight-binding kind and corresponding to four electrons on a ring of four sites. C1 Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94551 USA. RP Gonis, A (reprint author), Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94551 USA. EM goins1@llnl.gov NR 24 TC 0 Z9 0 U1 0 U2 0 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1478-6435 EI 1478-6443 J9 PHILOS MAG JI Philos. Mag. PD JUN 11 PY 2006 VL 86 IS 17-18 BP 2537 EP 2552 DI 10.1080/14786430500438049 PG 16 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 043DB UT WOS:000237578400007 ER PT J AU Faulkner, JS Pella, S Rusanu, A Puzyrev, Y Leventouri, T Stocks, GM Ujfalussy, B AF Faulkner, J. S. Pella, S. Rusanu, A. Puzyrev, Y. Leventouri, Th. Stocks, G. M. Ujfalussy, B. TI Mean-field approximations for the electronic states in disordered alloys SO PHILOSOPHICAL MAGAZINE LA English DT Article; Proceedings Paper CT 3rd International Workshop on Electron Correlations and Material Properties CY JUL 04-09, 2004 CL Kos, GREECE ID DENSITY-OF-STATES; COHERENT-POTENTIAL-APPROXIMATION; CU-PD ALLOYS; MOLECULAR-DYNAMICS; TOTAL-ENERGY; CALCULATING PROPERTIES; PHOTOEMISSION SPECTRA; FUNCTIONAL THEORY; QUANTUM FORCES; SYSTEMS AB Mean-field approximations are used to find approximate solutions to the one-electron equations for the electronic states in disordered alloys because ordinary band-theory approaches are not applicable. The first mean-field approximation, the coherent potential approximation, does not treat Coulomb effects correctly. This has been improved by changing the way the mean-field approximation is implemented. It may be that this experience with mean-field approximations will be useful to the combination of many-body theory and mean-field theory that has produced the dynamical coherent potential approximation and dynamical mean field theory for treating strongly correlated electron systems. C1 Florida Atlantic Univ, Alloy Res Ctr, Boca Raton, FL 33431 USA. Florida Atlantic Univ, Dept Phys, Boca Raton, FL 33431 USA. Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37830 USA. RP Faulkner, JS (reprint author), Florida Atlantic Univ, Alloy Res Ctr, Boca Raton, FL 33431 USA. EM faulkner@fau.edu RI Ujfalussy, Balazs/A-8155-2013; Rusanu, Aurelian/A-8858-2013; Stocks, George Malcollm/Q-1251-2016 OI Ujfalussy, Balazs/0000-0003-3338-4699; Stocks, George Malcollm/0000-0002-9013-260X NR 43 TC 1 Z9 1 U1 1 U2 8 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 EI 1478-6443 J9 PHILOS MAG JI Philos. Mag. PD JUN 11 PY 2006 VL 86 IS 17-18 BP 2661 EP 2671 DI 10.1080/14786430500398417 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 043DB UT WOS:000237578400016 ER PT J AU Valone, SM Atlas, SR AF Valone, S. M. Atlas, S. R. TI Electron correlation, reference states and empirical potentials SO PHILOSOPHICAL MAGAZINE LA English DT Article; Proceedings Paper CT 3rd International Workshop on Electron Correlations and Material Properties CY JUL 04-09, 2004 CL Kos, GREECE ID DENSITY-FUNCTIONAL THEORY; MOLECULAR-DYNAMICS SIMULATIONS; EMBEDDED-ATOM-METHOD; EQUATION-OF-STATE; ELECTRONEGATIVITY EQUALIZATION; CORRELATION-ENERGY; INFORMATION-THEORY; CHARGE-TRANSFER; CHEMICAL BOND; FORCE-FIELDS AB Reference states as used in the physical sciences fall into three main categories: simplified interactions, special limits or cases, and special symmetries or configurations. Regardless of the category, the general behaviour of a system is described as deviations from the specific behaviour of some reference state. After briefly reviewing examples from each of the categories, we more closely examine the role of reference states in constructing empirical atomistic potential energy surfaces. Although not universally used for parameterizing empirical potentials, we argue that the approach deserves more consideration based on the success of the embedded atom method (EAM), and its variants. We view a substantial part of the success of EAM as due to its use of a reference state. We further argue that one role of the reference state is to introduce correlation energy in a fundamental way. We take advantage of these characteristics in deriving a generalization of EAM that permits a description of charge transfer (CT-EAM). The generalization is based on a rigorous analysis of a valence bond model. The CT-EAM model introduces the charge of the reference state in a role that is analogous to the reference-state energy in the original EAM. The reference-state charge enables the model to switch between linear and quadratic dependence of the energy on charge, during a chemical reaction, as demanded by fundamental results from density functional theory. C1 Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. Univ New Mexico, Ctr Adv Studies, Albuquerque, NM 87131 USA. Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. RP Valone, SM (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, POB 1663, Los Alamos, NM 87545 USA. EM smv@lanl.gov NR 108 TC 9 Z9 9 U1 0 U2 6 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 EI 1478-6443 J9 PHILOS MAG JI Philos. Mag. PD JUN 11 PY 2006 VL 86 IS 17-18 BP 2683 EP 2711 DI 10.1080/14786430500355052 PG 29 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 043DB UT WOS:000237578400018 ER PT J AU Lawson, AC Roberts, JA Martinez, B Ramos, M Kotliar, G Trouw, FW Fitzsimmons, MR Hehlen, MP Lashley, JC Ledbetter, H McQueeney, RJ Migliori, A AF Lawson, A. C. Roberts, J. A. Martinez, B. Ramos, M. Kotliar, G. Trouw, F. W. Fitzsimmons, M. R. Hehlen, M. P. Lashley, J. C. Ledbetter, H. McQueeney, R. J. Migliori, A. TI Invar model for delta-phase Pu: thermal expansion, elastic and magnetic properties SO PHILOSOPHICAL MAGAZINE LA English DT Article; Proceedings Paper CT 3rd International Workshop on Electron Correlations and Material Properties CY JUL 04-09, 2004 CL Kos, GREECE ID HIGH-PRESSURE; PLUTONIUM; ALLOYS; ZRW2O8; TEMPERATURES; TRANSITION; SCATTERING; CONSTANTS; ELEMENTS; GALLIUM AB We present a statistical mechanical model for the anomalous thermodynamic properties of fcc delta-phase Pu and Pu-Ga alloys. The model is based on the addition of a two-level 'Invar'-like electronic energy structure to the ordinary Debye model for the lattice, there is no assumption of magnetic character of these electronic levels. Together with the usual Debye temperature Theta and lattice Gruneisen constant gamma the model includes two additional parameters, the energy spacing Delta E and an electronic Gruneisen constant Gamma. Delta E is 1400 K, and Gamma is negative and depends strongly on the Ga content. The model accounts satisfactorily for thermal expansion, and it accounts for the anomalous decrease in the bulk modulus with temperature provided that one assumes zero elastic stiffness for the excited electronic state. This assumption is consistent with the results of the dynamic mean-field theory for Pu. We found some evidence for the hypothetical two-level structure using inelastic neutron scattering. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Rutgers State Univ, Dept Phys, Piscataway, NJ 08854 USA. Iowa State Univ, Dept Phys, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Lawson, AC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM aclawson@vla.com RI Lujan Center, LANL/G-4896-2012; McQueeney, Robert/A-2864-2016 OI McQueeney, Robert/0000-0003-0718-5602 NR 52 TC 28 Z9 28 U1 1 U2 12 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 EI 1478-6443 J9 PHILOS MAG JI Philos. Mag. PD JUN 11 PY 2006 VL 86 IS 17-18 BP 2713 EP 2733 DI 10.1080/14786430500155262 PG 21 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 043DB UT WOS:000237578400019 ER PT J AU Nichols, JW Schultz, IR Fitzsimmons, PN AF Nichols, JW Schultz, IR Fitzsimmons, PN TI In vitro-in vivo extrapolation of quantitative hepatic biotransformation data for fish - I. A review of methods, and strategies for incorporating intrinsic clearance estimates into chemical kinetic models SO AQUATIC TOXICOLOGY LA English DT Review DE fish; biotransformation; intrinsic clearance; kinetic models ID TROUT SALMO-GAIRDNERI; SUBSTRATE DEPLETION APPROACH; AQUATIC FOOD-WEBS; RAT-LIVER SLICES; RAINBOW-TROUT; ISOLATED HEPATOCYTES; DRUG-METABOLISM; TOXICOKINETIC MODEL; ORGANIC-CHEMICALS; RISK-ASSESSMENT AB Scientists studying mammals have developed a stepwise approach to predict in vivo hepatic clearance from measurements of in vitro hepatic biotransformation. The resulting clearance estimates have been used to screen drug candidates, investigate idiosyncratic drug responses, and support chemical risk assessments. In this report, we review these methods, discuss their potential application to studies with fish, and describe how extrapolated values could be incorporated into well-known compartmental kinetic models. Empirical equations that relate extrapolation factors to chemical log K., are given to facilitate the incorporation of metabolism data into bioconcentration and bioaccumulation models. Because they explicitly incorporate the concept of clearance, compartmental clearance-volume models are particularly well suited for incorporating hepatic clearance estimates. The manner in which these clearance values are incorporated into a given model depends, however, on the measurement frame of reference. Procedures for the incorporation of in vitro biotransformation data into physiologically based toxicokinetic (PBTK) models are also described. Unlike most compartmental models, PBTK models are developed to describe the effects of metabolism in the tissue where it occurs. In addition, PBTK models are well suited to modeling metabolism in more than one tissue. (c) 2006 Elsevier B.V. All rights reserved. C1 US EPA, Off Res & Dev, Natl Hlth & Environm Effects Res Lab, Mid Continent Ecol Div, Duluth, MN 55804 USA. Pacific NW Natl Lab, Battelle, Sequim, WA 98382 USA. RP Nichols, JW (reprint author), US EPA, Off Res & Dev, Natl Hlth & Environm Effects Res Lab, Mid Continent Ecol Div, 6201 Congdon Blvd, Duluth, MN 55804 USA. EM nichols.john@epa.gov NR 102 TC 51 Z9 54 U1 2 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0166-445X J9 AQUAT TOXICOL JI Aquat. Toxicol. PD JUN 10 PY 2006 VL 78 IS 1 BP 74 EP 90 DI 10.1016/j.aquatox.2006.01.017 PG 17 WC Marine & Freshwater Biology; Toxicology SC Marine & Freshwater Biology; Toxicology GA 048YV UT WOS:000237983400010 PM 16513189 ER PT J AU Conley, A Goldhaber, G Wang, L Aldering, G Amanullah, R Commins, ED Fadeyev, V Folatelli, G Garavini, G Gibbons, R Goobar, A Groom, DE Hook, I Howell, DA Kim, AG Knop, RA Kowalski, M Kuznetsova, N Lidman, C Nobili, S Nugent, PE Pain, R Perlmutter, S Smith, E Spadafora, AL Stanishev, V Strovink, M Thomas, RC Wood-Vasey, WM AF Conley, A Goldhaber, G Wang, L Aldering, G Amanullah, R Commins, ED Fadeyev, V Folatelli, G Garavini, G Gibbons, R Goobar, A Groom, DE Hook, I Howell, DA Kim, AG Knop, RA Kowalski, M Kuznetsova, N Lidman, C Nobili, S Nugent, PE Pain, R Perlmutter, S Smith, E Spadafora, AL Stanishev, V Strovink, M Thomas, RC Wood-Vasey, WM CA Supernova Cosmology Project TI Measurement of Omega(m), Omega(Lambda) from a blind analysis of type Ia supernovae with CMAGIC: Using color information to verify the acceleration of the universe SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmological parameters; cosmology : observations; supernovae : general ID HIGH-REDSHIFT SUPERNOVAE; HUBBLE-SPACE-TELESCOPE; BVRI LIGHT CURVES; HOST GALAXY; COSMOLOGICAL PARAMETERS; INFRARED PHOTOMETRY; PRECISE DISTANCE; B-BAND; EXTINCTION; CONSTANT AB We present measurements of Omega(m) and Omega(Lambda) from a blind analysis of 21 high-redshift supernovae using a new technique (CMAGIC) for fitting the multicolor light curves of Type Ia supernovae, first introduced by Wang and coworkers. CMAGIC takes advantage of the remarkably simple behavior of Type Ia supernovae on color-magnitude diagrams and has several advantages over current techniques based on maximum magnitudes. Among these are a reduced sensitivity to host galaxy dust extinction, a shallower luminosity-width relation, and the relative simplicity of the fitting procedure. This allows us to provide a cross-check of previous supernova cosmology results, despite the fact that current data sets were not observed in a manner optimized for CMAGIC. We describe the details of our novel blindness procedure, which is designed to prevent experimenter bias. The data are broadly consistent with the picture of an accelerating universe and agree with a flat universe within 1.7 sigma, including systematics. We also compare the CMAGIC results directly with those of a maximum magnitude fit to the same supernovae, finding that CMAGIC favors more acceleration at the 1.6 sigma level, including systematics and the correlation between the two measurements. A fit for w assuming a flat universe yields a value that is consistent with a cosmological constant within 1.2 sigma. C1 EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H8, Canada. Stockholm Univ, AlbaNova Univ Ctr, Dept Phys, SE-10691 Stockholm, Sweden. Carnegie Inst Washington Observ, Pasadena, CA 91101 USA. Univ Paris 06, CNRS, IN2P3, Lab Phys Nucl & Hautes Energies, F-75252 Paris 05, France. Univ Paris 07, CNRS, IN2P3, Lab Phys Nucl & Hautes Energies, F-75252 Paris 05, France. Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37240 USA. Univ Oxford, Dept Phys, Nucl & Astrophys Lab, Oxford OX1 3RH, England. European So Observ, Santiago 19, Chile. RP Conley, A (reprint author), EO Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM conley@astro.utoronto.ca RI Folatelli, Gaston/A-4484-2011; Kowalski, Marek/G-5546-2012; Stanishev, Vallery/M-8930-2013; Perlmutter, Saul/I-3505-2015 OI Stanishev, Vallery/0000-0002-7626-1181; Perlmutter, Saul/0000-0002-4436-4661 NR 63 TC 35 Z9 36 U1 0 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2006 VL 644 IS 1 BP 1 EP 20 DI 10.1086/503533 PN 1 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 053XK UT WOS:000238339200001 ER PT J AU Masjedi, M Hogg, DW Cool, RJ Eisenstein, DJ Blanton, MR Zehavi, I Berlind, AA Bell, EF Schneider, DP Warren, MS Brinkmann, J AF Masjedi, M Hogg, DW Cool, RJ Eisenstein, DJ Blanton, MR Zehavi, I Berlind, AA Bell, EF Schneider, DP Warren, MS Brinkmann, J TI Very small scale clustering and merger rate of luminous red galaxies SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology : observations; galaxies : elliptical and lenticular, cD; galaxies : fundamental parameters; large-scale structure of universe; methods : statistical; surveys ID DIGITAL SKY SURVEY; SPECTROSCOPIC TARGET SELECTION; HALO OCCUPATION DISTRIBUTION; DATA RELEASE; REDSHIFT SURVEY; POWER SPECTRUM; CLOSE PAIRS; SAMPLE; EVOLUTION; BIAS AB We present the small-scale (0.01 Mpc < r < 8 h(-1) Mpc) projected correlation function w(p)(r(p)) and real-space correlation function xi(r) of 24,520 luminous early-type galaxies from the Sloan Digital Sky Survey (SDSS) Luminous Red Galaxy (LRG) sample (0.16 < z < 0.36). "Fiber collision" incompleteness of the SDSS spectroscopic sample at scales smaller than 55 '' prevents measurements of the correlation function for LRGs on scales smaller than similar to 0.3 Mpc by the usual methods. In this work, we cross-correlate the spectroscopic sample with the imaging sample, with a weighting scheme to account for the collisions, extensively tested against mock catalogs. We correct for photometric biases in the SDSS imaging of close galaxy pairs. We find that the correlation function xi(r) is surprisingly close to a r(-2) power law over more than 4 orders of magnitude in separation r. This result is too steep at small scales to be explained in current versions of the halo model for galaxy clustering. We infer an LRG-LRG merger rate of less than or similar to 0.6 x 10(4) Gyr(-1) Gpc(-3) for this sample. This result suggests that the LRG-LRG mergers are not the main mode of mass growth for LRGs at z < 0.36. C1 NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. Case Western Reserve Univ, Dept Astron, Cleveland, OH 44106 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Apache Point Observ, Sunspot, NM 88349 USA. RP Masjedi, M (reprint author), NYU, Dept Phys, Ctr Cosmol & Particle Phys, 4 Washington Pl, New York, NY 10003 USA. EM morad.masjedi@physics.nyu.edu OI Warren, Michael/0000-0002-1218-7904; Hogg, David/0000-0003-2866-9403; Bell, Eric/0000-0002-5564-9873 NR 60 TC 131 Z9 131 U1 0 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2006 VL 644 IS 1 BP 54 EP 60 DI 10.1086/503536 PN 1 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 053XK UT WOS:000238339200004 ER PT J AU Gosling, JT Eriksson, S Skoug, RM McComas, DJ Forsyth, RJ AF Gosling, JT Eriksson, S Skoug, RM McComas, DJ Forsyth, RJ TI Petschek-type reconnection exhausts in the solar wind well beyond 1 AU: ULYSSES SO ASTROPHYSICAL JOURNAL LA English DT Article DE interplanetary medium; magnetic fields; plasmas; solar wind; waves ID MAGNETIC-FIELD RECONNECTION; DAYSIDE MAGNETOPAUSE; EARTHS MAGNETOPAUSE; SHEET AB We have identified 91 Petschek-type exhausts associated with local, quasi-stationary magnetic reconnection in the solar wind in plasma and magnetic field data from the Ulysses spacecraft obtained over a wide range of heliocentric distances (1.4 - 5.4 AU) and latitudes (S79 degrees - N65 degrees). The characteristic signature of an exhaust was a brief ( minutes) interval of accelerated or decelerated plasma flow within a bifurcated current sheet in which changes in magnetic field and flow velocity were correlated at one edge and anticorrelated at the other. Transitions from outside to inside the exhausts were always slow-mode - like, the exhausts appearing to an observer as encounters with closely spaced, forward-reverse, slow-mode wave ( shock) pairs. The exhausts almost universally occurred in low-speed or interplanetary coronal mass ejection plasma having low proton beta (< 1 and often << 1) at relatively large shears (90 degrees- 180 degrees) in the heliospheric magnetic field. Magnetic field strength decreases within the exhausts were highly variable from event to event and were roughly correlated with the magnitude of the local magnetic shears; this indicates the presence of substantial guide fields in at least some of these events. Many of the exhausts occurred at current sheets separating plasma having distinctly different Alfven speeds and were thus asymmetric. Local exhaust widths at Ulysses varied up to a maximum of similar to 2 x 10(6) km but statistically did not vary significantly with heliocentric distance. We offer several possible explanations of this observation. C1 Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. SW Res Inst, Space Sci & Engn Div, San Antonio, TX 78228 USA. Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England. RP Gosling, JT (reprint author), Univ Colorado, Atmospher & Space Phys Lab, 1234 Innovat Dr, Boulder, CO 80303 USA. EM jack.gosling@lasp.colorado.edu OI Eriksson, Stefan/0000-0002-5619-1577 NR 27 TC 48 Z9 49 U1 0 U2 4 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2006 VL 644 IS 1 BP 613 EP 621 DI 10.1086/503544 PN 1 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 053XK UT WOS:000238339200056 ER PT J AU Kedderis, GL Elmore, AR Crecelius, EA Yager, JW Goldsworthy, TL AF Kedderis, GL Elmore, AR Crecelius, EA Yager, JW Goldsworthy, TL TI Kinetics of arsenic methylation by freshly isolated B6C3F1 mouse hepatocytes SO CHEMICO-BIOLOGICAL INTERACTIONS LA English DT Article DE arsenic methylation kinetics; B6C3F1 mouse hepatocytes; monomethylarsenic; substrate inhibition ID RAT-LIVER CYTOSOL; CATECHOL-O-METHYLTRANSFERASE; IN-VITRO; S-ADENOSYLMETHIONINE; PRIMARY CULTURES; RABBIT LIVER; ENZYMATIC METHYLATION; MEMBRANE PREPARATIONS; MMA(V) REDUCTASE; OXIDATION-STATE AB The toxic and carcinogenic effects of arsenic may be mediated by both inorganic and methylated arsenic species. The methylation of arsenic(III) is thought to take place via sequential oxidative methylation and reduction steps to form monomethylarsenic (MMA) and dimethylarsenic (DMA) species, but recent evidence indicates that glutathione complexes of arsenic(III) can be methylated without oxidation. The kinetics of arsenic methylation were determined in freshly isolated hepatocytes from male B6C3F1 mice. Hepatocytes (> 90% viability) were isolated by collagenase perfusion and suspended in Williams' Medium E with various concentrations of arsenic(III) (sodium m-arsenite). Aliquots of the lysed cell suspension were analyzed for arsenic species by hydride generation-atomic absorption spectrometry. The formation of MMA(III) from sodium arsenite (1 mu M) was linear with respect to time for > 90 min. DMA(III) formation did not become significant until 60 min. MMA(V) and DMA(V) were not consistently observed in the incubations. These results suggest that the glutathione complex mechanism of methylation plays an important role in arsenic biotransformation in mouse hepatocytes. Metabolism of arsenic(V) was not observed in mouse hepatocytes, consistent with inhibition of arsenic(V) active cellular uptake by phosphate in the medium. The formation of MMA(III) increased with increasing arsenic"' concentrations up to approximately 2 mu M and declined thereafter. The concentration dependence is consistent with a saturable methylation reaction accompanied by uncompetitive substrate inhibition of the reaction by arsenic(III). Kinetic analysis of the data suggested an apparent Km of approximately 3.6 mu M arsenic(III), an apparent V-max of approximately 38.9 mu g MMA(III) formed/L/h/million cells, and an apparent K-I of approximately 1.3 mu M arsenic"'. The results of this study can be used in the physiologically based pharmacokinetic model for arsenic disposition in mice to predict the concentration of MMA(III) in liver and other tissues. (c) 2006 Published by Elsevier Ireland Ltd. C1 Integrated Syst Lab Inc, Res Triangle Pk, NC 27709 USA. Battelle Marine Sci Lab, Sequim, WA 98382 USA. Elect Power Res Inst, Palo Alto, CA 94303 USA. RP Kedderis, GL (reprint author), 1803 Jones Ferry Rd, Chapel Hill, NC 27516 USA. EM gkedderis@msn.com NR 52 TC 12 Z9 12 U1 1 U2 3 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0009-2797 J9 CHEM-BIOL INTERACT JI Chem.-Biol. Interact. PD JUN 10 PY 2006 VL 161 IS 2 BP 139 EP 145 DI 10.1016/j.cbi.2006.04.001 PG 7 WC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology GA 057PC UT WOS:000238606700005 PM 16725132 ER PT J AU Miller, JT Kropf, AJ Zha, Y Regalbuto, JR Delannoy, L Louis, C Bus, E van Bokhoven, JA AF Miller, J. T. Kropf, A. J. Zha, Y. Regalbuto, J. R. Delannoy, L. Louis, C. Bus, E. van Bokhoven, J. A. TI The effect of gold particle size on Au-Au bond length and reactivity toward oxygen in supported catalysts SO JOURNAL OF CATALYSIS LA English DT Review DE Au EXAFS; Au XANES; Au catalysts; Au catalyst preparation; Au bond length contraction; Au on alumina; Au on titania; Au on ceria; Au on silica; Au on zirconia; Au on niobia; Pt EXAFS; Au dispersion from EXAFS; particle size effect in Au catalysts ID ABSORPTION-FINE-STRUCTURE; TEMPERATURE CO OXIDATION; ELECTRON SPIN RESONANCE; SMALL METAL-CLUSTERS; NEAR-EDGE-STRUCTURE; PHOTOELECTRON-SPECTROSCOPY; EXAFS SPECTROSCOPY; CARBON-MONOXIDE; SOLID ARGON; NANOPARTICLES AB An catalysts with different metallic particle sizes and supported on silica, alumina, titania, zirconia, ceria, and niobia were prepared, and the reduced catalysts were characterized by EXAFS spectroscopy. As the Au-Au coordination number decreased, the interatomic bond length decreased. The Au-Au bond length contraction appears to be independent of the support type. A correlation between the dispersion of Pt catalysts determined by hydrogen chemisorption and the EXAFS Pt-Pt coordination number was established and used to determine the dispersion of fully reduced An catalysts. In addition, the Au particle size was estimated using a literature correlation of the EXAFS coordination number. For particles larger than about 40 angstrom, there was little change in the metallic bond length, whereas in catalysts with gold particles smaller than 30 angstrom, the Au-Au distance decreased with decreasing particle size, with a maximum contraction of about 0.15 angstrom. Decreasing particle size also brought a decrease in the intensity of the white line of the XANES spectrum. Both the decrease in bond distance and white line intensity were consistent with an increase in the d-electron density of An atoms in very small particles. Au particles smaller than about 30 angstrom were also reactive to air, leading to oxidation of up to 15% of the atoms of the gold particles, depending on the size; larger particles were not oxidized. These oxidized Au atoms in small particles are suggested to be active for CO oxidation. (c) 2006 Elsevier Inc. All rights reserved. C1 BP Res Ctr, Naperville, IL 60565 USA. Argonne Natl Lab, Div Chem Engn, Argonne, IL 60439 USA. Univ Illinois, Dept Chem Engn, Chicago, IL 60607 USA. Univ Paris 06, CNRS, UMR 7609, Lab React Surface, F-75252 Paris 05, France. ETH, Swiss Fed Inst Technol, Inst Chem & Bioengn, CH-8093 Zurich, Switzerland. RP Miller, JT (reprint author), BP Res Ctr, 150 W Warrenville Rd, Naperville, IL 60565 USA. EM millejt1@bp.com RI ID, MRCAT/G-7586-2011; Delannoy, Laurent/K-7158-2012; van Bokhoven, Jeroen/B-1677-2014 OI van Bokhoven, Jeroen/0000-0002-4166-2284 NR 112 TC 296 Z9 299 U1 28 U2 267 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD JUN 10 PY 2006 VL 240 IS 2 BP 222 EP 234 DI 10.1016/j.jcat.2006.04.004 PG 13 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 044RK UT WOS:000237689900014 ER PT J AU Berry, RA AF Berry, RA TI Notes on the PCICE method: Simplification, generalization, and compressibility properties SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE compressible flow; incompressible flow; all-speed flow; PCICE; ICE; fractional-step method; pressure-based method ID FLUID-DYNAMICS; FLOW AB The pressure-based PCICE numerical method [R.C. Martineau, R.A. Berry, The pressure-corrected ICE finite element method (PCICE-FEM) for compressible flows on unstructured meshes, J. Comput. Phys. 198 (2004) 659] for computing transient fluid flows of all speeds from nearly incompressible to high supersonic with strong shocks is simplified and generalized. Its behavior is examined in the nearly incompressible limit and in the fully compressible limit. In the nearly incompressible limit the PCICE algorithm is found to reduce to a generalization of the incompressible MAC method, which includes the density gradient as a driving function in the pressure Poisson equation. In the fully compressible regime, it is found to reduce to an expression equivalent to density-based methods for high-speed flow. (c) 2005 Elsevier Inc. All rights reserved. C1 Idaho Natl Lab, Fiss & Fus Syst, Idaho Falls, ID 83415 USA. RP Berry, RA (reprint author), Idaho Natl Lab, Fiss & Fus Syst, POB 1625, Idaho Falls, ID 83415 USA. EM Ray.Berry@inl.gov NR 11 TC 3 Z9 3 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUN 10 PY 2006 VL 215 IS 1 BP 6 EP 11 DI 10.1016/j.jcp.2005.11.008 PG 6 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 035LH UT WOS:000237002000002 ER PT J AU Rosenberg, D Fournier, A Fischer, P Pouquet, A AF Rosenberg, D Fournier, A Fischer, P Pouquet, A TI Geophysical-astrophysical spectral-element adaptive refinement (GASpAR): Object-oriented h-adaptive fluid dynamics simulation SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE spectral element; numerical simulation; adaptive mesh; AMR ID NON-CONFORMING GRIDS; TURBULENCE; RESOLUTION; ORDER; MODEL; COMPUTATION; EQUATIONS; FLOW AB An object-oriented geophysical and astrophysical spectral-element adaptive refinement (GASpAR) code is introduced. Like most spectral-element codes, GASpAR combines finite-element efficiency with spectral-method accuracy. It is also designed to be flexible enough for a range of geophysics and astrophysics applications where turbulence or other complex multiscale problems arise. The formalism accommodates both conforming and non-conforming elements. Several aspects of this code derive from existing methods, but here are synthesized into a new formulation of dynamic adaptive refinement (DARe) of non-conforming h-type. As a demonstration of the code, several new 2D test cases are introduced that have time-dependent analytic Solutions and exhibit localized flow features, including the 2D Burger's equation with straight, curved-radial and oblique-colliding fronts. These are proposed as standard test problems for comparable DARe codes. Quantitative errors are reported for 2D spatial and temporal convergence of DARe. (c) 2005 Elsevier Inc. All rights reserved. C1 Natl Ctr Atmospher Res, Inst Math Appl Geosci, Boulder, CO 80307 USA. Natl Ctr Atmospher Res, Earth & Sun Syst Lab, Boulder, CO 80307 USA. Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Rosenberg, D (reprint author), Natl Ctr Atmospher Res, Inst Math Appl Geosci, POB 3000, Boulder, CO 80307 USA. EM duaner@ucar.edu; fournier@ucar.edu; fischer@mcs.anl.gov; pouquet@ucar.edu RI Fournier, Aime/J-6366-2015 OI Fournier, Aime/0000-0002-5872-8307 NR 37 TC 28 Z9 28 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUN 10 PY 2006 VL 215 IS 1 BP 59 EP 80 DI 10.1016/j.jcp.2005.10.031 PG 22 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 035LH UT WOS:000237002000005 ER PT J AU Catchpoole, HJ Shalliker, RA Dennis, GR Guiochon, G AF Catchpoole, HJ Shalliker, RA Dennis, GR Guiochon, G TI Visualising the onset of viscous fingering in chromatography columns SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE band dispersion; onset of viscous fingering; viscous fingering; viscosity contrast ID SIZE-EXCLUSION CHROMATOGRAPHY; LIQUID-CHROMATOGRAPHY; SOLUTE MIGRATION; SAMPLE INTRODUCTION; POROUS-MEDIA; PERFORMANCE; FLOW; HETEROGENEITY; VISCOSITY; DESIGN AB Viscous fingering is an important fluid transport phenomenon that manifests itself when two fluids having different viscosities move in the same direction. Their interface is unstable and a complex fingering pattern may arise. This phenomenon is important in chromatography because it may lead to a decrease or even a failure in separations. The onset of viscous fingering was visually observed by packing a glass column with particles having the same refractive index as the mobile phase and injecting plugs of dye solutions having viscosities different from that of the mobile phase. Severe fingering effects are observed if the viscosity difference exceeds 0.17 cP. However, for smaller viscosity differences, band distortions are observed that may affect retention data, band efficiency, and band resolution. Careful attention should be paid to matching the mobile phase viscosity and that of the injection plug when accurate chromatographic information is required. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Western Sydney, Nanoscale Org, Sydney, NSW, Australia. Univ Western Sydney, Dynam Grp, Sydney, NSW, Australia. Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. RP Guiochon, G (reprint author), Univ Western Sydney, Nanoscale Org, Sydney, NSW, Australia. EM guiochon@ion.chem.utk.edu NR 35 TC 42 Z9 44 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD JUN 9 PY 2006 VL 1117 IS 2 BP 137 EP 145 DI 10.1016/j.chroma.2006.03.074 PG 9 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 049HC UT WOS:000238005800004 PM 16620860 ER PT J AU Josyula, R Jin, ZM Fu, ZQ Sha, BD AF Josyula, R Jin, ZM Fu, ZQ Sha, BD TI Crystal structure of yeast mitochondrial peripheral membrane protein Tim44p C-terminal domain SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE mitochondrion; Tim44; crystal structure; membrane protein ID PEPTIDE-BINDING DOMAIN; ATPASE DOMAIN; IMPORT MOTOR; HSP70; MTHSP70; CHANNEL AB The protein transports from the cell cytosol to the mitochondria matrix are carried out by the translocase of the outer membrane (TOM) complex and the translocase of the inner membrane (TIM) complexes. Tim44p is an essential mitochondrial peripheral membrane protein and a major component of TIM23 translocon. Tim44p can tightly associate with the inner mitochondrial membrane. To investigate the mechanism by which Tim44p functions in the TIM23 translocon to deliver the mitochondrial protein precursors, we have determined the crystal structure of the yeast Tim44p C-terminal domain to 3.2 angstrom resolution using the MAD method. The Tim44p C-terminal domain forms a monomer in the crystal structure and contains six alpha-helices and four antiparallel beta-strands. A large hydrophobic pocket was identified on the Tim44p structure surface. The N-terminal helix A1 is positively charged and the helix A1 protrudes out from the Tim44p main body. (c) 2006 Elsevier Ltd. All rights reserved. C1 Univ Alabama, Dept Cell Biol, Birmingham, AL 35294 USA. Univ Alabama, Ctr Biophys Sci & Engn, Birmingham, AL 35294 USA. Argonne Natl Lab, SERCAT, APS, Argonne, IL 60439 USA. Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. RP Sha, BD (reprint author), Univ Alabama, Dept Cell Biol, Birmingham, AL 35294 USA. EM bdsha@uab.edu RI Josyula, Ratnakar/B-6020-2013 FU NIDDK NIH HHS [R01 DK56203]; NIGMS NIH HHS [R01 GM65959] NR 21 TC 21 Z9 21 U1 0 U2 3 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD JUN 9 PY 2006 VL 359 IS 3 BP 798 EP 804 DI 10.1016/j.jmb.2006.04.020 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 053IC UT WOS:000238297800023 PM 16647716 ER PT J AU Adler, SS Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Al-Jamel, A Alexander, J Aoki, K Aphecetche, L Armendariz, R Aronson, SH Averbeck, R Awes, TC Babintsev, V Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Bathe, S Batsouli, S Baublis, V Bauer, F Bazilevsky, A Belikov, S Bjorndal, MT Boissevain, JG Borel, H Brooks, ML Brown, DS Bruner, N Bucher, D Buesching, H Bumazhnov, V Bunce, G Burward-Hoy, JM Butsyk, S Camard, X Chand, P Chang, WC Chernichenko, S Chi, CY Chiba, J Chiu, M Choi, IJ Choudhury, RK Chujo, T Cianciolo, V Cobigo, Y Cole, BA Comets, MP Constantin, P Csanad, M Csorgo, T Cussonneau, JP d'Enterria, D Das, K David, G Deak, F Delagrange, H Denisov, A Deshpande, A Desmond, EJ Devismes, A Dietzsch, O Drachenberg, JL Drapier, O Drees, A Durum, A Dutta, D Dzhordzhadze, V Efremenko, YV En'yo, H Espagnon, B Esumi, S Fields, DE Finck, C Fleuret, F Fokin, SL Fox, BD Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fukao, Y Fung, SY Gadrat, S Germain, M Glenn, A Gonin, M Gosset, J Goto, Y De Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gustafsson, HA Hachiya, T Haggerty, JS Hamagaki, H Hansen, AG Hartouni, EP Harvey, M Hasuko, K Hayano, R He, X Heffner, M Hemmick, TK Heuser, JM Hidas, P Hiejima, H Hill, JC Hobbs, R Holzmann, W Homma, K Hong, B Hoover, A Horaguchi, T Ichihara, T Ikonnikov, VV Imai, K Inaba, M Inuzuka, M Isenhower, D Isenhower, L Ishihara, M Issah, M Isupov, A Jacak, BV Jia, J Jinnouchi, O Johnson, BM Johnson, SC Joo, KS Jouan, D Kajihara, F Kametani, S Kamihara, N Kaneta, M Kang, JH Katou, K Kawabata, T Kazantsev, AV Kelly, S Khachaturov, B Khanzadeev, A Kikuchi, J Kim, DJ Kim, E Kim, GB Kim, HJ Kinney, E Kiss, A Kistenev, E Kiyomichi, A Klein-Boesing, C Kobayashi, H Kochenda, L Kochetkov, V Kohara, R Komkov, B Konno, M Kotchetkov, D Kozlov, A Kroon, PJ Kuberg, CH Kunde, GJ Kurita, K Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lajoie, JG Le Bornec, Y Lebedev, A Leckey, S Lee, DM Leitch, MJ Leite, MAL Li, XH Lim, H Litvinenko, A Liu, MX Maguire, CF Makdisi, YI Malakhov, A Manko, VI Mao, Y Martinez, G Masui, H Matathias, F Matsumoto, T McCain, MC McGaughey, PL Miake, Y Miller, TE Milov, A Mioduszewski, S Mishra, GC Mitchell, JT Mohanty, AK Morrison, DP Moss, JM Mukhopadhyay, D Muniruzzaman, M Nagamiya, S Nagle, JL Nakamura, T Newby, J Nyanin, AS Nystrand, J O'Brien, E Ogilvie, CA Ohnishi, H Ojha, ID Okada, H Okada, K Oskarsson, A Otterlund, I Oyama, K Ozawa, K Pal, D Palounek, APT Pantuev, V Papavassiliou, V Park, J Park, WJ Pate, SF Pei, H Penev, V Peng, JC Pereira, H Peresedov, V Pierson, A Pinkenburg, C Pisani, RP Purschke, ML Purwar, AK Qualls, JM Rak, J Ravinovich, I Read, KF Reuter, M Reygers, K Riabov, V Riabov, Y Roche, G Romana, A Rosati, M Rosendahl, SSE Rosnet, P Rykov, VL Ryu, SS Saito, N Sakaguchi, T Sakai, S Samsonov, V Sanfratello, L Santo, R Sato, HD Sato, S Sawada, S Schutz, Y Semenov, V Seto, R Shea, TK Shein, I Shibata, TA Shigaki, K Shimomura, M Sickles, A Silva, CL Silvermyr, D Sim, KS Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Sullivan, JP Takagi, S Takagui, EM Taketani, A Tanaka, KH Tanaka, Y Tanida, K Tannenbaum, MJ Taranenko, A Tarjan, P Thomas, TL Togawa, M Tojo, J Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Tydesjo, H Tyurin, N Uam, TJ Van Hecke, HW Velkovska, J Velkovsky, M Veszpremi, V Vinogradov, AA Volkov, MA Vznuzdaev, E Wang, XR Watanabe, Y White, SN Willis, N Wohn, FK Woody, CL Xie, W Yanovich, A Yokkaichi, S Young, GR Yushmanov, IE Zajc, WA Zhang, C Zhou, S Zimanyi, J Zolin, L Zong, X AF Adler, S. S. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Al-Jamel, A. Alexander, J. Aoki, K. Aphecetche, L. Armendariz, R. Aronson, S. H. Averbeck, R. Awes, T. C. Babintsev, V. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Bathe, S. Batsouli, S. Baublis, V. Bauer, F. Bazilevsky, A. Belikov, S. Bjorndal, M. T. Boissevain, J. G. Borel, H. Brooks, M. L. Brown, D. S. Bruner, N. Bucher, D. Buesching, H. Bumazhnov, V. Bunce, G. Burward-Hoy, J. M. Butsyk, S. Camard, X. Chand, P. Chang, W. C. Chernichenko, S. Chi, C. Y. Chiba, J. Chiu, M. Choi, I. J. Choudhury, R. K. Chujo, T. Cianciolo, V. Cobigo, Y. Cole, B. A. Comets, M. P. Constantin, P. Csanad, M. Csorgo, T. Cussonneau, J. P. d'Enterria, D. Das, K. David, G. Deak, F. Delagrange, H. Denisov, A. Deshpande, A. Desmond, E. J. Devismes, A. Dietzsch, O. Drachenberg, J. L. Drapier, O. Drees, A. Durum, A. Dutta, D. Dzhordzhadze, V. Efremenko, Y. V. En'yo, H. Espagnon, B. Esumi, S. Fields, D. E. Finck, C. Fleuret, F. Fokin, S. L. Fox, B. D. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fukao, Y. Fung, S. -Y. Gadrat, S. Germain, M. Glenn, A. Gonin, M. Gosset, J. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gustafsson, H. -A Hachiya, T. Haggerty, J. S. Hamagaki, H. Hansen, A. G. Hartouni, E. P. Harvey, M. Hasuko, K. Hayano, R. He, X. Heffner, M. Hemmick, T. K. Heuser, J. M. Hidas, P. Hiejima, H. Hill, J. C. Hobbs, R. Holzmann, W. Homma, K. Hong, B. Hoover, A. Horaguchi, T. Ichihara, T. Ikonnikov, V. V. Imai, K. Inaba, M. Inuzuka, M. Isenhower, D. Isenhower, L. Ishihara, M. Issah, M. Isupov, A. Jacak, B. V. Jia, J. Jinnouchi, O. Johnson, B. M. Johnson, S. C. Joo, K. S. Jouan, D. Kajihara, F. Kametani, S. Kamihara, N. Kaneta, M. Kang, J. H. Katou, K. Kawabata, T. Kazantsev, A. V. Kelly, S. Khachaturov, B. Khanzadeev, A. Kikuchi, J. Kim, D. J. Kim, E. Kim, G. -B. Kim, H. J. Kinney, E. Kiss, A. Kistenev, E. Kiyomichi, A. Klein-Boesing, C. Kobayashi, H. Kochenda, L. Kochetkov, V. Kohara, R. Komkov, B. Konno, M. Kotchetkov, D. Kozlov, A. Kroon, P. J. Kuberg, C. H. Kunde, G. J. Kurita, K. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lajoie, J. G. Le Bornec, Y. Lebedev, A. Leckey, S. Lee, D. M. Leitch, M. J. Leite, M. A. L. Li, X. H. Lim, H. Litvinenko, A. Liu, M. X. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Manko, V. I. Mao, Y. Martinez, G. Masui, H. Matathias, F. Matsumoto, T. McCain, M. C. McGaughey, P. L. Miake, Y. Miller, T. E. Milov, A. Mioduszewski, S. Mishra, G. C. Mitchell, J. T. Mohanty, A. K. Morrison, D. P. Moss, J. M. Mukhopadhyay, D. Muniruzzaman, M. Nagamiya, S. Nagle, J. L. Nakamura, T. Newby, J. Nyanin, A. S. Nystrand, J. O'Brien, E. Ogilvie, C. A. Ohnishi, H. Ojha, I. D. Okada, H. Okada, K. Oskarsson, A. Otterlund, I. Oyama, K. Ozawa, K. Pal, D. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Park, W. J. Pate, S. F. Pei, H. Penev, V. Peng, J. -C. Pereira, H. Peresedov, V. Pierson, A. Pinkenburg, C. Pisani, R. P. Purschke, M. L. Purwar, A. K. Qualls, J. M. Rak, J. Ravinovich, I. Read, K. F. Reuter, M. Reygers, K. Riabov, V. Riabov, Y. Roche, G. Romana, A. Rosati, M. Rosendahl, S. S. E. Rosnet, P. Rykov, V. L. Ryu, S. S. Saito, N. Sakaguchi, T. Sakai, S. Samsonov, V. Sanfratello, L. Santo, R. Sato, H. D. Sato, S. Sawada, S. Schutz, Y. Semenov, V. Seto, R. Shea, T. K. Shein, I. Shibata, T. -A. Shigaki, K. Shimomura, M. Sickles, A. Silva, C. L. Silvermyr, D. Sim, K. S. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Sullivan, J. P. Takagi, S. Takagui, E. M. Taketani, A. Tanaka, K. H. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Taranenko, A. Tarjan, P. Thomas, T. L. Togawa, M. Tojo, J. Torii, H. Towell, R. S. Tram, V. -N. Tserruya, I. Tsuchimoto, Y. Tydesjo, H. Tyurin, N. Uam, T. J. Van Hecke, H. W. Velkovska, J. Velkovsky, M. Veszpremi, V. Vinogradov, A. A. Volkov, M. A. Vznuzdaev, E. Wang, X. R. Watanabe, Y. White, S. N. Willis, N. Wohn, F. K. Woody, C. L. Xie, W. Yanovich, A. Yokkaichi, S. Young, G. R. Yushmanov, I. E. Zajc, W. A. Zhang, C. Zhou, S. Zimanyi, J. Zolin, L. Zong, X. CA PHENIX Collboration TI Azimuthal angle correlations for rapidity separated hadron pairs in d+Au collisions at root s(NN)=200 GeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID GLUON DISTRIBUTION-FUNCTIONS; LARGE NUCLEI AB Deuteron-gold (d+Au) collisions at the Relativistic Heavy Ion Collider provide ideal platforms for testing QCD theories in dense nuclear matter at high energy. In particular, models suggesting strong saturation effects for partons carrying small nucleon momentum fraction (x) predict modifications to jet production at forward rapidity (deuteron-going direction) in d+Au collisions. We report on two-particle azimuthal angle correlations between charged hadrons at forward/backward (deuteron/gold going direction) rapidity and charged hadrons at midrapidity in d+Au and p+p collisions at root s(NN)=200 GeV. Jet structures observed in the correlations are quantified in terms of the conditional yield and angular width of away-side partners. The kinematic region studied here samples partons in the gold nucleus with x similar to 0.1 to similar to 0.01. Within this range, we find no x dependence of the jet structure in d+Au collisions. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. Abilene Christian Univ, Abilene, TX 79699 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. Univ Calif Riverside, Riverside, CA 92521 USA. China Inst Atom Energy, Beijing, Peoples R China. Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Tokyo 1130033, Japan. Univ Colorado, Boulder, CO 80309 USA. Nevis Labs, Irvington, NY 10533 USA. Columbia Univ, New York, NY 10027 USA. CEA Saclay, DAPNIA, F-91191 Gif Sur Yvette, France. Univ Debrecen, H-4010 Debrecen, Hungary. Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. Florida State Univ, Tallahassee, FL 32306 USA. Georgia State Univ, Atlanta, GA 30303 USA. Hiroshima Univ, Higashihiroshima 7398526, Japan. Inst High Energy Phys, State Res Ctr Russian Federat, Protvino 142281, Russia. Univ Illinois, Urbana, IL 61801 USA. Iowa State Univ Sci & Technol, Ames, IA 50011 USA. Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. Hungarian Acad Sci, KFKI, Res Inst Particle & Nucl Phys, MTA,RMKI, H-1525 Budapest, Hungary. Korea Univ, Seoul 136701, South Korea. IV Kurchatov Atom Energy Inst, Russian Res Ctr, Moscow 123182, Russia. Kyoto Univ, Kyoto 6068502, Japan. Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Clermont Ferrand, LPC, CNRS, IN2P3, F-63177 Clermont Ferrand, France. Lund Univ, Dept Phys, SE-22100 Lund, Sweden. Univ Munster, Inst Kernphys, D-48149 Munster, Germany. Myongji Univ, Yongin 449728, Kyonggido, South Korea. Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. Univ New Mexico, Albuquerque, NM 87131 USA. New Mexico State Univ, Las Cruces, NM 88003 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Paris 11, IPN Orsay, CNRS, IN2P3, F-91406 Orsay, France. Peking Univ, Beijing 100871, Peoples R China. Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad, Russia. RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. Brookhaven Natl Lab, RIKEN, Res Ctr, Upton, NY 11973 USA. Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. Seoul Natl Univ, Syst Elect Lab, Seoul, South Korea. SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Univ Nantes, SUBATECH, Ecole Mines Nantes, CNRS,IN2P3, F-44307 Nantes, France. Univ Tennessee, Knoxville, TN 37996 USA. Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. Vanderbilt Univ, Nashville, TN 37235 USA. Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. Weizmann Inst Sci, IL-76100 Rehovot, Israel. Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Adler, SS (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM zajc@nevis.columbia.edu RI HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017; Semenov, Vitaliy/E-9584-2017; Csanad, Mate/D-5960-2012; seto, richard/G-8467-2011; Csorgo, Tamas/I-4183-2012; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; OI Sorensen, Soren /0000-0002-5595-5643; Taketani, Atsushi/0000-0002-4776-2315; Csorgo, Tamas/0000-0002-9110-9663; Hayano, Ryugo/0000-0002-1214-7806; Reuter, Michael/0000-0003-3881-8310; Newby, Robert/0000-0003-3571-1067; Hartouni, Edward/0000-0001-9869-4351 NR 23 TC 10 Z9 10 U1 6 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 9 PY 2006 VL 96 IS 22 AR 222301 DI 10.1103/PhysRevLett.96.222301 PG 6 WC Physics, Multidisciplinary SC Physics GA 051LA UT WOS:000238161400016 ER PT J AU Aubert, B Barate, R Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Pappagallo, M Pompili, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Best, DS Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Gritsan, AV Groysman, Y Jacobsen, RG Kadel, RW Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Fritsch, M Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Cottingham, WN Walker, D Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, AE Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Yushkov, AN Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L del Re, D Hadavand, HK Hill, EJ MacFarlane, DB Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dubois-Felsmann, GP Dvoretskii, A Hitlin, DG Minamora, JS Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Spaan, B Brandt, T Dickopp, M Klose, V Lacker, HM Nogowski, R Otto, S Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Bernard, D Bonneaud, GR Grenier, P Latour, E Schrenk, S Thiebaux, C Vasileiadis, G Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Piemontese, L Anulli, F Baldini-Ferroli, R Calcaterra, A De Sangro, R Finocchiaro, G Patteri, P Peruzzi, IM Piccolo, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Langenegger, U Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mader, WF Mallik, U Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Yi, JI Schott, G Arnaud, N Davier, M Giroux, X Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Petersen, TC Pruvot, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wang, WF Wormser, G Cheng, CH Lange, DJ Wright, DM Bevan, AJ Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Parry, RJ Payne, DJ Schofield, KC Touramanis, C Di Lodovico, F Menges, W Sacco, R Brown, CL Cowan, G Flaecher, HU Green, MG Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Kelly, MP Lafferty, GD Naisbit, MT Williams, JC Chen, C Hulsbergen, WD Jawahery, A Kovalskyi, D Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Kofler, R Li, X Moore, TB Saremi, S Staengle, H Willocq, SY Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, FF Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Taras, P Viaud, FB Nicholson, H Cavallo, N De Nardo, G Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Wilden, L Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Lu, M Potter, CT Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Panetta, J Biasini, M Covarelli, R Pacetti, S Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rama, M Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Schroder, H Waldi, R Adye, T De Groot, N Franek, B Gopal, GP Olaiya, EO Wilson, FF Aleksan, R Emery, S Gaidot, A Ganzhur, SF Graziani, G de Monchenault, GH Kozanecki, W Legendre, M Mayer, B Vasseur, G Yeche, C Zito, M Purohit, MV Weidemann, AW Wilson, JR Abe, T Allen, MT Aston, D Bartoldus, R Berger, N Boyarski, AM Buchmueller, OL Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dujmic, D Dunwoodie, W Fan, S Field, RC Glanzman, T Gowdy, SJ Hadig, T Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Libby, J Luitz, S Luth, V Lynch, HL Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Van Bakel, N Weaver, M Weinstein, AJR Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Ahmed, S Alam, MS Bula, R Ernst, JA Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Bona, M Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Azzolini, V Martinez-Vidal, F Panvini, RS Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Graham, MT Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Mohapatra, AK Pan, Y Pierini, M Prepost, R Tan, P Wu, SL Yu, Z Neal, H AF Aubert, B. Barate, R. Boutigny, D. Couderc, F. Karyotakis, Y. Lees, J. P. Poireau, V. Tisserand, V. Zghiche, A. Grauges, E. Palano, A. Pappagallo, M. Pompili, A. Chen, J. C. Qi, N. D. Rong, G. Wang, P. Zhu, Y. S. Eigen, G. Ofte, I. Stugu, B. Abrams, G. S. Battaglia, M. Best, D. S. Brown, D. N. Button-Shafer, J. Cahn, R. N. Charles, E. Day, C. T. Gill, M. S. Gritsan, A. V. Groysman, Y. Jacobsen, R. G. Kadel, R. W. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Mir, L. M. Oddone, P. J. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Wenzel, W. A. Barrett, M. Ford, K. E. Harrison, T. J. Hart, A. J. Hawkes, C. M. Morgan, S. E. Watson, A. T. Fritsch, M. Goetzen, K. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Peters, K. Schroeder, T. Steinke, M. Boyd, J. T. Burke, J. P. Cottingham, W. N. Walker, D. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Kyberd, P. Saleem, M. Teodorescu, L. Blinov, A. E. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Kravchenko, E. A. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Yushkov, A. N. Bondioli, M. Bruinsma, M. Chao, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Mommsen, R. K. Roethel, W. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Long, O. Shen, B. C. Wang, K. Zhang, L. del Re, D. Hadavand, H. K. Hill, E. J. MacFarlane, D. B. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Nesom, G. Schalk, T. Schumm, B. A. Seiden, A. Spradlin, P. Williams, D. C. Wilson, M. G. Albert, J. Chen, E. Dubois-Felsmann, G. P. Dvoretskii, A. Hitlin, D. G. Minamora, J. S. Narsky, I. Piatenko, T. Porter, F. C. Ryd, A. Samuel, A. Andreassen, R. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nauenberg, U. Olivas, A. Ruddick, W. O. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Chen, A. Eckhart, E. A. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Spaan, B. Brandt, T. Dickopp, M. Klose, V. Lacker, H. M. Nogowski, R. Otto, S. Petzold, A. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Bernard, D. Bonneaud, G. R. Grenier, P. Latour, E. Schrenk, S. Thiebaux, Ch. Vasileiadis, G. Verderi, M. Bard, D. J. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Luppi, E. Negrini, M. Piemontese, L. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. De Sangro, R. Finocchiaro, G. Patteri, P. Peruzzi, I. M. Piccolo, M. Zallo, A. Buzzo, A. Capra, R. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Brandenburg, G. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Langenegger, U. Marks, J. Schenk, S. Uwer, U. Bhimji, W. Bowerman, D. A. Dauncey, P. D. Egede, U. Flack, R. L. Gaillard, J. R. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Chai, X. Charles, M. J. Mader, W. F. Mallik, U. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Yi, J. I. Schott, G. Arnaud, N. Davier, M. Giroux, X. Grosdidier, G. Hocker, A. Le Diberder, F. Lepeltier, V. Lutz, A. M. Oyanguren, A. Petersen, T. C. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Stocchi, A. Wang, W. F. Wormser, G. Cheng, C. H. Lange, D. J. Wright, D. M. Bevan, A. J. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. George, K. A. Hutchcroft, D. E. Parry, R. J. Payne, D. J. Schofield, K. C. Touramanis, C. Di Lodovico, F. Menges, W. Sacco, R. Brown, C. L. Cowan, G. Flaecher, H. U. Green, M. G. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Ricciardi, S. Salvatore, F. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Kelly, M. P. Lafferty, G. D. Naisbit, M. T. Williams, J. C. Chen, C. Hulsbergen, W. D. Jawahery, A. Kovalskyi, D. Lae, C. K. Roberts, D. A. Simi, G. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Kofler, R. Li, X. Moore, T. B. Saremi, S. Staengle, H. Willocq, S. Y. Cowan, R. Koeneke, K. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Kim, H. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Reidy, J. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Taras, P. Viaud, F. B. Nicholson, H. Cavallo, N. De Nardo, G. Fabozzi, F. Gatto, C. Lista, L. Monorchio, D. Paolucci, P. Piccolo, D. Sciacca, C. Baak, M. Bulten, H. Raven, G. Snoek, H. L. Wilden, L. Jessop, C. P. LoSecco, J. M. Allmendinger, T. Benelli, G. Gan, K. K. Honscheid, K. Hufnagel, D. Jackson, P. D. Kagan, H. Kass, R. Pulliam, T. Rahimi, A. M. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Lu, M. Potter, C. T. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Galeazzi, F. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Benayoun, M. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. John, M. J. J. Leruste, Ph. Malcles, J. Ocariz, J. Roos, L. Therin, G. Behera, P. K. Gladney, L. Panetta, J. Biasini, M. Covarelli, R. Pacetti, S. Pioppi, M. Angelini, C. Batignani, G. Bettarini, S. Bucci, F. Calderini, G. Carpinelli, M. Cenci, R. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rama, M. Rizzo, G. Walsh, J. Haire, M. Judd, D. Wagoner, D. E. Biesiada, J. Danielson, N. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Bellini, F. Cavoto, G. D'Orazio, A. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Tehrani, F. Safai Voena, C. Schroeder, H. Waldi, R. Adye, T. De Groot, N. Franek, B. Gopal, G. P. Olaiya, E. O. Wilson, F. F. Aleksan, R. Emery, S. Gaidot, A. Ganzhur, S. F. Graziani, G. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Mayer, B. Vasseur, G. Yeche, Ch. Zito, M. Purohit, M. V. Weidemann, A. W. Wilson, J. R. Abe, T. Allen, M. T. Aston, D. Bartoldus, R. Berger, N. Boyarski, A. M. Buchmueller, O. L. Claus, R. Coleman, J. P. Convery, M. R. Cristinziani, M. Dingfelder, J. C. Dong, D. Dorfan, J. Dujmic, D. Dunwoodie, W. Fan, S. Field, R. C. Glanzman, T. Gowdy, S. J. Hadig, T. Halyo, V. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Libby, J. Luitz, S. Luth, V. Lynch, H. L. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ozcan, V. E. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Van Bakel, N. Weaver, M. Weinstein, A. J. R. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Roat, C. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Satpathy, A. Schwitters, R. F. Izen, J. M. Kitayama, I. Lou, X. C. Ye, S. Bianchi, F. Bona, M. Gallo, F. Gamba, D. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Dittongo, S. Grancagnolo, S. Lanceri, L. Vitale, L. Azzolini, V. Martinez-Vidal, F. Panvini, R. S. Banerjee, Sw. Bhuyan, B. Brown, C. M. Fortin, D. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Cheng, B. Dasu, S. Datta, M. Eichenbaum, A. M. Flood, K. T. Graham, M. T. Hollar, J. J. Johnson, J. R. Kutter, P. E. Li, H. Liu, R. Mellado, B. Mihalyi, A. Mohapatra, A. K. Pan, Y. Pierini, M. Prepost, R. Tan, P. Wu, S. L. Yu, Z. Neal, H. CA BaBar Collaboration TI Determinations of vertical bar V-ub vertical bar from inclusive semileptonic B decays with reduced model dependence SO PHYSICAL REVIEW LETTERS LA English DT Article ID MESON DECAYS; HIGH-ENERGY; SPECTRUM; PHYSICS AB We report two novel determinations of vertical bar V-ub vertical bar with reduced model dependence, based on measurements of the mass distribution of the hadronic system in semileptonic B decays. Events are selected by fully reconstructing the decay of one B meson and identifying a charged lepton from the decay of the other B meson from Y(4S) -> B (B) over bar events. In one approach, we combine the inclusive (B) over bar -> X(u)l (v) over bar rate, integrated up to a maximum hadronic mass m(X) < 1.67 GeV/c(2), with a measurement of the inclusive B -> X-s gamma photon energy spectrum. We obtain vertical bar V-ub vertical bar = (4.43 +/- 0.38(stat) +/- 0.25(syst) +/- 0.29(theo)) x 10(-3). In another approach we measure the total (B) over bar -> X(u)l (v) over bar rate over the full phase space and find vertical bar V-ub vertical bar = 3.84 +/- 0.70(stat) +/- 0.30(syst) +/- 0.10(theo)) x 10(-3). C1 Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Autonoma Barcelona, IFAE, E-08193 Barcelona, Spain. Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. Univ Bari, Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, LLR, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. Univ Ferrara, Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Univ Genoa, Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ Sci & Technol, Ames, IA 50011 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. Accelerateur Lineaire Lab, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 72E, Merseyside, England. Queen Mary Univ London, London E1 4NS, England. Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Univ Milan, Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. Univ Naples Federico II, Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF H, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Perugia, Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Scuola Normale Super Pisa, Dipartimento Fis, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Roma La Sapienza, Inst Fis, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Univ Turin, Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. Univ Trieste, Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Vanderbilt Univ, Nashville, TN 37235 USA. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Della Ricca, Giuseppe/B-6826-2013; Patrignani, Claudia/C-5223-2009; Bellini, Fabio/D-1055-2009; Calabrese, Roberto/G-4405-2015; Lista, Luca/C-5719-2008; Cavallo, Nicola/F-8913-2012; Forti, Francesco/H-3035-2011; Lusiani, Alberto/A-3329-2016; Lusiani, Alberto/N-2976-2015; Kravchenko, Evgeniy/F-5457-2015; Saeed, Mohammad Alam/J-7455-2012; Di Lodovico, Francesca/L-9109-2016; Peters, Klaus/C-2728-2008; de Groot, Nicolo/A-2675-2009; Roe, Natalie/A-8798-2012; Rotondo, Marcello/I-6043-2012; Neri, Nicola/G-3991-2012; de Sangro, Riccardo/J-2901-2012; Lo Vetere, Maurizio/J-5049-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Luppi, Eleonora/A-4902-2015; Oyanguren, Arantza/K-6454-2014; Morandin, Mauro/A-3308-2016; Mir, Lluisa-Maria/G-7212-2015; M, Saleem/B-9137-2013; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; OI Della Ricca, Giuseppe/0000-0003-2831-6982; Patrignani, Claudia/0000-0002-5882-1747; Bellini, Fabio/0000-0002-2936-660X; Calabrese, Roberto/0000-0002-1354-5400; Forti, Francesco/0000-0001-6535-7965; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Saeed, Mohammad Alam/0000-0002-3529-9255; Di Lodovico, Francesca/0000-0003-3952-2175; Peters, Klaus/0000-0001-7133-0662; Rotondo, Marcello/0000-0001-5704-6163; Neri, Nicola/0000-0002-6106-3756; de Sangro, Riccardo/0000-0002-3808-5455; Lo Vetere, Maurizio/0000-0002-6520-4480; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Luppi, Eleonora/0000-0002-1072-5633; Oyanguren, Arantza/0000-0002-8240-7300; Morandin, Mauro/0000-0003-4708-4240; Mir, Lluisa-Maria/0000-0002-4276-715X; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Hamel de Monchenault, Gautier/0000-0002-3872-3592; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Galeazzi, Fulvio/0000-0002-6830-9982; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Cristinziani, Markus/0000-0003-3893-9171; Paoloni, Eugenio/0000-0001-5969-8712; Lanceri, Livio/0000-0001-8220-3095; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Faccini, Riccardo/0000-0003-2613-5141; Cavoto, Gianluca/0000-0003-2161-918X; Wilson, Robert/0000-0002-8184-4103; Strube, Jan/0000-0001-7470-9301; Barlow, Roger/0000-0002-8295-8612; Chen, Chunhui /0000-0003-1589-9955 NR 34 TC 22 Z9 22 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 9 PY 2006 VL 96 IS 22 AR 221801 DI 10.1103/PhysRevLett.96.221801 PG 7 WC Physics, Multidisciplinary SC Physics GA 051LA UT WOS:000238161400013 PM 16803301 ER PT J AU Chan, TL Wang, C Hupalo, M Tringides, M Ho, K AF Chan, T. -L. Wang, C. Z. Hupalo, M. Tringides, M. C. Ho, K. M. TI Quantum size effect on the diffusion barriers and growth morphology of Pb/Si(111) SO PHYSICAL REVIEW LETTERS LA English DT Article ID NUCLEATION; ISLANDS; HEIGHT AB An intriguing growth morphology of Pb islands on a Si(111) surface is observed in our STM experiments: the growth of a Pb layer on Pb islands with unstable heights starts from the periphery and moves towards the center, while the nucleation of the next layer on stable Pb islands starts away from the periphery. Using first-principles total energy calculations, we have studied the diffusion barriers of Pb adatoms on a freestanding Pb(111) film as a function of film thickness. The diffusion barriers are found to be very low (< 60 meV), and a bi-layer oscillation due to the quantum size effect (QSE) is observed, with a lower barrier on the odd-layered, relatively unstable Pb films. The diffusion barrier difference between the odd- and even-layered film is as large as 40 meV. The observed unusual growth can be attributed to this big difference in the diffusion barriers due to QSE. C1 US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ Sci & Technol, Dept Phys & Astron, Ames, IA 50011 USA. RP Chan, TL (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. RI Chan, Tzu-Liang/C-3260-2015 OI Chan, Tzu-Liang/0000-0002-9655-0917 NR 25 TC 60 Z9 61 U1 4 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 9 PY 2006 VL 96 IS 22 AR 226102 DI 10.1103/PhysRevLett.96.226102 PG 4 WC Physics, Multidisciplinary SC Physics GA 051LA UT WOS:000238161400036 PM 16803324 ER PT J AU Gordon, A Kartner, FX Rohringer, N Santra, R AF Gordon, A Kartner, FX Rohringer, N Santra, R TI Role of many-electron dynamics in high harmonic generation SO PHYSICAL REVIEW LETTERS LA English DT Article ID MULTIPHOTON IONIZATION; RARE-GASES; ATOM; RANGE; MODEL; LASER; BREMSSTRAHLUNG; POLARIZATION; RADIATION AB High harmonic generation (HHG) in many-electron atoms is studied theoretically. The breakdown of the frozen-core single active electron approximation is demonstrated, as it predicts roughly the same radiation amplitude in all noble gases. This is in contradiction with experiments, where heavier noble gases are known to emit much stronger HHG radiation than lighter ones. This experimental behavior of the noble gases can be qualitatively reproduced when many-electron dynamics, within a simple approximation, is taken into account. C1 MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. MIT, Elect Res Lab, Cambridge, MA 02139 USA. Argonne Natl Lab, Argonne, IL 60439 USA. RP Gordon, A (reprint author), MIT, Dept Elect Engn & Comp Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM gariel@mit.edu RI Rohringer, Nina/B-8030-2012; Santra, Robin/E-8332-2014; Rohringer, Nina/N-3238-2014 OI Santra, Robin/0000-0002-1442-9815; Rohringer, Nina/0000-0001-7905-3567 NR 33 TC 65 Z9 66 U1 0 U2 19 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 9 PY 2006 VL 96 IS 22 AR 223902 DI 10.1103/PhysRevLett.96.223902 PG 4 WC Physics, Multidisciplinary SC Physics GA 051LA UT WOS:000238161400019 PM 16803307 ER PT J AU Hu, XH Chan, CT Zi, J Li, M Ho, KM AF Hu, Xinhua Chan, C. T. Zi, Jian Li, Ming Ho, Kai-Ming TI Diamagnetic response of metallic photonic crystals at infrared and visible frequencies SO PHYSICAL REVIEW LETTERS LA English DT Article ID SILVER NANOWIRE ARRAYS; DIELECTRIC COMPOSITES; MAGNETIC RESPONSE; CARBON NANOTUBES; BAND AB We show analytically and numerically that diamagnetic response (effective magnetic permeability mu(e) < 1) at infrared and visible frequencies can be achieved in photonic crystals composed of metallic nanowires or nanospheres when the wavelength lambda is much larger than the lattice constant a (lambda similar to 2000a). When lambda similar to 100a, the metallic photonic crystals will exhibit strong diamagnetic response (mu(e) < 0.8), leading to many interesting phenomena such as the unusual Brewster angle for s waves and incident-angle-and-polarization-independent reflection and transmission. C1 Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. Iowa State Univ Sci & Technol, Dept Phys & Astron, Ames, IA 50011 USA. Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Hong Kong, Peoples R China. Fudan Univ, Surface Phys Lab, Natl Key Lab, Shanghai 200433, Peoples R China. RP Hu, XH (reprint author), Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. RI Hu, Xinhua/A-5930-2010; Zi, Jian/B-5102-2009 OI Hu, Xinhua/0000-0003-3153-7612; NR 33 TC 46 Z9 48 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 9 PY 2006 VL 96 IS 22 AR 223901 DI 10.1103/PhysRevLett.96.223901 PG 4 WC Physics, Multidisciplinary SC Physics GA 051LA UT WOS:000238161400018 PM 16803306 ER PT J AU Mohapatra, D Nakao, M Nishida, S Abe, K Abe, K Adachi, I Aihara, H Anipko, D Arinstein, K Asano, Y Aulchenko, V Aushev, T Bahinipati, S Bakich, AM Balagura, V Barbero, M Bedny, I Bitenc, U Bizjak, I Blyth, S Bondar, A Bozek, A Bracko, M Browder, TE Chao, Y Chen, A Chen, KF Chen, WT Cheon, BG Chistov, R Choi, Y Chuvikov, A Cole, S Dalseno, J Danilov, M Dash, M Dragic, J Drutskoy, A Eidelman, S Epifanov, D Fratina, S Gabyshev, N Gershon, T Gokhroo, G Golob, B Gorisek, A Ha, HC Haba, J Hara, T Hastings, NC Hayasaka, K Hayashii, H Hazumi, M Hinz, L Hokuue, T Hoshi, Y Hou, S Hou, WS Hsiung, YB Iijima, T Imoto, A Inami, K Ishikawa, A Ishino, H Itoh, R Iwasaki, M Iwasaki, Y Kang, JH Kataoka, SU Katayama, N Kawasaki, T Khan, HR Kichimi, H Kim, HJ Kim, HO Kim, SM Kinoshita, K Korpar, S Krizan, P Krokovny, P Kulasiri, R Kumar, R Kuo, CC Kuzmin, A Kwon, YJ Lange, JS Leder, G Lee, J Lesiak, T Limosani, A Lin, SW Liventsev, D Majumder, G Mandl, F Marlow, D Matsumoto, T Matyja, A Mitaroff, W Miyabayashi, K Miyake, H Miyata, H Miyazaki, Y Mizuk, R Moloney, GR Mori, T Nakano, E Nitoh, O Nozaki, T Ogawa, S Ohshima, T Okabe, T Okuno, S Olsen, SL Ozaki, H Pakhlov, P Palka, H Park, CW Parslow, N Peak, LS Pestotnik, R Piilonen, LE Poluektov, A Ronga, FJ Rozanska, M Sakai, Y Sarangi, TR Sato, N Schietinger, T Schneider, O Schumann, J Schwanda, C Schwartz, AJ Seidl, R Sevior, ME Shapkin, M Shibuya, H Shwartz, B Sidorov, V Sokolov, A Somov, A Soni, N Stamen, R Stanic, S Staric, M Sumiyoshi, T Suzuki, S Tajima, O Takasaki, F Tamai, K Tamura, N Tanaka, M Taylor, GN Teramoto, Y Tian, XC Trabelsi, K Tsukamoto, T Uehara, S Uglov, T Ueno, K Unno, Y Uno, S Urquijo, P Usov, Y Varner, G Varvell, KE Villa, S Wang, CC Wang, CH Wang, MZ Watanabe, Y Wicht, J Won, E Xie, QL Yabsley, BD Yamaguchi, A Yamashita, Y Yamauchi, M Ying, J Yusa, Y Zhang, LM Zhang, ZP Zhilich, V Zurcher, D AF Mohapatra, D. Nakao, M. Nishida, S. Abe, K. Abe, K. Adachi, I. Aihara, H. Anipko, D. Arinstein, K. Asano, Y. Aulchenko, V. Aushev, T. Bahinipati, S. Bakich, A. M. Balagura, V. Barbero, M. Bedny, I. Bitenc, U. Bizjak, I. Blyth, S. Bondar, A. Bozek, A. Bracko, M. Browder, T. E. Chao, Y. Chen, A. Chen, K. -F. Chen, W. T. Cheon, B. G. Chistov, R. Choi, Y. Chuvikov, A. Cole, S. Dalseno, J. Danilov, M. Dash, M. Dragic, J. Drutskoy, A. Eidelman, S. Epifanov, D. Fratina, S. Gabyshev, N. Gershon, T. Gokhroo, G. Golob, B. Gorisek, A. Ha, H. C. Haba, J. Hara, T. Hastings, N. C. Hayasaka, K. Hayashii, H. Hazumi, M. Hinz, L. Hokuue, T. Hoshi, Y. Hou, S. Hou, W. -S. Hsiung, Y. B. Iijima, T. Imoto, A. Inami, K. Ishikawa, A. Ishino, H. Itoh, R. Iwasaki, M. Iwasaki, Y. Kang, J. H. Kataoka, S. U. Katayama, N. Kawasaki, T. Khan, H. R. Kichimi, H. Kim, H. J. Kim, H. O. Kim, S. M. Kinoshita, K. Korpar, S. Krizan, P. Krokovny, P. Kulasiri, R. Kumar, R. Kuo, C. C. Kuzmin, A. Kwon, Y. -J. Lange, J. S. Leder, G. Lee, J. Lesiak, T. Limosani, A. Lin, S. -W. Liventsev, D. Majumder, G. Mandl, F. Marlow, D. Matsumoto, T. Matyja, A. Mitaroff, W. Miyabayashi, K. Miyake, H. Miyata, H. Miyazaki, Y. Mizuk, R. Moloney, G. R. Mori, T. Nakano, E. Nitoh, O. Nozaki, T. Ogawa, S. Ohshima, T. Okabe, T. Okuno, S. Olsen, S. L. Ozaki, H. Pakhlov, P. Palka, H. Park, C. W. Parslow, N. Peak, L. S. Pestotnik, R. Piilonen, L. E. Poluektov, A. Ronga, F. J. Rozanska, M. Sakai, Y. Sarangi, T. R. Sato, N. Schietinger, T. Schneider, O. Schuemann, J. Schwanda, C. Schwartz, A. J. Seidl, R. Sevior, M. E. Shapkin, M. Shibuya, H. Shwartz, B. Sidorov, V. Sokolov, A. Somov, A. Soni, N. Stamen, R. Stanic, S. Staric, M. Sumiyoshi, T. Suzuki, S. Tajima, O. Takasaki, F. Tamai, K. Tamura, N. Tanaka, M. Taylor, G. N. Teramoto, Y. Tian, X. C. Trabelsi, K. Tsukamoto, T. Uehara, S. Uglov, T. Ueno, K. Unno, Y. Uno, S. Urquijo, P. Usov, Y. Varner, G. Varvell, K. E. Villa, S. Wang, C. C. Wang, C. H. Wang, M. -Z. Watanabe, Y. Wicht, J. Won, E. Xie, Q. L. Yabsley, B. D. Yamaguchi, A. Yamashita, Y. Yamauchi, M. Ying, J. Yusa, Y. Zhang, L. M. Zhang, Z. P. Zhilich, V. Zurcher, D. CA Belle Collaborat TI Observation of b -> d gamma and determination of vertical bar V-td/V-ts vertical bar SO PHYSICAL REVIEW LETTERS LA English DT Article ID TO-LEADING ORDER; QCD SUM-RULE; BRANCHING RATIOS; RADIATIVE DECAYS; CP-VIOLATION; BELLE; MODEL AB We report the observation of the flavor-changing neutral current process b -> d gamma using a sample of 386 x 10(6) B meson pairs accumulated by the Belle detector at the KEKB e(+)e(-) collider. We measure branching fractions for the exclusive modes B- -> rho(-)gamma, (B) over bar (0) -> rho(0)gamma, and (B) over bar (0) -> omega gamma. Assuming that these three modes are related by isospin, we find B((B) over bar -> (rho, omega)gamma) = (1.32(-0.31)(+0.34)(stat)(-0.09)(+0.10)(syst)) x 10(-6) with a significance of 5.1 sigma. This result is used to determine the ratio of Cabibbo-Kobayashi-Maskawa matrix elements vertical bar V-td/V-ts vertical bar to be 0.199(-0.025)(+0.026)(exp)(-0.015)(+0.018)(theor). C1 Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. Yonsei Univ, Seoul 120749, South Korea. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tokyo Univ Agr & Technol, Tokyo, Japan. Tokyo Metropolitan Univ, Tokyo 158, Japan. Tokyo Inst Technol, Tokyo 152, Japan. Univ Tokyo, Dept Phys, Tokyo 113, Japan. Tohoku Univ, Sendai, Miyagi 980, Japan. Tohoku Gakuin Univ, Tagajo, Miyagi, Japan. Toho Univ, Funabashi, Chiba 274, Japan. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Sydney, Sydney, NSW 2006, Australia. Sungkyunkwan Univ, Suwon, South Korea. Seoul Natl Univ, Seoul, South Korea. Univ Sci & Technol China, Hefei 230026, Peoples R China. Saga Univ, Saga 840, Japan. RIKEN, Brookhaven Natl Lab, Res Ctr, Upton, NY 11973 USA. Princeton Univ, Princeton, NJ 08544 USA. Peking Univ, Beijing 100871, Peoples R China. Panjab Univ, Chandigarh 160014, India. Osaka Univ, Osaka, Japan. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Chonnam Natl Univ, Kwangju, South Korea. Univ Cincinnati, Cincinnati, OH 45221 USA. Goethe Univ Frankfurt, D-6000 Frankfurt, Germany. Univ Hawaii, Honolulu, HI 96822 USA. High Energy Accelerator Res Org, Tsukuba, Ibaraki, Japan. Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. Inst High Energy Phys, Vienna, Austria. Inst High Energy Phys, Protvino, Russia. Inst Theoret & Expt Phys, Moscow, Russia. J Stefan Inst, Ljubljana, Slovenia. Kanagawa Univ, Yokohama, Kanagawa, Japan. Korea Univ, Seoul 136701, South Korea. Kyungpook Natl Univ, Taegu, South Korea. Ecole Polytech Fed Lausanne, Swiss Fed Inst Technol, CH-1015 Lausanne, Switzerland. Univ Ljubljana, Ljubljana, Slovenia. Univ Maribor, SLO-2000 Maribor, Slovenia. Univ Melbourne, Melbourne, Vic, Australia. Nagoya Univ, Nagoya, Aichi, Japan. Nara Womens Univ, Nara 630, Japan. Natl Cent Univ, Chungli 32054, Taiwan. Nalt United Univ, Miaoli, Taiwan. Natl Taiwan Univ, Dept Phys, Taipei 10764, Taiwan. H Niewodniczanski Inst Nucl Phys, Krakow, Poland. Nippon Dent Univ, Niigata, Japan. Niigata Univ, Niigata, Japan. Nova Gorica Polytech, Nova Gorica, Slovenia. Osaka City Univ, Osaka 558, Japan. RP Mohapatra, D (reprint author), Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. RI Drutskoy, Alexey/C-8833-2016; dong, liaoyuan/A-5093-2015; Aihara, Hiroaki/F-3854-2010; Nitoh, Osamu/C-3522-2013; Marlow, Daniel/C-9132-2014; Tian, Xinchun/L-2060-2013; Ishino, Hirokazu/C-1994-2015; Pakhlov, Pavel/K-2158-2013; Uglov, Timofey/B-2406-2014; Danilov, Mikhail/C-5380-2014; Mizuk, Roman/B-3751-2014; Krokovny, Pavel/G-4421-2016; Chistov, Ruslan/B-4893-2014 OI Trabelsi, Karim/0000-0001-6567-3036; Jen, Chun-Min/0000-0003-4070-8866; HSIUNG, YEE/0000-0003-4801-1238; CHANG, PAO-TI/0000-0003-4064-388X; Drutskoy, Alexey/0000-0003-4524-0422; dong, liaoyuan/0000-0002-4773-5050; Aihara, Hiroaki/0000-0002-1907-5964; Tian, Xinchun/0000-0002-6246-0470; Ishino, Hirokazu/0000-0002-8623-4080; Pakhlov, Pavel/0000-0001-7426-4824; Uglov, Timofey/0000-0002-4944-1830; Danilov, Mikhail/0000-0001-9227-5164; Krokovny, Pavel/0000-0002-1236-4667; Chistov, Ruslan/0000-0003-1439-8390 NR 23 TC 33 Z9 33 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 9 PY 2006 VL 96 IS 22 AR 221601 DI 10.1103/PhysRevLett.96.221601 PG 5 WC Physics, Multidisciplinary SC Physics GA 051LA UT WOS:000238161400012 PM 16803300 ER PT J AU Park, K Pan, M Meunier, V Plummer, E AF Park, K. T. Pan, M. H. Meunier, V. Plummer, E. W. TI Surface reconstructions of TiO2(110) driven by suboxides SO PHYSICAL REVIEW LETTERS LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; TITANIUM-DIOXIDE; OVERLAYERS; METALS; STATES; GOLD AB Scanning tunneling microscopy and density functional theory are used to develop a new structural model for surface reconstructions driven by Ti interstitials on TiO2(110). Ti interstitials form the edge- or face-sharing octahedra that serve as building blocks for (1x1) reconstruction. Thus, contrary to conventional wisdom, the 1x1 periodicity is insufficient to establish the correct surface stoichiometry. Furthermore, in our structural and compositional model the reversible oxidation or reduction between (1x1) and (1x2) is entirely achieved by transfer of the added rows. C1 Baylor Univ, Dept Phys, Waco, TX 76798 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Park, K (reprint author), Baylor Univ, Dept Phys, Waco, TX 76798 USA. RI Meunier, Vincent/F-9391-2010 OI Meunier, Vincent/0000-0002-7013-179X NR 29 TC 39 Z9 39 U1 3 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 9 PY 2006 VL 96 IS 22 AR 226105 DI 10.1103/PhysRevLett.96.226105 PG 4 WC Physics, Multidisciplinary SC Physics GA 051LA UT WOS:000238161400039 PM 16803327 ER PT J AU Streitz, FH Glosli, JN Patel, MV AF Streitz, FH Glosli, JN Patel, MV TI Beyond finite-size scaling in solidification simulations SO PHYSICAL REVIEW LETTERS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; LENNARD-JONES SYSTEM; HOMOGENEOUS NUCLEATION; TRANSITION-METALS; CRYSTAL NUCLEATION; BLUE-GENE/L; CRYSTALLIZATION; PERCOLATION; LIQUIDS; MODEL AB Although computer simulation has played a central role in the study of nucleation and growth since the earliest molecular dynamics simulations almost 50 years ago, confusion surrounding the effect of finite size on such simulations has limited their applicability. Modeling solidification in molten tantalum on the Blue Gene/L computer, we report here on the first atomistic simulation of solidification that verifies independence from finite-size effects during the entire nucleation and growth process, up to the onset of coarsening. We show that finite-size scaling theory explains the observed maximal grain sizes for systems up to about 8 000 000 atoms. For larger simulations, a crossover from finite-size scaling to more physical size-independent behavior is observed. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Streitz, FH (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. OI Patel, Mehul/0000-0002-0486-010X NR 26 TC 41 Z9 41 U1 1 U2 13 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 9 PY 2006 VL 96 IS 22 AR 225701 DI 10.1103/PhysRevLett.96.225701 PG 4 WC Physics, Multidisciplinary SC Physics GA 051LA UT WOS:000238161400034 PM 16803322 ER PT J AU Tischler, J Eres, G Larson, B Rouleau, CM Zschack, P Lowndes, DH AF Tischler, J Eres, G Larson, B Rouleau, CM Zschack, P Lowndes, DH TI Nonequilibrium interlayer transport in pulsed laser deposition SO PHYSICAL REVIEW LETTERS LA English DT Article ID THIN-FILM GROWTH; BY-LAYER GROWTH; DIFFRACTION; EPITAXY AB We use time-resolved surface x-ray diffraction measurements with microsecond range resolution to study the growth kinetics of pulsed laser deposited SrTiO3. Time-dependent surface coverages corresponding to single laser shots were determined directly from crystal truncation rod intensity transients. Analysis of surface coverage evolution shows that extremely fast nonequilibrium interlayer transport, which occurs concurrently with the arrival of the laser plume, dominates the deposition process. A much smaller fraction of material, which is governed by the dwell time between successive laser shots, is transferred by slow, thermally driven interlayer transport processes. C1 Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. RP Tischler, J (reprint author), Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. EM eresg@ornl.gov RI Rouleau, Christopher/Q-2737-2015; Eres, Gyula/C-4656-2017 OI Rouleau, Christopher/0000-0002-5488-3537; Eres, Gyula/0000-0003-2690-5214 NR 24 TC 29 Z9 29 U1 1 U2 12 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 9 PY 2006 VL 96 IS 22 AR 226104 DI 10.1103/PhysRevLett.96.226104 PG 4 WC Physics, Multidisciplinary SC Physics GA 051LA UT WOS:000238161400038 PM 16803326 ER PT J AU van Schilfgaarde, M Kotani, T Faleev, S AF van Schilfgaarde, M. Kotani, Takao Faleev, S. TI Quasiparticle self-consistent GW theory SO PHYSICAL REVIEW LETTERS LA English DT Article ID GREENS-FUNCTION; ELECTRON-GAS; SEMICONDUCTORS; APPROXIMATION; METALS; ENERGY; STATES AB In past decades the scientific community has been looking for a reliable first-principles method to predict the electronic structure of solids with high accuracy. Here we present an approach which we call the quasiparticle self-consistent GW approximation. It is based on a kind of self-consistent perturbation theory, where the self-consistency is constructed to minimize the perturbation. We apply it to selections from different classes of materials, including alkali metals, semiconductors, wide band gap insulators, transition metals, transition metal oxides, magnetic insulators, and rare earth compounds. Apart from some mild exceptions, the properties are very well described, particularly in weakly correlated cases. Self-consistency dramatically improves agreement with experiment, and is sometimes essential. Discrepancies with experiment are systematic, and can be explained in terms of approximations made. C1 Arizona State Univ, Tempe, AZ 85287 USA. Sandia Natl Labs, Livermore, CA 94551 USA. RP van Schilfgaarde, M (reprint author), Arizona State Univ, Tempe, AZ 85287 USA. RI kotani, takao/G-4355-2011 OI kotani, takao/0000-0003-1693-7052 NR 22 TC 367 Z9 367 U1 5 U2 54 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 9 PY 2006 VL 96 IS 22 AR 226402 DI 10.1103/PhysRevLett.96.226402 PG 4 WC Physics, Multidisciplinary SC Physics GA 051LA UT WOS:000238161400044 PM 16803332 ER PT J AU Zhou, GW Wang, L Birtcher, RC Baldo, PM Pearson, J Yang, J Eastman, J AF Zhou, GW Wang, L Birtcher, RC Baldo, PM Pearson, J Yang, J Eastman, J TI Cu2O island shape transition during Cu-Au alloy oxidation SO PHYSICAL REVIEW LETTERS LA English DT Article ID DIFFUSION-LIMITED AGGREGATION; PATTERN-FORMATION; GROWTH; SURFACES; NANOSTRUCTURES; NUCLEATION; CU(001); DESIGN; OXYGEN; MODEL AB In situ transmission electron microscopy observations of the oxidation of (001) Cu-Au alloys indicate that the Cu2O islands that form undergo a remarkable transformation from an initially compact morphology to a dendritic structure as growth proceeds. Correspondingly, the surface composition becomes nonuniform and the fractal dimension associated with the islands evolves from 2.0 to a stable value of 1.87, indicating a transition in the rate-limiting mechanism of oxidation from oxygen surface diffusion to diffusion of copper through the increasingly gold-rich regions adjacent to the islands. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Univ Pittsburgh, Dept Mat Sci & Engn, Pittsburgh, PA 15261 USA. RP Eastman, J (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jeastman@anl.gov RI Eastman, Jeffrey/E-4380-2011; OI Eastman, Jeff/0000-0002-0847-4265 NR 30 TC 29 Z9 29 U1 2 U2 21 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 9 PY 2006 VL 96 IS 22 AR 226108 DI 10.1103/PhysRevLett.96.226108 PG 4 WC Physics, Multidisciplinary SC Physics GA 051LA UT WOS:000238161400042 PM 16803330 ER PT J AU Zhu, W Sabbagh, S Bell, R Bialek, J Bell, M LeBlanc, B Kaye, S Levinton, F Menard, J Shaing, K Sontag, A Yuh, H AF Zhu, W Sabbagh, S Bell, R Bialek, J Bell, M LeBlanc, B Kaye, S Levinton, F Menard, J Shaing, K Sontag, A Yuh, H TI Observation of plasma toroidal-momentum dissipation by neoclassical toroidal viscosity SO PHYSICAL REVIEW LETTERS LA English DT Article ID RESISTIVE WALL MODE; SPHERICAL-TORUS-EXPERIMENT; ROTATING PLASMAS; TOKAMAK PLASMAS; TEARING MODES; DIII-D; NSTX; STABILIZATION; TRANSPORT; STABILITY AB Dissipation of plasma toroidal angular momentum is observed in the National Spherical Torus Experiment due to applied nonaxisymmetric magnetic fields and their plasma-induced increase by resonant field amplification and resistive wall mode destabilization. The measured decrease of the plasma toroidal angular momentum profile is compared to calculations of nonresonant drag torque based on the theory of neoclassical toroidal viscosity. Quantitative agreement between experiment and theory is found when the effect of toroidally trapped particles is included. C1 Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. Princeton Univ, Nova Photon, Princeton, NJ 08543 USA. Univ Wisconsin, Madison, WI 53706 USA. RP Zhu, W (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. RI Sabbagh, Steven/C-7142-2011; OI Menard, Jonathan/0000-0003-1292-3286 NR 25 TC 129 Z9 131 U1 1 U2 15 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 9 PY 2006 VL 96 IS 22 AR 225002 DI 10.1103/PhysRevLett.96.225002 PG 4 WC Physics, Multidisciplinary SC Physics GA 051LA UT WOS:000238161400029 PM 16803317 ER PT J AU Ojima, DS Wall, DH Moore, J Galvin, K Hobbs, NT Hunt, WH Paustian, K Swift, D Boone, RB Conant, RT Klein, J Christensen, L Sankaran, M Ratnam, J Ayres, E Steltzer, H Simmons, B Williams, G AF Ojima, DS Wall, DH Moore, J Galvin, K Hobbs, NT Hunt, WH Paustian, K Swift, D Boone, RB Conant, RT Klein, J Christensen, L Sankaran, M Ratnam, J Ayres, E Steltzer, H Simmons, B Williams, G TI Don't sell social science short SO SCIENCE LA English DT Letter C1 Colorado State Univ, NREL, Ft Collins, CO 80523 USA. RP Ojima, DS (reprint author), Colorado State Univ, NREL, Ft Collins, CO 80523 USA. RI Ayres, Edward/A-4172-2008; Wall, Diana/F-5491-2011; Conant, Richard/B-7586-2013; Boone, Randall/N-6566-2013; Moore, John/E-9802-2011; Hobbs, Tom/C-5263-2016; Ojima, Dennis/C-5272-2016; Paustian, Keith/L-7593-2016 OI Ayres, Edward/0000-0001-5190-258X; Conant, Richard/0000-0001-7315-2476; NR 0 TC 1 Z9 1 U1 0 U2 7 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUN 9 PY 2006 VL 312 IS 5779 BP 1470 EP 1470 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 050XT UT WOS:000238124100017 PM 16763130 ER PT J AU Mougous, JD Cuff, ME Raunser, S Shen, A Zhou, M Gifford, CA Goodman, AL Joachimiak, G Ordonez, CL Lory, S Walz, T Joachimiak, A Mekalanos, JJ AF Mougous, JD Cuff, ME Raunser, S Shen, A Zhou, M Gifford, CA Goodman, AL Joachimiak, G Ordonez, CL Lory, S Walz, T Joachimiak, A Mekalanos, JJ TI A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus SO SCIENCE LA English DT Article ID ACUTE INFECTION; GENES; TRANSLOCATION; SYSTEM; CLPB; ICMF AB Bacterial pathogens frequently use protein secretion to mediate interactions with their hosts. Here we found that a virulence locus (HSI-I) of Pseudomonas aeruginosa encodes a protein secretion apparatus. The apparatus assembled in discrete subcellular locations and exported Hcp1, a hexameric protein that forms rings with a 40 angstrom internal diameter. Regulatory patterns of HSI-I suggested that the apparatus functions during chronic infections. We detected Hcp1 in pulmonary secretions of cystic fibrosis (CF) patients and Hcp1-specific antibodies in their sera. Thus, HSI-I likely contributes to the pathogenesis of P. aeruginosa in CF patients. HSI-I-related loci are widely distributed among bacterial pathogens and may play a general role in mediating host interactions. C1 Harvard Univ, Sch Med, Dept Microbiol & Mol Genet, Boston, MA 02115 USA. Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA. Argonne Natl Lab, Midw Ctr Struct Genom & Struct Biol Ctr, Biosci Div, Argonne, IL 60439 USA. Harvard Univ, Sch Med, Childrens Hosp Boston, Div Resp Dis, Boston, MA 02115 USA. Harvard Univ, Sch Med, Childrens Hosp Boston, Cyst Fibrosis Ctr, Boston, MA 02115 USA. Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA. RP Joachimiak, A (reprint author), Harvard Univ, Sch Med, Dept Microbiol & Mol Genet, Boston, MA 02115 USA. EM andrzejj@anl.gov; John_Mekalanos@hms.harvard.edu OI Raunser, Stefan/0000-0001-9373-3016 FU NIAID NIH HHS [R01 AI021451, AI21451, AI26289, R01 AI026289, R37 AI021451]; NIGMS NIH HHS [GM074942, GM62414, P50 GM062414, P50 GM062414-02, U54 GM074942, U54 GM074942-04S2] NR 17 TC 468 Z9 499 U1 7 U2 68 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUN 9 PY 2006 VL 312 IS 5779 BP 1526 EP 1530 DI 10.1126/science.1128393 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 050XT UT WOS:000238124100049 PM 16763151 ER PT J AU Durakiewicz, T Sikora, J Halas, S AF Durakiewicz, T Sikora, J Halas, S TI Work function variations of incandescent filaments during self-cooling in vacuum SO VACUUM LA English DT Article DE adsorption; electron emission; incandescent filament; self-cooling; work function ID METAL-SURFACES AB A novel method of dynamic measurement of work function (WF) variations of hot metal filaments is described. It is essential in this method that electron emission current (I-e) is recorded during filament self-cooling when no heating power is supplied, thereby I-e is not disturbed by the potential gradient along the filament. WIF shift due to the presence of a low-pressure gas, where the main active compounds are O-2 and H2O, is calculated from an equation derived on the basis of the Richardson formula. The relative increase of WF found by this method was 5 times larger for tungsten than that for tantalum over the entire temperature range from 900 to 1800 K. Our method may be used in research studies of adsorption-related phenomena on metallic surfaces at high temperatures. (c) 2006 Elsevier Ltd. All rights reserved. C1 Marie Curie Sklodowska Univ, Inst Phys, PL-20031 Lublin, Poland. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Tech Univ Lublin, Dept Automat & Metrol, PL-20618 Lublin, Poland. RP Halas, S (reprint author), Marie Curie Sklodowska Univ, Inst Phys, PL-20031 Lublin, Poland. EM stanislaw.halas@umcs.lublin.pl RI Sikora, Jaroslaw/L-3762-2013; OI Durakiewicz, Tomasz/0000-0002-1980-1874 NR 10 TC 1 Z9 1 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0042-207X J9 VACUUM JI Vacuum PD JUN 9 PY 2006 VL 80 IS 8 BP 894 EP 898 DI 10.1016/j.vacuum.2005.11.071 PG 5 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 053KH UT WOS:000238303500010 ER PT J AU Gleckler, PJ Sperber, KR AchutaRao, K AF Gleckler, P. J. Sperber, K. R. AchutaRao, K. TI Annual cycle of global ocean heat content: Observed and simulated SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID HARMONIC-ANALYSIS; CLIMATE SYSTEM; SEASONAL CYCLE; WORLDS OCEANS; INDIAN-OCEAN; MODEL; ATMOSPHERE; CIRCULATION; PRECIPITATION; SENSITIVITY AB [1] This study focuses on the annual cycle of global ocean heat content and its variation with depth. Our primary objective is to evaluate a recent suite of coupled ocean-atmosphere simulations of the twentieth century in the context of available observations. In support of this objective, we extend the analysis and interpretation of observational estimates. In many respects, the collection of models examined compare well with observations. The largest signal in the annual cycle of ocean heat content is in the midlatitudes, where all the models do a credible job of capturing the amplitude, phasing, and depth penetration. Judging the models' performance at high latitudes is more complex because of the sparseness of observations and complications owing to the presence of sea ice. The most obvious problems identified in this study are in the tropics, where many climate models continue to have troublesome biases. C1 Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94550 USA. RP Gleckler, PJ (reprint author), Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, 700 East Ave,POB 808,L-103, Livermore, CA 94550 USA. EM gleckler1@llnl.gov RI Gleckler, Peter/H-4762-2012; Sperber, Kenneth/H-2333-2012 OI Gleckler, Peter/0000-0003-2816-6224; NR 35 TC 9 Z9 10 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD JUN 8 PY 2006 VL 111 IS C6 AR C06008 DI 10.1029/2005JC003223 PG 14 WC Oceanography SC Oceanography GA 052GE UT WOS:000238219800001 ER PT J AU McKinney, GW Lawrence, DJ Prettyman, TH Elphic, RC Feldman, WC Hagerty, JJ AF McKinney, G. W. Lawrence, D. J. Prettyman, T. H. Elphic, R. C. Feldman, W. C. Hagerty, J. J. TI MCNPX benchmark for cosmic ray interactions with the Moon SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID INTRANUCLEAR-CASCADE CALCULATION; PARTICLES; SPECTRA; SOLAR AB [1] The MCNPX radiation transport code is used to simulate cosmic ray interactions within the Moon. Accurate source, geometric, and physics models are developed to successfully benchmark neutron density results with Apollo 17 measurements. The peak of the MCNPX lunar neutron density profile is shown to be within a few percent of the measured value, using a galactic cosmic rays modulation parameter that is consistent with the timeframe of the Apollo 17 mission. Sensitivity of the density profile to various input parameters and physics options is considered. Details of the simulation input are provided, along with neutron production and flux results, to facilitate additional benchmark efforts in the future. C1 Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Computat Anal & Simulat Grp, Los Alamos, NM 87545 USA. RP McKinney, GW (reprint author), Los Alamos Natl Lab, Space Sci & Applicat Grp, MS D-466, Los Alamos, NM 87545 USA. EM djlawrence@lanl.gov RI Lawrence, David/E-7463-2015; OI Lawrence, David/0000-0002-7696-6667; Prettyman, Thomas/0000-0003-0072-2831 NR 35 TC 52 Z9 52 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUN 8 PY 2006 VL 111 IS E6 AR E06004 DI 10.1029/2005JE002551 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 052GI UT WOS:000238220200001 ER PT J AU DeLongchamp, DM Jung, YS Fischer, DA Lin, EK Chang, P Subramanian, V Murphy, AR Frechet, JMJ AF DeLongchamp, DM Jung, YS Fischer, DA Lin, EK Chang, P Subramanian, V Murphy, AR Frechet, JMJ TI Correlating molecular design to microstructure in thermally convertible oligothiophenes: The effect of branched versus linear end groups SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID FIELD-EFFECT MOBILITY; THIN-FILM TRANSISTORS; ELECTRONIC-STRUCTURE; THIOPHENE OLIGOMERS; CHARGE-TRANSPORT; ORGANIC SEMICONDUCTOR; CONJUGATED OLIGOMERS; SEXITHIOPHENE FILMS; SINGLE-CRYSTAL; PENTACENE AB The thin film microstructure development of functionalized oligothiophenes with branched, thermally removable groups at each end of conjugated cores with five, six, and seven thiophene rings was monitored during their thermal conversion from solution processible precursors to insoluble semiconductor products. The change in end group character provides a comparison of branched vs linear end group functionalization in oligothiophenes. Near edge X-ray absorption fine structure (NEXAFS) spectroscopy confirmed that branched alpha-, omega-substitutions of the precursors strongly influenced the packing of the conjugated core. The quinque- and sexithiophene precursors oriented perpendicular to the substrate, whereas the septithiophene precursor oriented parallel to the substrate, providing one of the first examples of length dependence in oligothiophene orientation. This dependence may be due to a packing mismatch between the conjugated cores and the branched end groups. The convertible septithiophene exhibits four distinct microstructures as it converts from precursor to product that correlate strongly with its field-effect hole mobility in field-effect transistors. The extent of septithiophene order and the surface-relative orientation of its ordered phases clearly influence field-effect transistor performance. C1 Natl Inst Stand & Technol, Mat Sci & Engn Lab, Gaithersburg, MD 20899 USA. Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP DeLongchamp, DM (reprint author), Natl Inst Stand & Technol, Div Polymers, Gaithersburg, MD 20899 USA. EM deand@nist.gov RI Subramanian, Vivek/K-9818-2016; OI Subramanian, Vivek/0000-0002-1783-8219; Frechet, Jean /0000-0001-6419-0163 NR 37 TC 18 Z9 18 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUN 8 PY 2006 VL 110 IS 22 BP 10645 EP 10650 DI 10.1021/jp060667t PG 6 WC Chemistry, Physical SC Chemistry GA 048NO UT WOS:000237954000010 PM 16771310 ER PT J AU Zhu, HG Liang, CD Yan, WF Overbury, SH Dai, S AF Zhu, HG Liang, CD Yan, WF Overbury, SH Dai, S TI Preparation of highly active silica-supported Au catalysts for CO oxidation by a solution-based technique SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID LOW-TEMPERATURE OXIDATION; GOLD NANOPARTICLES; MESOPOROUS SILICA; CARBON-MONOXIDE; TITANIA; CHLORIDE; TIO2; IONS; SIZE; H-2 AB Although Au catalysts can be readily prepared on titania via the deposition-precipitation (DP) method, the direct application of the method similar to the preparation of silica-supported Au catalysts only results in diminished success. This paper reports a novel, efficient method to synthesize highly active Au catalysts supported on mesoporous silica (SBA-15) through a gold cationic complex precursor [Au(en)(2)](3+) (en = ethylenediamine) via a wet chemical process. The gold cationic precursor was immobilized on negatively charged surfaces of silica by a unique DP method that makes use of the deprotonation reaction of ethylenediamine ligands. The resulting mesoporous catalyst has been demonstrated to be highly active for CO oxidation at room temperature and even below 273 K, the activity of which is much superior to that of silica-supported Au catalysts previously prepared by various solution techniques. The pH value of the gold precursor solution plays a key role in determining the catalytic activity through the regulation of [Au(en)(2)](3+) deprotonation reaction and the surface interaction of silica with the gold precursor. This mesoporous gold silica catalyst has also been shown to be highly resistant to sintering because of the stabilization of Au nanoparticles inside mesopores. C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM dais@ornl.gov RI Liang, Chengdu/G-5685-2013; Overbury, Steven/C-5108-2016; Dai, Sheng/K-8411-2015 OI Overbury, Steven/0000-0002-5137-3961; Dai, Sheng/0000-0002-8046-3931 NR 37 TC 141 Z9 147 U1 3 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUN 8 PY 2006 VL 110 IS 22 BP 10842 EP 10848 DI 10.1021/jp060637q PG 7 WC Chemistry, Physical SC Chemistry GA 048NO UT WOS:000237954000035 PM 16771335 ER PT J AU Lee, I Greenbaum, E Budy, S Hillebrecht, JR Birge, RR Stuart, JA AF Lee, I Greenbaum, E Budy, S Hillebrecht, JR Birge, RR Stuart, JA TI Photoinduced surface potential change of bacteriorhodopsin mutant D96N measured by scanning surface potential microscopy SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID WILD-TYPE BACTERIORHODOPSIN; PROBE FORCE MICROSCOPY; ANGSTROM RESOLUTION; PURPLE MEMBRANE; CRYSTALLOGRAPHIC STRUCTURE; STRUCTURAL-CHANGES; PROTON TRANSPORT; WATER-MOLECULES; SCHIFF-BASE; M-STATE AB We report the direct measurement of photoinduced surface potential differences of wild-type (WT) and mutant D96N bacteriorhodopsin ( BR) membranes at pH 7 and 10.5. Atomic force microscopy (AFM) and scanning surface potential microscopy (SSPM) were used to measure the BR membrane with the extracellular side facing up. We present AFM and SSPM images of WT and mutant D96N in which the light-dark transition occurred in the mid-scan of a single BR membrane. Photosteady-state populations of the M state were generated to facilitate measurement in each sample. The photoinduced surface potential of D96N is 63 mV (peak to valley) at pH 10.5 and is 48 mV at pH 7. The photoinduced surface potential of WT is 37 mV at pH 10.5 and similar to 0 at pH 7. Signal magnitudes are proportional to the amount of M produced at each pH. The results indicated that the surface potentials were generated by photoformation of surface charges on the extracellular side of the membrane. Higher surface potential correlated with a longer lifetime of the charges. A mechanistic basis for these signals is proposed, and it is concluded that they represent a steady-state measurement of the B2 photovoltage. C1 Univ Tennessee, Dept Elect & Comp Engn, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Syracuse Univ, Dept Chem, Syracuse, NY 13244 USA. Syracuse Univ, WM Keck Ctr Mol Elect, Syracuse, NY 13244 USA. Univ Connecticut, Dept Chem, Storrs, CT 06269 USA. RP Lee, I (reprint author), Univ Tennessee, Dept Elect & Comp Engn, Knoxville, TN 37996 USA. EM ilee1@utk.edu; jeffrey.stuart@uconn.edu FU NIGMS NIH HHS [R01 GM034548, R01 GM034548-17, GM-34548] NR 59 TC 15 Z9 15 U1 1 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUN 8 PY 2006 VL 110 IS 22 BP 10982 EP 10990 DI 10.1021/jp052948r PG 9 WC Chemistry, Physical SC Chemistry GA 048NO UT WOS:000237954000051 PM 16771351 ER PT J AU Muraoka-Cook, RS Shin, I Yi, JY Easterly, E Barcellos-Hoff, MH Yingling, JM Zent, R Arteaga, CL AF Muraoka-Cook, RS Shin, I Yi, JY Easterly, E Barcellos-Hoff, MH Yingling, JM Zent, R Arteaga, CL TI Activated type I TGF beta receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression SO ONCOGENE LA English DT Article DE TGF beta; mammary cancer; transgenic mice; PI-3 kinase; involution; oncogenes ID GROWTH-FACTOR-BETA; TRANSFORMING GROWTH-FACTOR-BETA-1 TRANSGENE; SIGNAL-TRANSDUCTION; GLAND INVOLUTION; C-MYC; PHOSPHATIDYLINOSITOL 3-KINASE; MESENCHYMAL TRANSITION; TGF-BETA-1 EXPRESSION; CANCER-CELLS; MICE AB We have examined the effects of transforming growth factor-beta (TGF beta) signaling on mammary epithelial cell survival. Transgenic mice expressing an active mutant of Alk5 in the mammary gland (MMTV-Alk5(T204D)) exhibited reduced apoptosis in terminal endbuds and during postlactational involution. Transgene-expressing mammary cells contained lower Smad2/3 and higher c-myc levels than controls, high ligand-independent phosphatidylinositol-3 kinase (PI3K) and Akt activities, and were insensitive to TGF beta-mediated growth arrest. Treatment with a proteasome inhibitor increased Smad2/3 levels and ligand-independent Smad transcriptional reporter activity, as well as reduced both c-myc protein and basal cell proliferation. Treatment with an Alk5 kinase small-molecule inhibitor upregulated Smad2/3 levels, reduced PI3K activity, P-Akt, and c-myc, and inhibited cell survival. Although Alk5(T204D)-expressing mice did not develop mammary tumors, bigenic MMTV-Alk(T204D) x Neu mice developed cancers that were more metastatic than those occurring in MMTV-Neu transgenics. These data suggest that (1) TGF beta can signal to PI3K/Akt and enhance mammary epithelial cell survival in vivo before cytological or histological evidence of transformation, and (2) TGF beta signaling can provide epithelial cells with a 'gain-of-function' effect that synergizes with oncogene-induced transformation. C1 Vanderbilt Univ, Sch Med, Div Oncol, Dept Canc Biol, Nashville, TN 37232 USA. Vanderbilt Univ, Sch Med, Dept Med, Nashville, TN 37232 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. Eli Lilly & Co, Lilly Res Labs, Indianapolis, IN 46285 USA. Vet Affairs Hosp, Dept Med Res, Nashville, TN 37232 USA. Vanderbilt Univ, Sch Med, Vanderbilt Ingram Canc Ctr, Breast Canc Res Program, Nashville, TN 37232 USA. Hanyang Univ, Dept Life Sci, Seoul 133791, South Korea. RP Arteaga, CL (reprint author), Vanderbilt Univ, Sch Med, Div Oncol, Dept Canc Biol, 2220 Pierce Ave,777 Preston Res Bldg, Nashville, TN 37232 USA. EM carlos.arteaga@vanderbilt.edu FU NCI NIH HHS [R010 CA62212, P50 CA98131, P30 CA68485, R01 CA80195]; NIA NIH HHS [R01 AG022413]; NIDDK NIH HHS [R01 DK069921] NR 58 TC 96 Z9 100 U1 0 U2 1 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0950-9232 J9 ONCOGENE JI Oncogene PD JUN 8 PY 2006 VL 25 IS 24 BP 3408 EP 3423 DI 10.1038/sj.onc.1208964 PG 16 WC Biochemistry & Molecular Biology; Oncology; Cell Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Oncology; Cell Biology; Genetics & Heredity GA 055KB UT WOS:000238448100006 PM 16186809 ER PT J AU Adams, J Aggarwal, MM Ahammed, Z Amonett, J Anderson, BD Anderson, M Arkhipkin, D Averichev, GS Badyal, SK Bai, Y Balewski, J Barannikova, O Barnby, LS Baudot, J Bekele, S Belaga, VV Bellingeri-Laurikainen, A Bellwied, R Bezverkhny, BI Bharadwaj, S Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Billmeier, A Bland, LC Blyth, CO Blyth, SL Bonner, BE Botje, M Bouchet, J Brandin, AV Bravar, A Bystersky, M Cadman, RV Cai, XZ Caines, H Sanchez, MCD Castillo, J Catu, O Cebra, D Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, Y Cheng, J Cherney, M Chikanian, A Choi, HA Christie, W Coffin, JP Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Das, S Daugherity, M de Moura, MM Dedovich, TG DePhillips, M Derevschikov, AA Didenko, L Dietel, T Djawotho, P Dogra, SM Dong, WJ Dong, X Draper, JE Du, F Dunin, VB Dunlop, JC Mazumdar, MRD Eckardt, V Edwards, WR Efimov, LG Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Fachini, P Fatemi, R Fedorisin, J Filimonov, K Filip, P Finch, E Fine, V Fisyak, Y Fornazier, KSF Fu, J Gagliardi, CA Gaillard, L Gans, J Ganti, MS Ghazikhanian, V Ghosh, P Gonzalez, JE Gorbunov, YG Gos, H Grachov, O Grebenyuk, O Grosnick, D Guertin, SM Guo, Y Gupta, A Gupta, N Gutierrez, TD Haag, B Hallman, TJ Hamed, A Harris, JW He, W Heinz, M Henry, TW Hepplemann, S Hippolyte, B Hirsch, A Hjort, E Hoffmann, GW Horner, MJ Huang, HZ Huang, SL Hughes, EW Humanic, TJ Igo, G Jacobs, P Jacobs, WW Jakl, P Jia, F Jiang, H Jones, PG Judd, EG Kabana, S Kang, K Kapitan, J Kaplan, M Keane, D Kechechyan, A Khodyrev, VY Kim, BC Kiryluk, J Kisiel, A Kislov, EM Klein, SR Koetke, DD Kollegger, T Kopytine, M Kotchenda, L Kouchpil, V Kowalik, KL Kramer, M Kravtsov, P Kravtsov, VI Krueger, K Kuhn, C Kulikov, AI Kumar, A Kuznetsov, AA Lamont, MAC Landgraf, JM Lange, S Laue, F Lauret, J Lebedev, A Lednicky, R Lee, CH Lehocka, S LeVine, MJ Li, C Li, Q Li, Y Lin, G Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Liu, L Liu, Z Ljubicic, T Llope, WJ Long, H Longacre, RS Lopez-Noriega, M Love, WA Lu, Y Ludlam, T Lynn, D Ma, GL Ma, JG Ma, YG Magestro, D Mahajan, S Mahapatra, DP Majka, R Mangotra, LK Manweiler, R Margetis, S Markert, C Martin, L Matis, HS Matulenko, YA McClain, CJ McShane, TS Melnick, Y Meschanin, A Miller, ML Minaev, NG Mioduszewski, S Mironov, C Mischke, A Mishra, DK Mitchell, J Mohanty, B Molnar, L Moore, CE Morozov, DA Munhoz, MG Nandi, BK Nayak, SK Nayak, TK Nelson, JM Netrakanti, PK Nikitin, VA Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okorokov, V Oldenburg, M Olson, D Pachr, M Pal, SK Panebratsev, Y Panitkin, SY Pavlinov, AI Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Petrov, VA Phatak, SC Picha, R Planinic, M Pluta, J Pojak, N Porile, N Porter, J Poskanzer, AM Potekhin, M Potrebenikova, E Potukuchi, BVKS Prindle, D Pruneau, C Putschke, J Rakness, G Raniwala, R Raniwala, S Ray, RL Razin, SV Reinnarth, J Relyea, D Retiere, F Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Sahoo, R Sakrejda, I Salur, S Sandweiss, J Sarsour, M Savin, I Sazhin, PS Schambach, J Scharenberg, RP Schmitz, N Schweda, K Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shen, WQ Shimanskiy, SS Sichtermann, E Simon, F Singaraju, RN Smirnov, N Snellings, R Sood, G Sorensen, P Sowinski, J Speltz, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Stock, R Stolpovsky, A Strikhanov, M Stringfellow, B Suaide, AAP Sugarbaker, E Sumbera, M Sun, Z Surrow, B Swanger, M Symons, TJM de Toledo, AS Tai, A Takahashi, J Tang, AH Tarnowsky, T Thein, D Thomas, JH Timmins, AR Timoshenko, S Tokarev, M Trainor, TA Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van der Kolk, N van Leeuwen, M Vander Molen, AM Varma, R Vasilevski, IM Vasiliev, AN Vernet, R Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Waggoner, WT Wang, F Wang, G Wang, JS Wang, XL Wang, Y Watson, JW Webb, JC Westfall, GD Wetzler, A Whitten, C Wieman, H Wissink, SW Witt, R Wood, J Wu, J Xu, N Xu, QH Xu, Z Yepes, P Yoo, IK Yurevich, VI Zborovsky, I Zhan, W Zhang, H Zhang, WM Zhang, Y Zhang, ZP Zhao, Y Zhong, C Zoulkarneev, R Zoulkarneeva, Y Zubarev, AN Zuo, JX AF Adams, J. Aggarwal, M. M. Ahammed, Z. Amonett, J. Anderson, B. D. Anderson, M. Arkhipkin, D. Averichev, G. S. Badyal, S. K. Bai, Y. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Bekele, S. Belaga, V. V. Bellingeri-Laurikainen, A. Bellwied, R. Bezverkhny, B. I. Bharadwaj, S. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Billmeier, A. Bland, L. C. Blyth, C. O. Blyth, S. -L. Bonner, B. E. Botje, M. Bouchet, J. Brandin, A. V. Bravar, A. Bystersky, M. Cadman, R. V. Cai, X. Z. Caines, H. Sanchez, M. Calderon de la Barca Castillo, J. Catu, O. Cebra, D. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, Y. Cheng, J. Cherney, M. Chikanian, A. Choi, H. A. Christie, W. Coffin, J. P. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Das, S. Daugherity, M. de Moura, M. M. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. Didenko, L. Dietel, T. Djawotho, P. Dogra, S. M. Dong, W. J. Dong, X. Draper, J. E. Du, F. Dunin, V. B. Dunlop, J. C. Mazumdar, M. R. Dutta Eckardt, V. Edwards, W. R. Efimov, L. G. Emelianov, V. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Fachini, P. Fatemi, R. Fedorisin, J. Filimonov, K. Filip, P. Finch, E. Fine, V. Fisyak, Y. Fornazier, K. S. F. Fu, J. Gagliardi, C. A. Gaillard, L. Gans, J. Ganti, M. S. Ghazikhanian, V. Ghosh, P. Gonzalez, J. E. Gorbunov, Y. G. Gos, H. Grachov, O. Grebenyuk, O. Grosnick, D. Guertin, S. M. Guo, Y. Gupta, A. Gupta, N. Gutierrez, T. D. Haag, B. Hallman, T. J. Hamed, A. Harris, J. W. He, W. Heinz, M. Henry, T. W. Hepplemann, S. Hippolyte, B. Hirsch, A. Hjort, E. Hoffmann, G. W. Horner, M. J. Huang, H. Z. Huang, S. L. Hughes, E. W. Humanic, T. J. Igo, G. Jacobs, P. Jacobs, W. W. Jakl, P. Jia, F. Jiang, H. Jones, P. G. Judd, E. G. Kabana, S. Kang, K. Kapitan, J. Kaplan, M. Keane, D. Kechechyan, A. Khodyrev, V. Yu. Kim, B. C. Kiryluk, J. Kisiel, A. Kislov, E. M. Klein, S. R. Koetke, D. D. Kollegger, T. Kopytine, M. Kotchenda, L. Kouchpil, V. Kowalik, K. L. Kramer, M. Kravtsov, P. Kravtsov, V. I. Krueger, K. Kuhn, C. Kulikov, A. I. Kumar, A. Kuznetsov, A. A. Lamont, M. A. C. Landgraf, J. M. Lange, S. Laue, F. Lauret, J. Lebedev, A. Lednicky, R. Lee, C. -H. Lehocka, S. LeVine, M. J. Li, C. Li, Q. Li, Y. Lin, G. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Liu, L. Liu, Z. Ljubicic, T. Llope, W. J. Long, H. Longacre, R. S. Lopez-Noriega, M. Love, W. A. Lu, Y. Ludlam, T. Lynn, D. Ma, G. L. Ma, J. G. Ma, Y. G. Magestro, D. Mahajan, S. Mahapatra, D. P. Majka, R. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Martin, L. Matis, H. S. Matulenko, Yu. A. McClain, C. J. McShane, T. S. Melnick, Yu. Meschanin, A. Miller, M. L. Minaev, N. G. Mioduszewski, S. Mironov, C. Mischke, A. Mishra, D. K. Mitchell, J. Mohanty, B. Molnar, L. Moore, C. E. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nayak, S. K. Nayak, T. K. Nelson, J. M. Netrakanti, P. K. Nikitin, V. A. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okorokov, V. Oldenburg, M. Olson, D. Pachr, M. Pal, S. K. Panebratsev, Y. Panitkin, S. Y. Pavlinov, A. I. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Petrov, V. A. Phatak, S. C. Picha, R. Planinic, M. Pluta, J. Pojak, N. Porile, N. Porter, J. Poskanzer, A. M. Potekhin, M. Potrebenikova, E. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Putschke, J. Rakness, G. Raniwala, R. Raniwala, S. Ray, R. L. Razin, S. V. Reinnarth, J. Relyea, D. Retiere, F. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Sahoo, R. Sakrejda, I. Salur, S. Sandweiss, J. Sarsour, M. Savin, I. Sazhin, P. S. Schambach, J. Scharenberg, R. P. Schmitz, N. Schweda, K. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shen, W. Q. Shimanskiy, S. S. Sichtermann, E. Simon, F. Singaraju, R. N. Smirnov, N. Snellings, R. Sood, G. Sorensen, P. Sowinski, J. Speltz, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Stock, R. Stolpovsky, A. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Sugarbaker, E. Sumbera, M. Sun, Z. Surrow, B. Swanger, M. Symons, T. J. M. de Toledo, A. Szanto Tai, A. Takahashi, J. Tang, A. H. Tarnowsky, T. Thein, D. Thomas, J. H. Timmins, A. R. Timoshenko, S. Tokarev, M. Trainor, T. A. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van der Kolk, N. van Leeuwen, M. Vander Molen, A. M. Varma, R. Vasilevski, I. M. Vasiliev, A. N. Vernet, R. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Waggoner, W. T. Wang, F. Wang, G. Wang, J. S. Wang, X. L. Wang, Y. Watson, J. W. Webb, J. C. Westfall, G. D. Wetzler, A. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wood, J. Wu, J. Xu, N. Xu, Q. H. Xu, Z. Yepes, P. Yoo, I. -K. Yurevich, V. I. Zborovsky, I. Zhan, W. Zhang, H. Zhang, W. M. Zhang, Y. Zhang, Z. P. Zhao, Y. Zhong, C. Zoulkarneev, R. Zoulkarneeva, Y. Zubarev, A. N. Zuo, J. X. CA STAR Collaboration TI Identified hadron spectra at large transverse momentum in p+p and d+Au collisions at,root(NN)-N-S=200 GeV SO PHYSICS LETTERS B LA English DT Article DE particle production; perturbative quantum chromodynamics; fragmentation function; Cronin effect and x(T)-scating ID COLOR GLASS CONDENSATE; QUARK-GLUON PLASMA; P-P COLLISIONS; FRAGMENTATION FUNCTIONS; INCLUSIVE PRODUCTION; NUCLEUS COLLISIONS; BARYON PRODUCTION; PERTURBATIVE QCD; CROSS-SECTIONS; JETS AB We present the transverse momentum (PT) spectra for identified charged pions, protons and anti-protons from p + p and d + Au collisions at root sNN = 200 GeV. The spectra are measured around midrapidity (vertical bar y vertical bar < 0.5) over the range of 0.3 < PT < 10 GeV/c with particle identification from the ionization energy loss and its relativistic rise in the time projection chamber and time-of-flight in STAR. The charged pion and proton + anti-proton spectra at high PT in p + p and d + Au collisions are in good agreement with a phenomenological model (EPOS) and with next-to-leading order perturbative quantum chromodynamic (NLO pQCD) calculations with a specific fragmentation scheme and factorization scale. We found that all proton, anti-proton and charged pion spectra in p + p collisions follow x(T)-scating for the momentum range where particle production is dominated by hard processes (p(T) greater than or similar to 2 GeV/c). The nuclear modification factor around midrapidity is found to be greater than unity for charged pions and to be even larger for protons at 2 < PT < 5 GeV/c. (c) 2006 Elsevier B.V. All rights reserved. C1 Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Brookhaven Natl Lab, Upton, NY 11973 USA. CALTECH, Pasadena, CA 91125 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Creighton Univ, Omaha, NE 68178 USA. AS CR, Inst Nucl Phys, Rez 25068, Czech Republic. Joint Inst Nucl Res Dubna, Lab High Energy, Dubna, Russia. Joint Inst Nucl Res Dubna, Particle Phys Lab, Dubna, Russia. Goethe Univ Frankfurt, D-6000 Frankfurt, Germany. Inst Phys, Bhubaneswar 751005, Orissa, India. Indian Inst Technol, Bombay 400076, Maharashtra, India. Indiana Univ, Bloomington, IN 47408 USA. Inst Rech Subatom, Strasbourg, France. Univ Jammu, Jammu 180001, India. Kent State Univ, Kent, OH 44242 USA. Inst Modern Phys, Lanzhou, Peoples R China. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. MIT, Cambridge, MA 02139 USA. Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. Michigan State Univ, E Lansing, MI 48824 USA. Moscow Engn Phys Inst, Moscow 115409, Russia. CUNY City Coll, New York, NY 10031 USA. NIKHEF H, NL-1009 DB Amsterdam, Netherlands. Univ Utrecht, Amsterdam, Netherlands. Ohio State Univ, Columbus, OH 43210 USA. Panjab Univ, Chandigarh 160014, India. Penn State Univ, University Pk, PA 16802 USA. Inst High Energy Phys, Protvino, Russia. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rajasthan, Jaipur 302004, Rajasthan, India. Rice Univ, Houston, TX 77251 USA. Univ Sao Paulo, Sao Paulo, Brazil. Univ Sci & Technol China, Hefei 230026, Peoples R China. Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. SUBATECH, Nantes, France. Texas A&M Univ, College Stn, TX 77843 USA. Univ Texas, Austin, TX 78712 USA. Tsinghua Univ, Beijing 100084, Peoples R China. Valparaiso Univ, Valparaiso, IN 46383 USA. Warsaw Univ Technol, Warsaw, Poland. Univ Washington, Seattle, WA 98195 USA. Wayne State Univ, Detroit, MI 48201 USA. HZNU, CCNU, Inst Particle Phys, Wuhan 430079, Peoples R China. Yale Univ, New Haven, CT 06520 USA. Univ Zagreb, HR-10002 Zagreb, Croatia. RP Mohanty, B (reprint author), Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. EM bedanga@rcf.rhic.bnl.gov RI Strikhanov, Mikhail/P-7393-2014; Dogra, Sunil /B-5330-2013; Fornazier Guimaraes, Karin Silvia/H-4587-2016; Chaloupka, Petr/E-5965-2012; Suaide, Alexandre/L-6239-2016; van der Kolk, Naomi/M-9423-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Takahashi, Jun/B-2946-2012; Chen, Yu/E-3788-2012; Planinic, Mirko/E-8085-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Castillo Castellanos, Javier/G-8915-2013; Voloshin, Sergei/I-4122-2013; Lednicky, Richard/K-4164-2013; Zborovsky, Imrich/G-7964-2014; Barnby, Lee/G-2135-2010; Mischke, Andre/D-3614-2011; Cosentino, Mauro/L-2418-2014; Sumbera, Michal/O-7497-2014 OI Strikhanov, Mikhail/0000-0003-2586-0405; Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Suaide, Alexandre/0000-0003-2847-6556; van der Kolk, Naomi/0000-0002-8670-0408; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Castillo Castellanos, Javier/0000-0002-5187-2779; Barnby, Lee/0000-0001-7357-9904; Cosentino, Mauro/0000-0002-7880-8611; Sumbera, Michal/0000-0002-0639-7323 NR 68 TC 188 Z9 191 U1 0 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUN 8 PY 2006 VL 637 IS 3 BP 161 EP 169 DI 10.1016/j.physletb.2006.04.032 PG 9 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 053BP UT WOS:000238278900004 ER PT J AU Viola, VE Kwiatkowski, K Yennello, SJ Natowitz, JB AF Viola, VE Kwiatkowski, K Yennello, SJ Natowitz, JB TI Comment on breakup densities of hot nuclei SO PHYSICS LETTERS B LA English DT Article DE multifragmentation; breakup densities ID KINETIC-ENERGY RELEASE; FRAGMENT PRODUCTION; FISSION; PROTONS AB In [V.E. Viola et al., Phys. Rev. Lett. 93 (2004) 132701, D.S. Bracken et al., Phys. Rev. C 69 (2004) 034612] the observed decrease in spectral peak energies of IMFs emitted from hot nuclei was interpreted in terms of a breakup density that decreased with increasing excitation energy. Subsequently, Raduta et al. [Ad. Raduta et al., Phys. Lett. B 623 (2005) 43] performed MMM simulations that showed decreasing spectral peaks could be obtained at constant density. In this Letter we point out that this apparent inconsistency is due to a selective comparison of theory and data that overlooks the evolution of the fragment multiplicities as a function of excitation energy. (c) 2006 Elsevier B.V. All rights reserved. C1 Indiana Univ, IUCF, Bloomington, IN 47405 USA. Indiana Univ, Dept Chem, Bloomington, IN 47405 USA. Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. RP Viola, VE (reprint author), Indiana Univ, IUCF, Bloomington, IN 47405 USA. EM viola@indiana.edu RI Natowitz, Joseph/D-4160-2015; Yennello, Sherry/B-5803-2015 OI Yennello, Sherry/0000-0003-3963-5217 NR 16 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUN 8 PY 2006 VL 637 IS 3 BP 176 EP 178 DI 10.1016/j.physletb.2006.04.034 PG 3 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 053BP UT WOS:000238278900006 ER PT J AU Chasteen, SV Carter, SA Rumbles, G AF Chasteen, SV Carter, SA Rumbles, G TI The effect of broken conjugation on the excited state: Ether linkage in the cyano-substituted poly(p-phenylene vinylene) conjugated polymer poly(2,5,2 ',5 '-tetrahexyloxy-8,7 '-dicyano-di-p-phenylene vinylene) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TIME-RESOLVED PHOTOLUMINESCENCE; ISOLATED CHAINS; ELECTRONIC-SPECTRA; OPTICAL-ABSORPTION; PPV DERIVATIVES; CHARGE-TRANSFER; ENERGY-TRANSFER; MEH-PPV; CN-PPV; LUMINESCENCE AB We investigate the effect of broken conjugation on the excited state dynamics of excimers in cyano-substituted phenylene-vinylene polymers. We compare previous studies on the well-characterized poly(2,5,2, 5-tetrahexyloxy-8,7'-dicyano-di-p-phenylene ' vinylene) (CN-PPV) with poly[oxa-1,4-phenylene-1,2-(1-cyano)-ethenylene-2,5-dioctyloxy-1,4-phenylene-1,2-(2-cyano)-ethenylene-1,4-phenylene] (CN-ether-PPV), in which the conjugation is disrupted by the insertion of an oxygen atom within the polymer backbone.. Despite the broken conjugation, the spectroscopic behavior of the two materials is similar, indicating that the cyano group dominates the photophysics in these materials. The emission in CN-ether-PPV is due to a single-chain exciton in solution and due to an interchain excimer in thin film, as previously reported for CN-PPV; however, the excimer absorption and emission in thin film are blueshifted by similar to 0.2 eV relative to CN-PPV, implying that the excimer in CN-ether-PPV is less stable. Furthermore, substitution of an ether group along the chain results in decay times in both solution and film that are twice as long than in CN-PPV due to the broken conjugation which restricts the exciton within a conjugation segment and reduces its access to internal quenching sites. These properties result in a decay time of 14 ns for CN-ether-PPV film, one of the longest decay times observed in a conjugated polymer film. The long lifetime indicates a large exciton diffusion length, making these species particularly vulnerable to quenching by other materials. This work has implications for the design of conjugated polymers for efficient optoelectronic devices, such as photovoltaics. (c) 2006 American Institute of Physics. C1 Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Chasteen, SV (reprint author), Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. EM stephanie@physics.ucsc.edu; sacarter@ucsc.edu OI Rumbles, Garry/0000-0003-0776-1462 NR 41 TC 9 Z9 9 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 7 PY 2006 VL 124 IS 21 AR 214704 DI 10.1063/1.2196036 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 059UW UT WOS:000238758700037 PM 16774428 ER PT J AU Kim, JH Peterka, DS Wang, CC Neumark, DM AF Kim, Jeong Hyun Peterka, Darcy S. Wang, Chia C. Neumark, Daniel M. TI Photoionization of helium nanodroplets doped with rare gas atoms SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID LIQUID-HELIUM; CHARGE-TRANSFER; FRAGMENTATION DYNAMICS; SMALL CLUSTERS; HE DROPLETS; SPECTROSCOPY; MOLECULES; EXCITATIONS; CAPTURE; PROBE AB Photoionization of He droplets doped with, rare gas atoms (Rg=Ne, Ar, Kr, and Xe) was studied by time-of-flight mass spectrometry, utilizing synchrotron radiation from the Advanced Light Source from 10 to 30 eV. High resolution mass spectra were obtained at selected photon energies, and photoion yield curves Were measured for several ion masses (or ranges of ion masses) over a wide range of photon energies. Only indirect ionization of the dopant rare gas atoms was observed,, either by excitation or charge transfer from the surrounding He atoms. Significant dopant ionization from excitation transfer was seen at 21.6 eV, the maximum of He 2p P-1 absorption band for He droplets, and from charge transfer above 23 eV, the threshold for ionization of pure He droplets. No Ne+ or Ar+ signal from droplet photoionization was observed, but peaks from HenNe+ and HenAr+ were seen that clearly originated from droplets. For droplets doped with Rg=Kr or Xe, both Rg(+) and He(n)Rg(+) ions were observed. For all rare gases, Rg(2)(+) and He(n)Rg(m)(+) (n,m >= 1) were produced by droplet photoionization. Mechanisms of dopant ionization and subsequent dynamics are discussed. 0 2006 American Institute of Physics. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Neumark, Daniel/B-9551-2009 OI Neumark, Daniel/0000-0002-3762-9473 NR 32 TC 22 Z9 22 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 7 PY 2006 VL 124 IS 21 AR 214301 DI 10.1063/1.2202313 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 059UW UT WOS:000238758700010 PM 16774401 ER PT J AU Leng, YS Cummings, PT AF Leng, YS Cummings, PT TI Hydration structure of water confined between mica surfaces (vol 124, pg 074711, 2006) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Correction C1 Vanderbilt Univ, Dept Chem Engn, Nashville, TN 37235 USA. Oak Ridge Natl Lab, Ctr Nanophas Mat Sci, Nanomat Theory Inst, Oak Ridge, TN 37831 USA. RP Leng, YS (reprint author), Vanderbilt Univ, Dept Chem Engn, Nashville, TN 37235 USA. RI Cummings, Peter/B-8762-2013 OI Cummings, Peter/0000-0002-9766-2216 NR 1 TC 2 Z9 2 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 7 PY 2006 VL 124 IS 21 AR 219907 DI 10.1063/1.2206178 PG 1 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 059UW UT WOS:000238758700059 ER PT J AU Polyakova, E Stolyarov, D Wittig, C AF Polyakova, E Stolyarov, D Wittig, C TI Multiple photon excitation and ionization of NO in and on helium droplets SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID RARE-GAS MATRICES; MOLECULAR RYDBERG STATES; POTENTIAL-ENERGY SURFACE; LIQUID-HELIUM; SUPERFLUID-HELIUM; CONDENSED MATTER; SPECTROSCOPY; NANODROPLETS; CLUSTERS; DYNAMICS AB The photoexcitation of NO embedded in superfluid He-n nanodroplets having < n >similar to 10(4) has been examined. Two-photon excitation prepares electronically excited states (NO*), most notably, the embedded analog of the A 21 state of gas phase NO. Vertical excitation to this low Rydberg state is blueshifted and broadened relative to its gas phase counterpart. because of the repulsive electron-helium interaction. Transport to the droplet surface is believed to be facile in the superfluid. For example, NO* piefers (energetically) to reside at the droplet surface rather than at the droplet center, in contrast to NO. Photoionization of surface-bound NO* occurs over a significant photon energy range. This yields small cluster ions NO+Hek, with similar to 90% of these clusters having k <= 10. The variation of ion yield with photon energy displays a precipitous change in the region of 24 300-24 400 cm(-1) for all values of k. Possible photoionization mechanisms are discussed and it is suggested that intermediate levels with high-n Rydberg character play a role. This work underscores the important role played by transport in the photophysics of species embedded in the superfluid host. (c) 2006 American Institute of Physics. C1 Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. Columbia Univ, Dept Chem, New York, NY 10027 USA. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Polyakova, E (reprint author), Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. EM wittig@usc.edu NR 53 TC 10 Z9 10 U1 5 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 7 PY 2006 VL 124 IS 21 AR 214308 DI 10.1063/1.2198844 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 059UW UT WOS:000238758700017 PM 16774408 ER PT J AU Weber, V Daul, C Challacombe, M AF Weber, V Daul, C Challacombe, M TI Exchange energy gradients with respect to atomic positions and cell parameters within the Hartree-Fock Gamma-point approximation SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; FAST MULTIPOLE METHOD; CARTESIAN GAUSSIAN FUNCTIONS; LINEAR SCALING COMPUTATION; GENERAL FORMULA EVALUATION; ELECTRONIC-STRUCTURE; STEREOREGULAR POLYMERS; PERIODIC-SYSTEMS; INTEGRALS; ORBITALS AB Recently, linear scaling construction of the periodic exact Hartree-Fock exchange matrix within the F-point approximation has been introduced [J. Chem. Phys. 122, 124105 (2005)]. In this article, a formalism for evaluation of analytical Hartree-Fock exchange energy gradients with respect to atomic positions and cell parameters at the F-point approximation is presented. While the evaluation of exchange gradients with respect to atomic positions is similar to those in the gas phase limit, the gradients with respect to cell parameters involve the accumulation of atomic gradients multiplied by appropriate factors and a modified electron repulsion integral (ERI). This latter integral arises from use of the minimum image convention in the definition of the F-point Hartree-Fock approximation. We demonstrate how this new ERI can be computed with the help of a modified vertical recurrence relation in the frame of the Obara-Saika and Head-Gordon-Pople algorithm. As an illustration, the analytical gradients have been used in conjunction with the QUICCA algorithm [K. Nemeth and M. Challacombe, J. Chem. Phys. 121, 2877 (2004)] to optimize periodic. systems at the Hartree-Fock level of theory. (c) 2006 American Institute of Physics. C1 Univ Fribourg, Dept Chem, CH-1700 Fribourg, Switzerland. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Weber, V (reprint author), Univ Fribourg, Dept Chem, CH-1700 Fribourg, Switzerland. EM valeryw@lanl.gov NR 46 TC 3 Z9 3 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 7 PY 2006 VL 124 IS 21 AR 214105 DI 10.1063/1.2207625 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 059UW UT WOS:000238758700005 PM 16774396 ER PT J AU Mace, GG Benson, S Sonntag, KL Kato, S Min, QL Minnis, P Twohy, CH Poellot, M Dong, XQ Long, C Zhang, QQ Doelling, DR AF Mace, Gerald G. Benson, Sally Sonntag, Karen L. Kato, Seiji Min, Qilong Minnis, Patrick Twohy, Cynthia H. Poellot, Michael Dong, Xiquan Long, Charles Zhang, Qiuqing Doelling, David R. TI Cloud radiative forcing at the atmospheric radiation measurement program climate research facility: 1. Technique, validation, and comparison to satellite-derived diagnostic quantities SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID PARTICLE TERMINAL VELOCITIES; ICE WATER-CONTENT; ARM SGP SITE; MICROWAVE RADIOMETER; CIRRUS CLOUDS; STRATUS CLOUD; ACCURATE PARAMETERIZATION; MICROPHYSICAL PROPERTIES; DOPPLER RADAR; OPTICAL DEPTH AB It has been hypothesized that continuous ground-based remote sensing measurements from collocated active and passive remote sensors combined with regular soundings of the atmospheric thermodynamic structure can be combined to describe the effects of clouds on the clear sky radiation fluxes. We critically test that hypothesis in this paper and a companion paper (part 2). Using data collected at the Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site sponsored by the U. S. Department of Energy, we explore an analysis methodology that results in the characterization of the physical state of the atmospheric profile at time resolutions of 5 min and vertical resolutions of 90 m. The description includes thermodynamics and water vapor profile information derived by merging radiosonde soundings with ground-based data and continues through specification of the cloud layer occurrence and microphysical and radiative properties derived from retrieval algorithms and parameterizations. The description of the atmospheric physical state includes a calculation of the clear and cloudy sky solar and infrared flux profiles. Validation of the methodology is provided by comparing the calculated fluxes with top of atmosphere (TOA) and surface flux measurements and by comparing the total column optical depths to independently derived estimates. We find over a 1-year period of comparison in overcast uniform skies that the calculations are strongly correlated to measurements with biases in the flux quantities at the surface and TOA of less than 6% and median fractional errors ranging from 12% to as low as 2%. In the optical depth comparison for uniform overcast skies during the year 2000 where the optical depth varies over more than 3 orders of magnitude we find a mean positive bias of less than 1% and a 0.6 correlation coefficient. In addition to a case study where we examine the cloud radiative effects at the TOA, surface and atmosphere by a middle latitude cyclone, we examine the cloud top pressure and optical depth retrievals of ISCCP and LBTM over a period of 1 year. Using overcast periods from the year 2000, we find that the satellite algorithms tend to compare well with data overall but there is a tendency to bias cloud tops into the middle troposphere and underestimate optical depth in high optical depth events. C1 Univ Utah, Dept Meteorol, Salt Lake City, UT 84112 USA. Hampton Univ, Ctr Atmospher Sci, Hampton, VA 23668 USA. SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12203 USA. NASA, Langley Res Ctr, Hampton, VA 23681 USA. Oregon State Univ, Coll Ocean & Atmospher Sci, Corvallis, OR 97331 USA. Univ N Dakota, Dept Atmospher Sci, Grand Forks, ND 58202 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. Analyt Serv & Mat Inc, Hampton, VA 23666 USA. RP Mace, GG (reprint author), Univ Utah, Dept Meteorol, Salt Lake City, UT 84112 USA. EM mace@met.utah.edu RI Minnis, Patrick/G-1902-2010; OI Minnis, Patrick/0000-0002-4733-6148; Dong, Xiquan/0000-0002-3359-6117 NR 65 TC 47 Z9 47 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 7 PY 2006 VL 111 IS D11 AR D11S90 DI 10.1029/2005JD005921 PG 28 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 052FY UT WOS:000238219200001 ER PT J AU Hagerty, JJ Lawrence, DJ Hawke, BR Vaniman, DT Elphic, RC Feldman, WC AF Hagerty, J. J. Lawrence, D. J. Hawke, B. R. Vaniman, D. T. Elphic, R. C. Feldman, W. C. TI Refined thorium abundances for lunar red spots: Implications for evolved, nonmare volcanism on the Moon SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID SILICATE-LIQUID IMMISCIBILITY; MELT GENERATION; HANSTEEN-ALPHA; MAIRAN DOMES; CRUST; PETROGENESIS; PETROLOGY; BASALT; ROCKS; GRUITHUISEN AB [1] We have used improved knowledge of the spatial distribution of thorium (Th) on the lunar surface, in conjunction with a forward modeling analysis of Lunar Prospector gamma ray data, to estimate the thorium abundances of lunar red spots. The results from this study can be combined with preexisting compositional and morphologic evidence to suggest that Hansteen Alpha, the Gruithuisen domes, and the Lassell massif are silicic, nonmare, volcanic constructs, similar in nature to terrestrial rhyolite domes. We propose that either silicate liquid immiscibility or, more likely, basaltic underplating could have produced lunar rhyolite domes. Thus the Lunar Prospector data presented in this study provide new information about the full range of volcanic and crustal processes that could have occurred on the Moon. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. RP Hagerty, JJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jhagerty@lanl.gov RI Lawrence, David/E-7463-2015 OI Lawrence, David/0000-0002-7696-6667 NR 91 TC 41 Z9 41 U1 0 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD JUN 7 PY 2006 VL 111 IS E6 AR E06002 DI 10.1029/2005JE002592 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 052GG UT WOS:000238220000003 ER PT J AU Noakes, TCQ Bailey, P Draxler, M McConville, CF Ross, AR Lograsso, TA Leung, L Smerdon, JA McGrath, R AF Noakes, TCQ Bailey, P Draxler, M McConville, CF Ross, AR Lograsso, TA Leung, L Smerdon, JA McGrath, R TI Film growth arising from the deposition of Au onto an i-Al-Pd-Mn quasicrystal: a medium energy ion scattering study SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID SURFACES; DIFFRACTION; TEMPLATES AB The room temperature deposition of 7 ML of Au onto the fivefold symmetric surface of icosahedral Al-Pd-Mn leads to the formation of a several monolayers thick Au-Al alloy film. An AlAu film with 1: 1 stoichiometry is formed, which shows no evidence of ordered structure, being either amorphous or polycrystalline. Annealing to 325 degrees C causes more Al to diffuse into the film, producing Al2Au but still with no indication of structure. Experiments using 0.5 ML of pre-deposited In demonstrated a surfactant effect as the In 'floated' on the surface during growth and produced a reduction in film roughness. However, contrary to previous findings the film was still either amorphous or polycrystalline, with no evidence of quasi-crystalline or aperiodic structure. Experiments were also conducted using smaller doses of Au to look for the formation of an epitaxial layer and, if formed, determine the registry with the substrate. However, no change in the Pd blocking curves for the surface could be seen, suggesting that the Au does not adsorb in well defined sites. This result is not surprising when considering that even for these low doses Al is drawn into the film, changing the composition and probably the structure of the topmost layers of the substrate, so that the potential adsorption sites on the clean surface may no longer exist. C1 CCLRC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Univ Liverpool, Surface Sci Res Ctr, Liverpool L69 3GH, Merseyside, England. Univ Liverpool, Dept Phys, Liverpool L69 3GH, Merseyside, England. RP Noakes, TCQ (reprint author), CCLRC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England. EM t.c.q.noakes@dl.ac.uk RI McGrath, Ronan/A-1568-2009 OI McGrath, Ronan/0000-0002-9880-5741 NR 26 TC 10 Z9 10 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 7 PY 2006 VL 18 IS 22 BP 5017 EP 5027 DI 10.1088/0953-8984/18/22/002 PG 11 WC Physics, Condensed Matter SC Physics GA 057JQ UT WOS:000238592500009 ER PT J AU Landa, A Klepeis, J Soderlind, P Naumov, I Velikokhatnyi, O Vitos, L Ruban, A AF Landa, A. Klepeis, J. Soderlind, P. Naumov, I. Velikokhatnyi, O. Vitos, L. Ruban, A. TI Fermi surface nesting and pre-martensitic softening in V and Nb at high pressures SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID TIN ORBITALS THEORY; SOFT PHONON MODE; BRILLOUIN-ZONE; SPECIAL POINTS; ENERGY METHOD; APPROXIMATION AB First-principles total-energy calculations were performed for the trigonal shear elastic constant (C-44) of body-centred cubic (bcc) V and Nb. A mechanical instability in C44 is found for V at pressures of similar to 2 Mbar which also shows a softening in Nb at pressures of similar to 0.5 Mbar. We argue that the pressure-induced shear instability (softening) of V (Nb) is due to the intra-band nesting of the Fermi surface. C1 Lawrence Livermore Natl Lab, Phys & Adv Technol Directorate, Livermore, CA 94550 USA. Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden. Res Inst Solid State Phys & Opt, H-1525 Budapest, Hungary. RP Landa, A (reprint author), Lawrence Livermore Natl Lab, Phys & Adv Technol Directorate, POB 808, Livermore, CA 94550 USA. EM landa1@llnl.gov RI Ruban, Andrei/B-7457-2012 NR 23 TC 48 Z9 51 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 7 PY 2006 VL 18 IS 22 BP 5079 EP 5085 DI 10.1088/0953-8984/18/22/008 PG 7 WC Physics, Condensed Matter SC Physics GA 057JQ UT WOS:000238592500015 ER PT J AU Chen, M Kim, J Liu, JP Fan, HY Sun, SH AF Chen, M Kim, J Liu, JP Fan, HY Sun, SH TI Synthesis of FePt nanocubes and their oriented self-assembly SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID NANOCRYSTAL SUPERLATTICES; MAGNETIC-ANISOTROPY; PERMANENT-MAGNETS; NANOPARTICLES; FILMS; COERCIVITY C1 IBM Corp, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. Univ Texas, Dept Phys, Arlington, TX 76019 USA. Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. Univ New Mexico, Ctr Micro Engineered Mat, NSF, Albuquerque, NM 87131 USA. Brown Univ, Dept Chem, Providence, RI 02912 USA. RP Sun, SH (reprint author), IBM Corp, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. EM ssun@brown.edu NR 22 TC 221 Z9 224 U1 11 U2 119 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 7 PY 2006 VL 128 IS 22 BP 7132 EP 7133 DI 10.1021/ja061704x PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 048EZ UT WOS:000237931700010 PM 16734445 ER PT J AU Jung, Y Brynda, M Power, PP Head-Gordon, M AF Jung, Y Brynda, M Power, PP Head-Gordon, M TI Ab initio quantum chemistry calculations on the electronic structure of heavier alkyne congeners: Diradical character and reactivity SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SILICON TRIPLE BOND; HOMONUCLEAR MULTIPLE BONDS; DENSITY-FUNCTIONAL THEORY; GERMANIUM-GERMANIUM; GALLIUM-GALLIUM; ANALOG; SI2H2; DISILYNE; ELEMENTS; GROUP-14 AB The electronic structure of the heavier congeners of alkynes has been studied with emphasis on characterizing their extent of diradical character. Four orbitals play a crucial role in determining the electronic structure in planar trans-bent geometries. Two are associated with an out-of-plane pi interaction, pi and pi*, and two are associated with in-plane interactions and/or in-plane lone pairs, LP(n(-)) and LP*(n(+)). The ordering of these orbitals can change depending upon geometry. One extreme, corresponding to the local minimum for Si-Si and Ge-Ge, is a diradicaloid multiple-bonding configuration where LP and pi are nominally occupied. Another extreme, corresponding to a local minimum for Sn-Sn, is a relatively closed-shell single-bond configuration where LP and LP* are nominally occupied. This ordering leads to predicted bond shortening upon excitation from singlet to triplet state. For the heavier elements, there appears to be very little energy penalty for large geometric distortions that convert from one ordering to the other on the singlet surface. The implications of these results with respect to experimental observations are discussed. C1 Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Head-Gordon, M (reprint author), Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. EM mhg@bastille.cchem.berkeley.edu RI Jung, Yousung/D-1676-2010 OI Jung, Yousung/0000-0003-2615-8394 NR 51 TC 66 Z9 66 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 7 PY 2006 VL 128 IS 22 BP 7185 EP 7192 DI 10.1021/ja055374c PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 048EZ UT WOS:000237931700035 PM 16734470 ER PT J AU Carlson, CN Kuehl, CJ Da Re, RE Veauthier, JM Schelter, EJ Milligan, AE Scott, BL Bauer, ED Thompson, JD Morris, DE John, KD AF Carlson, CN Kuehl, CJ Da Re, RE Veauthier, JM Schelter, EJ Milligan, AE Scott, BL Bauer, ED Thompson, JD Morris, DE John, KD TI Ytterbocene charge-transfer molecular wire complexes SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID 5 REDOX STAGES; 2,3,5,6-TETRA(2-PYRIDYL)PYRAZINE TPPZ; ANTIFERROMAGNETIC EXCHANGE; IMPROVED ELECTROCHEMISTRY; MAGNETIC-PROPERTIES; DELTA-E-1/2 VALUES; UV/VISIBLE/NEAR-IR; REDUCTION PRODUCTS; CRYSTAL-STRUCTURE; BRIDGING LIGAND AB A systematic study of the novel charge-transfer [( f)(14)-( pi*)(0)-( f)(14) -> ( f)(13)-( pi*)(2)-( f)(13)] electronic state found in 2: 1 metal-to-ligand adducts of the type [( Cp*)(2)Yb]( BL)[ Yb( Cp*)(2)] [ BL) tetra( 2-pyridyl) pyrazine ( tppz) ( 1), 6', 6"-bis( 2-pyridyl)- 2, 2' : 4', 4" : 2", 2"'-quaterpyridine ( qtp) ( 2), 1,4-di( terpyridyl)-benzene ( dtb) ( 3), Cp*) ( C5Me5)] has been conducted with the aim of determining the effects of increased Yb- Yb separation on the magnetic and electronic properties of these materials. The neutral [( f)(13)-( pi*)(2)-( f)(13)], cationic [( f)(13)-( pi*)(1)-( f)(13)] and dicationic [( f)(13)-( pi*)(0)-( f)(13)] states of these complexes were studied by cyclic voltammetry, UV-vis-NIR electronic absorption spectroscopy, NMR, X-ray crystallography, and magnetic susceptibility measurements. The spectroscopic and magnetic data for the neutral bimetallic complexes is consistent with an [( f)(13)( pi*)(2)( f)(13)] ground-state electronic configuration in which each ytterbocene fragment donates one electron to give a singlet dianionic bridging ligand with two paramagnetic Yb( III) centers. The voltammetric data demonstrate that the electronic interaction in the neutral molecular wires 1-3, as manifested in the separation between successive metal reduction waves, is large compared to analogous transition metal systems. Electronic spectra for the neutral and monocationic bimetallic species are dominated by pi-pi* and pi*-pi* transitions, masking the f-f bands that are expected to best reflect the electronic metal-metal interactions. However, these metal-localized transitions are observed when the electrons are removed from the bridging ligand via chemical oxidation to yield the dicationic species, and they suggest very little electronic interaction between metal centers in the absence of pi* electrons on the bridging ligands. Analysis of the magnetic data reveals that the qtp complex displays antiferromagnetic coupling of the type Yb( alpha)( alpha beta) Yb(beta) at similar to 13 K. C1 Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Sci Mat, Los Alamos, NM 87545 USA. RP Morris, DE (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM demorris@lanl.gov; kjohn@lanl.gov RI Bauer, Eric/D-7212-2011; Schelter, Eric/E-2962-2013; Morris, David/A-8577-2012; Scott, Brian/D-8995-2017; OI Scott, Brian/0000-0003-0468-5396; Veauthier, Jacqueline/0000-0003-2206-7786; Bauer, Eric/0000-0003-0017-1937; John, Kevin/0000-0002-6181-9330 NR 61 TC 54 Z9 54 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 7 PY 2006 VL 128 IS 22 BP 7230 EP 7241 DI 10.1021/ja058667e PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA 048EZ UT WOS:000237931700042 PM 16734477 ER PT J AU Zhao, HB Tonkyn, RG Barlow, SE Koel, BE Peden, CHF AF Zhao, HB Tonkyn, RG Barlow, SE Koel, BE Peden, CHF TI Catalytic oxidation of HCN over a 0.5% Pt/Al2O3 catalyst SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE HCN; oxidation; desorption; supported Pt catalyst; C3H6; NO; N2O; NO2; NOx ID SURFACE ELEMENTARY STEPS; LIGHTING-OFF TESTS; HYDROGEN-CYANIDE; PT(111) SURFACE; SELECTIVE REDUCTION; HIGH COVERAGES; ATOMIC OXYGEN; ADSORPTION; PLATINUM; ALUMINA AB The adsorption of HCN on, its catalytic oxidation with 6% O-2 over 0.5% Pt/Al2O3, and the subsequent oxidation of strongly bound chemisorbed species upon heating were investigated. The observed N-containing products were N2O, NO and NO2, and some residual adsorbed N-containing species were oxidized to NO and NO2 during subsequent temperature programmed oxidation. Because N-atom balance could not be obtained after accounting for the quantities of each of these product species, we propose that N-2 and was formed. Both the HCN conversion and the selectivity towards different N-containing products depend strongly on the reaction temperature and the composition of the reactant gas mixture. In particular, total HCN conversion reaches 95% above 250 degrees C. Furthermore, the temperature of maximum HCN conversion to N2O is located between 200 and 250 T, while raising the reaction temperature increases the proportion of NO, in the products. The co-feeding of H2O and C3H6 had little, if any effect on the total HCN conversion, but C3H6 addition did increase the conversion to NO and decrease the conversion to NO2, perhaps due to the competing presence of adsorbed fragments of reductive C3H6. Evidence is also presented that introduction of NO and NO2 into the reactant gas mixture resulted in additional reaction pathways between these NO, species and HCN that provide for lean-NO, reduction coincident with HCN oxidation. (c) 2006 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Peden, CHF (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999, Richland, WA 99352 USA. EM chuck.peden@pnl.gov RI Koel, Bruce/H-3857-2013; OI Koel, Bruce/0000-0002-0032-4991; Peden, Charles/0000-0001-6754-9928 NR 43 TC 27 Z9 31 U1 0 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD JUN 6 PY 2006 VL 65 IS 3-4 BP 282 EP 290 DI 10.1016/j.apcatb.2006.02.009 PG 9 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA 050GY UT WOS:000238076700013 ER PT J AU Semelsberger, TA Ott, KC Borup, RL Greene, HL AF Semelsberger, TA Ott, KC Borup, RL Greene, HL TI Generating hydrogen-rich fuel-cell feeds from dimethyl ether (DME) using physical mixtures of a commercial Cu/Zn/Al2O3 catalyst and several solid-acid catalysts SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE dimethyl ether; hydrolysis; zeolites; methanol; alumina; zirconia; acidity; ZSM-5; Y; steam reforming; hydrogen; fuel cells ID SYNTHESIS GAS; SILICA-ALUMINA; NATURAL-GAS; METHANOL; DEHYDRATION; ADSORPTION; H-ZSM-5; SITES; CONVERSION; ZEOLITES AB Homogeneous physical mixtures containing a commercial Cu/ZnO/Al2O3 catalyst and a solid-acid catalyst were used to examine the acidity effects on dimethyl ether hydrolysis and their subsequent effects on dimethyl ether steam reforming (DME-SR). The acid catalysts used were zeolites Y [Si/Al = 2.5 and 15: denoted Y(Si/Al)], ZSM-5 [Si/Al = 15, 25, 40, and 140: denoted Z(Si/Al)] and other conventional catalyst supports (ZrO2, and gamma-Al2O3). The homogeneous physical mixtures contained equal amounts, by volume, of the solid-acid catalyst and the commercial Cu/ZnO/Al2O3 catalyst (BASF K3-110, denoted as K3). The steam reforming of dimethyl ether was carried out in an isothermal packed-bed reactor at ambient pressure. The most promising physical mixtures for the low-temperature production of hydrogen from DME contained ZSM-5 as the solid-acid catalyst, with hydrogen yields exceeding 90% (T = 275 degrees C, SIC = 1.5, tau = 1.0 s and P = 0.78 atm) and hydrogen selectivities exceeding 94%, comparable to those observed for methanol steam reforming (MeOH-SR) over BASF K3-110, with values equaling 95% and 99%, respectively (T = 225 degrees C, S/ C = 1.0, tau = 1.0 s and P = 0.78 atm). Large production rates of hydrogen were directly related to the type of acid catalyst used. The hydrogen production activity trend as a function of physical mixture was [GRAPHICS] (c) 2006 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. Case Western Reserve Univ, Dept Chem Engn, Cleveland, OH 44106 USA. RP Semelsberger, TA (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, POB 1663, Los Alamos, NM 87545 USA. EM troy@lanl.gov RI 孙, 兆松/E-8654-2011 NR 48 TC 76 Z9 80 U1 2 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD JUN 6 PY 2006 VL 65 IS 3-4 BP 291 EP 300 DI 10.1016/j.apcatb.2006.02.015 PG 10 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA 050GY UT WOS:000238076700014 ER PT J AU Kharchenko, V Dalgarno, A Schultz, DR Stancil, PC AF Kharchenko, V. Dalgarno, A. Schultz, D. R. Stancil, P. C. TI Ion emission spectra in the Jovian X-ray aurora SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ENERGETIC OXYGEN; JUPITER; PRECIPITATION; MAGNETOSPHERE; ATMOSPHERE AB X-ray and Extreme Ultraviolet emission spectra resulting from energetic sulfur and oxygen ions precipitating into the Jovian atmosphere are calculated. Monte Carlo simulations of the energy and charge relaxation of downward ion fluxes are carried out, using updated collision cross sections for stripping, electron capture, and target ionization. Energy and charge distributions of precipitating sulfur ions are presented for the first time and the equilibrium charge model is shown to be inadequate. X-ray emission spectra are calculated for different sulfur and oxygen mixtures and for different initial entry energies. Satisfactory agreement with both Chandra and XMM-Newton observations is obtained by an equal population of sulfur and oxygen ions with energies between 1 and 2 MeV/amu. The agreement provides a reconciliation of the two spectral data sets and the inferred initial energies are consistent with the view that the ions are magnetospheric in origin and have been accelerated to MeV/amu energies. C1 Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. Univ Georgia, Ctr Simulat Phys, Athens, GA 30602 USA. RP Kharchenko, V (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM vkharchenko@cfa.harvard.edu NR 18 TC 30 Z9 30 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 6 PY 2006 VL 33 IS 11 AR L11105 DI 10.1029/2006GL026039 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 052FN UT WOS:000238217800004 ER PT J AU Martin, CD Crichton, WA Liu, HZ Prakapenka, V Chen, JH Parise, JB AF Martin, CD Crichton, WA Liu, HZ Prakapenka, V Chen, JH Parise, JB TI Phase transitions and compressibility of NaMgF3 (Neighborite) in perovskite- and post-perovskite-related structures SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID X-RAY-DIFFRACTION; HIGH-TEMPERATURES; LOWER MANTLE; STATE; EQUATION; MGSIO3; BOUNDARY; CRYSTAL; ESRF; CELL AB Monochromatic x-ray diffraction data collected in-situ within the diamond anvil cell show perovskite structured Neighborite (NaMgF3) transforms to the CaIrO3-type post-perovskite structure between 28 and 30 GPa. Upon laser heating, the CaIrO3-type structure transforms further to an unknown structure (Pnnm, designated N-phase). Upon pressure release, N-phase NaMgF3 becomes x-ray amorphous. A structure transformation in post-perovskite MgSiO3 and MgGeO3 to N-phase may account for previous observations of extra x-ray reflections during high pressure experiments and tomographic observations of an additional boundary in the lower mantle below the D '' discontinuity. C1 SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. European Synchrotron Radiat Facil, F-38043 Grenoble, France. Argonne Natl Lab, Adv Photon Source, High Pressure Collaborat Access Team, Argonne, IL 60439 USA. Argonne Natl Lab, Adv Photon Source, GSECARS, Argonne, IL 60439 USA. SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. RP Martin, CD (reprint author), SUNY Stony Brook, Dept Geosci, 255 Earth & Space Sci Bldg, Stony Brook, NY 11794 USA. EM chmartin@ic.sunysb.edu RI Liu, Haozhe/E-6169-2011; OI Crichton, Wilson/0000-0001-6823-5509 NR 31 TC 40 Z9 40 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 6 PY 2006 VL 33 IS 11 AR L11305 DI 10.1029/2006GL026150 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 052FN UT WOS:000238217800007 ER PT J AU Venkataraman, C Habib, G Kadamba, D Shrivastava, M Leon, JF Crouzille, B Boucher, O Streets, DG AF Venkataraman, C. Habib, G. Kadamba, D. Shrivastava, M. Leon, J. -F. Crouzille, B. Boucher, O. Streets, D. G. TI Emissions from open biomass burning in India: Integrating the inventory approach with high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) active-fire and land cover data SO GLOBAL BIOGEOCHEMICAL CYCLES LA English DT Article ID SULFUR-DIOXIDE EMISSIONS; AEROSOL EMISSIONS; CARBON EMISSIONS; FUEL COMBUSTION; TRACE GASES; ASIA; PARTICLES; BIOFUELS; BLACK; MODEL AB [ 1] Climatological mean estimates of forest burning and crop waste burning based on broad assumptions of the amounts burned have so far been used for India in global inventories. Here we estimate open biomass burning representative of 1995 - 2000 from forests using burned area and biomass density specific for Indian ecosystems and crop waste burning as a balance between generation and known uses as fuel and fodder. High-resolution satellite data of active fires and land cover classification from MODIS, both on a scale of 1 km x 1 km, were used to capture the seasonal variability of forest and crop waste burning and in conjunction with field reporting. Correspondence in satellite-detected fire cycles with harvest season was used to identify types crop waste burned in different regions. The fire season in forest areas was from February to May, and that in croplands varied with geographical location, with peaks in April and October, corresponding to the two major harvest seasons. Spatial variability in amount of forest biomass burned differed from corresponding forest fire counts with biomass burned being largest in central India but fire frequency being highest in the east-northeast. Unutilized crop waste and MODIS cropland fires were predominant in the western Indo-Gangetic plain. However, the amounts of unutilized crop waste in the four regions were not strictly proportional to the fire counts. Fraction crop waste burned in fields ranged from 18 to 30% on an all-India basis and had a strong regional variation. Open burning contributes importantly ( about 25%) to black carbon, organic matter, and carbon monoxide emissions, a smaller amount ( 9 - 13%) to PM2.5 ( particulate mass in particles smaller than 2.5 micron diameter) and CO2 emissions, and negligibly to SO2 emissions (1%). However, it cannot explain a large "missing source'' of BC or CO from India. C1 Indian Inst Technol, Dept Chem Engn, Bombay 400076, Maharashtra, India. Univ Lille 1, UFR Phys, CNRS, Opt Atmospher Lab, F-59655 Villeneuve Dascq, France. Argonne Natl Lab, Argonne, IL 60439 USA. RP Venkataraman, C (reprint author), Indian Inst Technol, Dept Chem Engn, Bombay 400076, Maharashtra, India. EM chandra@che.iitb.ac.in; gazala@uiuc.edu; deep_kadamba@rediffmail.com; mkshriva@andrew.cmu.edu; jean-francois.leon@univ-lille1.fr; crouzill@loa.univ-lille1.fr; olivier.boucher@metoffice.gov.uk; dstreets@anl.gov RI Boucher, Olivier/J-5810-2012; Boucher, Olivier/K-7483-2012; OI Boucher, Olivier/0000-0003-2328-5769; Boucher, Olivier/0000-0003-2328-5769; Streets, David/0000-0002-0223-1350 NR 56 TC 86 Z9 88 U1 2 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0886-6236 EI 1944-9224 J9 GLOBAL BIOGEOCHEM CY JI Glob. Biogeochem. Cycle PD JUN 6 PY 2006 VL 20 IS 2 AR GB2013 DI 10.1029/2005GB002547 PG 12 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA 052FV UT WOS:000238218900001 ER PT J AU Long, CN Ackerman, TP Gaustad, KL Cole, JNS AF Long, C. N. Ackerman, T. P. Gaustad, K. L. Cole, J. N. S. TI Estimation of fractional sky cover from broadband shortwave radiometer measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SOLAR-RADIATION; SURFACE; IRRADIANCE; PROGRAM AB [1] We outline a methodology for estimating fractional sky cover for an effective 160 degrees field of view from an analysis of surface measurements of downwelling total and diffuse shortwave ( SW) irradiance. The data are screened for optically thicker overcast cases, after which an empirically derived formulation is used to estimate the fractional sky cover for the remaining data. The retrieved fractional sky cover time series is then evaluated to mitigate times of anomalous behavior caused by the thick overcast screening. The resultant sky cover estimates show a high degree of repeatability given nominally well maintained and operated radiometer systems and the use of the Long and Ackerman ( 2000) methodology for estimating the clear-sky total and diffuse SW. Thus the resultant fractional sky-cover estimates appear to be fairly independent of the particular climate regime and model of radiometers used, at least for the climate regimes we have tested so far. The sky-cover estimates agree to better than 10% root mean square sky cover amount with sky imager retrievals and human observations, which is as good as the agreement between sky imaging systems and observers themselves. As such, this methodology becomes a powerful tool for satellite and model validations and climatological analyses including the study of trends in cloud amount. Analysis shows that the technique also produces realistic frequency distributions, showing that the continental midlatitude regimes included in the study are typified by clear-sky occurring about 1/3 of the time, overcast about 1/3 of the time, and partly cloudy skies to varying extent occurring the remaining 1/3 of the time. By contrast, the tropical western Pacific oceanic regime during the Nauru99 field experiment exhibits far more frequent occurrence of partly cloudy skies, with sky cover amounts of 20% to 50% occurring about half the time. C1 Pacific NW Natl Lab, Atmospher Radiat Measurement Program, Richland, WA 99352 USA. Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. RP Long, CN (reprint author), Pacific NW Natl Lab, Atmospher Radiat Measurement Program, POB 999,MSIN K9-38, Richland, WA 99352 USA. EM chuck.long@pnl.gov; ackerman@pnl.gov; krista.gaustad@pnl.gov; cole@essc.psu.edu NR 21 TC 64 Z9 64 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 6 PY 2006 VL 111 IS D11 AR D11204 DI 10.1029/2005JD006475 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 052FX UT WOS:000238219100001 ER PT J AU Weil, KS Nyberg, E Simmons, K AF Weil, K. Scott Nyberg, Eric Simmons, Kevin TI A new binder for powder injection molding titanium and other reactive metals SO JOURNAL OF MATERIALS PROCESSING TECHNOLOGY LA English DT Article DE powder injection molding; reactive metals; titanium AB This paper describes the development of a new aromatic-based binder for powder injection molding (PIM) reactive metals, such as titanium, zirconium, niobium, tungsten, and molybdenum. Detailed processing results are discussed for titanium alloy (Ti-6,4) compacts fabricated using the new binder system. Because of the choice of the binder constituents, thermal removal is readily accomplished at low temperatures and short times via vacuum sublimation. In this way the binder can be cleanly extracted from the green part prior to sintering to minimize the amount of residual carbon left in the final component. Rheological measurements indicate that powder loadings in the PIM feedstock as high as 67 vol.% could be achieved using the new binder system, while still maintaining low mixing torques and injection molding pressures. Results from chemical analyses conducted on the Ti-6,4 powder before injection molding and the Ti-6,4 compacts after final sintering demonstrate no significant increase in carbon content due to processing. The raw powder contained 210 ppm carbon, while the as-sintered, PIM formed compacts exhibited 217 ppm carbon content. (c) 2006 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Weil, KS (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM scott.weil@pnl.gov NR 16 TC 16 Z9 17 U1 1 U2 14 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0924-0136 J9 J MATER PROCESS TECH JI J. Mater. Process. Technol. PD JUN 6 PY 2006 VL 176 IS 1-3 BP 205 EP 209 DI 10.1016/j.jmatprotec.2006.03-154 PG 5 WC Engineering, Industrial; Engineering, Manufacturing; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 061SM UT WOS:000238892800030 ER PT J AU Tang, ZX Padmawar, PA Canteenwala, T Gao, Y Watkins, E Majewski, J Chiang, LY Wang, HL AF Tang, ZX Padmawar, PA Canteenwala, T Gao, Y Watkins, E Majewski, J Chiang, LY Wang, HL TI Synthesis and characterization of monolayers and Langmuir-Blodgett films of an amphiphilic oligo(ethyleneglycol)-C-60-hexadecaaniline conjugate SO LANGMUIR LA English DT Article ID RAY REFLECTIVITY DATA; LEAST-SQUARES METHODS; CHEMICAL SENSORS; DOPED POLYANILINE; THERMAL-ANALYSIS; MILD-STEEL; POLYMER; C-60; PHOTOACTIVATION; LEUCOEMERALDINE AB A novel amphiphilic oligo(ethylene glycol)-C-60-hexadecaaniline (A(16)) tricomponent conjugate, C-60 >(A(16)-EG(43)), possessing a well-defined number of repeating aniline donor units and a hydrophilic ethylene glycol oligomer chain was synthesized. The compound is composed of a covalently bound donor-acceptor chromophore structure. Molecular self-assembly of C-60 >(A(16)-EG(43)) at the air-water interface formed a densely packed Langmuir monolayer with all highly hydrophobic fullerene cages located above the liquid interface. The monolayer can then be transferred onto a glass substrate via Langmuir-Blodgett (LB) deposition. LB multilayered thin films formed by multiple deposition of the monolayer yielded broadened optical absorption peaks extending beyond 600 nm into the 950 nm region, suggesting strong intermolecular interactions among the C-60 cages and the A(16) moieties. An X-ray reflectometry study clearly reveals that the Langmuir film at the air-water interface consists of a C-60 top layer and a bottom layer containing hexcadecaaniline and oligo( ethylene glycol) with gradually decreasing electron density over a distance of approximately 130 angstrom above bulk water. The pressure isotherm shows that the packing density of the C-60(A(16)-EG(43)) monolayer, corresponding to a molecular area of similar to 95 angstrom(2)/molecule, is similar to that of the surface area of the C60 monolayer. This result suggests that C-60 packing plays a dominant role in guiding the formation of the monolayer structure. Further photoexcitation of hexadecaaniline moieties of aligned (C60 >)-A(16) layers by a flash light source induces cross linking between adjacent A(16) segments forming an interlinked angstrom(16) array. Our results have demonstrated a unique fabrication method for preparing the aligned donor-acceptor array using strong intermolecular interactions between fullerenes as the molecular orientation guiding force in the Langmuir-Blodgett technique. C1 Los Alamos Natl Lab, Div Chem, Los Almos Neutron Scattering Ctr, Los Alamos, NM 87545 USA. Univ Massachusetts, Dept Chem, Lowell, MA 01854 USA. RP Wang, HL (reprint author), Los Alamos Natl Lab, Div Chem, Los Almos Neutron Scattering Ctr, MSJ586,C-PCS, Los Alamos, NM 87545 USA. EM hwang@lanl.gov RI Lujan Center, LANL/G-4896-2012 NR 45 TC 7 Z9 7 U1 2 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUN 6 PY 2006 VL 22 IS 12 BP 5366 EP 5373 DI 10.1021/la060083i PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 048AX UT WOS:000237921100029 PM 16732665 ER PT J AU Sapuri-Butti, AR Li, QJ Groves, JT Parikh, AN AF Sapuri-Butti, Annapoorna R. Li, Qijuan Groves, Jay T. Parikh, Atul N. TI Nonequilibrium patterns of cholesterol-rich chemical heterogenieties within single fluid supported phospholipid bilayer membranes SO LANGMUIR LA English DT Article ID ATOMIC-FORCE MICROSCOPY; GLYCOSYLPHOSPHATIDYLINOSITOL-ANCHORED PROTEIN; RESONANCE ENERGY-TRANSFER; LIPID RAFTS; MODEL MEMBRANES; BIOLOGICAL-MEMBRANES; CELL-MEMBRANES; DETERGENT INSOLUBILITY; ALKALINE-PHOSPHATASE; CHOLERA-TOXIN AB We have developed a simple method to introduce cholesterol- and sphingomyelin-rich chemical heterogeneities into controlled densities and concentrations within predetermined regions of another distinct fluid phospholipid bilayer supported on a solid substrate. A contiguous primary phases-a fluid POPC bilayer displaying a well-defined array of lipid-free voids (e. g., 20-100 mu m squares)-was first prepared on a clean glass surface by microcontact printing under water using a poly( dimethylsiloxane) stamp. The aqueous-phase primary bilayer pattern was subsequently incubated with secondary-phase small unilamellar vesicles composed of independent chemical compositions. Backfilling by comparable vesicles resulted in gradual mixing between the primary- and secondary- phase lipids, effacing the pattern. When the secondary vesicles consisted of phase-separating mixtures of cholesterol, sphingomyelin, and a phospholipid (2:1:1 POPC/sphingomyelin/cholesterol or 1: 1: 1 DOPC/sphingomyelin/ cholesterol), well-defined spatial patterns of fluorescence, chemical compositions, and fluidities emerged. We conjecture that these patterns form because of the differences in the equilibration rates of the secondary liquid-ordered and liquid-disordered phases with the primary fluid POPC phase. The pattern stability depended strongly on the ambient-phase temperature, cholesterol concentration, and miscibility contrast between the two phases. When cholesterol concentration in the secondary vesicles was below 20 mol %, secondary intercalants gradually diffused within the primary POPC bilayer phase, ultimately dissolving the pattern in several minutes and presumably forming a new quasi-equilibrated lipid mixture. These phase domain micropatterns retain some properties of biological rafts including detergent resistance and phase mixing induced by selective cholesterol extraction. These patterns enable direct comparisons of cholesterol- and sphingomyelin-rich phase domains and fluid phospholipid phases for their functional preferences and may be useful for developing simple, parallelized assays for phase and chemical composition-dependent membrane functionalities. C1 Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Parikh, AN (reprint author), Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. EM anparikh@ucdavis.edu RI PARIKH, ATUL/D-2243-2014 OI PARIKH, ATUL/0000-0002-5927-4968 NR 63 TC 11 Z9 11 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUN 6 PY 2006 VL 22 IS 12 BP 5374 EP 5384 DI 10.1021/la052248d PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 048AX UT WOS:000237921100030 PM 16732666 ER PT J AU Chiu, HW Kauzlarich, SM Sutter, E AF Chiu, Hsiang Wei Kauzlarich, Susan M. Sutter, Eli TI Thermal behavior and film formation from an organogermanium polymer/nanoparticle precursor SO LANGMUIR LA English DT Article ID GERMANIUM NANOCRYSTALS; MELTING TEMPERATURE; GE NANOPARTICLES; THIN-FILM; PARTICLES; CLUSTER AB In situ high-resolution transmission electron microscopy (HRTEM) was used to investigate the effect of heating on an organo-Ge polymer/nanoparticle composite material containing 4-8 nmdiameter alkyl-terminated Ge nanoparticles. The product was obtained from the reduction of GeCl4 with Na(naphthalide) with subsequent capping of the -Cl surface with n-butyl Grignard reagent. The in situ HRTEM micrographs show that the product undergoes significant changes upon heating from room temperature to 600 C. Two pronounced effects were observed: (i) Ge nanoparticles coalesce and remain crystalline throughout the entire temperature range, and (ii) the organo-Ge polymer acts as a source for the in situ formation of additional Ge nanoparticles. The in situ-formed Ge nanoparticles are approximately 2-3 nm in diameter. These in situ-formed nanoparticles (2-3 nm) are so dense that, together with the original ones, they build up an almost continuous crystalline film in the temperatures between 300 and 500 C. Above 480 C, melting of the in situ formed Ge nanoparticles (2-3 nm) is observed, while nanoparticles greater than 5 nm remain crystalline. After cooling to room temperature, the 2-3 nm Ge nanoparticles recrystallized. C1 Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Kauzlarich, SM (reprint author), Univ Calif Davis, Dept Chem, 1 Shields Ave, Davis, CA 95616 USA. EM smkauzlarich@ucdavis.edu; esutter@bnl.gov NR 34 TC 9 Z9 9 U1 0 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUN 6 PY 2006 VL 22 IS 12 BP 5455 EP 5458 DI 10.1021/la053343p PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 048AX UT WOS:000237921100041 PM 16732677 ER PT J AU Budiman, AS Nix, WD Tamura, N Valek, BC Gadre, K Maiz, J Spolenak, R Patel, JR AF Budiman, A. S. Nix, W. D. Tamura, N. Valek, B. C. Gadre, K. Maiz, J. Spolenak, R. Patel, J. R. TI Crystal plasticity in Cu damascene interconnect lines undergoing electromigration as revealed by synchrotron x-ray microdiffraction SO APPLIED PHYSICS LETTERS LA English DT Article ID PERFORMANCE; INTEGRATION AB Plastic deformation was observed in damascene Cu interconnect test structures during an in situ electromigration experiment and before the onset of visible microstructural damage (voiding, hillock formation). We show here, using a synchrotron technique of white beam x-ray microdiffraction, that the extent of this electromigration-induced plasticity is dependent on the linewidth. In wide lines, plastic deformation manifests itself as grain bending and the formation of subgrain structures, while only grain rotation is observed in the narrower lines. The deformation geometry leads us to conclude that dislocations introduced by plastic flow lie predominantly in the direction of electron flow and may provide additional easy paths for the transport of point defects. Since these findings occur long before any observable voids or hillocks are formed, they may have direct bearing on the final failure stages of electromigration. (c) 2006 American Institute of Physics. C1 Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. Intel Corp, Hillsboro, OR 97124 USA. ETH, Dept Mat, CH-8093 Zurich, Switzerland. Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. RP Budiman, AS (reprint author), Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. EM suriadi@stanford.edu RI Spolenak, Ralph/A-1655-2008 NR 11 TC 50 Z9 50 U1 3 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 5 PY 2006 VL 88 IS 23 AR 233515 DI 10.1063/1.2210451 PG 3 WC Physics, Applied SC Physics GA 061ZV UT WOS:000238914500090 ER PT J AU Jain, M Li, Y Hundley, MF Hawley, M Maiorov, B Campbell, IH Civale, L Jia, QX AF Jain, M. Li, Y. Hundley, M. F. Hawley, M. Maiorov, B. Campbell, I. H. Civale, L. Jia, Q. X. TI Magnetoresistance in polymer-assisted deposited Sr- and Ca-doped lanthanum manganite films SO APPLIED PHYSICS LETTERS LA English DT Article ID LOW-FIELD MAGNETORESISTANCE; THIN-FILMS; MAGNETIC-PROPERTIES; LA0.67CA0.33MNO3; LA0.67SR0.33MNO3; MULTILAYERS; GROWTH; OXYGEN AB We have grown epitaxial films of La0.67Sr0.33MnO3 (LSMO) and La0.67Ca0.33MnO3 (LCMO) on single crystalline LaAlO3 substrates by a cost effective polymer-assisted deposition technique. Film crystallinity, microstructure, resistivity, magnetization, and magnetoresistance (MR) were highly dependent on the annealing temperature in the film processing. High negative MR values of -50% (at 305 K) and -88% (at 250 K) were observed at magnetic field of 5 T, for high temperature annealed LSMO and LCMO films, respectively. These results are comparable to those for films grown by pulsed laser deposition and rf sputtering techniques. (c) 2006 American Institute of Physics. C1 Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Jain, M (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. EM mjain@lanl.gov; qxjia@lanl.gov RI Jia, Q. X./C-5194-2008; OI Maiorov, Boris/0000-0003-1885-0436; Jain, Menka/0000-0002-2264-6895; Civale, Leonardo/0000-0003-0806-3113 NR 22 TC 19 Z9 20 U1 2 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 5 PY 2006 VL 88 IS 23 AR 232510 DI 10.1063/1.2207497 PG 3 WC Physics, Applied SC Physics GA 061ZV UT WOS:000238914500048 ER PT J AU Kalinin, SV Eliseev, EA Morozovska, AN AF Kalinin, Sergei V. Eliseev, Eugene A. Morozovska, Anna N. TI Materials contrast in piezoresponse force microscopy SO APPLIED PHYSICS LETTERS LA English DT Article AB Piezoresponse force microscopy (PFM) contrast in transversally isotropic material corresponding to the case of c(+)-c(-) domains in tetragonal ferroelectrics is analyzed using Green's function theory by Felten et al. [J. Appl. Phys. 96, 563 (2004)]. A simplified expression for PFM signal as a linear combination of relevant piezoelectric constant. is obtained. This analysis is extended to piezoelectric material of arbitrary symmetry with weak elastic and dielectric anisotropies. These results provide a framework for interpretation of PFM signals for systems with unknown or poorly known local elastic and dielectric properties, including nanocrystalline materials, ferroelectric polymers, and biopolymers. (c) 2006 American Institute of Physics. C1 Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. Natl Acad Sci Ukraine, Inst Problems Mat Sci, UA-03142 Kiev, Ukraine. Natl Acad Sci Ukraine, V Lashkaryov Inst Semicond Phys, UA-03028 Kiev, Ukraine. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov; morozo@i.com.ua RI Kalinin, Sergei/I-9096-2012 OI Kalinin, Sergei/0000-0001-5354-6152 NR 16 TC 46 Z9 46 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 5 PY 2006 VL 88 IS 23 AR 232904 DI 10.1063/1.2206992 PG 3 WC Physics, Applied SC Physics GA 061ZV UT WOS:000238914500053 ER PT J AU Li, DM Medlin, JW Bastasz, R AF Li, Dongmei Medlin, J. W. Bastasz, R. TI Application of polymer-coated metal-insulator-semiconductor sensors for the detection of dissolved hydrogen SO APPLIED PHYSICS LETTERS LA English DT Article ID FIELD-EFFECT DEVICES; MOS AB The detection of dissolved hydrogen in liquids is crucial to many industrial applications, such as fault detection for oil-filled electrical equipment. To enhance the performance of metal-insulator-semiconductor (MIS) sensors for dissolved hydrogen detection, a palladium MIS sensor has been modified by depositing a polyimide (PI) layer above the palladium surface. Response measurements of the PI-coated sensors in mineral oil indicate that hydrogen is sensitively detected, while the effect of interfering gases on sensor response is minimized. (c) 2006 American Institute of Physics. C1 Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA. Sandia Natl Labs, Livermore, CA 90925 USA. RP Medlin, JW (reprint author), Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA. EM will.medlin@colorado.edu NR 9 TC 3 Z9 3 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 5 PY 2006 VL 88 IS 23 AR 233507 DI 10.1063/1.2212048 PG 3 WC Physics, Applied SC Physics GA 061ZV UT WOS:000238914500082 ER PT J AU van de Lagemaat, J Barnes, TM Rumbles, G Shaheen, SE Coutts, TJ Weeks, C Levitsky, I Peltola, J Glatkowski, P AF van de Lagemaat, Jao Barnes, Teresa M. Rumbles, Garry Shaheen, Sean E. Coutts, Timothy J. Weeks, Chris Levitsky, Igor Peltola, Jorma Glatkowski, Paul TI Organic solar cells with carbon nanotubes replacing In2O3 : Sn as the transparent electrode SO APPLIED PHYSICS LETTERS LA English DT Article ID PHOTOELECTRON-SPECTROSCOPY; PHOTOVOLTAIC CELLS; MORPHOLOGY; POLYMERS; DEVICES AB We report two viable organic excitonic solar cell structures where the conventional ln(2)O(3): Sri (ITO) hole-collecting electrode was, replaced by a thin single-walled carbon nanotube layer. The first structure includes poly(3,4-ethylenedioxythiophene) (PEDOT) and gave a nonoptimized device efficiency of 1.5%. The second did not use PEDOT as a hole selective contact and had an efficiency of 0.47%. The strong rectifying behavior of the device shows that nanotubes are selective for holes and are not efficient recombination sites. The reported excitonic solar cell, produced without ITO and PEDOT, is an important step towards a fully printable solar cell. (c) 2006 American Institute of Physics. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. EIKOS Inc, Franklin, MA 02038 USA. RP van de Lagemaat, J (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM jao_vandelagemaat@nrel.gov RI Barnes, Teresa/A-2182-2010; van de Lagemaat, Jao/J-9431-2012; Shaheen, Sean/M-7893-2013; OI Rumbles, Garry/0000-0003-0776-1462 NR 23 TC 198 Z9 198 U1 4 U2 61 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 5 PY 2006 VL 88 IS 23 AR 233503 DI 10.1063/1.2210081 PG 3 WC Physics, Applied SC Physics GA 061ZV UT WOS:000238914500078 ER PT J AU Altintas, MM Eddy, CK Zhang, M McMillan, JD Kompala, DS AF Altintas, MM Eddy, CK Zhang, M McMillan, JD Kompala, DS TI Kinetic modeling to optimize pentose fermentation in Zymomonas mobilis SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE Zymomonas mobilis; glucose and xylose metabolism; kinetic modeling; pentose phosphate pathway ID DYE-LIGAND CHROMATOGRAPHY; 2 ALCOHOL DEHYDROGENASES; ESCHERICHIA-COLI K-12; PYRUVATE DECARBOXYLASE; RECOMBINANT STRAINS; GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE; SACCHAROMYCES-CEREVISIAE; PHOSPHOGLUCOSE ISOMERASE; ETHANOLOGENIC BACTERIUM; BIOCHEMICAL SYSTEMS AB Zymomonas mobilis engineered to express four heterologous enzymes required for xylose utilization ferments xylose along with glucose. A network of pentose phosphate, (PP) pathway enzymatic reactions interacting with the native glycolytic Entner Doudoroff (ED) pathway has been hypothesized. We have investigated this putative reaction network by developing a kinetic model incorporating all of the enzymatic reactions of the PP and ED pathways, including those catalyzed by the heterologous enzymes. Starting with the experimental literature on in vitro characterization of each enzymatic reaction, we have developed a kinetic model to enable dynamic simulation of intracellular metabolite concentrations along the network of interacting PP and ED metabolic pathways. This kinetic model is useful for performing in silico simulations to predict how varying the different enzyme concentrations will affect intracellular metabolite concentrations and ethanol production rate during continuous fermentation of glucose and xylose mixtures. Among the five enzymes whose concentrations' were varied as inputs to the model, ethanol production in the continuous fermentor was optimized when xylose isomerase (XI) was present at the highest level, followed by transaldolase (TAL). Predictions of the model that the interconnecting enzyme phosphoglucose isomerase (PGI) does not need to be over-expressed were recently confirmed through experimental investigations. Through such systematic analysis, we can develop efficient strategies for maximizing the fermentation of both glucose and xylose, while minimizing the expression of heterologous enzymes. (c) 2006 Wiley Periodicals, Inc. C1 Univ Colorado, Dept Chem Engn, Boulder, CO 80309 USA. Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Kompala, DS (reprint author), Univ Colorado, Dept Chem Engn, Boulder, CO 80309 USA. EM kompala@colorado.edu OI Kompala, Dhinakar /0000-0002-9617-1036; Altintas, Mehmet/0000-0002-1871-6985 NR 67 TC 21 Z9 23 U1 2 U2 11 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0006-3592 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD JUN 5 PY 2006 VL 94 IS 2 BP 273 EP 295 DI 10.1002/bit.20843 PG 23 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 041HJ UT WOS:000237445000007 PM 16570322 ER PT J AU Miyamoto, H Itoh, K Komatsu, G Baker, VR Dohm, JM Tosaka, H Sasaki, S AF Miyamoto, H Itoh, K Komatsu, G Baker, VR Dohm, JM Tosaka, H Sasaki, S TI Numerical simulations of large-scale cataclysmic floodwater: A simple depth-averaged model and an illustrative application SO GEOMORPHOLOGY LA English DT Article DE cataclysmic flood; numerical model; depth-averaging method; Channeled Scabland ID GLACIAL LAKE MISSOULA; DIFFUSION WAVE APPROXIMATIONS; SAINT-VENANT EQUATIONS; LATE PLEISTOCENE; CHANNELED SCABLAND; INDEPENDENT FLOWS; NORTHERN PLAINS; KINEMATIC WAVE; OVERLAND-FLOW; LAVA FLOWS AB A simple numerical simulation code is developed to quantitatively discuss the behaviors of past cataclysmic floods, whose rigorous hydraulic descriptions would be too complex to be supported by typically available field data. The code aims to keep the basic equations simple and the required computational costs low, which allows greater exploration of parameter space. Examination of both the qualitative meaning of turbulent equations and the relative importance of terms in the shallow water equation have resulted in the adoption of the depth-averaged diffusion wave approximation in two dimensions, as well as Manning's empirical equation for simplification. On the other hand, topography is included as a boundary condition, since topography plays an important role in selecting flood routes. The model provides important advantages over theoretical analyses or one-dimensional simulations, including: (1) the reproduction of complicated water flow paths such as bifurcations and reconvergences; (2) the reconstruction of hydrological relationships among the water paths; and (3) the direct comparison among the calculated extent of the flood inundation (including floodwater depths) and geological and geomorphological observations. Preliminary reconstructions of the Missoula floods demonstrate the advantages of this new approach. The method of coupling field-based flood information with two-dimensional analysis of an entire flow path provides a basis for estimating the peak discharges and flow durations of cataclysmic megafloods on Earth with direct bearing on the understanding of regional paleohydrological histories of Mars. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Tokyo, Dept Geosyst Engn, Tokyo, Japan. Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Annuzio, Int Res Sch Planetary Sci, Pescara, Italy. Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. Natl Astron Observ Japan, Muzusawa, Japan. RP Miyamoto, H (reprint author), Univ Tokyo, Dept Geosyst Engn, Tokyo, Japan. EM miyamoto@geosys.t.u-tokyo.ac.jp RI Miyamoto, Hideaki/B-9666-2008; Miyamoto, Hideaki/E-3381-2012; Dohm, James/A-3831-2014; Komatsu, Goro/I-7822-2012 OI Komatsu, Goro/0000-0003-4155-108X NR 60 TC 18 Z9 21 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-555X J9 GEOMORPHOLOGY JI Geomorphology PD JUN 5 PY 2006 VL 76 IS 1-2 BP 179 EP 192 DI 10.1016/j.geomorph.2005.11.002 PG 14 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 051NE UT WOS:000238167000014 ER PT J AU Ren, XL Tu, CK Bhatt, D Perry, JJP Tainer, JA Cabelli, DE Silverman, DN AF Ren, Xilin Tu, Chingkuang Bhatt, Deepa Perry, J. Jefferson P. Tainer, John A. Cabelli, Diane E. Silverman, David N. TI Kinetic and structural characterization of human manganese superoxide dismulase containing 3-fluorotyrosines SO JOURNAL OF MOLECULAR STRUCTURE LA English DT Article; Proceedings Paper CT 16th International Conference on Horizons in Hydrogen Bond Research CY AUG 30-SEP 04, 2005 CL Roskilde, DENMARK SP Roskilde Univ, Dept of Life Sci and Chem DE superoxide; superoxide dismutase; fluorine; enzyme kinetics; pulse radiolysis ID ACTIVE-SITE; ESCHERICHIA-COLI; TRANSITION-STATE; DISMUTASE; PROTEIN; RADIOLYSIS; ENZYME AB Incorporation of 3-fluorotyrosine and site-specific mutagenesis have been used with stopped-flow spectrophotometry and pulse radiolysis to investigate the catalytic properties of human manganese superoxide dismutase (MnSOD). All of the nine tyrosine residues in each of the four subunits of the homotetramer of human MnSOD were replaced with 3-fluorotyrosine. Previous studies showed that the crystal structures of the unfluorinated and fluorinated human MnSOD are nearly superimposable with the root-mean-square deviation for 198 alpha-carbon atoms at 0.3 angstrom. However, the catalytic activity k(cat)/K-m of the fluorinated MnSOD at 30 mu M-1 s(-1) was less than unfluorinated wild type at 800 mu M-1 s(-1). Comparison of the values of k(cat)/K-m for fluorinated and unfluorinated wild-type and Y34F MnSOD showed that this decrease for the fluorinated enzyme was in significant part due to 3-fluorotyrosine residues distant (> 7 angstrom) from the active-site metal, not to 3-fluorotyrosine at position 34 close (similar to 5 angstrom) to the metal. Although many rate constants for the catalysis are decreased by this fluorination, the rate of dissociation of the product-inhibited complex appears unchanged by the presence of fluorinated tyrosines. These results suggest that Tyr34 is not a proton donor in the release of the product-inhibited complex, which involves protonation of a peroxo complex of the metal with release of hydrogen peroxide. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Florida, Ctr Hlth, Dept Pharmacol, Gainesville, FL 32610 USA. Univ Florida, Dept Biochem, Gainesville, FL 32610 USA. Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Silverman, DN (reprint author), Univ Florida, Ctr Hlth, Dept Pharmacol, Box 100267, Gainesville, FL 32610 USA. EM silvermn@college.med.ufl.edu NR 29 TC 4 Z9 4 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-2860 J9 J MOL STRUCT JI J. Mol. Struct. PD JUN 5 PY 2006 VL 790 IS 1-3 BP 168 EP 173 DI 10.1016/j.molstruc.2005.10.054 PG 6 WC Chemistry, Physical SC Chemistry GA 067IZ UT WOS:000239296600023 ER PT J AU Koike, Y Nagashima, J Vogelsang, W AF Koike, Yuji Nagashima, Junji Vogelsang, Werner TI Resummation for polarized semi-inclusive deep-inelastic scattering at small transverse momentum SO NUCLEAR PHYSICS B LA English DT Article ID TO-LEADING-ORDER; SINGLE-SPIN PRODUCTION; HADRONIC COLLISIONS; BOSON PRODUCTION; CROSS-SECTIONS; ENERGY-FLOW; INCLUSIVE LEPTOPRODUCTION; LOGARITHMIC CORRECTIONS; FRAGMENTATION FUNCTIONS; PRODUCTION ASYMMETRIES AB We study the transverse-momentum distribution of hadrons produced in semi-inclusive deep-inelastic scattering (SIDIS). We consider cross sections for various combinations of polarizations of the initial lepton and nucleon or the produced hadron, for which we perform the resummation of large double-logarithmic perturbative corrections arising at small transverse momentum. We present phenomenological results for the processes lp -> l pi X with longitudinally polarized leptons and protons. We discuss the impact of the perturbative resummation and of estimated non-perturbative contributions on the corresponding cross sections and their spin asymmetry. Our results should be relevant for ongoing studies in the COMPASS experiment at CERN, and for future experiments at the proposed eRHIC collider at BNL. (c) 2006 Elsevier B.V. All rights reserved. C1 Niigata Univ, Dept Phys, Ikarashi, Niigata 9502181, Japan. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. RP Koike, Y (reprint author), Niigata Univ, Dept Phys, Ikarashi, Niigata 9502181, Japan. EM koike@nt.sc.niigata-u.ac.jp NR 89 TC 22 Z9 22 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 J9 NUCL PHYS B JI Nucl. Phys. B PD JUN 5 PY 2006 VL 744 IS 1-2 BP 59 EP 79 DI 10.1016/j.nuclphysb.2006.03.009 PG 21 WC Physics, Particles & Fields SC Physics GA 046VU UT WOS:000237840000004 ER PT J AU Montes, VA Pohl, R Shinar, J Anzenbacher, P AF Montes, Victor A. Pohl, Radek Shinar, Joseph Anzenbacher, Pavel, Jr. TI Effective manipulation of the electronic effects and its influence on the emission of 5-substituted tris(8-quinolinolate) aluminum(III) complexes SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE aluminum; electronic structure; organic light-emitting diodes; quinolinolate; semiconductors ID NUCLEAR-MAGNETIC-RESONANCE; LIGHT-EMITTING DEVICES; ORGANIC ELECTROLUMINESCENCE; COMBINATORIAL FABRICATION; SUBSTITUTED ALUMINUM; DIODES; STATE; N,N-DIMETHYLANILINE; FLUORESCENCE; DERIVATIVES AB The unique electron-transport and emissive properties of tris(8-quinolinolate) aluminum(III) (Alq(3)) have resulted in extensive use of this material for small molecular organic light-emitting diode (OLED) fabrication. So far, efforts to prepare stable and easy-to-process red/green/blue (RGB)-emitting Alq(3) derivatives have met with only a limited success. In this paper, we describe how the electronic nature of various substituents, projected via an arylethynyl or aryl spacer to the position of the highest HOMO density (C5), may be used for effective emission tuning to obtain blue-, green-, and red-emitting materials. The synthetic strategy consists of four different pathways for the attachment of electron-donating and electron-withdrawing aryl or arylethynyl substituents to the 5-position of the quinolinolate ring. Successful tuning of the emission color covering the whole visible spectrum (lambda=450-800 nm) was achieved. In addition, the photophysical properties of the luminophores were found to correlate with the Hammett constant of the respective substituents, providing a powerful strategy with which to predict the optical properties of new materials. We also demonstrate that the electronic nature of the substituent affects the emission properties of the resulting complex through effective modification of the HOMO levels of the quinolinolate ligand. C1 Bowling Green State Univ, Dept Chem, Bowling Green, OH 43403 USA. Bowling Green State Univ, Ctr Photochem Sci, Bowling Green, OH 43403 USA. Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Anzenbacher, P (reprint author), Bowling Green State Univ, Dept Chem, Bowling Green, OH 43403 USA. EM pavel@bgnet.bgsu NR 53 TC 115 Z9 115 U1 7 U2 28 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD JUN 2 PY 2006 VL 12 IS 17 BP 4523 EP 4535 DI 10.1002/chem.200501403 PG 13 WC Chemistry, Multidisciplinary SC Chemistry GA 052WF UT WOS:000238263900004 PM 16619313 ER PT J AU Hammerl, A Klapotke, TM Rocha, RC AF Hammerl, Anton Klapoetke, Thomas M. Rocha, Reginaldo C. TI Azide-tetrazole ring-chain isomerism in polyazido-1,3,5-triazines, triazido-s-heptazine, and diazidotetrazines SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE ab initio calculations; nitrogen heterocycles; azides; nitrogen ID RICH CARBON NITRIDES; NITROGEN; PRECURSOR; 2,4,6-TRIAZIDO-1,3,5-TRIAZINE; ISOMERIZATION; TAUTOMERISM; CYCLIZATION; MECHANISM; COATINGS AB The azide-tetrazole isomerism in several polyazido-1,3,5-triazines, triazido-sym-heptazine, and some diazido-1,2,4,5-tetrazines was investigated by ab initio quantum chemical methods in order to determine whether the polyazides are suitable starting materials for the synthesis of the isomeric tetrazoles. The effects of solvation in CCl(4), DMSO and water on this isomerism were included using the self consistent reaction field (SCRF) method. The effect of amino- and nitro-substituents on the azide-tetrazole isomerism was also examined. In the gas phase all investigated polyazidoheterocycles do not cyclize to form tetrazoles. An electron-donating amino group favors the ring closure to tetrazoles, whereas an electron-withdrawing nitro group favors the azides. Solvation in polar solvents favors the formation of a tetrazole ring system due to higher charge separation in the tetrazole ring system, but for all polyazido-1,3,5-triazines, including triazido-s-heptazine, the effects of solvation are not strong enough to shift the equilibrium to the tetrazole side, which explains why several attempts to detect these compounds have failed. The monotetetrazoles of diazidotetrazine and bis(azido)azo-1,2,4,5-tetrazine and the ditetrazole of bis(azido)hydrazo1,2,4,5-tetrazine are the minimum energy species in DMSO and water. Thus we predict that the diazidoazo- and hydrazotetrazines will readily cyclize to the tetrazoles in polar solvents. C1 Univ Munich, Dept Chem, D-81377 Munich, Germany. Los Alamos Natl Lab, Dynam Expt Div DX2, Los Alamos, NM 87545 USA. RP Klapotke, TM (reprint author), Univ Munich, Dept Chem, Butenandtstr 5-13 D, D-81377 Munich, Germany. EM anton.hammerl@cup.uni-muenchen.de; thomas.m.klapoetke@cup.uni-muenchen.de; rcrocha@lanl.gov RI Klapoetke, Thomas/B-6055-2014 OI Klapoetke, Thomas/0000-0003-3276-1157 NR 34 TC 36 Z9 37 U1 0 U2 19 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1434-1948 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD JUN 2 PY 2006 IS 11 BP 2210 EP 2228 DI 10.1002/ejic.200600100 PG 19 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 053MQ UT WOS:000238309600011 ER PT J AU Liu, YG Daum, PH McGraw, R Miller, M AF Liu, Yangang Daum, Peter H. McGraw, Robert Miller, Mark TI Generalized threshold function accounting for effect of relative dispersion on threshold behavior of autoconversion process SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CLOUD MICROPHYSICAL PROCESSES; DROPLET EFFECTIVE RADIUS; SPECTRAL DISPERSION; BOUNDARY-LAYER; CLIMATE MODELS; WATER-CONTENT; PART II; PARAMETERIZATION; PARAMETRIZATION; STRATOCUMULUS AB The recently derived theoretical threshold function associated with the autoconversion process is generalized to account for the effect of the relative dispersion of the cloud droplet size distribution. This generalized threshold function theoretically demonstrates that the relative dispersion, which has been largely neglected to date, essentially controls the cloud-to-rain transition if the liquid water content and the droplet concentration are fixed. Comparison of the generalized threshold function to existing ad hoc threshold functions further reveals that the essential role of the spectral shape of the cloud droplet size distribution in rain initiation has been unknowingly buried in the arbitrary use of ad hoc threshold functions in atmospheric models such as global climate models, and that commonly used ad hoc threshold functions are unable to fully describe the threshold behavior of the autoconversion process that likely occurs in ambient clouds. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Liu, YG (reprint author), Brookhaven Natl Lab, Bldg 815E, Upton, NY 11973 USA. EM lyg@bnl.gov RI Liu, Yangang/H-6154-2011 NR 33 TC 16 Z9 19 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 2 PY 2006 VL 33 IS 11 AR L11804 DI 10.1029/2005GL025500 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 050EE UT WOS:000238069500002 ER PT J AU Abulencia, A Acosta, D Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arguin, JF Arisawa, T Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Bachacou, H Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Belloni, A Ben Haim, E Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carron, S Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chapman, J Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Chu, PH Chuang, SH Chung, K Chung, WH Chung, YS Ciljak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Cresciolo, F Cruz, A Almenar, CC Cuevas, J Culbertson, R Cyr, D DaRonco, S D'Auria, S D'Onofrio, M Dagenhart, D De Barbaro, P De Cecco, S Deisher, A De Lentdecker, G Dell'Orso, M Paoli, FD Demers, S Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Dionisi, C Dittmann, JR DiTuro, P Rr, CD Donati, S Donega, M Dong, P Donini, J Dorigo, T Dube, S Ebina, K Efron, J Ehlers, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Flores-Castillo, LR Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Sciveres, MG Garfinkel, AF Gay, C Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, A Gibson, K Ginsburg, C Giokaris, N Giolo, K Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Gotra, Y Goulianos, K Gresele, A Griffiths, M Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U Da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Hahn, K Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, M Harper, S Harr, RF Harris, RM Hatakeyama, K Hauser, J Hays, C Heijboer, A Heinemann, B Heinrich, J Herndon, M Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Huston, J Incandela, J Introzzi, G Iori, M Ishizawa, Y Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jensen, H Jeon, EJ Jindariani, S Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Kang, J Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kobayashi, H Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kovalev, A Kraan, A Kraus, J Kravchenko, I Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kuhlmann, SE Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Vre, RL Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Lindgren, M Lipeles, E Liss, TM Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Maki, T Maksimovic, P Malde, S Manca, G Margaroli, F Marginean, R Marino, C Martin, A Martin, V Martinez, M Maruyama, T Matsunaga, H Mattson, ME Mazini, R Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Von der Mey, M Miao, T Miladinovic, N Miles, J Miller, R Miller, JS Mills, C Milnik, M Miquel, R Mitra, A Mitselmakher, G Miyamoto, A Moggi, N Mohr, B Moore, R Morello, M Fernandez, PM Dt, JML Mukherjee, A Muller, T Mumford, R Murat, P Nachtman, J Naganoma, J Nahn, S Nakano, I Napier, A Naumov, D Necula, V Neu, C Neubauer, MS Nielsen, J Nigmanov, T Nodulman, L Norniella, O Nurse, E Ogawa, T Oh, SH Oh, YD Okusawa, T Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Paoletti, R Papadimitriou, V Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Rakitin, A Rappoccio, S Ratnikov, F Reisert, B Rekovic, V Van Remortel, N Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robertson, WJ Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Rott, C Ruiz, A Russ, J Rusu, V Saarikko, H Sabik, S Safonov, A Sakumoto, WK Salamanna, G Salto, O Saltzberg, D Sanchez, C Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfiligoi, I Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Sjolin, J Skiba, A Slaughter, AJ Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spezziga, M Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Staveris-Polykalas, A Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sumorok, K Sun, H Suzuki, T Taffard, A Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tanimoto, N Tecchio, M Teng, PK Terashi, K Tether, S Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Nnesmann, MT Torre, S Torretta, D Tourneur, S Trischuk, W Tsuchiya, R Tsuno, S Turini, N Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vaiciulis, A Vallecorsa, S Varganov, A Vataga, E Velev, G Veramendi, G Veszpremi, V Vidal, R Vila, I Vilar, R Vine, T Vollrath, I Volobouev, I Volpi, G Rthwein, FW Wagner, P Wagner, RG Wagner, RL Wagner, W Wallny, R Walter, T Wan, Z Wang, SM Warburton, A Waschke, S Waters, D Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zetti, F Zhang, X Zhou, J Zucchelli, S AF Abulencia, A. Acosta, D. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Ambrose, D. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arguin, J. -F. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Bachacou, H. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Bedeschi, F. Behari, S. Belforte, S. Bellettini, G. Bellinger, J. Belloni, A. Ben Haim, E. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carron, S. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chapman, J. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Chu, P. H. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciljak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Cresciolo, F. Cruz, A. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cyr, D. DaRonco, S. D'Auria, S. D'Onofrio, M. Dagenhart, D. De Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. Dell'Orso, M. Paoli, F. Delli Demers, S. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Dionisi, C. Dittmann, J. R. DiTuro, P. Rr, C. Do Donati, S. Donega, M. Dong, P. Donini, J. Dorigo, T. Dube, S. Ebina, K. Efron, J. Ehlers, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Flores-Castillo, L. R. Foland, A. Forrester, S. Foster, G. W. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Sciveres, M. Garcia Garfinkel, A. F. Gay, C. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, A. Gibson, K. Ginsburg, C. Giokaris, N. Giolo, K. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Gotra, Y. Goulianos, K. Gresele, A. Griffiths, M. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. Da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Hahn, K. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hatakeyama, K. Hauser, J. Hays, C. Heijboer, A. Heinemann, B. Heinrich, J. Herndon, M. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ishizawa, Y. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jensen, H. Jeon, E. J. Jindariani, S. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Kang, J. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kobayashi, H. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kovalev, A. Kraan, A. Kraus, J. Kravchenko, I. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kuhlmann, S. E. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Liss, T. M. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Loverre, P. Lu, R. -S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Maki, T. Maksimovic, P. Malde, S. Manca, G. Margaroli, F. Marginean, R. Marino, C. Martin, A. Martin, V. Martinez, M. Maruyama, T. Matsunaga, H. Mattson, M. E. Mazini, R. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Von der Mey, M. Miao, T. Miladinovic, N. Miles, J. Miller, R. Miller, J. S. Mills, C. Milnik, M. Miquel, R. Mitra, A. Mitselmakher, G. Miyamoto, A. Moggi, N. Mohr, B. Moore, R. Morello, M. Fernandez, P. Movilla Dt, J. Mu Lmensta Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Nachtman, J. Naganoma, J. Nahn, S. Nakano, I. Napier, A. Naumov, D. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nigmanov, T. Nodulman, L. Norniella, O. Nurse, E. Ogawa, T. Oh, S. H. Oh, Y. D. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Paoletti, R. Papadimitriou, V. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Rakitin, A. Rappoccio, S. Ratnikov, F. Reisert, B. Rekovic, V. Van Remortel, N. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robertson, W. J. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Rott, C. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Sabik, S. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Saltzberg, D. Sanchez, C. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfiligoi, I. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Sjolin, J. Skiba, A. Slaughter, A. J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spezziga, M. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sumorok, K. Sun, H. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Takikawa, K. Tanaka, M. Tanaka, R. Tanimoto, N. Tecchio, M. Teng, P. K. Terashi, K. Tether, S. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Nnesmann, M. To Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tsuchiya, R. Tsuno, S. Turini, N. Ukegawa, F. Unverhau, T. Uozumi, S. Usynin, D. Vaiciulis, A. Vallecorsa, S. Varganov, A. Vataga, E. Velev, G. Veramendi, G. Veszpremi, V. Vidal, R. Vila, I. Vilar, R. Vine, T. Vollrath, I. Volobouev, I. Volpi, G. Rthwein, F. Wu Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wallny, R. Walter, T. Wan, Z. Wang, S. M. Warburton, A. Waschke, S. Waters, D. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zetti, F. Zhang, X. Zhou, J. Zucchelli, S. CA CDF Collaboration TI Search for Z ' -> e(+) e(-) using dielectron mass and angular distribution SO PHYSICAL REVIEW LETTERS LA English DT Article ID SILICON VERTEX DETECTOR; LEPTON PAIRS; ASYMMETRIES; COLLISIONS; DILEPTONS; QUARK AB We search for Z(') bosons in dielectron events produced in p (p) over bar collisions at root s=1.96 TeV, using 0.45 fb(-1) of data accumulated with the Collider Detector at Fermilab II detector at the Fermilab Tevatron. To identify the Z(')-> e(+)e(-) signal, both the dielectron invariant mass distribution and the angular distribution of the electron pair are used. No evidence of a signal is found, and 95% confidence level lower limits are set on the Z(') mass for several models. Limits are also placed on the mass and gauge coupling of a generic Z('), as well as on the contact-interaction mass scales for different helicity structure scenarios. C1 Univ Illinois, Urbana, IL 61801 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. Baylor Univ, Waco, TX 76798 USA. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Joint Nucl Res Inst, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva 4, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. CIEMAT, E-28040 Madrid, Spain. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Inst Theoret & Expt Phys, Moscow 117259, Russia. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Paris 06, LPNHE, CNRS, IN2P3,UMR7585, F-75005 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Scuola Normale Super Pisa, I-56127 Pisa, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Abulencia, A (reprint author), Univ Illinois, Urbana, IL 61801 USA. RI Scodellaro, Luca/K-9091-2014; Hill, Christopher/B-5371-2012; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013 OI Osterberg, Kenneth/0000-0003-4807-0414; Scodellaro, Luca/0000-0002-4974-8330; Hill, Christopher/0000-0003-0059-0779; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315 NR 34 TC 56 Z9 56 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 2 PY 2006 VL 96 IS 21 AR 211801 DI 10.1003/PhysRevLett.96.211801 PG 7 WC Physics, Multidisciplinary SC Physics GA 049GK UT WOS:000238004000008 ER PT J AU Abulencia, A Acosta, D Adelman, J Affolder, T Akimoto, T Albrow, MG Ambrose, D Amerio, S Amidei, D Anastassov, A Anikeev, K Annovi, A Antos, J Aoki, M Apollinari, G Arguin, JF Arisawa, T Artikov, A Ashmanskas, W Attal, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Bachacou, H Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Bedeschi, F Behari, S Belforte, S Bellettini, G Bellinger, J Belloni, A Ben Haim, E Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carron, S Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chapman, J Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, I Cho, K Chokheli, D Chou, JP Chu, PH Chuang, SH Chung, K Chung, WH Chung, YS Ciljak, M Ciobanu, CI Ciocci, MA Clark, A Clark, D Coca, M Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Cresciolo, F Cruz, A Almenar, CC Cuevas, J Culbertson, R Cyr, D DaRonco, S D'Auria, S D'Onofrio, M Dagenhart, D De Barbaro, P De Cecco, S Deisher, A De Lentdecker, G Dell'Orso, M Paoli, FD Demers, S Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Dionisi, C Dittmann, JR DiTuro, P Dorr, C Donati, S Donega, M Dong, P Donini, J Dorigo, T Dube, S Ebina, K Efron, J Ehlers, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, I Fedorko, WT Feild, RG Feindt, M Fernandez, JP Field, R Flanagan, G Flores-Castillo, LR Foland, A Forrester, S Foster, GW Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Sciveres, MG Garfinkel, AF Gay, C Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, A Gibson, K Ginsburg, C Giokaris, N Giolo, K Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Goldstein, J Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Gotra, Y Goulianos, K Gresele, A Griffiths, M Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U Da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Hahn, K Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, M Harper, S Harr, RF Harris, RM Hatakeyama, K Hauser, J Hays, C Heijboer, A Heinemann, B Heinrich, J Herndon, M Hidas, D Hill, CS Hirschbuehl, D Hocker, A Holloway, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Huston, J Incandela, J Introzzi, G Iori, M Ishizawa, Y Ivanov, A Iyutin, B James, E Jang, D Jayatilaka, B Jeans, D Jensen, H Jeon, EJ Jindariani, S Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Kang, J Karchin, PE Kato, Y Kemp, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Kobayashi, H Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kovalev, A Kraan, A Kraus, J Kravchenko, I Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kuhlmann, SE Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Loverre, P Lu, RS Lucchesi, D Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Maki, T Maksimovic, P Malde, S Manca, G Margaroli, F Marginean, R Marino, C Martin, A Martin, V Martiinez, M Maruyama, T Matsunaga, H Mattson, ME Mazini, R Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Von der Mey, M Miao, T Miladinovic, N Miles, J Miller, R Miller, JS Mills, C Milnik, M Miquel, R Mitra, A Mitselmakher, G Miyamoto, A Moggi, N Mohr, B Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Nachtman, J Naganoma, J Nahn, S Nakano, I Napier, A Naumov, D Necula, V Neu, C Neubauer, MS Nielsen, J Nigmanov, T Nodulman, L Norniella, O Nurse, E Ogawa, T Oh, SH Oh, YD Okusawa, T Oldeman, R Orava, R Osterberg, K Pagliarone, C Palencia, E Paoletti, R Papadimitriou, V Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Rakitin, A Rappoccio, S Ratnikov, F Reisert, B Rekovic, V Van Remortel, N Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robertson, WJ Robson, A Van Remortel, N Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robertson, WJ Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Rott, C Ruiz, A Russ, J Rusu, V Saarikko, H Sabik, S Safonov, A Sakumoto, WK Salamanna, G Salto, O Saltzberg, D Sanchez, C Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfiligoi, I Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Sjolin, J Skiba, A Slaughter, AJ Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spezziga, M Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Staveris-Polykalas, A St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sumorok, K Sun, H Suzuki, T Taffard, A Takashima, R Takeuchi, Y Takikawa, K Tanaka, M Tanaka, R Tanimoto, N Tecchio, M Teng, PK Terashi, K Tether, S Thom, J Thompson, AS Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Toonnesmann, M Torre, S Torretta, D Tourneur, S Trischuk, W Tsuchiya, R Tsuno, S Turini, N Ukegawa, F Unverhau, T Uozumi, S Usynin, D Vaiciulis, A Vallecorsa, S Varganov, A Vataga, E Velev, G Veramendi, G Veszpremi, V Vidal, R Vila, I Vilar, R Vine, T Vollrath, I Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, W Wallny, R Walter, T Wan, Z Wang, SM Warburton, A Waschke, S Waters, D Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zetti, F Zhang, X Zhou, J Zucchelli, S AF Abulencia, A. Acosta, D. Adelman, J. Affolder, T. Akimoto, T. Albrow, M. G. Ambrose, D. Amerio, S. Amidei, D. Anastassov, A. Anikeev, K. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Arguin, J. -F. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Bachacou, H. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Bedeschi, F. Behari, S. Belforte, S. Bellettini, G. Bellinger, J. Belloni, A. Ben Haim, E. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carron, S. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chapman, J. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, I. Cho, K. Chokheli, D. Chou, J. P. Chu, P. H. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciljak, M. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Coca, M. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Cresciolo, F. Cruz, A. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cyr, D. DaRonco, S. D'Auria, S. D'Onofrio, M. Dagenhart, D. De Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. Dell'Orso, M. Paoli, F. Delli Demers, S. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Dionisi, C. Dittmann, J. R. DiTuro, P. Doerr, C. Donati, S. Donega, M. Dong, P. Donini, J. Dorigo, T. Dube, S. Ebina, K. Efron, J. Ehlers, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, I. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Flores-Castillo, L. R. Foland, A. Forrester, S. Foster, G. W. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Sciveres, M. Garcia Garfinkel, A. F. Gay, C. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, A. Gibson, K. Ginsburg, C. Giokaris, N. Giolo, K. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Goldstein, J. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Gotra, Y. Goulianos, K. Gresele, A. Griffiths, M. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. Da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Hahn, K. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hatakeyama, K. Hauser, J. Hays, C. Heijboer, A. Heinemann, B. Heinrich, J. Herndon, M. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Holloway, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ishizawa, Y. Ivanov, A. Iyutin, B. James, E. Jang, D. Jayatilaka, B. Jeans, D. Jensen, H. Jeon, E. J. Jindariani, S. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Kang, J. Karchin, P. E. Kato, Y. Kemp, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Kobayashi, H. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kovalev, A. Kraan, A. Kraus, J. Kravchenko, I. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kuhlmann, S. E. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Loverre, P. Lu, R. -S. Lucchesi, D. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Maki, T. Maksimovic, P. Malde, S. Manca, G. Margaroli, F. Marginean, R. Marino, C. Martin, A. Martin, V. Martinez, M. Maruyama, T. Matsunaga, H. Mattson, M. E. Mazini, R. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Von der Mey, M. Miao, T. Miladinovic, N. Miles, J. Miller, R. Miller, J. S. Mills, C. Milnik, M. Miquel, R. Mitra, A. Mitselmakher, G. Miyamoto, A. Moggi, N. Mohr, B. Moore, R. Morello, M. Fernandez, P. Movilla Mulmenstadt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Nachtman, J. Naganoma, J. Nahn, S. Nakano, I. Napier, A. Naumov, D. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nigmanov, T. Nodulman, L. Norniella, O. Nurse, E. Ogawa, T. Oh, S. H. Oh, Y. D. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Pagliarone, C. Palencia, E. Paoletti, R. Papadimitriou, V. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Rakitin, A. Rappoccio, S. Ratnikov, F. Reisert, B. Rekovic, V. Van Remortel, N. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robertson, W. J. Robson, A. Van Remortel, N. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robertson, W. J. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Rott, C. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Sabik, S. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Saltzberg, D. Sanchez, C. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfiligoi, I. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Sjolin, J. Skiba, A. Slaughter, A. J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spezziga, M. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Staveris-Polykalas, A. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sumorok, K. Sun, H. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Takikawa, K. Tanaka, M. Tanaka, R. Tanimoto, N. Tecchio, M. Teng, P. K. Terashi, K. Tether, S. Thom, J. Thompson, A. S. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Tonnesmann, M. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tsuchiya, R. Tsuno, S. Turini, N. Ukegawa, F. Unverhau, T. Uozumi, S. Usynin, D. Vaiciulis, A. Vallecorsa, S. Varganov, A. Vataga, E. Velev, G. Veramendi, G. Veszpremi, V. Vidal, R. Vila, I. Vilar, R. Vine, T. Vollrath, I. Volobouev, I. Volpi, G. Wurthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wallny, R. Walter, T. Wan, Z. Wang, S. M. Warburton, A. Waschke, S. Waters, D. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zetti, F. Zhang, X. Zhou, J. Zucchelli, S. CA DCF Collaborat TI Search for high-mass resonances decaying to e mu in pp- collisions at root s = 1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTROMAGNETIC CALORIMETER; LUMINOSITY MONITOR; CDF; PHYSICS AB We describe a general search for resonances decaying to a neutral e mu final state in p (p) over bar collisions at a center-of-mass energy of 1.96 TeV. Using a data sample representing 344 pb(-1) of integrated luminosity recorded by the Collider Detector at Fermilab II experiment, we compare standard model predictions with the number of observed events for invariant masses between 50 and 800 GeV/c(2). Finding no significant excess (5 events observed vs 7.7 +/- 0.8 expected for M-e mu > 100 GeV/c(2)), we set limits on sneutrino and Z(') masses as functions of lepton family number violating couplings. C1 Univ Illinois, Urbana, IL 61801 USA. Acad Sinica, Inst Phys, Taipei 11529, Taiwan. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. Baylor Univ, Waco, TX 76798 USA. Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Brandeis Univ, Waltham, MA 02254 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Joint Inst Nucl Res, RU-141980 Dubna, Russia. Duke Univ, Durham, NC 27708 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Florida, Gainesville, FL 32611 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Geneva, CH-1211 Geneva 4, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Harvard Univ, Cambridge, MA 02138 USA. Univ Helsinki, Dept Phys, Div High Energy Phys, Helsinki, Finland. Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Johns Hopkins Univ, Baltimore, MD 21218 USA. Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 305, Japan. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. UCL, London WC1E 6BT, England. CIEMAT, E-28040 Madrid, Spain. MIT, Cambridge, MA 02139 USA. McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. Univ Toronto, Toronto, ON M5S 1A7, Canada. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Inst Theoret & Expt Phys, Moscow 117259, Russia. Univ New Mexico, Albuquerque, NM 87131 USA. Northwestern Univ, Evanston, IL 60208 USA. Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Okayama 7008530, Japan. Osaka City Univ, Osaka 588, Japan. Univ Oxford, Oxford OX1 3RH, England. Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. Univ Paris 06, CNRS, LPNHE, IN2P3,UMR7585, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Scuola Normale Super Pisa, I-56127 Pisa, Italy. Univ Pisa, Ist Nazl Fis Nucl, Siena, Italy. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rochester, Rochester, NY 14627 USA. Rockefeller Univ, New York, NY 10021 USA. Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. Texas A&M Univ, College Stn, TX 77843 USA. Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. Tufts Univ, Medford, MA 02155 USA. Waseda Univ, Tokyo 169, Japan. Wayne State Univ, Detroit, MI 48201 USA. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06520 USA. RP Abulencia, A (reprint author), Univ Illinois, Urbana, IL 61801 USA. RI Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Lysak, Roman/H-2995-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Introzzi, Gianluca/K-2497-2015; Muelmenstaedt, Johannes/K-2432-2015; Gorelov, Igor/J-9010-2015; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Ruiz, Alberto/E-4473-2011; Kim, Soo-Bong/B-7061-2014 OI Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Muelmenstaedt, Johannes/0000-0003-1105-6678; Gorelov, Igor/0000-0001-5570-0133; Azzi, Patrizia/0000-0002-3129-828X; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Ruiz, Alberto/0000-0002-3639-0368; NR 28 TC 27 Z9 28 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 2 PY 2006 VL 96 IS 21 AR 211802 DI 10.1103/PhysRevLett.96.211802 PG 7 WC Physics, Multidisciplinary SC Physics GA 049GK UT WOS:000238004000009 PM 16712288 ER PT J AU Acremann, Y Strachan, JP Chembrolu, V Andrews, SD Tyliszczak, T Katine, JA Carey, MJ Clemens, BM Siegmann, HC Stohr, J AF Acremann, Y Strachan, JP Chembrolu, V Andrews, SD Tyliszczak, T Katine, JA Carey, MJ Clemens, BM Siegmann, HC Stohr, J TI Time-resolved imaging of spin transfer switching: Beyond the macrospin concept SO PHYSICAL REVIEW LETTERS LA English DT Article ID POLARIZED CURRENT; MAGNETIZATION REVERSAL; CO/CU/CO PILLARS; DRIVEN; MULTILAYER; EXCITATION; DYNAMICS AB Time-resolved images of the magnetization switching process in a spin transfer structure, obtained by ultrafast x-ray microscopy, reveal the limitations of the macrospin model. Instead of a coherent magnetization reversal, we observe switching by lateral motion of a magnetic vortex across a nanoscale element. Our measurements reveal the fundamental roles played independently by the torques due to charge and spin currents in breaking the magnetic symmetry on picosecond time scales. C1 Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. Adv Light Source, Berkeley, CA 94720 USA. Hitachi Global Storage Technol, San Jose Res Ctr, San Jose, CA 95120 USA. RP Acremann, Y (reprint author), Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. NR 26 TC 108 Z9 108 U1 3 U2 20 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 2 PY 2006 VL 96 IS 21 AR 217202 DI 10.1103/PhysRevLett.96.217202 PG 4 WC Physics, Multidisciplinary SC Physics GA 049GK UT WOS:000238004000051 PM 16803270 ER PT J AU Alver, B Back, BB Baker, MD Ballintijn, M Barton, DS Betts, RR Bindel, R Busza, W Chai, Z Chetluru, V Garcia, E Gburek, T Gulbrandsen, K Hamblen, J Harnarine, I Henderson, C Hofman, DJ Hollis, RS Holynski, R Holzman, B Iordanova, A Kane, JL Kulinich, P Kuo, CM Li, W Lin, WT Loizides, C Manly, S Mignerey, AC Nouicer, R Olszewski, A Pak, R Reed, C Richardson, E Roland, C Roland, G Sagerer, J Sedykh, I Smith, CE Stankiewicz, MA Steinberg, P Stephans, GSF Sukhanov, A Szostak, A Tonjes, MB Trzupek, A van Nieuwenhuizen, GJ Vaurynovich, SS Verdier, R Veres, GI Walters, P Wenger, E Willhelm, D Wolfs, FLH Wosiek, B Wozniak, K Wyngaardt, S Wyslouch, B AF Alver, B. Back, B. B. Baker, M. D. Ballintijn, M. Barton, D. S. Betts, R. R. Bindel, R. Busza, W. Chai, Z. Chetluru, V. Garcia, E. Gburek, T. Gulbrandsen, K. Hamblen, J. Harnarine, I. Henderson, C. Hofman, D. J. Hollis, R. S. Holynski, R. Holzman, B. Iordanova, A. Kane, J. L. Kulinich, P. Kuo, C. M. Li, W. Lin, W. T. Loizides, C. Manly, S. Mignerey, A. C. Nouicer, R. Olszewski, A. Pak, R. Reed, C. Richardson, E. Roland, C. Roland, G. Sagerer, J. Sedykh, I. Smith, C. E. Stankiewicz, M. A. Steinberg, P. Stephans, G. S. F. Sukhanov, A. Szostak, A. Tonjes, M. B. Trzupek, A. van Nieuwenhuizen, G. J. Vaurynovich, S. S. Verdier, R. Veres, G. I. Walters, P. Wenger, E. Willhelm, D. Wolfs, F. L. H. Wosiek, B. Wozniak, K. Wyngaardt, S. Wyslouch, B. TI System size and centrality dependence of charged hadron transverse momentum spectra in Au plus Au and Cu plus Cu collisions at root s(NN)=62.4 and 200 GeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID SUPPRESSION AB We present transverse momentum distributions of charged hadrons produced in Cu+Cu collisions at root sNN=62.4 and 200 GeV. The spectra are measured for transverse momenta of 0.25 < p(T)< 5.0 GeV/c at root sNN=62.4 GeV and 0.25 < p(T)< 7.0 GeV/c at root sNN=200 GeV, in a pseudorapidity range of 0.2 pK(-)K(+)n SO PHYSICAL REVIEW LETTERS LA English DT Article AB A search for the Theta(+) in the reaction gamma d -> pK(-)K(+)n was completed using the CLAS detector at Jefferson Lab. A study of the same reaction, published earlier, reported the observation of a narrow Theta(+) resonance. The present experiment, with more than 30 times the integrated luminosity of our earlier measurement, does not show any evidence for a narrow pentaquark resonance. The angle-integrated upper limit on Theta(+) production in the mass range of 1.52-1.56 GeV/c(2) for the gamma d -> pK(-)Theta(+) reaction is 0.3 nb (95% C.L.). This upper limit depends on assumptions made for the mass and angular distribution of Theta(+) production. Using Lambda(1520) production as an empirical measure of rescattering in the deuteron, the cross section upper limit for the elementary gamma n -> K-Theta(+) reaction is estimated to be a factor of 10 higher, i.e., similar to 3 nb (95% C.L.). C1 Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Arizona State Univ, Tempe, AZ 85287 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Catholic Univ Amer, Washington, DC 20064 USA. CEA Saclay, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. Christopher Newport Univ, Newport News, VA 23606 USA. Calif State Univ Dominguez Hills, Carson, CA 90747 USA. Univ Connecticut, Storrs, CT 06269 USA. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Florida Int Univ, Miami, FL 33199 USA. Florida State Univ, Tallahassee, FL 32306 USA. George Washington Univ, Washington, DC 20052 USA. Idaho State Univ, Pocatello, ID 83209 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. Inst Phys Nucl Orsay, Orsay, France. Inst Theoret & Expt Phys, Moscow 117259, Russia. James Madison Univ, Harrisonburg, VA 22807 USA. Univ Kentucky, Lexington, KY 40506 USA. Kyungpook Natl Univ, Taegu 702701, South Korea. Univ Massachusetts, Amherst, MA 01003 USA. Moscow MV Lomonosov State Univ, Gen Nucl Phys Inst, Moscow 119899, Russia. Univ New Hampshire, Durham, NH 03824 USA. Norfolk State Unit, Norfolk, VA 23504 USA. N Carolina Agr & Tech State Univ, Greensboro, NC 27411 USA. Univ N Carolina, Wilmington, NC 28403 USA. Ohio Univ, Athens, OH 45701 USA. Old Dominion Univ, Norfolk, VA 23529 USA. Rensselaer Polytech Inst, Troy, NY 12180 USA. Rice Univ, Houston, TX 77005 USA. Univ Richmond, Richmond, VA 23173 USA. Univ S Carolina, Columbia, SC 29208 USA. Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. Union Coll, Schenectady, NY 12308 USA. Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. Univ Virginia, Charlottesville, VA 22901 USA. Coll William & Mary, Williamsburg, VA 23187 USA. Yerevan Phys Inst, Yerevan 375036, Armenia. RP Hicks, K (reprint author), Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. RI Osipenko, Mikhail/N-8292-2015; Ireland, David/E-8618-2010; Lu, Haiyun/B-4083-2012; Protopopescu, Dan/D-5645-2012; Zana, Lorenzo/H-3032-2012; Ishkhanov, Boris/E-1431-2012; Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013; Kuleshov, Sergey/D-9940-2013; Schumacher, Reinhard/K-6455-2013; Meyer, Curtis/L-3488-2014; Sabatie, Franck/K-9066-2015; Zhang, Jixie/A-1461-2016 OI Osipenko, Mikhail/0000-0001-9618-3013; Ireland, David/0000-0001-7713-7011; Zhao, Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570; Kuleshov, Sergey/0000-0002-3065-326X; Schumacher, Reinhard/0000-0002-3860-1827; Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975; NR 21 TC 91 Z9 94 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 2 PY 2006 VL 96 IS 21 AR 212001 DI 10.1103/PhysRevLett.96.212001 PG 6 WC Physics, Multidisciplinary SC Physics GA 049GK UT WOS:000238004000011 PM 16803230 ER PT J AU Orlov, YF Morse, WM Semertzidis, YK AF Orlov, YF Morse, WM Semertzidis, YK TI Resonance method of electric-dipole-moment measurements in storage rings SO PHYSICAL REVIEW LETTERS LA English DT Article ID LIMIT AB A "resonance method" of measuring the electric dipole moment (EDM) of nuclei in storage rings is described, based on two new ideas: (1) Oscillating particles' velocities in resonance with spin precession, and (2) alternately producing two sub-beams with different betatron tunes-one sub-beam to amplify and thus make it easier to correct ring imperfections that produce false signals imitating EDM signals, and the other to make the EDM measurement. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. Cornell Univ, Lab Elementary Particle Phys, Ithaca, NY 14853 USA. RP Orlov, YF (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. RI Semertzidis, Yannis K./N-1002-2013 NR 14 TC 62 Z9 62 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 2 PY 2006 VL 96 IS 21 AR 214802 DI 10.1103/PhysRevLett.96.214802 PG 4 WC Physics, Multidisciplinary SC Physics GA 049GK UT WOS:000238004000022 PM 16803241 ER PT J AU Prendergast, D Galli, G AF Prendergast, D Galli, G TI X-ray absorption spectra of water from first principles calculations SO PHYSICAL REVIEW LETTERS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; LIQUID WATER; HYDROGEN; ICE; SIMULATIONS; ACCURACY AB We present a series of ab initio calculations of the x-ray absorption cross section (XAS) of ice and liquid water at ambient conditions. Our results show that all available experimental data and theoretical results are consistent with the standard model of the liquid as comprising molecules with approximately four hydrogen bonds. Our simulations of ice XAS including the lowest lying excitonic state are in excellent agreement with experiment and those of a quasitetrahedral model of water are in reasonable agreement with recent measurements. Hence we propose that the standard, quasitetrahedral model of water, although approximate, represents a reasonably accurate description of the local structure of the liquid. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Prendergast, D (reprint author), Lawrence Livermore Natl Lab, POB 808,L-415, Livermore, CA 94551 USA. RI Prendergast, David/E-4437-2010 NR 27 TC 189 Z9 189 U1 6 U2 61 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 2 PY 2006 VL 96 IS 21 AR 215502 DI 10.1103/PhysRevLett.96.215502 PG 4 WC Physics, Multidisciplinary SC Physics GA 049GK UT WOS:000238004000027 PM 16803246 ER PT J AU Qian, D Hsieh, D Wray, L Chuang, YD Fedorov, A Wu, D Luo, JL Wang, NL Viciu, L Cava, RJ Hasan, MZ AF Qian, D Hsieh, D Wray, L Chuang, YD Fedorov, A Wu, D Luo, JL Wang, NL Viciu, L Cava, RJ Hasan, MZ TI Low-lying quasiparticle states and hidden collective charge instabilities in parent cobaltate superconductors SO PHYSICAL REVIEW LETTERS LA English DT Article ID ANGLE-RESOLVED PHOTOEMISSION; ELECTRONIC-STRUCTURE AB We report a state-of-the-art photoemission (angle-resolved photoemission spectroscopy) study of high quality single crystals of the NaxCoO2 series focusing on the fine details of the low-energy states. The Fermi velocity is found to be small (< 0.5 eV angstrom) and only weakly anisotropic over the Fermi surface at all dopings, setting the size of the pair wave function to be on the order of 10-20 nm. In the low-doping regime, the exchange interlayer splitting vanishes and two-dimensional collective instabilities such as 120 degrees-type fluctuations become kinematically allowed. Our results suggest that the unusually small Fermi velocity and the unique symmetry of kinematic instabilities distinguish cobaltates from most other oxide superconductors. C1 Princeton Univ, Joseph Henry Labs, Dept Phys, Princeton, NJ 08544 USA. Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94305 USA. Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China. Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RP Qian, D (reprint author), Princeton Univ, Joseph Henry Labs, Dept Phys, Princeton, NJ 08544 USA. RI HASAN, M. Zahid/D-8237-2012; Qian, Dong/O-1028-2015 NR 21 TC 63 Z9 64 U1 1 U2 7 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 2 PY 2006 VL 96 IS 21 AR 216405 DI 10.1103/PhysRevLett.96.216405 PG 4 WC Physics, Multidisciplinary SC Physics GA 049GK UT WOS:000238004000042 PM 16803261 ER EF