FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Foerster, BU Tomasi, D Caparelli, EC AF Foerster, BU Tomasi, D Caparelli, EC TI Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging SO MAGNETIC RESONANCE IN MEDICINE LA English DT Article DE gradient coils; instability; MRI; vibration; acoustic noise ID ARTIFACT REDUCTION; ACOUSTIC NOISE; MOTION; BRAIN; FMRI; FLUCTUATIONS; COMPENSATION; REGISTRATION; SOFTWARE; TESLA AB Mechanical vibrations of the gradient coil system during read-out in echo-planar imaging (EPI) can increase the temperature of the gradient system and alter the magnetic field distribution during functional magnetic resonance imaging (fMRI). This effect is enhanced by resonant modes of vibrations and results in apparent motion along the phase encoding direction in fMRI studies. The magnetic field drift was quantified during EPI by monitoring the resonance frequency interleaved with the EPI acquisition, and a novel method is proposed to correct the apparent motion. The knowledge on the frequency drift over time was used to correct the phase of the k-space EPI dataset. Since the resonance frequency changes very slowly over time, two measurements of the resonance frequency, immediately before and after the EPI acquisition, are sufficient to remove the field drift effects from fMRI time series. The frequency drift correction method was tested "in vivo" and compared to the standard image realignment method. The proposed method efficiently corrects spurious motion due to magnetic field drifts during fMRI. C1 Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Foerster, BU (reprint author), Brookhaven Natl Lab, Dept Med, 30 Bell St, Upton, NY 11973 USA. EM bfoerster@bnl.gov RI Tomasi, Dardo/J-2127-2015 FU NCRR NIH HHS [5-M01-RR-10710, M01 RR010710, M01 RR010710-06S1]; NIDA NIH HHS [R03 DA 017070-01, R03 DA017070, R03 DA017070-01] NR 25 TC 62 Z9 62 U1 0 U2 2 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0740-3194 J9 MAGNET RESON MED JI Magn. Reson. Med. PD NOV PY 2005 VL 54 IS 5 BP 1261 EP 1267 DI 10.1002/mrm.20695 PG 7 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 981PE UT WOS:000233099700026 PM 16215962 ER PT J AU Brady, MP Tortorelli, PF More, KL Payzant, EA Armstrong, BL Lin, HT Lance, MJ Huang, F Weaver, ML AF Brady, MP Tortorelli, PF More, KL Payzant, EA Armstrong, BL Lin, HT Lance, MJ Huang, F Weaver, ML TI Coating and near-surface modification design strategies for protective and functional surfaces SO MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION LA English DT Article; Proceedings Paper CT Workshop on Novel Approaches to the Improvement of High Temperature Corrosion Resistance CY OCT 27-29, 2004 CL Frankfurt, GERMANY SP DECHEMA, European Federat Corros ID BIPOLAR PLATE MATERIALS; MEMBRANE FUEL-CELLS; OXIDATION BEHAVIOR; WATER-VAPOR; INTERNAL NITRIDATION; THERMAL NITRIDATION; TIAL INTERMETALLICS; CARBIDE CATALYSTS; SCALE FORMATION; ALLOY DESIGN AB This paper discusses strategies for controlling the surface chemistry and microstructure of materials to form protective and functional surfaces through controlled gas-metal reactions. Potential applications range from oxidation, corrosion, and wear resistance to electrochemical devices such as fuel cells to catalysts. Phenomenological examples are presented for coatings designed to self-grade under oxidizing conditions, and for the growth of simple and complex (binary and ternary) nitride and carbide phase surface layers by nitridation and carburization reactions. Specific systems discussed include environmental barrier coatings (EBCs) for Si-based ceramics such as Si3N4 and SiC, the growth of continuous, protective CrN/Cr2N, TiN, VN, NiNbVN, and related simple nitride layers on Fe- and Ni-base alloys, the possible formation of ternary nitride and carbide surface phases (e.g. Ti3AlC2, and related MAX-phases) on intermetallic surfaces to improve oxidation resistance, and the formation of composite near-surface structures in Ag-SiO2 and Co(Mo)-Co6Mo6C2 systems. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Alabama, Tuscaloosa, AL 35487 USA. RP Brady, MP (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM bradymp@ornl.gov RI Brady, Michael/A-8122-2008; Payzant, Edward/B-5449-2009; Tortorelli, Peter/E-2433-2011; More, Karren/A-8097-2016; Lance, Michael/I-8417-2016 OI Brady, Michael/0000-0003-1338-4747; Payzant, Edward/0000-0002-3447-2060; More, Karren/0000-0001-5223-9097; Lance, Michael/0000-0001-5167-5452 NR 53 TC 9 Z9 9 U1 0 U2 16 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0947-5117 J9 MATER CORROS JI Mater. Corros. PD NOV PY 2005 VL 56 IS 11 BP 748 EP 755 DI 10.1002/maco.200503875 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 989VB UT WOS:000233700900002 ER PT J AU Gygi, F Galli, G AF Gygi, Francois Galli, Giulia TI Ab initio simulation in extreme conditions SO MATERIALS TODAY LA English DT Article ID NORM-CONSERVING PSEUDOPOTENTIALS; HIGH-PRESSURE PHASES; MOLECULAR-DYNAMICS; METALLIC HYDROGEN; LATTICE-DYNAMICS; CARBON-DIOXIDE; EARTHS CORE; ATOMISTIC SIMULATION; ELASTIC PROPERTIES; ELECTRON-GAS AB The study of materials properties under extreme conditions has made considerable progress over the past decade as a result of improvements in experimental techniques and advanced modeling methods. The availability of accurate models is crucial for analyzing results obtained in extreme conditions of pressure and temperature, where experimental data can be scarce. Among theoretical models, ab initio simulations are playing an increasingly important role because of their ability to predict materials properties without the need for any experimental input. Ab initio simulations also allow the exploration of materials properties in conditions that are unachievable using controlled experiments - such as, for example, the conditions prevailing in the cores of large planets. In that limit, they constitute the only quantitative model of condensed matter available today. We review the current status of ab initio simulations and discuss examples of recent applications in which numerical simulations have provided an essential complement to experimental data. C1 [Gygi, Francois] Univ Calif Davis, Davis, CA 95616 USA. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Gygi, F (reprint author), Univ Calif Davis, Davis, CA 95616 USA. EM fgygi@llnl.gov FU US Department of Energy by University of California Lawrence Livermore National Laboratory [W-7405-Eng-48]; [UCRL-JRNL-214577] FX UCRL-JRNL-214577. This work was performed under the auspices of the US Department of Energy by University of California Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48. We would like to thank T. Ogitsu for providing Fig. 3. NR 67 TC 7 Z9 7 U1 1 U2 1 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1369-7021 EI 1873-4103 J9 MATER TODAY JI Mater. Today PD NOV PY 2005 VL 8 IS 11 BP 26 EP 32 DI 10.1016/S1369-7021(05)71157-3 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA V32DZ UT WOS:000208933200026 ER PT J AU Tu, KN Suh, JO Wu, ATC Tamura, N Tung, CH AF Tu, KN Suh, JO Wu, ATC Tamura, N Tung, CH TI Mechanism and prevention of spontaneous tin whisker growth SO MATERIALS TRANSACTIONS LA English DT Review DE lead free; tin whisker; spontaneous growth; X-ray microdiffraction ID THIN-FILMS; INTERFACIAL REACTION; EUTECTIC SNPB; ZINC; CRYSTALS; CADMIUM AB Spontaneous Sn whisker growth on Cu leadframe finished with Pb-free solder is a serious reliability problem in electrical and electronic devices. Recently, Fortune magazine had an article to describe the urgency of the problem. The spontaneous growth is an irreversible process, in which there are two atomic fluxes driven by two kinds of driving force. There are a flux of Cu atoms and a flux of SO atoms. The Cu atoms diffuse from the leadframe into the solder finish driven by chemical potential gradient to form intermetallic compound of Cu6Sn5 in the grain boundaries of the solder, and the growth of the compound at room temperature generates a compressive stress in the solder. To relieve the stress, a flux of SO atoms driven by the stress gradient diffuses away to grow a spontaneous Sn whisker which is stress-free. The typical industry solution is to insert a diffusion barrier of Ni between the Cu and solder to prevent the diffusion of Cu into the solder. It is insufficient, because we have to uncouple the irreversible processes and stop both the fluxes of Cu and Sn. A solution is presented here. C1 Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. Natl Taipei Univ Technol, Dept Mat & Mineral Resources Engn, Taipei 106, Taiwan. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Inst Microelect, Singapore 117685, Singapore. RP Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. NR 33 TC 17 Z9 19 U1 4 U2 36 PU JAPAN INST METALS PI SENDAI PA 1-14-32, ICHIBANCHO, AOBA-KU, SENDAI, 980-8544, JAPAN SN 1345-9678 EI 1347-5320 J9 MATER TRANS JI Mater. Trans. PD NOV PY 2005 VL 46 IS 11 BP 2300 EP 2308 DI 10.2320/matertrans.46.2300 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 995TO UT WOS:000234127100002 ER PT J AU Tang, QL Zeng, GSL Wu, JS Gullberg, GT AF Tang, QL Zeng, GSL Wu, JS Gullberg, GT TI Exact fan-beam and 4 pi-acquisition cone-beam SPECT algorithms with uniform attenuation correction SO MEDICAL PHYSICS LA English DT Article DE fan-beam; cone-beam; attenuation correction ID EXPONENTIAL RADON-TRANSFORM; EMISSION-COMPUTED-TOMOGRAPHY; ULTRA-HIGH-RESOLUTION; RECONSTRUCTION; INVERSION; COLLIMATORS; ANIMALS AB This paper presents analytical fan-beam and cone-beam reconstruction algorithms that compensate for uniform attenuation in single photon emission computed tomography. First, a fan-beam algorithm is developed by obtaining a relationship between the two-dimensional (2D) Fourier transform of parallel-beam projections and fan-beam projections. Using this relationship, 2D Fourier transforms of equivalent parallel-beam projection data are obtained from the fan-beam projection data. Then a quasioptimal analytical reconstruction algorithm for uniformly attenuated Radon data, developed by Metz and Pan, is used to reconstruct the image. A cone-beam algorithm is developed by extending the fan-beam algorithm to 4 pi solid angle geometry. The cone-beam algorithm is also an exact algorithm. (c) 2005 American Association of Physicists in Medicine. C1 Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. Univ Utah, Dept Radiol, Salt Lake City, UT 84108 USA. Univ Illinois, Dept Phys, Urbana, IL 61801 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Tang, QL (reprint author), Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. EM tangql@physics.utah.edu RI Wu, Jiansheng/C-2923-2014 OI Wu, Jiansheng/0000-0001-5855-360X FU NCI NIH HHS [CA100181]; NIBIB NIH HHS [EB00121] NR 20 TC 4 Z9 4 U1 0 U2 1 PU AMER ASSOC PHYSICISTS MEDICINE AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0094-2405 J9 MED PHYS JI Med. Phys. PD NOV PY 2005 VL 32 IS 11 BP 3440 EP 3447 DI 10.1118/1.2068907 PG 8 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 985NW UT WOS:000233385800027 PM 16372416 ER PT J AU Williams, PT AF Williams, PT TI Nonlinear relationships between weekly walking distance and adiposity in 27,596 women SO MEDICINE AND SCIENCE IN SPORTS AND EXERCISE LA English DT Article DE exercise; body mass index; regional adiposity; waist circumference ID FACTOR SURVEILLANCE SYSTEM; MIDDLE-AGED WOMEN; PHYSICAL-ACTIVITY; BODY-COMPOSITION; WEIGHT CHANGE; POSTMENOPAUSAL WOMEN; REGIONAL ADIPOSITY; FAT DISTRIBUTION; AEROBIC FITNESS; ADULTS AB Introduction/Purpose: Data from vigorously active women (runners) suggested that declines in adiposity with weekly running distance were nonlinear and dependent on whether the women are relatively lean or fat. The purpose of the current study is to assess the cross-sectional relationship between the amount of moderate-intensity physical activity (walking distance) and indicators of adiposity. Methods: Cross-sectional analyses (i.e., quadratic polynomial regression, regression for percentiles of adiposity) of body mass index (BMI), body circumferences, and bra cup sizes in 27,596 women. Results: The estimated percent reductions between walking 40-50 km-wk(-1) and < 1 0 km-wk(-1) were greatest for BMI, intermediate for waist circumference and cup size, and least for hip and chest circumferences. The relationships of walking distance to BMI and body circumferences were all nonlinear (convex). In addition, the inverse relationship between weekly walking distance and adiposity was greatest at the highest percentile of BMI, body circumferences, and cup size, and least at the lowest percentiles. Thus, the decline in adiposity per kilometer per week increment in walking distance was greatest in overweight mostly sedentary women and least in lean active women. The decline in BMI per kilometer per week of exercise was greater in the walkers than previously reported for runners. However, based on the relationships between walking distance and percentiles of the BMI distribution reported here, we show that the majority of this difference is attributable to the leanness of the runners and greater fatness of the walker. Conclusion: These data suggest that in women the greatest benefit of walking may be among the most obese and that at higher weekly distances the declines in weight associated with walking diminish. Whether these relationships are causal remains to be determined. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Donner Lab, Berkeley, CA 94720 USA. RP Williams, PT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Donner Lab, Berkeley, CA 94720 USA. EM ptwilliams@lbl.gov FU NHLBI NIH HHS [R01 HL072110-04, HL-45652, HL-72110, R01 HL072110]; NIDDK NIH HHS [R01 DK066738, DK066738, R01 DK066738-04] NR 31 TC 24 Z9 27 U1 1 U2 2 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3261 USA SN 0195-9131 J9 MED SCI SPORT EXER JI Med. Sci. Sports Exerc. PD NOV PY 2005 VL 37 IS 11 BP 1893 EP 1901 DI 10.1249/01.mss.0000175860.51204.85 PG 9 WC Sport Sciences SC Sport Sciences GA 986LL UT WOS:000233451000010 PM 16286858 ER PT J AU Addessio, LB Cerreta, EK Gray, GT AF Addessio, LB Cerreta, EK Gray, GT TI Mechanical behavior of zirconium and hafnium in tension and compression SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID CLOSE-PACKED METALS; STRAIN-RATE; POLYCRYSTALLINE HAFNIUM; DEFORMATION-BEHAVIOR; PLASTIC-DEFORMATION; SINGLE-CRYSTALS; FCC METALS; ALLOYS; SLIP; TEMPERATURE AB The mechanical behavior and substructural evolution of highly textured hafnium (Hf) has been examined in tension and compression and compared to the mechanical response of zirconium (Zr). The quasi-static work-hardening rate as a function of strain for both metals exhibits a compression-tension asymmetry. Both Zr and Hf exhibit a downward work-hardening response in tension, while each displays a parabolic and then concave upward work-hardening behavior in compression. Additionally, Hf displays higher flow stresses than Zr both in tension and compression. The stress-strain and strain-hardening curves for Zr and Hf have been characterized in terms of their propensity for deformation twinning and evolution of substructure with strain. Differences in the work-hardening rates and flow stresses as a function of the sense of the applied load and material are discussed in terms of slip-twin interactions during deformation. C1 Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA. Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Addessio, LB (reprint author), Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA. EM laddessi@mines.edu NR 30 TC 30 Z9 32 U1 1 U2 14 PU MINERALS METALS MATERIALS SOC PI WARRENDALE PA 184 THORN HILL RD, WARRENDALE, PA 15086 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD NOV PY 2005 VL 36A IS 11 BP 2893 EP 2903 DI 10.1007/s11661-005-0062-y PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 975QX UT WOS:000232678100002 ER PT J AU Lee, JH Liu, S Trivedi, R AF Lee, JH Liu, S Trivedi, R TI The effect of fluid flow on eutectic growth SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID INTERLAMELLAR-SPACING MEASUREMENTS; PB-AU ALLOYS; DIRECTIONAL SOLIDIFICATION; SOLUTAL CONVECTION; SYSTEMS; SN; LAMELLAR; MACROSEGREGATION; INTERFACE AB The effect of fluid flow on eutectic microstructure is systematically examined in Al-Cu alloys of compositions varying from 19.5 to 45.0 wt pct Cu. It is shown that significantly different fluid-flow effects are present in hypo- and hypereutectic alloys, since the modes of convection are different in these two cases. In hypoeutectic alloys, the rejected solute is copper, which is heavier than aluminum, and fluid flow gives rise to radial solute segregation in cylindrical samples. In hypereutectic alloys, a lighter aluminum is rejected that causes a double diffusive convection and gives rise to macrosegregation. These composition variations are shown to produce nonuniform microstructures that vary either radially (in hypoeutectic alloys) or axially (in hypereutectic alloys) and can give rise to a single phase-to-eutectic, lamellar-to-rod eutectic, or rod-to-lamellar eutectic transition in a given sample. Composition measurements are carried out to characterize solute segregation due to fluid flow. The fluid-flow effect on eutectic spacing in eutectic or near-eutectic alloys is found to be very small, whereas it increases the eutectic spacing in hypoeutectic alloys for a given local composition and it can increase or decrease the spacing in hypereutectic alloys, depending on the microstructure and solidification fraction. Theoretical models, based on diffusive growth, are modified to predict the spatio-temporal variation in eutectic microstructure caused by fluid flow. C1 Changwon Natl Univ, Dept Met & Mat Sci, Kyungnam 741773, South Korea. Iowa State Univ, Dept Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Div Mat & Engn Phys, Ames, IA 50011 USA. RP Lee, JH (reprint author), Changwon Natl Univ, Dept Met & Mat Sci, Kyungnam 741773, South Korea. EM trivedi@ameslab.gov NR 34 TC 24 Z9 25 U1 3 U2 21 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD NOV PY 2005 VL 36A IS 11 BP 3111 EP 3125 DI 10.1007/s11661-005-0083-6 PG 15 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 975QX UT WOS:000232678100023 ER PT J AU Engler, O Huh, MY Tome, CN AF Engler, O Huh, MY Tome, CN TI Crystal-plasticity analysis of ridging in ferritic stainless steel sheets SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID TEXTURE; SURFACE; ORIENTATION; SIMULATION AB The occurrence of ridging in ferritic stainless steel (FSS) sheets is caused by the collective deformation of bandlike clusters of grains with a similar crystallographic orientation. In this article, large-scale (1.8 X 3.6 mm) orientation maps obtained by electron backscattered diffraction (EBSD) are input into a viscoplastic self-consistent polycrystal plasticity model to analyze the strain anisotropy caused by the topographic arrangement of the recrystallization-texture orientations. Two versions of the ridging model were devised: (1) the local dispersion in strain-rate components is analyzed for the full EBSD map, and (2) narrow bands in the EBSD maps aligned parallel to the ridges on the sheet surface are considered, and the variation in macroscopic strain response from band to band is derived. The effects caused by spatial variations in through-thickness strains and in out-of-plane shears are compared and related to ridging. The model is applied to two sheets distinguished by different levels of ridging. C1 Hydro Aluminium Deutschland GmbH, R&D Ctr Bonn, D-53014 Bonn, Germany. Korea Univ, Div Mat Sci & Engn, Seoul 136701, South Korea. Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Engler, O (reprint author), Hydro Aluminium Deutschland GmbH, R&D Ctr Bonn, D-53014 Bonn, Germany. EM olaf.engler@hydro.com RI Tome, Carlos/D-5058-2013 NR 26 TC 29 Z9 30 U1 1 U2 8 PU MINERALS METALS MATERIALS SOC PI WARRENDALE PA 184 THORN HILL RD, WARRENDALE, PA 15086 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD NOV PY 2005 VL 36A IS 11 BP 3127 EP 3139 DI 10.1007/s11661-005-0084-5 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 975QX UT WOS:000232678100024 ER PT J AU Storjohann, D Barabash, OM Babu, SS David, SA Sklad, PS Bloom, EE AF Storjohann, D Barabash, OM Babu, SS David, SA Sklad, PS Bloom, EE TI Fusion and friction stir welding of aluminum-metal-matrix composites SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID HEAT-AFFECTED ZONE; SINGLE-CRYSTAL; TOOL WEAR; ALLOY; DESIGN; AL2O3 AB Microstructure evolutions and degradations of aluminum-metal-matrix composites during fusion welding were studied and compared with thermodynamic calculations. In fusion welds of Al2O3-reinforced composites, the decomposition of Al2O3 was observed. In fusion welds of SiC whisker-reinforced composites, the decomposition of SiC to Al4C3 + Si by reaction with molten aluminum occurred. These phenomena led to unacceptable fusion welds in aluminum metal-matrix composites. Successful welds were produced in the same composites by friction stir welding (FSW). Significant reorientation of SiC whiskers close to the boundary of the dynamically recrystallized and thermomechanically affected zone (TMAZ) was observed. The small hardening in the dynamically recrystallized region was attributed to the presence of dislocation tangles in between SiC whiskers. C1 Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA. Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. Edison Welding Inst, Columbus, OH 43017 USA. RP Babu, SS (reprint author), Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA. EM suresh_babu@ewi.org RI Babu, Sudarsanam/D-1694-2010 OI Babu, Sudarsanam/0000-0002-3531-2579 NR 29 TC 65 Z9 69 U1 0 U2 19 PU MINERALS METALS MATERIALS SOC PI WARRENDALE PA 184 THORN HILL RD, WARRENDALE, PA 15086 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD NOV PY 2005 VL 36A IS 11 BP 3237 EP 3247 DI 10.1007/s11661-005-0093-4 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 975QX UT WOS:000232678100033 ER PT J AU Ishii, HA Graham, GA Kearsley, AT Grant, PG Snead, CJ Bradley, JP AF Ishii, HA Graham, GA Kearsley, AT Grant, PG Snead, CJ Bradley, JP TI Rapid extraction of dust impact tracks from silica aerogel by ultrasonic microblades SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID COLLECTORS AB In January 2006, NASA's Stardust mission will return with its valuable cargo of the first cometary dust particles captured at hypervelocity speeds in silica aerogel collectors and brought back to Earth. Aerogel, a proven capture medium, is also a candidate for future sample return missions and low-Earth orbit (LEO) deployments. Critical to the science return of Stardust as well as future missions that will use aerogel is the ability to efficiently extract impacted particles from collector tiles. Researchers will be eager to obtain Stardust samples as quickly as possible; tools for the rapid extraction of particle impact tracks that require little construction, training, or investment would be an attractive asset. To this end, we have experimented with diamond and steel microblades. Applying ultrasonic frequency oscillations to these microblades via a piezo-driven holder produces rapid, clean cuts in the aerogel with minimal damage to the surrounding collector tile. With this approach, intact impact tracks and associated particles in aerogel fragments with low-roughness cut surfaces have been extracted from aerogel tiles flown on NASA's Orbital Debris Collector (ODC) experiment. The smooth surfaces produced during cutting reduce imaging artifacts during analysis by scanning electron microscopy (SEM). Some tracks have been dissected to expose the main cavity for eventual isolation of individual impact debris particles and further analysis using techniques such as transmission electron microscopy (TEM) and nano-secondary ion mass spectrometry (nanoSIMS). C1 Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. Nat Hist Museum, Dept Mineral, London SW7 5BD, England. Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Ishii, HA (reprint author), Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. EM hope.ishii@llnl.gov NR 13 TC 12 Z9 12 U1 1 U2 6 PU METEORITICAL SOC PI FAYETTEVILLE PA DEPT CHEMISTRY/BIOCHEMISTRY, UNIV ARKANSAS, FAYETTEVILLE, AR 72701 USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD NOV PY 2005 VL 40 IS 11 BP 1741 EP 1747 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 003SI UT WOS:000234701500011 ER PT J AU Andreeva, IS Oreshkova, SF Ryabchikova, EI Puchkova, LI Blinova, NN Repina, MV Pechurkina, NI Torok, T Repin, VE AF Andreeva, IS Oreshkova, SF Ryabchikova, EI Puchkova, LI Blinova, NN Repina, MV Pechurkina, NI Torok, T Repin, VE TI Genomic and phenotypic analyses of microorganisms isolated from the sediments of Lake Baikal SO MICROBIOLOGY LA English DT Article DE microorganisms; identification; molecular systematics; G plus C composition; genomic fingerprinting; ultrastructure of bacilli ID M13 DNA; STRAINS AB Genetic and biochemical methods and morphological examination were used to study microorganisms isolated from samples of deep drilling of the Lake Baikal bottom sediments. Based on blot hybridization patterns, the strains investigated were divided into several groups according to the degree of homology of their genomic DNA. Morphological, biochemical, and ultrastructural characteristics of bacterial strains are described, and their compliance with the genomic analysis data is demonstrated. C1 State Res Ctr Virol & Biotechnol Vector, Koltsov, Novosibirsk Obl, Russia. LBNL, Ctr Environm Biotechnol, Berkeley, CA USA. RP Andreeva, IS (reprint author), State Res Ctr Virol & Biotechnol Vector, Koltsov, Novosibirsk Obl, Russia. EM andreeva@vector.nsc.ru RI Ryabchikova, Elena /G-3089-2013 OI Ryabchikova, Elena /0000-0003-4714-1524 NR 15 TC 0 Z9 0 U1 0 U2 0 PU MAIK NAUKA/INTERPERIODICA PI NEW YORK PA C/O KLUWER ACADEMIC-PLENUM PUBLISHERS, 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 0026-2617 J9 MICROBIOLOGY+ JI Microbiology PD NOV-DEC PY 2005 VL 74 IS 6 BP 709 EP 714 DI 10.1007/s11021-005-0128-2 PG 6 WC Microbiology SC Microbiology GA 996BZ UT WOS:000234150700013 ER PT J AU Gaft, M Nagli, L Waychunas, G Panczer, G AF Gaft, M Nagli, L Waychunas, G Panczer, G TI The nature of red luminescence of natural benitoite BaTiSi3O9 SO MINERALOGY AND PETROLOGY LA English DT Article; Proceedings Paper CT 5th European Conference on Mineralogy and Spectroscopy (ECMS 2004) CY SEP 04-08, 2004 CL Vienna, AUSTRIA AB This work examines the red luminescence of benitoite studied by laser-induced time-resolved luminescence spectroscopy. This method allows the differentiation between luminescence centers of similar emission wavelengths, but different decay times. We have also examined the luminescence intensity and decay time as a function of temperature. We found that the red emission of benitoite consists of two individual bands and one line and suggest that the activators of luminescence in benitoite system are Ti3+ and a d(3) element, namely Cr3+ or Mn4+. C1 Open Univ Israel, Raanana, Israel. LDS, Rishon Le Zion, Israel. Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. Univ Calif Berkeley, Lawrence Berkeley Lab, Earth Sci Div MS 70 108B, Aqueous Geochem Grp,Geochem Dept, Berkeley, CA 94720 USA. Univ Lyon 1, Phys Chem Luminescence Mat Lab, CNRS, UMR 5620, F-69622 Villeurbanne, France. RP Gaft, M (reprint author), Open Univ Israel, 108 Ravutski St, Raanana, Israel. EM michael_g@itlasers.com NR 14 TC 4 Z9 4 U1 3 U2 20 PU SPRINGER WIEN PI VIENNA PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 VIENNA, AUSTRIA SN 0930-0708 J9 MINER PETROL JI Mineral. Petrol. PD NOV PY 2005 VL 85 IS 1-2 BP 33 EP 44 DI 10.1007/s00710-005-0100-x PG 12 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 979WG UT WOS:000232975100004 ER PT J AU Fowler, JS Logan, J Volkow, ND Wang, GJ AF Fowler, JS Logan, J Volkow, ND Wang, GJ TI Translational neuroimaging: Positron emission tomography studies of monoamine oxidase SO MOLECULAR IMAGING AND BIOLOGY LA English DT Review DE monoamine oxidase; brain; tobacco smoke; PET ID HEALTHY-HUMAN SUBJECTS; PERIPHERAL ORGANS; HUMAN-BRAIN; PARKINSONS-DISEASE; CIGARETTE-SMOKING; L-DEPRENYL; MAO-B; AGGRESSIVE-BEHAVIOR; POINT MUTATION; SMOKERS AB Positron emission tomography (PET) using radiotracers with high molecular specificity is an important scientific tool in studies of monoamine oxidase (MAO), an important enzyme in the regulation of the neurotransmitters dopamine, norepinephrine, and serotonin as well as the dietary amine, tyramine. MAO occurs in two different subtypes, MAO A and MAO B, which have different substrate and inhibitor specificity and which are different gene products. The highly variable subtype distribution with different species makes human studies of special value. MAO A and B can be imaged in the human brain and certain peripheral organs using PET and carbon-11 (half-life 20.4 minutes) labeled mechanism-based irreversible inhibitors, clorgyline and L-deprenyl, respectively. In this article we introduce MAO and describe the development of these radiotracers and their translation from preclinical studies to the investigation of variables affecting MAO in the human brain and peripheral organs. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. Natl Inst Drug Abuse, NIH, Bethesda, MD 20892 USA. RP Fowler, JS (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM fowler@bnl.gov OI Logan, Jean/0000-0002-6993-9994 FU NCRR NIH HHS [M01RR10710]; NIBIB NIH HHS [EB2630]; NIDA NIH HHS [K 05 DA020001] NR 86 TC 38 Z9 39 U1 1 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 1536-1632 J9 MOL IMAGING BIOL JI Mol. Imaging. Biol. PD NOV-DEC PY 2005 VL 7 IS 6 BP 377 EP 387 DI 10.1007/s11307-005-0016-1 PG 11 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 996CE UT WOS:000234151200001 PM 16265597 ER PT J AU Ngeow, CC Kanbur, SM Nikolaev, S Buonaccorsi, J Cook, KH Welch, DL AF Ngeow, CC Kanbur, SM Nikolaev, S Buonaccorsi, J Cook, KH Welch, DL TI Further empirical evidence for the non-linearity of the period-luminosity relations as seen in the Large Magellanic Cloud Cepheids SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars : fundamental parameters; Cepheids ID GRAVITATIONAL LENSING EXPERIMENT; EXTRAGALACTIC DISTANCE SCALE; AMPLITUDE-COLOR RELATIONS; HUBBLE-SPACE-TELESCOPE; CLASSICAL CEPHEIDS; LIGHT CURVES; THEORETICAL-MODELS; LINEAR-REGRESSION; RADIUS RELATION; MACHO PROJECT AB Recent studies, using OGLE data for LMC Cepheids in the optical, strongly suggest that the period-luminosity (PL) relation for the Large Magellanic Cloud (LMC) Cepheids shows a break or non-linearity at a period of 10 d. In this paper we apply statistical tests, the chi-squared test and the F-test, to the Cepheid data from the MACHO project to test for a non-linearity of the V- and R-band PL relations at 10 d, and extend these tests to the near-infrared (JHK-band) PL relations with 2MASS data. We correct the extinction for these data by applying an extinction map towards the LMC. The statistical test we use, the F-test, is able to take account of small numbers of data points and the nature of that data on either side of the period cut at 10 d. With our data, the results we obtained imply that the VRJH-band PL relations are non-linear around a period of 10 d, while the K-band PL relation is (marginally) consistent with a single-line regression. The choice of a period of 10 d, around which this non-linearity occurs, is consistent with the results obtained when this 'break' period is estimated from the data. We show that robust parametric (including least-squares, least absolute deviation, robust regression) and non-parametric regression methods, which restrict the influence of outliers, produce similar results. Long-period Cepheids are supplemented from the literature to increase our sample size. The photometry of these long-period Cepheids is compared with our data and no trend with period is found. Our main results remain unchanged when we supplement our data set with these long-period Cepheids. By examining our data at maximum light, we also suggest arguments as to why errors in reddening are unlikely to be responsible for our results. The non-linearity of the mean V-band PL relation as seen in both of the OGLE and the MACHO data, using different extinction maps, suggests that this non-linearity is real. C1 Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. McMaster Univ, Dept Phys & Astron, Hamilton, ON L85 4M1, Canada. Univ Illinois, Dept Astron, Urbana, IL 61801 USA. SUNY Coll Oswego, Dept Phys, Oswego, NY 13126 USA. RP Ngeow, CC (reprint author), Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA. EM cngeow@astro.uiuc.edu NR 65 TC 46 Z9 47 U1 0 U2 0 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 1 PY 2005 VL 363 IS 3 BP 831 EP 846 DI 10.1111/j.1365-2966.2005.09477.x PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 975JY UT WOS:000232659500010 ER PT J AU Dresselhaus, MS Chaudhari, P AF Dresselhaus, MS Chaudhari, P TI Arthur R. von Hippel, in Memoriam (1898-2003): A tribute to the interdisciplinary materials research he spawned SO MRS BULLETIN LA English DT Biographical-Item DE Arthur von Hippel; biomaterials; ferroelectrics; insulation research; interdisciplinary; magnetism; Massachusetts Institute of Technology; materials research; MIT; molecular design; semiconductors AB This article introduces the November 2005 issue of MRS Bulletin on the life and works of Arthur Robert von Hippel, who pioneered the interdisciplinary approach to materials research, This issue of MRS Bulletin celebrates his long life, his large volume of work, and the overall impact he had on materials research as practiced today. This introductory article summarizes the start and progression of the various fields presented in this issue, and how many were inspired directly by von Hippel's work and ways, and how new fields continue to emerge based on the same foundations of interdisciplinarity. The articles in this issue cover research areas in which von Hippel was involved, namely, ferroelectrics and magnetism; fields that thrived on an interdisciplinary approach that von Hippel represented, such as semiconductors; and areas that reflect his own vision about materials research and interests later in life, including molecular design and biomaterials. Before the scientific work is presented, the issue begins with a personal sketch of von Hippel, contributed by his son Frank N. von Hippel. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU MATERIALS RESEARCH SOCIETY PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0883-7694 J9 MRS BULL JI MRS Bull. PD NOV PY 2005 VL 30 IS 11 BP 830 EP 834 DI 10.1557/mrs2005.226 PG 5 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 991EL UT WOS:000233795000014 ER PT J AU Gruver, AM Miller, KA Rajesh, C Smiraldo, PG Kaliyaperumal, S Balder, R Stiles, KM Albala, JS Pittman, DL AF Gruver, AM Miller, KA Rajesh, C Smiraldo, PG Kaliyaperumal, S Balder, R Stiles, KM Albala, JS Pittman, DL TI The ATPase motif in RAD51D is required for resistance to DNA interstrand crosslinking agents and interaction with RAD51C SO MUTAGENESIS LA English DT Article ID STRAND BREAK REPAIR; MULTIPLE ALTERNATIVE TRANSCRIPTS; RECA PROTEIN; HOMOLOGOUS RECOMBINATION; GENE FAMILY; ANNEALING ACTIVITY; ESCHERICHIA-COLI; MICE DEFICIENT; HUMAN-CELLS; COMPLEX AB Homologous recombination (HR) is a mechanism for repairing DNA interstrand crosslinks and double-strand breaks. In mammals, HR requires the activities of the RAD51 family (RAD51, RAD51B, RAD51C, RAD51D, XRCC2, XRCC3 and DMC1), each of which contains conserved ATP binding sequences (Walker Motifs A and B). RAD51D is a DNA-stimulated ATPase that interacts directly with RAD51C and XRCC2. To test the hypothesis that ATP binding and hydrolysis by RAD51D are required for the repair of interstrand crosslinks, site-directed mutations in Walker Motif A were generated, and complementation studies were performed in Rad51d-deficient mouse embryonic fibroblasts. The K113R and K113A mutants demonstrated a respective 96 and 83% decrease in repair capacity relative to wild-type. Further examination of these mutants, by yeast two-hybrid analyses, revealed an 8-fold reduction in the ability to associate with RAD51C whereas interaction with XRCC2 was retained at a level similar to the S111T control. These cell-based studies are the first evidence that ATP binding and hydrolysis by RAD51D are required for efficient HR repair of DNA interstrand crosslinks. C1 Med Univ Ohio, Dept Physiol & Cardiovasc Gen, Toledo, OH 43614 USA. Lawrence Livermore Natl Lab, Biol & Biotechnol Res Program, Livermore, CA USA. RP Pittman, DL (reprint author), Med Univ Ohio, Dept Physiol & Cardiovasc Gen, Block Hlth Sci Bldg,3035 Arlington Ave, Toledo, OH 43614 USA. EM dpittman@meduohio.edu NR 55 TC 16 Z9 16 U1 1 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0267-8357 J9 MUTAGENESIS JI Mutagenesis PD NOV PY 2005 VL 20 IS 6 BP 433 EP 440 DI 10.1093/mutage/gei059 PG 8 WC Genetics & Heredity; Toxicology SC Genetics & Heredity; Toxicology GA 993XG UT WOS:000233990100006 PM 16236763 ER PT J AU Kanaras, AG Sonnichsen, C Liu, HT Alivisatos, AP AF Kanaras, AG Sonnichsen, C Liu, HT Alivisatos, AP TI Controlled synthesis of hyperbranched inorganic nanocrystals with rich three-dimensional structures SO NANO LETTERS LA English DT Article ID CDSE NANOCRYSTALS; SHAPE-CONTROL; GROWTH; NANOPARTICLES; SEMICONDUCTORS; CHROMATOGRAPHY; POLYTYPISM; NANOWIRES; OXIDE AB Controlled synthesis of hyperbranched CdTe and CdSe semiconductor nanocrystals is presented. The length of the arms and the degree of branching could be controlled independently by varying the amount and kind of organic surfactant. The three-dimensional structure of these nanocrystals has been characterized with TEM tomography. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM alivis@berkeley.edu RI Sonnichsen, Carsten/A-5682-2009; Kanaras, Antonios/A-4898-2010; Alivisatos , Paul /N-8863-2015; OI Alivisatos , Paul /0000-0001-6895-9048; Kanaras, Antonios/0000-0002-9847-6706 NR 28 TC 170 Z9 170 U1 2 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2005 VL 5 IS 11 BP 2164 EP 2167 DI 10.1021/nl0518728 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 986WZ UT WOS:000233481700010 PM 16277446 ER PT J AU Niesz, K Grass, M Somorjai, GA AF Niesz, K Grass, M Somorjai, GA TI Precise control of the Pt nanoparticle size by seeded growth using EO13PO30EO13 triblock copolymers as protective agents SO NANO LETTERS LA English DT Article ID GOLD NANOPARTICLES; PLATINUM NANOPARTICLES; METAL NANOPARTICLES; CLUSTER MOLECULES; SHAPE CONTROL; NANOCRYSTALS; TRANSITION; PARTICLES; CATALYSIS; SILICA AB Here, we report an efficient way to produce homogeneous Pt nanoparticles within a well-defined size range (3.5-6.6 nm) as a result of the seeded growth procedure using Pluronic L64 polymer capping agent. First, small seeds (3.5 nm) were prepared by the reduction of H2PtCl6- 6H(2)O in water with NaBH4 in the presence of the capping poly(ethylene oxide)(13)-poly(propylene oxide)(30)-poly(ethylene oxide)(13) triblock copolymer at room temperature. Additional anionic Pt salt was then introduced under flowing H-2 to obtain larger nanoparticles. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@socrates.berkeley.edu NR 38 TC 85 Z9 86 U1 4 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2005 VL 5 IS 11 BP 2238 EP 2240 DI 10.1021/nl051561x PG 3 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 986WZ UT WOS:000233481700024 PM 16277460 ER PT J AU Reinhard, BM Siu, M Agarwal, H Alivisatos, AP Liphardt, J AF Reinhard, BM Siu, M Agarwal, H Alivisatos, AP Liphardt, J TI Calibration of dynamic molecular rule based on plasmon coupling between gold nanoparticles SO NANO LETTERS LA English DT Article ID SILVER NANOPARTICLES; OPTICAL-PROPERTIES; FLUORESCENCE SPECTROSCOPY; METAL NANOPARTICLES; LIGHT-SCATTERING; NUCLEIC-ACIDS; SINGLE GOLD; RESONANCE; PARTICLES; SHAPE AB Pairs of noble metal nanoparticles can be used to measure distances via the distance dependence of their plasmon coupling. These "plasmon rulers" offer exceptional photostability and brightness; however, the advantages and limitations of this approach remain to be explored. Here we report detailed plasmon peak versus separation calibration curves for 42- and 87-nm-diameter particle pairs, determine their measurement errors, and describe experimental procedures to improve their performance in biology, nanotechnology, and materials sciences. C1 Univ Calif Berkeley, Dept Phys, Biophys Grad Program, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Liphardt, J (reprint author), Univ Calif Berkeley, Dept Phys, Biophys Grad Program, Berkeley, CA 94720 USA. EM liphardt@physics.berkeley.edu RI Liphardt, Jan/A-5906-2012; Alivisatos , Paul /N-8863-2015; OI Alivisatos , Paul /0000-0001-6895-9048; Liphardt, Jan/0000-0003-2835-5025 NR 38 TC 364 Z9 367 U1 7 U2 94 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2005 VL 5 IS 11 BP 2246 EP 2252 DI 10.1021/nl051592s PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 986WZ UT WOS:000233481700026 PM 16277462 ER PT J AU Tangney, P Capaz, RB Spataru, CD Cohen, ML Louie, SG AF Tangney, P Capaz, RB Spataru, CD Cohen, ML Louie, SG TI Structural transformations of carbon nanotubes under hydrostatic pressure SO NANO LETTERS LA English DT Article ID MOLECULAR-DYNAMICS; ENERGY AB We used simulations with a classical force field to study the transformation under hydrostatic pressure of isolated single-walled nanotubes (SWNT) from a circular to a collapsed cross section. Small-diameter SWNTs deform continuously under pressure, whereas larger-diameter SWNTs display hysteresis and undergo a first-order-like transformation. The different behavior is due to the changing proportions in the total energy of the wall-curvature energy and the van der Waals attraction between opposite walls of the tube. C1 Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil. RP Tangney, P (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM pttangney@lbl.gov RI Tangney, Paul/D-1623-2010; B, Rodrigo/N-7595-2014 NR 21 TC 57 Z9 57 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2005 VL 5 IS 11 BP 2268 EP 2273 DI 10.1021/l051637p PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 986WZ UT WOS:000233481700030 PM 16277466 ER PT J AU Martinez, J Yuzvinsky, TD Fennimore, AM Zettl, A Garcia, R Bustamante, C AF Martinez, J Yuzvinsky, TD Fennimore, AM Zettl, A Garcia, R Bustamante, C TI Length control and sharpening of atomic force microscope carbon nanotube tips assisted by an electron beam SO NANOTECHNOLOGY LA English DT Article ID SCANNING PROBE MICROSCOPY; AFM PROBES; RESOLUTION; TEMPERATURE; DEPOSITION; FIELD AB We report on the precise positioning of a carbon nanotube on an atomic force microscope (AFM) tip. By using a nanomanipulator inside a scanning electron microscope, an individual nanotube was retrieved from a metal foil by the AFM tip. The electron beam allows us to control the nanotube length and to sharpen its end. The performance of these tips for AFM imaging is demonstrated by improved lateral resolution of DNA molecules. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. CSIC, Inst Microelect, Madrid 28760, Spain. RP Martinez, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA. EM jmartinez@imm.cnrn.csic.es RI Garcia, Ricardo/B-3124-2013; Microelectronica de Madrid, Instituto de/D-5173-2013; Martinez, Javier/B-5803-2013; Zettl, Alex/O-4925-2016; OI Garcia, Ricardo/0000-0002-7115-1928; Microelectronica de Madrid, Instituto de/0000-0003-4211-9045; Martinez, Javier/0000-0002-5912-1128; Zettl, Alex/0000-0001-6330-136X; Yuzvinsky, Thomas/0000-0001-5708-2877 NR 26 TC 68 Z9 70 U1 2 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD NOV PY 2005 VL 16 IS 11 BP 2493 EP 2496 DI 10.1088/0957-4484/16/11/004 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 987BX UT WOS:000233494500004 ER PT J AU Blinov, ML Faeder, JR Yang, J Goldstein, B Hlavacek, WS AF Blinov, ML Faeder, JR Yang, J Goldstein, B Hlavacek, WS TI 'On-the-fly' or 'generate-first' modeling? SO NATURE BIOTECHNOLOGY LA English DT Letter ID FC-EPSILON-RI; SIGNAL-TRANSDUCTION; EVENTS C1 Los Alamos Natl Lab, Div Theoret, Theoret Biol & Biophys Grp, Grp T10, Los Alamos, NM 87545 USA. RP Blinov, ML (reprint author), Los Alamos Natl Lab, Div Theoret, Theoret Biol & Biophys Grp, Grp T10, Mail Stop K710, Los Alamos, NM 87545 USA. EM bionetgen@lanl.gov NR 10 TC 11 Z9 11 U1 0 U2 6 PU NATURE PUBLISHING GROUP PI NEW YORK PA 345 PARK AVENUE SOUTH, NEW YORK, NY 10010-1707 USA SN 1087-0156 J9 NAT BIOTECHNOL JI Nat. Biotechnol. PD NOV PY 2005 VL 23 IS 11 BP 1344 EP 1345 DI 10.1038/ndt1105-1345 PG 3 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 984FN UT WOS:000233288000013 PM 16273053 ER PT J AU Schenkel, T AF Schenkel, T TI Semiconductor physics - Reliable performance SO NATURE MATERIALS LA English DT News Item ID SINGLE-ION IMPLANTATION; QUANTUM COMPUTER; SILICON; DEVICES AB Single-ion implantation enables tuning of transistor performance, one dopant atom at a time. C1 EO Lawrence Berkeley Natl Lab, Ion Beam Technol Program, Berkeley, CA 94720 USA. RP Schenkel, T (reprint author), EO Lawrence Berkeley Natl Lab, Ion Beam Technol Program, Berkeley, CA 94720 USA. EM t_schenkel@lbl.gov NR 10 TC 5 Z9 5 U1 0 U2 6 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD NOV PY 2005 VL 4 IS 11 BP 799 EP 800 DI 10.1038/nmat1514 PG 2 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 979GS UT WOS:000232931000003 ER PT J AU Schulthess, TC Temmerman, WM Szotek, Z Butler, WH Stocks, GM AF Schulthess, TC Temmerman, WM Szotek, Z Butler, WH Stocks, GM TI Electronic structure and exchange coupling of Mn impurities in III-V semiconductors SO NATURE MATERIALS LA English DT Article ID SELF-INTERACTION CORRECTION; NEUTRAL MANGANESE ACCEPTOR; TRANSITION-METAL OXIDES; FERROMAGNETISM; GAP; SPINTRONICS; SYSTEMS; VALENCY; FILMS AB Dilute magnetic semiconductors are without doubt among the most interesting classes of magnetic materials. However, the nature of their electronic structure and magnetic exchange is far from understood, and important discrepancies exist between widely used phenomenological models and first-principles electronic-structure descriptions. Here we apply the ab initio self-interaction-corrected local-spin-density method to study the electronic structure of Mn-doped III-V semiconductors. For (GaMn)As, our results with the (d(5)+h) configuration agree with the Zener model description and predict p-d exchange that is in good agreement with experiment. The ground state in (GaMn)N and (GaMn)P is the d(4) configuration with no intrinsic carriers. If, however, holes are introduced extrinsically, carrier-mediated exchange is possible, but the p-d exchange is predicted to be lower in p-type GaN, as compared with GaP and GaAs. Nevertheless, because of the smaller lattice constant, the estimated Curie temperature is higher than in (GaMn) As, at comparable doping levels. C1 Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. SERC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England. Univ Alabama, Ctr Mat Informat Technol, Tuscaloosa, AL 35487 USA. Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. RP Schulthess, TC (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. EM schulthesstc@ornl.gov RI Stocks, George Malcollm/Q-1251-2016 OI Stocks, George Malcollm/0000-0002-9013-260X NR 43 TC 71 Z9 71 U1 0 U2 27 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD NOV PY 2005 VL 4 IS 11 BP 838 EP 844 DI 10.1038/nmat1509 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 979GS UT WOS:000232931000012 ER PT J AU Lee, SK Eng, PJ Mao, HK Meng, Y Newville, M Hu, MY Shu, JF AF Lee, SK Eng, PJ Mao, HK Meng, Y Newville, M Hu, MY Shu, JF TI Probing of bonding changes in B2O3 glasses at high pressure with inelastic X-ray scattering SO NATURE MATERIALS LA English DT Article ID QUANTUM-CHEMICAL CALCULATIONS; NUCLEAR MAGNETIC-RESONANCE; INDUCED STRUCTURAL-CHANGES; ENERGY-LOSS SPECTROSCOPY; BORON-OXIDE; BOROSILICATE GLASSES; SILICATE-GLASSES; K-EDGE; COORDINATION; MELTS AB Full understanding of atomic arrangement in amorphous oxides both at ambient and high pressure is an ongoing fundamental puzzle. Whereas the structures of archetypal oxide glasses such as v-B2O3 at high pressure are essential to elucidate origins of anomalous macroscopic properties of more complex melts, knowledge of the high-pressure structure and pressure-induced coordination changes of these glasses has remained elusive due to lack of suitable in situ experimental probes. Here, we report synchrotron inelastic X-ray scattering results for v-B2O3 at pressures up to 22.5 GPa, revealing the nature of pressure-induced bonding changes and the structure. Direct in situ measurements show a continuous transformation from tri-coordinated to tetra-coordinated boron beginning at 4-7 GPa with most of the boron tetra-coordinated above 20 GPa, forming dense tetrahedral v-B2O3. After decompression from high pressure the bonding reverts back to tri-coordinated boron but with the data suggesting a permanent densification. C1 Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151742, South Korea. Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA. Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. Argonne Natl Lab, Adv Photon Source, HPCAT, Argonne, IL 60439 USA. RP Lee, SK (reprint author), Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151742, South Korea. EM sungklee@snu.ac.kr NR 36 TC 107 Z9 107 U1 4 U2 30 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD NOV PY 2005 VL 4 IS 11 BP 851 EP 854 DI 10.1038/nmat1511 PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 979GS UT WOS:000232931000014 ER PT J AU Li, G Shrotriya, V Huang, JS Yao, Y Moriarty, T Emery, K Yang, Y AF Li, G Shrotriya, V Huang, JS Yao, Y Moriarty, T Emery, K Yang, Y TI High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends SO NATURE MATERIALS LA English DT Article ID HETEROJUNCTION SOLAR-CELLS; REGIOREGULAR POLY(3-HEXYLTHIOPHENE); ORGANIC PHOTOVOLTAICS; CHARGE-TRANSPORT; HIGH-MOBILITY; THIN-FILMS; ABSORPTION; TRANSITION AB Converting solar energy into electricity provides a much-needed solution to the energy crisis the world is facing today. Polymer solar cells have shown potential to harness solar energy in a cost-effective way. Significant efforts are underway to improve their efficiency to the level of practical applications. Here, we report highly efficient polymer solar cells based on a bulk heterojunction of polymer poly(3-hexylthiophene) and methanofullerene. Controlling the active layer growth rate results in an increased hole mobility and balanced charge transport. Together with increased absorption in the active layer, this results in much-improved device performance, particularly in external quantum efficiency. The power-conversion efficiency of 4.4% achieved here is the highest published so far for polymer-based solar cells. The solution process involved ensures that the fabrication cost remains low and the processing is simple. The high efficiency achieved in this work brings these devices one step closer to commercialization. C1 Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Yang, Y (reprint author), Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. EM yangy@ucla.edu RI Yang, Yang/A-2944-2011; Yao, Yan/D-7774-2011; Li, Gang/A-5667-2012 OI Yao, Yan/0000-0002-8785-5030; Li, Gang/0000-0001-8399-7771 NR 29 TC 4152 Z9 4224 U1 237 U2 1924 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD NOV PY 2005 VL 4 IS 11 BP 864 EP 868 DI 10.1038/nmat1500 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 979GS UT WOS:000232931000016 ER PT J AU Barcellos-Hoff, MH Park, C Wright, EG AF Barcellos-Hoff, MH Park, C Wright, EG TI Radiation and the microenvironment - Tumorigenesis and therapy SO NATURE REVIEWS CANCER LA English DT Review ID GROWTH-FACTOR-BETA; HEMATOPOIETIC STEM-CELLS; ALPHA-PARTICLE IRRADIATION; MARROW STROMAL CELLS; A-BOMB SURVIVORS; TGF-BETA; CHROMOSOMAL INSTABILITY; IONIZING-RADIATION; MAMMARY-GLAND; IN-VIVO AB Radiation rapidly and persistently alters the soluble and insoluble components of the tissue microenvironment. This affects the cell phenotype, tissue composition and the physical interactions and signalling between cells. These alterations in the microenvironment can contribute to carcinogenesis and alter the tissue response to anticancer therapy. Examples of these responses and their implications are discussed with a view to therapeutic intervention. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. Univ Calif San Francisco, Dept Radiat Oncol, San Francisco, CA 94143 USA. Univ Dundee, Ninewells Hosp & Med Sch, Dept Mol & Cellular Pathol, Dundee DD1 9SY, Scotland. RP Barcellos-Hoff, MH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM mhbarcellos-hoff@lbl.gov NR 95 TC 245 Z9 254 U1 3 U2 14 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1474-175X J9 NAT REV CANCER JI Nat. Rev. Cancer PD NOV PY 2005 VL 5 IS 11 BP 867 EP 875 DI 10.1038/nrc1735 PG 9 WC Oncology SC Oncology GA 979WZ UT WOS:000232977000011 PM 16327765 ER PT J AU Speck, C Chen, ZQ Li, HL Stillman, B AF Speck, C Chen, ZQ Li, HL Stillman, B TI ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA SO NATURE STRUCTURAL & MOLECULAR BIOLOGY LA English DT Article ID RECOGNITION COMPLEX; SACCHAROMYCES-CEREVISIAE; BUDDING YEAST; REPLICATION ORIGINS; MCM PROTEINS; CHROMOSOME-REPLICATION; CLAMP-LOADERS; IN-VITRO; S-PHASE; INITIATION AB Binding of Cdc6 to the origin recognition complex (ORC) is a key step in the assembly of a pre-replication complex (pre-RC) at origins of DNA replication. ORC recognizes specific origin DNA sequences in an ATP-dependent manner. Here we demonstrate cooperative binding of Saccharomyces cerevisiae Cdc6 to ORC on DNA in an ATP-dependent manner, which induces a change in the pattern of origin binding that requires the Orc1 ATPase. The reaction is blocked by specific origin mutations that do not interfere with the interaction between ORC and DNA. Single-particle reconstruction of electron microscopic images shows that the ORC-Cdc6 complex forms a ring-shaped structure with dimensions similar to those of the ring-shaped MCM helicase. The ORC-Cdc6 structure is predicted to contain six AAA+ subunits, analogous to other ATP-dependent protein machines. We suggest that Cdc6 and origin DNA activate a molecular switch in ORC that contributes to pre-RC assembly. C1 Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Stillman, B (reprint author), Cold Spring Harbor Lab, 1 Bungtown Rd, Cold Spring Harbor, NY 11724 USA. EM stillman@cshl.edu RI Speck, Christian/G-2882-2011; OI Speck, Christian/0000-0001-6646-1692; Stillman, Bruce/0000-0002-9453-4091 FU NIGMS NIH HHS [GM45436, R01 GM045436, R01 GM045436-20, R01 GM074985] NR 50 TC 112 Z9 113 U1 0 U2 6 PU NATURE PUBLISHING GROUP PI NEW YORK PA 345 PARK AVENUE SOUTH, NEW YORK, NY 10010-1707 USA SN 1545-9985 J9 NAT STRUCT MOL BIOL JI Nat. Struct. Mol. Biol. PD NOV PY 2005 VL 12 IS 11 BP 965 EP 971 DI 10.1038/nsmb1002 PG 7 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 981VC UT WOS:000233115100009 PM 16228006 ER PT J AU Aldering, G AF Aldering, G TI Exploring dark energy with SNAP SO NEW ASTRONOMY REVIEWS LA English DT Article; Proceedings Paper CT Conference on Wide-Field Imaging from Space CY MAY 16-18, 2004 CL Lawrence Berkeley Natl Lab, Berkeley, CA HO Lawrence Berkeley Natl Lab ID HIGH-REDSHIFT SUPERNOVAE; HUBBLE-SPACE-TELESCOPE; IA SUPERNOVAE; COSMOLOGICAL PARAMETERS; CONSTRAINTS; DIAGRAM AB The accelerating expansion of the Universe is one of the most surprising and potentially profound discoveries of modern cosmology. Measuring the acceleration well enough to meaningfully constrain interesting physical models requires improvements an order of magnitude beyond on-going and near-term experiments. The Supernova/Acceleration Probe has been conceived as a powerful yet simple experiment to use Type la supernovae and weak gravitational lensing to reach this level of accuracy. As fundamentally different causes for the acceleration map into very small differences in observational parameters for all relevant cosmological methods, control of systematics is especially important and so has been built into the SNAP mission design from the very beginning. Though focused on the study of the accelerating Universe, the overall SNAP instrument suite is quite general and able to make unique contributions to a wide variety of astronomical studies. The baseline satellite consists of a 2-m anastigmat telescope, with a 0.7 square degree focal plane paved with optical and NIR imaging arrays. Spectroscopy can be obtained using a high-throughput low-resolution optical + NIR integral field spectrograph. The baseline science programs will result in a 15 square degree "deep field" having temporal coverage every 4 days and summing to m(AB) similar to 30.3 in all colors - to be used for discovery and follow-up of some 2000 Type Ia supernova in the range 0.1 < z < 1.7 - and a wide area survey spanning 1000 square degrees and reaching m(AB) similar to 27.7 in all colors - to be used to measure the weak lensing power spectrum well into the non-linear regime. A panoramic survey covering 10,000 square degrees to m(AB) similar to 26.7 in all colors is also possible. This baseline dataset represents a gold mine for archival astronomical research and follow-up with JWST, while guest observer survey programs will substantially broaden the impact that SNAP will have. (c) 2005 Elsevier B.V. All rights reserved. C1 Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. RP Aldering, G (reprint author), Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. EM galdering@lbl.gov NR 21 TC 30 Z9 30 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1387-6473 J9 NEW ASTRON REV JI New Astron. Rev. PD NOV PY 2005 VL 49 IS 7-9 BP 346 EP 353 DI 10.1016/j.newar.2005.08.002 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 985NP UT WOS:000233385000003 ER PT J AU Tuli, JK AF Tuli, JK CA Natl Nucl Data Center TI Nuclear data sheets - Volume 106, Number 3 - November 2005 SO NUCLEAR DATA SHEETS LA English DT Article ID ODD-ODD NUCLEI; FLUORESCENCE YIELDS; A NUCLEI; TRANSITIONS; STATES C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Tuli, JK (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 34 TC 0 Z9 0 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD NOV PY 2005 VL 106 IS 3 BP I EP XI PG 11 WC Physics, Nuclear SC Physics GA 997DF UT WOS:000234224500001 ER PT J AU Wu, SC AF Wu, SC TI Nuclear data sheets for A=181 SO NUCLEAR DATA SHEETS LA English DT Review ID HIGH-SPIN STATES; INELASTIC ELECTRON-SCATTERING; ACTIVATION CROSS-SECTIONS; NEUTRON-DEFICIENT ISOTOPES; ANGULAR-CORRELATION METHOD; CASCADE GAMMA-DECAY; 482 KEV TRANSITION; ODD-A-NUCLEI; ELASTIC-SCATTERING; HEAVY-NUCLEI AB The nuclear structure and the decay data for all the isobars of A=181 are presented in this evaluation. New levels of Hf-181 were studied by (n,gamma), (pol d, p), (d, p gamma) and (U-238, U-217'gamma) reactions. New levels of Ta-181 were studied by (p,n gamma), (p, d), Coulomb excitation and heavy ion reactions. Heavy ion reactions added information to high spin states of Re-181, Os-181 and Ir-181. In addition, Hg-181 and Tl-181 structures are also studied by a-decay experiments. The present evaluation supersedes the earlier one on A=181 by R. B. Firestone (1991Fi01), published in Nuclear Data Sheets 62, 101 (1991), and the ones on Pt-181, Au-181 and Hg-181, by C. M. Baglin, published in Nuclear Data Sheets 87, 197 (1999), 87, 225 (1999) and 87, 239 (1999). C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Natl Tsing Hua Univ, Dept Phys, Hsinchu 30043, Taiwan. RP Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. NR 418 TC 17 Z9 17 U1 1 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD NOV PY 2005 VL 106 IS 3 BP 367 EP + DI 10.1016/j.nds.2005.11.001 PG 233 WC Physics, Nuclear SC Physics GA 997DF UT WOS:000234224500002 ER PT J AU Howe, GR Zablotska, LB Fix, JJ Egel, J Buchanan, J AF Howe, GR Zablotska, LB Fix, JJ Egel, J Buchanan, J TI Mortal assets SO NUCLEAR ENGINEERING INTERNATIONAL LA English DT Article C1 Columbia Univ, Dept Epidemiol, Mailman Sch Publ Hlth, New York, NY 10032 USA. Dosimetry Res & Technol, Pacific NW Natl Lab, Richland, WA USA. Battelle Ctr Publ Hlth Res & Educ, St Louis, MO USA. RP Howe, GR (reprint author), Columbia Univ, Dept Epidemiol, Mailman Sch Publ Hlth, 722 W 168th St,Suite 1104, New York, NY 10032 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILMINGTON PUBLISHING PI SIDCUP PA WILMINGTON HOUSE, MAIDSTONE RD, FOOTS CRAY, SIDCUP DA14 SHZ, KENT, ENGLAND SN 0029-5507 J9 NUCL ENG INT JI Nucl. Eng. Int. PD NOV PY 2005 VL 50 IS 616 BP 12 EP 14 PG 3 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 991RS UT WOS:000233832000011 ER PT J AU Houlberg, WA Gormezano, C Artaud, JF Barbato, E Basiuk, V Becoulet, A Bonoli, P Budny, RV Eriksson, LG Farina, D Gribov, Y Harvey, RW Hobirk, J Imbeaux, F Kessel, CE St John, H Volpe, F Westerhof, E Zvonkov, A AF Houlberg, WA Gormezano, C Artaud, JF Barbato, E Basiuk, V Becoulet, A Bonoli, P Budny, RV Eriksson, LG Farina, D Gribov, Y Harvey, RW Hobirk, J Imbeaux, F Kessel, CE St John, H Volpe, F Westerhof, E Zvonkov, A CA ITPA Steady State Operation Topica ITPA Confinement Database Modellin TI Integrated modelling of the current profile in steady-state and hybrid ITER scenarios SO NUCLEAR FUSION LA English DT Article ID ELECTRON-CYCLOTRON WAVES; CURRENT DRIVE EFFICIENCY; NEUTRAL BEAM INJECTION; TOROIDAL PLASMAS; ARBITRARY COLLISIONALITY; NEOCLASSICAL TRANSPORT; TOKAMAK EQUILIBRIA; TRAPPED ELECTRONS; BOOTSTRAP CURRENT; GAUSSIAN BEAMS AB We present integrated modelling of steady-state and hybrid scenarios for ITER parameters using several predictive transport codes. These employ models for non-inductive current drive sources in conjunction with various theory-based and semi-empirical transport models. In conjunction with the simulation effort, the current drive models are being evaluated in a series of cross-code and code-experiment comparisons under ITER-relevant conditions. New benchmark evaluations of current drive from injection of neutral beams (NBCD), electron cyclotron waves (ECCD) and lower hybrid waves (LHCD) are reported. Simulations using several transport modelling codes self-consistently calculate the heating and current drive sources using ITER design parameters. Operating constraints are also taken into account, although the calculations reported here still require further refinement. The modelling addresses both the final stationary state and dynamic access to it. The simulations indicate that generation and control of internal and edge barriers to access and maintain high confinement will be a major undertaking for future simulations, as well as a challenge for the ITER steady-state and hybrid experimental programme. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. ENEA Fusione, CR, EURATOM Assoc, Frascati, Italy. MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. CNR, IFP, ENEA, EURATOM Assoc, Milan, Italy. ITER Int Team, Naka Joint Work Site, Naka, Ibaraki, Japan. CompX, Del Mar, CA USA. EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. RRC, Kurchatov Inst, Nucl Fus Inst, Moscow 123128, Russia. Gen Atom Co, San Diego, CA USA. EURATOM, UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon, Oxon, England. RP Houlberg, WA (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM houlbergwa@ornl.gov RI Volpe, Francesco/D-2994-2009; Artaud, Jean-Francois/G-8480-2011; Imbeaux, Frederic/A-7614-2013; Westerhof, Egbert/H-8730-2013; Artaud, Jean-Francois/J-2068-2012 OI Volpe, Francesco/0000-0002-7193-7090; Westerhof, Egbert/0000-0002-0749-9399; NR 71 TC 36 Z9 36 U1 0 U2 8 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2005 VL 45 IS 11 BP 1309 EP 1320 DI 10.1088/0029-5515/45/11/012 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 989MW UT WOS:000233679100014 ER PT J AU Terry, JL Basse, NP Cziegler, I Greenwald, M Grulke, O LaBombard, B Zweben, SJ Edlund, EM Hughes, JW Lin, L Lin, Y Porkolab, M Sampsell, M Veto, B Wukitch, SJ AF Terry, JL Basse, NP Cziegler, I Greenwald, M Grulke, O LaBombard, B Zweben, SJ Edlund, EM Hughes, JW Lin, L Lin, Y Porkolab, M Sampsell, M Veto, B Wukitch, SJ TI Transport phenomena in the edge of Alcator C-Mod plasmas SO NUCLEAR FUSION LA English DT Article ID SCRAPE-OFF-LAYER; H-MODE; ASDEX UPGRADE; TURBULENCE; CONFINEMENT; TOKAMAK; STABILITY; BOUNDARY; PEDESTAL; PARTICLE AB Two aspects of edge turbulence and transport in Alcator C-Mod are explored. The quasi-coherent mode (QCM), an edge fluctuation present in Enhanced D alpha H-mode plasmas, is examined with regard to its role in the enhanced particle transport found in these plasmas, its in/out asymmetry, its poloidal wave number and its radial width and location. It is shown to play a dominant role in the perpendicular particle transport. The QCM is not observed at the inboard midplane, indicating that its amplitude there is significantly smaller than on the outboard side. The peak amplitude of the QCM is found just inside the separatrix, with a radial width 5 mm, leading to a non-zero amplitude outside the separatrix and qualitatively consistent with its transport enhancement. Also examined are the characteristics of the intermittent convective transport, associated with the larger scale turbulent structures, also called blobs, and typically occurring in the scrape-off-layer (SOL). These turbulent structures are qualitatively similar in L- and H-mode. When their perpendicular extent, occurrence frequencies and magnitudes are compared, it is found that their size is somewhat smaller in ELMfree H-Mode, while their frequency is similar. A clear difference is seen in the magnitude of these turbulent fluctuations in the far SOL, with ELMfree H-mode showing a smaller perturbation there than L-mode. As the Greenwald density limit is approached (n/n(GW) > 0.7), blobs are seen inside the separatrix consistent with the observation that the high cross-field transport region, normally found in the far SOL, penetrates the closed flux surfaces at high n/n(GW). C1 MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. EURATOM, MPI Plasma Phys, Greifswald, Germany. Univ Greifswald, Greifswald, Germany. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. Univ Texas, Fus Res Ctr, Austin, TX 78712 USA. RP Terry, JL (reprint author), MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. EM terry@psfc.mit.edu RI Lin, Yijun/B-5711-2009; Lin, Liang/H-2255-2011 NR 28 TC 49 Z9 50 U1 1 U2 4 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2005 VL 45 IS 11 BP 1321 EP 1327 DI 10.1088/0029-5515/45/11/013 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 989MW UT WOS:000233679100015 ER PT J AU Monier-Garbet, P Andrew, P Belo, P Bonheure, G Corre, Y Crombe, K Dumortier, P Eich, T Felton, R Harling, J Hogan, J Huber, A Jaclunich, S Joffrin, E Koslowski, HR Kreter, A Maddison, G Matthews, GF Messiaen, A Nave, MF Ongena, J Parail, V Puiatti, ME Rapp, J Sartori, R Stober, J Tokar, MZ Unterberg, B Valisa, M Voitsekhovitch, I von Hellermann, M AF Monier-Garbet, P Andrew, P Belo, P Bonheure, G Corre, Y Crombe, K Dumortier, P Eich, T Felton, R Harling, J Hogan, J Huber, A Jaclunich, S Joffrin, E Koslowski, HR Kreter, A Maddison, G Matthews, GF Messiaen, A Nave, MF Ongena, J Parail, V Puiatti, ME Rapp, J Sartori, R Stober, J Tokar, MZ Unterberg, B Valisa, M Voitsekhovitch, I von Hellermann, M CA JET-EFDA contributors TI Impurity-seeded ELMy H-modes in JET, with high density and reduced heat load SO NUCLEAR FUSION LA English DT Article ID ASDEX UPGRADE; DIVERTOR; DISCHARGES; EDGE; ITER AB Experiments performed at JET during the past two years show that, in high triangularity H-mode plasmas with I-p = 2.5 MA, n(e)/n(Gr) approximate to 1.0, it is possible to radiate separately up to approximate to 40% of the total injected power on closed flux surfaces in the pedestal region (argon seeding) and up to approximate to 50% of the injected power in the divertor region (nitrogen seeding), while maintaining the confinement improvement factor at the value required for ITER, H98(y, 2) 1.0. The total radiated power fraction achieved in both cases (65-70%) is close to that required for ITER. However, Type I ELMS observed with impurity seeding have the same characteristics as that observed in reference pulses without seeding: decreasing plasma energy loss per ELM with increasing pedestal collisionality. One has to reach the Type III ELM regime to decrease the transient heat load to the divertor to acceptable values for ITER, although at the expense of confinement. The feasibility of an integrated scenario with Type-III ELMS, and q(95) = 2.6 to compensate for the low H factor, has been demonstrated on JET. This scenario would meet ITER requirements at 17 MA provided that the IPB98 scaling for energy content is accurate enough, and provided that a lower dilution is obtained when operating at higher absolute electron density. C1 EURATOM, CEA, DSM, DRFC, St Paul Les Durance, France. UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon, Oxon, England. EURATOM, IST, Ctr Fusao Nucl, P-1049001 Lisbon, Portugal. EURATOM Belgian State Assoc, LPP, ERM, KMS, Brussels, Belgium. EURATOM, Royal Inst Technol, Dept Phys, Stockholm, Sweden. State Univ Ghent, Dept Appl Phys, B-9000 Ghent, Belgium. Max Planck Inst Plasma Phys, Garching, Germany. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EURATOM, Inst Plasma Phys, Forschungszentrum, Julich, Germany. CSU Culham, EFDA, Abingdon, Oxon, England. EURATOM, I-35127 Padua, Italy. CSU Garching, EFDA, Garching, Germany. EURATOM, FOM Rijnhuizen, Nieuwegein, Netherlands. RP Monier-Garbet, P (reprint author), EURATOM, CEA, DSM, DRFC, St Paul Les Durance, France. EM pascale.monier-garbet@cea.fr RI Nave, Maria/A-5581-2013 OI Nave, Maria/0000-0003-2078-6584 NR 19 TC 27 Z9 27 U1 0 U2 5 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2005 VL 45 IS 11 BP 1404 EP 1410 DI 10.1088/0029-5515/45/11/022 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 989MW UT WOS:000233679100024 ER PT J AU Wright, JC Berry, LA Bonoli, PT Batchelor, DB Jaeger, EF Carter, MD D'Azevedo, E Phillips, CK Okuda, H Harvey, RW Smithe, DN Myra, JR D'Ippolito, DA Brambilla, M Dumont, RJ AF Wright, JC Berry, LA Bonoli, PT Batchelor, DB Jaeger, EF Carter, MD D'Azevedo, E Phillips, CK Okuda, H Harvey, RW Smithe, DN Myra, JR D'Ippolito, DA Brambilla, M Dumont, RJ TI Nonthermal particle and full-wave diffraction effects on heating and current drive in the ICRF and LHRF regimes SO NUCLEAR FUSION LA English DT Article ID HYBRID CURRENT DRIVE; CYCLOTRON FREQUENCY-RANGE; TOROIDAL PLASMAS; TOKAMAK PLASMAS; PROPAGATION; ABSORPTION; SIMULATION AB Fast waves (FW) are a primary technique for heating and current drive (CD) on the proposed burning plasma device, International Tokamak Experimental Reactor (ITER) and lower hybrid (LH) waves are a candidate for edge current profile control. The models used to simulate these two waves rely on assumptions of Maxwellian populations that allow efficient analytic implementations of the plasma response, and in the case of the LH wave, the ray tracing models used are able to follow the very small wavelengths in a continuum manner without requiring a fine computational grid. Recent advances in algorithms and parallel computational methods have allowed these assumptions to be tested, permitting more accurate estimates of heating deposition and CD efficiencies in a burning plasma. Absorption by energetic particles for both waves can be significant, reducing electron heating and associated CD. Wave propagation and absorption are dependent on the velocity space distribution of particles in the plasma and geometric effects of focusing and diffraction. Fusion-born alpha particles and neutral beam ions may interact with these waves in a manner that cannot be accurately modelled by Maxwellian distributions. The AORSA2D code has been modified to use a generalized non-Maxwellian conductivity and applied to ITER reference scenarios. The effects of diffraction on LH waves in toroidal geometry are not well understood because computational limits have prohibited full-wave simulations at those small wavelengths. Simulations of LH waves have been restricted to WKB ray tracing techniques and one-dimensional full-wave in the past, but the availability of massively parallel architectures has made full-wave calculations using an electromagnetic field solver tractable. The TORIC code has been adapted to run on parallel architectures making it possible to resolve the slow electrostatic LH wave. We present full-wave simulations of LH slow and FW in toroidal geometry using a Maxwellian distribution with non-relativistic electron damping in Alcator C-Mod at values of (omega(pe)/omega(ce))(2) comparable to those expected in the ITER device. C1 MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. Oak Ridge Natl Lab, Oak Ridge, TN USA. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. CompX, Del Mar, CA USA. Mission Res Corp, Newington, VA USA. Lodestar Res Corp, Boulder, CO USA. Max Planck Inst Plasma Phys, Munich, Germany. EURATOM, CEA, Cadarache, France. RP Wright, JC (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM jwright@psfc.mit.edu RI Dumont, Remi/D-3840-2009 NR 22 TC 18 Z9 18 U1 0 U2 1 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2005 VL 45 IS 11 BP 1411 EP 1418 DI 10.1088/0029-5515/45/11/023 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 989MW UT WOS:000233679100025 ER PT J AU Murakami, M Greenfield, CM Wade, MR Luce, TC Ferron, JR St John, HE Makowski, MA Austin, ME Allen, SL Brennan, DP Burrell, KH Casper, TA DeBoo, JC Doyle, EJ Garofalo, AM Gohil, P Gorelov, IA Groebner, RJ Hobirk, J Hyatt, AW Jayakumar, RJ Kajiwara, K Kessel, CE Kinsey, JE La Haye, RJ Kim, JY Lao, LL Lohr, J Menard, JE Petty, CC Petrie, TW Pinsker, RI Politzer, PA Prater, R Rhodes, TL Sips, ACC Staebler, GM Taylor, TS Wang, G West, WP Zeng, L AF Murakami, M Greenfield, CM Wade, MR Luce, TC Ferron, JR St John, HE Makowski, MA Austin, ME Allen, SL Brennan, DP Burrell, KH Casper, TA DeBoo, JC Doyle, EJ Garofalo, AM Gohil, P Gorelov, IA Groebner, RJ Hobirk, J Hyatt, AW Jayakumar, RJ Kajiwara, K Kessel, CE Kinsey, JE La Haye, RJ Kim, JY Lao, LL Lohr, J Menard, JE Petty, CC Petrie, TW Pinsker, RI Politzer, PA Prater, R Rhodes, TL Sips, ACC Staebler, GM Taylor, TS Wang, G West, WP Zeng, L CA DIII-D Team TI 100% noninductive operation at high beta using off-axis ECCD in DIII-D SO NUCLEAR FUSION LA English DT Article ID CYCLOTRON CURRENT DRIVE; NEOCLASSICAL TEARING MODES; ADVANCED TOKAMAK REGIMES; ARBITRARY COLLISIONALITY; COMPLETE SUPPRESSION; BOOTSTRAP CURRENT; BURNING PLASMA; TRANSPORT; PROFILES; ITER AB The advanced tokamak programme on DIII-D is to develop the scientific basis for steady state, high performance operation in future devices. We report on experiments attempting to demonstrate sustainment of 100% noninductive current for several seconds at high beta, using up to 2.5 MW of off-axis electron cyclotron current drive and up to 15 MW of neutral beam injection with q95 approximate to 5. A 100% noninductive condition was achieved with beta(T) = 3.6%, beta(N) = 3.5, H-89 = 2.4 and improved current drive alignment. However, the duration of this phase was limited by the pressure profile evolution leading to magnetohydrodynamic instabilities after about 0.7 s. In a separate discharge, a nearly (similar to 90%) noninductive, stationary condition was maintained for one current relaxation time (1.8 s) only limited by the duration of the hardware system. These experiments have achieved normalized fusion performance beta(N)H(89)/q(95)(2) approximate to 0.3 with bootstrap current fraction f(BS) approximate to 60%, consistent with requirements for the ITER Q = 5 steady-state scenarios. The modelling tools that were successfully employed to devise experiments in DIII-D are applied to ITER, indicating that full noninductive operation is plausible for an ITER steady-state scenario with Q approximate to 5. C1 Gen Atom Co, San Diego, CA 92138 USA. Oak Ridge Natl Lab, Oak Ridge, TN USA. Lawrence Livermore Natl Lab, Livermore, CA USA. Univ Texas, Fus Res Ctr, Austin, TX 78712 USA. MIT, Cambridge, MA 02139 USA. Univ Calif Los Angeles, Inst Plasma & Fus Res, Los Angeles, CA USA. Columbia Univ, Dept Appl Phys, New York, NY USA. Max Planck Inst Plasma Phys, Garching, Germany. Oak Ridge Inst Sci Educ, Oak Ridge, TN USA. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA. RP Murakami, M (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92138 USA. EM murakami@fusion.gat.com NR 38 TC 31 Z9 32 U1 0 U2 0 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2005 VL 45 IS 11 BP 1419 EP 1426 DI 10.1088/0029-5515/45/11/024 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 989MW UT WOS:000233679100026 ER PT J AU La Haye, RJ Humphreys, DA Ferron, JR Luce, TC Perkins, FW Petty, CC Prater, R Strait, EJ Welander, AS AF La Haye, RJ Humphreys, DA Ferron, JR Luce, TC Perkins, FW Petty, CC Prater, R Strait, EJ Welander, AS TI Higher stable beta by use of pre-emptive electron cyclotron current drive on DIII-D SO NUCLEAR FUSION LA English DT Article ID NEOCLASSICAL TEARING MODES; TOKAMAK; STABILIZATION; STABILITY; ONSET; ECCD AB Electron cyclotron current drive (ECCD) is used in conjunction with accurate real-time equilibrium reconstructions to operate a tokamak plasma at high beta without the destabilization of a performance-degrading neoclassical tearing mode that otherwise is metastable and therefore appears consistently. This is the first experiment in which the alignment of the ECCD on the rational surface being stabilized is maintained in the absence of the mode. Driving current at the rational surface eliminates the metastable condition, thereby making the mode stable. C1 Gen Atom Co, San Diego, CA 92186 USA. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP La Haye, RJ (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM lahaye@fusion.gat.com NR 22 TC 24 Z9 24 U1 0 U2 5 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2005 VL 45 IS 11 BP L37 EP L41 DI 10.1088/0029-5515/45/11/L02 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 989MW UT WOS:000233679100002 ER PT J AU Ajimura, S Arisaka, K Barrio, M Fujiwara, T Hidaka, S Hotta, T Hsiung, B Ikegami, Y Inagaki, T Kabe, S Kessler, R Kobayashi, S Kurashige, H Kurebayashi, K Matsumura, T Miyahara, T Mori, K Nakagawa, T Nakamura, T Nakano, T Nomura, T Okuno, H Sasao, N Sato, T Shinkawa, T Suzuki, I Tripathi, A Tsukamoto, T Wah, Y Watanabe, H Winstein, B Yamanaka, T AF Ajimura, S Arisaka, K Barrio, M Fujiwara, T Hidaka, S Hotta, T Hsiung, B Ikegami, Y Inagaki, T Kabe, S Kessler, R Kobayashi, S Kurashige, H Kurebayashi, K Matsumura, T Miyahara, T Mori, K Nakagawa, T Nakamura, T Nakano, T Nomura, T Okuno, H Sasao, N Sato, T Shinkawa, T Suzuki, I Tripathi, A Tsukamoto, T Wah, Y Watanabe, H Winstein, B Yamanaka, T TI Measurement of the photon detection inefficiency of electromagnetic calorimeters at energies below 1 GeV SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE electromagnetic calorimeter; photon detection inefficiency K-L(0) -> pi(0) nu nu decay AB The photon detection inefficiency of electromagnetic calorimeters due to photonuclear reactions has been studied at photon energies below 1 GeV using a tagged-photon beam at the KEK-Tanashi 1.3-GeV electron synchrotron. Photonuclear reactions are identified by detecting low-energy neutrons with liquid scintillation counters surrounding the sample calorimeter. For a Cesium Iodide (CsI) calorimeter with a detection threshold of 10 MeV, the inefficiency due to photonuclear reactions is 10(-4) at E-y = 100 MeV, and decreases to 2 x 10(-7) at E-y = 1 GeV. For a lead-scintillator sampling calorimeter, the inefficiency is larger than the above values by a factor of 2-3, reflecting the sampling effect after photonuclear reactions. By decreasing the detection threshold down to 1 MeV, the inefficiencies are reduced by a factor of 10 for both types of calorimeters. (c) 2005 Elsevier B.V. All rights reserved. C1 High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Saga Univ, Dept Phys, Saga 8408502, Japan. Miyazaki Univ, Dept Appl Phys, Miyazaki 8892192, Japan. Natl Def Acad Japan, Yokosuka, Kanagawa 2398686, Japan. RP High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. EM inagaki@post.kek.jp; nabe@post.kek.jp RI Kurashige, Hisaya/H-4916-2012 NR 10 TC 9 Z9 9 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 1 PY 2005 VL 552 IS 3 BP 263 EP 275 DI 10.1016/j.nima.2005.06.070 PG 13 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 981EL UT WOS:000233070100002 ER PT J AU Anulli, F Baldini, R Calcaterra, A de Sangro, R Finocchiaro, G Patteri, P Piccolo, M Zallo, A Cheng, CH Lange, DJ Wright, DM Messner, R Wisniewski, WJ Pappagallo, M Andreotti, M Bettoni, D Calabrese, R Cibinetto, G Luppi, E Negrini, M Capra, R Contri, R LoVetere, M Monge, R Passaggio, S Robutti, E Tosi, S Cartaro, C De Nardo, G Fabozzi, F Lista, L Monorchio, D Piccolo, D Paolucci, P Covarelli, R Pioppi, M Carpinelli, M Forti, F Neri, N Paoloni, E Bellini, F Cavoto, G Di Marco, E D'Orazio, A del Re, D Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Pierini, M Piredda, G Voena, C Potter, C Sinev, N Strom, D Foulkes, S Wang, K Band, HR Hollar, J Tan, P AF Anulli, F Baldini, R Calcaterra, A de Sangro, R Finocchiaro, G Patteri, P Piccolo, M Zallo, A Cheng, CH Lange, DJ Wright, DM Messner, R Wisniewski, WJ Pappagallo, M Andreotti, M Bettoni, D Calabrese, R Cibinetto, G Luppi, E Negrini, M Capra, R Contri, R LoVetere, M Monge, R Passaggio, S Robutti, E Tosi, S Cartaro, C De Nardo, G Fabozzi, F Lista, L Monorchio, D Piccolo, D Paolucci, P Covarelli, R Pioppi, M Carpinelli, M Forti, F Neri, N Paoloni, E Bellini, F Cavoto, G Di Marco, E D'Orazio, A del Re, D Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Pierini, M Piredda, G Voena, C Potter, C Sinev, N Strom, D Foulkes, S Wang, K Band, HR Hollar, J Tan, P TI Performance of second generation BABAR resistive plate chambers SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE resistive plate chamber; muon detection; BABAR ID DETECTOR AB The BABAR detector has operated nearly 200 Resistive Plate Chambers (RPCs), constructed as part of an upgrade of the forward endcap muon detector, for the past two years. The RPCs experience widely different background and luminosity-driven singles rates (0.01-10Hz/cm(2)) depending on position within the endcap. Some regions have integrated over 0.3C/cm(2). RPC efficiency measured with cosmic rays is high and stable. The average efficiency measured with beam is also high. However, a few of the highest rate RPCs have suffered efficiency losses of 5-15%. Although constructed with improved techniques and minimal use of linseed oil, many of the RPCs, which are operated in streamer mode, have shown increased dark currents and noise rates that are correlated with the direction of the gas flow and the integrated current. Studies of the above aging effects are presented and correlated with detector operating conditions. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Wisconsin, Madison, WI 53706 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Lawrence Livermore Natl Lab, Livermore, CA USA. Stanford Linear Accelerator Ctr, Menlo Pk, CA USA. Univ Bari, Bari, Italy. Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. Univ Ferrara, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. Univ Genoa, Genoa, Italy. Ist Nazl Fis Nucl, Sez Genoa, I-16146 Genoa, Italy. Univ Naples Federico II, Naples, Italy. Ist Nazl Fis Nucl, Sez Naples, I-80125 Naples, Italy. Univ Perugia, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. Univ Pisa, Pisa, Italy. Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. Univ Roma La Sapienza, Rome, Italy. Ist Nazl Fis Nucl, Sez Rome, Rome, Italy. Univ Oregon, Eugene, OR 97403 USA. Univ Calif Riverside, Riverside, CA 92521 USA. RP Band, HR (reprint author), Univ Wisconsin, Madison, WI 53706 USA. EM hrb@slac.stanford.edu RI Bellini, Fabio/D-1055-2009; Forti, Francesco/H-3035-2011; Lista, Luca/C-5719-2008; Neri, Nicola/G-3991-2012; de Sangro, Riccardo/J-2901-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Lo Vetere, Maurizio/J-5049-2012; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015 OI Cibinetto, Gianluigi/0000-0002-3491-6231; Covarelli, Roberto/0000-0003-1216-5235; Paoloni, Eugenio/0000-0001-5969-8712; Faccini, Riccardo/0000-0003-2613-5141; Cavoto, Gianluca/0000-0003-2161-918X; Bellini, Fabio/0000-0002-2936-660X; Forti, Francesco/0000-0001-6535-7965; Neri, Nicola/0000-0002-6106-3756; de Sangro, Riccardo/0000-0002-3808-5455; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Lo Vetere, Maurizio/0000-0002-6520-4480; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826 NR 7 TC 15 Z9 15 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 1 PY 2005 VL 552 IS 3 BP 276 EP 291 DI 10.1016/j.nima.2005.06.084 PG 16 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 981EL UT WOS:000233070100003 ER PT J AU Campabadal, F Fleta, C Key, M Lozano, M Martinez, C Pellegrini, G Rafi, JM Ullan, M Johansen, LG Mohn, B Oye, O Solberg, AO Stugu, B Ciocio, A Ely, R Fadeyev, V Gilchriese, M Haber, C Siegrist, J Spieler, H Vu, C Bell, PJ Charlton, DG Dowell, JD Gallop, BJ Homer, RJ Jovanovic, P Mahout, G McMahon, TJ Wilson, JA Barr, AJ Carter, JR Goodrick, MJ Hill, JC Lester, CG Parker, MA Robinson, D Anghinolfi, F Chesi, E Jarron, P Kaplon, J Macpherson, A Pernegger, H Pritchard, T Roe, S Rudge, A Weilhammer, P Bialas, W Dabrowski, W Dwuznik, M Toczek, B Koperny, S Bruckman, P Gadomski, S Gornicki, E Malecki, P Moszczynski, A Stanecka, E Szczygiel, R Turala, M Wolter, M Feld, L Ketterer, C Ludwig, J Meinhardt, J Runge, K Clark, AG Donega, M D'Onofrioi, M Ferrere, D La Marra, D Macina, D Mangin-Brinet, M Mikulec, B Zsenei, A Bates, RL Cheplakov, A Iwata, Y Ohsugi, T Ikegami, Y Kohriki, T Kondo, T Terada, S Ujiie, N Unno, Y Takashima, R Allport, PP Greenall, A Jackson, JN Jones, TJ Smith, NA Beck, GA Carter, AA Morris, J Morin, J Cindro, V Kramberger, G Mandic, I Mikuz, M Duerdoth, IP Foster, JM Pater, J Snow, SW Thompson, RJ Atkinson, TM Dick, B Fares, F Moorhead, GF Taylor, GN Andricek, L Bethke, S Hauff, D Kudlaty, J Lutz, G Moser, HG Nisius, R Richter, R Schieck, J Colijn, AP Cornelissen, T Gorfine, GW Hartjes, FG Hessey, NP de Jong, P Kluit, R Koffeman, E Muijs, AJM Peeters, SJM van Eijk, B Nakano, I Tanaka, R Dorholt, O Danielsen, KM Huse, T Sandaker, H Stapnes, S Kundu, N Nickerson, RB Weidberg, A Bohm, J Mikestikova, M Stastny, J Broklova, Z Broz, J Dolezal, Z Kodys, P Kubik, P Reznicek, P Vorobel, V Wilhelm, I Cermak, P Chren, D Horazdovsky, T Linhart, V Pospisil, S Sinor, M Solar, M Sopko, B Stekl, I Apsimon, RJ Batchelor, LE Bizzell, JP Falconer, NG French, MJ Gibson, MD Haywood, SJ Matson, RM McMahon, SJ Morrissey, M Murray, WJ Phillips, PW Tyndel, M Villani, EG Cosgrove, DP Dorfan, DE Grillo, AA Kachiguine, S Rosenbaum, F Sadrozinski, HFW Seiden, A Spencer, E Wilder, M Akimoto, T Hara, K Tanizaki, K Bingefors, N Brenner, R Ekelof, T Eklund, L Bernabeu, J Civera, JV Costa, MJ Fuster, J Garcia, C Garcia-Navarro, JE Gonzalez-Sevilla, S Lacasta, C Llosa, G Marti-Garcia, S Modesto, P Sanchez, FJ Sospedra, L Vos, M AF Campabadal, F Fleta, C Key, M Lozano, M Martinez, C Pellegrini, G Rafi, JM Ullan, M Johansen, LG Mohn, B Oye, O Solberg, AO Stugu, B Ciocio, A Ely, R Fadeyev, V Gilchriese, M Haber, C Siegrist, J Spieler, H Vu, C Bell, PJ Charlton, DG Dowell, JD Gallop, BJ Homer, RJ Jovanovic, P Mahout, G McMahon, TJ Wilson, JA Barr, AJ Carter, JR Goodrick, MJ Hill, JC Lester, CG Parker, MA Robinson, D Anghinolfi, F Chesi, E Jarron, P Kaplon, J Macpherson, A Pernegger, H Pritchard, T Roe, S Rudge, A Weilhammer, P Bialas, W Dabrowski, W Dwuznik, M Toczek, B Koperny, S Bruckman, P Gadomski, S Gornicki, E Malecki, P Moszczynski, A Stanecka, E Szczygiel, R Turala, M Wolter, M Feld, L Ketterer, C Ludwig, J Meinhardt, J Runge, K Clark, AG Donega, M D'Onofrioi, M Ferrere, D La Marra, D Macina, D Mangin-Brinet, M Mikulec, B Zsenei, A Bates, RL Cheplakov, A Iwata, Y Ohsugi, T Ikegami, Y Kohriki, T Kondo, T Terada, S Ujiie, N Unno, Y Takashima, R Allport, PP Greenall, A Jackson, JN Jones, TJ Smith, NA Beck, GA Carter, AA Morris, J Morin, J Cindro, V Kramberger, G Mandic, I Mikuz, M Duerdoth, IP Foster, JM Pater, J Snow, SW Thompson, RJ Atkinson, TM Dick, B Fares, F Moorhead, GF Taylor, GN Andricek, L Bethke, S Hauff, D Kudlaty, J Lutz, G Moser, HG Nisius, R Richter, R Schieck, J Colijn, AP Cornelissen, T Gorfine, GW Hartjes, FG Hessey, NP de Jong, P Kluit, R Koffeman, E Muijs, AJM Peeters, SJM van Eijk, B Nakano, I Tanaka, R Dorholt, O Danielsen, KM Huse, T Sandaker, H Stapnes, S Kundu, N Nickerson, RB Weidberg, A Bohm, J Mikestikova, M Stastny, J Broklova, Z Broz, J Dolezal, Z Kodys, P Kubik, P Reznicek, P Vorobel, V Wilhelm, I Cermak, P Chren, D Horazdovsky, T Linhart, V Pospisil, S Sinor, M Solar, M Sopko, B Stekl, I Apsimon, RJ Batchelor, LE Bizzell, JP Falconer, NG French, MJ Gibson, MD Haywood, SJ Matson, RM McMahon, SJ Morrissey, M Murray, WJ Phillips, PW Tyndel, M Villani, EG Cosgrove, DP Dorfan, DE Grillo, AA Kachiguine, S Rosenbaum, F Sadrozinski, HFW Seiden, A Spencer, E Wilder, M Akimoto, T Hara, K Tanizaki, K Bingefors, N Brenner, R Ekelof, T Eklund, L Bernabeu, J Civera, JV Costa, MJ Fuster, J Garcia, C Garcia-Navarro, JE Gonzalez-Sevilla, S Lacasta, C Llosa, G Marti-Garcia, S Modesto, P Sanchez, FJ Sospedra, L Vos, M TI Design and performance of the ABCD3TA ASIC for readout of silicon strip detectors in the ATLAS semiconductor tracker SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE front-end electronics; binary readout; silicon strip detectors; tracking detectors; radiation damage; application specific integrated circuits; quality assurance ID BIPOLAR JUNCTION TRANSISTORS; BINARY READOUT; CHIP; SCT; MODULES AB The ABCD3TA is a 128-channel ASIC with binary architecture for the readout of silicon strip particle detectors in the Semiconductor Tracker of the ATLAS experiment at the Large Hadron Collider (LHC). The chip comprises fast front-end and amplitude discriminator circuits using bipolar devices, a binary pipeline for first level trigger latency, a second level derandomising buffer and data compression circuitry based on CMOS devices. It has been designed and fabricated in a BiCMOS radiation resistant process. Extensive testing of the ABCD3TA chips assembled into detector modules show that the design meets the specifications and maintains the required performance after irradiation up to a total ionising dose of 10 Mrad and a 1-MeV neutron equivalent fluence of 2 x 10(14) n/cm(2), corresponding to 10 years of operation of the LHC at its design luminosity. Wafer screening and quality assurance procedures have been developed and implemented in large volume production to ensure that the chips assembled into modules meet the rigorous acceptance criteria. (c) 2005 Elsevier B.V. All rights reserved. C1 AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. CSIC, Inst Microelect Barcelona, IMB, CNM, Barcelona, Spain. Univ Bergen, Bergen, Norway. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. Univ Freiburg, Fak Phys, D-7800 Freiburg, Germany. Univ Geneva, Sect Phys, Geneva, Switzerland. Univ Glasgow, Dept Phys Astron, Glasgow, Lanark, Scotland. Hiroshima Univ, Dept Phys, Higashihiroshima 724, Japan. KEK, Inst Particles & Nucl Studies, Tsukuba, Ibaraki, Japan. Kyoto Univ, Fushimi Ku, Fukakusa, Japan. Univ Liverpool, Dept Phys, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. Queen Mary Univ London, Dept Phys, London E1 4NS, England. Univ Ljubljana, Jozef Stefan Inst, Ljubljana, Slovenia. Univ Ljubljana, Dept Phys, Ljubljana 61000, Slovenia. Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. NIKHEF H, NL-1009 DB Amsterdam, Netherlands. Okayama Univ, Dept Phys, Okayama 700, Japan. Univ Oslo, Oslo, Norway. Univ Oxford, Dept Phys, Oxford, England. Acad Sci Czech Republic, Prague, Czech Republic. Charles Univ Prague, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. Uppsala Univ, Dept Radiat Sci, Uppsala, Sweden. Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain. RP Dabrowski, W (reprint author), AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. EM W.Dabrowski@ftj.agh.edu.pl RI Bernabeu, Jose/H-6708-2015; Ullan, Miguel/P-7392-2015; Lozano, Manuel/C-3445-2011; Stastny, jan/H-2973-2014; Llosa, Gabriela/F-7791-2014; Garcia, Jose /H-6339-2015; Szczygiel, Robert/B-5662-2011; Marti-Garcia, Salvador/F-3085-2011; Wolter, Marcin/A-7412-2012; Eklund, Lars/C-7709-2012; Rafi, Joan Marc/D-5500-2012; Moorhead, Gareth/B-6634-2009; Fleta, Celeste/D-7303-2014; Pellegrini, Giulio/F-4921-2011; Campabadal, Francesca/E-6651-2014; Mikestikova, Marcela/H-1996-2014 OI Bernabeu, Jose/0000-0002-0296-9988; Lozano, Manuel/0000-0001-5826-5544; Vos, Marcel/0000-0001-8474-5357; Lacasta, Carlos/0000-0002-2623-6252; Llosa, Gabriela/0000-0002-0364-8158; Rafi, Joan Marc/0000-0003-4581-9477; Moorhead, Gareth/0000-0002-9299-9549; Fleta, Celeste/0000-0002-6591-6744; Pellegrini, Giulio/0000-0002-1606-3546; Campabadal, Francesca/0000-0001-7758-4567; Mikestikova, Marcela/0000-0003-1277-2596 NR 31 TC 92 Z9 92 U1 2 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 1 PY 2005 VL 552 IS 3 BP 292 EP 328 DI 10.1016/j.nima.2005.07.002 PG 37 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 981EL UT WOS:000233070100004 ER PT J AU Abazova, VM Acharya, BS Alexeeva, GD Alkhazov, G Anosov, VA Baldin, B Banerjee, S Bardon, O Bartlett, JF Baturitsky, MA Beutel, D Bezzubov, VA Bodyagin, V Butler, JM Cease, H Chi, E Denisov, D Denisov, SP Diehl, HT Doulas, S Dugad, SR Dvornikov, OV Dyshkant, A Eads, M Evdokimov, A Evdokimov, VN Fitzpatrick, T Fortner, M Gavrilov, V Gershtein, Y Golovtsov, V Gomez, B Goodwin, R Gornushkin, YA Green, DR Gupta, A Gurzhiev, SN Gutierrez, G Haggerty, H Hanlet, P Hansen, S Hazen, E Hedin, D Hoeneisen, B Ito, AS Jayanti, R Johns, K Jouravlev, N Kalinin, AM Kalmani, SD Kharzheev, YN Kirsch, N Komissarov, EV Korablev, VM Kostritsky, A Kozelov, AV Kozlovsky, M Kravchuk, NP Krishnaswamy, MR Kuchinsky, NA Kuleshov, S Kupco, A Larwill, M Leitner, R Lipaev, VV Lobodenko, A Lokajicek, M Lubatti, HJ Machado, E Maity, M Malyshev, VL Mao, HS Marcus, M Marshall, T Mayorov, AA McCroskey, R Merekov, YP Mikhailov, VA Mokhov, N Mondal, NK Nagaraj, P Narasimham, VS Narayanan, A Negret, JP Neustroev, P Nozdrin, AA Oshinowo, B Parashar, N Parua, N Podstavkov, VM Polozov, P Porokhovoi, SY Prokhorov, IK Rao, MVS Raskowski, J Reddy, LV Regan, T Rotolo, C Russakovich, NA Sabirov, BM Satyanarayana, B Scheglov, Y Schukin, AA Shankar, HC Shishkin, AA Shpakov, D Shupe, M Simak, V Sirotenko, V Smith, G Smolek, K Soustruznik, K Stefanik, A Steinberg, J Stolin, V Stoyanova, DA Stutte, L Temple, J Terentyev, N Teterin, VV Tokmenin, VV Tompkins, D Uvarov, L Uvarov, S Vasilyev, IA Vertogradov, LS Vishwanath, PR Vorobyov, A Vysotsky, VB Willutzki, H Wobisch, M Wood, DR Yamada, R Yatsunenko, YA Yoffe, F Zanabria, M Zhao, T Zieminska, D Zieminski, A Zvyagintsev, SA AF Abazova, VM Acharya, BS Alexeeva, GD Alkhazov, G Anosov, VA Baldin, B Banerjee, S Bardon, O Bartlett, JF Baturitsky, MA Beutel, D Bezzubov, VA Bodyagin, V Butler, JM Cease, H Chi, E Denisov, D Denisov, SP Diehl, HT Doulas, S Dugad, SR Dvornikov, OV Dyshkant, A Eads, M Evdokimov, A Evdokimov, VN Fitzpatrick, T Fortner, M Gavrilov, V Gershtein, Y Golovtsov, V Gomez, B Goodwin, R Gornushkin, YA Green, DR Gupta, A Gurzhiev, SN Gutierrez, G Haggerty, H Hanlet, P Hansen, S Hazen, E Hedin, D Hoeneisen, B Ito, AS Jayanti, R Johns, K Jouravlev, N Kalinin, AM Kalmani, SD Kharzheev, YN Kirsch, N Komissarov, EV Korablev, VM Kostritsky, A Kozelov, AV Kozlovsky, M Kravchuk, NP Krishnaswamy, MR Kuchinsky, NA Kuleshov, S Kupco, A Larwill, M Leitner, R Lipaev, VV Lobodenko, A Lokajicek, M Lubatti, HJ Machado, E Maity, M Malyshev, VL Mao, HS Marcus, M Marshall, T Mayorov, AA McCroskey, R Merekov, YP Mikhailov, VA Mokhov, N Mondal, NK Nagaraj, P Narasimham, VS Narayanan, A Negret, JP Neustroev, P Nozdrin, AA Oshinowo, B Parashar, N Parua, N Podstavkov, VM Polozov, P Porokhovoi, SY Prokhorov, IK Rao, MVS Raskowski, J Reddy, LV Regan, T Rotolo, C Russakovich, NA Sabirov, BM Satyanarayana, B Scheglov, Y Schukin, AA Shankar, HC Shishkin, AA Shpakov, D Shupe, M Simak, V Sirotenko, V Smith, G Smolek, K Soustruznik, K Stefanik, A Steinberg, J Stolin, V Stoyanova, DA Stutte, L Temple, J Terentyev, N Teterin, VV Tokmenin, VV Tompkins, D Uvarov, L Uvarov, S Vasilyev, IA Vertogradov, LS Vishwanath, PR Vorobyov, A Vysotsky, VB Willutzki, H Wobisch, M Wood, DR Yamada, R Yatsunenko, YA Yoffe, F Zanabria, M Zhao, T Zieminska, D Zieminski, A Zvyagintsev, SA TI The muon system of the Run II DO detector SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE muon; drift tubes; scintillation counters; radiation shielding; magnetic field; fast electronics ID DRIFT-TUBE CHAMBERS; D0 DETECTOR; SCINTILLATION-COUNTERS; UPGRADE AB We describe the design, construction, and performance of the upgraded D phi muon system for Run II of the Fermilab Tevatron collider. Significant improvements have been made to the major subsystems of the D phi muon detector: trigger scintillation counters, tracking detectors, and electronics. The Run II central muon detector has a new scintillation counter system inside the iron toroid and an improved scintillation counter system outside the iron toroid. In the forward region, new scintillation counter and tracking systems have been installed. Extensive shielding has been added in the forward region. A large fraction of the muon system electronics is also new. (c) 2005 Elsevier B.V. All rights reserved. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Joint Inst Nucl Res, Dubna, Russia. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Petersburg Nucl Phys Inst, St Petersburg, Russia. Northeastern Univ, Boston, MA 02115 USA. No Illinois Univ, De Kalb, IL 60115 USA. Inst High Energy Phys, Protvino, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Boston Univ, Boston, MA 02215 USA. Florida State Univ, Tallahassee, FL 32306 USA. Inst Theoret & Expt Phys, Moscow 117259, Russia. Univ Los Andes, Bogota, Colombia. Univ San Francisco Quito, Quito, Ecuador. Univ Arizona, Tucson, AZ 85721 USA. Acad Sci Czech Republ, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Charles Univ, Ctr Particle Phys, Prague, Czech Republic. Univ Washington, Seattle, WA 98195 USA. Inst High Energy Phys, Beijing 100039, Peoples R China. Indiana Univ, Bloomington, IN 47405 USA. Czech Tech Univ, CR-16635 Prague, Czech Republic. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Denisov, D (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM denisovd@fnal.gov RI Bheesette, Satyanarayana/A-1360-2013; Gornushkin, Yury/F-4788-2013; Dvornikov, Oleg/I-7207-2013; Kuleshov, Sergey/D-9940-2013; OI Gornushkin, Yury/0000-0003-3524-4032; Kuleshov, Sergey/0000-0002-3065-326X; Wobisch, Markus/0000-0002-0688-3380 NR 29 TC 106 Z9 106 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 1 PY 2005 VL 552 IS 3 BP 372 EP 398 DI 10.1016/j.nima.2005.07.008 PG 27 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 981EL UT WOS:000233070100009 ER PT J AU Aggouras, G Anassontzis, EG Ball, AE Bourlis, G Chinowsky, W Fahrun, E Grammatikakis, G Green, C Grieder, P Katrivanos, P Koske, P Leisos, A Ludvig, J Markopoulos, E Minkowsky, P Nygren, D Papageorgiou, K Przybylski, G Resvanis, LK Siotis, I Sopher, J Staveris, T Tsagli, V Tsirigotis, A Zhukovk, VA AF Aggouras, G Anassontzis, EG Ball, AE Bourlis, G Chinowsky, W Fahrun, E Grammatikakis, G Green, C Grieder, P Katrivanos, P Koske, P Leisos, A Ludvig, J Markopoulos, E Minkowsky, P Nygren, D Papageorgiou, K Przybylski, G Resvanis, LK Siotis, I Sopher, J Staveris, T Tsagli, V Tsirigotis, A Zhukovk, VA CA NESTOR Collaboration TI Operation and performance of the NESTOR test detector SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE neutrino; NESTOR; deep-sea; telescope; operation; performance ID NEUTRINO TELESCOPE; MODULE AB NESTOR is a deep-sea neutrino telescope that is under construction in the Ionian Sea off the coast of Greece at a depth of about 4000 m. This paper briefly reviews the detector structure and deployment techniques before describing in detail the calibration and engineering run of a test detector carried out in 2003. The detector was operated for more than I month and data was continuously transmitted to shore via an electro-optical cable laid on the sea floor. The performance of the detector is discussed and analysis of the data obtained shows that the measured cosmic ray muon flux is in good agreement with previous measurements and with phenomenological cosmic ray models. (c) 2005 Published by Elsevier B.V. C1 Univ Athens, Fac Phys, Nucl & Particle Phys Dept, GR-15771 Athens, Greece. NESTOR Inst Deep Sea Res Technol & Neutrino Astro, Pylos, Greece. CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. Hellen Open Univ, Sch Sci & Technol, Patras, Greece. Lawrence Berkeley Natl Lab, Berkeley, CA USA. Univ Kiel, Inst Expt & Appl Phys, Kiel, Germany. Univ Crete, Dept Phys, Rethimnon, Greece. Univ Bern, Inst Phys, Bern, Switzerland. NCSR Demokritos, Athens, Greece. Univ Bern, Inst Theoret Phys, CH-3012 Bern, Switzerland. Russian Acad Sci, Inst Nucl Res, Moscow, Russia. RP Anassontzis, EG (reprint author), Univ Athens, Fac Phys, Nucl & Particle Phys Dept, GR-15771 Athens, Greece. EM eanason@phys.uoa.gr RI Grammatikakis, George/F-5620-2017 NR 36 TC 35 Z9 35 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 1 PY 2005 VL 552 IS 3 BP 420 EP 439 DI 10.1016/j.nima.2005.06.083 PG 20 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 981EL UT WOS:000233070100012 ER PT J AU Hulsbergen, WD AF Hulsbergen, WD TI Decay chain fitting with a Kalman filter SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE vertex reconstruction; Kalman filter; decay chain fit ID RECONSTRUCTION; PHYSICS; TRACK AB We present a method to perform a least-squares fit of a decay chain involving multiple decay vertices. Our technique allows for the simultaneous extraction of decay time, position and momentum parameters and their uncertainties and correlations for all particles in a decay chain. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Maryland, College Pk, MD 20742 USA. RP Hulsbergen, WD (reprint author), Stanford Linear Accelerator Ctr, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM hulsberg@slac.stanford.edu NR 9 TC 117 Z9 119 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 1 PY 2005 VL 552 IS 3 BP 566 EP 575 DI 10.1016/j.nima.2005.06.078 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 981EL UT WOS:000233070100022 ER PT J AU Sisterson, JM Brooks, FD Buffler, A Allie, MS Jones, DTL Chadwick, MB AF Sisterson, JM Brooks, FD Buffler, A Allie, MS Jones, DTL Chadwick, MB TI Cross-section measurements for neutron-induced reactions in copper at neutron energies of 70.7 and 110.8 MeV SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE spallation reactions; quasi-monoenergetic neutron beams; cross-section measurements ID COSMOGENIC NUCLIDES; RADIONUCLIDES; SPECTRA; PROTONS; CU AB Cross-sections for neutron-induced reactions on copper producing relatively short-lived radionuclides were measured at incident neutron energies of 70.7 and 110.8 MeV. These measurements were made using quasi-monoenergetic neutrons obtained from the Be + p reaction. Corrections were made for the contribution of the low energy tail in the incident neutron spectrum of these measurements. The measured cross-sections were compared with some of the few reported cross-section measurements for neutron-induced reactions at high energies, theoretical cross-sections calculated using MC-ALICE and with the cross-sections for the corresponding proton-induced reactions. (c) 2005 Elsevier B.V. All rights reserved. C1 Massachusetts Gen Hosp, NE Proton Therapy Ctr, Boston, MA 02114 USA. Harvard Univ, Sch Med, Cambridge, MA 02138 USA. Univ Cape Town, Dept Phys, ZA-7700 Rondebosch, South Africa. iThemba LABS, ZA-7129 Somerset W, South Africa. Los Alamos Natl Lab, Adv Simulat & Comp, Los Alamos, NM 87544 USA. RP Sisterson, JM (reprint author), Massachusetts Gen Hosp, NE Proton Therapy Ctr, 30 Fruit St, Boston, MA 02114 USA. EM jsisterson@partners.org NR 20 TC 18 Z9 18 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD NOV PY 2005 VL 240 IS 3 BP 617 EP 624 DI 10.1016/j.nimb.2005.06.005 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 984ZH UT WOS:000233345400003 ER PT J AU Usov, IO Arendt, PN Groves, JR Stan, L DePaula, RF AF Usov, IO Arendt, PN Groves, JR Stan, L DePaula, RF TI Crystallographic orientation dependence of radiation damage in Ar+ implanted YSZ and MgO single crystals SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE damage anisotropy; magnesia; zirconia; ion implantation ID BEAM-ASSISTED DEPOSITION; THIN-FILMS; COATED CONDUCTORS; DEFECT PRODUCTION; ION-BOMBARDMENT; TEXTURE; MECHANISM; ALIGNMENT; SAPPHIRE; ZIRCONIA AB Single crystals of magnesia (MgO) and yttria-stabilized zirconia (YSZ) with (100), (110) and (111) orientations were implanted with 100 and 150 keV Ar+ ions at room temperature. Rutherford backscattering spectrometry combined with ion channeling (RBS/C) was used to analyze radiation damage. Results showed that there is strong crystallographic orientation dependence for damage accumulation. In both materials, the greatest amount of damage was observed in samples with (111) orientation and the least in (110) samples. This variation in the amount of damage may be due to the dynamic annealing rate anisotropy. Such behavior of YSZ and MgO under ion bombardment confirms the damage anisotropy model describing the biaxial texture development in these materials during ion beam assisted deposition (IBAD). (c) 2005 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, MST, STC, Los Alamos, NM 87545 USA. RP Usov, IO (reprint author), Los Alamos Natl Lab, MST, STC, Los Alamos, NM 87545 USA. EM iusov@lanl.gov NR 26 TC 27 Z9 27 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD NOV PY 2005 VL 240 IS 3 BP 661 EP 665 DI 10.1016/j.nimb.2005.04.116 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 984ZH UT WOS:000233345400008 ER PT J AU Kennel, SJ Lankford, T Garland, M Sundberg, JP Mirzadeh, S AF Kennel, SJ Lankford, T Garland, M Sundberg, JP Mirzadeh, S TI Biodistribution of Ra-225 citrate in mice: retention of daughter radioisotopes in bone SO NUCLEAR MEDICINE AND BIOLOGY LA English DT Article DE Ra-225; bone; in vivo generator ID VASCULAR-TARGETED RADIOIMMUNOTHERAPY; IN-VIVO GENERATOR; EMITTING RA-223; THERAPY; ACTINIUM-225; METASTASES; DOSIMETRY; BI-213; TUMORS; LUNG AB Alpha-particle-emitting radionuclides have potential for therapy of localized disease due to their high linear energy transformation and short pathlengths. Radiometals that home naturally to bone can be exploited for this purpose, and Ra-223 (t(1/2) = 11.4 days) recently has been studied for therapy of bone tumors in mice and rats. Actinium-225 (t(1/2) = 10 days) is also an attractive radioisotope for endoradiotherapy. In a single decay of a Ac-225 nucleus and its subsequent decay daughters, over 27 MeV (similar to 90% of total energy) is released by sequential emission of four a particles, ranging in energy from 5.7 to 8.4 MeV Although Ac3+ does not home naturally to bone, its parent radioisotope Ra-225 (beta(-), t(1/2) = 15 days) can be used as an in vivo source for Ac-225. Thus, injection of Ra-225 takes advantage of the bone-homing properties of radium coupled with the significant amount of energy released from the Ac-225 decay chain. Our data confirm that a large fraction of radium citrate injected intravenously into mice localizes rapidly in bone. Injected doses per gram (ID/g) for Ra-225 range from 25% in skull to about 10% in sternum. Once deposited, the Ra-225 remains in the bone with a biological half life of >40 days. Furthermore, >95% of the daughter radioisotope, Ac-225, is retained in the bone. However, a significant fraction of one of the daughter radioisotopes, Bi-213, is found in kidney. The biodistribution data indicate that Ra-225 injection should be a powerful agent for killing cells associated with bone; however, the toxicity of this radioisotope which is similar to that of other alpha emitters limits the dose that can be tolerated. (c) 2005 Elsevier Inc. All rights reserved. C1 Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37831 USA. Univ S Carolina, Dept Nucl Engn, Columbia, SC 29201 USA. Jackson Lab, Bar Harbor, ME 04609 USA. Oak Ridge Natl Lab, Div Nucl Sci & Technol, Oak Ridge, TN 37831 USA. RP Kennel, SJ (reprint author), Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37831 USA. EM kennelsj@ornl.gov NR 26 TC 6 Z9 7 U1 4 U2 9 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0969-8051 J9 NUCL MED BIOL JI Nucl. Med. Biol. PD NOV PY 2005 VL 32 IS 8 BP 859 EP 867 DI 10.1016/j.nucmedbio.2005.05.009 PG 9 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 983RM UT WOS:000233249800009 PM 16253811 ER PT J AU Morgan, GL Alrick, KR Bowman, DW Cverna, FC King, NSP Littleton, PE Greene, GA Hanson, AL Snead, CL Hall, JM Frehaut, J Ledoux, X Leray, S Petibon, E Thompson, RT Ferguson, PD Henry, EA Ward, TE AF Morgan, GL Alrick, KR Bowman, DW Cverna, FC King, NSP Littleton, PE Greene, GA Hanson, AL Snead, CL Hall, JM Frehaut, J Ledoux, X Leray, S Petibon, E Thompson, RT Ferguson, PD Henry, EA Ward, TE TI Neutron production in semiprototypic target assemblies for accelerator transmutation technology SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article AB Integral neutron production was measured by the manganese-activation technique, on targets semiprototypic of spallation-neutron-driven transmutation systems, after irradiation by 400-MeV to 2.0-GeV protons. The purpose of these experiments was to provide data to benchmark nuclear transport codes for targets irradiated by protons in this energy range, as well as to evaluate design options to maximize the production of spallation neutrons in various targets under consideration. These computer codes are used to design accelerator systems that will utilize spallation neutrons for the generation of tritium, transmutation of nuclear waste, production of radioisotopes, and other scientific investigations. Some of the targets used in this investigation were semiprototypic of the proposed Accelerator Production of Tritium target. Other targets were included to provide data to test the computational models in the codes. Total neutron production is the main factor that determines the economics of transmutation for a particular accelerator design. Comparisons of the data reported here with calculations from computer simulations show agreement to within 15% over the entire energy. region for most of the targets. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Commissariat Energie Atom, Saclay, France. Bechtel Nevada, Los Alamos, NM 87545 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. US DOE, Washington, DC 20585 USA. RP Greene, GA (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM greene@bnl.gov RI Leray, Sylvie/A-3924-2012; OI Leray, Sylvie/0000-0002-1942-2911; Ferguson, Phillip/0000-0002-7661-4223 NR 9 TC 0 Z9 0 U1 0 U2 0 PU AMER NUCLEAR SOCIETY PI LA GRANGE PK PA 555 N KENSINGTON AVENUE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD NOV PY 2005 VL 151 IS 3 BP 293 EP 304 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 976AS UT WOS:000232705800004 ER PT J AU Allen, TR Gan, J Cole, JI Ukai, S Shutthanandan, S Thevuthasan, S AF Allen, TR Gan, J Cole, JI Ukai, S Shutthanandan, S Thevuthasan, S TI The stability of 9Cr-ODS oxide particles under heavy-ion irradiation SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID NEUTRON-IRRADIATION; STEELS AB An oxide-dispersion-strengthened (ODS) martensitic steel 9Cr-ODS was irradiated with 5-MeV Ni ions at 500 degrees C at a dose rate of 1.4 X 10(-3) dpa/s to doses of 5, 50, and 150 dpa. The ODS steel has been designed for use in higher-temperature energy systems. However, the radiation effects are not fully characterized, particularly to high doses. Dense dislocations, precipitates, and yttrium-titanium oxide particles dominated the microstructure of 9Cr-ODS for both the unirradiated and irradiated cases with no dislocation loops observed. No voids were detected for doses up to 150 dpa. The average size of the oxide particles, whose size is approximately described by a lognormal distribution, slightly decreased with dose from similar to 12 nm for the unirradiated case to similar to 9 nm at 150 dpa. The decrease in size follows a square root of dose dependency, indicating the effect is radiation induced. The decrease in size is not expected to have a detrimental effect on high-temperature strength, even to extremely high dose. C1 Univ Wisconsin, Madison, WI 53706 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Japan Nucl Cycle Dev Inst, Ibaraki, Japan. Pacific NW Natl Lab, Richland, WA USA. RP Allen, TR (reprint author), Univ Wisconsin, 1500 Engn Dr, Madison, WI 53706 USA. EM allen@engr.wisc.edu OI Allen, Todd/0000-0002-2372-7259; Cole, James/0000-0003-1178-5846 NR 9 TC 18 Z9 21 U1 0 U2 6 PU AMER NUCLEAR SOCIETY PI LA GRANGE PK PA 555 N KENSINGTON AVENUE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD NOV PY 2005 VL 151 IS 3 BP 305 EP 312 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 976AS UT WOS:000232705800005 ER PT J AU Chang, SH Baek, WP Rempe, J AF Chang, SH Baek, WP Rempe, J TI Nuclear Reactor Thermal Hydraulics (NURETH-10) special issue - Part 2 - Foreword SO NUCLEAR TECHNOLOGY LA English DT Editorial Material C1 Korea Adv Inst Sci & Technol, Seoul, South Korea. Korea Atom Energy Res Inst, Taejon, South Korea. Idaho Natl Engn & Environm Lab, Idaho Falls, ID USA. RP Chang, SH (reprint author), Korea Adv Inst Sci & Technol, Seoul, South Korea. RI Chang, Soon Heung/C-1858-2011 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER NUCLEAR SOCIETY PI LA GRANGE PK PA 555 N KENSINGTON AVENUE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2005 VL 152 IS 2 BP 143 EP 143 PG 1 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 972MO UT WOS:000232458100001 ER PT J AU Rempe, IL Condie, KG Knudson, DL Suh, KY Cheung, FB Kim, SB AF Rempe, IL Condie, KG Knudson, DL Suh, KY Cheung, FB Kim, SB TI Development of an enhanced core catcher for improving in-vessel retention margins SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 10th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-10) CY OCT, 2003 CL Seoul, SOUTH KOREA SP Korean Nucl Soc, Amer Nucl Soc DE in-vessel retention; core catcher; severe accidents AB In-vessel retention (IVR) of core melt that may relocate to the lower head of a reactor vessel is a key severe accident management strategy adopted by some operating nuclear power plants and proposed for several advanced light water reactors. A U.S. -Korean International Nuclear Energy Research Initiative project has been initiated to explore design enhancements that could increase the margin for IVR for advanced reactors with higher power levels [up to 1500 MW (electric)]. As part of this effort, an enhanced in-vessel core catcher is being designed and evaluated. To reduce cost and simplify manufacture and installation, this new core catcher design consists of several interlocking sections that are machined to fit together when inserted into the lower head. If needed, the core catcher can be manufactured with holes to accommodate lower head penetrations. Each section of the core catcher consists of two material layers with an option to add a third layer (if deemed necessary). The first is a base material that has the capability to support and contain the mass of core materials that may relocate during a severe accident; the second is an oxide coating on top of the base material, which resists interactions with high-temperature core materials; and the third is an optional coating on the bottom side of the base material to protect it from oxidation during the lifetime of the reactor. This paper summarizes results from the in-vessel core catcher design and evaluation efforts, focusing on recently obtained results from materials interaction tests and prototypic testing activities. C1 Idaho Natl Engn & Environm Lab, Idaho Falls, ID 83415 USA. Seoul Natl Univ, Seoul, South Korea. Penn State Univ, University Pk, PA 16802 USA. Korea Atom Energy Res Inst, Taejon 305600, South Korea. RP Rempe, IL (reprint author), Idaho Natl Engn & Environm Lab, POB 1625,MS 3840, Idaho Falls, ID 83415 USA. EM yoj@inel.gov OI Rempe, Joy/0000-0001-5527-3549 NR 16 TC 2 Z9 3 U1 0 U2 2 PU AMER NUCLEAR SOCIETY PI LA GRANGE PK PA 555 N KENSINGTON AVENUE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2005 VL 152 IS 2 BP 170 EP 182 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 972MO UT WOS:000232458100004 ER PT J AU Borbely, A Johnson, SG AF Borbely, A Johnson, SG TI Performance of phosphor-coated light-emitting diode optics in ray-trace simulations SO OPTICAL ENGINEERING LA English DT Article; Proceedings Paper CT 4th International Conference on Solid State Lighting CY AUG 03-06, 2004 CL Denver, CO SP SPIE DE LED phosphor; LED optics; light extraction efficiency; ray-trace simulation AB In commercial high-brightness phosphor-coated white LED packages the phosphor is put down on the die at the center of the hemispherical encapsulation, representing a quasi point source that provides convenient optical control in luminaire design. However, specific applications may benefit from other package geometries and beam shapes regarding efficiency, color uniformity and thermal management. In order to examine optical arrangements, a solid model of an InGaN LED die and the optical system including the phosphor were simulated using a Monte Carlo forward ray tracing technique. Photoluminescence was implemented as two separate processes: short-wavelength LED emission and phosphor absorption was traced first, followed by reemission of the down converted radiation by the phosphor layer; optical properties of existing phosphors were used. Output parameters of the two ray traces were combined and evaluated for the geometries examined. (c) 2005 Society of Photo-Optical Instrumentation Engineers. C1 Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Borbely, A (reprint author), Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM AABorbely@yahoo.com NR 4 TC 20 Z9 20 U1 0 U2 6 PU SPIE-INT SOCIETY OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 J9 OPT ENG JI Opt. Eng. PD NOV PY 2005 VL 44 IS 11 AR 111308 DI 10.1117/1.2130317 PG 4 WC Optics SC Optics GA 005XL UT WOS:000234859600011 ER PT J AU Williams, BS Kumar, S Hu, Q Reno, JL AF Williams, BS Kumar, S Hu, Q Reno, JL TI Distributed-feedback terahertz quantum-cascade lasers with laterally corrugated metal waveguides SO OPTICS LETTERS LA English DT Article ID SINGLE-MODE; MU-M; OPERATION AB We report the demonstration of distributed-feedback terahertz quantum-cascade lasers based on a firstorder grating fabricated via a lateral corrugation in a double-sided metal ridge waveguide. The phase of the facet reflection was precisely set by lithographically defined facets by dry etching. Single-mode emission was observed at low to moderate injection currents, although multimode emission was observed far beyond threshold owing to spatial hole burning. Finite-element simulations were used to calculate the modal and threshold characteristics for these devices, with results in good agreement with experiments. (c) 2005 Optical Society of America. C1 MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. MIT, Elect Res Lab, Cambridge, MA 02139 USA. Sandia Natl Labs, Dept 1123, Albuquerque, NM 87185 USA. RP Williams, BS (reprint author), MIT, Dept Elect Engn & Comp Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM bwilliam@mit.edu RI Williams, Benjamin/B-4494-2013 OI Williams, Benjamin/0000-0002-6241-8336 NR 13 TC 42 Z9 43 U1 2 U2 10 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD NOV 1 PY 2005 VL 30 IS 21 BP 2909 EP 2911 DI 10.1364/OL.30.002909 PG 3 WC Optics SC Optics GA 977FA UT WOS:000232786800025 PM 16279466 ER PT J AU Maskaly, KR Carter, WC Averitt, RD Maxwell, JL AF Maskaly, KR Carter, WC Averitt, RD Maxwell, JL TI Application of the homogenization approximation to rough one-dimensional photonic crystals SO OPTICS LETTERS LA English DT Article ID REFLECTIVITY AB As previously reported [Opt. Lett. 29, 2791 (2004)], one-dimensional photonic crystals exhibit a decrease in their normal reflectivity if their interfaces are not flat. We show that the homogenization approximation accurately predicts this diminished optical response by comparing results with finite-difference time-domain (FDTD) simulations applied to the same roughened structures. Within the parameter range tested (rms roughness <20% and rms wavelengths <100% of the photonic crystal periodicity), the homogenization approximation accurately reproduces the reflectivities obtained by the FDTD simulations, which are much more computationally expensive. (c) 2005 Optical Society of America. C1 MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. Los Alamos Natl Lab, MST 10, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, ISR 5, Los Alamos, NM 87545 USA. RP Maskaly, KR (reprint author), MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM karlene@alum.mit.edu NR 6 TC 3 Z9 3 U1 0 U2 2 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD NOV 1 PY 2005 VL 30 IS 21 BP 2930 EP 2932 DI 10.1364/OL.30.002930 PG 3 WC Optics SC Optics GA 977FA UT WOS:000232786800032 PM 16279472 ER PT J AU Clayton, JD Bammann, DJ McDowell, DL AF Clayton, JD Bammann, DJ McDowell, DL TI A geometric framework for the kinematics of crystals with defects SO PHILOSOPHICAL MAGAZINE LA English DT Article; Proceedings Paper CT 40th Annual Technical Meeting of the Society-of-Engineering-Science CY OCT 12-15, 2003 CL Ann Harbor, MI ID NONLINEAR CONTINUUM THEORY; TILT GRAIN-BOUNDARIES; CONTINUOUS DISTRIBUTIONS; CONFIGURATIONAL FORCES; EDGE DISLOCATION; SINGLE-CRYSTALS; LATTICE-DEFECTS; GRADIENT THEORY; GAUGE-THEORY; PLASTICITY AB Presented is a general theoretical framework capable of describing the finite deformation kinematics of several classes of defects prevalent in metallic crystals. Our treatment relies upon powerful tools from differential geometry, including linear connections and covariant differentiation, torsion, curvature an anholonomic spaces. A length scale dependent, three-term multiplicative decomposition of the deformation gradient is suggested, with terms representing recoverable elasticity, residual lattice deformation due to defect fields, and plastic deformation resulting from defect fluxes. Also proposed is an additional micromorphic variable representing additional degrees-of-freedom associated, point defects, and most with rotational lattice defects (i.e. disclinations). generally, Somigliana dislocations. We illustrate how particular implementations of our general framework encompass notable theories from the literature and classify particular versions of the framework via geometric terminology. C1 USA, Res Lab, Impact Phys Branch, Aberdeen Proving Ground, MD 21005 USA. Sandia Natl Labs, Dept Sci Based Mat Modeling, Livermore, CA 94550 USA. Georgia Inst Technol, GWW, Sch Mech Engn, Atlanta, GA 30332 USA. RP Clayton, JD (reprint author), USA, Res Lab, Impact Phys Branch, Aberdeen Proving Ground, MD 21005 USA. EM jclayton@arl.army.mil RI Clayton, John/C-7760-2009 NR 102 TC 36 Z9 36 U1 0 U2 5 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PD NOV-DEC PY 2005 VL 85 IS 33-35 BP 3983 EP 4010 DI 10.1080/14786430500363312 PG 28 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 000RW UT WOS:000234481100008 ER PT J AU Abresch, EC Axelrod, HLA Beatty, JT Johnson, JA Nechushtai, R Paddock, ML AF Abresch, EC Axelrod, HLA Beatty, JT Johnson, JA Nechushtai, R Paddock, ML TI Characterization of a highly purified, fully active, crystallizable RC-LH1-PufX core complex from Rhodobacter sphaeroides SO PHOTOSYNTHESIS RESEARCH LA English DT Article; Proceedings Paper CT 13th International Congress on Photosynthesis CY AUG 29-SEP 03, 2004 CL Montreal, CANADA DE bacterial photosynthesis; core-complex; light harvesting; PufX; RC-LH1; reaction center ID LIGHT-HARVESTING COMPLEXES; ATOMIC-FORCE MICROSCOPY; REACTION CENTERS; RHODOPSEUDOMONAS-SPHAEROIDES; PHOTOSYNTHETIC APPARATUS; RHODOSPIRILLUM-RUBRUM; ELECTRON-TRANSFER; ANTENNA COMPLEX; PURPLE BACTERIA; ENERGY-TRANSFER AB Photosynthetic complexes in bacteria absorb light and undergo photochemistry with high quantum efficiency. We describe the isolation of a highly purified, active, reaction center-light-harvesting 1-PufX complex (RC - LH1 - PufX core complex) from a strain of the photosynthetic bacterium, Rhodobacter sphaeroides, which lacks the light-harvesting 2 (LH2) and contains a 6 histidine tag on the H subunit of the RC. The complex was solubilized with diheptanoyl-sn-glycero-3-phosphocholine ( DHPC), and purified by Ni-affinity, size-exclusion and ion-exchange chromatography in dodecyl maltoside. SDS-PAGE analysis shows the complex to be highly purified. The quantum efficiency was determined by measuring the charge separation (DQ(A) --> D+ Q(A)(-)) in the RC as a function of light intensity. The RC - LH1 - PufX complex had a quantum efficiency of 0.95 +/- 0.05, indicating full activity. The stoichiometry of LH1 subunits per RC was determined by two independent methods: ( i) solvent extraction and absorbance spectroscopy of bacteriochlorophyll, and (ii) density scanning of the SDS-PAGE bands. The average stoichiometry from the two measurements was 13.3 +/- 0.9 LH1/RC. The presence of PufX was observed in SDS-PAGE gels at a stoichiometry of 1.1 +/- 0.1/ RC. Crystals of the core complex have been obtained which diffract X-rays to 12 angstrom. A preliminary analysis of the space group and unit cell analysis indicated a P1 space group with unit cell dimensions of a = 76.3 angstrom, b = 137.2 angstrom, c = 137.5 angstrom; alpha = 60.0 degrees, beta = 89.95 degrees, gamma = 90.02 degrees. C1 Univ British Columbia, Dept Microbiol & Immunol, Vancouver, BC V5Z 1M9, Canada. Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. Hebrew Univ Jerusalem, Inst Life Sci, Dept Plant Sci, IL-91904 Jerusalem, Israel. RP Paddock, ML (reprint author), Univ British Columbia, Dept Microbiol & Immunol, Vancouver, BC V5Z 1M9, Canada. EM jbeatty@interchange.ubd.ca; mpaddock@ucsd.edu NR 41 TC 22 Z9 23 U1 1 U2 9 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0166-8595 J9 PHOTOSYNTH RES JI Photosynth. Res. PD NOV PY 2005 VL 86 IS 1-2 BP 61 EP 70 DI 10.1007/s11120-005-5106-z PG 10 WC Plant Sciences SC Plant Sciences GA 966CW UT WOS:000231998200006 PM 16172926 ER PT J AU Xin, YY Lin, S Montano, GA Blankenship, RE AF Xin, YY Lin, S Montano, GA Blankenship, RE TI Purification and characterization of the b808-866 light-harvesting complex from green filamentous bacterium Chloroflexus aurantiacus SO PHOTOSYNTHESIS RESEARCH LA English DT Article; Proceedings Paper CT 13th International Congress on Photosynthesis CY AUG 29-SEP 03, 2004 CL Montreal, CANADA DE B808-866 light-harvesting complex; characterization; Chloroflexus aurantiacus; purification; structure ID PICOSECOND ENERGY-TRANSFER; SPECTRAL CHARACTERIZATION; PHOTOSYNTHETIC BACTERIA; CYTOPLASMIC MEMBRANE; PIGMENT ORGANIZATION; PURPLE BACTERIA; ANTENNA; SPECTROSCOPY; DYNAMICS; KINETICS AB The integral membrane light-harvesting complex B808 - 866 from the thermophilic green filamentous bacterium Chloroflexus aurantiacus has been isolated and characterized. Reversed-phase HPLC analysis demonstrated that the number of bacteriochlorophyll ( BChl) in the B808 - 866 antenna complex is 36 +/- 2 per reaction center. The main carotenoid type is gamma-carotene, and the molar ratio of BChl to carotenoid is 3: 2. The steady-state absorption and fluorescence spectroscopy of the B808 - 866 complex are reminiscent of the well-studied LH2 peripheral antenna of purple bacteria, whereas the protein sequence and the circular dichroism spectrum of B808 - 866 is more similar to the LH1 inner core antenna. The efficiency of excitation transfer from carotenoid to BChl is about 25%. The above results combined with electron microscopy and dynamic light scattering analysis suggest that the B808 - 866 antenna is more like the LH1, whereas surrounds the reaction center but probably consists of 24 building blocks with a ring diameter of about 20 nm. The above results suggested that there are probably two reaction centers inside the ring of B808 - 866. The unique properties of this light-harvesting complex may provide insights on the protein - pigment interactions in bacterial photosynthesis. C1 Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. Arizona State Univ, Ctr Study Early Events Photosynth, Tempe, AZ 85287 USA. Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Blankenship, RE (reprint author), Arizona State Univ, Dept Chem & Biochem, POB 871604, Tempe, AZ 85287 USA. EM blankenship@asu.edu NR 30 TC 20 Z9 22 U1 0 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0166-8595 J9 PHOTOSYNTH RES JI Photosynth. Res. PD NOV PY 2005 VL 86 IS 1-2 BP 155 EP 163 DI 10.1007/s11120-005-5103-2 PG 9 WC Plant Sciences SC Plant Sciences GA 966CW UT WOS:000231998200015 PM 16172935 ER PT J AU Zapperi, S Nukala, PKVV Simunovic, S AF Zapperi, S Nukala, PKVV Simunovic, S TI Crack avalanches in the three-dimensional random fuse model SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT International Workshop on Physics Survey of Irregular Systems CY AUG 15-18, 2004 CL Fortaleza, BRAZIL SP COLAS, St Gobain, CNPq, CAPES, FUNCAP, FUNPEC, Ecole Polytechn, Univ Fed Ceara, Univ Fed Rio Grande Norte DE fracture; random fuse model; avalanches ID FRACTURE PRECURSORS; BURST AVALANCHES; BREAKDOWN; NETWORKS; BUNDLES; MEDIA AB We analyze the scaling of avalanche precursors in the three-dimensional random fuse model by numerical simulations. We find that both the integrated and non-integrated avalanche size distributions are in good agreement with the results of the global load sharing fiber bundle model, which represents the mean-field limit of the model. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Roma La Sapienza, INFM, UdR Roma 1, I-00185 Rome, Italy. Univ Roma La Sapienza, SMC, Dipartimento Fis, I-00185 Rome, Italy. Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Univ Roma La Sapienza, INFM, UdR Roma 1, P A Moro 2, I-00185 Rome, Italy. EM zapperi@pil.phys.uniroma1.it RI Zapperi, Stefano/C-9473-2009 OI Zapperi, Stefano/0000-0001-5692-5465 NR 22 TC 11 Z9 11 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-4371 EI 1873-2119 J9 PHYSICA A JI Physica A PD NOV 1 PY 2005 VL 357 IS 1 BP 129 EP 133 DI 10.1016/j.physa.2005.05.071 PG 5 WC Physics, Multidisciplinary SC Physics GA 968MP UT WOS:000232166900018 ER PT J AU Barucci, M Beeman, J Olivieri, E Pasca, E Risegari, L Ventura, G AF Barucci, M Beeman, J Olivieri, E Pasca, E Risegari, L Ventura, G TI Electrical characteristics of heavily doped NTD Ge at very low temperatures SO PHYSICA B-CONDENSED MATTER LA English DT Article DE cryogenics; semiconductors; low temperature thermistors AB We report about the measurement of the electric characteristics of some NTD Ge thermistors at temperatures down to 25 mK. The dopant concentration is around 6 x 10(16) cm(-3), producing a material of characteristics close to the metal-to-insulator transition. Fitting the rho(T) characteristics with a variable exponent p Mott's law, a p around 0.6 was obtained. This result confirms the hypothesis of a dependence of p on the doping level. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Florence, Dept Phys, Florence, Italy. Univ Florence, Dept Mech, Florence, Italy. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Ist Nazl Fis Nucl, Sect Florence, Florence, Italy. RP Ventura, G (reprint author), Univ Florence, Dept Phys, Florence, Italy. EM ventura@fi.infn.it RI Barucci, Marco/D-4209-2012 OI Barucci, Marco/0000-0003-0381-3376 NR 8 TC 5 Z9 5 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD NOV 1 PY 2005 VL 368 IS 1-4 BP 139 EP 142 DI 10.1016/j.physb.2005.07.008 PG 4 WC Physics, Condensed Matter SC Physics GA 979QH UT WOS:000232959400021 ER PT J AU Puliafito, A Turitsyn, K AF Puliafito, A Turitsyn, K TI Numerical study of polymer tumbling in linear shear flows SO PHYSICA D-NONLINEAR PHENOMENA LA English DT Article DE fluid dynamics; single polymer dynamics ID COIL-STRETCH TRANSITION; FLEXIBLE POLYMERS; ELONGATIONAL FLOW; GRADIENT PLANE; DNA MOLECULE; DYNAMICS; TURBULENCE; SIMULATIONS; DILUTE; FIELD AB We investigate numerically the dynamics of a single polymer in a linear shear flow. The effects of thermal fluctuations and randomly fluctuating velocity gradients are both analyzed. Angular, elongation and tumbling time statistics are measured numerically. We perform analytical calculations and numerical simulations for a linear single-dumbbell polymer model comparing the results with previous theoretical and experimental studies. For thermally driven polymers the balance between relaxation and thermal fluctuations plays a fundamental role, whereas for random velocity gradients the ratio between the intensity of the random part and the mean shear is the most relevant quantity. In the low-noise limit, many universal aspects of the motion of a polymer in a shear flow can be understood in this simplified framework. (c) 2005 Elsevier B.V. All rights reserved. C1 CNRS, INLN, UMR 6618, F-06560 Valbonne, France. LD Landau Theoret Phys Inst, Moscow 119334, Russia. Los Alamos Natl Lab, CNLS, Div Theoret, Los Alamos, NM 87545 USA. RP CNRS, INLN, UMR 6618, 1361 Route Lucioles, F-06560 Valbonne, France. EM alberto.puliafito@inln.cnrs.fr RI Turitsyn, Konstantin/K-5978-2012 OI Turitsyn, Konstantin/0000-0002-7997-8962 NR 35 TC 31 Z9 31 U1 2 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2789 EI 1872-8022 J9 PHYSICA D JI Physica D PD NOV 1 PY 2005 VL 211 IS 1-2 BP 9 EP 22 DI 10.1016/j.physd.2005.07.016 PG 14 WC Mathematics, Applied; Physics, Multidisciplinary; Physics, Mathematical SC Mathematics; Physics GA 976IP UT WOS:000232727200002 ER PT J AU Mesot, B Teuscher, C AF Mesot, B Teuscher, C TI Deducing local rules for solving global tasks with random Boolean networks SO PHYSICA D-NONLINEAR PHENOMENA LA English DT Article DE random Boolean network; cellular automata; density classification task; synchronization task; small-world topologies ID NONUNIFORM CELLULAR-AUTOMATA; SMALL-WORLD NETWORKS; DENSITY CLASSIFICATION; PERFORM COMPUTATIONS; MATHEMATICAL-THEORY; COMPLEX NETWORKS; COMMUNICATION; SYSTEMS; 2-STATE; NETS AB It has been shown that uniform as well as non-uniform cellular automata (CA) can be evolved to perform certain computational tasks. Random Boolean networks are a generalization of two-state cellular automata, where the interconnection topology and the cell's rules are specified at random. Here we present a novel analytical approach to find the local rules of random Boolean networks (RBNs) to solve the global density classification and the synchronization task from any initial configuration. We quantitatively and qualitatively compare our results with previously published work on cellular automata and show that randomly interconnected automata are computationally more efficient in solving these two global tasks. Our approach also provides convergence and quality estimates and allows the networks to be randomly rewired during operation, without affecting the global performance. Finally, we show that RBNs outperform small-world topologies on the density classification task and that they perform equally well on the synchronization task. Our novel approach and the results may have applications in designing robust complex networks and locally interacting distributed computing systems for solving global tasks. (c) 2005 Elsevier B.V. All rights reserved. C1 IDIAP, Inst Res, CH-1920 Martigny, Switzerland. Los Alamos Natl Lab, Adv Comp Lab, CCS1, Los Alamos, NM 87545 USA. RP IDIAP, Inst Res, Rue Simplon 4, CH-1920 Martigny, Switzerland. EM bertrand.mesot@idiap.ch; christof@teuscher.ch NR 56 TC 11 Z9 11 U1 3 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2789 EI 1872-8022 J9 PHYSICA D JI Physica D PD NOV 1 PY 2005 VL 211 IS 1-2 BP 88 EP 106 DI 10.1016/j.physd.2005.08.005 PG 19 WC Mathematics, Applied; Physics, Multidisciplinary; Physics, Mathematical SC Mathematics; Physics GA 976IP UT WOS:000232727200007 ER PT J AU Cohen, ML AF Cohen, ML TI Nanoscience: The quantum frontier SO PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES LA English DT Article; Proceedings Paper CT 1st International Symposium on Nanomet-Scale Quantum Physics CY JAN 26-28, 2005 CL Tokyo Inst Technol, O-okayama Campus, Tokyo, JAPAN SP Phys Soc Japan, Japan Soc Appl Phys, Minist Educ, Culture, Sports, Sci & Technol, Tokyo Inst Technol, 21st Century COE Program HO Tokyo Inst Technol, O-okayama Campus DE nanoscience; condensed matter physics ID BORON-NITRIDE NANOTUBES; CARBON NANOTUBES; ELECTRONIC-PROPERTIES; C-60; SUPERCONDUCTIVITY; SEMICONDUCTORS; MICROTUBULES; DIAMOND; TUBULES AB This overview begins with some historical comments and then describes some recent work on theoretical and experimental nanoscience advances. The focus is mainly on nanotubes and fullerenes. Electronic, optical, structural, mechanical, and superconducting properties of these systems are discussed. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Cohen, ML (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM mlcohen@berkeley.edu NR 39 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1386-9477 J9 PHYSICA E JI Physica E PD NOV PY 2005 VL 29 IS 3-4 BP 447 EP 453 DI 10.1016/j.physc.2005.06.008 PG 7 WC Nanoscience & Nanotechnology; Physics, Condensed Matter SC Science & Technology - Other Topics; Physics GA 981BE UT WOS:000233061200003 ER PT J AU Choi, IH Yu, PY AF Choi, IH Yu, PY TI Pressure dependence of the optical and vibrational properties of hexagonal and cubic CdS films grown on GaAs SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article ID HYDROSTATIC-PRESSURE; FREQUENCY-SHIFTS; EPILAYERS AB The pressure dependence of the excitonic photoluminescence and Raman scattering in both hexagonal and cubic CdS films grown on GaAs substrates is reported. We found that the pressure coefficients of the cubic CdS films are equal to those of the hexagonal films within experimental uncertainties. The main difference between their optical and vibrational properties seems to lie in their exciton energies, the hexagonal phase having a slightly higher energy than the cubic phase. Strong enhancement in multi-longitudinal optical (LO) phonon scattering has been observed by "pressure-tuning" the exciton energy to resonate with the excitation laser line. As a result we have been able to determine the pressure coefficients of the higher order LO phonons in CdS for modes as high as 5LO. We found that the pressure coefficients of these higher order LO modes when normalized by the phonon frequency exhibit a systematic decrease with the order of the mode. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Chung Ang Univ, Dept Phys, Seoul 156756, South Korea. Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yu, PY (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM pyyu@lbl.gov NR 15 TC 6 Z9 6 U1 2 U2 8 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD NOV PY 2005 VL 242 IS 14 BP 2813 EP 2819 DI 10.1002/pssb.200540084 PG 7 WC Physics, Condensed Matter SC Physics GA 986VN UT WOS:000233477900008 ER PT J AU Stanek, CR Levy, MR McClellan, KJ Uberuaga, BP Grimes, RW AF Stanek, CR Levy, MR McClellan, KJ Uberuaga, BP Grimes, RW TI Defect structure of ZrO2-doped rare earth perovskite scintillators SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article ID LUMINESCENCE; CRYSTALS; LUALO3-CE; CREATION; YALO3; OXIDE AB The efficiency of scintillator materials is decreased by processes associated with electrons or holes trapped at point defects. It therefore follows that minimizing the concentration of the defects responsible for trapped electrons/holes will increase the scintillator efficiency. It has been proposed that annealing or doping oxide scintillators with aliovalent ions can change the concentration of point defects (M. Nikl, phys. stat. sol. (a) 178, 595 (2000) [1]). Here, we predict the defect structures corresponding to ZrO2 doping in a series of rare earth aluminate (REAIO(3)) perovskites. From these calculations, we predict the mechanism leading to the decrease in oxygen vacancy concentration (the predominant electron trap in REAlO3). We propose this mechanism to be an example of "defect engineering", where a particularly egregious defect is traded for a less deleterious defect. These results can be used to further optimize such scintillator materials. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2BP, England. RP Stanek, CR (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM stanek@lanl.gov NR 19 TC 14 Z9 14 U1 0 U2 9 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD NOV PY 2005 VL 242 IS 13 BP R113 EP R115 DI 10.1002/pssb.200541254 PG 3 WC Physics, Condensed Matter SC Physics GA 983KD UT WOS:000233229400001 ER PT J AU Bilodeau, RC Gibson, ND Bozek, JD Walter, CW Ackerman, GD Andersson, P Heredia, JG Perri, M Berrah, N AF Bilodeau, RC Gibson, ND Bozek, JD Walter, CW Ackerman, GD Andersson, P Heredia, JG Perri, M Berrah, N TI High-charge-state formation following inner-shell photodetachment from S- SO PHYSICAL REVIEW A LA English DT Article ID ATOMIC NEGATIVE-IONS; ELECTRON-AFFINITY; SHAPE RESONANCE; PHOTOIONIZATION; THRESHOLD; DYNAMICS; LITHIUM; CS AB The formation of S+, S2+, S3+, and S4+ is observed following inner-shell photodetachment of S-. The photodetachment spectra for all possible ionic products are obtained over a large region of photon energies covering both the 2p and 2s thresholds (S5+, is energetically allowed at the higher photon energies, but not observed), and are placed on an absolute scale. The 2s threshold energy is measured to be 224.6(5) eV, allowing the determination of the neutral atomic S 2s(-1)3s(2)3p(5) inner-shell excited state energy for the first time. The S- 2s(-1)3s(2)3p(6) S-2(1/2) state is observed as a Feshbach resonance 2.3(5) eV below the 2s threshold in the S+, S2+, and S3+ product channels. C1 Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA. Univ Gothenburg, Dept Phys, SE-41296 Gothenburg, Sweden. RP Bilodeau, RC (reprint author), Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. RI Bozek, John/E-4689-2010; Perri, Mark/E-9176-2010; Bozek, John/E-9260-2010; OI Bozek, John/0000-0001-7486-7238; Bilodeau, Rene/0000-0001-8607-2328 NR 29 TC 12 Z9 12 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD NOV PY 2005 VL 72 IS 5 AR 050701 DI 10.1103/PhysRevA.72.050701 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 988LT UT WOS:000233603400008 ER PT J AU Brown-Hayes, M Dalvit, DAR Mazzitelli, FD Kim, WJ Onofrio, R AF Brown-Hayes, M Dalvit, DAR Mazzitelli, FD Kim, WJ Onofrio, R TI Towards a precision measurement of the Casimir force in a cylinder-plane geometry SO PHYSICAL REVIEW A LA English DT Article ID MU-M RANGE; COSMOLOGICAL CONSTANT; TEMPERATURE; MIRRORS AB We report on a proposal aimed at measuring the Casimir force in the cylinder-plane configuration. The Casimir force is evaluated including corrections due to finite parallelism, conductivity, and temperature. The range of validity of the proximity force approximation is also discussed. An apparatus to test the feasibility of a precision measurement in this configuration has been developed, and we describe both a procedure to control the parallelism and the results of the electrostatic calibration. Finally we discuss the possibility of measuring the thermal contribution to the Casimir force and deviations from the proximity force approximation, both of which are expected at relatively large distances. C1 Dartmouth Coll, Dept Phys & Astron, Wilder Lab 6127, Hanover, NH 03755 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis JJ Giambiagi, RA-1428 Buenos Aires, DF, Argentina. Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. RP Brown-Hayes, M (reprint author), Dartmouth Coll, Dept Phys & Astron, Wilder Lab 6127, Hanover, NH 03755 USA. NR 61 TC 63 Z9 63 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD NOV PY 2005 VL 72 IS 5 AR 052102 DI 10.1103/PhysRevA.72.052102 PG 11 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 988LT UT WOS:000233603400025 ER PT J AU Cucchietti, FM Paz, JP Zurek, WH AF Cucchietti, FM Paz, JP Zurek, WH TI Decoherence from spin environments SO PHYSICAL REVIEW A LA English DT Article ID QUANTUM; SYSTEMS; EINSELECTION AB We examine two exactly solvable models of decoherence-a central spin-system, (i) with and (ii) without a self-Hamiltonian, interacting with a collection of environment spins. In the absence of a self-Hamiltonian we show that in this model (introduced some time ago to illustrate environment-induced superselection) generic assumptions about the coupling strengths can lead to a universal (Gaussian) suppression of coherence between pointer states. On the other hand, we show that when the dynamics of the central spin is dominant a different regime emerges, which is characterized by a non-Gaussian decay and a dramatically different set of pointer states. We explore the regimes of validity of the Gaussian decay and discuss its relation to the spectral features of the environment and to the Loschmidt echo (or fidelity). C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Univ Buenos Aires, Dept Fis, FCEyN, Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina. RP Cucchietti, FM (reprint author), Los Alamos Natl Lab, Div Theoret, MS B213, Los Alamos, NM 87545 USA. RI Paz, Juan/C-5947-2008; Cucchietti, Fernando/C-7765-2016 OI Cucchietti, Fernando/0000-0002-9027-1263 NR 39 TC 100 Z9 102 U1 0 U2 8 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD NOV PY 2005 VL 72 IS 5 AR 052113 DI 10.1103/PhysRevA.72.052113 PG 8 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 988LT UT WOS:000233603400036 ER PT J AU Damski, B Fehrmann, H Everts, HU Baranov, M Santos, L Lewenstein, M AF Damski, B Fehrmann, H Everts, HU Baranov, M Santos, L Lewenstein, M TI Quantum gases in trimerized kagome lattices SO PHYSICAL REVIEW A LA English DT Review ID BOSE-EINSTEIN CONDENSATION; COLD BOSONIC ATOMS; HEISENBERG-ANTIFERROMAGNET; OPTICAL LATTICES; EXACT SPECTRA; GROUND-STATE; TRIANGULAR LATTICE; PHASE-TRANSITION; ULTRACOLD ATOMS; PAIRING GAP AB We study low-temperature properties of atomic gases in trimerized optical kagome lattices. The laser arrangements that can be used to create these lattices are briefly described. We also present explicit results for the coupling constants of the generalized Hubbard models that can be realized in such lattices. In the case of a single-component Bose gas the existence of a Mott insulator phase with fractional numbers of particles per trimer is verified in a mean-field approach. The main emphasis of the paper is on an atomic spinless interacting Fermi gas in the trimerized kagome lattice with two fermions per site. This system is shown to be described by a quantum spin-1/2 model on the triangular lattice with couplings that depend on the bond directions. We investigate this model by means of exact diagonalization. Our key finding is that the system exhibits nonstandard properties of a quantum spin-liquid crystal: it combines planar antiferromagnetic order in the ground state with an exceptionally large number of low-energy excitations. The possibilities of experimental verification of our theoretical results are critically discussed. C1 Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany. Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. Univ Amsterdam, Van Der Waals Zeeman Inst, NL-1018 XE Amsterdam, Netherlands. IV Kurchatov Atom Energy Inst, Moscow 123182, Russia. Univ Stuttgart, Inst Theoret Phys 3, D-70550 Stuttgart, Germany. ICFO, E-08034 Barcelona, Spain. RP Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany. RI Damski, Bogdan/E-3027-2013; Lewenstein, Maciej/I-1337-2014 OI Lewenstein, Maciej/0000-0002-0210-7800 NR 105 TC 47 Z9 48 U1 0 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD NOV PY 2005 VL 72 IS 5 AR 053612 DI 10.1103/PhysRevA.72.053612 PG 18 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 988LT UT WOS:000233603400145 ER PT J AU Dzuba, VA Flambaum, VV AF Dzuba, VA Flambaum, VV TI Fine-structure anomalies and search for variation of the fine-structure constant in laboratory experiments SO PHYSICAL REVIEW A LA English DT Article ID FUNDAMENTAL CONSTANTS; TIME-VARIATION AB The configuration interaction in many-electron atoms may cause anomalies in the fine structure which make the intervals small and very sensitive to variation of the fine-structure constant. Repeated precision measurements of these intervals over a long period of time can put strong constraints on possible time variation of the fine-structure constant. We consider the 5p(4) P-3(2,1,0) fine-structure multiplet in the ground state of neutral tellurium as an example. Here the effect of change of the fine structure constant is enhanced about 100 times in the relative change of the small energy interval between the P-3(1) and P-3(0) states. C1 Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Dzuba, VA (reprint author), Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. EM V.Dzuba@unsw.edu.au; V.Flambaum@unsw.edu.au NR 14 TC 21 Z9 21 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD NOV PY 2005 VL 72 IS 5 AR 052514 DI 10.1103/PhysRevA.72.052514 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 988LT UT WOS:000233603400090 ER PT J AU Karkuszewski, ZP AF Karkuszewski, ZP TI Single measurement of a quantum many-body system of bosons SO PHYSICAL REVIEW A LA English DT Article ID INTERFERENCE; CONDENSATE; PHASE AB Quantum mechanics provides us with probability densities-wave functions modulus squared. Such a probability density is experimentally recovered as an average over many repeated measurements performed on a system in a given wave function. Sometimes it is important to be able to theoretically predict not just the average but also a possible outcome of a single measurement. It is very difficult to make exact predictions of this kind in the case of many-body systems due to correlations in the corresponding many-body wave functions. Here I propose an approximate way of simulating the outcomes of a single-experiment density measurement that is performed on variety of states of N bosons. The approximation is accurate if occupation of single-particle modes is macroscopic. C1 Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Karkuszewski, ZP (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. EM zbyszek@pamir.if.uj.edu.pl NR 9 TC 0 Z9 0 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD NOV PY 2005 VL 72 IS 5 AR 053622 DI 10.1103/PhysRevA.72.053622 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 988LT UT WOS:000233603400155 ER PT J AU Rescigno, TN Horner, DA Yip, FL McCurdy, CW AF Rescigno, TN Horner, DA Yip, FL McCurdy, CW TI Hybrid approach to molecular continuum processes combining Gaussian basis functions and the discrete variable representation SO PHYSICAL REVIEW A LA English DT Article ID ELECTRON-IMPACT IONIZATION; BASIS-SETS; ASYMPTOTIC FORM; WAVE-FUNCTIONS; B-SPLINES; SYSTEMS; BREAKUP; CURVES AB Gaussian basis functions, routinely employed in molecular electronic structure calculations, can be combined with numerical grid-based functions in a discrete variable representation to provide an efficient method for computing molecular continuum wave functions. This approach, combined with exterior complex scaling, obviates the need for slowly convergent single-center expansions, and allows one to study a variety of electron-molecule collision problems. The method is illustrated by computation of various bound and continuum properties of H2+. C1 Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Rescigno, TN (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 33 TC 19 Z9 19 U1 1 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD NOV PY 2005 VL 72 IS 5 AR 052709 DI 10.1103/PhysRevA.72.052709 PG 8 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 988LT UT WOS:000233603400099 ER PT J AU Santamore, DH Timmermans, E AF Santamore, DH Timmermans, E TI Collective excitations of low-density fermion-boson quantum-liquid mixtures SO PHYSICAL REVIEW A LA English DT Article ID EINSTEIN CONDENSATE; DILUTE SOLUTIONS; HE3 ATOMS; GAS; SYSTEM AB We investigate the collective excitations of a low-temperature dilute gas mixture that consists of a Bose-Einstein condensate (BEC) and a Fermi gas that is a normal (i.e., nonsuperfluid) Fermi liquid. We find that the BEC-mediated fermion-fermion interactions, as a consequence of retardation, can become repulsive and support a zero-sound mode that is essentially undamped. In addition, we find a damped zero-sound mode that can be described as a BEC sound mode modified by fermion-mediated boson-boson interactions, and we derive its decay rate caused by Landau damping. We study the mode structure of these excitations and find avoided-crossing behavior as well as a termination point. The collective-mode dynamics also reveals that phase separation sets in when the fermion-mediated boson-boson interaction destroys the stability of the homogeneous BEC. We estimate the time and length scales of the onset of the phase separation, and we discuss the feasibility of experimentally probing these consequences of mediated interactions. C1 Harvard Smithsonian Ctr Astrophys, ITAMP, Cambridge, MA 02138 USA. Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Santamore, DH (reprint author), Harvard Smithsonian Ctr Astrophys, ITAMP, 60 Garden St, Cambridge, MA 02138 USA. NR 39 TC 4 Z9 4 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD NOV PY 2005 VL 72 IS 5 AR 053601 DI 10.1103/PhysRevA.72.053601 PG 9 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 988LT UT WOS:000233603400134 ER PT J AU Adroja, DT Hillier, AD Park, JG Goremychkin, EA McEwen, KA Takeda, N Osborn, R Rainford, BD Ibberson, RM AF Adroja, DT Hillier, AD Park, JG Goremychkin, EA McEwen, KA Takeda, N Osborn, R Rainford, BD Ibberson, RM TI Probing the vortex state of PrRu4Sb12 through muon spin rotation and relaxation SO PHYSICAL REVIEW B LA English DT Article ID FIELD; SUPERCONDUCTORS; SR AB We have investigated the magnetic penetration depth lambda and the superconducting coherence length xi in the vortex lattice of the filled skutterudite compound PrRu4Sb12 (T-c similar to 0.97 K) using transverse-field muon-spin rotation measurements. Zero-field and longitudinal-field studies were also carried out to investigate the time-reversal symmetry of the superconducting state. We found lambda=3650(20) angstrom and xi=345(5) angstrom at 0.05 K and using these values of lambda and xi, together with the Sommerfeld constant we have calculated an effective mass of the quasiparticles m(*)approximate to 10m(e) and superfluid carrier density n(s)approximate to 4x10(27) carriers/m(3). The temperature dependence of the vortex state muon-spin relaxation rate sigma(s)(T) is consistent with the phenomenological two-fluid model. Further, the zero-field and longitudinal field measurements do not reveal any signature of a spontaneous internal magnetic field below the superconducting transition temperature, indicating the preservation of time-reversal symmetry in the superconducting state of PrRu4Sb12, unlike the broken time-reversal symmetry of the superconducting state of the heavy-fermion superconductor PrOs4Sb12. C1 Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. Sungkyunkwan Univ, Inst Basic Sci, Suwon 440746, South Korea. Seoul Natl Univ, Ctr Strongly Correlated Mat Res, Seoul 151747, South Korea. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. UCL, Dept Phys & Astron, London WC1E 6BT, England. Niigata Univ, Fac Engn, Niigata 9502181, Japan. Univ Southampton, Dept Phys, Southampton SO17 1BJ, Hants, England. RP Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. RI Osborn, Raymond/E-8676-2011; Park, Je Geun/K-8571-2013; Hillier, Adrian/A-9331-2015; Ibberson, Richard/P-8397-2015 OI Osborn, Raymond/0000-0001-9565-3140; Hillier, Adrian/0000-0002-2391-8581; Ibberson, Richard/0000-0003-0007-706X NR 32 TC 15 Z9 15 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 18 AR 184503 DI 10.1103/PhysRevB.72.184503 PG 7 WC Physics, Condensed Matter SC Physics GA 988LV UT WOS:000233603600067 ER PT J AU Albao, MA Liu, DJ Gordon, MS Evans, JW AF Albao, MA Liu, DJ Gordon, MS Evans, JW TI Simultaneous etching and oxidation of vicinal Si(100) surfaces: Atomistic lattice-gas modeling of morphological evolution SO PHYSICAL REVIEW B LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; OXIDE-CLUSTER NUCLEATION; ELEVATED-TEMPERATURES; SI(001) SURFACES; ISLAND GROWTH; OXYGEN; DIFFUSION; STEP; SI; KINETICS AB Exposure of a vicinal Si(100) surface to oxygen at about 10(-8) Torr for temperatures between about 500 and 700 degrees C produces etching-mediated step recession in competition with oxide island formation. Furthermore, the oxide islands can locally pin the receding steps and thus produce complex surface morphologies. An atomistic lattice-gas model is developed to describe these processes which accounts for the complex interplay between the oxygen surface chemistry and the silicon surface and step dynamics. The oxygen related-processes include dissociative adsorption, diffusion, oxide formation, and etching via SiO desorption. The silicon surface processes include: conversion of single vacancies formed by etching to divacancies and Si adatoms, anisotropic diffusion and aggregation (primarily at step edges) of these divacancies and Si adatoms, and Si ad-dimer attachment-detachment dynamics at steps which reflects anisotropic energetics. Kinetic Monte Carlo simulation of this model allows characterization of the evolving step morphologies. Steps retain some qualitative features of their equilibrium structure, i.e., alternating rough S-B steps and smooth S-A steps, although etching tends to produce step pairing, and pinning produces protruding "finger" morphologies. These morphological features are seen in scanning tnneling microscopy studies. We also comment on other aspects of evolution such as a mixed pit nucleation and step flow mode, and compare behavior with step flow type growth during Si molecular beam epitaxy. C1 Iowa State Univ, US DOE, Ames Lab, Ames, IA 50010 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50010 USA. Iowa State Univ, Dept Chem, Ames, IA 50010 USA. Iowa State Univ, Dept Math, Ames, IA 50010 USA. RP Iowa State Univ, US DOE, Ames Lab, Ames, IA 50010 USA. NR 45 TC 8 Z9 8 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 19 AR 195420 DI 10.1103/PhysRevB.72.195420 PG 12 WC Physics, Condensed Matter SC Physics GA 988LW UT WOS:000233603700134 ER PT J AU Angst, M Kreyssig, A Janssen, Y Kim, JW Tan, L Wermeille, D Mozharivskyij, Y Kracher, A Goldman, AI Canfield, PC AF Angst, M Kreyssig, A Janssen, Y Kim, JW Tan, L Wermeille, D Mozharivskyij, Y Kracher, A Goldman, AI Canfield, PC TI Distinct order of Gd 4f and Fe 3d moments coexisting in GdFe4Al8 SO PHYSICAL REVIEW B LA English DT Article ID RAY MAGNETIC SCATTERING; SINGLE-CRYSTALS; NEUTRON-DIFFRACTION; RFE4AL8; GROWTH; MAGNETORESISTANCE; POLARIZATION; EXCHANGE; SYSTEMS; LA AB Single crystals of flux-grown tetragonal GdFe4Al8 were characterized by thermodynamic, transport, and x-ray resonant magnetic scattering measurements. In addition to antiferromagnetic order at T(N)approximate to 155 K, two low-temperature transitions at T(1)approximate to 21 K and T(2)approximate to 27 K were identified. The Fe moments order at T-N with an incommensurate propagation vector (tau,tau,0) with tau varying between 0.06 and 0.14 as a function of temperature, and maintain this order over the entire T < T-N range. The Gd 4f moments order below T-2 with a ferromagnetic component mainly out of plane. Below T-1, the ferromagnetic components are confined to the crystallographic plane. Remarkably, at low temperatures the Fe moments maintain the same modulation as at high temperatures, but the Gd 4f moments apparently do not follow this modulation. The magnetic phase diagrams for fields applied in [110] and [001] direction are presented and possible magnetic structures are discussed. C1 Iowa State Univ, Ames Lab, DOE, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Angst, M (reprint author), Iowa State Univ, Ames Lab, DOE, Ames, IA 50011 USA. EM angst@ameslab.gov RI Angst, Manuel/I-4380-2012; Canfield, Paul/H-2698-2014 OI Angst, Manuel/0000-0001-8892-7019; NR 38 TC 8 Z9 8 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 17 AR 174407 DI 10.1103/PhysRevB.72.174407 PG 13 WC Physics, Condensed Matter SC Physics GA 988LU UT WOS:000233603500073 ER PT J AU Aston, DJ Payne, DJ Green, AJH Egdell, RG Law, DSL Guo, J Glans, PA Learmonth, T Smith, KE AF Aston, DJ Payne, DJ Green, AJH Egdell, RG Law, DSL Guo, J Glans, PA Learmonth, T Smith, KE TI High-resolution x-ray spectroscopic study of the electronic structure of the prototypical p-type transparent conducting oxide CuAlO2 SO PHYSICAL REVIEW B LA English DT Article ID ZNO THIN-FILMS; ELECTRICAL-CONDUCTION; LINE-SHAPES; PHOTOEMISSION; DELAFOSSITE; CU2O; GA; SPECTRA; SRCU2O2; SYSTEMS AB The electronic structure of the prototypical p-type transparent conducting oxide CuAlO2 has been studied by O K and Cu L-3 shell x-ray absorption and emission and Al K alpha excited x-ray photoemission spectroscopy. The nonresonant O K shell emission is dominated by the O 2p partial density of states, while the Al K alpha excited valence photoemission and nonresonant Cu L-3 emission spectra are dominated by the Cu 3d partial density of states. All three techniques reveal mixing between O 2p and Cu 3d states. Cu L-3 emission spectra excited just above the L-3 threshold are dominated by inelastic scattering with 5.5 eV energy loss. This energy is shown to correspond to the separation between the dominant peaks in the filled and empty densities of states. C1 Univ Oxford, Inorgan Chem Lab, Dept Chem, Oxford OX1 3QR, England. SERC, Daresbury Lab, Natl Ctr Elect Spectroscopy & Surface Analysis, Warrington WA4 4AD, Cheshire, England. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Boston Univ, Dept Phys, Boston, MA 02215 USA. RP Egdell, RG (reprint author), Univ Oxford, Inorgan Chem Lab, Dept Chem, S Parks Rd, Oxford OX1 3QR, England. EM russell.egdell@chem.ox.ac.uk RI Payne, David/C-2117-2011; Payne, David/C-2148-2014; Glans, Per-Anders/G-8674-2016 OI Payne, David/0000-0002-2120-6679; NR 34 TC 38 Z9 38 U1 1 U2 22 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 19 AR 195115 DI 10.1103/PhysRevB.72.195115 PG 9 WC Physics, Condensed Matter SC Physics GA 988LW UT WOS:000233603700050 ER PT J AU Brown, GW Uberuaga, BP Grube, H Hawley, ME Schofield, SR Curson, NJ Simmons, MY Clark, RG AF Brown, GW Uberuaga, BP Grube, H Hawley, ME Schofield, SR Curson, NJ Simmons, MY Clark, RG TI Observation of substitutional and interstitial phosphorus on clean Si(100)-(2x1) with scanning tunneling microscopy SO PHYSICAL REVIEW B LA English DT Article ID INITIO MOLECULAR-DYNAMICS; AUGMENTED-WAVE METHOD; SILICON; DIFFUSION; SURFACES; DEFECTS; DECOMPOSITION; SI(001)-2X1; MECHANISMS; SIMULATION AB We have used scanning tunneling microscopy to identify phosphorus that is present at the clean silicon (100)-(2x1) surface as a result of the thermal cycling necessary for preparation of samples cut from heavily doped wafers. Substitutional phosphorus is observed in top layer sites as buckled Si-P heterodimers. We also observe a second type of feature that appears as a single depressed dimer site. Within this site, the atoms appear as a pair of protrusions in the empty states and a single protrusion in the filled states. These properties are not consistent with known adsorbate signatures or previously reported observations of P-P dimers on the (100)-(2x1) surface. The lack of other impurity sources suggests that they are due to either phosphorus or silicon. The symmetry of the features and their magnitude are consistent with one of those elements residing in an interstitial site just below the top layer of atoms. To identify the type of interstitial, we performed density functional theory calculations for both phosphorus and silicon located below a surface dimer. The resulting charge density plots and simulated STM images are consistent with interstitial phosphorus and not interstitial silicon. C1 Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. Univ New S Wales, Sch Phys, Ctr Quantum Comp Technol, Sydney, NSW 2052, Australia. RP Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. EM geoffb@lanl.gov RI Simmons, Michelle/B-2755-2010 OI Simmons, Michelle/0000-0002-6422-5888 NR 26 TC 5 Z9 5 U1 2 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 19 AR 195323 DI 10.1103/PhysRevB.72.195323 PG 5 WC Physics, Condensed Matter SC Physics GA 988LW UT WOS:000233603700090 ER PT J AU Bud'ko, SL Zapf, V Morosan, E Canfield, PC AF Bud'ko, SL Zapf, V Morosan, E Canfield, PC TI Field-dependent Hall effect in single-crystal heavy-fermion YbAgGe below 1 K SO PHYSICAL REVIEW B LA English DT Article ID COMPOUND YBAGGE; TRANSITIONS; METALS AB We report the results of a low-temperature (T >= 50 mK) and high-field (H <= 180 kOe) study of the Hall resistivity in single crystals of YbAgGe, a heavy-fermion compound that demonstrates field-induced non-Fermi-liquid behavior near its field-induced quantum critical point. Distinct features in the anisotropic, field-dependent Hall resistivity sharpen on cooling down and at the base temperature are close to the respective critical fields for the field-induced quantum critical point. The field range of the non-Fermi-liquid region decreases on cooling but remains finite at the base temperature with no indication of its conversion to a point for T -> 0. At the base temperature, the functional form of the field-dependent Hall coefficient is field-direction-dependent and complex beyond existing simple models, thus reflecting the multicomponent Fermi surface of the material and its nontrivial modification at the quantum critical point. C1 Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Los Alamos Natl Lab, Natl High Magnet Field Lab, MS E536, Los Alamos, NM 87545 USA. RP Bud'ko, SL (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RI Zapf, Vivien/K-5645-2013; Canfield, Paul/H-2698-2014 OI Zapf, Vivien/0000-0002-8375-4515; NR 17 TC 18 Z9 18 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 17 AR 172413 DI 10.1103/PhysRevB.72.172413 PG 4 WC Physics, Condensed Matter SC Physics GA 988LU UT WOS:000233603500021 ER PT J AU Bychkov, E Benmore, CJ Price, DL AF Bychkov, E Benmore, CJ Price, DL TI Compositional changes of the first sharp diffraction peak in binary selenide glasses SO PHYSICAL REVIEW B LA English DT Article ID INTERMEDIATE-RANGE ORDER; CHALCOGENIDE GLASSES; TEMPERATURE-DEPENDENCE; NEUTRON-DIFFRACTION; STRUCTURAL MODELS; GESE2; ALLOYS; RELAXATION; TRANSITION; SOLIDS AB Compositional changes of the first sharp diffraction peak (FSDP) in the measured structure factor have been studied for several binary selenide glasses using pulsed-neutron and high-energy x-ray diffraction techniques. The observed variations in the FSDP (factor of 10 in the amplitude and approximate to 0.5 A(-1) in the peak position) reflect multiple aspects in the glass network on both the short- and intermediate-range scales and are also correlated with macroscopic properties. An empirical relation has been discovered relating the compositional dependence of the FSDP position to the local coordination number of the guest atom. C1 Univ Littoral, F-59140 Dunkerque, France. Argonne Natl Lab, Argonne, IL 60439 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Bychkov, E (reprint author), Univ Littoral, F-59140 Dunkerque, France. RI Price, David Long/A-8468-2013; OI Benmore, Chris/0000-0001-7007-7749 NR 40 TC 48 Z9 48 U1 0 U2 12 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 17 AR 172107 DI 10.1103/PhysRevB.72.172107 PG 4 WC Physics, Condensed Matter SC Physics GA 988LU UT WOS:000233603500007 ER PT J AU Centoni, SA Sadigh, B Gilmer, GH Lenosky, TJ de la Rubia, TD Musgrave, CB AF Centoni, SA Sadigh, B Gilmer, GH Lenosky, TJ de la Rubia, TD Musgrave, CB TI First-principles calculation of intrinsic defect formation volumes in silicon SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; SELF-DIFFUSION; POINT-DEFECTS; ATOMIC DIFFUSION; MECHANISM; PRESSURE; VACANCY; SI; SEMICONDUCTORS AB We present an extensive first-principles study of the pressure dependence of the formation enthalpies of all the known vacancy and self-interstitial configurations in silicon, in each charge state from -2 through +2. The neutral vacancy is found to have a formation volume that varies markedly with pressure, leading to a remarkably large negative value (-0.68 atomic volumes) for the zero-pressure formation volume of a Frenkel pair (V+I). The interaction of volume and charge was examined, leading to pressure-Fermi level stability diagrams of the defects. Finally, we quantify the anisotropic nature of the lattice relaxation around the neutral defects. C1 San Jose State Univ, Dept Mat Engn, San Jose, CA 95192 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Ohio State Univ, Columbus, OH 43210 USA. Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. RP San Jose State Univ, Dept Mat Engn, San Jose, CA 95192 USA. EM scentoni@email.sjsu.edu NR 31 TC 49 Z9 50 U1 5 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 19 AR 195206 DI 10.1103/PhysRevB.72.195206 PG 9 WC Physics, Condensed Matter SC Physics GA 988LW UT WOS:000233603700060 ER PT J AU Chen, Y Bao, W Qiu, Y Lorenzo, JE Sarrao, JL Ho, DL Lin, MY AF Chen, Y Bao, W Qiu, Y Lorenzo, JE Sarrao, JL Ho, DL Lin, MY TI Slow spin-glass and fast spin-liquid components in quasi-two-dimensional La-2(Cu,Li)O-4 SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC PHASE-DIAGRAM; NEUTRON-SCATTERING; ANTIFERROMAGNETIC ORDER; DOPED LA2CUO4; LA2-XSRXCUO4; BEHAVIOR; SUPERCONDUCTOR; TEMPERATURE; TRANSITIONS; SUPPRESSION AB In conventional spin glasses, magnetic interaction is not strongly anisotropic and the entire spin system is believed to be frozen below the spin-glass transition temperature. In La2Cu0.94Li0.06O4, for which the in-plane exchange interaction dominates the interplane one, only a fraction of spins with antiferromagnetic correlations extending to neighboring planes become spin glass. The remaining spins with only in-plane antiferromagnetic correlations remain spin liquid at low temperature. Such a partial spin freezing out of a two-dimensional spin liquid observed in this cold neutron scattering study is likely due to a delicate balance between disorder and quantum fluctuations in the quasi-two-dimensional S=1/2 Heisenberg system. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. CNR, F-38043 Grenoble, France. ExxonMobil Res & Engn Co, Annandale, NJ 08801 USA. RP Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM wbao@lanl.gov RI Bao, Wei/E-9988-2011 OI Bao, Wei/0000-0002-2105-461X NR 44 TC 10 Z9 10 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 18 AR 184401 DI 10.1103/PhysRevB.72.184401 PG 6 WC Physics, Condensed Matter SC Physics GA 988LV UT WOS:000233603600028 ER PT J AU Chubukov, AV Schmalian, J AF Chubukov, AV Schmalian, J TI Superconductivity due to massless boson exchange in the strong-coupling limit SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; TRANSITION-TEMPERATURE; PHASE FLUCTUATIONS; SPIN SUSCEPTIBILITY; LATTICE VIBRATIONS; HUBBARD-MODEL; FERMI-LIQUID; NORMAL-STATE; DENSITY; INSTABILITY AB We solve the problem of fermionic pairing mediated by a massless boson in the limit of large coupling constant. At weak coupling, the transition temperature is exponentially small and superconductivity is robust against phase fluctuation. In the strong coupling limit, the pair formation occurs at a temperature of the order of the Fermi energy, however, the actual transition temperature is much smaller due to phase and amplitude fluctuations of the pairing gap. Our model calculations describe superconductivity due to color magnetic interactions in quark matter and in systems close to a ferromagnetic quantum critical point with Ising symmetry. Our strong-coupling results are, however, more general and can be applied to other systems as well, including the antiferromagnetic exchange in 2D used for description of the cuprates. C1 Univ Maryland, Dept Phys, College Pk, MD 20742 USA. Univ Maryland, Condensed Matter Theory Ctr, College Pk, MD 20742 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Chubukov, AV (reprint author), Univ Maryland, Dept Phys, College Pk, MD 20742 USA. RI Schmalian, Joerg/H-2313-2011 NR 73 TC 28 Z9 28 U1 0 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 17 AR 174520 DI 10.1103/PhysRevB.72.174520 PG 14 WC Physics, Condensed Matter SC Physics GA 988LU UT WOS:000233603500117 ER PT J AU Clem, JR Brandt, EH AF Clem, JR Brandt, EH TI Response of thin-film SQUIDs to applied fields and vortex fields: Linear SQUIDs SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM INTERFERENCE DEVICES; FREQUENCY FLUX NOISE; LONG-BASE-LINE; MAGNETIC-FIELDS; SUPERCONDUCTING FILMS; KINETIC-INDUCTANCE; 1/F NOISE; DC; MAGNETOMETERS; PERFORMANCE AB In this paper we analyze the properties of a dc superconducting quantum interference device (SQUID) when the London penetration depth lambda is larger than the superconducting film thickness d. We present equations that govern the static behavior for arbitrary values of Lambda=lambda(2)/d relative to the linear dimensions of the SQUID. The SQUID's critical current I-c depends upon the effective flux Phi, the magnetic flux through a contour surrounding the central hole plus a term proportional to the line integral of the current density around this contour. While it is well known that the SQUID inductance depends upon Lambda, we show here that the focusing of magnetic flux from applied fields and vortex-generated fields into the central hole of the SQUID also depends upon Lambda. We apply this formalism to the simplest case of a linear SQUID of width 2w, consisting of a coplanar pair of long superconducting strips of separation 2a, connected by two small Josephson junctions to a superconducting current-input lead at one end and by a superconducting lead at the other end. The central region of this SQUID shares many properties with a superconducting coplanar stripline. We calculate magnetic-field and current-density profiles, the inductance (including both geometric and kinetic inductances), magnetic moments, and the effective area as a function of Lambda/w and a/w. C1 Iowa State Univ, Ames Lab, DOE, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Max Planck Inst Met Res, D-70506 Stuttgart, Germany. RP Clem, JR (reprint author), Iowa State Univ, Ames Lab, DOE, Ames, IA 50011 USA. NR 44 TC 16 Z9 16 U1 1 U2 8 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 17 AR 174511 DI 10.1103/PhysRevB.72.174511 PG 18 WC Physics, Condensed Matter SC Physics GA 988LU UT WOS:000233603500108 ER PT J AU El-Kady, I Chow, WW Fleming, JG AF El-Kady, I Chow, WW Fleming, JG TI Emission from an active photonic crystal SO PHYSICAL REVIEW B LA English DT Article ID BAND-GAP AB We investigated theoretically the emission from an active photonic crystal. Redistribution of photon density of states by a photonic lattice was found to greatly influence the thermal emission spectrum, resulting in substantial deviation from the Planck distribution. The calculation predicts that the photonic lattice intensity may exceed that of a blackbody source within certain spectral regions. However, the excess emission may be lost in practice because of nonradiative losses and photonic lattice inhomogeneities. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RI El-Kady, Ihab/D-2886-2013 OI El-Kady, Ihab/0000-0001-7417-9814 NR 17 TC 22 Z9 22 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 19 AR 195110 DI 10.1103/PhysRevB.72.195110 PG 5 WC Physics, Condensed Matter SC Physics GA 988LW UT WOS:000233603700045 ER PT J AU Fluegel, B Zhang, Y Geisz, JF Mascarenhas, A AF Fluegel, B Zhang, Y Geisz, JF Mascarenhas, A TI Comment on "experimental evidence for N-induced strong coupling of host conduction band states in GaNxP1-x: Insight into the dominant mechanism for giant band-gap bowing" SO PHYSICAL REVIEW B LA English DT Editorial Material ID GALLIUM-PHOSPHIDE; ABSORPTION; PAIRS AB A recently observed pinned peak in photoluminescence excitation spectroscopy studies (PLE) of GaNxP1-x epilayers, that remained stationary with nitrogen concentration, was attributed to a transition from the valence band edge to either the t(2)(X-3) or t(2)(L) conduction bands by Buyanova [Phys. Rev. B 69, 201303(R) (2004)]. Using absorption and PLE studies on carefully prepared samples, we show that this pinned peak is merely an artifact that arises from the GaP buffer layer and is not associated with the GaNxP1-x epilayers. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Natl Renewable Energy Lab, Golden, CO 80401 USA. NR 14 TC 0 Z9 0 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 19 AR 197301 DI 10.1103/PhysRevB.72.197301 PG 3 WC Physics, Condensed Matter SC Physics GA 988LW UT WOS:000233603700147 ER PT J AU Goncalves, S Fusco, C Bishop, AR Kenkre, VM AF Goncalves, S Fusco, C Bishop, AR Kenkre, VM TI Bistability and hysteresis in the sliding friction of a dimer SO PHYSICAL REVIEW B LA English DT Article ID FRENKEL-KONTOROVA MODEL; DIFFUSION; SURFACES; SILVER; XENON AB The sliding friction of a dimer moving over a periodic substrate and subjected to an external force is studied in the steady state for arbitrary temperatures within a one-dimensional model. Nonlinear phenomena that emerge include dynamic bistability and hysteresis, and can be related to earlier observations for extended systems such as the Frenkel-Kontorova model. Several observed features can be satisfactorily explained in terms of the resonance of a driven-damped nonlinear oscillator. Increasing temperature tends to lower the resonant peak and wash out the hysteresis. C1 Univ New Mexico, Consortium Amer Interdisciplinary Sci, Albuquerque, NM 87131 USA. Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. Univ Fed Rio Grande do Sul, Inst Fis, BR-90501970 Porto Alegre, RS, Brazil. Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 ED Nijmegen, Netherlands. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Univ New Mexico, Consortium Amer Interdisciplinary Sci, Albuquerque, NM 87131 USA. EM sgonc@if.ufrgs.br; C.Fusco@science.ru.nl; arb@lanl.gov; kenkre@unm.edu RI Goncalves, Sebastian/B-3753-2010; Goncalves, Sebastian/I-4356-2013 OI Goncalves, Sebastian/0000-0002-3100-9126; Goncalves, Sebastian/0000-0002-3100-9126 NR 25 TC 16 Z9 16 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 19 AR 195418 DI 10.1103/PhysRevB.72.195418 PG 8 WC Physics, Condensed Matter SC Physics GA 988LW UT WOS:000233603700132 ER PT J AU Goupalov, SV AF Goupalov, SV TI Optical transitions in carbon nanotubes SO PHYSICAL REVIEW B LA English DT Article ID SPECTROSCOPY; ABSORPTION AB Analytical expressions for the optical matrix elements of semiconducting carbon nanotubes are obtained for different polarizations of the incident light. It is shown that, for the light polarized along the nanotube axis and transitions between the extrema of electronic subbands, the optical matrix element only weakly depends on the nanotube chirality and excitation energy. It is found that, for the light polarized in the plane perpendicular to the nanotube axis, both v(2)-> c(1) and v(1)-> c(2) transitions are allowed. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. RP Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. NR 15 TC 36 Z9 36 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 19 AR 195403 DI 10.1103/PhysRevB.72.195403 PG 5 WC Physics, Condensed Matter SC Physics GA 988LW UT WOS:000233603700117 ER PT J AU Gubbiotti, G Carlotti, G Okuno, T Grimsditch, M Giovannini, L Montoncello, F Nizzoli, F AF Gubbiotti, G Carlotti, G Okuno, T Grimsditch, M Giovannini, L Montoncello, F Nizzoli, F TI Spin dynamics in thin nanometric elliptical Permalloy dots: A Brillouin light scattering investigation as a function of dot eccentricity SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC-PROPERTIES; ARRAYS; MODES; NANOSTRUCTURES; WAVES AB Brillouin light scattering (BLS) spectra have been measured in arrays of cylindrical Permalloy dots with elliptical cross section, 200 nm wide, 15 nm thick, and eccentricities from 1 to 3. Several spin modes are observed and their frequencies tracked as a function of the direction of the applied 1.5 kOe magnetic field H. The experimental data are interpreted within the framework of the recently introduced dynamical matrix method to calculate spin excitations in magnetic particles. We find that the mode frequencies strongly depend on the eccentricity of the dots and on the direction of the applied field. For fields along the principal axes the solutions can be classified into: (i) modes localized near the particle ends, (ii) modes with nodal lines perpendicular to H (backwardlike modes), (iii) modes with nodal lines parallel to H (Damon-Eshbach-like modes) and (iv) modes with both parallel and perpendicular nodal lines. In cases where the frequencies of two modes in different families are similar, some hybridization between the modes is observed. For H along nonsymmetry directions only the modes of type (i) remain reasonably well defined, other modes can at best be described as hybrids of modes in the above categories. Determining which of the modes is active in BLS experiments leads to excellent agreement with the experimental results. C1 Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. Univ Roma La Sapienza, CNR, INFM, CRS,SOFT, I-00185 Rome, Italy. INFM, CNR, Natl Res Ctr, I-41100 Modena, Italy. Kyoto Univ, Inst Chem Res, Uji 6110011, Japan. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. RP Univ Perugia, Dipartimento Fis, Via A Pascoli, I-06123 Perugia, Italy. EM gubbiotti@fisica.unipg.it NR 29 TC 65 Z9 67 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 18 AR 184419 DI 10.1103/PhysRevB.72.184419 PG 8 WC Physics, Condensed Matter SC Physics GA 988LV UT WOS:000233603600046 ER PT J AU Gurvitz, SA Mozyrsky, D Berman, GP AF Gurvitz, SA Mozyrsky, D Berman, GP TI Coherent effects in magnetotransport through Zeeman-split levels SO PHYSICAL REVIEW B LA English DT Article ID ELECTRON-SPIN-RESONANCE; SCANNING-TUNNELING-MICROSCOPY; NOISE CHARACTERISTICS; QUANTUM TRANSPORT; RATE-EQUATIONS; SHOT-NOISE; JUNCTIONS; SILICON; SYSTEMS AB We study nonequilibrium electronic transport through a quantum dot or an impurity weakly coupled to ferromagnetic leads. Based on the rate equation formalism we derive the noise spectra for the transport current. We show that, due to quantum interference between different spin components of the current, the spectrum develops peaks or dips at frequencies corresponding to the Zeeman splitting in the quantum dot. A detailed analysis of the spectral structure of the current is carried out for noninteracting electrons as well as for the regime of Coulomb blockade. C1 Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA. RP Gurvitz, SA (reprint author), Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. NR 30 TC 34 Z9 35 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 20 AR 205341 DI 10.1103/PhysRevB.72.205341 PG 10 WC Physics, Condensed Matter SC Physics GA 988LY UT WOS:000233603900094 ER PT J AU He, LX Bester, G Zunger, A AF He, LX Bester, G Zunger, A TI Singlet-triplet splitting, correlation, and entanglement of two electrons in quantum dot molecules SO PHYSICAL REVIEW B LA English DT Article ID ARTIFICIAL MOLECULES; STATES; PHASES; ENERGY; BANDS AB Starting with an accurate pseudopotential description of the single-particle states, and following by configuration-interaction treatment of correlated electrons in vertically coupled, self-assembled InAs/GaAs quantum dot molecules, we show how simpler, popularly practiced approximations, depict the basic physical characteristics including the singlet-triplet splitting, degree of entanglement (DOE), and correlation. The mean-field-like single-configuration approaches such as Hartree-Fock and local spin density, lacking correlation, incorrectly identify the ground-state symmetry and give inaccurate values for the singlet-triplet splitting and the DOE. The Hubbard model gives qualitatively correct results for the ground-state symmetry and singlet-triplet splitting, but produces significant errors in the DOE because it ignores the fact that the strain is asymmetric even if the dots within a molecule are identical. Finally, the Heisenberg model gives qualitatively correct ground-state symmetry and singlet-triplet splitting only for rather large interdot separations, but it greatly overestimates the DOE as a consequence of ignoring the electron double occupancy effect. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP He, LX (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Bester, Gabriel/I-4414-2012; Zunger, Alex/A-6733-2013 OI Bester, Gabriel/0000-0003-2304-0817; NR 46 TC 27 Z9 27 U1 0 U2 6 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 19 AR 195307 DI 10.1103/PhysRevB.72.195307 PG 12 WC Physics, Condensed Matter SC Physics GA 988LW UT WOS:000233603700074 ER PT J AU Irish, EK Gea-Banacloche, J Martin, I Schwab, KC AF Irish, EK Gea-Banacloche, J Martin, I Schwab, KC TI Dynamics of a two-level system strongly coupled to a high-frequency quantum oscillator SO PHYSICAL REVIEW B LA English DT Article ID SUPERCONDUCTING QUBIT; 2-STATE SYSTEM; MODEL; ATOM; RADIATION; COLLAPSE; REVIVAL; CIRCUIT; CHAOS; STATE AB Recent experiments on quantum behavior in microfabricated solid-state systems suggest tantalizing connections to quantum optics. Several of these experiments address the prototypical problem of cavity quantum electrodynamics: a two-level system coupled to a quantum harmonic oscillator. Such devices may allow the exploration of parameter regimes outside the near-resonance and weak-coupling assumptions of the ubiquitous rotating-wave approximation (RWA), necessitating other theoretical approaches. One such approach is an adiabatic approximation in the limit that the oscillator frequency is much larger than the characteristic frequency of the two-level system. A derivation of the approximation is presented, together with a discussion of its applicability in a system consisting of a Cooper-pair box coupled to a nanomechanical resonator. Within this approximation the time evolution of the two-level-system occupation probability is calculated using both thermal- and coherent-state initial conditions for the oscillator, focusing particularly on collapse and revival phenomena. For thermal-state initial conditions parameter regimes are found in which collapse and revival regions may be clearly distinguished, unlike the erratic evolution of the thermal-state RWA model. Coherent-state initial conditions lead to complex behavior, which exhibits sensitive dependence on the coupling strength and the initial amplitude of the oscillator state. One feature of the regime considered here is that closed-form evaluation of the time evolution may be carried out in the weak-coupling limit, which provides insight into the differences between the thermal- and coherent-state models. Finally, potential experimental observations in solid-state systems, particularly the Cooper-pair box-nanomechanical resonator system, are discussed and found to be promising. C1 Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. Lab Phys Sci, College Pk, MD 20740 USA. Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Univ Rochester, Dept Phys & Astron, 601 Elmwood Ave, Rochester, NY 14627 USA. EM eirish@pas.rochester.edu RI Gea-Banacloche, Julio/J-7546-2013 OI Gea-Banacloche, Julio/0000-0001-9482-9060 NR 31 TC 115 Z9 122 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 19 AR 195410 DI 10.1103/PhysRevB.72.195410 PG 14 WC Physics, Condensed Matter SC Physics GA 988LW UT WOS:000233603700124 ER PT J AU Izquierdo, M Avila, J Roca, L Gu, G Asensio, MC AF Izquierdo, M Avila, J Roca, L Gu, G Asensio, MC TI Polarization effects in photoemission disentangle the origin of the shadow bands in Bi-based superconductors SO PHYSICAL REVIEW B LA English DT Article ID RANGE ANTIFERROMAGNETIC CORRELATIONS; T-J MODEL; FERMI-SURFACE; ELECTRONIC-STRUCTURE; CUPRATE SUPERCONDUCTORS; SPECTRAL-FUNCTION; BI2SR2CACU2O8+DELTA; METALLICITY; COEXISTENCE; MODULATION AB Angle-resolved photoemission spectroscopy has been used to investigate the origin of the shadow bands present at the Fermi surface of bismuth-based superconductors. Momentum distribution curves along the Gamma Y high-symmetry direction and Fermi surface maps measured on Bi2Sr2CaCu2O8+delta (Bi2212) single crystals with two different doping levels have revealed that the shadow bands and the main bands have different initial state symmetry. This result implies that the orthorhombicity exhibited by these materials cannot be responsible for their emergence at the Fermi surface. C1 Ctr Univ Paris Sud, LURE, F-91405 Orsay, France. Synchrotron SOLEIL Lorme Merisiers St Aubin, F-91192 Gif Sur Yvette, France. CSIC, Inst Ciencia Mat, E-28049 Madrid, Spain. Brookhaven Natl Lab, Dept Phys, Upton, NY 11975 USA. RP Izquierdo, M (reprint author), Ctr Univ Paris Sud, LURE, Bat 209D,BP 34, F-91405 Orsay, France. NR 34 TC 1 Z9 1 U1 1 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 17 AR 174517 DI 10.1103/PhysRevB.72.174517 PG 5 WC Physics, Condensed Matter SC Physics GA 988LU UT WOS:000233603500114 ER PT J AU Jiang, C Sordelet, DJ Gleeson, B AF Jiang, C Sordelet, DJ Gleeson, B TI First-principles study of phase stability in pseudobinary (Ni1-xPtx)(3)Al alloys SO PHYSICAL REVIEW B LA English DT Article ID QUASI-RANDOM STRUCTURES; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; PLATINUM ALLOYS; SITE PREFERENCE; BASIS-SET; BEHAVIOR; AL; SYSTEMS; METALS AB We studied the phase stability in pseudobinary (Ni1-xPtx)(3)Al alloys using a combination of first-principles calculations, a cluster expansion technique, and Monte Carlo simulations. Our ground state search yields L1(0) Ni2PtAl and L1(0) NiPt2Al as the two stable ground state structures, and the latter has been observed experimentally. The calculated c/a ratio of L1(0) NiPt2Al is also in good agreement with experiments. By performing Monte Carlo simulations, the order-disorder transition temperatures of L1(0) Ni2PtAl and L1(0) NiPt2Al were predicted to be similar to 915 K and similar to 1275 K, respectively. The mixing enthalpies of random pseudobinary L1(2) (Ni1-xPtx)(3)Al alloys were also predicted using our cluster expansion, and the results agree well with direct first-principles calculations on Special Quasirandom Structures (SQS's) for L1(2) alloys developed in the present study. C1 Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. US DOE, Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. RP Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RI Jiang, Chao/A-2546-2011 NR 31 TC 26 Z9 26 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 18 AR 184203 DI 10.1103/PhysRevB.72.184203 PG 7 WC Physics, Condensed Matter SC Physics GA 988LV UT WOS:000233603600025 ER PT J AU Joglekar, YN Balatsky, AV Lilly, MP AF Joglekar, YN Balatsky, AV Lilly, MP TI Excitonic condensate and quasiparticle transport in electron-hole bilayer systems SO PHYSICAL REVIEW B LA English DT Article ID SPATIALLY SEPARATED ELECTRONS; QUANTUM HALL SYSTEMS; PHASE-DIAGRAM; DOUBLE-LAYER; SUPERCONDUCTIVITY; DRAG AB Bilayer electron-hole systems undergo excitonic condensation when the distance d between the layers is smaller than the typical distance between particles within a layer. All excitons in this condensate have a fixed dipole moment which points perpendicular to the layers, and therefore, this condensate of dipoles couples to external electromagnetic fields. We study the transport properties of this dipolar condensate system based on a phenomenological model which takes into account contributions from the condensate and quasiparticles. We discuss, in particular, the drag and counterflow transport, in-plane Josephson effect, and noise in the in-plane currents in the condensate state. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Joglekar, YN (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. NR 26 TC 16 Z9 16 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 20 AR 205313 DI 10.1103/PhysRevB.72.205313 PG 6 WC Physics, Condensed Matter SC Physics GA 988LY UT WOS:000233603900066 ER PT J AU Kang, SJ Yi, Y Kim, CY Yoo, KH Moewes, A Cho, MH Denlinger, JD Whang, CN Chang, GS AF Kang, SJ Yi, Y Kim, CY Yoo, KH Moewes, A Cho, MH Denlinger, JD Whang, CN Chang, GS TI Chemical reaction at the interface between pentacene and HfO2 SO PHYSICAL REVIEW B LA English DT Article ID THIN-FILM TRANSISTORS; ENERGY-LEVEL ALIGNMENT; METAL AB The electronic structure and the interface formation at the interface region between pentacene and HfO2 are investigated using x-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and x-ray emission spectroscopy (XES). The measured C 1s XPS spectra of pentacene indicate that chemical bonding occurs at the interface between pentacene and HfO2. The carbon of pentacene reacts with oxygen belonging to HfO2 and band bending occurs at the interface due to a redistribution of charge. The determined interface dipole and band bending between pentacene and HfO2 are 0.04 and 0.1 eV, respectively. The highest occupied molecular orbital (HOMO) level is observed at 0.68 eV below the Fermi level. This chemical reaction allows us to grow a pentacene film with large grains onto HfO2. We conclude that high performance pentacene thin film transistors can be obtained by inserting an ultrathin HfO2 layer between pentacene and a gate insulator. C1 Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada. Yonsei Univ, Inst Phys & Appl Phys, Seoul 120749, South Korea. Korea Res Inst Stand & Sci, Nano Surface Grp, Taejon 305600, South Korea. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Chang, GS (reprint author), Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada. RI Yoo, Kyung-Hwa/B-7969-2011; Chang, Gap Soo/C-7370-2008 OI Chang, Gap Soo/0000-0002-8611-4230 NR 20 TC 8 Z9 8 U1 1 U2 7 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 20 AR 205328 DI 10.1103/PhysRevB.72.205328 PG 6 WC Physics, Condensed Matter SC Physics GA 988LY UT WOS:000233603900081 ER PT J AU Klingeler, R Tristan, N Buchner, B Hucker, M Ammerahl, U Revcolevschi, A AF Klingeler, R Tristan, N Buchner, B Hucker, M Ammerahl, U Revcolevschi, A TI Magnetization of hole-doped CuO2 spin chains in Sr14-xCaxCu24O41 SO PHYSICAL REVIEW B LA English DT Article ID NEUTRON INELASTIC-SCATTERING; MATERIAL SR14CU24O41; DYNAMICS; COMPOUND; SUPERCONDUCTIVITY; INTERPLAY; MAGNETISM; LADDERS; NMR/NQR; STATE AB We report on magnetization measurements of Sr14-xCaxCu24O41, with 0 <= x <= 12, in magnetic fields up to 16 T. The low-temperature magnetic response of the CuO2 spin chains changes strongly upon doping. For x=0, the ground state with nearly independent dimers is confirmed. A reduction of the number of holes in the chains through Ca doping leads to an additional contribution to the magnetization, which depends linearly on the magnetic field. Remarkably, the slope of this linear contribution increases with the Ca content. We argue that antiferromagnetic spin chains do not account for this behavior but that the hole dynamics might be involved. C1 Lab Natl Champs Magnet Pulses, F-31432 Toulouse, France. Leibniz Inst Solid State & Mat Res IFW Dresden, D-01171 Dresden, Germany. Univ Paris 11, Lab Phys Chim Solides, F-91405 Orsay, France. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Klingeler, R (reprint author), Lab Natl Champs Magnet Pulses, F-31432 Toulouse, France. EM r.klingeler@ifw-dresden.de RI Klingeler, Rudiger/E-5941-2010; Buchner, Bernd/E-2437-2016 OI Klingeler, Rudiger/0000-0002-8816-9614; Buchner, Bernd/0000-0002-3886-2680 NR 28 TC 12 Z9 12 U1 0 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 18 AR 184406 DI 10.1103/PhysRevB.72.184406 PG 7 WC Physics, Condensed Matter SC Physics GA 988LV UT WOS:000233603600033 ER PT J AU Klironomos, AD Ramazashvili, RR Matveev, KA AF Klironomos, AD Ramazashvili, RR Matveev, KA TI Exchange coupling in a one-dimensional Wigner crystal SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM POINT-CONTACT; ELECTRON-GAS; QUANTIZED CONDUCTANCE; THERMOPOWER; TRANSPORT; CHANNEL; REGIME AB We consider a long quantum wire at low electron densities. In this strong-interaction regime a Wigner crystal may form, in which electrons comprise an antiferromagnetic Heisenberg spin chain. The coupling constant J is exponentially small, as it originates from tunneling of two neighboring electrons through the segregating potential barrier. We study this exponential dependence, properly accounting for the many-body effects and the finite width of the wire. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Klironomos, Alexios/B-4153-2008; Ramazashvili, Revaz/J-5090-2013 OI Klironomos, Alexios/0000-0002-3577-1740; Ramazashvili, Revaz/0000-0001-5133-8253 NR 30 TC 20 Z9 20 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 19 AR 195343 DI 10.1103/PhysRevB.72.195343 PG 5 WC Physics, Condensed Matter SC Physics GA 988LW UT WOS:000233603700110 ER PT J AU Klust, A Ohta, T Bostwick, AA Rotenberg, E Yu, QM Ohuchi, FS Olmstead, MA AF Klust, A Ohta, T Bostwick, AA Rotenberg, E Yu, QM Ohuchi, FS Olmstead, MA TI Electronic structure evolution during the growth of ultrathin insulator films on semiconductors: From interface formation to bulklike CaF2/Si(111) films SO PHYSICAL REVIEW B LA English DT Article ID RAY PHOTOELECTRON DIFFRACTION; SCANNING TUNNELING MICROSCOPY; SI(111); CAF2; HETEROEPITAXY; SPECTROSCOPY; CRYSTAL AB The electronic structure of ultrathin (0.3-6 nm) epitaxial insulator films grown on semiconductors, represented by the prototypical system CaF2/Si(111), was studied using scanning tunneling spectroscopy and photoemission spectroscopy. The surface states related to the (7x7) reconstruction of the substrate are completely removed during the formation of the interface and an interface state is established in the CaF2 band gap close to the Fermi level. While the band gap of CaF2 films only 2 molecular layers thick is essentially bulklike, a film thickness of about 3 nm is necessary to fully develop the bulk CaF2 valence band structure. C1 Univ Washington, Dept Phys, Seattle, WA 98195 USA. Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. EM klust@fas.harvard.edu RI Rotenberg, Eli/B-3700-2009; Bostwick, Aaron/E-8549-2010 OI Rotenberg, Eli/0000-0002-3979-8844; NR 33 TC 5 Z9 5 U1 2 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 20 AR 205336 DI 10.1103/PhysRevB.72.205336 PG 5 WC Physics, Condensed Matter SC Physics GA 988LY UT WOS:000233603900089 ER PT J AU Kobayashi, Y Naing, TS Suzuki, M Akimitsu, M Asai, K Yamada, K Akimitsu, J Manuel, P Tranquada, JM Shirane, G AF Kobayashi, Y Naing, TS Suzuki, M Akimitsu, M Asai, K Yamada, K Akimitsu, J Manuel, P Tranquada, JM Shirane, G TI Inelastic neutron scattering study of phonons and magnetic excitations in LaCoO3 SO PHYSICAL REVIEW B LA English DT Article ID SPIN-STATE TRANSITIONS; ANOMALIES AB We have investigated the phonon and the magnetic excitations in LaCoO3 by inelastic neutron scattering measurements. The acoustic phonon dispersions show some characteristic features of the folded Brillouin zone (BZ) for the rhombohedrally distorted perovskite structure containing two chemical formula units of LaCoO3 in the unit cell. We observed two transverse optical (TO) phonon branches along (delta delta delta), consistent with previously reported Raman active E-g modes which show remarkable softening associated with the spin-state transition [Ishikawa , Phys. Rev. Lett. 93, 136401 (2004)]. We found that the softening takes place in the TO mode over the whole BZ. In contrast, the acoustic phonons show no anomalous softening associated with the spin-state transition. The low-energy paramagnetic scattering at 8 K is weak, increasing towards a maximum at E greater than or similar to 15 meV, consistent with excitation of the nonmagnetic low-spin to magnetic intermediate-spin state of Co3+ ions. C1 Univ Electrocommun, Dept Appl Phys & Chem, Chofu, Tokyo 1828585, Japan. Tohoku Univ, Mat Res Inst, Sendai, Miyagi 9808577, Japan. Aoyama Gakuin Univ, Dept Math & Phys, Sagamihara, Kanagawa 2298551, Japan. Rutherford Appleton Lab, ISIS Facil, CCLRC, Didcot OX11 0QX, Oxon, England. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Kobayashi, Y (reprint author), Univ Electrocommun, Dept Appl Phys & Chem, Chofu, Tokyo 1828585, Japan. EM koba@pc.uec.ac.jp RI Tranquada, John/A-9832-2009; Yamada, Kazuyoshi/C-2728-2009 OI Tranquada, John/0000-0003-4984-8857; NR 25 TC 21 Z9 21 U1 0 U2 8 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 17 AR 174405 DI 10.1103/PhysRevB.72.174405 PG 7 WC Physics, Condensed Matter SC Physics GA 988LU UT WOS:000233603500071 ER PT J AU Lazarov, VK Weinert, M Chambers, SA Gajdardziska-Josifovska, M AF Lazarov, VK Weinert, M Chambers, SA Gajdardziska-Josifovska, M TI Atomic and electronic structure of the Fe3O4(111)/MgO(111) model polar oxide interface SO PHYSICAL REVIEW B LA English DT Article ID SURFACE-STRUCTURE; DIFFRACTION; FE3O4(001); FILMS AB High-resolution transmission electron microscopy (HRTEM) and density functional calculations are used to study the effect of interface polarity on the atomic and electronic structure of the prototype Fe3O4(111)/MgO(111) polar oxide interface. We show that atomically abrupt interfaces exist between the MgO(111) substrate and magnetite (111) film in regions separated by Fe nanocrystals, and propose a solution for this oxide-oxide interface structure. Comparisons of experimental HRTEM images with calculated through-focus and through-thickness images for model interface structures suggest metal-oxygen-metal (i.e., Mg - O - Fe) interface bonding with octahedral (B) coordination of the first Fe monolayer, rather than the combination of tetrahedral-octahedral-tetrahedral (ABA) stacking also found in Fe3O4. First-principles calculations for all the different models find metal-induced gap states in the interface oxygen layer. Consistent with the HRTEM results, the MgO-Fe3O4 interface stacking (...),4Mg/4O/4Mg/4O/3Fe(B)/4O/FeAFeBFeA,(...), is calculated to be the energetically most favorable, and effectively screening the MgO(111) substrate surface polarity. The data and calculations exclude mixing of Mg and Fe across the interface, in contrast to the commonly invoked mechanism of cation mixing at compound semiconductor polar interfaces. C1 Univ Wisconsin, Dept Phys, Milwaukee, WI 53201 USA. Univ Wisconsin, Surface Studies Lab, Milwaukee, WI 53201 USA. Pacific NW Natl Lab, Fudamental Sci Div, Richland, WA 99352 USA. RP Gajdardziska-Josifovska, M (reprint author), Univ Wisconsin, Dept Phys, POB 413, Milwaukee, WI 53201 USA. EM mgj@uwm.edu RI Gajdardziska-Josifovska, Marija/H-9586-2014; Lazarov, Vlado/E-6206-2012 NR 19 TC 21 Z9 21 U1 6 U2 22 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 19 AR 195401 DI 10.1103/PhysRevB.72.195401 PG 7 WC Physics, Condensed Matter SC Physics GA 988LW UT WOS:000233603700115 ER PT J AU Lee, GW Gangopadhyay, AK Croat, TK Rathz, TJ Hyers, RW Rogers, JR Kelton, KF AF Lee, GW Gangopadhyay, AK Croat, TK Rathz, TJ Hyers, RW Rogers, JR Kelton, KF TI Link between liquid structure and the nucleation barrier for icosahedral quasicrystal, polytetrahedral, and simple crystalline phases in Ti-Zr-Ni alloys: Verification of Frank's hypothesis SO PHYSICAL REVIEW B LA English DT Article ID GA-MG-ZN; SURFACE-TENSION; METALLIC MELTS; FORMING ALLOYS; FREE-ENERGY; SOLIDIFICATION; INTERFACE; GLASSES; ORDER; APPROXIMATION AB Comprehensive undercooling experiments on a large number of simple crystalline, polytetrahedral, and icosahedral quasicrystalline phase forming compositions in Ti-Zr-Ni alloys have been carried out using electrostatic levitation (ESL) techniques for containerless processing. Consistent with Frank's hypothesis, a direct correlation was found between the reduced undercooling [Delta T-r=(T-l-T-r)/T-l, where T-r and T-l are the nucleation and liquidus temperatures, respectively] and the icosahedral short-range order in the solid. The reduced undercooling is less for liquids that form the icosahedral quasicrystal (i phase) than for those that form the hcp C14 Laves polytetrahedral phase. For many compositions near 21 at. % Ni, the primary nucleation of a metastable i phase instead of a stable C14 Laves phase demonstrates that the interfacial free energy between the liquid and the i phase is smaller than between the liquid and the C14 Laves phase, indicating icosahedral local order in the undercooled liquid. This is in agreement with a classical-nucleation-theory-based estimate of the interfacial free energy and the work of formation of the critical cluster from the undercooling data. Taken together with high-energy x-ray diffraction studies of the undercooled liquid, these results demonstrate that the local structure of liquids in Ti-Zr-Ni alloys is icosahedral, as postulated by Frank over a half century ago. C1 Washington Univ, Dept Phys, St Louis, MO 63130 USA. Washington Univ, Ctr Mat Innovat, St Louis, MO 63130 USA. Univ Alabama, Huntsville, AL 35801 USA. Univ Massachusetts, Amherst, MA 01003 USA. NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Lee, GW (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM lee210@llnl.gov RI Hyers, Robert/G-3755-2010 NR 42 TC 43 Z9 44 U1 3 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 17 AR 174107 DI 10.1103/PhysRevB.72.174107 PG 10 WC Physics, Condensed Matter SC Physics GA 988LU UT WOS:000233603500040 ER PT J AU Lee, YS Li, ZQ Padilla, WJ Dordevic, SV Homes, CC Segawa, K Ando, Y Basov, DN AF Lee, YS Li, ZQ Padilla, WJ Dordevic, SV Homes, CC Segawa, K Ando, Y Basov, DN TI Strong-coupling effects in cuprate high-T-c superconductors by magneto-optical studies SO PHYSICAL REVIEW B LA English DT Article ID RESONANCE; PSEUDOGAP; SUSCEPTIBILITY; EXCITATION; SPECTRA; STATES; LEAD; PEAK; YBCO AB Signatures of strong coupling effects in cuprate high-T-c superconductors have been authenticated through a variety of spectroscopic probes. However, the microscopic nature of relevant excitations has not been agreed upon. Here, we report on magneto-optical studies of the CuO2 plane carrier dynamics in a prototypical high-T-c superconductor YBa2Cu3Oy (YBCO). Infrared data are directly compared with earlier inelastic neutron scattering results by Dai [Nature (London) 406, 965 (2000)] revealing a characteristic depression of the magnetic resonance in H parallel to c field less than 7 T. This analysis has allowed us to critically assess the role of magnetic degrees of freedom in producing strong-coupling effects for YBCO system. C1 Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Cent Res Inst Elect Power Ind, Tokyo 2018511, Japan. RP Lee, YS (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RI Ando, Yoichi/B-8163-2013; SEGAWA, Kouji/D-4204-2014; Padilla, Willie/A-7235-2008 OI Ando, Yoichi/0000-0002-3553-3355; SEGAWA, Kouji/0000-0002-3633-4809; Padilla, Willie/0000-0001-7734-8847 NR 37 TC 6 Z9 6 U1 0 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 17 AR 172511 DI 10.1103/PhysRevB.72.172511 PG 4 WC Physics, Condensed Matter SC Physics GA 988LU UT WOS:000233603500033 ER PT J AU Li, AP Wendelken, JF Shen, J Feldman, LC Thompson, JR Weitering, HH AF Li, AP Wendelken, JF Shen, J Feldman, LC Thompson, JR Weitering, HH TI Magnetism in MnxGe1-x semiconductors mediated by impurity band carriers SO PHYSICAL REVIEW B LA English DT Article ID MAGNETORESISTANCE; FERROMAGNETISM; GAAS; NANOCLUSTERS; GA1-XMNXAS; MANGANESE; POLARONS; ATOMS AB We present a comprehensive study of ferromagnetism and magnetotransport in Mn-doped germanium, grown with molecular-beam epitaxy. Ferromagnetism in MnxGe1-x (0 < x < 0.09) is characterized by two different ordering temperatures T-C and T-C(*) with T-C< T-C(*). The onset of global ferromagnetic order at T-C coincides with the percolation threshold for (activated) charge transport. Magnetism between T-C and T-C(*) originates from "clustered dopants" associated with inhomogeneities. The ferromagnetic ordering temperature within the clusters is of order T-C(*) while the coupling between the clusters is mediated by thermally activated carriers moving in an impurity band. The magnetoresistance exhibits nonmonotonic temperature and magnetic field dependence; both negative and positive magnetoresistance contributions are observed. The anomalous Hall effect between T-C and T-C(*) appears to be influenced heavily by the large magnetoresistance. The normal and anomalous Hall coefficients both diverge at low temperature. All these observations indicate that MnxGe1-x is most adequately described within an impurity band model where the ratio J/t of the Mn hole exchange J and hole hopping t is large. C1 Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Li, AP (reprint author), Oak Ridge Natl Lab, Condensed Matter Sci Div, POB 2008, Oak Ridge, TN 37831 USA. RI Li, An-Ping/B-3191-2012 OI Li, An-Ping/0000-0003-4400-7493 NR 49 TC 101 Z9 101 U1 1 U2 16 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 19 AR 195205 DI 10.1103/PhysRevB.72.195205 PG 9 WC Physics, Condensed Matter SC Physics GA 988LW UT WOS:000233603700059 ER PT J AU Lu, WC Wang, CZ Ruedenberg, K Ho, KM AF Lu, WC Wang, CZ Ruedenberg, K Ho, KM TI Transferability of the Slater-Koster tight-binding scheme from an environment-dependent minimal-basis perspective SO PHYSICAL REVIEW B LA English DT Article ID MOLECULAR-DYNAMICS; BASIS-SETS; SILICON; MODEL; SI; PARAMETERS; SIMULATION; ORBITALS AB Tight-binding Hamiltonian and overlap matrix elements are calculated from the first-principles using the recently developed quasiatomic minimal basis orbitals (QUAMBOs). By decomposing the matrix elements into the hopping and overlap parameters through the Slater-Koster scheme, the transferability of the commonly used two-center approximation in tight-binding parametrization is examined. The analysis results provide very useful insight into the dependence of tight-binding hopping and on-site parameters on the bonding environment of the systems. C1 Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, Dept Phys & Astron, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, Dept Chem, Ames, IA 50011 USA. Jilin Univ, State Key Lab Theoret & Computat Chem, Changchun 130021, Peoples R China. RP Lu, WC (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. EM wangcz@ameslab.gov NR 25 TC 11 Z9 11 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 20 AR 205123 DI 10.1103/PhysRevB.72.205123 PG 8 WC Physics, Condensed Matter SC Physics GA 988LY UT WOS:000233603900039 ER PT J AU Malinowski, A Hundley, MF Capan, C Ronning, F Movshovich, R Moreno, NO Sarrao, JL Thompson, JD AF Malinowski, A Hundley, MF Capan, C Ronning, F Movshovich, R Moreno, NO Sarrao, JL Thompson, JD TI c-axis magnetotransport in CeCoIn5 SO PHYSICAL REVIEW B LA English DT Article ID NON-FERMI-LIQUID; QUANTUM-PHASE-TRANSITIONS; SUPERCONDUCTOR CECOIN5; THIN-FILMS; UNCONVENTIONAL SUPERCONDUCTIVITY; FIELD EXCITATIONS; SPIN FLUCTUATIONS; ELECTRON-SYSTEMS; CRITICAL-POINTS; KONDO DISORDER AB We present the results of out-of-plane electrical transport measurements on the heavy fermion superconductor CeCoIn5 at temperatures from 40 mK to 400 K and in magnetic field up to 9 T. For T < 10 K transport measurements show that the zero-field resistivity rho(c) changes linearly with temperature and extrapolates nearly to zero at 0 K, indicative of non-Fermi-liquid (NFL) behavior associated with a quantum critical point (QCP). The longitudinal magnetoresistance (LMR) of CeCoIn5 for fields applied parallel to the c axis is negative and scales as B/(T+T-*) between 50 and 100 K, revealing the presence of a single-impurity Kondo energy scale T-*similar to 2 K. Beginning at 16 K a small positive LMR feature is evident for fields less than 3 T that grows in magnitude with decreasing temperature. For higher fields the LMR is negative and increases in magnitude with decreasing temperature. This sizable negative magnetoresistance scales as B-2/T from 2.6 K to roughly 8 K, and it arises from an extrapolated residual resistivity that becomes negative and grows quadratically with field in the NFL temperature regime. Applying a magnetic field along the c axis with B > B-c2 restores Fermi-liquid behavior in rho(c)(T) at T less than 130 mK. Analysis of the T-2 resistivity coefficient's field dependence suggests that the QCP in CeCoIn5 is located below the upper critical field, inside the superconducting phase. These data indicate that while high-T c-axis transport of CeCoIn5 exhibits features typical for a heavy-fermion system, low-T transport is governed both by spin fluctuations associated with the QCP and Kondo interactions that are influenced by the underlying complex electronic structure intrinsic to the anisotropic CeCoIn5 crystal structure. C1 Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland. RP Los Alamos Natl Lab, Div Mat Sci & Technol, POB 1663, Los Alamos, NM 87545 USA. RI Moreno, Nelson/H-1708-2012; Malinowski, Artur/A-2184-2015 OI Moreno, Nelson/0000-0002-1672-4340; Malinowski, Artur/0000-0003-3771-9353 NR 72 TC 19 Z9 19 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 18 AR 184506 DI 10.1103/PhysRevB.72.184506 PG 11 WC Physics, Condensed Matter SC Physics GA 988LV UT WOS:000233603600070 ER PT J AU Manley, ME Hults, WL Cooley, JC Hackenberg, RE Thoma, DJ Koby, MW Smith, JL Littrell, K AF Manley, ME Hults, WL Cooley, JC Hackenberg, RE Thoma, DJ Koby, MW Smith, JL Littrell, K TI Vibration-dominated negative mixing entropy for C impurities in alpha-U SO PHYSICAL REVIEW B LA English DT Article ID ATOMIC THERMAL VIBRATIONS; ALLOY THERMODYNAMICS; LATTICE-DYNAMICS; URANIUM; 1ST-PRINCIPLES; TEMPERATURE; STATES; AU AB Phonon densities of states were measured on pure uranium and solutions U-0.4% C, U-1.5% Si, and U-0.91% Fe (atomic) using inelastic neutron scattering. The solute atoms stiffened the phonons, resulting in large decreases in vibrational entropy. The vibrational entropy decrease for carbon was four times the configurational entropy increase, showing that the mixing entropy is not only negative but is dominated by vibrations. Comparison with single-crystal dispersion curves indicates that the phonon stiffening for all solutes involved the transverse optic branch propagating along (001) and displacing atoms along (010). The magnitudes of the changes were too large to be explained in terms of short-range force constant models but may originate with impurity pinning of collective modes associated with alpha-U's charge density wave transitions. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Argonne Natl Lab, Argonne, IL 60439 USA. RP Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RI Cooley, Jason/E-4163-2013; Manley, Michael/N-4334-2015; Littrell, Kenneth/D-2106-2013 OI Littrell, Kenneth/0000-0003-2308-8618 NR 21 TC 2 Z9 2 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 18 AR 184302 DI 10.1103/PhysRevB.72.184302 PG 4 WC Physics, Condensed Matter SC Physics GA 988LV UT WOS:000233603600027 ER PT J AU Nowak, U Mryasov, ON Wieser, R Guslienko, K Chantrell, RW AF Nowak, U Mryasov, ON Wieser, R Guslienko, K Chantrell, RW TI Spin dynamics of magnetic nanoparticles: Beyond Brown's theory SO PHYSICAL REVIEW B LA English DT Article ID SUPERPARAMAGNETIC RELAXATION-TIME; FERROMAGNETIC PARTICLES; REVERSAL; NICKEL; FIELD; MODEL AB An investigation of thermally induced spin dynamics of magnetic nanoparticles is presented. We use an atomistic model for the magnetic interactions within an effective, classical spin Hamiltonian constructed on the basis of first-principles calculations for L1(0) FePt. Using Langevin dynamics we investigate how the internal degrees of freedom affect the switching behavior at elevated temperatures. We find significant deviations from a single-spin model, arising from the temperature dependence of the intrinsic properties, from longitudinal magnetization fluctuations, and from both thermal and athermal finite-size effects. These findings underline the importance of atomistic simulations for the understanding of fast magnetization dynamics. C1 Seagate Res, Pittsburgh, PA 15222 USA. Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. Univ Duisburg Gesamthsch, Inst Phys, D-47048 Duisburg, Germany. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Nowak, U (reprint author), Seagate Res, 1251 Waterfront Pl, Pittsburgh, PA 15222 USA. EM un500@york.ac.uk RI Wieser, Robert/A-8967-2010; Chantrell, Roy/J-9898-2015 OI Chantrell, Roy/0000-0001-5410-5615 NR 25 TC 48 Z9 49 U1 2 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 17 AR 172410 DI 10.1103/PhysRevB.72.172410 PG 4 WC Physics, Condensed Matter SC Physics GA 988LU UT WOS:000233603500018 ER PT J AU Padilla, WJ Dumm, M Komiya, S Ando, Y Basov, DN AF Padilla, WJ Dumm, M Komiya, S Ando, Y Basov, DN TI Infrared signatures of hole and spin stripes in La2-xSrxCuO4 SO PHYSICAL REVIEW B LA English DT Article ID SUPERCONDUCTING LA1.85SR0.15CUO4; LATTICE-DYNAMICS; PHASE; LA2-XSR(X)CUO4; TEMPERATURE; EXCITATIONS; TRANSITION; CRYSTALS; PHONON; PLANE AB We investigate the hole and lattice dynamics in a prototypical high-temperature superconducting system La2-xSrxCuO4 using infrared spectroscopy. By exploring the anisotropy in the electronic response of CuO2 planes we show that our results support the notion of stripes. Nevertheless, charge ordering effects are not apparent in the phonon spectra. All crystals show only the expected infrared active modes for orthorhombic phases without evidence for additional peaks that may be indicative of static charge ordering. Strong electron-phonon interaction manifests itself through the Fano line shape of several phonon modes. This analysis reveals anisotropic electron-phonon coupling across the phase diagram, including superconducting crystals. Due to the ubiquity of the CuO2 plane, these results may have implications for other high temperature superconductors. C1 Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. Cent Res Inst Elect Power Ind, Komae, Tokyo 2018511, Japan. RP Padilla, WJ (reprint author), Los Alamos Natl Lab, MS G756 MST CINT, Los Alamos, NM 87545 USA. EM willie@lanl.gov RI Ando, Yoichi/B-8163-2013; Padilla, Willie/A-7235-2008; Dumm, Michael/N-4362-2016 OI Ando, Yoichi/0000-0002-3553-3355; Padilla, Willie/0000-0001-7734-8847; Dumm, Michael/0000-0002-3502-8615 NR 35 TC 29 Z9 29 U1 3 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 20 AR 205101 DI 10.1103/PhysRevB.72.205101 PG 7 WC Physics, Condensed Matter SC Physics GA 988LY UT WOS:000233603900017 ER PT J AU Petit, L Svane, A Szotek, Z Temmerman, WM AF Petit, L Svane, A Szotek, Z Temmerman, WM TI First-principles study of rare-earth oxides SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-ABSORPTION; ELECTRONIC-STRUCTURE; F-STATES; PRO2; CEO2; SPECTROSCOPIES; SESQUIOXIDES; SCATTERING; PRESSURE; SPECTRA AB The self-interaction-corrected local-spin-density (SIC-LSD) approximation is used to describe the electronic structure of dioxides REO2 and sesquioxides RE2O3 for the rare earths, RE=Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, and Ho. The valencies of the rare earth ions are determined from total energy minimization. We find Ce, Pr, Tb in their dioxides to have the tetravalent configuration, while for all the sesquioxides the trivalent ground-state configuration is found to be the most favorable. The calculated lattice constants for these valency configurations are in good agreement with experiment. Total energy considerations are exploited to show the link between oxidation and f-electron delocalization, and explain why, among the dioxides, only the CeO2, PrO2, and TbO2 exist in nature. Tetravalent NdO2 is predicted to exist as a metastable phase-unstable toward the formation of hexagonal Nd2O3. C1 Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Computat Sci, Oak Ridge, TN 37831 USA. Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus, Denmark. Daresbury Lab, Warrington WA4 4AD, Cheshire, England. RP Petit, L (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RI Petit, Leon/B-5255-2008; OI Petit, Leon/0000-0001-6489-9922 NR 45 TC 105 Z9 106 U1 7 U2 74 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 20 AR 205118 DI 10.1103/PhysRevB.72.205118 PG 9 WC Physics, Condensed Matter SC Physics GA 988LY UT WOS:000233603900034 ER PT J AU Petkov, V Peng, Y Williams, G Huang, BH Tomalia, D Ren, Y AF Petkov, V Peng, Y Williams, G Huang, BH Tomalia, D Ren, Y TI Structure of gold nanoparticles suspended in water studied by x-ray diffraction and computer simulations SO PHYSICAL REVIEW B LA English DT Article ID PAIR DISTRIBUTION FUNCTION; AU NANOPARTICLES; CLUSTERS; NANOCRYSTAL; SCATTERING; DELIVERY; PROGRAM AB Gold nanoparticles with an average size of 3 nm, 15 nm, and 30 nm suspended in water have been studied by x-ray diffraction and computer simulations. The atomic pair distribution function approach was employed to determine the three-dimensional structure because of the limited structural coherence in these nanostructured materials. The nanoparticles possess a well-defined atomic arrangement resembling the face-centered cubic (fcc) structure occurring with bulk gold. The fcc-type features of this arrangement become more prominent with increasing nanoparticle size. The study provides a clear picture of the nanoparticles' size-structure relationship and can help open up the route for calculating and predicting of their useful properties. C1 Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. Cent Michigan Univ, Dept Biol, Mt Pleasant, MI 48859 USA. Dendrit NanoTechnol, Mt Pleasant, MI 48858 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Petkov, V (reprint author), Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. EM petkov@phy.cmich.edu; huang@dnanotech.com RI Huang, Baohua/E-1818-2011 NR 39 TC 61 Z9 63 U1 4 U2 23 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 19 AR 195402 DI 10.1103/PhysRevB.72.195402 PG 8 WC Physics, Condensed Matter SC Physics GA 988LW UT WOS:000233603700116 ER PT J AU Polyanskii, A Emergo, RLS Wu, JZ Aytug, T Christen, DK Perkins, GK Larbalestier, D AF Polyanskii, A Emergo, RLS Wu, JZ Aytug, T Christen, DK Perkins, GK Larbalestier, D TI Magneto-optical imaging and electromagnetic study of YBa2Cu3O7 vicinal films of variable thickness SO PHYSICAL REVIEW B LA English DT Article ID CRITICAL-CURRENT DENSITY; TRANSPORT-PROPERTIES; ANTIPHASE BOUNDARIES; THIN-FILMS; SUPERCONDUCTORS; SRTIO3(001); CONDUCTORS; DEPENDENCE; BICRYSTALS AB Magneto-optical imaging (MO) and electromagnetic studies have been applied to measure anisotropy and critical currents (J(c)) of YBa2Cu3O7 (YBCO) films with variable thickness of 0.2, 0.5, 1.0, 2.0, and 3.0 mu m deposited on flat and vicinal SrTiO3 substrates of 10 degree miscut angle (theta(s)). The flat films nucleated in island-type mode and developed with a dominant c-axis orientation with minority misoriented grains at larger thickness of overall dense structure. The vicinal films, on the other hand, nucleated in step-flow mode and developed with a highly porous structure and minimal density of misoriented grains and impurity phases at large thickness. The difference in the microstructures of these two types of films results in different J(c) vs. thickness behaviors. The MO images showed that the magnetic flux penetration in the flat samples is isotropic at all thicknesses, while it is highly anisotropic in the vicinal samples. The anisotropy decreases with film thickness and temperature. These results correlate with distinctive patterns of microstructural evolution in flat and vicinal YBCO films with increasing thickness. C1 Univ Wisconsin, Ctr Appl Superconduct, Madison, WI 53706 USA. Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London, England. RP Polyanskii, A (reprint author), Univ Wisconsin, Ctr Appl Superconduct, 1500 Johnson Dr, Madison, WI 53706 USA. RI Polyanskii, Anatolii/B-8794-2009; Larbalestier, David/B-2277-2008 OI Larbalestier, David/0000-0001-7098-7208 NR 29 TC 14 Z9 14 U1 1 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 17 AR 174509 DI 10.1103/PhysRevB.72.174509 PG 10 WC Physics, Condensed Matter SC Physics GA 988LU UT WOS:000233603500106 ER PT J AU Ramadan, W Ogale, SB Dhar, S Fu, LF Shinde, SR Kundaliya, DC Rao, MSR Browning, ND Venkatesan, T AF Ramadan, W Ogale, SB Dhar, S Fu, LF Shinde, SR Kundaliya, DC Rao, MSR Browning, ND Venkatesan, T TI Electrical properties of epitaxial junctions between Nb : SrTiO3 and optimally doped, underdoped, and Zn-doped YBa2Cu3O7-delta SO PHYSICAL REVIEW B LA English DT Article ID CURRENT-VOLTAGE CHARACTERISTICS; INHOMOGENEOUS SCHOTTKY BARRIERS; OXYGEN-DEFICIENT YBA2CU3OX; MIXED-VALENT MANGANITES; O THIN-FILMS; TEMPERATURE-DEPENDENCE; PHASE-SEPARATION; MAGNETIC-FIELD; SINGLE-CRYSTAL; NORMAL-STATE AB Epitaxial thin films of optimally doped, underdoped, and Zn-doped YBa2Cu3O7-delta (YBCO) were grown on single crystal (001) Nb:SrTiO3 substrates by pulsed laser deposition (PLD) and the electrical properties of the corresponding interface junctions were examined. The growth conditions were optimized in each case to get the appropriate crystalline quality of the films as well as the desired normal state and superconducting properties. The films or heterointerfaces were characterized by x-ray diffraction, Rutherford backscattering (RBS) ion channeling spectrometry in normal and oxygen resonance modes, magnetic susceptibility, four probe in-plane resistivity, and the temperature dependent current-voltage (I-V) characteristics. Nonlinear I-V curves (forward and reverse) were obtained in all the cases, revealing some characteristic differences and interesting temperature evolution. These data, when analyzed within the framework of a standard description of transport across the metal-semiconductor (Schottky) interface, suggest lateral intrinsic nanoscale electrical inhomogeneity in the system. Also as compared to the case of optimally doped YBCO a small but definitive lowering of the effective Schottky barrier height Phi(B) is observed for junctions based on oxygen underdoped and Zn-doped YBCO. C1 Univ Maryland, Ctr Superconduct Res, Dept Phys, College Pk, MD 20742 USA. Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Ramadan, W (reprint author), Univ Maryland, Ctr Superconduct Res, Dept Phys, College Pk, MD 20742 USA. RI Venkatesan, Thirumalai/E-1667-2013 NR 81 TC 27 Z9 28 U1 1 U2 14 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 20 AR 205333 DI 10.1103/PhysRevB.72.205333 PG 9 WC Physics, Condensed Matter SC Physics GA 988LY UT WOS:000233603900086 ER PT J AU Sadigh, B Wolfer, WG AF Sadigh, B Wolfer, WG TI Gallium stabilization of delta-Pu: Density-functional calculations SO PHYSICAL REVIEW B LA English DT Article ID ABSORPTION FINE-STRUCTURE; GA ALLOYS; PLUTONIUM-GALLIUM; PHASE; METAL; SPECTROSCOPY; STABILITY; ELECTRONS; PRESSURE; DEFECTS AB The alpha and delta phases of plutonium differ in density by 25%. When alloyed with small amounts of gallium, the two phases can be converted directly into each other by a martensitic transformation. It occurs at even lower temperatures as the Ga content is increased, resulting in what has been called the delta stabilization of plutonium. The physical nature of this stabilization has remained unclear, in part because the anomalously low density of the delta phase has been a mystery. In addition, the atomic size of Ga in these two phases of Pu is perplexing, as it varies by nearly a factor of 3. We show in this paper that the key to the secret behind many of these anomalies rather lies in the unusual geometry of the alpha-Pu structure than in the exotic electronic structure of the delta-Pu phase. We demonstrate this through extensive density-functional theory calculations that turn out to provide a sufficiently accurate model for the structural chemistry of the Pu-Ga alloys. The Ga volumes and their heats of solution in the various Pu phases are predicted in good agreement with the experiments. Using the results of our supercell calculations in combination with novel geometric arguments, we succeed in explaining the double-C behavior of the martensitic transformation of Pu, as well as the volume collapse due to the tempering of the alpha' phase. We propose that these phenomena are manifestations of the temperature-dependent kinetics of ordering in what we call the eighth martensite variant of Ga-containing alpha-Pu. We also give an account of the microscopic origin of the anomalous variability of the atomic sizes of Ga in Pu. In so doing, we discover that the measured size of the solute arises from induced volume changes in surrounding Pu atoms. We show that this is necessary for a correct interpretation of the EXAFS measurements of Ga-stabilized delta-Pu. This new effect may also be significant in other alloy systems. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Sadigh, B (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. NR 41 TC 35 Z9 35 U1 1 U2 14 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 20 AR 205122 DI 10.1103/PhysRevB.72.205122 PG 12 WC Physics, Condensed Matter SC Physics GA 988LY UT WOS:000233603900038 ER PT J AU Sales, BC Khalifah, P Enck, TP Nagler, EJ Sykora, RE Jin, R Mandrus, D AF Sales, BC Khalifah, P Enck, TP Nagler, EJ Sykora, RE Jin, R Mandrus, D TI Kondo lattice behavior in the ordered dilute magnetic semiconductor Yb14-xLaxMnSb11 SO PHYSICAL REVIEW B LA English DT Article ID METAL ZINTL COMPOUNDS; YB14MNSB11; SPINTRONICS AB We report Hall, magnetic, heat capacity, and doping studies from single crystals of Yb14MnSb11 and Yb13.3La0.7MnSb11. These heavily doped semiconducting compounds are ferromagnetic below 53 and 39 K, respectively. The renormalization of the carrier mass from 2m(e) near room temperature to 20m(e) at 5 K, plus the magnetic evidence for partial screening of the Mn magnetic moments suggest that these compounds represent rare examples of an underscreened Kondo lattice with T-K approximate to 285 K. C1 Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. Univ Massachusetts, Dept Chem, Amherst, MA 01003 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Univ S Alabama, Dept Chem, Mobile, AL 36688 USA. RP Sales, BC (reprint author), Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. RI Mandrus, David/H-3090-2014 NR 22 TC 28 Z9 29 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 20 AR 205207 DI 10.1103/PhysRevB.72.205207 PG 5 WC Physics, Condensed Matter SC Physics GA 988LY UT WOS:000233603900052 ER PT J AU Swadener, JG Baskes, MI Nastasi, M AF Swadener, JG Baskes, MI Nastasi, M TI Stress-induced platelet formation in silicon: A molecular dynamics study SO PHYSICAL REVIEW B LA English DT Article ID NEUTRON-IRRADIATED SILICON; ANNIHILATION RADIATION; HYDROGEN COMPLEXES; VACANCY CLUSTERS; CRYSTALLINE SI; MAGIC NUMBERS; BINDING; EXFOLIATION; DIVACANCY; CONSTANTS AB The effect of stress on vacancy cluster configurations in silicon is examined using molecular dynamics. At zero pressure, the shape and stability of the vacancy clusters agrees with previous atomistic results. When stress is applied the orientation of small planar clusters changes to reduce the strain energy. The preferred orientation for the vacancy clusters under stress agrees with the experimentally observed orientations of hydrogen platelets in the high stress regions of hydrogen implanted silicon. These results suggest a theory for hydrogen platelet formation. C1 Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Swadener, JG (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, POB 1663, Los Alamos, NM 87545 USA. OI Swadener, John G/0000-0001-5493-3461 NR 42 TC 17 Z9 17 U1 1 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 20 AR 201202 DI 10.1103/PhysRevB.72.201202 PG 4 WC Physics, Condensed Matter SC Physics GA 988LY UT WOS:000233603900004 ER PT J AU Vorontsov, AB Sauls, JA Graf, MJ AF Vorontsov, AB Sauls, JA Graf, MJ TI Phase diagram and spectroscopy of Fulde-Ferrell-Larkin-Ovchinnikov states of two-dimensional d-wave superconductors SO PHYSICAL REVIEW B LA English DT Article ID QUASI-2-DIMENSIONAL ORGANIC SUPERCONDUCTOR; LOW-TEMPERATURE; MAGNETIC-FIELD; HEAVY-FERMION; THERMAL-CONDUCTIVITY; PAULI PARAMAGNETISM; MOLECULAR-FIELD; VORTEX STATES; CECOIN5; BI2SR2CACU2O8+DELTA AB Experimental evidence suggests that the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state may be realized in the unconventional, heavy-fermion superconductor CeCoIn5. We present a self-consistent calculation of the field versus temperature phase diagram and order parameter structures for the FFLO states of quasi-two-dimensional d-wave superconductors. We calculate the spatially nonuniform order parameter, free energy density, and local density of states for magnetic fields parallel to the superconducting planes. We predict that the lower critical magnetic field transition between the spatially uniform and nonuniform FFLO state is second order. We discuss the signatures of the nonuniform FFLO state which should be observable in scanning tunneling microscopy measurements of the local density of states. C1 Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. Univ Florida, Dept Phys, Gainesville, FL 32611 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Vorontsov, AB (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. NR 71 TC 57 Z9 57 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 18 AR 184501 DI 10.1103/PhysRevB.72.184501 PG 9 WC Physics, Condensed Matter SC Physics GA 988LV UT WOS:000233603600065 ER PT J AU Zarestky, JL Garlea, VO Lograsso, TA Schlagel, DL Stassis, C AF Zarestky, JL Garlea, VO Lograsso, TA Schlagel, DL Stassis, C TI Compositional variation of the phonon dispersion curves of bcc Fe-Ga alloys SO PHYSICAL REVIEW B LA English DT Article ID LATTICE-DYNAMICS; AL ALLOYS; MIGRATION ENTHALPIES; NEUTRON-SCATTERING; TRANSITION-METALS; IRON; MAGNETOELASTICITY; MAGNETOSTRICTION; ELASTICITY; FE3AL AB Inelastic neutron scattering techniques have been used to measure the phonon dispersion curves of bcc Fe1-xGax (x=10.8, 13.3, 16.0, 22.5) alloys as a function of Ga concentration. The phonon frequencies of every branch were found to decrease significantly with increasing Ga concentration. The softening was most pronounced for the T-2[xi xi 0] branch and, to a lesser extent, the L[xi xi xi] branch in the vicinity of xi=2/3. The concentration dependence of the shear elastic constant C-'=1/2(C-11-C-12), calculated from the slope of the T-2[xi xi 0] branch, was found to agree with the results of sound velocity measurements. For the higher concentration sample measured, 22.5 at. % Ga, new branches appeared, an effect associated with the increase in the number of atoms per unit cell. C1 Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. RP Zarestky, JL (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Garlea, Vasile/A-4994-2016 OI Garlea, Vasile/0000-0002-5322-7271 NR 40 TC 12 Z9 12 U1 0 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2005 VL 72 IS 18 AR 180408 DI 10.1103/PhysRevB.72.180408 PG 4 WC Physics, Condensed Matter SC Physics GA 988LV UT WOS:000233603600008 ER PT J AU Aharmim, B Ahmed, SN Anthony, AE Beier, EW Bellerive, A Bergevin, M Biller, SD Boger, J Boulay, MG Bowler, MG Bullard, TV Chan, YD Chen, M Chen, X Cleveland, BT Cox, GA Currat, CA Dai, X Dalnoki-Veress, F Deng, H Doe, PJ Dosanjh, RS Doucas, G Duba, CA Duncan, FA Dunford, M Dunmore, JA Earle, ED Elliott, SR Evans, HC Ewan, GT Farine, J Fergani, H Fleurot, F Formaggio, JA Frame, K Frati, W Fulsom, BG Gagnon, N Graham, K Grant, DR Hahn, RL Hall, JC Hallin, AL Hallman, ED Handler, WB Hargrove, CK Harvey, PJ Hazama, R Heeger, KM Heelan, L Heintzelman, WJ Heise, J Helmer, RL Hemingway, RJ Hime, A Howard, C Howe, MA Huang, M Jagam, P Jelley, NA Klein, JR Kormos, LL Kos, MS Kruger, A Kraus, C Krauss, CB Krumins, AV Kutter, T Kyba, CCM Labranche, H Lange, R Law, J Lawson, IT Lesko, KT Leslie, JR Levine, I Loach, JC Luoma, S MacLellan, R Majerus, S Mak, HB Maneira, J Marino, AD McCauley, N McDonald, AB McGee, S McGregor, G Mifflin, C Miknaitis, KKS Moffat, BA Nally, CW Neubauer, MS Nickel, BG Noble, AJ Norman, EB Oblath, NS Okada, CE Ollerhead, RW Orrell, JL Oser, SM Ouellet, C Peeters, SJM Poon, AWP Rielage, K Robertson, BC Robertson, RGH Rollin, E Rosendahl, SSE Rusu, VL Schwendener, MH Seibert, SR Simard, O Simpson, JJ Sims, CJ Sinclair, D Skensved, P Smith, MWE Starinsky, N Stokstad, RG Stonehill, LC Tafirout, R Takeuchi, Y Tesic, G Thomson, M Thorman, M Tsui, T Van Berg, R Van de Water, RG Virtue, CJ Wall, BL Waller, D Waltham, CE Tseung, HWC Wark, DL Wendland, J West, N Wilkerson, JF Wilson, JR Wittich, P Wouters, JM Wright, A Yeh, M Zuber, K AF Aharmim, B Ahmed, SN Anthony, AE Beier, EW Bellerive, A Bergevin, M Biller, SD Boger, J Boulay, MG Bowler, MG Bullard, TV Chan, YD Chen, M Chen, X Cleveland, BT Cox, GA Currat, CA Dai, X Dalnoki-Veress, F Deng, H Doe, PJ Dosanjh, RS Doucas, G Duba, CA Duncan, FA Dunford, M Dunmore, JA Earle, ED Elliott, SR Evans, HC Ewan, GT Farine, J Fergani, H Fleurot, F Formaggio, JA Frame, K Frati, W Fulsom, BG Gagnon, N Graham, K Grant, DR Hahn, RL Hall, JC Hallin, AL Hallman, ED Handler, WB Hargrove, CK Harvey, PJ Hazama, R Heeger, KM Heelan, L Heintzelman, WJ Heise, J Helmer, RL Hemingway, RJ Hime, A Howard, C Howe, MA Huang, M Jagam, P Jelley, NA Klein, JR Kormos, LL Kos, MS Kruger, A Kraus, C Krauss, CB Krumins, AV Kutter, T Kyba, CCM Labranche, H Lange, R Law, J Lawson, IT Lesko, KT Leslie, JR Levine, I Loach, JC Luoma, S MacLellan, R Majerus, S Mak, HB Maneira, J Marino, AD McCauley, N McDonald, AB McGee, S McGregor, G Mifflin, C Miknaitis, KKS Moffat, BA Nally, CW Neubauer, MS Nickel, BG Noble, AJ Norman, EB Oblath, NS Okada, CE Ollerhead, RW Orrell, JL Oser, SM Ouellet, C Peeters, SJM Poon, AWP Rielage, K Robertson, BC Robertson, RGH Rollin, E Rosendahl, SSE Rusu, VL Schwendener, MH Seibert, SR Simard, O Simpson, JJ Sims, CJ Sinclair, D Skensved, P Smith, MWE Starinsky, N Stokstad, RG Stonehill, LC Tafirout, R Takeuchi, Y Tesic, G Thomson, M Thorman, M Tsui, T Van Berg, R Van de Water, RG Virtue, CJ Wall, BL Waller, D Waltham, CE Tseung, HWC Wark, DL Wendland, J West, N Wilkerson, JF Wilson, JR Wittich, P Wouters, JM Wright, A Yeh, M Zuber, K CA SNO Collaboration TI Electron energy spectra, fluxes, and day-night asymmetries of B-8 solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury Neutrino Observatory SO PHYSICAL REVIEW C LA English DT Article ID OSCILLATION PARAMETERS; MATTER; REGENERATION; CALIBRATION; PHYSICS; EARTH; MODEL AB Results are reported from the complete salt phase of the Sudbury Neutrino Observatory experiment in which NaCl was dissolved in the (H2O)-H-2 ("D2O") target. The addition of salt enhanced the signal from neutron capture as compared to the pure D2O detector. By making a statistical separation of charged-current events from other types based on event-isotropy criteria, the effective electron recoil energy spectrum has been extracted. In units of 10(6)cm(-2)s(-1), the total flux of active-flavor neutrinos from B-8 decay in the Sun is found to be 4.94(-0.21)(+0.21)(stat)(-0.34)(+0.38)(syst) and the integral flux of electron neutrinos for an undistorted B-8 spectrum is 1.68(-0.06)(+0.06)(stat)(-0.09)(+0.08)(syst); the signal from (nu(x),e) elastic scattering is equivalent to an electron-neutrino flux of 2.35(-0.22)(+0.22)(stat)(-0.15)(+0.15)(syst). These results are consistent with those expected for neutrino oscillations with the so-called large mixing angle parameters and also with an undistorted spectrum. A search for matter-enhancement effects in the Earth through a possible day-night asymmetry in the charged-current integral rate is consistent with no asymmetry. Including results from other experiments, the best-fit values for two-neutrino mixing parameters are Delta m(2)=(8.0(-0.4)(+0.6))x10(-5) eV(2) and theta=33.9(-2.2)(+2.4) degrees. C1 Laurentian Univ, Dept Phys & Astron, Sudbury, ON P3E 2C6, Canada. Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. Carleton Univ, Dept Phys, Ottawa Carleton Inst Phys, Ottawa, ON K1S 5B6, Canada. Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. Univ Calif Berkeley, Lawrence Berkeley Lab, Inst Nucl & Particle Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. Univ Oxford, Dept Phys, Oxford OX1 3RH, England. Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. Univ Texas, Dept Phys, Austin, TX 78712 USA. TRIUMF, Vancouver, BC V6T 2A3, Canada. Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA. Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Aharmim, B (reprint author), Laurentian Univ, Dept Phys & Astron, Sudbury, ON P3E 2C6, Canada. RI Hallin, Aksel/H-5881-2011; Kyba, Christopher/I-2014-2012; Dai, Xiongxin/I-3819-2013; Maneira, Jose/D-8486-2011; Orrell, John/E-9313-2015 OI Kyba, Christopher/0000-0001-7014-1843; Maneira, Jose/0000-0002-3222-2738; Orrell, John/0000-0001-7968-4051 NR 68 TC 433 Z9 436 U1 1 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2005 VL 72 IS 5 AR 055502 DI 10.1103/PhysRevB.72.055502 PG 47 WC Physics, Nuclear SC Physics GA 988NI UT WOS:000233607500046 ER PT J AU Ahmad, I Greene, JP Moore, EF Kondev, FG Chasman, RR Porter, CE Felker, LK AF Ahmad, I Greene, JP Moore, EF Kondev, FG Chasman, RR Porter, CE Felker, LK TI Energy levels of Cf-251 populated in the alpha decay of Fm-255(100) and EC decay of Es-251(99) SO PHYSICAL REVIEW C LA English DT Article ID SINGLE-PARTICLE STATES; ELECTRON-CAPTURE DECAY; NUCLEI; REGION AB Gamma-ray singles spectra of extremely pure (chemically and isotopically) samples of Fm-255, with strengths of similar to 1 mCi, have been measured with a high-resolution 2-cm(2)x10-mm germanium LEPS detector and with a 25% Ge spectrometer. Gamma rays with intensities as low as 1.0x10(-6)% per Fm-255 alpha decay have been identified. The electron spectrum of a mass-separated Es-251 source was measured with a cooled Si(Li) electron spectrometer. The spectrum provided the conversion coefficients of low-energy transitions in Cf-251 and thereby their multipolarities. The present measurements confirm the previous assignments of single-particle states in Cf-251. These include 1/2(+)[620], 0.0 keV; 7/2(+)[613], 106.30 keV; 3/2(+)[622], 177.59 keV; 11/2(-)[725], 370.47 keV; 9/2(-)[734], 433.91 keV; 5/2(+)[622], 543.98 keV; 1/2(-)[750], 632.0 keV; 9/2(+)[615], 683 keV; and 9/2(+)[604], 974.0 keV. A vibrational band was identified in previous studies at 981.4 keV and given an assignment of {7/2(+)[613]circle times 2(-)}3/2(-). Three new vibrational bands are identified in the present work at 942.5, 1086.5, and 1250.0 keV with tentative assignments {7/2(+)[613]circle times 1(-)}5/2(-),{7/2(+)[613]circle times 1(-)}9/2(-), and {7/2(+)[613]circle times 0(+)}7/2(+), respectively. A level was identified at 1185.5 keV with spin of 5/2 or 7/2 but it was not given any configuration assignment. Another level was identified at 1077.5 keV and given a spin of 9/2. Again, no configuration could be assigned to this level. C1 Argonne Natl Lab, Argonne, IL 60439 USA. Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Ahmad, I (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ahmad@phy.anl.gov NR 18 TC 17 Z9 17 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2005 VL 72 IS 5 AR 054308 DI 10.1103/PhysRevC.72.054308 PG 11 WC Physics, Nuclear SC Physics GA 988NI UT WOS:000233607500016 ER PT J AU Alford, M Good, G Reddy, S AF Alford, M Good, G Reddy, S TI Isospin asymmetry and type-I superconductivity in neutron star matter SO PHYSICAL REVIEW C LA English DT Article AB It has been argued by Buckley et al. [1] that nuclear matter is a type-I rather than a type-II superconductor. The suggested mechanism is a strong interaction between neutron and proton Cooper pairs, which arises from an assumed U(2) symmetry of the effective potential, which is supposed to originate in isospin symmetry of the underlying nuclear interactions. To test this claim, we perform an explicit mean-field calculation of the effective potential of the Cooper pairs in a model with a simple four-point pairing interaction. In the neutron star context, matter is very neutron rich with less than 10% protons, so there is no neutron-proton pairing. We find that under these conditions our model shows no interaction between proton Cooper pairs and neutron Cooper pairs at the mean-field level. We estimate the leading contribution beyond mean field and find that it is small and attractive at weak coupling. C1 Washington Univ, Dept Phys, St Louis, MO 63130 USA. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Alford, M (reprint author), Washington Univ, Dept Phys, St Louis, MO 63130 USA. EM ready@llnl.gov NR 13 TC 12 Z9 12 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2005 VL 72 IS 5 AR 055801 DI 10.1103/PhysRevB.72.055801 PG 5 WC Physics, Nuclear SC Physics GA 988NI UT WOS:000233607500047 ER PT J AU Back, BB Baker, MD Ballintijn, M Barton, DS Betts, RR Bickley, AA Bindel, R Budzanowski, A Busza, W Carroll, A Decowski, MP Garcia, E George, NK Gulbrandsen, K Gushue, S Halliwell, C Hamblen, J Heintzelman, GA Henderson, C Hofman, DJ Hollis, RS Holynski, R Holzman, B Iordanova, A Johnson, E Kane, JL Katzy, J Khan, N Kucewicz, W Kulinich, P Kuo, CM Lin, WT Manly, S McLeod, D Mignerey, AC Nguyen, M Nouicer, R Olszewski, A Pak, R Park, IC Pernegger, H Reed, C Remsberg, LP Reuter, M Roland, C Roland, G Rosenberg, L Sagerer, J Sarin, P Sawicki, P Skulski, W Steinberg, P Stephans, GSF Sukhanov, A Tang, JL Tonjes, MB Trzupek, A Vale, CM van Nieuwenhuizen, GJ Verdier, R Veres, GI Wolfs, FLH Wosiek, B Wozniak, K Wuosmaa, AH Wyslouch, B AF Back, BB Baker, MD Ballintijn, M Barton, DS Betts, RR Bickley, AA Bindel, R Budzanowski, A Busza, W Carroll, A Decowski, MP Garcia, E George, NK Gulbrandsen, K Gushue, S Halliwell, C Hamblen, J Heintzelman, GA Henderson, C Hofman, DJ Hollis, RS Holynski, R Holzman, B Iordanova, A Johnson, E Kane, JL Katzy, J Khan, N Kucewicz, W Kulinich, P Kuo, CM Lin, WT Manly, S McLeod, D Mignerey, AC Nguyen, M Nouicer, R Olszewski, A Pak, R Park, IC Pernegger, H Reed, C Remsberg, LP Reuter, M Roland, C Roland, G Rosenberg, L Sagerer, J Sarin, P Sawicki, P Skulski, W Steinberg, P Stephans, GSF Sukhanov, A Tang, JL Tonjes, MB Trzupek, A Vale, CM van Nieuwenhuizen, GJ Verdier, R Veres, GI Wolfs, FLH Wosiek, B Wozniak, K Wuosmaa, AH Wyslouch, B CA PHOBOS Collaboration TI Centrality and pseudorapidity dependence of elliptic flow for charged hadrons in Au plus Au collisions at root s(NN)=200 GeV SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR COLLISIONS AB This Rapid Communication describes the measurement of elliptic flow for charged particles in Au+Au collisions at root S-NN = 200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider. The measured azimuthal anisotropy is presented over a wide range of pseudorapidity for three broad collision centrality classes for the first time at this energy. Two distinct methods of extracting the flow signal were used to reduce systematic uncertainties. The elliptic flow falls sharply with increasing vertical bar eta vertical bar at 200 GeV for all the centralities studied, as observed for minimum-bias collisions at root S-NN = 130 GeV. C1 Argonne Natl Lab, Argonne, IL 60439 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Inst Nucl Phys PAN, Krakow, Poland. MIT, Cambridge, MA 02139 USA. Natl Cent Univ, Chungli 32054, Taiwan. Univ Illinois, Chicago, IL 60607 USA. Univ Maryland, College Pk, MD 20742 USA. Univ Rochester, Rochester, NY 14627 USA. RP Back, BB (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Decowski, Patrick/A-4341-2011; Mignerey, Alice/D-6623-2011 NR 29 TC 234 Z9 235 U1 0 U2 7 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2005 VL 72 IS 5 AR 051901 DI 10.1103/PhysRevC.72.051901 PG 5 WC Physics, Nuclear SC Physics GA 988NI UT WOS:000233607500002 ER PT J AU Brown, DA Enokizono, A Heffner, M Soltz, R Danielewicz, P Pratt, S AF Brown, DA Enokizono, A Heffner, M Soltz, R Danielewicz, P Pratt, S TI Imaging three dimensional two-particle correlations for heavy-ion reaction studies SO PHYSICAL REVIEW C LA English DT Article ID BOSE-EINSTEIN CORRELATIONS; PHASE-SPACE DENSITY; PION INTERFEROMETRY; COLLISIONS; DECONVOLUTION; PARTICLES; MATTER; HALO AB We report an extension of the source imaging method for analyzing three-dimensional sources from three-dimensional correlations. Our technique consists of expanding the correlation data and the underlying source function in spherical harmonics and inverting the resulting system of one-dimensional integral equations. With this strategy, we can image the source function quickly, even with the finely binned data sets common in three-dimensional analyses. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Michigan State Univ, E Lansing, MI 48824 USA. RP Brown, DA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. NR 44 TC 22 Z9 23 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2005 VL 72 IS 5 AR 054902 DI 10.1103/PhysRevC.72.054902 PG 11 WC Physics, Nuclear SC Physics GA 988NI UT WOS:000233607500041 ER PT J AU Church, JA Campbell, CM Dinca, DC Enders, J Gade, A Glasmacher, T Hu, Z Janssens, RVF Mueller, WF Olliver, H Perry, BC Riley, LA Yurkewicz, KL AF Church, JA Campbell, CM Dinca, DC Enders, J Gade, A Glasmacher, T Hu, Z Janssens, RVF Mueller, WF Olliver, H Perry, BC Riley, LA Yurkewicz, KL TI Measurement of E2 transition strengths in Mg-32,Mg-34 SO PHYSICAL REVIEW C LA English DT Article ID RELATIVISTIC MEAN-FIELD; NEUTRON-RICH NUCLEI; COULOMB-EXCITATION; SHELL-MODEL; PROJECTILE FRAGMENTATION; SODIUM ISOTOPES; BETA-DECAY; MG; TRANSITION; DEFORMATION AB The degree of collectivity in the neutron-rich nuclei Mg-32 and Mg-34 has been determined via intermediate-energy Coulomb excitation in inverse kinematics. Measured energies of the first excited 2(+) states and reduced electric quadrupole transition probabilities B(E2;0(g.s.)(+)-> 2(1)(+)) are presented for Mg-32 and Mg-34. The results agree with previous measurements and confirm the placement of both nuclei within the "island of inversion". C1 Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. Ursinus Coll, Dept Phys & Astron, Collegeville, PA 19426 USA. RP Church, JA (reprint author), Lawrence Livermore Natl Lab, POB 808,L-414, Livermore, CA 94550 USA. RI Gade, Alexandra/A-6850-2008; Glasmacher, Thomas/C-4462-2008; Enders, Joachim/B-5501-2009; Campbell, Christopher/B-9429-2008; Glasmacher, Thomas/H-9673-2014 OI Gade, Alexandra/0000-0001-8825-0976; Enders, Joachim/0000-0002-8441-378X; Glasmacher, Thomas/0000-0001-9436-2448 NR 42 TC 64 Z9 68 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2005 VL 72 IS 5 AR 054320 DI 10.1103/PhysRevC.72.054320 PG 6 WC Physics, Nuclear SC Physics GA 988NI UT WOS:000233607500028 ER PT J AU Clark, RM Phair, LW Descovich, M Cromaz, M Deleplanque, MA Fallon, P Lee, IY Macchiavelli, AO McMahan, MA Moretto, LG Rodriguez-Vieitez, E Sinha, S Stephens, FS Ward, D Wiedeking, M Bernstein, LA Burke, JT Church, JA AF Clark, RM Phair, LW Descovich, M Cromaz, M Deleplanque, MA Fallon, P Lee, IY Macchiavelli, AO McMahan, MA Moretto, LG Rodriguez-Vieitez, E Sinha, S Stephens, FS Ward, D Wiedeking, M Bernstein, LA Burke, JT Church, JA TI Population of nuclei via Li-7-induced binary reactions SO PHYSICAL REVIEW C LA English DT Article ID INCOMPLETE-FUSION REACTIONS; CRITICAL ANGULAR-MOMENTUM; STATES; COLLISIONS; TA-180; MODEL AB We have investigated the population of nuclei formed in binary reactions involving Li-7 beams on targets of Gd-160 and W-184. The Li-7+W-184 data were taken in the first experiment to use the LIBERACE Ge array in combination with the STARS Si Delta E-E telescope system at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. By using the Wilczynski binary transfer model, in combination with a standard evaporation model, we are able to reproduce the experimental results. This is a useful method for predicting the population of neutron-rich heavy nuclei formed in binary reactions involving beams of weakly bound nuclei and will be of use in future spectroscopic studies. C1 Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Clark, RM (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 28 TC 9 Z9 11 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2005 VL 72 IS 5 AR 054605 DI 10.1103/PhysRevC.72.054605 PG 9 WC Physics, Nuclear SC Physics GA 988NI UT WOS:000233607500036 ER PT J AU Esbensen, H AF Esbensen, H TI Sensitivity to multi-phonon excitations in heavy-ion fusion reactions SO PHYSICAL REVIEW C LA English DT Article ID SUBBARRIER FUSION; NUCLEAR-FUSION; NI-64; NI-58 AB Measured cross sections for the fusion of Ni-64 with Ni-64, Ge-74, and Mo-100 targets are analyzed in a coupled-channels approach. The data for the Ni-64 target above 0.1 mb are reproduced by including couplings to the low-lying 2(+) and 3(-) states and the mutual and two-phonon excitations of these states. The calculations become more challenging as the fusing nuclei become softer and heavier, and excitations to multi-phonon states start to play an increasingly important role. Thus it is necessary to include up to four-phonon excitations to reproduce the data for the Ni-64+Ge-74 system. Similar calculations for Ni-64+Mo-100, and also for the symmetric Ge-74+Ge-74 system, show large discrepancies with the data. Possible ways to improve the calculations are discussed. C1 Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Esbensen, H (reprint author), Argonne Natl Lab, Div Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 19 TC 33 Z9 33 U1 0 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2005 VL 72 IS 5 AR 054607 DI 10.1103/PhysRevC.72.054607 PG 10 WC Physics, Nuclear SC Physics GA 988NI UT WOS:000233607500038 ER PT J AU Joo, K Smith, LC Aznauryan, IG Burkert, VD Egiyan, H Minehart, R Adams, G Ambrozewicz, P Anciant, E Anghinolfi, M Asavapibhop, B Asryan, G Audit, G Auger, T Avakian, H Bagdasaryan, H Baillie, N Ball, JP Baltzell, NA Barrow, S Batourine, V Battaglieri, M Beard, K Bedlinskiy, I Bektasoglu, M Bellis, M Benmouna, N Berman, BL Bianchi, N Biselli, AS Bonner, BE Bouchigny, S Boiarinov, S Bradford, R Branford, D Briscoe, WJ Brooks, WK Bueltmann, S Butuceanu, C Calarco, JR Careccia, SL Carman, DS Carnahan, B Cetina, C Chen, S Cole, PL Coleman, A Coltharp, P Cords, D Corvisiero, P Crabb, D Cummings, JP De Sanctis, E DeVita, R Degtyarenko, PV Dennis, L Deur, A Dharmawardane, KV Dhuga, KS Djalali, C Dodge, GE Donnelly, J Doughty, D Dragovitsch, P Dugger, M Dytman, S Dzyubak, OP Egiyan, KS Elouadrhiri, L Empl, A Eugenio, P Farhi, L Fatemi, R Fedotov, G Feldman, G Feuerbach, RJ Forest, TA Frolov, V Funsten, H Gaff, SJ Garcon, M Gavalian, G Gilfoyle, GP Giovanetti, KL Girard, P Girod, FX Goetz, JT Gothe, RW Griffioen, KA Guidal, M Guillo, M Guler, N Guo, L Gyurjyan, V Hakobyan, RS Hardie, J Heddle, D Hersman, FW Hicks, K Hleiqawi, I Holtrop, M Hu, J Hyde-Wright, CE Ilieva, Y Ireland, DG Ishkhanov, BS Ito, MM Jenkins, D Jo, HS Juengst, HG Kelley, JH Kellie, JD Khandaker, M Kim, KY Kim, K Kim, W Klein, A Klein, FJ Klimenko, AV Klusman, M Kossov, M Kramer, LH Kubarovsky, V Kuhn, J Kuhn, SE Lachniet, J Laget, JM Langheinrich, J Lawrence, D Lee, T Livingston, K Lukashin, K Manak, JJ Marchand, C Maximon, LC McAleer, S McKinnon, B McNabb, JWC Mecking, BA Mestayer, MD Meyer, CA Mikhailov, K Mirazita, M Miskimen, R Mokeev, V Morrow, SA Muccifora, V Mueller, J Mutchler, GS Nadel-Turonski, P Napolitano, J Nasseripour, R Nelson, SO Niccolai, S Niculescu, G Niculescu, I Niczyporuk, BB Niyazov, RA Nozar, M O'Rielly, GV Osipenko, M Ostrovidov, AI Park, K Pasyuk, E Peterson, G Philips, SA Pierce, J Pivnyuk, N Pocanic, D Pogorelko, O Polli, E Pozdniakov, S Preedom, BM Price, JW Prok, Y Protopopescu, D Qin, LM Raue, BA Riccardi, G Ricco, G Ripani, M Ritchie, BG Ronchetti, F Rosner, G Rossi, P Rowntree, D Rubin, PD Sabatie, F Sabourov, K Salgado, C Santoro, JP Sapunenko, V Schumacher, RA Serov, VS Shafi, A Sharabian, YG Shaw, J Simionatto, S Skabelin, AV Smith, ES Sober, DI Spraker, M Stavinsky, A Stepanyan, SS Stepanyan, S Stokes, BE Stoler, P Strakovsky, II Strauch, S Taiuti, M Taylor, S Tedeschi, DJ Thoma, U Thompson, R Tkabladze, A Tur, C Ungaro, M Vineyard, MF Vlassov, AV Wang, K Weinstein, LB Weller, H Weygand, DP Williams, M Wolin, E Wood, MH Yegneswaran, A Yun, J Zana, L Zhang, J AF Joo, K Smith, LC Aznauryan, IG Burkert, VD Egiyan, H Minehart, R Adams, G Ambrozewicz, P Anciant, E Anghinolfi, M Asavapibhop, B Asryan, G Audit, G Auger, T Avakian, H Bagdasaryan, H Baillie, N Ball, JP Baltzell, NA Barrow, S Batourine, V Battaglieri, M Beard, K Bedlinskiy, I Bektasoglu, M Bellis, M Benmouna, N Berman, BL Bianchi, N Biselli, AS Bonner, BE Bouchigny, S Boiarinov, S Bradford, R Branford, D Briscoe, WJ Brooks, WK Bueltmann, S Butuceanu, C Calarco, JR Careccia, SL Carman, DS Carnahan, B Cetina, C Chen, S Cole, PL Coleman, A Coltharp, P Cords, D Corvisiero, P Crabb, D Cummings, JP De Sanctis, E DeVita, R Degtyarenko, PV Dennis, L Deur, A Dharmawardane, KV Dhuga, KS Djalali, C Dodge, GE Donnelly, J Doughty, D Dragovitsch, P Dugger, M Dytman, S Dzyubak, OP Egiyan, KS Elouadrhiri, L Empl, A Eugenio, P Farhi, L Fatemi, R Fedotov, G Feldman, G Feuerbach, RJ Forest, TA Frolov, V Funsten, H Gaff, SJ Garcon, M Gavalian, G Gilfoyle, GP Giovanetti, KL Girard, P Girod, FX Goetz, JT Gothe, RW Griffioen, KA Guidal, M Guillo, M Guler, N Guo, L Gyurjyan, V Hakobyan, RS Hardie, J Heddle, D Hersman, FW Hicks, K Hleiqawi, I Holtrop, M Hu, J Hyde-Wright, CE Ilieva, Y Ireland, DG Ishkhanov, BS Ito, MM Jenkins, D Jo, HS Juengst, HG Kelley, JH Kellie, JD Khandaker, M Kim, KY Kim, K Kim, W Klein, A Klein, FJ Klimenko, AV Klusman, M Kossov, M Kramer, LH Kubarovsky, V Kuhn, J Kuhn, SE Lachniet, J Laget, JM Langheinrich, J Lawrence, D Lee, T Livingston, K Lukashin, K Manak, JJ Marchand, C Maximon, LC McAleer, S McKinnon, B McNabb, JWC Mecking, BA Mestayer, MD Meyer, CA Mikhailov, K Mirazita, M Miskimen, R Mokeev, V Morrow, SA Muccifora, V Mueller, J Mutchler, GS Nadel-Turonski, P Napolitano, J Nasseripour, R Nelson, SO Niccolai, S Niculescu, G Niculescu, I Niczyporuk, BB Niyazov, RA Nozar, M O'Rielly, GV Osipenko, M Ostrovidov, AI Park, K Pasyuk, E Peterson, G Philips, SA Pierce, J Pivnyuk, N Pocanic, D Pogorelko, O Polli, E Pozdniakov, S Preedom, BM Price, JW Prok, Y Protopopescu, D Qin, LM Raue, BA Riccardi, G Ricco, G Ripani, M Ritchie, BG Ronchetti, F Rosner, G Rossi, P Rowntree, D Rubin, PD Sabatie, F Sabourov, K Salgado, C Santoro, JP Sapunenko, V Schumacher, RA Serov, VS Shafi, A Sharabian, YG Shaw, J Simionatto, S Skabelin, AV Smith, ES Sober, DI Spraker, M Stavinsky, A Stepanyan, SS Stepanyan, S Stokes, BE Stoler, P Strakovsky, II Strauch, S Taiuti, M Taylor, S Tedeschi, DJ Thoma, U Thompson, R Tkabladze, A Tur, C Ungaro, M Vineyard, MF Vlassov, AV Wang, K Weinstein, LB Weller, H Weygand, DP Williams, M Wolin, E Wood, MH Yegneswaran, A Yun, J Zana, L Zhang, J CA CLAS Collaboration TI Measurement of the polarized structure function sigma(LT ') for pion electroproduction in the Roper-resonance region SO PHYSICAL REVIEW C LA English DT Article ID BARYONS; MODEL AB The polarized longitudinal-transverse structure function sigma(')(LT) measures the interference between real and imaginary amplitudes in pion electroproduction and can be used to probe the coupling between resonant and nonresonant processes. We report new measurements of sigma(')(LT) in the N(1440)1/2(+) (Roper) resonance region at Q(2)=0.40 and 0.65GeV(2) for both the pi(0)p and pi(+)n channels. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at a beam energy of 1.515 GeV. Complete angular distributions were obtained and are compared to recent phenomenological models. The sigma(')(LT)(pi(+)n) channel shows a large sensitivity to the Roper-resonance multipoles M1- and S1- and provides new constraints on models of resonance formation. C1 Univ Connecticut, Storrs, CT 06269 USA. Univ Virginia, Charlottesville, VA 22901 USA. Yerevan Phys Inst, Yerevan 375036, Armenia. Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. Arizona State Univ, Tempe, AZ 85287 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Catholic Univ Amer, Washington, DC 20064 USA. CEA Saclay, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. Christopher Newport Univ, Newport News, VA 23606 USA. Duke Univ, Durham, NC 27708 USA. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Florida Int Univ, Miami, FL 33199 USA. Florida State Univ, Tallahassee, FL 32306 USA. George Washington Univ, Washington, DC 20052 USA. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Idaho State Univ, Pocatello, ID 83209 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Ist Nazl Fis Nucl, Sezione Genova, I-16146 Genoa, Italy. Inst Nucl Phys, Orsay, France. Inst Theoret & Expt Phys, Moscow 117259, Russia. James Madison Univ, Harrisonburg, VA 22807 USA. Kyungpook Natl Univ, Taegu 702701, South Korea. MIT, Cambridge, MA 02139 USA. Univ Massachusetts, Amherst, MA 01003 USA. Moscow MV Lomonosov State Univ, Skobeltsyn Nucl Phys Inst, Moscow 119899, Russia. Univ New Hampshire, Durham, NH 03824 USA. Norfolk State Univ, Norfolk, VA 23504 USA. Ohio Univ, Athens, OH 45701 USA. Old Dominion Univ, Norfolk, VA 23529 USA. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Rensselaer Polytech Inst, Troy, NY 12180 USA. Rice Univ, Houston, TX 77005 USA. Univ Richmond, Richmond, VA 23173 USA. Univ S Carolina, Columbia, SC 29208 USA. Union Coll, Schenectady, NY 12308 USA. Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. Coll William & Mary, Williamsburg, VA 23187 USA. RP Univ Connecticut, Storrs, CT 06269 USA. RI Ishkhanov, Boris/E-1431-2012; Brooks, William/C-8636-2013; Schumacher, Reinhard/K-6455-2013; Auger, Thierry/L-1073-2013; Meyer, Curtis/L-3488-2014; Sabatie, Franck/K-9066-2015; Osipenko, Mikhail/N-8292-2015; Zhang, Jixie/A-1461-2016; Ireland, David/E-8618-2010; Bektasoglu, Mehmet/A-2074-2012; Protopopescu, Dan/D-5645-2012; riccardi, gabriele/A-9269-2012; Zana, Lorenzo/H-3032-2012 OI Brooks, William/0000-0001-6161-3570; Schumacher, Reinhard/0000-0002-3860-1827; Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975; Osipenko, Mikhail/0000-0001-9618-3013; Ireland, David/0000-0001-7713-7011; NR 22 TC 19 Z9 19 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2005 VL 72 IS 5 AR 058202 DI 10.1103/PhysRevC.72.058202 PG 5 WC Physics, Nuclear SC Physics GA 988NI UT WOS:000233607500059 ER PT J AU Kopeliovich, BZ Nemchik, J Potashnikova, IK Johnson, MB Schmidt, I AF Kopeliovich, BZ Nemchik, J Potashnikova, IK Johnson, MB Schmidt, I TI Breakdown of QCD factorization at large Feynman x SO PHYSICAL REVIEW C LA English DT Article ID LARGE-TRANSVERSE-MOMENTUM; GLUON DISTRIBUTION-FUNCTIONS; DRELL-YAN PROCESS; ENERGY-LOSS; NUCLEUS COLLISIONS; DIMUON PRODUCTION; COLOR TRANSPARENCY; INCLUSIVE SPECTRA; J/PSI-PRODUCTION; A-DEPENDENCE AB Recent measurements by the BRAHMS Collaboration of high-p(T) hadron production at forward rapidities at the BNL Relativistic Heavy Ion Collider found the relative production rate (d-Au)/(p-p) to be suppressed rather than enhanced. Examining other known reactions (forward production of light hadrons, the Drell-Yan process, heavy flavor production, etc.), one notes that all of these display a similar property, namely, their cross sections in nuclei are suppressed at large x(F). Since this is the region where x(2) is minimal, it is tempting to interpret this as a manifestation of coherence or of a color glass condensate, whereas it is actually a simple consequence of energy conservation and takes place even at low energies. We demonstrate that in all these reactions there is a common suppression mechanism that can be viewed, alternatively, as a consequence of a reduced survival probability for large rapidity gap processes in nuclei, a Sudakov suppression, an enhanced resolution of higher Fock states by nuclei, or an effective energy loss that rises linearly with energy. Our calculations agree with the data. C1 Univ Tecn Santa Maria, Dept Fis, Valparaiso, Chile. Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. SAV, Inst Expt Phys, Kosice, Slovakia. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Univ Tecn Santa Maria, Dept Fis, Valparaiso, Chile. RI Schmidt, Ivan/J-5920-2012 NR 80 TC 91 Z9 91 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2005 VL 72 IS 5 AR 054606 DI 10.1103/PhysRevC.72.054606 PG 11 WC Physics, Nuclear SC Physics GA 988NI UT WOS:000233607500037 ER PT J AU Liddick, SN Mantica, PF Broda, R Brown, BA Carpenter, MP Davies, AD Fornal, B Horoi, M Janssens, RVF Morton, AC Mueller, WF Pavan, J Schatz, H Stolz, A Tabor, SL Tomlin, BE Wiedeking, M AF Liddick, SN Mantica, PF Broda, R Brown, BA Carpenter, MP Davies, AD Fornal, B Horoi, M Janssens, RVF Morton, AC Mueller, WF Pavan, J Schatz, H Stolz, A Tabor, SL Tomlin, BE Wiedeking, M TI beta-decay of odd-A Ti-57 and V-59 SO PHYSICAL REVIEW C LA English DT Article ID NEUTRON-RICH CHROMIUM; NICKEL ISOTOPES; SHELL CLOSURES; HALF-LIVES; DEFORMATION; NUCLEI; BEAMS; N=40 AB The beta-decay of odd-A, neutron-rich Ti-57 and V-59 are studied. More precise beta-decay half-lives of 98 +/- 5 and 97 +/- 2 ms are deduced for Ti-57 and V-59, respectively. In addition, beta-delayed gamma-ray spectroscopy is used to deduce beta-decay branching ratios and establish the low-energy-level structures of the daughter nuclides. The new data for levels in V-57 and Cr-59 are compared with the results of shell-model calculations completed in the full pf model space. Both V-57 and Cr-59 show evidence of modest oblate deformation near the ground state. C1 Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. RP Liddick, SN (reprint author), Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. RI Carpenter, Michael/E-4287-2015; Morton, Colin/K-1561-2015 OI Carpenter, Michael/0000-0002-3237-5734; Morton, Colin/0000-0003-0214-7551 NR 29 TC 16 Z9 16 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2005 VL 72 IS 5 AR 054321 DI 10.1103/PhysRevC.72.054321 PG 9 WC Physics, Nuclear SC Physics GA 988NI UT WOS:000233607500029 ER PT J AU Page, PR AF Page, PR TI New broad Be-8 nuclear resonances SO PHYSICAL REVIEW C LA English DT Article ID ALPHA-PARTICLE SCATTERING; R-MATRIX ANALYSIS; CROSS-SECTIONS; ELASTIC-SCATTERING; LI-7(P,N)BE-7 REACTION; LOW ENERGIES; ANGULAR-DISTRIBUTIONS; NEUTRON POLARIZATION; LI7(P,N)BE7 REACTION; EXCITED-STATES AB Energies, total and partial widths, and reduced width amplitudes of Be-8 resonances up to an excitation energy of 26 MeV are extracted from a coupled-channel analysis of experimental data. The presence of an extremely broad J(pi)=2(+) "intruder" resonance is confirmed, and new 1(+) and very broad 4(+) resonances are discovered. A previously known 22-MeV 2(+) resonance is likely resolved into two resonances. The experimental J(pi)T=3((+))? resonance at 22 MeV is determined to be 3(-)0, and the experimental 1(-)? (at 19 MeV) and 4(-)? resonances are determined to be isospin 0. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Page, PR (reprint author), Los Alamos Natl Lab, Div Theoret, MS B283, Los Alamos, NM 87545 USA. EM prp@lanl.gov RI Page, Philip/L-1885-2015 OI Page, Philip/0000-0002-2201-6703 NR 88 TC 6 Z9 6 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2005 VL 72 IS 5 AR 054312 DI 10.1103/PhysRevC.72.054312 PG 8 WC Physics, Nuclear SC Physics GA 988NI UT WOS:000233607500020 ER PT J AU Rohe, D Benhar, O Armstrong, CS Asaturyan, R Baker, OK Bueltmann, S Carasco, C Day, D Ent, R Fenker, HC Garrow, K Gasparian, A Gueye, P Hauger, M Honegger, A Jourdan, J Keppel, CE Kubon, G Lindgren, R Lung, A Mack, DJ Mitchell, JH Mkrtchyan, H Mocelj, D Normand, K Petitjean, T Rondon, O Segbefia, E Sick, I Stepanyan, S Tang, L Tiefenbacher, F Vulcan, WF Warren, G Wood, SA Yuan, L Zeier, M Zhu, H Zihlmann, B AF Rohe, D Benhar, O Armstrong, CS Asaturyan, R Baker, OK Bueltmann, S Carasco, C Day, D Ent, R Fenker, HC Garrow, K Gasparian, A Gueye, P Hauger, M Honegger, A Jourdan, J Keppel, CE Kubon, G Lindgren, R Lung, A Mack, DJ Mitchell, JH Mkrtchyan, H Mocelj, D Normand, K Petitjean, T Rondon, O Segbefia, E Sick, I Stepanyan, S Tang, L Tiefenbacher, F Vulcan, WF Warren, G Wood, SA Yuan, L Zeier, M Zhu, H Zihlmann, B CA E97-006 Collaborat TI Nuclear transparency from quasielastic C-12(e, e ' p) SO PHYSICAL REVIEW C LA English DT Article ID FINAL-STATE INTERACTIONS; PROTON PROPAGATION; SPECTRAL-FUNCTION; E,E'P REACTIONS; CROSS-SECTIONS; FINITE NUCLEI; SCATTERING; ENERGY; MATTER; DEPENDENCE AB We studied the reaction C-12(e,e(')p) in quasielastic kinematics at momentum transfers between 0.6 and 1.8 (GeV/c)(2) covering the single-particle region. From this the nuclear transparency factors are extracted using two methods. The results are compared to theoretical predictions obtained using a generalization of Glauber theory described in this paper. Furthermore, the momentum distribution in the region of the 1s-state up to momenta of 300 MeV/c is obtained from the data and compared to the correlated basis function theory and the independent-particle shell model. C1 Univ Basel, CH-4056 Basel, Switzerland. Univ Roma La Sapienza, Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. Yerevan Phys Inst, Yerevan 375036, Armenia. Hampton Univ, Hampton, VA 23668 USA. Univ Virginia, Charlottesville, VA 22903 USA. RP Rohe, D (reprint author), Univ Basel, CH-4056 Basel, Switzerland. EM Daniela.Rohe@unibas.ch RI Benhar, Omar/J-6044-2012; Rondon Aramayo, Oscar/B-5880-2013; carasco, Cedric/H-5463-2013; Day, Donal/C-5020-2015 OI Benhar, Omar/0000-0001-6818-9215; Day, Donal/0000-0001-7126-8934 NR 39 TC 18 Z9 18 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2005 VL 72 IS 5 AR 054602 DI 10.1103/PhysRevC.72.054602 PG 8 WC Physics, Nuclear SC Physics GA 988NI UT WOS:000233607500033 ER PT J AU Apollinari, G Barone, M Carithers, W Dell'Orso, M Dorigo, T Fiori, I Franklin, M Giannetti, P Giromini, P Happacher, F Miscetti, S Parri, A Ptohos, F Velev, G AF Apollinari, G Barone, M Carithers, W Dell'Orso, M Dorigo, T Fiori, I Franklin, M Giannetti, P Giromini, P Happacher, F Miscetti, S Parri, A Ptohos, F Velev, G TI Search for narrow resonances below the Upsilon mesons SO PHYSICAL REVIEW D LA English DT Article ID P(P)OVER-BAR COLLISIONS; E&E ANNIHILATION; ROOT-S=1.8 TEV; STATES; QUARK; MASS; CDF AB We have investigated the invariant mass spectrum of dimuons collected by the CDF experiment during the 1992-1995 run of the Fermilab Tevatron collider to improve the limit on the existence of narrow resonances set by the experiments at the SPEAR e(+)e(-) collider. In the mass range 6.3-9.0 GeV/c(2), we derive 90% upper credible limits to the ratio of the production cross section times muonic branching fraction of possible narrow resonances to that of the Upsilon(1S) meson. In this mass range, the average limit varies from 1.7 to 0.5%. This limit is much worse at the mass of 7.2 GeV/c(2) due to an excess of 250 +/- 61 events with a width consistent with the detector resolution. C1 Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Harvard Univ Hebaria, Cambridge, MA 02138 USA. Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Pisa, Ist Nazl Fis Nucl, I-56100 Pisa, Italy. Scuola Normale Super Pisa, I-56100 Pisa, Italy. Univ Padua, Ist Nazl Fis Nucl, Sez Padoova, I-35131 Padua, Italy. RP Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. OI Ptochos, Fotios/0000-0002-3432-3452 NR 26 TC 5 Z9 5 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2005 VL 72 IS 9 AR 092003 DI 10.1103/PhysRevD.72.092003 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 988NQ UT WOS:000233608300008 ER PT J AU Artamonov, AV Bassalleck, B Bhuyan, B Blackmore, EW Bryman, DA Chen, S Chiang, IH Christidi, I-A Cooper, PS Diwan, MV Frank, JS Fujiwara, T Hu, J Jaffe, DE Kabe, S Kettell, SH Khabibullin, MM Khotjantsev, AN Kitching, P Kobayashi, M Komatsubara, TK Konaka, A Kozhevnikov, AP Kudenko, YG Kushnirenko, A Landsberg, LG Lewis, B Li, KK Littenberg, LS Macdonald, JA Mildenberger, J Mineev, OV Miyajima, M Mizouchi, K Mukhin, VA Muramatsu, N Nakano, T Nomachi, M Nomura, T Numao, T Obraztsov, VF Omata, K Patalakha, DI Petrenko, SV Poutissou, R Ramberg, EJ Redlinger, G Sato, T Sekiguchi, T Shinkawa, T Strand, RC Sugimoto, S Tamagawa, Y Tschirhart, R Tsunemi, T Vavilov, DV Viren, B Yershov, NV Yoshimura, Y Yoshioka, T AF Artamonov, AV Bassalleck, B Bhuyan, B Blackmore, EW Bryman, DA Chen, S Chiang, IH Christidi, I-A Cooper, PS Diwan, MV Frank, JS Fujiwara, T Hu, J Jaffe, DE Kabe, S Kettell, SH Khabibullin, MM Khotjantsev, AN Kitching, P Kobayashi, M Komatsubara, TK Konaka, A Kozhevnikov, AP Kudenko, YG Kushnirenko, A Landsberg, LG Lewis, B Li, KK Littenberg, LS Macdonald, JA Mildenberger, J Mineev, OV Miyajima, M Mizouchi, K Mukhin, VA Muramatsu, N Nakano, T Nomachi, M Nomura, T Numao, T Obraztsov, VF Omata, K Patalakha, DI Petrenko, SV Poutissou, R Ramberg, EJ Redlinger, G Sato, T Sekiguchi, T Shinkawa, T Strand, RC Sugimoto, S Tamagawa, Y Tschirhart, R Tsunemi, T Vavilov, DV Viren, B Yershov, NV Yoshimura, Y Yoshioka, T CA E949 Collaborat TI Upper limit on the branching ratio for the decay pi 0 -> vv(-) SO PHYSICAL REVIEW D LA English DT Article ID ENDCAP PHOTON DETECTOR; NEUTRINO MASS; 500 MHZ; SEARCH; PERFORMANCE; MEV/C AB A sample of kinematically identified K+->pi(+)pi(0) decays obtained with the E949 detector was used to search for the helicity-suppressed decay pi(0)->nu(v) over bar(v) over bar resulting in an upper limit of 2.7x10(-7) at 90% confidence level. The upper limit is also applicable to pi(0) decays into unknown weakly-interacting particles. C1 Inst High Energy Phys, Protvino 142280, Moscow Region, Russia. Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. TRIUMF, Vancouver, BC V6T 2A3, Canada. Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. RAS, Inst Nucl Res, Moscow 117312, Russia. Univ Alberta, Ctr Subatom Res, Edmonton, AB T6G 2N5, Canada. Univ Fukui, Dept Appl Phys, Fukui 9108507, Japan. Osaka Univ, Res Ctr Nucl Phys, Osaka 5670047, Japan. Osaka Univ, Nucl Studies Lab, Osaka 5600043, Japan. Natl Def Acad, Dept Appl Phys, Kanagawa 2398686, Japan. Univ Delhi, Dept Phys & Astrophys, Delhi 110007, India. RP Inst High Energy Phys, Protvino 142280, Moscow Region, Russia. RI Khabibullin, Marat/O-1076-2013 NR 32 TC 26 Z9 26 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2005 VL 72 IS 9 AR 091102 DI 10.1103/PhysRevD.72.091102 PG 4 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 988NQ UT WOS:000233608300002 ER PT J AU Aubert, B Barate, R Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges-Pous, E Palano, A Pompili, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Borgland, AW Breon, AB Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Gritsan, AV Groysman, Y Jacobsen, RG Kadel, RW Kadyk, J Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Fritsch, M Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Schroeder, T Steinke, M Boyd, JT Chevalier, N Cottingham, WN Kelly, MP Latham, TE Wilson, FF Cuhadar-Donszelmann, T Hearty, C Knecht, NS Mattison, TS McKenna, JA Thiessen, D Khan, A Kyberd, P Teodorescu, L Blinov, AE Blinov, VE Druzhinin, VP Golubev, VB Ivanchenko, VN Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Yushkov, AN Best, D Bruinsma, M Chao, M Eschrich, I Kirkby, D Lankford, AJ Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Buchanan, C Hartfiel, BL Weinstein, AJR Foulkes, SD Gary, JW Long, O Shen, BC Wang, K del Re, D Hadavand, HK Hill, EJ MacFarlane, DB Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Lu, A Mazur, MA Richman, JD Verkerke, W Beck, TW Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dubois-Felsmann, GP Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Yang, S Jayatilleke, S Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, P Chen, S Ford, WT Nauenberg, U Olivas, A Rankin, P Ruddick, WO Smith, JG Ulmer, KA Zhang, J Zhang, L Chen, A Eckhart, EA Harton, JL Soffer, A Toki, WH Wilson, RJ Zeng, Q Spaan, B Altenburg, D Brandt, T Brose, J Dickopp, M Feltresi, E Hauke, A Lacker, HM Nogowski, R Otto, S Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Bernard, D Bonneaud, GR Grenier, P Schrenk, S Thiebaux, C Vasileiadis, G Verderi, M Bard, DJ Clark, PJ Muheim, F Playfer, S Xie, Y Andreotti, M Azzolini, V Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Piemontese, L Sarti, A Treadwell, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Patteri, P Peruzzi, IM Piccolo, M Zallo, A Buzzo, A Capra, R Contri, R Crosetti, G Lo Vetere, M Macri, M Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Bailey, S Brandenburg, G Chaisanguanthum, KS Morii, M Won, E Dubitzky, RS Langenegger, U Marks, J Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Gaillard, JR Morton, GW Nash, JA Nikolich, MB Taylor, GP Charles, MJ Grenier, GJ Mallik, U Cochran, J Crawley, HB Lamsa, J Meyer, WT Prell, S Rosenberg, EI Rubin, AE Yi, J Biasini, M Covarelli, R Pioppi, M Arnaud, N Davier, M Giroux, X Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Petersen, TC Plaszczynski, S Schune, MH Wormser, G Cheng, CH Lange, DJ Simani, MC Wright, DM Bevan, AJ Chavez, CA Coleman, JP Forster, IJ Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Parry, RJ Payne, DJ Touramanis, C Cormack, CM Di Lodovico, F Brown, CL Cowan, G Flack, RL Flaecher, HU Green, MG Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Winter, MA Brown, D Davis, CL Allison, J Barlow, NR Barlow, RJ Hodgkinson, MC Lafferty, GD Williams, JC Chen, C Farbin, A Hulsbergen, WD Jawahery, A Kovalskyi, D Lae, CK Lillard, V Roberts, DA Blaylock, G Dallapiccola, C Hertzbach, SS Kofler, R Koptchev, VB Moore, TB Saremi, S Staengle, H Willocq, S Cowan, R Koeneke, K Sciolla, G Sekula, SJ Taylor, F Yamamoto, RK Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Taras, P Nicholson, H Cavallo, N Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Wilden, L Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Brau, J Frey, R Igonkina, O Lu, M Potter, CT Sinev, NB Strom, D Torrence, E Colecchia, F Dorigo, A Galeazzi, F Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Briand, H Chauveau, J David, P de la Vaissiere, C Del Buono, L Hamon, O John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Guo, QH Panetta, J Angelini, C Batignani, G Bettarini, S Bondioli, M Bucci, F Calderini, G Carpinelli, M Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rama, M Rizzo, G Simi, G Walsh, J Haire, M Judd, D Paick, K Wagoner, DE Danielson, N Elmer, P Lau, YP Lu, C Miftakov, V Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Li Gioi, L Mazzoni, MA Morganti, S Pierini, M Piredda, G Polci, F Tehrani, FS Voena, C Christ, S Schroder, H Wagner, G Waldi, R Adye, T De Groot, N Franek, B Gopal, GP Olaiya, EO Aleksan, R Emery, S Gaidot, A Ganzhur, SF Giraud, PF de Monchenault, GH Kozanecki, W Legendre, M London, GW Mayer, B Schott, G Vasseur, G Yeche, C Zito, M Purohit, MV Weidemann, AW Wilson, JR Yumiceva, FX Abe, T Allen, M Aston, D Bartoldus, R Berger, N Boyarski, AM Buchmueller, OL Claus, R Convery, MR Cristinziani, M De Nardo, G Dingfelder, JC Dong, D Dorfan, J Dujmic, D Dunwoodie, W Fan, S Field, RC Glanzman, T Gowdy, SJ Hadig, T Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Libby, J Luitz, S Luth, V Lynch, HL Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Soha, A Stelzer, J Strube, J Su, D Sullivan, MK Thompson, J Va'vra, J Wagner, SR Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Ahmed, M Ahmed, S Alam, MS Ernst, JA Saeed, MA Saleem, M Wappler, FR Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Kim, H Ritchie, JL Satpathy, A Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Bona, M Gallo, F Gamba, D Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Poropat, P Vitale, L Vuagnin, G Martinez-Vidal, F Panvini, RS Banerjee, S Bhuyan, B Brown, CM Fortin, D Jackson, PD Kowalewski, R Roney, JM Sobie, RJ Back, JJ Harrison, PF Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Graham, M Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mihalyi, A Pan, Y Prepost, R Tan, P von Wimmersperg-Toeller, JH Wu, J Wu, SL Yu, Z Greene, MG Neal, H AF Aubert, B Barate, R Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges-Pous, E Palano, A Pompili, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Borgland, AW Breon, AB Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Gritsan, AV Groysman, Y Jacobsen, RG Kadel, RW Kadyk, J Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Fritsch, M Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Schroeder, T Steinke, M Boyd, JT Chevalier, N Cottingham, WN Kelly, MP Latham, TE Wilson, FF Cuhadar-Donszelmann, T Hearty, C Knecht, NS Mattison, TS McKenna, JA Thiessen, D Khan, A Kyberd, P Teodorescu, L Blinov, AE Blinov, VE Druzhinin, VP Golubev, VB Ivanchenko, VN Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Yushkov, AN Best, D Bruinsma, M Chao, M Eschrich, I Kirkby, D Lankford, AJ Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Buchanan, C Hartfiel, BL Weinstein, AJR Foulkes, SD Gary, JW Long, O Shen, BC Wang, K del Re, D Hadavand, HK Hill, EJ MacFarlane, DB Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Lu, A Mazur, MA Richman, JD Verkerke, W Beck, TW Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dubois-Felsmann, GP Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Yang, S Jayatilleke, S Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, P Chen, S Ford, WT Nauenberg, U Olivas, A Rankin, P Ruddick, WO Smith, JG Ulmer, KA Zhang, J Zhang, L Chen, A Eckhart, EA Harton, JL Soffer, A Toki, WH Wilson, RJ Zeng, Q Spaan, B Altenburg, D Brandt, T Brose, J Dickopp, M Feltresi, E Hauke, A Lacker, HM Nogowski, R Otto, S Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Bernard, D Bonneaud, GR Grenier, P Schrenk, S Thiebaux, C Vasileiadis, G Verderi, M Bard, DJ Clark, PJ Muheim, F Playfer, S Xie, Y Andreotti, M Azzolini, V Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Piemontese, L Sarti, A Treadwell, E Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Patteri, P Peruzzi, IM Piccolo, M Zallo, A Buzzo, A Capra, R Contri, R Crosetti, G Lo Vetere, M Macri, M Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Bailey, S Brandenburg, G Chaisanguanthum, KS Morii, M Won, E Dubitzky, RS Langenegger, U Marks, J Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Gaillard, JR Morton, GW Nash, JA Nikolich, MB Taylor, GP Charles, MJ Grenier, GJ Mallik, U Cochran, J Crawley, HB Lamsa, J Meyer, WT Prell, S Rosenberg, EI Rubin, AE Yi, J Biasini, M Covarelli, R Pioppi, M Arnaud, N Davier, M Giroux, X Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Petersen, TC Plaszczynski, S Schune, MH Wormser, G Cheng, CH Lange, DJ Simani, MC Wright, DM Bevan, AJ Chavez, CA Coleman, JP Forster, IJ Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Parry, RJ Payne, DJ Touramanis, C Cormack, CM Di Lodovico, F Brown, CL Cowan, G Flack, RL Flaecher, HU Green, MG Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Winter, MA Brown, D Davis, CL Allison, J Barlow, NR Barlow, RJ Hodgkinson, MC Lafferty, GD Williams, JC Chen, C Farbin, A Hulsbergen, WD Jawahery, A Kovalskyi, D Lae, CK Lillard, V Roberts, DA Blaylock, G Dallapiccola, C Hertzbach, SS Kofler, R Koptchev, VB Moore, TB Saremi, S Staengle, H Willocq, S Cowan, R Koeneke, K Sciolla, G Sekula, SJ Taylor, F Yamamoto, RK Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Taras, P Nicholson, H Cavallo, N Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Wilden, L Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Brau, J Frey, R Igonkina, O Lu, M Potter, CT Sinev, NB Strom, D Torrence, E Colecchia, F Dorigo, A Galeazzi, F Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Briand, H Chauveau, J David, P de la Vaissiere, C Del Buono, L Hamon, O John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Guo, QH Panetta, J Angelini, C Batignani, G Bettarini, S Bondioli, M Bucci, F Calderini, G Carpinelli, M Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rama, M Rizzo, G Simi, G Walsh, J Haire, M Judd, D Paick, K Wagoner, DE Danielson, N Elmer, P Lau, YP Lu, C Miftakov, V Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Li Gioi, L Mazzoni, MA Morganti, S Pierini, M Piredda, G Polci, F Tehrani, FS Voena, C Christ, S Schroder, H Wagner, G Waldi, R Adye, T De Groot, N Franek, B Gopal, GP Olaiya, EO Aleksan, R Emery, S Gaidot, A Ganzhur, SF Giraud, PF de Monchenault, GH Kozanecki, W Legendre, M London, GW Mayer, B Schott, G Vasseur, G Yeche, C Zito, M Purohit, MV Weidemann, AW Wilson, JR Yumiceva, FX Abe, T Allen, M Aston, D Bartoldus, R Berger, N Boyarski, AM Buchmueller, OL Claus, R Convery, MR Cristinziani, M De Nardo, G Dingfelder, JC Dong, D Dorfan, J Dujmic, D Dunwoodie, W Fan, S Field, RC Glanzman, T Gowdy, SJ Hadig, T Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Libby, J Luitz, S Luth, V Lynch, HL Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Soha, A Stelzer, J Strube, J Su, D Sullivan, MK Thompson, J Va'vra, J Wagner, SR Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Ahmed, M Ahmed, S Alam, MS Ernst, JA Saeed, MA Saleem, M Wappler, FR Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Kim, H Ritchie, JL Satpathy, A Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Bona, M Gallo, F Gamba, D Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Poropat, P Vitale, L Vuagnin, G Martinez-Vidal, F Panvini, RS Banerjee, S Bhuyan, B Brown, CM Fortin, D Jackson, PD Kowalewski, R Roney, JM Sobie, RJ Back, JJ Harrison, PF Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Graham, M Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mihalyi, A Pan, Y Prepost, R Tan, P von Wimmersperg-Toeller, JH Wu, J Wu, SL Yu, Z Greene, MG Neal, H CA BABAR Collaborat TI Search for the radiative decay B-0 ->phi gamma SO PHYSICAL REVIEW D LA English DT Article ID NONLEPTONIC B-DECAYS; CP-VIOLATION AB We perform a search for the exclusive radiative decay B-0->phi gamma, which is dominated by (b) over bard annihilation, in a sample of 124x10(6) B (B) over bar events collected with the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) storage ring at SLAC. No significant signal is seen. We set an upper limit on the branching fraction of B(B-0->phi gamma)< 8.5x10(-7) at the 90% confidence level. C1 Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Autonoma Barcelona, E-08193 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Lawrence Berkeley Lab, Berkeley, CA USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. CALTECH, Pasadena, CA 91125 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. Univ Cincinnati, Cincinnati, OH 45215 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. LLR, Ecole Polytech, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Florida A&M Univ, Tallahassee, FL 32307 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Lab Accelerateur Lineaire, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 72E, Merseyside, England. Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Lab Rene J A Levesque, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF H, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, E-46100 Valencia, Spain. Vanderbilt Univ, Nashville, TN 37235 USA. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. Univ Basilicata, I-85100 Potenza, Italy. RP Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Grancagnolo, Sergio/J-3957-2015; M, Saleem/B-9137-2013; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Negrini, Matteo/C-8906-2014; Luppi, Eleonora/A-4902-2015; Monge, Maria Roberta/G-9127-2012; crosetti, nanni/H-3040-2011; Saeed, Mohammad Alam/J-7455-2012; Oyanguren, Arantza/K-6454-2014; Kravchenko, Evgeniy/F-5457-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Lista, Luca/C-5719-2008; Cavallo, Nicola/F-8913-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Neri, Nicola/G-3991-2012; Rotondo, Marcello/I-6043-2012; Forti, Francesco/H-3035-2011; Sarti, Alessio/I-2833-2012; de Groot, Nicolo/A-2675-2009; Peters, Klaus/C-2728-2008; Bellini, Fabio/D-1055-2009; Roe, Natalie/A-8798-2012 OI Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Grancagnolo, Sergio/0000-0001-8490-8304; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Negrini, Matteo/0000-0003-0101-6963; Luppi, Eleonora/0000-0002-1072-5633; Monge, Maria Roberta/0000-0003-1633-3195; Saeed, Mohammad Alam/0000-0002-3529-9255; Oyanguren, Arantza/0000-0002-8240-7300; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Neri, Nicola/0000-0002-6106-3756; Rotondo, Marcello/0000-0001-5704-6163; Forti, Francesco/0000-0001-6535-7965; Sarti, Alessio/0000-0001-5419-7951; Peters, Klaus/0000-0001-7133-0662; Bellini, Fabio/0000-0002-2936-660X; NR 16 TC 126 Z9 126 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2005 VL 72 IS 9 AR 091103 DI 10.1103/PhysRevD.72.091103 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 988NQ UT WOS:000233608300003 ER PT J AU Aubert, B Barate, R Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Pappagallo, M Pompili, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Breon, AB Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Gritsan, AV Groysman, Y Jacobsen, RG Kadel, RW Kadyk, J Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Fritsch, M Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Chevalier, N Cottingham, WN Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, AE Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Yushkov, AN Best, D Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Buchanan, C Hartfiel, BL Weinstein, AJR Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L del Re, D Hadavand, HK Hill, EJ MacFarlane, DB Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Mazur, MA Richman, JD Verkerke, W Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dubois-Felsmann, GP Dvoretskii, A Hitlin, DG Minamora, JS Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, P Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Zeng, Q Altenburg, D Feltresi, E Hauke, A Spaan, B Brandt, T Brose, J Dickopp, M Klose, V Lacker, HM Nogowski, R Otto, S Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Bernard, D Bonneaud, GR Grenier, P Schrenk, S Thiebaux, C Vasileiadis, G Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Xie, Y Andreotti, M Azzolini, V Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Piemontese, L Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Patteri, P Peruzzi, IM Piccolo, M Zallo, A Buzzo, A Capra, R Contri, R Vetere, ML Macri, M Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Won, E Wu, J Dubitzky, RS Langenegger, U Marks, J Schenk, S Uwer, U Schott, G Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mader, WF Mallik, U Mohapatra, AK Ziegler, V Cochran, J Crawley, HB Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Yi, J Arnaud, N Davier, M Giroux, X Grosdidier, G Hocker, A Diberder, FL Lepeltier, V Lutz, AM Oyanguren, A Petersen, TC Plaszczynski, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wormser, G Cheng, CH Lange, DJ Simani, MC Wright, DM Bevan, AJ Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Parry, RJ Payne, DJ Schofield, KC Touramanis, C Cormack, CM Lodovico, FD Menges, W Sacco, R Brown, CL Cowan, G Flaecher, HU Green, MG Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, D Davis, CL Allison, J Barlow, NR Barlow, RJ Edgar, CL Hodgkinson, MC Kelly, MP Lafferty, GD Naisbit, MT Williams, JC Chen, C Hulsbergen, WD Jawahery, A Kovalskyi, D Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Kofler, R Koptchev, VB Li, X Moore, TB Saremi, S Staengle, H Willocq, S Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Taras, P Viaud, B Nicholson, H Cavallo, N Nardo, GD Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Wilden, L Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Brau, J Frey, R Igonkina, O Lu, M Potter, CT Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Briand, H Chauveau, J David, P Buono, LD de la Vaissiere, C Hamon, O John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Guo, QH Panetta, J Biasini, M Covarelli, R Pacetti, S Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rama, M Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Marco, ED Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Schroder, H Wagner, G Waldi, R Adye, T Groot, ND Franek, B Gopal, GP Olaiya, EO Wilson, FF Aleksan, R Emery, S Gaidot, A Ganzhur, SF Graziani, G de Monchenault, GH Kozanecki, W Legendre, M London, GW Mayer, B Vasseur, G Yeche, C Zito, M Purohit, MV Weidemann, AW Wilson, JR Yumiceva, FX Abe, T Allen, MT Aston, D Bartoldus, R Berger, N Boyarski, AM Buchmueller, OL Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dujmic, D Dunwoodie, W Fan, S Field, RC Glanzman, T Gowdy, SJ Hadig, T Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Libby, J Luitz, S Luth, V Lynch, HL Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Ahmed, M Ahmed, S Alam, MS Bula, R Ernst, JA Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Bona, M Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Ricca, GD Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Martinez-Vidal, F Panvini, RS Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Graham, M Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Pan, Y Pierini, M Prepost, R Tan, P Wu, SL Yu, Z Neal, H AF Aubert, B Barate, R Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Pappagallo, M Pompili, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Breon, AB Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Gritsan, AV Groysman, Y Jacobsen, RG Kadel, RW Kadyk, J Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Fritsch, M Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Chevalier, N Cottingham, WN Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, AE Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Yushkov, AN Best, D Bondioli, M Bruinsma, M Chao, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Buchanan, C Hartfiel, BL Weinstein, AJR Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L del Re, D Hadavand, HK Hill, EJ MacFarlane, DB Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Mazur, MA Richman, JD Verkerke, W Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dubois-Felsmann, GP Dvoretskii, A Hitlin, DG Minamora, JS Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, P Chen, S Ford, WT Hirschauer, JF Kreisel, A Nauenberg, U Olivas, A Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Zeng, Q Altenburg, D Feltresi, E Hauke, A Spaan, B Brandt, T Brose, J Dickopp, M Klose, V Lacker, HM Nogowski, R Otto, S Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Bernard, D Bonneaud, GR Grenier, P Schrenk, S Thiebaux, C Vasileiadis, G Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Xie, Y Andreotti, M Azzolini, V Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Piemontese, L Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Patteri, P Peruzzi, IM Piccolo, M Zallo, A Buzzo, A Capra, R Contri, R Vetere, ML Macri, M Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Brandenburg, G Chaisanguanthum, KS Morii, M Won, E Wu, J Dubitzky, RS Langenegger, U Marks, J Schenk, S Uwer, U Schott, G Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Nash, JA Nikolich, MB Vazquez, WP Chai, X Charles, MJ Mader, WF Mallik, U Mohapatra, AK Ziegler, V Cochran, J Crawley, HB Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Yi, J Arnaud, N Davier, M Giroux, X Grosdidier, G Hocker, A Diberder, FL Lepeltier, V Lutz, AM Oyanguren, A Petersen, TC Plaszczynski, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wormser, G Cheng, CH Lange, DJ Simani, MC Wright, DM Bevan, AJ Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Parry, RJ Payne, DJ Schofield, KC Touramanis, C Cormack, CM Lodovico, FD Menges, W Sacco, R Brown, CL Cowan, G Flaecher, HU Green, MG Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, D Davis, CL Allison, J Barlow, NR Barlow, RJ Edgar, CL Hodgkinson, MC Kelly, MP Lafferty, GD Naisbit, MT Williams, JC Chen, C Hulsbergen, WD Jawahery, A Kovalskyi, D Lae, CK Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Kofler, R Koptchev, VB Li, X Moore, TB Saremi, S Staengle, H Willocq, S Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Taras, P Viaud, B Nicholson, H Cavallo, N Nardo, GD Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Wilden, L Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Brau, J Frey, R Igonkina, O Lu, M Potter, CT Sinev, NB Strom, D Strube, J Torrence, E Galeazzi, F Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Briand, H Chauveau, J David, P Buono, LD de la Vaissiere, C Hamon, O John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Guo, QH Panetta, J Biasini, M Covarelli, R Pacetti, S Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rama, M Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Marco, ED Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Schroder, H Wagner, G Waldi, R Adye, T Groot, ND Franek, B Gopal, GP Olaiya, EO Wilson, FF Aleksan, R Emery, S Gaidot, A Ganzhur, SF Graziani, G de Monchenault, GH Kozanecki, W Legendre, M London, GW Mayer, B Vasseur, G Yeche, C Zito, M Purohit, MV Weidemann, AW Wilson, JR Yumiceva, FX Abe, T Allen, MT Aston, D Bartoldus, R Berger, N Boyarski, AM Buchmueller, OL Claus, R Coleman, JP Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dujmic, D Dunwoodie, W Fan, S Field, RC Glanzman, T Gowdy, SJ Hadig, T Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Libby, J Luitz, S Luth, V Lynch, HL Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Ahmed, M Ahmed, S Alam, MS Bula, R Ernst, JA Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Bona, M Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Ricca, GD Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Martinez-Vidal, F Panvini, RS Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Graham, M Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Pan, Y Pierini, M Prepost, R Tan, P Wu, SL Yu, Z Neal, H CA BABAR Collaboration TI Measurement of the branching ratios Gamma(D-s(*+)-> D-s(+)pi(0))/Gamma(D-s(*+)-> D-s(+)gamma) and Gamma(D-*0 -> D-0 pi(0))/Gamma(D-*0 -> D-0 gamma) SO PHYSICAL REVIEW D LA English DT Article ID DECAY AB Data samples corresponding to the isospin-violating decay D-s(*+)-> D-s(+)pi(0) and the decays D-s(*+)-> D-s(+)gamma, D-*0 -> D-0 pi(0) and D-*0 -> D-0 gamma are reconstructed using 90.4 fb(-1) of data recorded by the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) collider. The following branching ratios are extracted: Gamma(D-s(*+)-> D-s(+)pi(0))/Gamma(D-s(*+)-> D-s(+)gamma)=0.062 +/- 0.005(stat.)+/- 0.006(syst.) and Gamma(D-*0 -> D-0 pi(0))/Gamma(D-*0 -> D-0 gamma)=1.74 +/- 0.02(stat.)+/- 0.13(syst.). Both measurements represent significant improvements over present world averages. C1 Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Autonoma Barcelona, IFAE, E-08193 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Univ Bari, Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. LLR, Ecole Polytech, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Univ Ferrara, Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Univ Genoa, Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Lab Accelerateur Lineaire, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 72E, Merseyside, England. Univ London, London E1 4NS, England. Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Univ Milan, Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Lab Rene JA Leves, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Univ Naples Federico II, Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF H, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Univ Padua, Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Perugia, Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Univ Pisa, Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Univ Roma La Sapienza, Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Univ Turin, Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Univ Trieste, Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. Vanderbilt Univ, Nashville, TN 37235 USA. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Neri, Nicola/G-3991-2012; Roe, Natalie/A-8798-2012; Rotondo, Marcello/I-6043-2012; Lo Vetere, Maurizio/J-5049-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Peters, Klaus/C-2728-2008; de Groot, Nicolo/A-2675-2009; Grancagnolo, Sergio/J-3957-2015; Della Ricca, Giuseppe/B-6826-2013; Mir, Lluisa-Maria/G-7212-2015; M, Saleem/B-9137-2013; Oyanguren, Arantza/K-6454-2014; Lista, Luca/C-5719-2008; Cavallo, Nicola/F-8913-2012; Patrignani, Claudia/C-5223-2009; Kravchenko, Evgeniy/F-5457-2015; Forti, Francesco/H-3035-2011; Martinez Vidal, F*/L-7563-2014; Monge, Maria Roberta/G-9127-2012; Kolomensky, Yury/I-3510-2015; Di Lodovico, Francesca/L-9109-2016; Morandin, Mauro/A-3308-2016; Bellini, Fabio/D-1055-2009; Calabrese, Roberto/G-4405-2015; Luppi, Eleonora/A-4902-2015; Frey, Raymond/E-2830-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; crosetti, nanni/H-3040-2011; Sarti, Alessio/I-2833-2012 OI Neri, Nicola/0000-0002-6106-3756; Rotondo, Marcello/0000-0001-5704-6163; Lo Vetere, Maurizio/0000-0002-6520-4480; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Peters, Klaus/0000-0001-7133-0662; Grancagnolo, Sergio/0000-0001-8490-8304; Della Ricca, Giuseppe/0000-0003-2831-6982; Mir, Lluisa-Maria/0000-0002-4276-715X; Oyanguren, Arantza/0000-0002-8240-7300; Patrignani, Claudia/0000-0002-5882-1747; Forti, Francesco/0000-0001-6535-7965; Martinez Vidal, F*/0000-0001-6841-6035; Monge, Maria Roberta/0000-0003-1633-3195; Kolomensky, Yury/0000-0001-8496-9975; Di Lodovico, Francesca/0000-0003-3952-2175; Morandin, Mauro/0000-0003-4708-4240; Bellini, Fabio/0000-0002-2936-660X; Calabrese, Roberto/0000-0002-1354-5400; Luppi, Eleonora/0000-0002-1072-5633; Frey, Raymond/0000-0003-0341-2636; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Sarti, Alessio/0000-0001-5419-7951 NR 10 TC 374 Z9 376 U1 2 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2005 VL 72 IS 9 AR 091101 DI 10.1103/PhysRevD.72.091101 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 988NQ UT WOS:000233608300001 ER PT J AU Basak, S Edwards, RG Fleming, GT Heller, UM Morningstar, C Richards, D Sato, I Wallace, S AF Basak, S Edwards, RG Fleming, GT Heller, UM Morningstar, C Richards, D Sato, I Wallace, S TI Group-theoretical construction of extended baryon operators in lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID EUCLIDEAN FERMI FIELDS; POSITIVE-STRANGENESS; RESONANCE; GEV/C; FORMULA; STRINGS; SPECTRA; SYSTEM; STATE AB The design and implementation of large sets of spatially extended, gauge-invariant operators for use in determining the spectrum of baryons in lattice QCD computations are described. Group-theoretical projections onto the irreducible representations of the symmetry group of a cubic spatial lattice are used in all isospin channels. The operators are constructed to maximize overlaps with the low-lying states of interest, while minimizing the number of sources needed in computing the required quark propagators. Issues related to the identification of the spin quantum numbers of the states in the continuum limit are addressed. C1 Univ Maryland, Dept Phys, College Pk, MD 20742 USA. Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. Yale Univ, Sloane Phys Lab, New Haven, CT 06520 USA. Amer Phys Soc, Ridge, NY 11961 USA. Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. RP Univ Maryland, Dept Phys, College Pk, MD 20742 USA. RI Fleming, George/L-6614-2013; Morningstar, Colin/N-6925-2014; OI Fleming, George/0000-0002-4987-7167; Morningstar, Colin/0000-0002-0607-9923; Heller, Urs M./0000-0002-2780-5584 NR 35 TC 55 Z9 55 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2005 VL 72 IS 9 AR 094506 DI 10.1103/PhysRevD.72.094506 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 988NQ UT WOS:000233608300058 ER PT J AU Becher, T Hill, RJ Neubert, M AF Becher, T Hill, RJ Neubert, M TI Factorization in B -> V gamma decays SO PHYSICAL REVIEW D LA English DT Article ID COLLINEAR EFFECTIVE THEORY; MESON FORM-FACTORS; TO-LEADING ORDER; K-ASTERISK-GAMMA; QCD FACTORIZATION; HEAVY-QUARK; SPECTATOR INTERACTIONS; ASYMPTOTIC-EXPANSION; BRANCHING RATIOS; SYMMETRY AB The factorization properties of the radiative decays B -> V gamma are analyzed at leading order in 1/m(b) using the soft-collinear effective theory. It is shown that the decay amplitudes can be expressed in terms of a B -> V form factor evaluated at q(2)=0, light-cone distribution amplitudes of the B and V mesons, and calculable hard-scattering kernels. The renormalization-group equations in the effective theory are solved to resum perturbative logarithms of the different scales in the decay process. Phenomenological implications for the B -> K-*gamma branching ratio, isospin asymmetry, and CP asymmetries are discussed, with particular emphasis on possible effects from physics beyond the standard model. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Cornell Univ, Inst High Energy Phenomenol, Newman Lab Elementary Particle Phys, Ithaca, NY 14853 USA. RP Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RI Hill, Richard/C-8820-2017 OI Hill, Richard/0000-0003-1982-589X NR 60 TC 38 Z9 38 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2005 VL 72 IS 9 AR 094017 DI 10.1103/PhysRevD.72.094017 PG 32 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 988NQ UT WOS:000233608300035 ER PT J AU Bertone, G Zentner, AR Silk, J AF Bertone, G Zentner, AR Silk, J TI New signature of dark matter annihilations: Gamma rays from intermediate-mass black holes SO PHYSICAL REVIEW D LA English DT Article ID MEASURING GRAVITATIONAL-WAVES; UNIVERSAL DENSITY PROFILE; SPACE-TELESCOPE EVIDENCE; GLOBULAR-CLUSTER M15; DAY GALACTIC HALOES; 1ST STARS; VELOCITY DISPERSION; LUMINOUS QUASARS; HIGH-REDSHIFT; GALAXIES AB We study the prospects for detecting gamma rays from dark matter (DM) annihilations in enhancements of the DM density (mini-spikes) around intermediate-mass black holes (IMBH) with masses in the range 10(2)less than or similar to M/M less than or similar to 10(6). Focusing on two different IMBH formation scenarios, we show that, for typical values of mass and cross section of common DM candidates, mini-spikes, produced by the adiabatic growth of DM around pregalactic IMBHs, would be bright sources of gamma rays, which could be easily detected with large field-of-view gamma-ray experiments such as GLAST, and further studied with smaller field-of-view, larger-area experiments like Air Cherenkov Telescopes CANGAROO, HESS, MAGIC, and VERITAS. The detection of many gamma-ray sources not associated with a luminous component of the Local Group, and with identical cutoffs in their energy spectra at the mass of the DM particle, would provide a potential smoking-gun signature of DM annihilations and shed new light on the nature of intermediate and supermassive black holes. C1 Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Bertone, G (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. OI silk, joe/0000-0002-1566-8148 NR 91 TC 106 Z9 106 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2005 VL 72 IS 10 AR 103517 DI 10.1103/PhysRevD.72.103517 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 988NV UT WOS:000233608800033 ER PT J AU Bodwin, GT Braaten, E Lee, J AF Bodwin, GT Braaten, E Lee, J TI Exclusive double-charmonium production from e(+)e(-) annihilation into two virtual photons (vol 67, pg 054023, 2003) SO PHYSICAL REVIEW D LA English DT Correction C1 Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. Korea Univ, Dept Phys, Seoul 136701, South Korea. RP Bodwin, GT (reprint author), Argonne Natl Lab, Div High Energy Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 2 TC 17 Z9 17 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2005 VL 72 IS 9 AR 099904 DI 10.1103/PhysRevD.72.099904 PG 2 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 988NQ UT WOS:000233608300103 ER PT J AU Cheng, HY Chua, CK Soni, A AF Cheng, HY Chua, CK Soni, A TI CP-violating asymmetries in B-0 decays to (K+K-KS(L)0) and (KSKSKS(L)0)-K-0-K-0 SO PHYSICAL REVIEW D LA English DT Article ID HEAVY-QUARK; QCD FACTORIZATION; RESONANCES; PHYSICS; WIDTHS AB Decay rates and time-dependent and direct CP asymmetries in the decays B-0 -> K+K-KS(L) and KSKSKS(L) are studied. Resonant and nonresonant contributions to the three-body decays are carefully investigated. Nonresonant effects on two-body and three-body matrix elements are constrained by QCD counting rules. The predicted branching ratios are consistent with the data within the theoretical and experimental errors, though the theoretical central values are somewhat smaller than the experimental ones. Owing to the presence of color-allowed tree amplitudes in B-0 -> K+K-KS(L), this penguin-dominated mode may be subject to a potentially significant tree pollution and the deviation of the mixing-induced CP asymmetry from that measured in B -> J/psi K-S, namely, Delta sin2 beta+KK-KS(L)equivalent to sin2 beta+KK-KS(L)-sin2 beta(J/psi KS), can be as large as O(0.10). In contrast, the KSKSKS(L) modes appear theoretically very clean in our picture with negligible theoretical errors in Delta sin2 beta(KSKSKS(L)). Direct CP asymmetries in K+K-KS(L) and KSKSKS(L) modes are found to be very small. C1 Acad Sinica, Inst Phys, Taipei 115, Taiwan. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Acad Sinica, Inst Phys, Taipei 115, Taiwan. NR 59 TC 59 Z9 59 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2005 VL 72 IS 9 AR 094003 DI 10.1103/PhysRevD.72.094003 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 988NQ UT WOS:000233608300021 ER PT J AU Dodelson, S Kolb, EW Matarrese, S Riotto, A Zhang, P AF Dodelson, S Kolb, EW Matarrese, S Riotto, A Zhang, P TI Second order geodesic corrections to cosmic shear SO PHYSICAL REVIEW D LA English DT Article ID LARGE-SCALE STRUCTURE; POWER SPECTRUM; COSMOLOGICAL PARAMETERS; PERTURBATIONS; SIMULATIONS; BARYONS; SPACE AB We consider the impact of second order corrections to the geodesic equation governing gravitational lensing. We start from the full second order metric, including scalar, vector, and tensor perturbations, and retain all relevant contributions to the cosmic shear corrections that are second order in the gravitational potential. The relevant terms are: the nonlinear evolution of the scalar gravitational potential, the Born correction, and lens-lens coupling. No other second order terms contribute appreciably to the lensing signal. Since ray-tracing algorithms currently include these three effects, this derivation serves as rigorous justification for the numerical predictions. C1 Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. Univ Padua, Dipartimento Fis G Galilei, Padua, Italy. Ist Nazl Fis Nucl, Sezione Padova, I-35131 Padua, Italy. RP Dodelson, S (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. RI ZHANG, PENGJIE/O-2825-2015 NR 26 TC 16 Z9 16 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2005 VL 72 IS 10 AR 103004 DI 10.1103/PhysRevD.72.103004 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 988NV UT WOS:000233608800011 ER PT J AU Friess, JJ Gubser, SS Mitra, I AF Friess, JJ Gubser, SS Mitra, I TI Counterexamples to the correlated stability conjecture SO PHYSICAL REVIEW D LA English DT Article ID YANG-MILLS THEORY; BLACK STRINGS; P-BRANES AB We demonstrate explicit counterexamples to the correlated stability conjecture (CSC), which claims that the horizon of a black brane is unstable precisely if that horizon has a thermodynamic instability, meaning that its matrix of susceptibilities has a negative eigenvalue. These examples involve phase transitions near the horizon. Ways to restrict or revise the CSC are suggested. One of our examples shows that N=1(*) gauge theory has a second-order chiral symmetry breaking phase transition at a temperature well above the confinement scale. C1 Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA. Univ Calif Berkeley, Ctr Theoret Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Friess, JJ (reprint author), Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA. NR 19 TC 19 Z9 19 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2005 VL 72 IS 10 AR 104019 DI 10.1103/PhysRevD.72.104019 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 988NV UT WOS:000233608800061 ER PT J AU Garvey, GT Green, A Green, C Louis, WC Mills, GB McGregor, G Ray, H Schirato, R Van de Water, RG White, DH AF Garvey, GT Green, A Green, C Louis, WC Mills, GB McGregor, G Ray, H Schirato, R Van de Water, RG White, DH TI Measuring active-sterile neutrino oscillations with a stopped pion neutrino source SO PHYSICAL REVIEW D LA English DT Article ID ASTROPHYSICS AB The possible existence of light sterile neutrinos is of great interest in many areas of particle physics, astrophysics, and cosmology. Furthermore, should the MiniBooNE experiment at Fermilab confirm the Liquid Scintillating Neutrino Detector (LSND) oscillation signal, then new measurements are required to identify the mechanism responsible for these oscillations. Possibilities include sterile neutrinos, CP or CPT violation, variable mass neutrinos, Lorentz violation, and extra dimensions. In this paper, we consider an experiment at a stopped pion neutrino source to determine if active-sterile neutrino oscillations with Delta m(2) greater than 0.1 eV(2) can account for the signal. By exploiting stopped pi(+) decay to produce a monoenergetic nu(mu) source, and measuring the rate of the neutral current reaction nu C-12(x)->nu C-12(x)*(15.11) as a function of distance from the source, we show that a convincing test for active-sterile neutrino oscillations can be performed. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Los Alamos Natl Lab, Los Alamos, NM 87545 USA. OI Louis, William/0000-0002-7579-3709 NR 32 TC 22 Z9 22 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2005 VL 72 IS 9 AR 092001 DI 10.1103/PhysRevD.72.092001 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 988NQ UT WOS:000233608300006 ER PT J AU Grossman, Y Hocker, A Ligeti, Z Pirjol, D AF Grossman, Y Hocker, A Ligeti, Z Pirjol, D TI Testing the dynamics of B ->pi pi and constraints on alpha SO PHYSICAL REVIEW D LA English DT Article ID QCD FACTORIZATION; CHARMING PENGUINS; CP VIOLATION; DECAYS; GAMMA AB In charmless nonleptonic B decays to pi pi or rho rho, the "color allowed" and "color suppressed" tree amplitudes can be studied in a systematic expansion in alpha(s)(m(b)) and Lambda(QCD)/m(b). At leading order in this expansion their relative strong phase vanishes. The implications of this prediction are obscured by penguin contributions. We propose to use this prediction to test the relative importance of the various penguin amplitudes using experimental data. The present B ->pi pi data suggest that there are large corrections to the heavy quark limit, which can be due to power corrections to the tree amplitudes, large up-penguin amplitude, or enhanced weak annihilation. Because the penguin contributions are smaller, the heavy quark limit is more consistent with the B ->rho rho data, and its implications may become important for the extraction of alpha from this mode in the future. C1 Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. Boston Univ, Dept Phys, Boston, MA 02215 USA. Harvard Univ, Jefferson Lab Phys, Cambridge, MA 02138 USA. Univ Paris 11, F-91898 Orsay, France. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. RP Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. NR 40 TC 10 Z9 10 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2005 VL 72 IS 9 AR 094033 DI 10.1103/PhysRevD.72.094033 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 988NQ UT WOS:000233608300051 ER PT J AU Holstein, BR Pascalutsa, V Vanderhaeghen, M AF Holstein, BR Pascalutsa, V Vanderhaeghen, M TI Sum rules for magnetic moments and polarizabilities in QED and chiral effective-field theory SO PHYSICAL REVIEW D LA English DT Article ID ELECTROMAGNETIC FORM-FACTORS; COMPTON-SCATTERING; PERTURBATION-THEORY; NUCLEON; PROTON; THRESHOLD; ELECTRON AB We elaborate on a recently proposed extension of the Gerasimov-Drell-Hearn (GDH) sum rule which is achieved by taking derivatives with respect to the anomalous magnetic moment. The new sum rule features a linear relation between the anomalous magnetic moment and the dispersion integral over a cross section quantity. We find some analogy of the linearized form of the GDH sum rule with the "sideways dispersion relations." As an example, we apply the linear sum rule to reproduce the famous Schwinger's correction to the magnetic moment in QED from a tree-level cross section calculation and outline the procedure for computing the two-loop correction from a one-loop cross section calculation. The polarizabilities of the electron in QED are considered as well by using the other forward-Compton-scattering sum rules. We also employ the sum rules to study the magnetic moment and polarizabilities of the nucleon in a relativistic chiral effective field theory (EFT) framework. In particular we investigate the chiral extrapolation of these quantities. C1 JLab, Theory Grp, Newport News, VA 23606 USA. Univ Massachusetts, Dept Phys, LGRT, Amherst, MA 01003 USA. Coll William & Mary, Dept Phys, Williamsburg, VA 23188 USA. RP Holstein, BR (reprint author), JLab, Theory Grp, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM holstein@physics.umas.edu; vlad@jlab.org; marcvdh@jlab.org OI Pascalutsa, Vladimir/0000-0002-2613-6104 NR 37 TC 29 Z9 30 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2005 VL 72 IS 9 AR 094014 DI 10.1103/PhysRevD.72.094014 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 988NQ UT WOS:000233608300032 ER PT J AU Hou, WS Nagashima, M Soddu, A AF Hou, WS Nagashima, M Soddu, A TI Baryon number violation involving higher generations SO PHYSICAL REVIEW D LA English DT Article ID NUCLEON DECAY; PHYSICS AB Proton stability seems to constrain rather strongly any baryon number violating process. We investigate the possibility of baryon number violating processes involving right-handed dynamics or higher generation quarks. Our results strongly suggest that there will be no possibility to observe baryon number violation in tau or higher generation quark decays, at any future machine. C1 Natl Taiwan Univ, Dept Phys, Taipei 106, Taiwan. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. RP Natl Taiwan Univ, Dept Phys, Taipei 106, Taiwan. NR 20 TC 11 Z9 11 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2005 VL 72 IS 9 AR 095001 DI 10.1103/PhysRevD.72.095001 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 988NQ UT WOS:000233608300063 ER PT J AU Mandal, SK Klein, SR Jackson, JD AF Mandal, SK Klein, SR Jackson, JD TI Cherenkov radiation from e(+)e(-) pairs and its effect on nu(e) induced showers SO PHYSICAL REVIEW D LA English DT Article ID PARTICLES AB We calculate the Cherenkov radiation from an e(+)e(-) pair at small separations, as occurs shortly after a pair conversion. The radiation is reduced (compared to that from two independent particles) when the pair separation is smaller than the wavelength of the emitted light. We estimate the reduction in light in large electromagnetic showers, and discuss the implications for detectors that observe Cherenkov radiation from showers in the Earth's atmosphere, as well as in oceans and Antarctic ice. C1 Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 23 TC 10 Z9 10 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2005 VL 72 IS 9 AR 093003 DI 10.1103/PhysRevD.72.093003 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 988NQ UT WOS:000233608300013 ER PT J AU Martin, SP AF Martin, SP TI Fermion self-energies and pole masses at two-loop order in a general renormalizable theory with massless gauge bosons SO PHYSICAL REVIEW D LA English DT Review ID CALCULATING SUPERSYMMETRIC SPECTRA; SOFTLY BROKEN SUPERSYMMETRY; DIFFERENTIAL-EQUATIONS; QCD CORRECTIONS; STANDARD-MODEL; DIMENSIONAL REDUCTION; NUMERICAL EVALUATION; HEAVY-QUARK; PRECISION-MEASUREMENTS; RADIATIVE-CORRECTIONS AB I present the two-loop self-energy functions and pole masses for fermions in an arbitrary renormalizable field theory in the approximation that vector bosons are treated as massless. The calculations are done simultaneously in the mass-independent (MS) over bar, (DR) over bar, and (DR) over bar (') renormalization schemes, with a general covariant gauge fixing, and treating Majorana and Dirac fermions in a unified way. As examples, I discuss the two-loop strong interaction corrections to the gluino, neutralino, chargino, and quark pole masses in minimal supersymmetry. All other two-loop contributions to the fermion pole masses in softly broken supersymmetry also can be obtained as special cases of the results given here, neglecting only the electroweak symmetry breaking scale compared to larger mass scales in two-loop diagrams that involve W or Z bosons. C1 No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. NR 101 TC 30 Z9 30 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2005 VL 72 IS 9 AR 096008 DI 10.1103/PhysRevD.72.096008 PG 27 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 988NQ UT WOS:000233608300090 ER PT J AU Morrissey, DE Tait, TMP Wagner, CEM AF Morrissey, DE Tait, TMP Wagner, CEM TI Proton lifetime and baryon number violating signatures at the CERN LHC in gauge extended models SO PHYSICAL REVIEW D LA English DT Article ID HIGH-ENERGY COLLISIONS; SUPERCONDUCTING SUPER COLLIDER; INSTANTON SECTOR; ELECTROWEAK INTERACTIONS; SYMMETRY-BREAKING; WEAK-INTERACTIONS; MULTI-INSTANTONS; STANDARD MODEL; CROSS-SECTIONS; TEV AB There exist a number of models in the literature in which the weak interactions are derived from a chiral gauge theory based on a larger group than SU(2)(L)xU(1)(Y). Such theories can be constructed so as to be anomaly free and consistent with precision electroweak measurements, and may be interpreted as a deconstruction of an extra dimension. They also provide interesting insights into the issues of flavor and dynamical electroweak symmetry breaking, and can help to raise the mass of the Higgs boson in supersymmetric theories. In this work we show that these theories can also give rise to baryon and lepton number violating processes, such as nucleon decay and spectacular multijet events at colliders, via the instanton transitions associated with the extended gauge group. For a particular model based on SU(2)(1)xSU(2)(2), we find that the B+L violating scattering cross sections are too small to be observed at the LHC, but that the lower limit on the lifetime of the proton implies an upper bound on the gauge couplings. C1 Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. RP Argonne Natl Lab, HEP Div, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 68 TC 20 Z9 20 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2005 VL 72 IS 9 AR 095003 DI 10.1103/PhysRevD.72.095003 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 988NQ UT WOS:000233608300065 ER PT J AU Perez, G Volansky, T AF Perez, G Volansky, T TI Split fermions baryogenesis from the Kobayashi-Maskawa phase SO PHYSICAL REVIEW D LA English DT Article ID MODEL CP-VIOLATION; STANDARD MODEL; BARYON ASYMMETRY; ELECTROWEAK BARYOGENESIS; FINITE-TEMPERATURE; TRANSITION; UNIVERSE AB A new scenario of baryogenesis is presented, within the split fermions framework. Our model employs a first order phase transition of the localizer field. The standard model (SM), Kobayashi-Maskawa phase induces a sizable CP asymmetry. The usual suppression of CP violation which arises in the SM baryogenesis is absent due to the existence of order one Yukawa couplings before the fermions are localized in the extra dimension. Models of the above type naturally contain B-L violating operators, allowed by the SM symmetries, which induce the baryon asymmetry. Our mechanism demonstrates the following concept: the flavor puzzle and the SM failure to create the baryon asymmetry are linked and may have a common resolution which does not rely on introduction of new CP violating sources. C1 Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. Weizmann Inst Sci, IL-76100 Rehovot, Israel. RP Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. NR 44 TC 4 Z9 4 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2005 VL 72 IS 10 AR 103522 DI 10.1103/PhysRevD.72.103522 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 988NV UT WOS:000233608800038 ER PT J AU Sullivan, Z AF Sullivan, Z TI Angular correlations in single-top-quark and W-jj production at next-to-leading order SO PHYSICAL REVIEW D LA English DT Article ID SEARCH; TEVATRON; SPIN; CDF AB I demonstrate that the correlated angular distributions of final-state particles in both single-top-quark production and the dominant Wjj backgrounds can be reliably predicted. Using these fully correlated angular distributions, I propose a set of cuts that can improve the single-top-quark discovery significance by 25%, and the signal to background ratio by a factor of 3 with very little theoretical uncertainty. Up to a subtlety in t-channel single-top-quark production, leading-order matrix elements are shown to be sufficient to reproduce the next-to-leading order correlated distributions. C1 Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Sullivan, Z (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. NR 25 TC 28 Z9 28 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2005 VL 72 IS 9 AR 094034 DI 10.1103/PhysRevD.72.094034 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 988NQ UT WOS:000233608300052 ER PT J AU Clark, DS Tabak, M AF Clark, DS Tabak, M TI Acceleration- and deceleration-phase nonlinear Rayleigh-Taylor growth at spherical interfaces SO PHYSICAL REVIEW E LA English DT Article ID DRIVEN CYLINDRICAL IMPLOSIONS; INERTIAL CONFINEMENT FUSION; INSTABILITY; TARGETS; SIMULATIONS; EVOLUTION; MODELS; FLUIDS AB The Layzer model for the nonlinear evolution of bubbles in the Rayleigh-Taylor instability has recently been generalized to the case of spherically imploding interfaces [D. S. Clark and M. Tabak, Phys. Rev. E 71, 055302(R) (2005)]. The spherical case is more relevant to, e.g., inertial confinement fusion or various astrophysical phenomena when the convergence is strong or the perturbation wavelength is comparable to the interface curvature. Here, the model is further extended to the case of bubble growth during the deceleration (stagnation) phase of a spherical implosion and to the growth of spikes during both the acceleration and deceleration phases. Differences in the nonlinear growth rates for both bubbles and spikes are found when compared with planar results. The model predictions are verified by comparison with numerical hydrodynamics simulations. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Clark, DS (reprint author), Lawrence Livermore Natl Lab, POB 5508, Livermore, CA 94550 USA. EM clark90@llnl.gov NR 37 TC 5 Z9 5 U1 1 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD NOV PY 2005 VL 72 IS 5 AR 056308 DI 10.1103/PhysRevE.72.056308 PN 2 PG 11 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 988LR UT WOS:000233603200074 PM 16383746 ER PT J AU Guo, WM Harkay, K Borland, M AF Guo, WM Harkay, K Borland, M TI Closed orbit change induced by nonzero dispersion rf cavities SO PHYSICAL REVIEW E LA English DT Article ID BETATRON AB The particle motion in storage rings is coupled between the longitudinal and the transverse planes in the presence of nonzero dispersion rf cavities. We found that the particle motion can be modeled separately with a redefined closed orbit. The closed orbit can be described by a Green's function, which was confirmed in the simulation and in the experiment. The pathlength is calculated from the redefined closed orbit, and we found that the longitudinal phase slip is related not only to the momentum, but also to the rf phase of the particle. The effect on the longitudinal motion becomes significant if the phase slip caused by the rf cavities is large or if the momentum compaction factor is small, such as in the lower alpha-c lattice which is intended to produce shorter bunches. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Guo, WM (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM weguo@aps.anl.gov NR 19 TC 2 Z9 2 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD NOV PY 2005 VL 72 IS 5 AR 056501 DI 10.1103/PhysRevE.72.056501 PN 2 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 988LR UT WOS:000233603200091 PM 16383763 ER PT J AU Krafft, GA Doyuran, A Rosenzweig, JB AF Krafft, GA Doyuran, A Rosenzweig, JB TI Pulsed-laser nonlinear Thomson scattering for general scattering geometries SO PHYSICAL REVIEW E LA English DT Article ID ELECTRONS; RADIATION; BEAMS AB In a recent paper it has been shown that single electron Thomson backscatter calculations can be performed including the effects of pulsed high intensity lasers. In this paper we present a more detailed treatment of the problem and present results for more general scattering geometries. In particular, we present new results for 90 degrees Thomson scattering. Such geometries have been increasingly studied as x-ray sources of short-pulse radiation. Also, we present a clearer physical basis for these different cases. C1 Ctr Adv Studies Accelerators, Jefferson Lab, Newport News, VA 23606 USA. Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RP Krafft, GA (reprint author), Ctr Adv Studies Accelerators, Jefferson Lab, Newport News, VA 23606 USA. NR 14 TC 16 Z9 16 U1 0 U2 1 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD NOV PY 2005 VL 72 IS 5 AR 056502 DI 10.1103/PhysRevE.72.056502 PN 2 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 988LR UT WOS:000233603200092 PM 16383764 ER PT J AU Rosen, MD Hammer, JH AF Rosen, MD Hammer, JH TI Analytic expressions for optimal inertial-confinement-fusion hohlraum wall density and wall loss SO PHYSICAL REVIEW E LA English DT Article ID TARGET PHYSICS; RADIATION; GAIN; NOVA; WAVE AB Solutions to the radiation diffusion equation predict the absorbed energy ("wall loss") within an inertial confinement fusion (ICF) hohlraum. Comparing supersonic versus subsonic solutions suggests that a high Z metallic foam as hohlraum wall material will reduce hydrodynamic losses, and hence, net absorbed energy by similar to 20%. We derive an analytic expression for the optimal density (for any given drive temperature and pulse-length) that will achieve this reduction factor and which agrees well with numerical simulations. This approach can increase the coupling efficiency of indirectly driven ICF capsules. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Rosen, MD (reprint author), Lawrence Livermore Natl Lab, L-039,7000 E Ave, Livermore, CA 94551 USA. EM rosen2@llnl.gov NR 12 TC 28 Z9 31 U1 1 U2 6 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD NOV PY 2005 VL 72 IS 5 AR 056403 DI 10.1103/PhysRevE.72.056403 PN 2 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 988LR UT WOS:000233603200090 PM 16383762 ER PT J AU Schroeder, CB Esarey, E Shadwick, BA AF Schroeder, CB Esarey, E Shadwick, BA TI Warm wave breaking of nonlinear plasma waves with arbitrary phase velocities SO PHYSICAL REVIEW E LA English DT Article ID WAKE-FIELD ACCELERATION; ELECTRON-BEAMS; LASER-PULSES; OSCILLATIONS; AMPLITUDE AB A warm, relativistic fluid theory of a nonequilibrium, collisionless plasma is developed to analyze nonlinear plasma waves excited by intense drive beams. The maximum amplitude and wavelength are calculated for nonrelativistic plasma temperatures and arbitrary plasma wave phase velocities. The maximum amplitude is shown to increase in the presence of a laser field. These results set a limit to the achievable gradient in plasma-based accelerators. C1 Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Schroeder, CB (reprint author), Lawrence Berkeley Lab, Berkeley, CA 94720 USA. OI Schroeder, Carl/0000-0002-9610-0166 NR 21 TC 28 Z9 28 U1 1 U2 2 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD NOV PY 2005 VL 72 IS 5 AR 055401 DI 10.1103/PhysRevE.72.055401 PN 2 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 988LR UT WOS:000233603200006 PM 16383678 ER PT J AU Wang, YF Zhang, Y Ong, NP AF Wang, YF Zhang, Y Ong, NP TI Speeding up a single-molecule DNA device with a simple catalyst SO PHYSICAL REVIEW E LA English DT Article ID MACHINE; HYBRIDIZATION AB Recently, several groups have designed and synthesized single-molecule devices based on DNA that can switch between different configurations in response to sequential addition of fuel DNA strands. There is considerable interest in improving the speed of these "nanomotors." One approach is the use of rationally designed DNA catalysts to promote hybridization of complementary oligonucleotides. A particularly simple and robust DNA device reported by Li and Tan is comprised of a single-strand 17-base oligomer that folds into a chairlike quadruplex structure. We have identified the key rate-limiting barrier in this device as the tendency for one of the fuel strands B to fold into the quadruplex configuration of the device strand. This seriously impedes the restoration reaction. We have designed a catalytic strand to inhibit the folding of B and shown that the catalyst speeds up the restoration reaction by roughly a factor of 2. The catalyst remains effective even after repeated cycling. C1 Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. RP Wang, YF (reprint author), Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Zhang, Yuexing/A-1675-2010 NR 17 TC 7 Z9 7 U1 1 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD NOV PY 2005 VL 72 IS 5 AR 051918 DI 10.1103/PhysRevE.72.051918 PN 1 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 988LQ UT WOS:000233603100071 PM 16383656 ER PT J AU Yim, H Kent, MS Satija, S Mendez, S Balamurugan, SS Balamurugan, S Lopez, GP AF Yim, H Kent, MS Satija, S Mendez, S Balamurugan, SS Balamurugan, S Lopez, GP TI Evidence for vertical phase separation in densely grafted, high-molecular-weight poly(N-isopropylacrylamide) brushes in water SO PHYSICAL REVIEW E LA English DT Article ID CONFORMATIONAL-CHANGE; POLYMER BRUSHES; N-CLUSTERS; COLLAPSE; DENSITY; CHAINS; TRANSITIONS; BEHAVIOR; HOMOPOLYMERS; TEMPERATURE AB The detailed conformational change of poly(N-isopropylacrylamide) (PNIPAM) brushes at high grafting density in D2O was investigated as a function of temperature using neutron reflection. PNIPAM chains were grafted at high surface density from gold and silicon oxide surfaces by atom transfer radical polymerization. Whereas single layer profiles were observed for temperatures below and above the transition region, bilayer profiles were observed for a narrow range of temperatures near the transition. This nonmonotonic change in the concentration profile with temperature is discussed in the context of theoretical models of vertical phase separation within a brush. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. Univ New Mexico, Albuquerque, NM 87131 USA. RP Yim, H (reprint author), Sandia Natl Labs, Dept 8332, Albuquerque, NM 87185 USA. NR 33 TC 49 Z9 49 U1 1 U2 35 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD NOV PY 2005 VL 72 IS 5 AR 051801 DI 10.1103/PhysRevE.72.051801 PN 1 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 988LQ UT WOS:000233603100047 PM 16383632 ER PT J AU Zhuravlev, KK AF Zhuravlev, KK TI Molecular-field theory method for evaluating critical points of the Ising model SO PHYSICAL REVIEW E LA English DT Article ID FERROMAGNETISM; STATISTICS AB The molecular-field theory is one of the most common approximations used to calculate properties of materials with the Ising model. A generalization, improving the previous results of molecular-field theory, is proposed. It has also been shown that this method distinguishes between two lattices with different geometries but equal numbers of nearest neighbors, such as square, diamond, triangular, and simple cubic lattices, a result that is missing from most other mean-field approaches. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Zhuravlev, KK (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 18 TC 9 Z9 9 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD NOV PY 2005 VL 72 IS 5 AR 056104 DI 10.1103/PhysRevE.72.056104 PN 2 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 988LR UT WOS:000233603200013 PM 16383685 ER PT J AU Carlsten, BE AF Carlsten, BE TI Using a hybrid-fluid model to simulate the ion-hose instability in long-pulse electron linacs SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID TRANSVERSE INSTABILITY; FOCUSED-REGIME; BEAM; ACCELERATOR; CHANNEL; GROWTH AB A numerical model of the ion-hose instability for long-pulse electron linacs is presented, where the ion motion is represented by fluid parameters. In order to gain extra numerical stability, the fluid behavior of the ions is evolved via particle-in-cell (PIC) techniques. This methodology provides a much faster simulation than a full PIC calculation, allowing for end-to-end simulations of the ion-hose instability in actual linear accelerator configurations. After the description of the simulation model and some simple test cases, the instability is analyzed for a variety of nominal accelerator transport conditions. Simulations of the instability are provided for sections of the DARHT long-pulse accelerator that show different growth regimes of the instability. We find that large-amplitude growth is possible in accelerator and transport regions lacking uniform external focusing, for electron pulse lengths of 2 mu sec and longer. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Carlsten, BE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 25 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD NOV PY 2005 VL 8 IS 11 AR 114202 DI 10.1103/PhysRevSTAB.8.114202 PG 23 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 994SL UT WOS:000234051400008 ER PT J AU Iriso, U Fischer, W AF Iriso, U Fischer, W TI Electron induced molecular desorption from electron clouds at the Relativistic Heavy Ion Collider SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Molecular desorption coefficients from electron bombardment of the warm Relativistic Heavy Ion Collider beam pipe are derived from measurements for both baked and unbaked stainless steel. For this, we analyze electron detector and pressure gauge signals in the presence of an electron cloud. Finally, we present a comparison between the measured and simulated energy spectrum of the cloud electrons. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Iriso, U (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM ubaldo@bnl.gov; Wolfram.Fischer@bnl.gov NR 24 TC 8 Z9 8 U1 0 U2 0 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD NOV PY 2005 VL 8 IS 11 AR 113201 DI 10.1103/PhysRevSTAB.8.113201 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 994SL UT WOS:000234051400006 ER PT J AU Catto, PJ Simakov, AN AF Catto, PJ Simakov, AN TI A new, explicitly collisional contribution to the gyroviscosity and the radial electric field in a collisional tokamak SO PHYSICS OF PLASMAS LA English DT Article ID DRIFT-KINETIC-EQUATION; TRANSPORT; PLASMA AB An additional contribution to the ion viscosity for a collisional plasma is evaluated and found to be the same order as other temperature gradient terms in the collisional perpendicular viscosity. The new contribution arises because of an explicitly collisional portion of the ion distribution function. The evaluation of the Pfirsch-Schluter radial electric field in a collisional tokamak of arbitrary cross section is extended to retain the new contribution. In a spherical tokamak this new contribution must be retained in determining the radial electric field, while in a conventional tokamak it is small by 1/q(2), where q is the safety factor. (C) 2005 American Institute of Physics. C1 MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Catto, PJ (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. NR 14 TC 20 Z9 20 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2005 VL 12 IS 11 AR 114503 DI 10.1063/1.2136355 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 988CS UT WOS:000233569600052 ER PT J AU Kirkwood, RK Williams, EA Cohen, BI Divol, L Dorr, MR Hittinger, JA Langdon, AB Niemann, C Moody, J Suter, LJ Landen, OL AF Kirkwood, RK Williams, EA Cohen, BI Divol, L Dorr, MR Hittinger, JA Langdon, AB Niemann, C Moody, J Suter, LJ Landen, OL TI Saturation of power transfer between two copropagating laser beams by ion-wave scattering in a single-species plasma SO PHYSICS OF PLASMAS LA English DT Article ID STIMULATED RAMAN-SCATTERING; INERTIAL CONFINEMENT FUSION; IGNITION SCALE PLASMAS; HOHLRAUM PLASMAS; ENERGY-TRANSFER; ACOUSTIC-WAVES; BRILLOUIN-SCATTERING; FREQUENCY; GAIN AB Experiments show that power is transferred between two copropagating 351 nm laser beams crossing in an Al plasma when the frequency of the driven ion wave is shifted by a Mach 1 flow. The resonant amplification of a low-intensity (<= 2.5x10(14) W/cm(2)) beam intersected by a high-intensity (7.0x10(14) W/cm(2)) pump beam is determined by comparing the transmitted beam power to that measured in experiments where the plasma flow direction is reversed and the ion wave is evidently detuned. The polarization of the amplified light is also observed to align to the pump polarization consistent with ion-wave scattering. The amplification is found to reduce with probe-beam intensity demonstrating a nonlinear saturation mechanism that is effective when the ion-wave damping is weak, which is modeled with a calculation including both the nonlinear ion-wave frequency shifts due to ion trapping and whole-beam pump depletion. (C) 2005 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Kirkwood, RK (reprint author), Lawrence Livermore Natl Lab, Mail Stop L-473,POB 808, Livermore, CA 94551 USA. NR 29 TC 3 Z9 3 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2005 VL 12 IS 11 AR 112701 DI 10.1063/1.2124508 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 988CS UT WOS:000233569600033 ER PT J AU Chattopadhyay, S AF Chattopadhyay, S TI Feynman: The lectures and the man SO PHYSICS TODAY LA English DT Letter C1 Thomas Jefferson Natl Accelerator Facil, Newport News, VA USA. RP Chattopadhyay, S (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA USA. EM swapan@jlab.org NR 1 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD NOV PY 2005 VL 58 IS 11 BP 12 EP 12 PG 1 WC Physics, Multidisciplinary SC Physics GA 980CC UT WOS:000232990500004 ER PT J AU Axe, JD Birgeneau, RJ Blume, M Shapiro, SM AF Axe, JD Birgeneau, RJ Blume, M Shapiro, SM TI Gen Shirane SO PHYSICS TODAY LA English DT Biographical-Item C1 Univ Calif Berkeley, Berkeley, CA 94720 USA. Amer Phys Soc, Ridge, NY USA. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Axe, JD (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD NOV PY 2005 VL 58 IS 11 BP 72 EP 74 DI 10.1063/1.2155771 PG 3 WC Physics, Multidisciplinary SC Physics GA 980CC UT WOS:000232990500027 ER PT J AU Van Hoewyk, D Garifullina, GF Ackley, AR Abdel-Ghany, SE Marcus, MA Fakra, S Ishiyama, K Inoue, E Pilon, M Takahashi, H Pilon-Smits, EAH AF Van Hoewyk, D Garifullina, GF Ackley, AR Abdel-Ghany, SE Marcus, MA Fakra, S Ishiyama, K Inoue, E Pilon, M Takahashi, H Pilon-Smits, EAH TI Overexpression of AtCpNifS enhances selenium tolerance and accumulation in Arabidopsis SO PLANT PHYSIOLOGY LA English DT Article ID MOUSE SELENOCYSTEINE LYASE; INDIAN MUSTARD; SULFATE TRANSPORTERS; HIGHER-PLANTS; FUNCTIONAL EXPRESSION; SULFUR ASSIMILATION; BRASSICA-JUNCEA; ATP SULFURYLASE; GENE-FAMILY; THALIANA AB Selenium (Se) is an essential element for many organisms but is toxic at higher levels. CpNifS is a chloroplastic NifS-like protein in Arabidopsis (Arabidopsis thaliana) that can catalyze the conversion of cysteine into alanine and elemental sulfur (S-0) and of selenocysteine into alanine and elemental Se (Se-0). We overexpressed CpNifS to investigate the effects on Se metabolism in plants. CpNifS overexpression significantly enhanced selenate tolerance (1.9- fold) and Se accumulation (2.2-fold). CpNifS overexpressors showed significantly reduced Se incorporation into protein, which may explain their higher Se tolerance. Also, sulfur accumulation was enhanced by approximately 30% in CpNifS overexpressors, both on media with and without selenate. Root transcriptome changes in response to selenate mimicked the effects observed under sulfur starvation. There were only a few transcriptome differences between CpNifS-overexpressing plants and wild type, besides the 25- to 40- fold increase in CpNifS levels. Judged from x-ray analysis of near edge spectrum, both CpNifS overexpressors and wild type accumulated mostly selenate (SeVI). In conclusion, overexpression of this plant NifS-like protein had a pronounced effect on plant Se metabolism. The observed enhanced Se accumulation and tolerance of CpNifS overexpressors show promise for use in phytoremediation. C1 RIKEN, Inst Plant Sci, Tsurumi Ku, Yokohama, Kanagawa 2300045, Japan. Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Pilon-Smits, EAH (reprint author), RIKEN, Inst Plant Sci, Tsurumi Ku, Yokohama, Kanagawa 2300045, Japan. EM epsmits@lamar.colostate.edu RI Takahashi, Hideki/D-4531-2009 OI Takahashi, Hideki/0000-0001-8439-0533 NR 43 TC 51 Z9 54 U1 0 U2 6 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 J9 PLANT PHYSIOL JI Plant Physiol. PD NOV PY 2005 VL 139 IS 3 BP 1518 EP 1528 DI 10.1104/pp.105.068684 PG 11 WC Plant Sciences SC Plant Sciences GA 983OB UT WOS:000233240900037 PM 16244144 ER PT J AU Voitsekhovitch, I Zastrow, KD Alper, B Bonheure, G Garbet, X Kiptily, V de la Luna, E McCune, D McDonald, DC Popovichev, S Sharapov, SE Stork, D AF Voitsekhovitch, I Zastrow, KD Alper, B Bonheure, G Garbet, X Kiptily, V de la Luna, E McCune, D McDonald, DC Popovichev, S Sharapov, SE Stork, D CA JET EFDA Contributors TI Effect of sawtooth activity on tritium and beam deuterium evolution in trace tritium experiments on JET SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID TRANSPORT; TOKAMAK; RECONNECTION; CONFINEMENT; DISCHARGES; COLLAPSE; TFTR; REDISTRIBUTION; OSCILLATIONS; IMPURITIES AB One of the scenarios actively studied during the 2003 trace tritium experimental campaign performed on JET includes a gas puff of small amounts of tritium into sawtooth-unstable H-mode plasmas heated by deuterium beams. The sawtooth crashes observed in these discharges, with the electron cyclotron emission diagnostics, are frequently accompanied by the oscillations of the 14 MeV neutron emission, produced mainly due to the reaction between the deuterium beam and the thermal tritium. Such oscillations are clearly seen in low density plasmas while they are weak or absent at high density. The goal of this work is to explain the different behaviour of the oscillations of neutron emission with density. For this purpose, the dynamics of the trace tritium and beam deuterium during the sawtooth crash in discharges with different plasma density is studied numerically using the TRANSP code. In addition, a possibility of using the neutron measurements in sawtoothing low density plasmas for the test of the full and partial reconnection models is discussed and the sensitivity of the simulations to the key parameters of these models is presented. C1 UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. EURATOM, LPP, ERM, KMS, Brussels, Belgium. CEA Cadarache, EURATOM Assoc, F-13108 St Paul Les Durance, France. CIEMAT, EURATOM Assoc, Lab Nacl Fus, E-28040 Madrid, Spain. Princeton Univ, PPPL, Princeton, NJ 08543 USA. RP Voitsekhovitch, I (reprint author), UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. NR 34 TC 2 Z9 2 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD NOV PY 2005 VL 47 IS 11 BP 1877 EP 1893 DI 10.1088/0741-3335/47/11/002 PG 17 WC Physics, Fluids & Plasmas SC Physics GA 986UD UT WOS:000233474300005 ER PT J AU Oks, EM Anders, A Brown, IG Soloshenko, IA Shchedrin, AI AF Oks, EM Anders, A Brown, IG Soloshenko, IA Shchedrin, AI TI Instability of a low-pressure hollow-cathode discharge in a magnetic field SO PLASMA PHYSICS REPORTS LA English DT Article AB Mechanisms responsible for current oscillations at the ion branch of the probe characteristic are investigated experimentally and theoretically. A comparison between experiment and theory shows that the oscillations in a hollow-cathode discharge in a longitudinal magnetic field are most likely related to the onset of helical instability. (c) 2005 Pleiades Publishing, Inc. C1 Russian Acad Sci, Inst High Current Elect, Siberian Div, Tomsk 634055, Russia. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Natl Acad Sci Ukraine, Inst Phys, UA-03039 Kiev, Ukraine. RP Oks, EM (reprint author), Russian Acad Sci, Inst High Current Elect, Siberian Div, Akad 4, Tomsk 634055, Russia. RI Oks, Efim/A-9409-2014; Anders, Andre/B-8580-2009 OI Oks, Efim/0000-0002-9323-0686; Anders, Andre/0000-0002-5313-6505 NR 14 TC 6 Z9 6 U1 1 U2 6 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-780X J9 PLASMA PHYS REP+ JI Plasma Phys. Rep. PD NOV PY 2005 VL 31 IS 11 BP 978 EP 983 DI 10.1134/1.2131134 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 988NT UT WOS:000233608600010 ER PT J AU Wangensteen, I Botterud, A Flatabo, N AF Wangensteen, I Botterud, A Flatabo, N TI Power system planning and operation in international markets - Perspectives from the Nordic region and Europe SO PROCEEDINGS OF THE IEEE LA English DT Article DE ancillary services; congestion management; generation investment; international power markets; restructuring ID GENERATION CAPACITY; VALUATION; OPTIONS AB This paper describes development and experiences from the Nordic region and the current status and trend toward ail integrated and open electricity market comprising most of Europe. The paper describes practical experiences as well as theoretical investigations and modeling studies. We focus on the following subjects: Congestion management: There are a variety of arrangements for transfer across national borders and for congestion management in Europe. A common future system based on an improved version of the Nordic market splitting system call be a good alternative. Management of ancillary services: We see certain trends concerning ancillary services in the Nordic market: 1) more focus oil cost effectiveness and a move toward market arrangements including cross border trade in ancillary services; 2) increased use of the demand side in the provision of ancillary services; and 3) increased flexibility in defining the demand for ancillary services. Investment incentives: Experience as well theoretical investigations indicate that investment in generating capacity is a problem in ail open electricity market, where investors are exposed to high risk and uncertainty. One important conclusion from our studies is that end user response (elasticity to electricity, prices is important in ail open market. We also discuss how additional incentive mechanisms call be used as a measure to achieve capacity adequacy, when the market fails to provide sufficient signals for new investments. C1 Norwegian Univ Sci & Technol, Dept Elect Power Engn, N-7491 Trondheim, Norway. Argonne Natl Lab, Div Informat & Decis Sci, Argonne, IL 60439 USA. SINTEF Energy REs, N-7465 Trondheim, Norway. RP Wangensteen, I (reprint author), Norwegian Univ Sci & Technol, Dept Elect Power Engn, N-7491 Trondheim, Norway. EM ivar.wangensteen@elkraft.ntnu.no; abotterud@anl.gov; nils.flatabo@sintef.no NR 21 TC 5 Z9 7 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9219 J9 P IEEE JI Proc. IEEE PD NOV PY 2005 VL 93 IS 11 BP 2049 EP 2059 DI 10.1109/JPROC.2005.857488 PG 11 WC Engineering, Electrical & Electronic SC Engineering GA 976IY UT WOS:000232728100014 ER PT J AU Sanbonmatsu, KY Joseph, S Tung, CS AF Sanbonmatsu, KY Joseph, S Tung, CS TI Simulating movement of tRNA into the ribosome during decoding SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE proofreading; protein synthesis; molecular dynamics simulations; RNA; high-performance computing ID MOLECULAR-DYNAMICS SIMULATIONS; AMINOACYL-TRANSFER-RNA; PEPTIDE-BOND FORMATION; ESCHERICHIA-COLI; CRYOELECTRON MICROSCOPY; COMPARATIVE SEQUENCE; ANGSTROM RESOLUTION; ELONGATION CYCLE; SELECTION; INTERMEDIATE AB Decoding is the key step during protein synthesis that enables information transfer from RNA to protein, a process critical for the survival of all organisms. We have used large-scale (2.64 x 10(6) atoms) all-atom simulations of the entire ribosome to understand a critical step of decoding. Although the decoding problem has been studied for more than four decades, the rate-limiting step of cognate tRNA selection has only recently been identified. This step, known as accommodation, involves the movement inside the ribosome of the aminoacyl-tRNA from the partially bound "A/A" state to the fully bound "A/A" state. Here, we show that a corridor of 20 universally conserved ribosomal RNA bases interacts with the tRNA during the accommodation movement. Surprisingly, the tRNA is impeded by the A-loop (235 helix 92), instead of enjoying a smooth transition to the A/A state. In particular, universally conserved 235 ribosomal RNA bases U2492, C2556, and C2573 act as a 3D gate, causing the acceptor stem to pause before allowing entrance into the peptidyl transferase center. Our simulations demonstrate that the flexibility of the acceptor stem of the tRNA, in addition to flexibility of the anticodon arm, is essential for tRNA selection. This study serves as a template for simulating conformational changes in large (> 10(6) atoms) biological and artificial molecular machines. C1 Los Alamos Natl Lab, Div Theoret, Dept Theoret Biol & Biophys, Los Alamos, NM 87545 USA. Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. RP Sanbonmatsu, KY (reprint author), Los Alamos Natl Lab, Div Theoret, Dept Theoret Biol & Biophys, POB 1663, Los Alamos, NM 87545 USA. EM kys@lanl.gov FU NIGMS NIH HHS [R01 GM072686, R01-GM072686] NR 53 TC 171 Z9 173 U1 3 U2 14 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 1 PY 2005 VL 102 IS 44 BP 15854 EP 15859 DI 10.1073/pnas.0503456102 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 981LU UT WOS:000233090900027 PM 16249344 ER PT J AU Drikakis, D Grinstein, F Youngs, D AF Drikakis, D Grinstein, F Youngs, D TI On the computation of instabilities and symmetry-breaking in fluid mechanics SO PROGRESS IN AEROSPACE SCIENCES LA English DT Review ID RAYLEIGH-TAYLOR INSTABILITY; RICHTMYER-MESHKOV INSTABILITY; LARGE-EDDY SIMULATION; HYPERBOLIC CONSERVATION-LAWS; HIGH-RESOLUTION SCHEMES; FINITE-DIFFERENCE METHODS; SHOCK-BUBBLE INTERACTION; VORTEX-RING DYNAMICS; HIGH-REYNOLDS-NUMBER; HIGH-ORDER ACCURATE AB A review on the implementation of modern computational fluid dynamics (CFD) methods for simulating low- and highspeed flows featuring turbulent mixing, instabilities and symmetry-breaking is presented. Results are reviewed for several complex flows including turbulent mixing associated with Richtmyer-Meshkov and Rayleigh-Taylor instabilities, incompressible flows in suddenly expanded geometries, shock-induced instabilities, free-shear instabilities and complex vortex dynamics. Many of the results presented in this review have been obtained by large eddy simulation (LES), monotone integrated LES (MILES) in particular. The computational challenges associated with complex flow physics and nonlinear behaviour of the numerics are discussed. Crown Copyright (c) 2005 Published by Elsevier Ltd. All rights reserved. C1 Sch Engn, Aerosp Sci Dept, Fluid Mech & Computat Sci Grp, Cranfield MK43 0AL, Beds, England. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. AWE, Aldermaston RG7 4PR, Berks, England. RP Sch Engn, Aerosp Sci Dept, Fluid Mech & Computat Sci Grp, Cranfield MK43 0AL, Beds, England. EM d.drikakis@cranfield.ac.uk NR 156 TC 12 Z9 12 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0376-0421 J9 PROG AEROSP SCI JI Prog. Aeosp. Sci. PD NOV PY 2005 VL 41 IS 8 BP 609 EP 641 DI 10.1016/j.paerosci.2005.10.001 PG 33 WC Engineering, Aerospace SC Engineering GA 022FG UT WOS:000236039900001 ER PT J AU Johnson, PK Heath, JT Cohen, JD Ramanathan, K Sites, JR AF Johnson, PK Heath, JT Cohen, JD Ramanathan, K Sites, JR TI A comparative study of defect states in evaporated and selenized CIGS(S) solar cells SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE CIGS(S); solar cells; defects; carrier density; AS; DLCP; polycrystalline; CdPE ID HYDROGENATED AMORPHOUS-SILICON; ADMITTANCE SPECTROSCOPY; FILMS; DISTRIBUTIONS AB Current-voltage, admittance spectroscopy, and drive-level capacitance profiling measurements were taken on Cu(In1-xGax)(Se1-y,S-y)(2) solar cell devices. The devices were made using two different types of absorbers. One set of absorbers was deposited via physical vapor deposition, while the other set of absorbers was made by selenization of metal precursors. Additionally, each type of absorber was completed with one of two different types of buffer treatments: a CdS layer or a cadmium partial electrolyte surface modification. The devices with the evaporated absorbers had larger values of V-OC, higher carrier densities, lower densities of trapping defects, and likely shallower gap states. Results were qualitatively similar for the CdS and partial electrolyte buffers. Copyright (c) 2005 John Wiley & Sons, Ltd. C1 Colorado State Univ, Dept Phys, Ft Collins, CO 80525 USA. Univ Oregon, Dept Phys, Eugene, OR 97403 USA. Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Johnson, PK (reprint author), Ball Aersp & Technol Corp, 1600 Commerce St, Boulder, CO 80301 USA. EM pkjohnso@ball.com RI Heath, Jennifer/L-1201-2015 NR 18 TC 17 Z9 17 U1 3 U2 33 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1062-7995 J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD NOV PY 2005 VL 13 IS 7 BP 579 EP 586 DI 10.1002/pip.619 PG 8 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 975MO UT WOS:000232666800003 ER PT J AU Camarero, JA AF Camarero, JA TI Introduction to "Polypeptide chemical ligation tools in protein engineering" SO PROTEIN AND PEPTIDE LETTERS LA English DT Editorial Material C1 Lawrence Livermore Natl Lab, Chem Biol & Nucl Sci Div, Livermore, CA 94550 USA. RP Camarero, JA (reprint author), Lawrence Livermore Natl Lab, Chem Biol & Nucl Sci Div, 7000 E Ave, Livermore, CA 94550 USA. RI Camarero, Julio/A-9628-2015 NR 8 TC 1 Z9 1 U1 0 U2 1 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y26, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 0929-8665 J9 PROTEIN PEPTIDE LETT JI Protein Pept. Lett. PD NOV PY 2005 VL 12 IS 8 BP 721 EP 722 DI 10.2174/0929866054864201 PG 2 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 977NV UT WOS:000232811400001 ER PT J AU Camarero, JA Mitchell, AR AF Camarero, JA Mitchell, AR TI Synthesis of proteins by native chemical ligation using Fmoc-based chemistry SO PROTEIN AND PEPTIDE LETTERS LA English DT Article DE chemical protein synthesis; Native Chemical Ligation; peptide alpha-thioester; hydrazine linker; protein engineering; Fmoc-chemistry ID SOLID-PHASE SYNTHESIS; SAFETY-CATCH LINKER; C-TERMINAL THIOESTERS; AMINO-ACID FLUORIDES; TGF-BETA RECEPTOR; PEPTIDE-SYNTHESIS; CYCLIC-PEPTIDES; BACKBONE CYCLIZATION; UNPROTECTED PEPTIDES; INHIBITOR COMPLEXES AB C-terminal peptide alpha-thioesters are valuable intermediates in the synthesis/semisynthesis of proteins by native chemical. ligation. They are prepared either by solid-phase peptide synthesis (SPPS) or biosynthetically by protein splicing techniques. The present paper reviews the different methods available for the chemical synthesis of peptide alpha-thioesters using Fmoc-based SPPS. C1 Lawrence Livermore Natl Lab, Chem Biol & Nucl Sci Div, Livermore, CA 94550 USA. RP Camarero, JA (reprint author), Lawrence Livermore Natl Lab, Chem Biol & Nucl Sci Div, 7000 E Ave, Livermore, CA 94550 USA. EM camarero1@llnl.gov RI Fitzmaurice, Richard/C-1508-2008; Camarero, Julio/A-9628-2015 NR 72 TC 32 Z9 33 U1 2 U2 35 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y26, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 0929-8665 J9 PROTEIN PEPTIDE LETT JI Protein Pept. Lett. PD NOV PY 2005 VL 12 IS 8 BP 723 EP 728 DI 10.2174/0929866054864166 PG 6 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 977NV UT WOS:000232811400002 PM 16305540 ER PT J AU Kimura, R Camarero, JA AF Kimura, R Camarero, JA TI Expressed protein ligation: A new tool for the biosynthesis of cyclic polypeptides SO PROTEIN AND PEPTIDE LETTERS LA English DT Article DE circular proteins; protein splicing; intein-mediated ligation; native chemical ligation; protein engineering; polypeptide libraries ID CHEMICAL LIGATION; SPLICING ELEMENT; IN-VIVO; UNPROTECTED PEPTIDES; RECOMBINANT PROTEINS; SPLIT INTEIN; DNAE GENE; CYCLIZATION; BACKBONE; PURIFICATION AB The present paper reviews the use of expressed protein ligation for the biosynthesis of backbone cyclized polypeptides. This general method allows the in vivo and in vitro biosynthesis of cyclic polypeptides using recombinant DNA expression techniques. Biosynthetic access to backbone cyclic peptides opens the possibility to generate cell-based combinatorial libraries that can be screened inside living cells for their ability to attenuate or inhibit cellular processes. C1 Lawrence Livermore Natl Lab, Chem Biol & Nucl Sci Div, Livermore, CA 94550 USA. RP Camarero, JA (reprint author), Lawrence Livermore Natl Lab, Chem Biol & Nucl Sci Div, 7000 E Ave, Livermore, CA 94550 USA. EM camarero1@llnl.gov RI Camarero, Julio/A-9628-2015 NR 49 TC 10 Z9 11 U1 0 U2 13 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y26, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 0929-8665 J9 PROTEIN PEPTIDE LETT JI Protein Pept. Lett. PD NOV PY 2005 VL 12 IS 8 BP 789 EP 794 DI 10.2174/0929866054864274 PG 6 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 977NV UT WOS:000232811400012 PM 16305550 ER PT J AU Weaver-Feldhaus, JM Miller, KD Feldhaus, MJ Siegel, RW AF Weaver-Feldhaus, JM Miller, KD Feldhaus, MJ Siegel, RW TI Directed evolution for the development of conformation-specific affinity reagents using yeast display SO PROTEIN ENGINEERING DESIGN & SELECTION LA English DT Article DE calmodulin; directed evolution; flow cytometry; recombinant antibody; yeast display ID ANTIBODY VARIABLE DOMAINS; CALCIUM-BINDING PROTEINS; SURFACE-DISPLAY; MONOCLONAL-ANTIBODY; INTRACELLULAR ANTIBODY; POLYPEPTIDE LIBRARIES; CALMODULIN-BINDING; IN-VITRO; PHAGE; RECOGNITION AB Yeast display is a powerful tool for increasing the affinity and thermal stability of scFv antibodies through directed evolution. Mammalian calmodulin (CaM) is a highly conserved signaling protein that undergoes structural changes upon Ca2+ binding. In an attempt to generate conformation-pecific antibodies for proteomic applications, a selection against CaM was undertaken. Flow cytometry-based screening strategies to isolate easily scFv recognizing CaM in either the Ca2+-bound (Ca2+-CaM) or Ca2+-free (apo-CaM) states are presented. Both full-length scFv and single-domain VH only clones were isolated. One scFv clone having very high affinity (K-d = 0.8 nM) and specificity (>1000-fold) for Ca2+-CaM was obtained from de novo selections. Subsequent directed evolution allowed the development of antibodies with higher affinity (K-d = 1 nM) and specificity (>300-fold) for apo-CaM from a parental single-domain clone with both a modest affinity and specificity for that particular isoform. CaM-binding activity was unexpectedly lost upon conversion of both conformation-specific clones into soluble fragments. However, these results demonstrate that conformation-specific antibodies can be quickly and easily isolated by directed evolution using the yeast display platform. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. Merrimack Pharmaceut, Cambridge, MA 02142 USA. RP Siegel, RW (reprint author), Abbott Labs, Div Diagnost, 100 Abbott Pk Rd, Abbott Pk, IL 60064 USA. EM robert.siegel@abbott.com OI Siegel, Robert/0000-0002-0833-5580 FU NCRR NIH HHS [RR18522] NR 47 TC 22 Z9 24 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1741-0126 J9 PROTEIN ENG DES SEL JI Protein Eng. Des. Sel. PD NOV PY 2005 VL 18 IS 11 BP 527 EP 536 DI 10.1093/protein/gzi060 PG 10 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 986EL UT WOS:000233432800003 PM 16186140 ER PT J AU Powers, R Mirkovic, N Goldsmith-Fischman, S Acton, TB Chiang, YW Huang, YPJ Ma, LC Rajan, PK Cort, JR Kennedy, MA Liu, JF Rost, B Honig, B Murray, D Montelione, GT AF Powers, R Mirkovic, N Goldsmith-Fischman, S Acton, TB Chiang, YW Huang, YPJ Ma, LC Rajan, PK Cort, JR Kennedy, MA Liu, JF Rost, B Honig, B Murray, D Montelione, GT TI Solution structure of Archaeglobus fulgidis peptidyl-tRNA hydrolase (Pth2) provides evidence for an extensive conserved family of Pth2 enzymes in archea, bacteria, and eukaryotes SO PROTEIN SCIENCE LA English DT Article DE NMR; archaeglobus fulgidis; protein AF2095; solution structure; peptidyl-tRNA hydrolase Pth2; Pth2 evolution ID NUCLEAR-MAGNETIC-RESONANCE; PROTEIN NMR STRUCTURES; HUMAN FIBROBLAST COLLAGENASE; INTERPROTON DISTANCE DATA; FREE CATALYTIC FRAGMENT; ESCHERICHIA-COLI; 3-DIMENSIONAL STRUCTURES; CONFORMATIONAL-CHANGES; SACCHAROMYCES-CEREVISIAE; GENOMICS CONSORTIUM AB The solution structure of protein AF2095 from the thermophilic archaea Archaeglobus fulgidis, a 123-residue (13.6-kDa) protein, has been determined by NMR methods. The structure of AF2095 is comprised of four a-helices and a mixed beta-sheet consisting of four parallel and anti-parallel beta-strands, where the helices sandwich the beta-sheet. Sequence and structural comparison of AF2095 with proteins from Homo sapiens, Methanocaldococcus jannaschii, and Sulfolobus solfataricus reveals that AF2095 is a peptidyl-tRNA hydrolase (Pth2). This structural comparison also identifies putative catalytic residues and a tRNA interaction region for AF2095. The structure of AF2095 is also similar to the structure of protein TA0108 from archaea Thermoplasma acidophilum, which is deposited in the Protein Data Bank but not functionally annotated. The NMR structure of AF2095 has been further leveraged to obtain good-quality structural models for 55 other proteins. Although earlier studies have proposed that the Pth2 protein family is restricted to archeal and eukaryotic organisms, the similarity of the AF2095 structure to human Pth2, the conservation of key active-site residues, and the good quality of the resulting homology models demonstrate a large family of homologous Pth2 proteins that are conserved in eukaryotic, archaeal, and bacterial organisms, providing novel insights in the evolution of the Pth and Pth2 enzyme families. C1 Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. Cornell Univ, Weill Med Coll, Dept Microbiol & Immunol, Inst Computat Biomed, New York, NY 10021 USA. Cornell Univ, Weill Med Coll, NE Struct Genom Consortium, New York, NY 10021 USA. Columbia Univ, Howard Hughes Med Inst, New York, NY 10032 USA. Columbia Univ, Dept Biochem & Mol Biophys, New York, NY 10032 USA. Columbia Univ, NE Struct Genom Consortium, New York, NY 10032 USA. Rutgers State Univ, Dept Mol Biol & Biochem, Ctr Adv Biotechnol & Med, Piscataway, NJ 08854 USA. Rutgers State Univ, NE Struct Genom Consortium, Piscataway, NJ 08854 USA. Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. Pacific NW Natl Lab, NE Struct Genom Consortium, Richland, WA 99352 USA. Univ Med & Dent New Jersey, Robert Wood Johnson Med Sch, Dept Biochem, Piscataway, NJ 08854 USA. RP Powers, R (reprint author), Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. EM rpowers3@unl.edu OI Liu, Jinfeng/0000-0002-0343-8222 FU NIGMS NIH HHS [P50 GM 62413, P50 GM062413] NR 80 TC 21 Z9 21 U1 0 U2 3 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI WOODBURY PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD NOV PY 2005 VL 14 IS 11 BP 2849 EP 2861 DI 10.1110/ps.051666705 PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 980CK UT WOS:000232991300008 PM 16251366 ER PT J AU Caruthers, J Zucker, F Worthey, E Myler, PJ Buckner, F Van Voorhuis, W Mehlin, C Boni, E Feist, T Luft, J Gulde, S Lauricella, A Kaluzhniy, O Anderson, L Le Trong, I Holmes, MA Earnest, T Soltis, M Hodgson, KO Hol, WGJ Merritt, EA AF Caruthers, J Zucker, F Worthey, E Myler, PJ Buckner, F Van Voorhuis, W Mehlin, C Boni, E Feist, T Luft, J Gulde, S Lauricella, A Kaluzhniy, O Anderson, L Le Trong, I Holmes, MA Earnest, T Soltis, M Hodgson, KO Hol, WGJ Merritt, EA TI Crystal structures and proposed structural/functional classification of three protozoan proteins from the isochorismatase superfamily SO PROTEIN SCIENCE LA English DT Article DE structural genomics; Leishmania; Trypanosoma; functional annotation; protein families; evolutionary relationships; cysteine hydrolase ID N-CARBAMOYLSARCOSINE AMIDOHYDROLASE; ARTHROBACTER SP; CRYSTALLOGRAPHY; CRYSTALLIZATION; REFINEMENT; MECHANISM; SYSTEM AB We have determined the crystal structures of three homologous proteins from the pathogenic protozoans Leishmania donovani, Leishmania major, and Trypanosoma cruzi. We propose that these proteins represent a new subfamily within the isochorismatase superfamily (CDD classification cd004310). Their overall fold and key active site residues are structurally homologous both to the biochemically well-characterized N-carbamoylsarcosine-amidohydrolase, a cysteine hydrolase, and to the phenazine biosynthesis protein PHZD (isochorismase), an aspartyl hydrolase. All three proteins are annotated as mitochondrial-associated ribonuclease Mar1, based on a previous characterization of the homologous protein from L. tarentolae. This would constitute a new enzymatic activity for this structural superfamily, but this is not strongly supported by the observed structures. In these protozoan proteins, the extended active site is formed by inter-subunit association within a tetramer, which implies a distinct evolutionary history and substrate specificity from the previously characterized members of the isochorismatase superfamily. The characterization of the active site is supported crystallographically by the presence of an unidentified ligand bound at the active site cysteine of the T. cruzi structure. C1 Univ Washington, Biomol Struct Ctr, Dept Biochem, Seattle, WA 98195 USA. Univ Washington, Div Infect Dis, Seattle, WA 98195 USA. Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA. Seattle Biomed Res Inst, Seattle, WA 98109 USA. Hauptman Woodward Med Res Inst, Buffalo, NY 14203 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Ctr Struct Biol, Phys Biosci Div, Berkeley, CA 94720 USA. Stanford Univ, SSRL, Stanford, CA 94305 USA. RP Merritt, EA (reprint author), Univ Washington, Biomol Struct Ctr, Dept Biochem, M-S 357742, Seattle, WA 98195 USA. EM merritt@u.washington.edu OI Myler, Peter/0000-0002-0056-0513 FU NIGMS NIH HHS [GM 64655, P50 GM064655] NR 25 TC 12 Z9 14 U1 0 U2 6 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI WOODBURY PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD NOV PY 2005 VL 14 IS 11 BP 2887 EP 2894 DI 10.1110/ps.051783005 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 980CK UT WOS:000232991300012 PM 16199669 ER PT J AU Jayaraman, S Eswaramoorthy, S Kumaran, D Swaminathan, S AF Jayaraman, S Eswaramoorthy, S Kumaran, D Swaminathan, S TI Common binding site for disialyllactose and tri-peptide in C-fragment of tetanus neurotoxin SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE tetanus neurotoxin; GD3; ganglioside; X-ray crystallography; beta-trefoil; inhibitors ID BOTULINUM NEUROTOXIN; GANGLIOSIDE-BINDING; H-C; CRYSTAL-STRUCTURE; HEAVY SUBUNIT; A NEUROTOXIN; TOXIN; RECEPTOR; DOMAIN; IDENTIFICATION AB Clostridial neurotoxins are comprised of botulinum (BoNT) and tetanus (TeNT), which share significant structural and functional similarity. Crystal structures of the binding domain of TeNT complexed with disialyllactose (DiSia) and a tri-peptide Tyr-Glu-Trp (YEW) have been determined to 2.3 and 2.2 angstrom, respectively. Both DiSia and YEW bind in a shallow cleft region on the surface of the molecule in the beta-trefoil domain, interacting with a set of common residues, Asp1147, Asp1214, Asn1216, and Arg1226. DiSia and YEW binding at the same site in tetanus toxin provides a putative site that could be occupied either by a ganglioside moiety or a peptide. Soaking experiments with a mixture of YEW and DiSia show that YEW competes with DiSia, suggesting that YEW can be used to block ganglioside binding. A comparison with the TeNT binding domain in complex with small molecules, BoNT/A and /B, provides insight into the different modes of ganglioside binding. C1 Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Swaminathan, S (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM swami@bnl.gov NR 34 TC 26 Z9 27 U1 0 U2 0 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD NOV 1 PY 2005 VL 61 IS 2 BP 288 EP 295 DI 10.1002/prot.20595 PG 8 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 971YL UT WOS:000232420800007 PM 16104015 ER PT J AU Chen, SF Yakunin, AF Proudfoot, M Kim, R Kim, SH AF Chen, SF Yakunin, AF Proudfoot, M Kim, R Kim, SH TI Structural and functional characterization of a 5,10-methenyltetrahydrofolate synthetase from Mycoplasma pneumoniae (GI : 13508087) SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE 5,10-methenyltetrahydrofolate synthetase; 5-formyltetrahydrofolate cycloligase; ADP-Mg complex; 5-formyltetrahydrofolate omplex; EC 6.3.3.2 ID METHENYLTETRAHYDROFOLATE SYNTHETASE; 5-FORMYLTETRAHYDROFOLATE POLYGLUTAMATES; RABBIT LIVER; PURIFICATION; CONVERSION; PROGRAM; CLONING AB Mycoplasma pneumoniae 5,10-methenyltetrahydrofolate synthetase [MTHFS; also known as 5-formyltetrahydrofolate cycloligase; Enzyme Commission (EC) 6.3.3.2] belongs to a large cycloligase protein family with 97 sequence homologues from bacteria to human. To help define the molecular (biochemical and biophysical) function of the M. pneumoniae MTHFS, we have previously determined its crystal structure at 2.2 angstrom resolution (Chen et al., Proteins 2004;56:839-843). In this current study, activity assays confirmed the functionality of the recombinant protein, with K-m = 165 mu M for 5-formyltetrahydrofolate (5-FTHF) and K-m = 166 mu M for MgATP. The methenyltetrahydrofolate activity of M. pneumoniae MTHFS has a requirement for divalent metal ions with Mg2+ being most effective, and an absolute requirement for nucleoside 5'-triphosphates with adenosine triphosphate (ATP) being most effective. Crystallization in the presence of substrates (MgATP, with or without 5-FTHF) produced the complex structures of the protein with adenosine diphosphate (ADP) and phosphate at 2.2 A resolution; with ADP, phosphate, and 5-FTHF at 2.5 angstrom resolution. These structures directly demonstrated that the role of Mg2+, in the reaction is to form the ATP-Mg2+-enzyme complex. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley Struct Genom Ctr, Phys Biosci Div, Berkeley, CA USA. Univ Toronto, Banting & Best Dept Med Res, Toronto, ON, Canada. RP Kim, SH (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM shkim@lbl.gov RI Yakunin, Alexander/J-1519-2014; OI Yakunin, Alexander/0000-0003-0813-6490 FU NIGMS NIH HHS [GM 62412] NR 25 TC 9 Z9 10 U1 0 U2 0 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD NOV 1 PY 2005 VL 61 IS 2 BP 433 EP 443 DI 10.1002/prot.20591 PG 11 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 971YL UT WOS:000232420800021 PM 16104022 ER PT J AU Rife, C Schwarzenbacher, R McMullan, D Abdubek, P Ambing, E Axelrod, H Biorac, T Canaves, JM Chiu, HJ Deacon, AM DiDonato, M Elsliger, MA Godzik, A Grittini, C Grzechnik, SK Hale, J Hampton, E Han, GW Haugen, J Hornsby, M Jaroszewski, L Klock, HE Koesema, E Kreusch, A Kuhn, P Lesley, SA Miller, MD Moy, K Nigoghossian, E Paulsen, J Quijano, K Reyes, R Sims, E Spraggon, G Stevens, RC van den Bedem, H Velasquez, J Vincent, J White, A Wolf, G Xu, QP Hodgson, KO Wooley, J Wilson, IA AF Rife, C Schwarzenbacher, R McMullan, D Abdubek, P Ambing, E Axelrod, H Biorac, T Canaves, JM Chiu, HJ Deacon, AM DiDonato, M Elsliger, MA Godzik, A Grittini, C Grzechnik, SK Hale, J Hampton, E Han, GW Haugen, J Hornsby, M Jaroszewski, L Klock, HE Koesema, E Kreusch, A Kuhn, P Lesley, SA Miller, MD Moy, K Nigoghossian, E Paulsen, J Quijano, K Reyes, R Sims, E Spraggon, G Stevens, RC van den Bedem, H Velasquez, J Vincent, J White, A Wolf, G Xu, QP Hodgson, KO Wooley, J Wilson, IA TI Crystal structure of a putative modulator of DNA gyrase (pmbA) from Thermotoga maritima at 1.95 angstrom resolution reveals a new fold SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article ID REFINEMENT; GEOMETRY C1 Scripps Res Inst, La Jolla, CA 92037 USA. Joint Ctr Struct Genom, Menlo Pk, CA USA. Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Novartis Res Fdn, Genom Inst, San Diego, CA USA. RP Wilson, IA (reprint author), Scripps Res Inst, BCC206,10550 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM wilson@scripps.edu RI Godzik, Adam/A-7279-2009 OI Godzik, Adam/0000-0002-2425-852X FU NIGMS NIH HHS [P50 GM62411] NR 18 TC 4 Z9 4 U1 0 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0887-3585 J9 PROTEINS JI Proteins PD NOV 1 PY 2005 VL 61 IS 2 BP 444 EP 448 DI 10.1002/prot.20468 PG 5 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 971YL UT WOS:000232420800022 PM 16104019 ER PT J AU Rife, C Schwarzenbacher, R McMullan, D Abdubek, P Ambing, E Axelrod, H Biorac, T Canaves, JM Chiu, HJ Deacon, AM DiDonato, M Elsliger, MA Godzik, A Grittini, C Grzechnik, SK Hale, J Hampton, E Han, GW Haugen, J Hornsby, M Jaroszewski, L Klock, HE Koesema, E Kreusch, A Kuhn, P Lesley, SA Miller, MD Moy, K Nigoghossian, E Paulsen, J Quijano, K Reyes, R Sims, E Spraggon, G Stevens, RC van den Bedem, H Velasquez, J Vincent, J White, A Wolf, G Xu, QP Hodgson, KO Wooley, J Wilson, IA AF Rife, C Schwarzenbacher, R McMullan, D Abdubek, P Ambing, E Axelrod, H Biorac, T Canaves, JM Chiu, HJ Deacon, AM DiDonato, M Elsliger, MA Godzik, A Grittini, C Grzechnik, SK Hale, J Hampton, E Han, GW Haugen, J Hornsby, M Jaroszewski, L Klock, HE Koesema, E Kreusch, A Kuhn, P Lesley, SA Miller, MD Moy, K Nigoghossian, E Paulsen, J Quijano, K Reyes, R Sims, E Spraggon, G Stevens, RC van den Bedem, H Velasquez, J Vincent, J White, A Wolf, G Xu, QP Hodgson, KO Wooley, J Wilson, IA TI Crystal structure of the global regulatory protein CsrA from Pseudomonas putida at 2.05 angstrom resolution reveals a new fold SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article ID ESCHERICHIA-COLI; GEOMETRY; GENE C1 Scripps Res Inst, La Jolla, CA 92037 USA. Joint Ctr Struct Genom, Menlo Pk, CA USA. Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Novartis Res Fdn, Genom Inst, San Diego, CA USA. RP Wilson, IA (reprint author), Scripps Res Inst, BCC206,10550 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM wilson@scripps.edu RI Godzik, Adam/A-7279-2009 OI Godzik, Adam/0000-0002-2425-852X FU NIGMS NIH HHS [P50 GM62411] NR 17 TC 28 Z9 31 U1 0 U2 18 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD NOV 1 PY 2005 VL 61 IS 2 BP 449 EP 453 DI 10.1002/prot.20502 PG 5 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 971YL UT WOS:000232420800023 PM 16104018 ER PT J AU Wang, DJ Gao, L AF Wang, DJ Gao, L TI Proteomic analysis of neural differentiation of mouse embryonic stem cells SO PROTEOMICS LA English DT Article DE calcium homeostasis; mouse embryonic stem cells; neural differentiation; translationally controlled tumor protein ID CONTROLLED TUMOR PROTEIN; ES CELLS; ENDOPLASMIC-RETICULUM; DOPAMINERGIC-NEURONS; MOLECULAR SIGNATURE; SELF-RENEWAL; GENE-EXPRESSION; CALCIUM; HOMEOSTASIS; LINEAGE AB Mouse embryonic stem cells (mESCs) can differentiate into different types of cells, and serve as a good model system to study human embryonic stem cells (hESCs). We showed that mESCs differentiated into two types of neurons with different time courses. To determine the global protein expression changes after neural differentiation, we employed a proteomic strategy to analyze the differences between the proteomes of ES cells (E14) and neurons. Using 2-DE plus LC/MS/MS, we have generated proteome reference maps of E14 cells and derived dopaminergic neurons. Around 23 proteins with an increase or decrease in expression or phosphorylation after differentiation have been identified. We confirmed the downregulation of translationally controlled tumor protein (TCTP) and upregulation of alpha-tubulin by Western blotting. We also showed that TCTP was further downregulated in derived motor neurons than in dopaminergic neurons, and its expression level was independent of extracellular Ca2+ concentration during neural differentiation. Potential roles of TCTP in modulating neural differentiation through binding to Ca2+, tubulin and Na,K-ATPase, as well as the functional significance of regulation of other proteins such as actin-related protein 3 (Arp3) and Ran GTPase are discussed. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms. C1 Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Wang, DJ (reprint author), Lawrence Berkeley Lab, Div Life Sci, 1 Cyclotron Rd,MS 84-171, Berkeley, CA 94720 USA. EM djwang@lbl.gov NR 77 TC 52 Z9 54 U1 0 U2 5 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1615-9853 J9 PROTEOMICS JI Proteomics PD NOV PY 2005 VL 5 IS 17 BP 4414 EP 4426 DI 10.1002/pmic.200401304 PG 13 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 989PL UT WOS:000233686100010 PM 16222718 ER PT J AU Kish, JR Singbeil, DL Keiser, JR Wensley, A Jette, F AF Kish, JR Singbeil, DL Keiser, JR Wensley, A Jette, F TI Cracking and corrosion performance of composite tubes and air port designs in a kraft recovery boiler SO PULP & PAPER-CANADA LA English DT Article; Proceedings Paper CT International Chemical Recovery Conference of the Pulp-and-Paper-Technical-Association-of-Canada CY JUN 06-10, 2004 CL Charleston, SC SP Pulp & Paper Tech Assoc, TAPPI DE kraft mills; recovery boilers; piping; composites; fracture; cracks; airjets; openings; machine design; corrosion; carbon steel AB Alternative composite tube systems fabricated into two different port designs were installed in a kraft recovery boiler to evaluate their effectiveness in solving a composite tube cracking problem. Test ports have been examined for cracking and corrosion of the cladding/overlay every six months since the time of their installation. Test ports with co-extruded modified A825/carbon steel composite tubes, and port design designated "B" were the only one where no cracking or corrosion was found on any of the tubes after 30 months of exposure. C1 Pulp & Paper Res Inst Canada, Vancouver, BC, Canada. Angela Wensley Engn Inc, White Rock, BC, Canada. Domtar Inc, Montreal, PQ, Canada. Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Kish, JR (reprint author), Pulp & Paper Res Inst Canada, Vancouver, BC, Canada. EM jkish@paprican.ca NR 14 TC 0 Z9 0 U1 1 U2 1 PU SOUTHAM BUSINESS COMMUNICATION INC PI DON MILLS PA 1450 DON MILLS RD, DON MILLS, ONTARIO M3B 2X7, CANADA SN 0316-4004 J9 PULP PAP-CANADA JI Pulp Pap.-Can. PD NOV PY 2005 VL 106 IS 11 BP 30 EP 35 PG 6 WC Materials Science, Paper & Wood SC Materials Science GA 985IV UT WOS:000233371700007 ER PT J AU Bustamante, C AF Bustamante, Carlos TI Unfolding single RNA molecules: bridging the gap between equilibrium and non-equilibrium statistical thermodynamics SO QUARTERLY REVIEWS OF BIOPHYSICS LA English DT Article; Proceedings Paper CT Workshop on Fundamentals of Biomolecular Function - Nucleic Acids, Proteins and Membranes CY MAY, 2005 CL Univ Coimbra, Coimbra, PORTUGAL HO Univ Coimbra ID FREE-ENERGY DIFFERENCES; EQUALITY AB During the last 15 years, scientists have developed methods that permit the direct mechanical manipulation of individual molecules. Using this approach, they have begun to investigate the effect of force and torque in chemical and biochemical reactions. These studies span from the study of the mechanical properties of macromolecules, to the characterization of molecular motors, to the mechanical unfolding of individual proteins and RNA. Here I present a review of some of our most recent results using mechanical force to unfold individual molecules of RNA. These studies make it possible to follow in real time the trajectory of each molecule as it unfolds and characterize the various intermediates of the reaction. Moreover, if the process takes place reversibly it is possible to extract both kinetic and thermodynamic information from these experiments at the same time that we characterize the forces that maintain the three-dimensional structure of the molecule in solution. These studies bring us closer to the biological unfolding processes in the cell as they simulate in vitro, the mechanical unfolding of RNAs carried out in the cell by helicases. If the unfolding process occurs irreversibly, I show here that single-molecule experiments can still provide equilibrium, thermodynamic information from non-equilibrium data by using recently discovered fluctuation theorems. Such theorems represent a bridge between equilibrium and non-equilibrium statistical mechanics. In fact, first derived in 1997, the first experimental demonstration of the validity of fluctuation theorems was obtained by unfolding mechanically a single molecule of RNA. It is perhaps a sign of the times that important physical results are these days used to extract information about biological systems and that biological systems are being used to test and confirm fundamental new laws in physics. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Howard Hughes Med Inst, Berkeley, CA 94720 USA. RP Bustamante, C (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM carlos@alice.berkeley.edu NR 11 TC 26 Z9 26 U1 0 U2 4 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0033-5835 J9 Q REV BIOPHYS JI Q. Rev. Biophys. PD NOV PY 2005 VL 38 IS 4 BP 291 EP 301 DI 10.1017/S0033583506004239 PG 11 WC Biophysics SC Biophysics GA 091EE UT WOS:000241008500002 PM 16817984 ER PT J AU Jordan, GB Hage, J Mote, J Hepler, B AF Jordan, GB Hage, J Mote, J Hepler, B TI Investigating differences among research projects and implications for managers SO R & D MANAGEMENT LA English DT Article; Proceedings Paper CT R and D Management Conference CY 2004 CL Sesimbra, PORTUGAL ID RESEARCH-AND-DEVELOPMENT; INNOVATION; SUCCESS AB As research and innovation have become central to the economy, the challenge of managing these activities has taken on greater importance. Studies have focused on the impact of organizational variables on research activities, such as work environment, human resource factors, and managerial practices. But little attention has been paid to the effect of differences among types of research projects. While the notion that differences exist among research projects is acknowledged, particularly in the research & development portfolio literature, there have been relatively few studies into the dimensions by which research projects, and needs of project team members, differ. Further, there is little recognition that these differences translate into the need for different research project management practices. The objective of this paper is to investigate differences among research projects along three dimensions, amount of funding, complexity of project teams, and research orientation. These dimensions are selected because of their central theoretical importance in the organizational literature, as well as posing a number of different challenges for research management. This study looked at IS research projects at a national laboratory and analyzed the responses of project members to a comprehensive research environment survey conducted in 2001. The results of the analysis indicate that there are significant differences between types of projects along three dimensions and suggest ways that research performance can be improved through management intervention. C1 Sandia Natl Labs, Washington, DC 20024 USA. Univ Maryland, Ctr Innovat, College Pk, MD 20742 USA. RP Jordan, GB (reprint author), Sandia Natl Labs, Washington, DC 20024 USA. EM gbjorda@sandia.gov; hage@socy.umd.edu; jmote@socy.umd.edu; bhepler@socy.umd.edu NR 23 TC 11 Z9 11 U1 2 U2 10 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0033-6807 J9 R&D MANAGE JI R D Manage. PD NOV PY 2005 VL 35 IS 5 BP 501 EP 511 DI 10.1111/j.1467-9310.2005.00407.x PG 11 WC Business; Management SC Business & Economics GA 990KB UT WOS:000233740600005 ER PT J AU Espinosa, G Golzarri, JI Martinez, T Navarrete, M Bogard, J Martinez, G Juarez, F AF Espinosa, G Golzarri, JI Martinez, T Navarrete, M Bogard, J Martinez, G Juarez, F TI Indoor Rn-220 and Rn-222 concentration measurements inside the Teotihuacan pyramids using NTD and E-PERM methodologies SO RADIATION MEASUREMENTS LA English DT Article; Proceedings Paper CT 22nd International Conference on Nuclear Tracks in Solids (ICNTS 22) CY AUG 23-27, 2004 CL Univ Autonoma Barcelona, Barcelona, SPAIN SP Int Nucl Track Soc, Grup Fis Radiac HO Univ Autonoma Barcelona DE Radon; Thoron; Teotihuacan; CR-39; electret ID RADON; SYSTEM; SUN AB Measurements of Rn-220 (Thoron) and Rn-222 (Radon) concentrations, inside the Sun and Moon pyramids of Teotihuacan's archeological zone in Mexico, are reported in this work. Two well-established methods, nuclear track detectors (NTDs), using open-close end cups with internal and external detectors of CR-39 polymer, and electret-passive environmental radon monitoring (E-PERM) were used for the measurements. This experiment had two objectives: to obtain better confidence in the Rn-220 and Rn-222 measurements inside the archeological tunnels, and to compare the data obtained in each one of the two methods. This experiment is specially interesting because of the very peculiar conditions where the measurements are made: high humidity, labyrinths with air currents, but almost constant temperature inside of the pyramid tunnels and galleries, notwithstanding of the temperature changes between the day and the night outside of the pyramid body. The Rn-222 concentrations found in both the pyramids were lower than the action level proposed by the ICRP-65. These tunnels are not open to the public, but researchers from the Anthropology Institutions spend part of their time working there, in periods varying from 3 to 5 months. (c) 2005 Elsevier Ltd. All rights reserved. C1 Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. Univ Nacl Autonoma Mexico, Fac Quim, Mexico City 01000, DF, Mexico. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Coodinac Nacl Conservac Patrimonio Cultural Xicot, Mexico City 04120, DF, Mexico. Univ Nacl Autonoma Mexico, Inst Geofis, Mexico City 04510, DF, Mexico. RP Espinosa, G (reprint author), Univ Nacl Autonoma Mexico, Inst Fis, Apartado Postal 20364, Mexico City 01000, DF, Mexico. EM espinosa@fisica.unam.mx NR 16 TC 2 Z9 2 U1 1 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1350-4487 J9 RADIAT MEAS JI Radiat. Meas. PD NOV PY 2005 VL 40 IS 2-6 SI SI BP 646 EP 649 DI 10.1016/j.radmeas.2005.01.012 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 986ZF UT WOS:000233487500097 ER PT J AU Springer, DL Ahram, M Adkins, JN Kathmann, LE Miller, JH AF Springer, DL Ahram, M Adkins, JN Kathmann, LE Miller, JH TI Characterization of medium conditioned by irradiated cells using proteome-wide, high-throughput mass spectrometry SO RADIATION RESEARCH LA English DT Article ID NECROSIS-FACTOR-ALPHA; CONVERTING-ENZYME TACE; FACTOR-RECEPTOR; IDENTIFICATION; PROTEINS; TECHNOLOGY; RADIATION; EXPOSURE; CLEAVAGE; RELEASE AB Shedding, the release of cell surface proteins by regulated proteolysis, is a general cellular response to injury and is responsible for generating numerous bioactive molecules including growth factors and cytokines. The purpose of our work is to determine whether low doses of low-linear energy transfer (LET) radiation induce shedding of bioactive molecules. Using a mass spectrometry-based global proteomics method, we tested this hypothesis by analyzing for shed proteins in medium from irradiated human mammary epithelial cells (HMEC). Several hundred proteins were identified, including transforming growth factor beta (TGFB); however, no changes in protein abundances attributable to radiation exposure, based on immunoblotting methods, were observed. These results demonstrate that our proteomic-based approach has the sensitivity to identify the kinds of proteins believed to be released after low-dose radiation exposure but that improvements in mass spectrometry-based protein quantification will be required to detect the small changes in abundance associated with this type of insult. C1 Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. Washington State Univ, Richland, WA 99354 USA. RP Springer, DL (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM david.springer@pnl.aov RI Adkins, Joshua/B-9881-2013 OI Adkins, Joshua/0000-0003-0399-0700 NR 27 TC 4 Z9 5 U1 0 U2 1 PU RADIATION RESEARCH SOC PI OAK BROOK PA 820 JORIE BOULEVARD, OAK BROOK, IL 60523 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD NOV PY 2005 VL 164 IS 5 BP 651 EP 654 DI 10.1667/RR3457.1 PG 4 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 978ID UT WOS:000232865900008 PM 16238442 ER PT J AU Sowa, MB Kathmann, LE Holben, BA Thrall, BD Kimmel, GA AF Sowa, MB Kathmann, LE Holben, BA Thrall, BD Kimmel, GA TI Low-LET microbeam investigation of the track-end dependence of electron-induced damage in normal human diploid fibroblasts SO RADIATION RESEARCH LA English DT Article ID RADIATION; EVENTS AB Using a pulsed electron beam, we investigated the dependence of micronucleus formation on the incident electron energy in AG01522 human diploid fibroblasts after nontargeted irradiations at 25 and 80 keV. Examining the dose response, we found that 25 keV electrons are more effective than 80 keV electrons at producing biological damage for a given dose. Our results demonstrating the induction of micronuclei as a function of incident electron energy offer direct support for the hypothesis that the electron track end is responsible for the biological damage occurring in the cell. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. Washington State Univ, Pullman, WA 99163 USA. RP Sowa, MB (reprint author), Pacific NW Natl Lab, POB 999,MS K8-88, Richland, WA 99352 USA. EM sowa@pnl.gov NR 13 TC 4 Z9 4 U1 0 U2 0 PU RADIATION RESEARCH SOC PI OAK BROOK PA 820 JORIE BOULEVARD, OAK BROOK, IL 60523 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD NOV PY 2005 VL 164 IS 5 BP 677 EP 679 DI 10.1667/RR3464.1 PG 3 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 978ID UT WOS:000232865900012 PM 16238446 ER PT J AU Sowa, MB Murphy, MK Miller, JH McDonald, JC Strom, DJ Kimmel, GA AF Sowa, MB Murphy, MK Miller, JH McDonald, JC Strom, DJ Kimmel, GA TI A variable-energy electron microbeam: A unique modality for targeted low-LET radiation SO RADIATION RESEARCH LA English DT Article ID CHARGED-PARTICLE MICROBEAM; MONTE-CARLO-SIMULATION; X-RAY MICROPROBE; MAMMALIAN-CELLS; GENOMIC INSTABILITY; SILICON PHOTODIODES; ALPHA-PARTICLES; DIFFERENT SIZE; SINGLE-CELL; IRRADIATION AB We have designed and constructed a low-cost, variable-energy low-LET electron microbeam that uses energetic electrons to mimic radiation damage produced by 7 and X rays. The microbeam can access lower regions of the LET spectrum, similar to conventional X-ray or Co-60 gamma-ray sources. The device has two operating modes, as a conventional microbeam targeting single cells or subpopulations of cells or as a pseudo broad-beam source allowing for direct comparison with conventional sources. By varying the incident electron energy, the target cells can be selectively exposed to different parts of the energetic electron tracks, including the track ends. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. Washington State Univ, Richland, WA 99163 USA. RP Sowa, MB (reprint author), Pacific NW Natl Lab, POB 999,MS K8-88, Richland, WA 99352 USA. EM sowa@pnl.gov NR 30 TC 17 Z9 18 U1 1 U2 5 PU RADIATION RESEARCH SOC PI OAK BROOK PA 820 JORIE BOULEVARD, OAK BROOK, IL 60523 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD NOV PY 2005 VL 164 IS 5 BP 695 EP 700 DI 10.1667/RR3463.1 PG 6 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 978ID UT WOS:000232865900015 PM 16238449 ER PT J AU Worrell, E Neelis, M Patel, M AF Worrell, E Neelis, M Patel, M TI Special issue: CO2 emissions from non-energy use of fossil fuels SO RESOURCES CONSERVATION AND RECYCLING LA English DT Editorial Material C1 Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Worrell, E (reprint author), Lawrence Berkeley Lab, Environm Energy Technol Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM eworrell@lbl.gov; m.patel@chem.uu.nl RI Worrell, Ernst/L-5455-2013 OI Worrell, Ernst/0000-0002-0199-9755 NR 0 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-3449 J9 RESOUR CONSERV RECY JI Resour. Conserv. Recycl. PD NOV PY 2005 VL 45 IS 3 SI SI BP 193 EP 194 DI 10.1016/j.resconrec.2005.05.001 PG 2 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 971MU UT WOS:000232389200001 ER PT J AU Liu, WJ Ice, GE Tischler, JZ Khounsary, A Liu, C Assoufid, L Macrander, AT AF Liu, WJ Ice, GE Tischler, JZ Khounsary, A Liu, C Assoufid, L Macrander, AT TI Short focal length Kirkpatrick-Baez mirrors for a hard x-ray nanoprobe SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID MICROSCOPY; OPTICS; ESRF AB We describe progress in the fabrication of short-focal-length total-external-reflection Kirkpatrick-Baez x-ray mirrors with ultralow figure errors. The short focal length optics produce nanoscale beams (< 100 nm) on conventional (similar to 64 m long) beamlines at third generation synchrotron sources. The total-external reflection optics are inherently achromatic and efficiently focus a white (polychromatic) or a tunable monochromatic spectrum of x rays. The ability to focus independent of wavelength allows novel new experimental capabilities. Mirrors have been fabricated both by computer assisted profiling (differential polishing) and by profile coating (coating through a mask onto ultra-smooth surfaces). A doubly focused 85x95 nm(2) hard x-ray nanobeam has been obtained on the UNICAT beamline 34-ID at the Advanced Photon Source. The performance of the mirrors, techniques for characterizing the spot size, and factors limiting focusing performance are discussed. (c) 2005 American Institute of Physics. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Illinois, Urbana, IL 61801 USA. Argonne Natl Lab, Argonne, IL 60439 USA. RP Liu, WJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. NR 22 TC 78 Z9 79 U1 0 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2005 VL 76 IS 11 AR 113701 DI 10.1063/1.2125730 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 988CU UT WOS:000233569800024 ER PT J AU Pantea, C Rickel, DG Migliori, A Leisure, RG Zhang, JZ Zhao, YS El-Khatib, S Li, BS AF Pantea, C Rickel, DG Migliori, A Leisure, RG Zhang, JZ Zhao, YS El-Khatib, S Li, BS TI Digital ultrasonic pulse-echo overlap system and algorithm for unambiguous determination of pulse transit time SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ELASTIC WAVE VELOCITIES; SOLIDS; SOUND AB We report an evolution of an all-digital ultrasonic pulse technique for measurements of elastic constants of solids. An unambiguous analytical procedure is described for determining the correct time delay of echoes without any need for actual echo overlap. We also provide a simple procedure for making corrections for transducer-bond-induced phase shifts. The precision of a measurement made with this system at ambient temperature exceeds one part in 10(7) without the use of mixers, gates, time delays, and other complicationsnormally associated with such measurements. (c) 2005 American Institute of Physics. C1 Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Los Alamos Natl Lab, Los Alamos Neutron Scattering Ctr, Los Alamos, NM 87545 USA. New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. RP Pantea, C (reprint author), Los Alamos Natl Lab, Natl High Magnet Field Lab, POB 1663, Los Alamos, NM 87545 USA. RI Pantea, Cristian/D-4108-2009; Lujan Center, LANL/G-4896-2012; Li, Baosheng/C-1813-2013; OI Pantea, Cristian/0000-0002-0805-8923 NR 20 TC 13 Z9 13 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2005 VL 76 IS 11 AR 114902 DI 10.1063/1.2130715 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 988CU UT WOS:000233569800038 ER PT J AU Chowell, G Diaz-Duenas, P Chowell, D AF Chowell, G Diaz-Duenas, P Chowell, D TI The dynamics of pulmonary tuberculosis in Colima, Mexico (1999-2002) SO SCANDINAVIAN JOURNAL OF INFECTIOUS DISEASES LA English DT Article ID DIAGNOSTIC DELAY; HEALTH AB Tuberculosis is a public health problem in Mexico. From 1999 to 2002, we assessed retrospectively the epidemiological, clinical, and treatment characteristics of pulmonary tuberculosis in the hospitals of the Mexican Institute of Public Health in the state of Colima (Mexico). We included 184 cases diagnosed with pulmonary tuberculosis. A database containing demographic, epidemiological, and clinical information was constructed and analyzed. We estimate a median patient delay of 83 d and a mean treatment delay of 2.3 d. Of 14 cases suspected for multiresistance and microbiologically assayed, 5 were found to carry a multi-drug-resistant strain. We also found a significant association between a short patient delay and the presence of hemoptysis (p = 0.002) or dyspnea (p < 0.001). 86 patients (46.8%) were sputum smear microscopy negative at the end of treatment and 40 (21.7%) completed treatment giving an overall success rate of 68.5%, which compares unfavorably with the World Health Organization target success rate of 85%. Five (2.7%) patients failed treatment, 10 (5.4%) died, 39 (21.2%) interrupted treatment, and 4 (2.2%) transferred to another reporting unit. A 2002 strategic change in drug distribution seemed to prove successful. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Inst Mexicano Seguro Social, Hosp Gen Med Familiar 5, Colima, Mexico. Univ Colima, Sch Sci, Colima, Mexico. RP Chowell, G (reprint author), Los Alamos Natl Lab, Mail Stop B284, Los Alamos, NM 87545 USA. EM gchowell@t7.lanl.gov RI Chowell, Gerardo/A-4397-2008; Chowell, Gerardo/F-5038-2012 OI Chowell, Gerardo/0000-0003-2194-2251 NR 21 TC 1 Z9 1 U1 0 U2 2 PU TAYLOR & FRANCIS AS PI OSLO PA PO BOX 12 POSTHUSET, NO-0051 OSLO, NORWAY SN 0036-5548 J9 SCAND J INFECT DIS JI Scand. J. Infect. Dis. PD NOV PY 2005 VL 37 IS 11-12 BP 858 EP 862 DI 10.1080/00365540500348911 PG 5 WC Infectious Diseases SC Infectious Diseases GA 988RQ UT WOS:000233618800010 PM 16308221 ER PT J AU Tang, XH Joy, DC AF Tang, XH Joy, DC TI An experimental model of beam broadening in the variable pressure scanning electron microscope SO SCANNING LA English DT Article DE electron beam; gas broadening; charging control; variable pressure scanning electron microscope; x-ray mapping AB In the variable pressure scanning electron microscope (VP-SEM) the incident electrons pass through a gaseous environment and the beam is scattered by these interactions. We show here that the experimental intensity profile of the scattered beam can be described as Gaussian in form to a high level of accuracy. This provides a rapid means of accounting for the effects of beam scatter in imaging and microanalysis because the standard deviation of the Gaussian is a simple function of parameters such as working distance, beam energy, gas type and pressure. C1 Univ Tennessee, Elect Microscope Facil, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Joy, DC (reprint author), Univ Tennessee, Elect Microscope Facil, Knoxville, TN 37996 USA. EM djoy@utk.edu NR 7 TC 4 Z9 4 U1 0 U2 0 PU FAMS INC PI MAHWAH PA BOX 832, MAHWAH, NJ 07430-0832 USA SN 0161-0457 J9 SCANNING JI Scanning PD NOV-DEC PY 2005 VL 27 IS 6 BP 293 EP 297 DI 10.1002/sca.4950270604 PG 5 WC Instruments & Instrumentation; Microscopy SC Instruments & Instrumentation; Microscopy GA 992ND UT WOS:000233889800003 PM 16370397 ER PT J AU Funaki, K Takago, S Fujii, K Sasaki, T Kitagawa, K Hirose, Y Ellingson, WA AF Funaki, K Takago, S Fujii, K Sasaki, T Kitagawa, K Hirose, Y Ellingson, WA TI Internal stress behavior of the short ceramic fiber reinforced aluminum alloy under tensile deformation SO SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS LA English DT Article; Proceedings Paper CT 3rd NIMS International Conference on Materials for Human Safety CY MAR 03-04, 2005 CL Tsukuba Sci City, Ibaraki, JAPAN SP NIMS HO Tsukuba Sci City DE metal matrix composite; SiC whisker; X-ray diffraction; peak separation; profile fitting; tensile deformation; internal stress behavior; phase stress; micro mechanics; fatigue crack propagation ID X-RAYS AB The in situ measurement of phase stress under tensile deformation on an A6061 alloy reinforced with SiC whiskers (Al/SiCw MMC: Metal Matrix Composite) was performed using the X-ray diffraction technique. In order to raise a preciseness of measurements, we applied a profile fitting technique to separate the nearby located diffraction peak. Tensile deformation on elastic to plastic range was applied by four points bending device and discussed internal stress behavior in the short ceramic fiber reinforced MMC. Phase stress in Al matrix was increased linearly up to 280 x 10(-6) in strain and then saturated immediately. On the other hand phase stress in SiC whiskers shows an unstable stress behavior. It was decreased at first because of the Poisson's effect from Al matrix but reversed over 500 X 10-6 applied strain. The measured phase stress behavior in elastic region agreed with the calculations using micromechanics based on Eshelby/Mori-Tanaka model except for this unstable internal stress region. The macro stress behavior in plastic region was extremely small than that of the tensile test results. It supposed that the mechanism of strength is not so much the fiber reinforcing as the dispersion strengthening like the Orowan mechanism. Regarding the fatigue property, Delta K-th, of the Al/SiC MMC, this was lower than that of the A6061 alloy. On the Al/SiCw MMC specimen, many micro void formations were observed around the fatigue crack tip even under the Delta K-th of A6061. It was considered that these, were caused by the high gradient of residual stress on composite process and the unstable stress behavior in low Delta K region. (C) 2005 Elsevier Ltd. All rights reserved. C1 Ind Res Inst Ishikawa, Dept Machinery & Met, Kanazawa, Ishikawa 9208203, Japan. Kanazawa Univ, Grad Sch Nat Sci & Technol, Kanazawa, Ishikawa 9201192, Japan. Argonne Natl Lab, Div Energy Technol, Argonne, IL 60439 USA. RP Funaki, K (reprint author), Ind Res Inst Ishikawa, Dept Machinery & Met, 2-1 Kuratsuki, Kanazawa, Ishikawa 9208203, Japan. EM funaki@irii.go.jp NR 21 TC 2 Z9 2 U1 2 U2 7 PU NATL INST MATERIALS SCIENCE PI IBARAKI PA NATL INST MATERIALS SCIENCE, 1-2-1 SENGEN, TSUKUBA-CITY, IBARAKI, 305-0047, JAPAN SN 1468-6996 J9 SCI TECHNOL ADV MAT JI Sci. Technol. Adv. Mater. PD NOV PY 2005 VL 6 IS 8 BP 902 EP 909 DI 10.1016/j.stam.2005.08.008 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 019YR UT WOS:000235875200006 ER PT J AU Hu, P Yin, XL Zhao, LH Li, D AF Hu, P Yin, XL Zhao, LH Li, D TI Sorption of EU3+ onto nano-size silica-water interfaces SO SCIENCE IN CHINA SERIES D-EARTH SCIENCES LA English DT Article DE surface sorption; Eu3+ species; nano-size silica; fluorescence spectroscopy; immobilization of toxic metals ID INDUCED FLUORESCENCE SPECTROSCOPY; NATURAL HEMATITE; HUMIC-ACID; EUROPIUM; EU(III); ADSORPTION; SURFACE; IONS; MONTMORILLONITE; COMPLEXATION AB The sorption of Eu species onto nano-size silica-water interfaces is investigated at pH range of 1 -8.5 and the initial Eu concentrations (C-Eu) of 2 x 10(-5), 2 x 10(-4) and 2 x 10(-3) M using fluorescence spectroscopy. The sorption rate of Eu is initially low, but significantly increases at pH > 4. For the initial C-Eu of 2 x 10(-5), 2 x 10(-4) and 2 x 10(-3) M, the dissolved Eu species are completely sorbed onto silica-water interfaces at pH = 4.75, similar to 5.8 and 6.6, respectively, with the respective sorption densities of similar to 1.58 x 10(-8), 1.58 x 10(-7) and 1.58 x 10(-6) mol/m(2). The sorbed Eu species at pH < 6 is aquo Eu3+, which is sorbed onto silica-water interfaces as an outer-sphere complex at pH < 5, but may be sorbed as an inner-sphere bidentate complex at 5 < pH < 6, due to the decrease of the N-H2O to similar to 6 at pH = 6. At pH = 6 - 8, Eu(OH)(2+), Eu(CO3)(+) and Eu(CO3)(2)(-) form in the solutions, and Eu(CO3)(+) is dominant at pH = similar to 7.5. These ions may be sorbed onto silica-water interfaces as inner-sphere bidentate complexes or multi-nuclear precipitates. C1 China Univ Geosci, Dept Earth Sci, Wuhan 430074, Peoples R China. NE Illinois Univ, Chicago, IL 60625 USA. China Inst Geoenvironm Monitoring, Beijing 100081, Peoples R China. Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87544 USA. RP Hu, P (reprint author), China Univ Geosci, Dept Earth Sci, Wuhan 430074, Peoples R China. EM cug@sbcglobal.net NR 17 TC 1 Z9 1 U1 4 U2 4 PU SCIENCE PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 1006-9313 J9 SCI CHINA SER D JI Sci. China Ser. D-Earth Sci. PD NOV PY 2005 VL 48 IS 11 BP 1942 EP 1948 DI 10.1360/04yd0124 PG 7 WC Geosciences, Multidisciplinary SC Geology GA 998KV UT WOS:000234318400013 ER PT J AU Saw, CK Siekhaus, WJ AF Saw, CK Siekhaus, WJ TI Thermal expansion of AuIn2 SO SCRIPTA MATERIALIA LA English DT Article DE thermal expansion; CTE; gold indide-AuIn2; X-ray diffraction ID AU AB The thermal expansion of AuIn2 gold is of great interest in soldering technology. Indium-containing solders have been used to make gold wire interconnects at low soldering temperature and over time, Auln(2) is formed between the gold wire and the solder due to the high heat of formation and the high inter-metallic diffusion of indium. Hence, the thermal expansion of AuIn2 alloy in comparison with that of the gold wire and the indium-containing solder is critical in determining the integrity of the connection. We present the results of X-ray diffraction measurement of the coefficient of linear expansion of AuIn2 as well as the bulk expansion and density changes over the temperature range of 20-500 degrees C. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94551 USA. RP Saw, CK (reprint author), Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, POB 808, Livermore, CA 94551 USA. EM saw1@llnl.gov NR 8 TC 8 Z9 8 U1 2 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD NOV PY 2005 VL 53 IS 10 BP 1153 EP 1157 DI 10.1016/j.scriptamat.2005.07.032 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 969XT UT WOS:000232269900009 ER PT J AU Ray, J Jameson, L AF Ray, J Jameson, L TI Estimation of shock induced vorticity on irregular gaseous interfaces: a wavelet-based approach SO SHOCK WAVES LA English DT Article DE Richtmyer-Meshkov instabilities; wavelet analysis; vorticity scaling; Godunov scheme ID RICHTMYER-MESHKOV INSTABILITY; DENSITY-STRATIFIED INTERFACES; CIRCULATION DEPOSITION; GAS INTERFACE; REFRACTION; MODEL AB We study the interaction of a shock with a density-stratified gaseous interface (Richtmyer-Meshkov instability) with localized jagged and irregular perturbations, with the aim of developing an analytical model of the vorticity deposition on the interface immediately after the passage of the shock. The jagged perturbations, meant to simulate machining errors on the surface of a laser fusion target, are characterized using Haar wavelets. Numerical solutions of the Euler equations show that the vortex sheet deposited on the jagged interface rolls into multiple mushroom-shaped dipolar structures which begin to merge before the interface evolves into a bubble-spike structure. The peaks in the distribution of x-integrated vorticity (vorticity integrated in the direction of the shock motion) decay in time as their bases widen, corresponding to the growth and merger of the mushrooms. However, these peaks were not seen to move significantly along the interface at early times i.e. t < 10 tau, where tau is the interface traversal time of the shock. We tested our analytical model against inviscid simulations for two test cases - a Mach 1.5 shock interacting with an interface with a density ratio of 3 and a Mach 10 shock interacting with a density ratio of 10. We find that this model captures the early time (t/tau similar to 1) vorticity deposition (as characterized by the first and second moments of vorticity distributions) to within 5% of the numerical results. C1 Sandia Natl Labs, Livermore, CA 94551 USA. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Ray, J (reprint author), Sandia Natl Labs, MS 9051, Livermore, CA 94551 USA. EM jairay@ca.sandia.gov; ljameson@nsf.gov NR 22 TC 1 Z9 1 U1 1 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0938-1287 J9 SHOCK WAVES JI Shock Waves PD NOV PY 2005 VL 14 IS 3 BP 147 EP 160 DI 10.1007/s00193-005-0257-6 PG 14 WC Mechanics SC Mechanics GA 987LB UT WOS:000233518300002 ER PT J AU Rasmussen, C Torn, MS Southard, RJ AF Rasmussen, C Torn, MS Southard, RJ TI Mineral assemblage and aggregates control carbon dynamics in a California conifer forest SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID SOIL ORGANIC-MATTER; ALUMINUM RELEASE RATES; TROPICAL SOILS; CLAY CONTENT; TURNOVER; ALLOPHANE; STORAGE; AL; TRANSFORMATIONS; BIODEGRADATION AB Uncertainty about the effects of climate change on terrestrial soil organic C stocks has generated interest in clarifying the processes that underlie soil C dynamics. We investigated the role of soil mineralogy and aggregate stability as key variables controlling soil C dynamics in a California conifer forest. We characterized soils derived from granite (GR) and mixed andesite-granite (AN) parent materials from similar forest conditions. Granite and AN soils contained similar clay mineral assemblages as determined by x-ray diffraction (XRD), dominated by vermiculite, hydroxy-interlayered vermiculite (HIV), kaolinite, and gibbsite. However, AN soils contained significantly more Al in Al-humus complexes (6.2 vs. 3.3 kg m(-2)) and more crystalline and short-range order (SRO) Fe oxyhydroxides (30.6 vs. 16.8 kg m(-2)) than GR soils. Andesite-granite pedons contained nearly 50% more C relative to GR soils (22.8 vs. 15.0 kg m(-2)). Distribution of C within density and aggregate fractions (free, occluded, and mineral associated Q varied significantly between AN and GR soils. In particular, AN soils had at least twice as much mineral associated C relative to GR soils in all horizons. Based on C-14 measurements, occluded C mean residence time (MRT) > mineral C > free C in both soil types, suggesting a significant role for aggregate C protection in controlling soil C turnover. We found highly significant, positive correlations between Al-humus complexes, SRO Al minerals, and total C content. We suggest that a combination of aggregate protection and organomineral association with Al-humus complexes and SRO Al minerals control the variation in soil C dynamics in these systems. C1 Univ Arizona, Dept Soil Water & Environm Sci, Tucson, AZ 85721 USA. Lawrence Berkeley Natl Lab, Ctr Isotope Geochem, Berkeley, CA 94720 USA. Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. RP Rasmussen, C (reprint author), Univ Arizona, Dept Soil Water & Environm Sci, 1177 E 4th St,POB 210038,Shantz Bldg 38, Tucson, AZ 85721 USA. EM crasmuss@ag.arizona.edu RI Torn, Margaret/D-2305-2015 NR 52 TC 76 Z9 85 U1 5 U2 53 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD NOV-DEC PY 2005 VL 69 IS 6 BP 1711 EP 1721 DI 10.2136/sssaj2005.0040 PG 11 WC Soil Science SC Agriculture GA 983HZ UT WOS:000233223500005 ER PT J AU Milonni, PW AF Milonni, PW TI University of California Irvine symposium on the Casimir effect SO SOLID STATE COMMUNICATIONS LA English DT Editorial Material ID MU-M; FORCE C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Milonni, PW (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM pwm@lanl.gov NR 17 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 J9 SOLID STATE COMMUN JI Solid State Commun. PD NOV PY 2005 VL 136 IS 7 BP 433 EP 435 DI 10.1016/j.ssc.2005.08.023 PG 3 WC Physics, Condensed Matter SC Physics GA 982PT UT WOS:000233174800012 ER PT J AU Poltavets, VV Lokshin, KA Greenblatt, M AF Poltavets, VV Lokshin, KA Greenblatt, M TI Isothermal section of the Na0.3CoO2-H2O phase diagram at 22 degrees C from 11 to 100% relative humidity SO SOLID STATE SCIENCES LA English DT Article DE superconductivity; CoO2-layer superconductor; phase diagram; chemical analysis; magnetic susceptibility; thermogravimetry ID SATURATED AQUEOUS-SOLUTIONS; COBALT OXYHYDRATE; VAPOR-PRESSURES; SODIUM-NITRATE; 323 K; SUPERCONDUCTIVITY; CHLORIDE; TEMPERATURES; BROMIDE; SULFATE AB An isothermal section of the Na0.3CoO2-H2O System phase diagram at 22 degrees C from 11 to 100% relative humidity is presented. The superconducting Na(0.3)CoO(2)1.2H(2)O phase is stable at a relative humidity (RH) higher than 30%; Na(0.3)CoO(2)(.)0.6H(2)O is the stable phase at RH below 30%. The unit cell parameters and temperature of superconducting transition of Na(0.3)CoO(2)(.)1.2H(2)O do not depend on relative humidity. The Na(0.3)CoO(2)(.)1.2H(2)O and Na0.3CoO(2)(.)0.6H(2)O hydrates are line phases and have a constant water content over the water vapor pressure range of their stability. (c) 2005 Elsevier SAS. All rights reserved. C1 Rutgers State Univ, Dept Chem & Biol Chem, Piscataway, NJ 08854 USA. Los Alamos Natl Lab, LANSCE 12, Los Alamos, NM 87544 USA. RP Rutgers State Univ, Dept Chem & Biol Chem, 610 Taylor Rd, Piscataway, NJ 08854 USA. EM martha@rutchem.rutgers.edu OI Poltavets, Viktor/0000-0001-5086-7743 NR 22 TC 3 Z9 3 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1293-2558 EI 1873-3085 J9 SOLID STATE SCI JI Solid State Sci. PD NOV PY 2005 VL 7 IS 11 BP 1312 EP 1316 DI 10.1016/j.solidstatesciences.2005.05.001 PG 5 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 988SI UT WOS:000233620600003 ER PT J AU Cayton, TE Tuszewski, M AF Cayton, TE Tuszewski, M TI Improved electron fluxes from the synchronous orbit particle analyzer SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID GEOSYNCHRONOUS ORBIT; MODEL AB [1] New electron responses have been evaluated for the synchronous orbit particle analyzer ( SOPA) that Los Alamos National Laboratory flies on geosynchronous satellites. The new responses include for the first time a comprehensive treatment of bremsstrahlung photons, as well as actual dimensions and electronic noise. The new responses yield energetic (0.05-1.5 MeV) electron fluxes accurate to within a factor of 2. Whenever the electron energy spectra are sufficiently soft, the new electron fluxes agree reasonably well with previous estimates. However, for hard electron energy spectra often found after geomagnetically active times, significantly lower electron fluxes are obtained from the same observed counts. For such cases, previously obscured spectral features are clearly observed, and the plasma analyzer and SOPA electron fluxes show much better agreement. C1 Los Alamos Natl Lab, Grp ISR 1, Los Alamos, NM 87545 USA. RP Cayton, TE (reprint author), Los Alamos Natl Lab, Grp ISR 1, Mail Stop B244, Los Alamos, NM 87545 USA. EM mgtu@lanl.gov NR 9 TC 5 Z9 5 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD NOV 1 PY 2005 VL 3 IS 11 AR S11B05 DI 10.1029/2005SW000150 PG 4 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 980JP UT WOS:000233015100001 ER PT J AU Schumann, PG Wendt, KDA Bushaw, BA AF Schumann, PG Wendt, KDA Bushaw, BA TI High-resolution triple-resonance autoionization of uranium isotopes SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE uranium; autoionization; resonance ionization mass spectrometry; laser spectroscopy ID IONIZATION MASS-SPECTROMETRY; ATOMIC URANIUM; HYPERFINE-STRUCTURE; DEPLETED URANIUM; SOIL SAMPLES; LASER PHOTOIONIZATION; OPTOGALVANIC SPECTRA; NEUTRAL URANIUM; REFERENCE LINES; CROSS-SECTIONS AB The near-threshold autoionization (AI) spectrum of uranium has been investigated by triple-resonance excitation with single-mode continuous lasers. Spectra were recorded over the first similar to 30 cm(-1) above the first ionization limit at a resolution of 3 x 10(-4) cm(-1) using intermediate states with different J values (6, 7, 8) to assign AI level total angular momentum J(AI)= 5 to 9. Resonances with widths ranging from 8 MHz to 30 GHz were observed; the strongest ones have J(AI)=9 and widths of similar to 60 MHz. Hyperfine structures for U-235 and isotope shifts for U-234.235 have been measured in the two intermediate levels and in the final Al level for the most favorable excitation path. These measurements were performed using aqueous samples containing sub-milligram quantities of uranium at natural isotopic abundances, indicating the potential of this approach for trace isotope ratio determinations. (c) 2005 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. Univ Mainz, Inst Phys, D-55099 Mainz, Germany. RP Bushaw, BA (reprint author), Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. EM bruce.bushaw@pnl.gov NR 43 TC 15 Z9 15 U1 1 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD NOV PY 2005 VL 60 IS 11 BP 1402 EP 1411 DI 10.1016/j.sab.2005.08.010 PG 10 WC Spectroscopy SC Spectroscopy GA 994PS UT WOS:000234044300003 ER PT J AU Miller, TC DeWitt, HL Havrilla, GJ AF Miller, TC DeWitt, HL Havrilla, GJ TI Characterization of small particles by micro X-ray fluorescence SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE particle analysis; micro X-ray fluorescence (MXRT); cascade impactor; aerosol; soil; glass microsphere ID AIRBORNE PARTICULATE MATTER; ELEMENTAL ANALYSIS; AEROSOL-PARTICLES; CHEMICAL-ANALYSIS; CASCADE IMPACTOR; SOIL SAMPLES; NORTH-SEA; SPECTROMETRY; SPECTROSCOPY; SEDIMENTS AB Micro X-ray fluorescence was used to study both homogeneous and heterogeneous particle systems. Specifically, homogeneous glass microspheres and heterogeneous soil particle samples were prepared by both bulk and single particle sample preparation methods for evaluation by rnicro X-ray fluorescence. Single particle sample preparation methods allow for single particles from a collected sample to be isolated and individually presented to the micro X-ray fluorescence instrument for analysis. Various particle dispersion methods, including immobilization onto Tacky Dot (TM) slides, mounting onto double-sided sticky tape affixed to polypropylene film, or attachment to polypropylene film using 3M Artist's Adhesive, were used to separate the sample particles for single particle analysis. These methods were then compared and evaluated for their ability to disperse the particles into an array of single separated particles for optimal rnicro X-ray fluorescence characterization with minimal background contribution from the particle mounting surface. Bulk methods of particle sample preparation, which included pellet preparation and aerosol impaction, used a large quantity of collected single particles to make a single homogeneous specimen for presentation to the instrument for analysis. It was found that single particle elemental analysis by micro X-ray fluorescence can be performed if the particles are well separated (minimum separation distance=excitation Source beam diameter) down to a particle mass of similar to 0.04 ng and a mean particle diameter of similar to 0.06 mu m. Homogeneous particulates can be adequately characterized by micro X-ray fluorescence using either bulk or single particle analysis methods, with no loss of analytical information. Heterogeneous samples are much harder to characterize, and both single particle as well as bulk analyses must be performed on the sample to insure full elemental characterization by micro X-ray fluorescence. (c) 2005 Elsevier B.V. All rights reserved. C1 Xray Opt Syst Inc, E Greenbush, NY 12180 USA. Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Miller, TC (reprint author), Xray Opt Syst Inc, E Greenbush, NY 12180 USA. EM tmiller@xos.com NR 35 TC 10 Z9 10 U1 2 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD NOV PY 2005 VL 60 IS 11 BP 1458 EP 1467 DI 10.1016/j.sab.2005.09.003 PG 10 WC Spectroscopy SC Spectroscopy GA 994PS UT WOS:000234044300009 ER PT J AU Cate, JHD AF Cate, JHD TI The ins and outs of protein synthesis SO STRUCTURE LA English DT Editorial Material ID TRIGGER FACTOR; CRYSTAL-STRUCTURE; RIBOSOME; DOMAIN; TRANSLATION; COMPLEX; SUBUNIT; REVEALS; RACK1; SITE C1 Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Cate, JHD (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. NR 20 TC 0 Z9 0 U1 0 U2 2 PU CELL PRESS PI CAMBRIDGE PA 1100 MASSACHUSETTS AVE, CAMBRIDGE, MA 02138 USA SN 0969-2126 J9 STRUCTURE JI Structure PD NOV PY 2005 VL 13 IS 11 BP 1584 EP 1585 DI 10.1016/j.str.2005.10.002 PG 2 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 986LT UT WOS:000233451800004 PM 16271881 ER PT J AU Zambano, AJ Moodenbaugh, AR Cooley, LD AF Zambano, AJ Moodenbaugh, AR Cooley, LD TI Effects of different reactions on composition homogeneity and superconducting properties of Al-doped MgB2 SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID CRITICAL-CURRENT DENSITY; SINGLE-CRYSTAL MGB2; MAGNESIUM DIBORIDE; NB3SN CONDUCTORS; THIN-FILMS; POLYCRYSTALLINE MGB2; MAGNETIC-PROPERTIES; CRITICAL-FIELD; HEAT-TREATMENT; STRAIN AB A primary difference between pure MgB2 and its alloyed forms is that the former is a line compound and, once formed, has the same composition everywhere, whereas the latter is a solid solution and requires diffusion to move alloying elements. Since defect energies are high, this opens up the possibility that alloying elements might not be distributed homogeneously, which could have important consequences for the observed superconducting properties. To address this issue, two sets of Mg1-xAlxB2 samples, with 0 <= x <= 0.45, were prepared from elements using reaction temperatures and times at opposite extremes of those typically reported in the literature. Sample set A was given a reaction of 1 h at 850 degrees C, which stopped just short of completion, while sample set B was reacted at temperatures as high as 1200 degrees C and thoroughly annealed for over 80 h. The trace reactants remaining after reaction A indicated that A1 is taken up more slowly than Mg, thereby making compositional gradients likely. Indeed, Williamson-Hall analyses of x-ray diffraction peaks showed that set A had higher crystalline strain than set B when x > 0 but not when x = 0. Since the presence of Al correlated with increased strain only for set A, it was concluded that reaction A produced substantial A1 gradients across the individual grains while reaction B did not. Magnetization and heat capacity measurements indicated good bulk superconducting properties for all samples despite their structural differences, and consistent trends were observed when each sample set was considered alone. However, when both sets were considered together; their behaviour was distinct when plotted versus x (e.g. two T-c(x) curves), with trends for set A being shifted toward higher x than for set B. On the other hand, all of the data merged (e.g. one T-c(v) curve) when analysed in terms of the unit cell volume v. Thus, while the first analysis might suggest that the different reactions produced different superconducting behaviour, the second analysis, which captures the average A1 content actually present inside the grains, shows that the samples have common behaviour intrinsic to the addition of Al. Moreover, these analyses show that it is important to coordinate structural and property characterizations to remove artifacts of composition gradients and uncover the intrinsic trends. Because the standard characterizations of the superconducting properties above gave no clear indication that the two sample sets had different homogeneities, the structural information was vital to make a correct assessment of the effects of A1 doping on superconductivity. Since many investigations have used reactions similar to reaction A and did not analyse data in terms of structural changes, previous results should be interpreted cautiously. C1 Brookhaven Natl Lab, Dept Mat Sci, Upton, NY 11973 USA. RP Brookhaven Natl Lab, Dept Mat Sci, 76 Cornell Ave, Upton, NY 11973 USA. RI Cooley, Lance/E-7377-2015; OI Cooley, Lance/0000-0003-3488-2980; Moodenbaugh, Arnold/0000-0002-3415-6762 NR 67 TC 16 Z9 16 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD NOV PY 2005 VL 18 IS 11 BP 1411 EP 1420 DI 10.1088/0953-2048/18/11/001 PG 10 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 987ZD UT WOS:000233555600002 ER PT J AU Gapud, AA Kumar, D Viswanathan, SK Cantoni, C Varela, M Abiade, J Pennycook, SJ Christen, DK AF Gapud, AA Kumar, D Viswanathan, SK Cantoni, C Varela, M Abiade, J Pennycook, SJ Christen, DK TI Enhancement of flux pinning in YBa2Cu3O7-delta thin films embedded with epitaxially grown Y2O3 nanostructures using a multi-layering process SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID HIGH CRITICAL CURRENTS; COATED CONDUCTORS; YBCO; NANOPARTICLES AB Nanodot arrays of Y2O3 were dispersed in thin films of YBa2Cu3O7-delta (YBCO) by growing alternating layers of these two species using a pulsed laser deposition method. As a result, critical current density J(c) both in applied magnetic field and self-field is enhanced by as much as an order of magnitude, along with a significant increase in the irreversibility field H-irr. High-resolution scanning transmission electron microscopy (STEM) and Z-contrast STEM show that the nanoparticles are crystalline and coherent with the YBCO matrix. Whereas in most other studies pinning has been attributed to the strain fields around the nanoparticles, in this case pinning may actually be due to the nanoparticles themselves, since the delineation between the two species is very sharp and STEM reveals no discernible strain fields in the superconducting material around the nanoparticles. C1 Univ S Alabama, Dept Phys, Mobile, AL 36688 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. N Carolina Agr & Tech State Univ, Greensboro, NC 27411 USA. RP Gapud, AA (reprint author), Univ S Alabama, Dept Phys, Mobile, AL 36688 USA. EM gapud@usouthal.edu RI Varela, Maria/H-2648-2012; Varela, Maria/E-2472-2014; Cantoni, Claudia/G-3031-2013; OI Varela, Maria/0000-0002-6582-7004; Cantoni, Claudia/0000-0002-9731-2021; Gapud, Albert/0000-0001-9048-9230 NR 16 TC 68 Z9 69 U1 1 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD NOV PY 2005 VL 18 IS 11 BP 1502 EP 1505 DI 10.1088/0953-2048/18/11/016 PG 4 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 987ZD UT WOS:000233555600017 ER PT J AU Goyal, A Kang, S Leonard, KJ Martin, PM Gapud, AA Varela, M Paranthaman, M Ijaduola, AO Specht, ED Thompson, JR Christen, DK Pennycook, SJ List, FA AF Goyal, A Kang, S Leonard, KJ Martin, PM Gapud, AA Varela, M Paranthaman, M Ijaduola, AO Specht, ED Thompson, JR Christen, DK Pennycook, SJ List, FA TI Irradiation-free, columnar defects comprised of self-assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in YBa2Cu3O7-delta films SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID CRITICAL-CURRENT DENSITY; COATED CONDUCTORS; THICK-FILMS; DEPOSITION; TAPES AB The development of biaxially textured, second-generation, high-temperature superconducting (HTS) wires is expected to enable most large-scale applications of HTS materials, in particular electric-power applications. For many potential applications, high critical currents in applied magnetic fields are required. It is well known that columnar defects generated by irradiating high-temperature superconducting materials with heavy ions significantly enhance the in-field critical current density. Hence, for over a decade scientists world-wide have sought means to produce such columnar defects in HTS materials without the expense and complexity of ionizing radiation. Using a simple and practically scalable technique, we have succeeded in producing long, nearly continuous vortex pins along the c-axis in YBa2Cu3O7-delta (YBCO), in the form of self-assembled stacks of BaZrO3 (BZO) nanodots and nanorods. The nanodots and nanorods have a diameter of similar to 2-3 nm and an areal density (`matching field') of 8-10 T for 2 vol. % incorporation of BaZrO3. In addition, four misfit dislocations around each nanodot or nanorod are aligned and act as extended columnar defects. YBCO films with such defects exhibit significantly enhanced pinning with less sensitivity to magnetic fields H. In particular, at intermediate field values, the current density, J(c), varies as J(c) - H-alpha, with alpha similar to 0.3 rather than the usual values 0.5-0.65. Similar results were also obtained for CaZrO3 (CZO) and YSZ incorporation in the form of nanodots and nanorods within YBCO, indicating the broad applicability of the developed process. The process could also be used to incorporate self-assembled nanodots and nanorods within matrices of other materials for different applications, such as magnetic materials. C1 Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. Univ Tennessee, Knoxville, TN 37996 USA. RP Goyal, A (reprint author), Oak Ridge Natl Lab, Div Met & Ceram, POB 2008,MS 6116, Oak Ridge, TN 37831 USA. EM goyala@ornl.gov RI Varela, Maria/H-2648-2012; Christen, David/A-9709-2008; Varela, Maria/E-2472-2014; Specht, Eliot/A-5654-2009; Paranthaman, Mariappan/N-3866-2015; OI Varela, Maria/0000-0002-6582-7004; Specht, Eliot/0000-0002-3191-2163; Paranthaman, Mariappan/0000-0003-3009-8531; Gapud, Albert/0000-0001-9048-9230 NR 22 TC 293 Z9 295 U1 6 U2 56 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD NOV PY 2005 VL 18 IS 11 BP 1533 EP 1538 DI 10.1088/0953-2048/18/11/021 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 987ZD UT WOS:000233555600022 ER PT J AU Lin, YH Joy, DC AF Lin, YH Joy, DC TI A new examination of secondary electron yield data SO SURFACE AND INTERFACE ANALYSIS LA English DT Article; Proceedings Paper CT Workshop on Modeling Electron Transport for Applications in Electron and X-ray Analysis Metrology CY NOV 08-10, 2004 CL Natl Inst Stand & Technol, Gaithersburg, MD SP AVS, Sci & Technol Soc, Microbeam Anal Soc HO Natl Inst Stand & Technol DE secondary electron yield; SE excitation energy; SE effective escape depth; SE universal curve; atomic shell filling ID EMISSION AB A new and thorough examination of secondary electron (SE) yield as a function of primary energy (E-PE) and atomic number Z for the 44 elements in the database(1) is made. The principles of the semiempirical universal law for the SE yield are described and a template for Monte Carlo (MC) simulation is produced accordingly. Both universal curve fitting and MC simulation are made for the 44 elements. The resulted maximum SE yield delta(m), corresponding primary energy E-PE(m), SE excitation energy epsilon, and effective escape depth lambda are tabulated and plotted as a function of atomic number Z. It is found that similarities exist in the profiles of epsilon and lambda, delta(m) and E(Pm)p, and all of these parameters seem to have characteristics associated with atomic shell filling. Copyright (C) 2005 John Wiley & Sons, Ltd. C1 Univ Tennessee, SERF, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Joy, DC (reprint author), Univ Tennessee, SERF, Room 232, Knoxville, TN 37996 USA. EM djoy@utk.edu NR 23 TC 109 Z9 112 U1 1 U2 30 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0142-2421 J9 SURF INTERFACE ANAL JI Surf. Interface Anal. PD NOV PY 2005 VL 37 IS 11 BP 895 EP 900 DI 10.1002/sia.2107 PG 6 WC Chemistry, Physical SC Chemistry GA 990QI UT WOS:000233757900008 ER PT J AU Deal, A Tao, XD Eades, A AF Deal, A Tao, XD Eades, A TI EBSD geometry in the SEM: simulation and representation SO SURFACE AND INTERFACE ANALYSIS LA English DT Article; Proceedings Paper CT Workshop on Modeling Electron Transport for Applications in Electron and X-ray Analysis Metrology CY NOV 08-10, 2004 CL Natl Inst Stand & Technol, Gaithersburg, MD SP AVS, Sci & Technol Soc, Microbeam Anal Soc HO Natl Inst Stand & Technol DE scanning electron microscopy; electron backscatter diffraction (EBSD); Monte Carlo method; Au AB To obtain a sufficient electron backscatter diffraction (EBSD) signal in the scanning electron microscope (SEM), the sample is highly tilted. This significantly increases both the backscatter yield and the percentage of electrons that are scattered in a forward direction, making them available for detection by the phosphor screen of the EBSD camera. Unlike a conventional Everhart-Thornley detector in SE mode, which collects electrons of multiple trajectories via an applied voltage, the exact position of the phosphor screen with respect to the sample determines what solid angle of the forward scattered electrons is detected. Poor positioning of the camera or an unfavorable working distance may result in patterns that are less than ideal, increasing the difficulty of automated indexing or phase identification. Accordingly, we have used a single-scattering Monte Carlo model to simulate electron transport through tilted samples. Results of the simulations include tracking the spatial and energy distributions of the electrons during three phases of the process: within the interaction volume, on exiting the sample surface, and when reaching the phosphor screen. Subsequent analysis fosters a better understanding of the geometric requirements for EBSD. Furthermore, our graphical representation of the Monte Carlo results is, we feel, a significant improvement over 'connect-the-dots' figures typical of the literature, providing greater insight into the nature of the backscatter yield from tilted samples. Copyright (C) 2005 John Wiley & Sons, Ltd. C1 Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA. Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Deal, A (reprint author), Lehigh Univ, Dept Mat Sci & Engn, 5 E Packer Ave, Bethlehem, PA 18015 USA. EM and304@lehigh.edu NR 5 TC 8 Z9 8 U1 2 U2 9 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0142-2421 J9 SURF INTERFACE ANAL JI Surf. Interface Anal. PD NOV PY 2005 VL 37 IS 11 BP 1017 EP 1020 DI 10.1002/sia.2115 PG 6 WC Chemistry, Physical SC Chemistry GA 990QI UT WOS:000233757900025 ER PT J AU Costa-Nunes, O Ferrizz, RM Gorte, RJ Vohs, JM AF Costa-Nunes, O Ferrizz, RM Gorte, RJ Vohs, JM TI Structure and thermal stability of ceria films supported on YSZ(100) and alpha-Al2O3(0001) SO SURFACE SCIENCE LA English DT Article DE ceria; zirconia; Al2O3; X-ray photoelectron spectroscopy; atomic force microscopy ID RARE-EARTH COMPOUNDS; FUEL-CELLS; THIN-FILMS; TEMPERATURE; ZIRCONIA; OXYGEN; OXIDE; CATALYSTS; HYDROCARBONS; SPECTROSCOPY AB The morphology and reducibility of vapor-deposited ceria films supported on yttria-stabilized zirconia (100) (YSZ(1 0 0)) and alpha-Al2O3(0 0 0 1) single crystals were studied using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFNI). The results of this study show that the gas environment has a significant effect on the structure of the ceria films on both substrates. CeO2 films on alpha-Al2O3(0 0 0 1) were found to be stable in a reducing environment at temperatures up to 1000 K, but underwent agglomeration and reaction with the support to form CeAlO3 upon annealing at 1273 K in air. Heating CeO2/YSZ(1 0 0) in air at 1273 K caused the ceria thin film to agglomerate into bar-shaped features which were re-dispersed by subsequent annealing in vacuum. Interactions at the CeO2 YSZ interface were also found to dramatically enhance the reducibility of ceria films supported on YSZ(1 0 0). (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Penn, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Univ Penn, Dept Chem & Biomol Engn, 311A Towne Bldg,220 S 33rd St, Philadelphia, PA 19104 USA. EM vohs@seas.upenn.edu NR 44 TC 18 Z9 19 U1 3 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD NOV 1 PY 2005 VL 592 IS 1-3 BP 8 EP 17 DI 10.1016/j.susc.2005.06.029 PG 10 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 972NY UT WOS:000232461700004 ER PT J AU Zhao, XY Liu, P Hrbek, J Rodriguez, JA Perez, M AF Zhao, XY Liu, P Hrbek, J Rodriguez, JA Perez, M TI The chemisorption of SO2 on the Cu/Au(111) surface: Interplay between ensemble and electronic effects SO SURFACE SCIENCE LA English DT Article DE sulfur dioxide; copper; gold; ion scattering spectroscopy; photoemission spectroscopy; density functional theory; surface energy; surface structure; Cu-Au interface; alloys; electronic effect; ensemble effect ID SCANNING-TUNNELING-MICROSCOPY; ABSORPTION FINE-STRUCTURE; SULFUR-DIOXIDE; METAL-SURFACES; CU ADLAYERS; ADSORPTION; AU(111); CHEMISTRY; CU(111); CU(100) AB Ion-scattering spectroscopy (ISS), synchrotron-based high-resolution photoemission spectroscopy (PES) and first-principles density-functional (DF) calculations were used to study the adsorption of SO, on Cu/Au(1 1 1). ISS experiments for Cu/Au(1 1 1) clearly demonstrate that Cu intermixes with the Au(1 1 1) substrate at 300 K or higher temperature.. but a substantial fraction of the Cu atoms stays on the Au(1 1 1) surface when the deposition is done at 100 K. When 1 ML of Cu was pre-deposited onto Au(1 1 1) at 300 K, the Cu/Au(1 1 1) surface exhibited a negligible reactivity towards SO2 very similar to that of clean Au(1 1 1). However, when Cu was pre-deposited at 100 K, the Cu/Au(1 1 1) system bonded SO2 well and the adsorbate remained on the surface up to temperatures above 300 K. DFT calculations for Cu/Au(1 1 1) show electronic perturbations in the Cu overlayer that should enhance their chemical reactivity, but the Cu atoms were more stable when penetrating into the substrate rather than sitting on the surface. Calculations for SO2 adsorption on Cu/Au(1 1 1) surfaces with different theta(Cu) showed that the value of theta(Cu) determines the binding energy of SO2. In general, the more Cu atoms in the surface, the stronger the bonding energy towards SO2. Cu/Au(1 1 1) behaves differently from pure Cu. A temperature increase does not lead to S-O bond cleavage on the bimetallic system. Instead, the Cu atoms in the surface migrate into Au, accompanied by SO2 desorption. Ensembles of the active sites necessary for the dissociation of SO2 are not available. For Cu/Au(1 1 1), ensemble effects clearly overcome electronic effects. The Cu/Au(1 1 1) interface illustrates how effective ensemble effects can be for the prevention of the corrosion of alloys by SO2. (c) 2005 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. Cent Univ Venezuela, Fac Ciencias, Caracas 1020A, Venezuela. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov RI Hrbek, Jan/I-1020-2013 NR 39 TC 16 Z9 17 U1 6 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD NOV 1 PY 2005 VL 592 IS 1-3 BP 25 EP 36 DI 10.1016/j.susc.2005.06.035 PG 12 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 972NY UT WOS:000232461700006 ER PT J AU Boyack, KW Rahal, N AF Boyack, KW Rahal, N TI Evaluation of Laboratory Directed Research and Development investment areas at Sandia SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article; Proceedings Paper CT Scientific Seminar on New Technology Foresight, Forecasting and Assessment Methods CY MAY 13-14, 2004 CL Seville, SPAIN SP Inst Prospect Technol Studies, European Commiss Directorate Gen Joint Res Ctr DE Laboratory-Directed Research and Development; investment; Sandia ID LATENT SEMANTIC ANALYSIS; KNOWLEDGE DOMAINS; VISUALIZATION AB Sandia National Laboratories conducts a variety of research projects each year under its Laboratory-Directed Research and Development (LDRD) program. Recently, information visualization techniques have been used with corporate data to map several LDRD investment areas for the purpose of understanding strategic overlaps and identifying potential opportunities for future development outside of our current technologies. Tools, techniques, and specific analyses are presented here. We find that these tools and techniques hold great promise for aiding the future direction of the science and technology enterprise. (c) 2004 Elsevier Inc. All rights reserved. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM kboyack@sandia.gov; nrahal@sandia.gov OI Boyack, Kevin/0000-0001-7814-8951 NR 11 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD NOV PY 2005 VL 72 IS 9 BP 1122 EP 1136 DI 10.1016/j.techfore.2004.09.007 PG 15 WC Business; Planning & Development SC Business & Economics; Public Administration GA 994ID UT WOS:000234023900007 ER PT J AU Camargo-Gamboa, GJ Pacheco, JSL de Leon, JM Conradson, SD Hernandez-Calderon, I AF Camargo-Gamboa, GJ Pacheco, JSL de Leon, JM Conradson, SD Hernandez-Calderon, I TI Local structural characterization of Zn : Cd : Se ternary semiconductors SO THIN SOLID FILMS LA English DT Article; Proceedings Paper CT Annual Meeting of the Mexican-Academy-of-Materials-Science CY AUG 22-26, 2004 CL Cancun, MEXICO SP Mexican Acad Mat Sci DE ternary semiconductors; local atomic structure; Zn : Cd : Se; XAFS ID LASER-DIODES; DEPENDENCE AB We have studied the local atomic structure around Zn and Cd, in CdSe, ZnSe, and ordered and disordered Zn0.5Cd0.5Se thin films, grown by molecular beam epitaxy (MBE) and atomic layer epitaxy (ALE) using X-ray absorption spectroscopy (XAS). Zn K-shell X-ray absorption fine structure (XAFS) shows that the Zn-Se pair nearest neighbor distance is the same in both ordered and disordered ternary samples. This result shows that the ordered (or disordered growth) does not have a significant effect in the nearest neighbor Zn environment. However, results from K-shell Cd XAFS show that the U-Se pair nearest neighbor distance in the Zn0.5Cd0.5Se ordered film exhibits a contraction compared to the same pair distance in the disordered Zn0.5Cd0.5Se sample and the binary CdSe compound. This suggests that the shortest Zn-Se nearest neighbor distance regulates the Zn-Se nearest neighbor distance in the ternary compounds, when these are grown in an ordered, layer by layer, fashion. (c) 2005 Elsevier B.V. All rights reserved. C1 CINVESTAV, Dept Fis Aplicada, Merida 97310, Yucatan, Mexico. Los Alamos Natl Lab, Struct & Properties Grp, Los Alamos, NM 87545 USA. CINVESTAV, Dept Fis, Mexico City 07000, DF, Mexico. RP Pacheco, JSL (reprint author), CINVESTAV, Dept Fis Aplicada, AP 73, Merida 97310, Yucatan, Mexico. EM jlezama@mda.cinvestav.mx NR 8 TC 4 Z9 4 U1 1 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD NOV 1 PY 2005 VL 490 IS 2 BP 165 EP 167 DI 10.1016/j.tsf.2005.04.049 PG 3 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 963YR UT WOS:000231843200011 ER PT J AU Wilson, DP Zhang, L Ribeiro, RM Perelson, AS Davenport, MP AF Wilson, DP Zhang, L Ribeiro, RM Perelson, AS Davenport, MP TI Explaining mechanisms behind the virus-specific CD8+T lymphocyte response to a viral infection SO TISSUE ANTIGENS LA English DT Meeting Abstract CT 35th Annual Scientific Meeting of the Australasian-Society-for-Immunology/14th International HLA and Immunogenetics Workshops CY NOV 29-DEC 02, 2005 CL Melbourne, AUSTRALIA SP Australasian Soc Immunol C1 Univ New S Wales, Ctr Vasc Res, Kensington, NSW 2033, Australia. Los Alamos Natl Lab, Los Alamos, NM USA. NR 2 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0001-2815 J9 TISSUE ANTIGENS JI Tissue Antigens PD NOV PY 2005 VL 66 IS 5 MA 675 BP 590 EP 591 PG 2 WC Cell Biology; Immunology; Pathology SC Cell Biology; Immunology; Pathology GA 987UL UT WOS:000233542700676 ER PT J AU Womac, AR Igathinathane, C Sokhansanj, S Pordesimo, LO AF Womac, AR Igathinathane, C Sokhansanj, S Pordesimo, LO TI Biomass moisture relations of an agricultural field residue: Corn stover SO TRANSACTIONS OF THE ASAE LA English DT Article DE bioenergy; biomass collection; biomass storage; drying; environmental factors; evapotranspiration; feedstock; harvest strategy; harvest timing; in-situ moisture; moisture measurement; precipitation; processing; quality control ID FEEDSTOCK AB Moisture of corn stover was field monitored under southeast U.S. ambient conditions to aid biomass collection decisions. Timing to collect stover at low moisture depended on elapsed time on field, elapsed time after precipitation, time of day, contact with soil, and conditioning effect by combine header Grain had been combine-harvested at kernel moistures of either 25% or 15% wet basis (w.b.). Stover moisture was determined by weighing large in-situ baskets for a month and with frequent grab samples. Experiment controls included stover dried under tent shelter and mower-cut stover for combine-conditioning effect. Stover moisture asymptotically declined over time from approximately 70% (w.b.) to an equilibrium of approximately 20% (w.b.) for 25% (w.b.) grain harvest. Moisture reduction was not constant due to daily diurnal variation of eight percentage points (w.b.), and light precipitation that re-hydrated the stover Stover moisture was significantly greater in the morning compared to afternoon and was greater for stover in contact with soil. A combine corn stalk conditioning effect reduced mean moisture (approx. 10 percentage points)for high-moisture stover at early harvest, yet conditioning increased moisture for a period after light precipitation. Correlation of daily stover moisture with the corresponding day's evapotranspiration factor was not as strong as correlations with other combinations of environmental factors. Stover moisture generally peaked two days after rain events, so correlations and regressive predictions used previous data (2-day delay) for rainfall, air relative humidity, and evapotranspiration data. In addition to mechanical harvest method (stalk conditioning effect), the strongest environmental/timing correlations to predict stover moisture on the field after grain harvest included the following daily-averaged factors: elapsed time (days) after sowing (collect later for reduced moisture), time of day (evening collection preferred over morning collection), soil moisture, 2-day previous rainfall amount, 2-day previous relative humidity, and 2-day previous evapotranspiration factor Thus, increased elapsed time after sowing/harvest, evening harvest times, and the immediate (2-day) exposure history of corn stover to available moisture and drying potential are useful in determining strategies to collect corn stover with minimum moisture content. C1 Univ Tennessee, Dept Biosyst Engn & Soil Sci, Knoxville, TN 37996 USA. Univ Tennessee, Dept Biosyst Engn & Environm Sci, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Womac, AR (reprint author), Univ Tennessee, Dept Biosyst Engn & Soil Sci, 2506 E J Chapman Dr, Knoxville, TN 37996 USA. EM awomac@utk.edu OI Cannayen, Igathinathane/0000-0001-8884-7959 NR 21 TC 11 Z9 11 U1 1 U2 5 PU AMER SOC AGRICULTURAL ENGINEERS PI ST JOSEPH PA 2950 NILES RD, ST JOSEPH, MI 49085-9659 USA SN 0001-2351 J9 T ASAE JI Trans. ASAE PD NOV-DEC PY 2005 VL 48 IS 6 BP 2073 EP 2083 PG 11 WC Agricultural Engineering SC Agriculture GA 007FC UT WOS:000234953000005 ER PT J AU Blau, PJ AF Blau, PJ TI On the nature of running-in SO TRIBOLOGY INTERNATIONAL LA English DT Article DE running-in; friction transitions; wear transitions; internal combustion engine ID WEAR; FRICTION; BEHAVIOR AB The terms run-in, break-in, and wear-in are related but not identical. All of them concern special cases within the general subject of tribological transitions. Tribological transitions can be induced by imposed changes in operating conditions or they may occur naturally as the system ages, without external intervention. Transitions can occur as an inherent consequence of design, as in the case of a piston ring and cylinder system. The attributes of frictional running-in include the overall trend in friction force with time, the duration of characteristic features in the friction/time curve, and the instantaneous level of frictional fluctuations superimposed on the general trend. Changes in friction and wear that occur during running-in are more than a consequence of surface roughness alterations alone. Depending on the tribosystem, they can also include changes in surface composition, microstructure, and third-body distribution. Examples of how factors like contact alignment and surface pre-conditioning affect the form of friction/time curves are given. Friction and wear relationships during running-in are discussed, as are scale effects whose relative influence also changes with time. Initial running-in behavior can be subject to the influence of nanometer-sized films and progress to the scale of micrometer-sized asperities and larger-sized surface structures as sliding proceeds. Piecewise models for friction during running-in should include the effects of wear since wear affects the surface topography as well as the formation of transfer films, mechanically mixed layers, and third-body agglomerates. (c) 2005 Elsevier Ltd. All rights reserved. C1 Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. RP Blau, PJ (reprint author), Oak Ridge Natl Lab, Div Met & Ceram, POB 2008,Mail Stop 6063, Oak Ridge, TN 37831 USA. EM blaupj@ornl.gov NR 17 TC 77 Z9 78 U1 3 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-679X J9 TRIBOL INT JI Tribol. Int. PD NOV-DEC PY 2005 VL 38 IS 11-12 BP 1007 EP 1012 DI 10.1016/j.triboint.2005.07.020 PG 6 WC Engineering, Mechanical SC Engineering GA 993VO UT WOS:000233983700012 ER PT J AU Sullivan, CJ Morrell, JL Allison, DP Doktycz, MJ AF Sullivan, CJ Morrell, JL Allison, DP Doktycz, MJ TI Mounting of Escherichia coli spheroplasts for AFM imaging SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT 6th International Conference on Scanning Probe Microscopy, Sensors and Nanostructures CY MAY 24-26, 2004 CL Beijing, PEOPLES R CHINA DE atomic force microscopy; gelatin; macmode; bacteria; Escherichia coli; immobilization; spheropiasts; cytoplasmic membrane; live cell imaging ID ATOMIC-FORCE MICROSCOPY; MICROBIAL-CELLS; YEAST-CELLS; SURFACE; ULTRASTRUCTURE; ATTACHMENT; BACTERIA; BINDING; STRAIN AB The cytoplasmic membrane of Escherichia coli (E coli) is the location of numerous, chemically specific transporters and recognition elements. Investigation of this membrane in vivo by atomic force microscopy (AFM) requires removal of the cell wall and stable immobilization of the spheroplast. AFM images demonstrate that spheroplasts can be secured with warm gelatin applied to the mica substrate just before the addition of a spheroplast suspension. The resulting preparation can be repeatedly imaged by AFM over the course of several hours. Confocal fluorescence imaging confirms the association of the spheroplasts with the gelatin layer. Gelatin molecules are known to reorder into a network after heating. Entrapment within this gelatin network is believed to be responsible for the immobilization of spheroplasts on mica. (c) 2005 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37932 USA. Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. Mol Imaging Inc, Tempe, AZ 85282 USA. RP Doktycz, MJ (reprint author), Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37831 USA. EM doktyczmj@ornl.gov RI Morrell-Falvey, Jennifer/A-6615-2011; Doktycz, Mitchel/A-7499-2011 OI Morrell-Falvey, Jennifer/0000-0002-9362-7528; Doktycz, Mitchel/0000-0003-4856-8343 NR 29 TC 20 Z9 20 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD NOV PY 2005 VL 105 IS 1-4 BP 96 EP 102 DI 10.1016/j.ultramic.2005.06.023 PG 7 WC Microscopy SC Microscopy GA 984PR UT WOS:000233317300016 PM 16112809 ER PT J AU Wan, JM Tokunaga, TK AF Wan, JM Tokunaga, TK TI Comments on "Pore-scale visualization of colloid transport and retention in partly saturated porous media" SO VADOSE ZONE JOURNAL LA English DT Editorial Material C1 Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Wan, JM (reprint author), Lawrence Berkeley Lab, 1 Cyclotron Rd MS 70-108, Berkeley, CA 94720 USA. EM jmwan@lbl.gov RI Tokunaga, Tetsu/H-2790-2014; Wan, Jiamin/H-6656-2014 OI Tokunaga, Tetsu/0000-0003-0861-6128; NR 5 TC 13 Z9 13 U1 0 U2 7 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2005 VL 4 IS 4 BP 954 EP 956 DI 10.2136/vzj2005.0010 PG 3 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 000OS UT WOS:000234472300007 ER PT J AU Nicholl, MJ Glass, RJ AF Nicholl, MJ Glass, RJ TI Infiltration into an analog fracture: Experimental observations of gravity-driven fingering SO VADOSE ZONE JOURNAL LA English DT Article ID WETTING FRONT INSTABILITY; DYNAMIC CAPILLARY-PRESSURE; ROUGH-WALLED FRACTURES; POROUS-MEDIA; SINGLE FRACTURE; 2-PHASE FLOW; HYDRAULIC CONDUCTIVITY; RELATIVE PERMEABILITY; STABILITY ANALYSIS; PREFERENTIAL FLOW AB The infiltration of water into unsaturated geologic media is an immiscible displacement process that is unstable with respect to gravity and can thus lead to the formation of gravity-driven fingers. Where the geologic media (e. g., rock, soil) is fractured, gravity-driven fingers within the fractures may lead to extremely rapid vertical migration of waterborne contaminants. We designed analog fractures to facilitate competition between viscous, gravity, and capillary forces that is expected to control finger behavior, then conducted an extended experimental investigation to observe and measure finger behavior. Results show that the spatially variant two-dimensional nature of fracture geometry leads to different behavior than is reported for the related problem of gravity-driven fingers in porous media. Observations of finger behavior are presented, along with a simple scale analysis used to relate the key measures of finger velocity, finger width, and fingertip length. We also present a series of illustrative designed to guide future research. C1 Univ Nevada, Dept Geosci, Las Vegas, NV 89122 USA. Sandia Natl Labs, Flow Visualizat & Proc Lab, Albuquerque, NM 87185 USA. RP Nicholl, MJ (reprint author), Univ Nevada, Dept Geosci, Las Vegas, NV 89122 USA. EM michael.nicholl@ccmail.nevada.edu NR 82 TC 9 Z9 9 U1 2 U2 12 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2005 VL 4 IS 4 BP 1123 EP 1151 DI 10.2136/vzj2004.0110 PG 29 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 000OS UT WOS:000234472300027 ER PT J AU Oostrom, M Dane, JH Wietsma, TW AF Oostrom, M Dane, JH Wietsma, TW TI Removal of carbon tetrachloride from a layered porous medium by means of soil vapor extraction enhanced by desiccation and water table reduction SO VADOSE ZONE JOURNAL LA English DT Article ID LIQUID-HYDROCARBON MIXTURES; UNSATURATED SOILS; MASS-TRANSFER; SATURATION; STEAM; AIR; TRICHLOROETHYLENE; REMEDIATION; SUBSURFACE; VALIDATION AB Reproduced from Vadose Zone Journal. Published by Soil Science Society of America. All copyrights reserved. A two- dimensional flow cell experiment was conducted to study the removal of the carbon tetrachloride component of a DNAPL mixture from a layered porous medium through soil vapor extraction (SVE) with moist and dry air. A dual-energy gamma radiation system was used at various times to non-intrusively determine fluid saturations. The mixture, which contained the volatile organic carbon tetrachloride, mimics the DNAPL disposed at the Hanford Site in Washington State. The flow cell, which is 100 cm long, 75 cm high and 5.5 cm wide, was packed with two sloped coarse sand and two sloped silt layers in an otherwise uniform matrix of medium-grained sand. A V-shaped fine sand layer was placed at the bottom of the flow cell to prevent DNAPL from exiting the flow cell. The water table was located 2 cm from the bottom, creating variably saturated conditions. A 500-mL spill was introduced at the top of the flow cell from a small source area. It was observed that the DNAPL largely by-passed the silt layers but easily moved into the coarse sand layers. Residual DNAPL was formed in the medium-grained sand matrix. The DNAPL caused a distinct reduction of the capillary fringe. Most of the DNAPL ended up in a pool on top of the V-shaped fine sand. Through four treatments with moist air soil vapor extraction, most residual carbon tetrachloride was removed from the medium-grained matrix and the coarse sand layers. However, soil vapor extraction with moist air was not able to remove the carbon tetrachloride from the silt layers and the pool. Through a water table reduction and subsequent soil vapor extraction with dry air, the carbon tetrachloride in the silt layers and the pool was effectively removed. Based on gamma measurements and carbon tetrachloride vapor concentration data, it was estimated that after the final remediation treatment, almost 90% of the total mass was removed. C1 Pacific NW Natl Lab, Environm Technol Div, Richland, WA 99354 USA. Auburn Univ, Dept Agron & Soils, Auburn, AL 36849 USA. Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. RP Oostrom, M (reprint author), Pacific NW Natl Lab, Environm Technol Div, POB 999,MS K9-33, Richland, WA 99354 USA. EM mart.oostrom@pnl.gov NR 39 TC 20 Z9 21 U1 0 U2 6 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2005 VL 4 IS 4 BP 1170 EP 1182 DI 10.2136/vzj2004.0173 PG 13 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 000OS UT WOS:000234472300030 ER PT J AU Yuan, FS Lu, ZM AF Yuan, FS Lu, ZM TI Analytical solutions for vertical flow in unsaturated, rooted soils with variable surface fluxes SO VADOSE ZONE JOURNAL LA English DT Article ID ONE-DIMENSIONAL INFILTRATION; RICHARDS EQUATION; WATER-UPTAKE; HETEROGENEOUS SOILS; PLANT-ROOTS; EXTRACTION; SIMULATION; DRAINAGE; TABLE; MODEL AB Reproduced from Vadose Zone Journal. Published by Soil Science Society of America. All copyrights reserved. Analytical solutions to Richards' equation have been derived to describe the distribution of pressure head, water content, and fluid flow for rooted, homogeneous soils with varying surface fluxes. The solutions assume that (i) the constitutive relations for the hydraulic and water content as function of the pressure head are exponential, (ii) the initial water content distribution is a steady-state distribution, and (iii) the root water uptake is a function of depth. Three simple forms of root water uptake are considered, that is, uniform, stepwise, and exponential functional forms. The lower boundary of the rooted soil profile studied is a water table, while at the upper boundary time-dependent surface fluxes are specified, either infiltration or evaporation. Application of the Kirchhoff transformation allows us to linearize Richards' equation and derive exact solutions. The steady-state solution is given in a closed form and the transient solution has the form of an infinite series. The solutions are used to simulate the hydraulic behavior of the rooted soils under different conditions of root uptake and surface flux. The restricted assumptions for the solutions may limit the applicability, but the solutions are relatively flexible and easy to implement compared to other analytical and numerical schemes. The analytical solutions provide a reliable and convenient means for evaluating the accuracy of various numerical schemes, which usually require sophisticated algorithms to overcome convergence and mass balance problems. C1 Los Alamos Natl Lab, Hydrol Geochem & Geol Grp, Los Alamos, NM 87545 USA. Texas A&M Univ, Agr Res & Extens Ctr, El Paso, TX 79927 USA. RP Lu, ZM (reprint author), Los Alamos Natl Lab, Hydrol Geochem & Geol Grp, EES-6, Los Alamos, NM 87545 USA. EM zhiming@lanl.gov OI Lu, Zhiming/0000-0001-5800-3368; Yuan, Fasong/0000-0001-8079-280X NR 31 TC 28 Z9 29 U1 3 U2 11 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2005 VL 4 IS 4 BP 1210 EP 1218 DI 10.2136/vzj2005.0043 PG 9 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 000OS UT WOS:000234472300034 ER PT J AU Lee, BD Walton, MR Megio, JL AF Lee, BD Walton, MR Megio, JL TI Biological and chemical interactions with U(VI) during anaerobic enrichment in the presence of iron oxide coated quartz SO WATER RESEARCH LA English DT Article DE uranium; groundwater; iron-reducing bacteria; sulfate reducing bacteria; adsorption; metal reduction ID SULFATE-REDUCING BACTERIA; MILL TAILINGS SITE; URANIUM(VI) ADSORPTION; GROUND-WATER; SORPTION; REDUCTION; GOETHITE; HEMATITE; URANYL; TRANSPORT AB Microcosm experiments were performed to understand chemical and biological interactions with hexavalent uranium (U(VI)) in the presence of iron oxide bearing minerals and trichloroethylene (TCE) as a co-contaminant. Interactions of U(VI) and hydrous iron oxide moieties on the mineral oxide surfaces were studied during enrichments for dissimilatory iron reducing (DIRB) and sulfate reducing bacteria (SRB). Microbes enriched from groundwater taken from the Test Area North (TAN) site at the Idaho National Laboratory (INL) were able to reduce the U(VI) in the adsorption medium as well as the iron on quartz surfaces. Early in the experiment disappearance of U(VI) from solution was a function of chemical interactions since no microbial activity was evident. Abiotic removal of U(VI) was enhanced in the presence of carbonate. As the experiment proceeded, further removal of U(VI) from solution was associated with the fermentation of lactate to propionate and acetate. During later phases of the experiment when lactate was depleted from the growth medium in the microcosm containing the DIRB enrichments, U(VI) concentrations in the solution phase increased until additional lactate was added. When additional lactate was added and fermentation proceeded, U(VI) concentrations in the liquid phase again returned to near zero. Similar results were shown for the SRB enrichment but lower uranium concentrations were seen in the liquid phase, while in the enrichment with carbonate a similar increase in uranium concentration was not seen. Chemical and biological interactions appear to be important on the mobilization/immobilization of U(VI) in an iron oxide system when TCE is present as a co-contaminant. Interestingly, TCE present in the microcosm experiments was not dechlorinated which was probably an effect of redox conditions that were unsuitable for reductive dechlorination by the microbial culture tested. Published by Elsevier Ltd. C1 Idaho Natl Lab, Dept Biol Sci, Idaho Falls, ID 83415 USA. RP Lee, BD (reprint author), Idaho Natl Lab, Dept Biol Sci, POB 1625, Idaho Falls, ID 83415 USA. EM Brady.Lee@inl.gov OI Walton, Michelle/0000-0003-4169-4443 NR 47 TC 7 Z9 8 U1 2 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0043-1354 J9 WATER RES JI Water Res. PD NOV PY 2005 VL 39 IS 18 BP 4363 EP 4374 DI 10.1016/j.watres.2005.09.004 PG 12 WC Engineering, Environmental; Environmental Sciences; Water Resources SC Engineering; Environmental Sciences & Ecology; Water Resources GA 986TX UT WOS:000233473700011 PM 16236343 ER PT J AU Muramatsu, Y Yamashita, M Motoyama, M Hirose, M Denlinger, JD Gullikson, EM Perera, RCC AF Muramatsu, Y Yamashita, M Motoyama, M Hirose, M Denlinger, JD Gullikson, EM Perera, RCC TI Characterization of surface carbon films on weathered Japanese roof tiles by soft x-ray spectroscopy SO X-RAY SPECTROMETRY LA English DT Article; Proceedings Paper CT European Conference on X-Ray Spectrometry (EXRS 2004) CY JUN 06-11, 2004 CL Alghero, ITALY ID IBUSHI-KAWARA AB The effects of weathering on carbon films deposited on Japanese smoked roof tiles were investigated by soft x-ray absorption and emission spectroscopy using synchrotron radiation. X-ray absorption measurements revealed that weathering oxidizes the carbon films and that partial carboxy chemical bonding occurs. Incident angle-dependent x-ray absorption spectra in the C K region confirmed that the degree of the orientation at the surface of the oxidized carbon films decreases with weathering. However, the take-off angle-dependent C K x-ray emission spectra showed that the orientation of the layered carbon structure is maintained in the bulk portion when weathered. Therefore, it is confirmed that oxidation proceeds from the surface of the carbon films. Weathering degrades and oxidizes the surface carbon films, which causes the metallic silver color to change to darker gray. Copyright (c) 2005 John Wiley & Sons, Ltd. C1 Japan Atom Energy Res Inst, Kansai Res Estab, Mikazuki, Hyogo 6795148, Japan. Hyogo Prefectural Inst Technol, Suma Ku, Kobe, Hyogo 6540037, Japan. Matsuoka Roofing Inc, Himeji, Hyogo 6792101, Japan. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Muramatsu, Y (reprint author), Univ Hyogo, Grad Sch Engn, 2167 Shosha, Himeji, Hyogo 6712201, Japan. EM murama@eng.u-hyogo.ac.jp NR 8 TC 0 Z9 0 U1 1 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0049-8246 J9 X-RAY SPECTROM JI X-Ray Spectrom. PD NOV-DEC PY 2005 VL 34 IS 6 BP 509 EP 513 DI 10.1002/xrs.865 PG 5 WC Spectroscopy SC Spectroscopy GA 985AS UT WOS:000233349100007 ER PT J AU Toyoda, S Okabayashi, J Takahashi, H Oshima, M Lee, DI Sun, S Sun, S Pianetta, PA Ando, T Fukuda, S AF Toyoda, S Okabayashi, J Takahashi, H Oshima, M Lee, DI Sun, S Sun, S Pianetta, PA Ando, T Fukuda, S TI Nitrogen doping and thermal stability in HfSiOxNy studied by photoemission and x-ray absorption spectroscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID GATE DIELECTRICS; SI; INTERFACES; STATES; LAYER AB We have investigated nitrogen-doping effects into HfSiOx films on Si and their thermal stability using synchrotron-radiation photoemission and x-ray absorption spectroscopy. N 1s core-level photoemission and N K-edge absorption spectra have revealed that chemical-bonding states of N-Si3-xOx and interstitial N-2-gaslike features are clearly observed in as-grown HfSiOxNy film and they decrease upon ultrahigh vacuum (UHV) annealing due to a thermal instability, which can be related to the device performance. Annealing-temperature dependence in Hf 4f and Si 2p photoemission spectra suggests that the Hf-silicidation temperature is effectively increased by nitrogen doping into the HfSiOx although the interfacial SiO2 layer is selectively reduced. No change in valence-band spectra upon UHV annealing suggests that crystallization of the HfSiOxNy films is also hindered by nitrogen doping into the HfSiOx. (C) 2005 American Institute of Physics. C1 Univ Tokyo, Dept Appl Chem, Bunkyo Ku, Tokyo 1138656, Japan. Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. Sony Corp, Semicond Solut Network Co, Kanagawa 2430014, Japan. RP Toyoda, S (reprint author), Univ Tokyo, Dept Appl Chem, Bunkyo Ku, Tokyo 1138656, Japan. EM toyoda@sr.t.u-tokyo.ac.jp NR 21 TC 22 Z9 23 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 31 PY 2005 VL 87 IS 18 AR 182908 DI 10.1063/1.2126112 PG 3 WC Physics, Applied SC Physics GA 978PV UT WOS:000232886400059 ER PT J AU Santiso, EE George, AM Turner, CH Kostov, MK Gubbins, KE Buongiorno-Nardelli, M Sliwinska-Bartkowiak, M AF Santiso, EE George, AM Turner, CH Kostov, MK Gubbins, KE Buongiorno-Nardelli, M Sliwinska-Bartkowiak, M TI Adsorption and catalysis: The effect of confinement on chemical reactions SO APPLIED SURFACE SCIENCE LA English DT Article; Proceedings Paper CT 5th International Symposium on Effects of Surface Heterogeneity in Adsorption and Catalysis on Solids (ISSHAC-V) CY AUG 30-SEP 03, 2004 CL Gdansk, POLAND DE chemical reactions; confinement; porous carbons; molecular modeling ID REACTION EQUILIBRIA; CARBON MICROPORES; ACTIVATED CARBON; MOLECULAR-DYNAMICS; RARE EVENTS; 1,3-BUTADIENE; DENSITY; DIMERIZATION; SIMULATION; S-CIS-1,3-BUTADIENE AB Confinement within porous materials can affect chemical reactions through a host of different effects, including changes in the thermodynamic state of the system due to interactions with the pore walls, selective adsorption, geometrical constraints that affect the reaction mechanism, electronic perturbation due to the substrate, etc. In this work, we present an overview of some of our recent research on some of these effects, on chemical equilibrium, kinetic rates and reaction mechanisms. We also discuss our current and future directions for research in this area. (c) 2005 Elsevier B.V. All rights reserved. C1 N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27694 USA. N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. Univ Alabama, Dept Chem & Biol Engn, Tuscaloosa, AL 35487 USA. Oak Ridge Natl Lab, CCS CCM, Oak Ridge, TN 37381 USA. Adam Mickiewicz Univ Poznan, Inst Phys, PL-61614 Poznan, Poland. RP Gubbins, KE (reprint author), N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27694 USA. EM keg@ncsu.edu NR 49 TC 51 Z9 53 U1 5 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD OCT 31 PY 2005 VL 252 IS 3 BP 766 EP 777 DI 10.1016/j.apsusc.2005.02.101 PG 12 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 980CH UT WOS:000232991000032 ER PT J AU Antoniou, NG Contoyiannis, YF Diakonos, FK Mavromanolakis, G AF Antoniou, NG Contoyiannis, YF Diakonos, FK Mavromanolakis, G TI Critical QCD in nuclear collisions SO NUCLEAR PHYSICS A LA English DT Article ID HIGH-ENERGY; FLUCTUATIONS; DENSITY; POINT AB A detailed study of correlated scalars, produced in collisions of nuclei and associated with the sigma-field fluctuations, (delta sigma)(2) = , at the QCD critical point (critical fluctuations), is performed on the basis of a critical event generator (critical Monte Carlo) developed in our previous work. The aim of this analysis is to reveal suitable observables of critical QCD in the multiparticle environment of simulated events and select appropriate signatures of the critical point, associated with new and strong effects in nuclear collisions. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Athens, Dept Phys, GR-15771 Athens, Greece. Brookhaven Natl Lab, Nucl Theory Grp, Upton, NY 11973 USA. RP Diakonos, FK (reprint author), Univ Athens, Dept Phys, GR-15771 Athens, Greece. EM fdiakono@cc.uoa.gr NR 14 TC 24 Z9 25 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD OCT 31 PY 2005 VL 761 IS 1-2 BP 149 EP 161 DI 10.1016/j.nuclphysa.2005.07.003 PG 13 WC Physics, Nuclear SC Physics GA 973IQ UT WOS:000232516500008 ER PT J AU Yonker, CR Linehan, JC AF Yonker, CR Linehan, JC TI The use of supercritical fluids as solvents for NMR spectroscopy SO PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY LA English DT Review DE supercritical fluids; high-pressure NMR; catalysis; phase equilibrium; molecular dynamics; diffusion coefficients; hydrogen bonding C1 Pacific NW Natl Lab, Fundamental Sci Directorate, Richland, WA 99352 USA. RP Yonker, CR (reprint author), Pacific NW Natl Lab, Fundamental Sci Directorate, POB 999,MS K2-57, Richland, WA 99352 USA. EM clem.yonker@pnl.gov; john.linehan@pnl.gov NR 137 TC 26 Z9 26 U1 1 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0079-6565 J9 PROG NUCL MAG RES SP JI Prog. Nucl. Magn. Reson. Spectrosc. PD OCT 31 PY 2005 VL 47 IS 1-2 BP 95 EP 109 DI 10.1016/j.pnmrs.2005.08.002 PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Spectroscopy SC Chemistry; Physics; Spectroscopy GA 980WD UT WOS:000233048000004 ER PT J AU Requejo, FG Ramallo-Lopez, JM Rosas-Salas, R Dominguez, JM Rodriguez, JA Kim, JY Quijada, R AF Requejo, FG Ramallo-Lopez, JM Rosas-Salas, R Dominguez, JM Rodriguez, JA Kim, JY Quijada, R TI XANES/EXAFS study and catalytic properties of the confined Cr carbonyl-MCM-41 system SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT 19th Ibero American Catalysis Symposium CY 2004 CL Merida, MEXICO DE MCM-41; XANES; EXAFS; confined Cr-carbonyls; ethylene polymerization ID MESOPOROUS MOLECULAR-SIEVES; ABSORPTION-SPECTRA; CHROMIUM; POLYMERIZATION; SHIFTS; COORDINATION; SPECTROSCOPY; STABILITY; GEL; MN AB X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) were performed to determine the structural stability and atomic local order of transition metal carbonyls Cr(CO)(6) confined into the channel network of MCM-41. These species interact with the surface siloxane groups of the MCM-41 walls as proved by XANES/EXAFS. These Cr species were previously characterized by Fr-IR, Xe adsorption and Si-29 NMR, which confirmed their monodispersity, chemical interaction and confinement into the pore network of MCM-41. In this study, XAS provides additional evidence on the high dispersion of the metal species and symmetry of the Cr sites. Also, the Cr-O bond lengths, Cr coordination and oxidation state were determined after thermal treatments, thus confirming the interaction of the sub-carbonyl species with the siloxane groups. The change of the oxidation state from 0 to almost 3 might explain the unusual catalytic activity for ethylene polymerization of the Cr sub-carbonyl species confined into MCM-41. (c) 2005 Elsevier B.V. All rights reserved. C1 Natl Univ La Plata, Dept Fis & IFLP, INIFTA, CONICET, RA-1900 La Plata, Argentina. Inst Mexicano Petr, Programa Ingn Mol, Mexico City 07730, DF, Mexico. Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. Univ Chile, Fac Ciencias Fis & Matemat, Dept Chem Engn, Santiago, Chile. Ctr Invest Interdisciplinaria Avanzada Ciencias Ma, Santiago, Chile. RP Requejo, FG (reprint author), Natl Univ La Plata, Dept Fis & IFLP, INIFTA, CONICET, CC 67, RA-1900 La Plata, Argentina. EM requejo@fisica.unlp.edu.ar RI Ramallo-Lopez, Jose/N-1757-2016; Requejo, Felix/O-2260-2016 OI Ramallo-Lopez, Jose/0000-0002-8233-2644; Requejo, Felix/0000-0003-4439-864X NR 37 TC 8 Z9 8 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD OCT 30 PY 2005 VL 107-08 BP 750 EP 758 DI 10.1016/j.cattod.2005.07.006 PG 9 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 984HM UT WOS:000233293600103 ER PT J AU Waichler, SR Wemple, BC Wigmosta, MS AF Waichler, SR Wemple, BC Wigmosta, MS TI Simulation of water balance and forest treatment effects at the H.J. Andrews Experimental Forest SO HYDROLOGICAL PROCESSES LA English DT Article DE DHSVM; HJA; watershed modelling; forest treatment ID PACIFIC-NORTHWEST; WESTERN OREGON; MODEL; HYDROLOGY; WASHINGTON; CATCHMENTS; TERRAIN; BASINS; COVER; FLOWS AB The distributed hydrology soil-vegetation model (DHSVM) was applied to the small watersheds WS1, 2, 3 in H.J. Andrews Experimental Forest, Oregon, and tested for skill in simulating observed forest treatment effects on streamflow. These watersheds, located in the rain-snow transition zone, underwent road and clearcut treatments during 1959-66 and subsequent natural regeneration. DHSVM was applied with 10 m and 1 h resolution to 1958-98, most of the period of record. Water balance for old-growth WS2 indicated that evapotranspiration and streamflow were unlikely to be the only loss terms, and groundwater recharge was included to account for about 12% of precipitation; this term was assumed zero in previous studies. Overall efficiency in simulating hourly streamflow exceeded 0.7, and mean annual error was less than 10%. Model skill decreased at the margins, with overprediction of low flows and underprediction of high flows. However, statistical analyses of simulated and observed peakflows yielded similar characterizations of treatment effects. Primary simulation weaknesses were snowpack accumulation, snowmelt under rain-on-snow conditions, and production of quickflow. This was the first test of DHSVM against observations of both control and treated watersheds in a classic paired-basin study involving a long time period of forest regrowth and hydrologic recovery. Copyright (c) 2005 John Wiley & Sons, Ltd. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. Univ Vermont, Dept Geog, Burlington, VT USA. RP Waichler, SR (reprint author), Pacific NW Natl Lab, K9-36,POB 999, Richland, WA 99352 USA. EM scott.waichler@pnl.gov NR 36 TC 20 Z9 21 U1 3 U2 22 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0885-6087 J9 HYDROL PROCESS JI Hydrol. Process. PD OCT 30 PY 2005 VL 19 IS 16 BP 3177 EP 3199 DI 10.1002/hyp.5841 PG 23 WC Water Resources SC Water Resources GA 982TQ UT WOS:000233184900008 ER PT J AU Ray, DA Walker, JA Hall, A Llewellyn, B Ballantyne, J Christian, AT Turteltaub, K Batzer, MA AF Ray, DA Walker, JA Hall, A Llewellyn, B Ballantyne, J Christian, AT Turteltaub, K Batzer, MA TI Inference of human geographic origins using Alu insertion polymorphisms SO FORENSIC SCIENCE INTERNATIONAL LA English DT Article DE forensic genomics; Ala; geographic affiliation; PCR ID HUMAN GENOMIC DIVERSITY; POLYMERASE-CHAIN-REACTION; MULTILOCUS GENOTYPE DATA; ALLELE FREQUENCIES; SEQUENCE VARIATION; GENETIC-VARIATION; DNA; POPULATIONS; REPEATS; LOCI AB The inference of an individual's geographic ancestry or origin can be critical in narrowing the field of potential suspects in a criminal investigation. Most current technologies rely on single nucleotide polymorphism (SNP) genotypes to accomplish this task. However, SNPs can introduce homoplasy into an analysis since they can be identical-by-state. We introduce the use of insertion polymorphisms based on short interspersed elements (SINEs) as a potential alternative to SNPs. SINE polymorphisms are identical-by-descent, essentially homoplasy-free, and inexpensive to genotype using a variety of approaches. Herein, we present results of a blind study using 100 Alu insertion polymorphisms to infer the geographic ancestry of 18 unknown individuals from a variety of geographic locations. Using a Structure analysis of the Alu insertion polymorphism-based genotypes, we were able to correctly infer the geographic affiliation of all 18 unknown human individuals with high levels of confidence. This technique to infer the geographic affiliation of unknown human DNA samples will be a useful tool in forensic genomics. (c) 2004 Elsevier Ireland Ltd. All rights reserved. C1 Louisiana State Univ, Dept Biol Sci, Biol Computat & Visualizat Ctr, Baton Rouge, LA 70803 USA. Univ Cent Florida, Natl Ctr Forens Sci, Orlando, FL 32816 USA. Forens Sci Ctr Chicago, Illinois State Police, Chicago, IL 60608 USA. Lawrence Livermore Natl Lab, Biol & Biotechnol Res Program, Livermore, CA 94551 USA. RP Batzer, MA (reprint author), Louisiana State Univ, Dept Biol Sci, Biol Computat & Visualizat Ctr, 202 Life Sci Bldg, Baton Rouge, LA 70803 USA. EM mbatzer@lsu.edu NR 40 TC 39 Z9 41 U1 1 U2 13 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0379-0738 J9 FORENSIC SCI INT JI Forensic Sci.Int. PD OCT 29 PY 2005 VL 153 IS 2-3 BP 117 EP 124 DI 10.1016/j.forsciint.2005.10.017 PG 8 WC Medicine, Legal SC Legal Medicine GA 969RB UT WOS:000232251300003 PM 16139099 ER PT J AU Selby, ND Eshun, E Patton, HJ Douglas, A AF Selby, ND Eshun, E Patton, HJ Douglas, A TI Unusual long-period Rayleigh wave radiation from a vertical dip-slip source: The 7 May 2001 North Sea earthquake SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID LATERALLY HETEROGENEOUS EARTH; DOMAIN JWKB THEORY; SURFACE-WAVES; VARIATIONAL-PRINCIPLES; MOMENT-TENSOR; PROPAGATION; SPECTRA AB Crustal structures with a thick, surficial sediment layer with low seismic wave speeds produce a reversal in the polarity of the shear stress eigenfunctions of long-period Rayleigh waves at shallow depth. Consequently, seismic disturbances with a strong vertical dip-slip component that are within or just below the sediment layer should generate Rayleigh waves that show a polarity reversal when compared with Rayleigh waves from the same source in a more typical crustal structure. Here the first observation of this unusual behavior is presented by modeling surface waves from the 7 May 2001 North Sea earthquake. A previous study finds a focal mechanism close to vertical dip slip for this earthquake, and suggests that the source is within the 6 km thick sediment layer found in this region. An appropriate structural model is used to generate synthetic seismograms and estimate a double-couple focal mechanism for the source. The orientation of the fault plane determined here is similar to that found by the previous study; however, the slip direction is opposite, demonstrating that the use of an incorrect structural model has a profound effect on focal mechanism determination for this type of seismic source. C1 AWE Blacknest, Reading RG7 4RS, Berks, England. Univ Oxford, Dept Earth Sci, Oxford OX1 3PR, England. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP AWE Blacknest, Reading RG7 4RS, Berks, England. EM neil@blacknest.gov.uk; esi.eshun@exeter.oxon.org; patton@lanl.gov; alan@blacknest.gov.uk NR 23 TC 5 Z9 5 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD OCT 29 PY 2005 VL 110 IS B10 AR B10304 DI 10.1029/2005JB003721 PG 6 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 981TB UT WOS:000233109800001 ER PT J AU Tam, D Radovitzky, R Samtaney, R AF Tam, D Radovitzky, R Samtaney, R TI An algorithm for modelling the interaction of a flexible rod with a two-dimensional high-speed flow SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE fluid-solid interaction; compressible flows; flexible structures ID NONLINEAR BEAM KINEMATICS; GHOST FLUID METHOD; LEVEL SET; SIMULATION; INTERFACES; PARACHUTE AB We present an algorithm for modelling coupled dynamic interactions of a very thin flexible structure immersed in a high-speed flow. The modelling approach is based on combining an Eulerian finite volume formulation for the fluid flow and a Lagrangian large-deformation formulation for the dynamic response of the structure. The coupling between the fluid and the solid response is achieved via an approach based on extrapolation and velocity reconstruction inspired in the Ghost Fluid Method. The algorithm presented does not assume the existence of a region exterior to the fluid domain as it was previously proposed and, thus, enables the consideration of very thin open boundaries and structures where the flow may be relevant on both sides of the interface. We demonstrate the accuracy of the method and its ability to describe disparate flow conditions across a fixed thin rigid interface without pollution of the flow field across the solid interface by comparing 9 C, with analytical solutions of compressible flows. We also demonstrate the versatility and robustness of the method in a complex fluid-structure interaction problem corresponding to the transient supersonic flow past a highly flexible structure. Copyright (c) 2005 John Wiley & Sons, Ltd. C1 MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA. Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08544 USA. RP Tam, D (reprint author), MIT, Dept Aeronaut & Astronaut, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM dan_tam@mit.edu RI Radovitzky, Raul/A-5353-2009 OI Radovitzky, Raul/0000-0001-6339-2708 NR 48 TC 8 Z9 8 U1 0 U2 4 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0029-5981 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD OCT 28 PY 2005 VL 64 IS 8 BP 1057 EP 1077 DI 10.1002/nme.1397 PG 21 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 978JK UT WOS:000232869200004 ER PT J AU Grimm, SL Contreras, A Barcellos-Hoff, MH Rosen, JM AF Grimm, SL Contreras, A Barcellos-Hoff, MH Rosen, JM TI Cell cycle defects contribute to a block in hormone-induced mammary gland proliferation in CCAAT/enhancer-binding protein (C/EBP beta)-null mice SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID GROWTH-FACTOR-BETA; ESTROGEN-RECEPTOR-ALPHA; HUMAN BREAST-CANCER; C/EBP-BETA; PROGESTERONE-RECEPTOR; EPITHELIAL-CELLS; TRANSFORMING GROWTH-FACTOR-BETA-1; TGF-BETA-1 EXPRESSION; DUCTAL MORPHOGENESIS; PARTIAL-HEPATECTOMY AB In contrast to hormone-dependent breast cancer, steroid hormone-induced proliferation in the normal mammary gland does not occur in the steroid-receptor positive cells but rather in adjacent cells via paracrine signaling involving several local growth factors. To help elucidate the mechanisms involved in the block in proliferation in hormone-receptor positive cells, we have utilized a CCAAT/enhancer binding protein (C/EBP beta)-null mouse model. Loss of this transcription factor results in increased steroid and prolactin receptor expression concomitant with a 10-fold decrease in proliferation in response to pregnancy hormones. To determine the basis for this decrease, several markers of cell cycle progression were analyzed in wild type and C/EBP beta-null mammary epithelial cells (MECs). These studies indicated that cell cycle progression in C/EBP beta-null MECs is blocked at the G(1)/S transition. C/EBP beta-null mammary glands display substantially increased levels of the activated form of transforming growth factor beta, a potent inhibitor of epithelial cell proliferation, as well as increased downstream Smad2 expression and signaling. While cyclin D1 levels were equivalent, cyclin E expression was markedly reduced in C/EBP beta-null as compared with wildtype MECs. In addition, increased p27 stability and retention in the nucleus and decreased levels of the cdc25a phosphatase contributed to a significant loss of cdk2 kinase activity. Collectively, these changes prevent C/EBP beta-null mammary epithelial cells from responding to hormone-induced proliferative signals. C1 Baylor Coll Med, Dept Mol & Cellular Biol, Houston, TX 77030 USA. Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94710 USA. RP Rosen, JM (reprint author), Baylor Coll Med, Dept Mol & Cellular Biol, 1 Baylor Plaza, Houston, TX 77030 USA. EM jrosen@bcm.tmc.edu FU NCI NIH HHS [CA16303] NR 53 TC 28 Z9 28 U1 0 U2 0 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD OCT 28 PY 2005 VL 280 IS 43 BP 36301 EP 36309 DI 10.1074/jbc.M508167200 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 976IM UT WOS:000232726900063 PM 16120603 ER PT J AU Galinada, WA Guiochon, G AF Galinada, WA Guiochon, G TI Comparison of chromatographic band profiles obtained under microwave irradiated and non-irradiated reversed-phase liquid chromatography column SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE microwave irradiation; dielectric polarization; chromatogram; diffusivity; RPLC ID HIGH-TEMPERATURE; SURFACE-DIFFUSION; PARAMETERS; KINETICS; RADIATION AB The possible influence of the application of microwave energy to a reversed-phase liquid chromatography column on the mass transfer kinetics and the thermodynamics of equilibrium between mobile and stationary phases was examined. Chromatograrns of propylbenzene and phenol were recorded under the same experimental conditions, on the same column, successively irradiated and not. The effect of microwave irradiation on the mass transfer kinetics was determined by measuring the second moment of small pulses of propylbenzene in a 70:30 (v/v) solution of methanol in water and microwave outputs of 15 and 30 W. The effect of microwave irradiation on the equilibrium thermodynamics was determined by measuring the elution time of breakthrough curves of phenol at high concentrations in a 20:80 (v/v) solution of methanol and water and microwave outputs of 15, 50, and 150 W. A qualitative comparison of the profiles of the propylbenzene peaks obtained with and without irradiation suggests that this irradiation affects significantly the peak shapes. However, a qualitative comparison of the profiles of the breakthrough curves of phenol obtained with and without irradiation suggests that this irradiation has no significant effect on their shapes. The peak sharpening observed may be due to an increase in the diffusivity, resulting from the dielectric polarization under microwave irradiation. This effect is directly related to an increase of the rate of mass transfers in the column. In contrast, the similarity of the overloaded band profiles at high concentrations suggests that the equilibrium thermodynamics is unaffected by microwave irradiation. This may be explained by the transparence of the stationary phase to microwaves at 2.45 GHz. The column temperature was measured at the column outlet under irradiation powers of 15, 30, 50, and 150 W. It increases with increasing power, the corresponding effluent temperatures being 25 +/- 1, 30 +/- 1, 35 +/- 1, and 45 +/- 1 degrees C, respectively. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Guiochon, G (reprint author), Univ Tennessee, Dept Chem, 552 Buehler Hall, Knoxville, TN 37996 USA. EM guiochon@utk.edu NR 34 TC 4 Z9 5 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD OCT 28 PY 2005 VL 1092 IS 2 BP 222 EP 227 DI 10.1016/j.chroma.2005.07.028 PG 6 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 973GE UT WOS:000232510100008 PM 16199229 ER PT J AU Anghel, DV Fefelov, O Galperin, YM AF Anghel, DV Fefelov, O Galperin, YM TI Fluctuations of the Fermi condensate in ideal gases SO JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL LA English DT Article ID 2 DIMENSIONS; EXCLUSION STATISTICS; QUANTUM GASES; BOSE; THERMODYNAMICS AB We calculate numerically and analytically the grandcanonical fluctuation of the number of particles both, in the fermionic condensate and above it, for ideal Fermi systems of constant density of states. We compare the canonical fluctuations, obtained from the equivalent Bose condensate fluctuation, with the grandcanonical fermionic calculation. The fluctuations of the condensate are almost the same in the two ensembles with a small correction coming from the total particle number fluctuation in the grandcanonical ensemble. On the other hand, well below the condensation temperature, the number of particles above the condensate and its fluctuation are insensitive to the choice of ensemble. C1 Univ Oslo, Dept Phys, N-0316 Oslo, Norway. RAS, AF Ioffe Physicotech Inst, St Petersburg 14021, Russia. Argonne Natl Lab, Argonne, IL 60439 USA. RP Anghel, DV (reprint author), Univ Oslo, Dept Phys, POB 1048, N-0316 Oslo, Norway. EM dragos@fys.uio.no; olegfe@fys.uio.no; iouri.galperine@fys.uio.no RI Galperin, Yuri/A-1851-2008; Anghel, Dragos-Victor/A-3940-2008; OI Galperin, Yuri/0000-0001-7281-9902; Anghel, Dragos-Victor/0000-0003-4809-0482 NR 21 TC 3 Z9 3 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0305-4470 J9 J PHYS A-MATH GEN JI J. Phys. A-Math. Gen. PD OCT 28 PY 2005 VL 38 IS 43 BP 9405 EP 9413 DI 10.1088/0305-4470/38/43/001 PG 9 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 989CH UT WOS:000233650000004 ER PT J AU Sarker, AH Tsutakawa, SE Kostek, S Ng, C Shin, DS Peris, M Campeau, E Tainer, JA Nogales, E Cooper, PK AF Sarker, AH Tsutakawa, SE Kostek, S Ng, C Shin, DS Peris, M Campeau, E Tainer, JA Nogales, E Cooper, PK TI Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: Insights for transcription-coupled repair and Cockayne syndrome SO MOLECULAR CELL LA English DT Article ID NUCLEOTIDE EXCISION-REPAIR; CYCLOBUTANE PYRIMIDINE DIMER; SHORT LIFE-SPAN; XERODERMA-PIGMENTOSUM; DNA-REPAIR; ELONGATION COMPLEXES; NUCLEASE ACTIVITY; STRUCTURAL BASIS; UV-IRRADIATION; SYNDROME CELLS AB Loss of a nonenzymatic function of XPG results in defective transcription-coupled repair (TCR), Cockayne syndrome (CS), and early death, but the molecular basis for these phenotypes is unknown. Mutation of CSB, CSA, or the TFIIH helicases XPB and XPD can also cause defective TCR and CS. We show that XPG interacts with elongating RNA polymerase II (RNAPII) in the cell and binds stalled RNAPII ternary complexes in vitro both independently and cooperatively with CSB. XPG binds transcription-sized DNA bubbles through two domains not required for incision and functionally interacts with CSB on these bubbles to stimulate its ATPase activity. Bound RNAPII blocks bubble incision by XPG, but an ATP hydrolysis-dependent process involving TFIIH creates access to the junction, allowing incision. Together, these results implicate coordinated recognition of stalled transcription by XPG and CSB in TCR initiation and suggest that TFIIH-dependent remodeling of stalled RNAPII without release may be sufficient to allow repair. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Howard Hughes Med Inst, Dept Cell & Mol Biol, Berkeley, CA 94720 USA. Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. RP Cooper, PK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, 1 Cyclotron Rd,Mail Stop 74R157, Berkeley, CA 94720 USA. EM pkcooper@lbl.gov FU NCI NIH HHS [CA63503, P01 CA92584]; NIGMS NIH HHS [GM63072] NR 64 TC 124 Z9 130 U1 0 U2 5 PU CELL PRESS PI CAMBRIDGE PA 1100 MASSACHUSETTS AVE, CAMBRIDGE, MA 02138 USA SN 1097-2765 J9 MOL CELL JI Mol. Cell PD OCT 28 PY 2005 VL 20 IS 2 BP 187 EP 198 DI 10.1016/j.molcel.2005.09.022 PG 12 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 982HA UT WOS:000233147500005 PM 16246722 ER PT J AU Pancost, RD Zhang, CLL Tavacoli, J Talbot, HM Farrimond, P Schouten, S Damste, JSS Sassen, R AF Pancost, RD Zhang, CLL Tavacoli, J Talbot, HM Farrimond, P Schouten, S Damste, JSS Sassen, R TI Lipid biomarkers preserved in hydrate-associated authigenic carbonate rocks of the Gulf of Mexico SO PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY LA English DT Article DE anaerobic oxidation of methane; archaea; bacteria; gas hydrates; diether lipids; hopanoids; irregular isoprenoids; authigenic carbonates AB Anaerobic oxidation of methane (AOM) is common in ocean-margin sediments, where it is mediated by consortia of Archaea and Bacteria and can result in the formation of authigenic carbonate, including extensive carbonate crusts. Previous work indicates that AOM is associated with Gulf of Mexico hydrocarbon seeps and is mediated by similar organisms as identified in other settings; however, biological investigations have not been done on the associated C-13-depleted carbonates. Here, we show that C-13-depleted archaeal and bacterial biomarkers are abundant in Gulf of Mexico authigenic carbonate rocks, revealing that AOM-mediating organisms are closely associated with carbonate authigenesis. Moreover, the rocks share general characteristics of the background (soft) sedimentary archaeal and bacterial community inferred from biomarker analysis, suggesting that the organisms associated with carbonate authigenesis are the same as those that live elsewhere in the hydrocarbon seep environment. This provides further evidence that AOM by Archaea and sulfate-reducing bacteria can result in the sequestration of significant quantities of methane-derived carbon in carbonate rocks. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Bristol, Sch Chem, Organ Geochem Unit, Bristol Biogeochem Res Ctr, Bristol BS8 1TS, Avon, England. Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. Univ Newcastle Upon Tyne, NRG, Sch Civil Engn & Geosci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. Netherlands Inst Sea Res, Dept Marine Biogeochem & Toxicol, NL-1790 AB Den Burg, Netherlands. Texas A&M Univ, GERG, College Stn, TX 77845 USA. RP Pancost, RD (reprint author), Univ Bristol, Sch Chem, Organ Geochem Unit, Bristol Biogeochem Res Ctr, Cantocks Close, Bristol BS8 1TS, Avon, England. EM r.d.pancost@bristol.ac.uk RI Sinninghe Damste, Jaap/F-6128-2011; OI Sinninghe Damste, Jaap/0000-0002-8683-1854; Pancost, Richard/0000-0003-0298-4026 NR 85 TC 32 Z9 36 U1 1 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0031-0182 J9 PALAEOGEOGR PALAEOCL JI Paleogeogr. Paleoclimatol. Paleoecol. PD OCT 28 PY 2005 VL 227 IS 1-3 BP 48 EP 66 DI 10.1016/j.palaeo.2005.04.035 PG 19 WC Geography, Physical; Geosciences, Multidisciplinary; Paleontology SC Physical Geography; Geology; Paleontology GA 980OU UT WOS:000233028600005 ER PT J AU Arnold, R Augier, C Baker, J Barabash, A Broudin, G Brudanin, V Caffrey, AJ Caurier, E Egorov, V Errahmane, K Etienvre, AI Guyonnet, JL Hubert, F Hubert, P Jollet, C Jullian, S Kochetov, O Kovalenko, V Konovalov, S Lalanne, D Leccia, F Longuemare, C Lutter, G Marquet, C Mauger, F Nowacki, F Ohsumi, H Piquemal, F Reyss, JL Saakyan, R Sarazin, X Simard, L Simkovic, F Shitov, Y Smolnikov, A Stekl, L Suhonen, J Sutton, CS Szklarz, G Thomas, J Timkin, V Tretyak, V Umatov, V Vala, L Vanushin, I Vasilyev, V Vorobel, V Vylov, T AF Arnold, R Augier, C Baker, J Barabash, A Broudin, G Brudanin, V Caffrey, AJ Caurier, E Egorov, V Errahmane, K Etienvre, AI Guyonnet, JL Hubert, F Hubert, P Jollet, C Jullian, S Kochetov, O Kovalenko, V Konovalov, S Lalanne, D Leccia, F Longuemare, C Lutter, G Marquet, C Mauger, F Nowacki, F Ohsumi, H Piquemal, F Reyss, JL Saakyan, R Sarazin, X Simard, L Simkovic, F Shitov, Y Smolnikov, A Stekl, L Suhonen, J Sutton, CS Szklarz, G Thomas, J Timkin, V Tretyak, V Umatov, V Vala, L Vanushin, I Vasilyev, V Vorobel, V Vylov, T TI First results of the search for neutrinoless double-beta decay with the NEMO 3 detector SO PHYSICAL REVIEW LETTERS LA English DT Article ID MASS; GE-76; SE-82 AB The NEMO 3 detector, which has been operating in the Frejus underground laboratory since February 2003, is devoted to the search for neutrinoless double-beta decay (beta beta 0 nu). The half-lives of the two neutrino double-beta decay (beta beta 2 nu) have been measured for (100)Mo and (82)Se. After 389 effective days of data collection from February 2003 until September 2004 (phase I), no evidence for neutrinoless double-beta decay was found from similar to 7 kg of (100)Mo and similar to 1 kg of (82)Se. The corresponding limits are T(1/2)(beta beta 0 nu)> 4.6x10(23) yr for (100)Mo and T(1/2)(beta beta 0 nu)> 1.0x10(23) yr for (82)Se (90% C.L.). Depending on the nuclear matrix element calculation, the limits for the effective Majorana neutrino mass are < m(nu)>< 0.7-2.8 eV for (100)Mo and < m(nu)>< 1.7-4.9 eV for (82)Se. C1 CENBG, CNRS, IN2P3, F-33170 Gradignan, France. UBI, F-33170 Gradignan, France. Charles Univ Prague, Prague, Czech Republic. Czech Tech Univ, IEAP, Prague, Czech Republic. INL, Idaho Falls, ID 83415 USA. IReS, IN2P3, CNRS, F-67037 Strasbourg, France. ULP, F-67037 Strasbourg, France. ITEP, Moscow 117259, Russia. Joint Inst Nucl Res, Dubna 141980, Russia. LAL, IN2P3, CNRS, F-91405 Orsay, France. UPS, F-91405 Orsay, France. LPC, IN2P3, CNRS, F-14032 Caen, France. UC, F-14032 Caen, France. LSCE, CNRS, F-91190 Gif Sur Yvette, France. Mt Holyoke Coll, S Hadley, MA 01075 USA. Saga Univ, Saga 8408502, Japan. UCL, London WC1E 6BT, England. Univ Jyvaskyla, FIN-40351 Jyvaskyla, Finland. Comenius Univ, FMFI, SK-84248 Bratislava, Slovakia. RP Arnold, R (reprint author), CENBG, CNRS, IN2P3, F-33170 Gradignan, France. RI Caffrey, Augustine/C-2005-2009; Shitov, Yuri/J-2318-2012; Vala, Ladislav/L-4938-2016; Barabash, Alexander/S-8851-2016 NR 24 TC 178 Z9 178 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 28 PY 2005 VL 95 IS 18 AR 182302 DI 10.1103/PhysRevLett.95.182302 PG 4 WC Physics, Multidisciplinary SC Physics GA 978QF UT WOS:000232887400020 PM 16383896 ER PT J AU Cuneo, ME Vesey, RA Sinars, DB Chittenden, JP Waisman, EM Lemke, RW Lebedev, SV Bliss, DE Stygar, WA Porter, JL Schroen, DG Mazarakis, MG Chandler, GA Mehlhorn, TA AF Cuneo, ME Vesey, RA Sinars, DB Chittenden, JP Waisman, EM Lemke, RW Lebedev, SV Bliss, DE Stygar, WA Porter, JL Schroen, DG Mazarakis, MG Chandler, GA Mehlhorn, TA TI Demonstration of radiation pulse shaping with nested-tungsten-wire-array Z pinches for high-yield inertial confinement fusion SO PHYSICAL REVIEW LETTERS LA English DT Article ID DRIVEN HOHLRAUM; IGNITION; DESIGN; ENERGY; GAIN AB Nested wire-array Z pinches are shown to generate soft x-ray radiation pulse shapes required for three-shock isentropic compression and hot-spot ignition of high-yield inertial confinement fusion capsules. We demonstrate a reproducible and tunable foot pulse (first shock) produced by interaction of the outer and inner arrays. A first-step pulse (second shock) is produced by inner array collision with a central CH2 foam target. Stagnation of the inner array at the axis produces the third shock. Capsules optimized for several of these shapes produce 290-900 MJ fusion yields in 1D simulations. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England. Schafer Corp, Livermore, CA 94550 USA. RP Cuneo, ME (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 20 TC 32 Z9 36 U1 0 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 28 PY 2005 VL 95 IS 18 AR 185001 DI 10.1103/PhysRevLett.95.185001 PG 4 WC Physics, Multidisciplinary SC Physics GA 978QF UT WOS:000232887400031 PM 16383907 ER PT J AU Hager, J Matzdorf, R He, J Jin, R Mandrus, D Cazalilla, MA Plummer, EW AF Hager, J Matzdorf, R He, J Jin, R Mandrus, D Cazalilla, MA Plummer, EW TI Non-fermi-liquid behavior in quasi-one-dimensional Li0.9Mo6O17 SO PHYSICAL REVIEW LETTERS LA English DT Article ID LUTTINGER-LIQUID; PHOTOEMISSION; BRONZES; OXIDES; MODEL AB We present temperature dependent scanning tunneling spectroscopy data of the quasi-one-dimensional conductor Li0.9Mo6O17. The differential tunneling current in our low-temperature spectra shows a power-law behavior around the Fermi energy, which is expected for a clean Luttinger liquid. The power-law exponent is found to be 0.6. Spectra for a temperature range of 5 to 55 K can be fitted fairly well with a model for tunneling into a Luttinger liquid at the appropriate temperature. A fit with a model based on a zero bias anomaly is significantly worse compared to the Luttinger liquid model. No signature of a phase transition at T=24 K is observed in our temperature dependent data. C1 Univ Kassel, Fachbereich Nat Wissensch, D-34109 Kassel, Germany. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. DIPC, Donostia San Sebastian 20018, Spain. RP Hager, J (reprint author), Univ Kassel, Fachbereich Nat Wissensch, D-34109 Kassel, Germany. RI Mandrus, David/H-3090-2014; Cazalilla, Miguel/A-1366-2013; DONOSTIA INTERNATIONAL PHYSICS CTR., DIPC/C-3171-2014 OI Cazalilla, Miguel/0000-0002-2994-2873; NR 22 TC 44 Z9 44 U1 0 U2 17 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 28 PY 2005 VL 95 IS 18 AR 186402 DI 10.1103/PhysRevLett.95.186402 PG 4 WC Physics, Multidisciplinary SC Physics GA 978QF UT WOS:000232887400049 PM 16383925 ER PT J AU Hu, JS Rosenbaum, TF Betts, JB AF Hu, JS Rosenbaum, TF Betts, JB TI Current jets, disorder, and linear magnetoresistance in the silver chalcogenides SO PHYSICAL REVIEW LETTERS LA English DT Article ID SEMICONDUCTORS AB The inhomogeneous distribution of excess or deficient silver atoms lies behind the large and linear transverse magnetoresistance displayed by Ag2 +/-deltaSe and Ag2 +/-deltaTe, introducing spatial conductivity fluctuations with length scales independent of the cyclotron radius. We report a negative, nonsaturating longitudinal magnetoresistance up to at least 60 T, which becomes most negative where the bands cross and the effect of conductivity fluctuations is most acute. Thinning samples down to 10 mu m suppresses the negative response, revealing the essential length scale in the problem and paving the way for designer magnetoresistive devices. C1 Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. Univ Chicago, Dept Phys, Chicago, IL 60637 USA. Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. RP Hu, JS (reprint author), Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. NR 19 TC 34 Z9 34 U1 4 U2 20 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 28 PY 2005 VL 95 IS 18 AR 186603 DI 10.1103/PhysRevLett.95.186603 PG 4 WC Physics, Multidisciplinary SC Physics GA 978QF UT WOS:000232887400056 PM 16383932 ER PT J AU Koch, V Majumder, A Randrup, J AF Koch, V Majumder, A Randrup, J TI Baryon-strangeness correlations: A diagnostic of strongly interacting matter SO PHYSICAL REVIEW LETTERS LA English DT Article ID HADRONIC SPECTRAL FUNCTIONS; QCD PHASE-TRANSITION; QUARK-GLUON PLASMA; FLUCTUATION; COLLISIONS AB The correlation between baryon number and strangeness elucidates the nature of strongly interacting matter, such as that formed transiently in high-energy nuclear collisions. This diagnostic can be extracted theoretically from lattice QCD calculations and experimentally from event-by-event fluctuations. The analysis of present lattice results above the critical temperature severely limits the presence of q (q) over bar bound states, thus supporting a picture of independent (quasi)quarks. C1 Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Koch, V (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. NR 29 TC 163 Z9 164 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 28 PY 2005 VL 95 IS 18 AR 182301 DI 10.1103/PhysRevLett.95.182301 PG 4 WC Physics, Multidisciplinary SC Physics GA 978QF UT WOS:000232887400019 PM 16383895 ER PT J AU Kukta, RV Vasiljevic, N Dimitrov, N Sieradzki, K AF Kukta, RV Vasiljevic, N Dimitrov, N Sieradzki, K TI Self-assembly of paired nanoribbons SO PHYSICAL REVIEW LETTERS LA English DT Article ID EPITAXIAL-GROWTH; SURFACE; STRESS AB Self-assembly of surface phase domains is a promising route to fabricate stable nanometer-scale structures. This Letter reports a novel labyrinth structure of orthogonal nanoscale ribbons of Cu4Pb3 ordered-alloy on Cu(100) formed by electrochemical deposition. The labyrinth develops as loops of Cu4Pb3 ribbons elongate as closely spaced paired stripes. The structure is explained in terms of elastic interactions between anisotropic surface stress domains, wherein stripes of different phase variants form attractive dipoles. An energetic analysis determines the physical conditions necessary for the structure to form. C1 SUNY Stony Brook, Dept Mech Engn, Stony Brook, NY 11794 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. SUNY Binghamton, Dept Chem, Binghamton, NY 13902 USA. Arizona State Univ, Dept Mech & Aerosp Engn, Tempe, AZ 85287 USA. RP Kukta, RV (reprint author), SUNY Stony Brook, Dept Mech Engn, Stony Brook, NY 11794 USA. RI Kukta, Robert/C-3789-2009; OI Vasiljevic, Natasa/0000-0002-7515-9708 NR 14 TC 5 Z9 5 U1 1 U2 4 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 28 PY 2005 VL 95 IS 18 AR 186103 DI 10.1103/PhysRevLett.95.186103 PG 4 WC Physics, Multidisciplinary SC Physics GA 978QF UT WOS:000232887400047 PM 16383923 ER PT J AU Reyes, SA Tsvelik, AM AF Reyes, SA Tsvelik, AM TI Crossed spin-1/2 Heisenberg chains as a quantum impurity problem SO PHYSICAL REVIEW LETTERS LA English DT Article AB Using equivalencies between different models we reduce the model of two spin-1/2 Heisenberg chains crossed at one point to the model of free fermions. The spin-spin correlation function is calculated by summing the perturbation series in the interchain interaction. The result reveals a power law decay with a nonuniversal exponent. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Reyes, SA (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 10 TC 6 Z9 6 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 28 PY 2005 VL 95 IS 18 AR 186404 DI 10.1103/PhysRevLett.95.186404 PG 3 WC Physics, Multidisciplinary SC Physics GA 978QF UT WOS:000232887400051 PM 16383927 ER PT J AU Yezerets, A Currier, NW Kim, DH Eadler, HA Epling, WS Peden, CHF AF Yezerets, A Currier, NW Kim, DH Eadler, HA Epling, WS Peden, CHF TI Differential kinetic analysis of diesel particulate matter (soot) oxidation by oxygen using a step-response technique SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE diesel particulate matter; soot; carbon oxidation; experimental methodology; reaction kinetics ID MASS-TRANSFER; CARBON-BLACK; ENGINE SOOT; COMBUSTION; CATALYST; PERFORMANCE; CHEMISTRY; BEHAVIOR; REMOVAL; NOX AB The effects of a catalytic coating on the oxidation of captured soot over diesel particulate filters (DPF) is debated in the literature, since a catalyzed filter wall appears to lack sufficiently tight contact with soot deposits to exercise direct catalytic action. The topology of soot-catalyst contact may change with progressive oxidation of the soot layer; hence, a technique capable of probing catalytic action via detailed kinetic analysis at different stages of oxidation is required to conclusively resolve this problem. A novel step-response technique was developed in this work as a methodological foundation for such study. Using this technique, various aspects of the oxidation process can be probed while consuming only differential amounts of carbon, and the impact of the reaction heat on the measured rates can be minimized. This technique was applied to soot oxidation by O-2 and showed that, after decoupling effects due to the sample history, carbon oxidation by O-2 in the absence of H2O can be well-described by an unmodified Arrhenius equation, with similar activation energy values for diesel and model soot samples (137 +/- 8.7 and 132 +/- 5.1 kJ/mol, respectively). The reaction order in O-2 for these samples was found to be 0.61 +/- 0.03 and 0.71 +/- 0.03, respectively, and was remarkably independent of the temperature, suggesting that the fractional order is not due to mixed kinetic control. The reaction mechanism was also found to be independent of carbon conversion. The density of the reaction sites, however, appeared to increase with oxidation. This increase could not be accounted for by the changes in the specific surface area, either directly measured or derived from such simplified models as the shrinking-core formalism. The entire set of obtained experimental results can be described using a kinetically uncomplicated model in a broad range of temperatures, partial pressures of oxygen and degrees of soot oxidation. (c) 2005 Elsevier B.V. All rights reserved. C1 Cummins Inc, Columbus, IN 47201 USA. Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA USA. RP Yezerets, A (reprint author), Cummins Inc, 1900 McKinley Ave,MC 50183, Columbus, IN 47201 USA. EM aleksey.yezerets@cummins.com RI Kim, Do Heui/I-3727-2015; OI Peden, Charles/0000-0001-6754-9928 NR 28 TC 60 Z9 61 U1 3 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD OCT 27 PY 2005 VL 61 IS 1-2 BP 120 EP 129 DI 10.1016/j.apcatb.2005.04.014 PG 10 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA 977RJ UT WOS:000232820600013 ER PT J AU Kolaski, M Lee, HM Pak, C Dupuis, A Kim, KS AF Kolaski, M Lee, HM Pak, C Dupuis, A Kim, KS TI Ab initio molecular dynamics simulations of an excited state of X-(H2O)(3) (X = Cl, I) complex SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID WATER CLUSTERS; CHARGE-TRANSFER; VIBRATIONAL-SPECTRA; EXCESS ELECTRON; INFRARED-SPECTROSCOPY; FEMTOSECOND DYNAMICS; RELAXATION PATHWAY; HYDRATED CLUSTERS; AQUEOUS-SOLUTION; ANION CLUSTERS AB Upon excitation of Cl-(H2O)(3) and I-(H2O)(3) clusters, the electron transfers from the anionic precursor to the solvent, and then the excess electron is stabilized by polar solvent molecules. This process has been investigated using ab initio molecular dynamics (AIMD) simulations of excited states of Cl-(H2O)(3) and I-(H2O)(3) clusters. The AIMD simulation results of Cl-(H2O)(3) and I-(H2O)(3) are compared, and they are found to be similar. Because the role of the halogen atom in the photoexcitation mechanism is controversial, we also carried out AIMD simulations for the ground-state bare excess electron-water trimer [e(-)(H2O)(3)] at 300 K, the results of which are similar to those for the excited state of X-(H2O)(3) with zero kinetic energy at the initial excitation. This indicates that the rearrangement of the complex is closely related to that of e(-)(H2O)(3), whereas the role of the halide anion is not as important. C1 Pohang Univ Sci & Technol, Natl Creat Res Initiat Ctr Superfunct Mat, Pohang 790784, South Korea. Pohang Univ Sci & Technol, Dept Chem, Div Mol & Life Sci, Pohang 790784, South Korea. Pacific NW Natl Lab, Mol Interact & Transformat Chem Sci Div, Richland, WA 99352 USA. RP Kim, KS (reprint author), Pohang Univ Sci & Technol, Natl Creat Res Initiat Ctr Superfunct Mat, San 31, Pohang 790784, South Korea. EM kim@postech.ac.kr RI Kim, Kwang/C-7538-2012 OI Kim, Kwang/0000-0002-6929-5359 NR 87 TC 30 Z9 30 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD OCT 27 PY 2005 VL 109 IS 42 BP 9419 EP 9423 DI 10.1021/jp0512816 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 978EV UT WOS:000232857300007 PM 16866390 ER PT J AU Eaves, JD Tokmakoff, A Geissler, PL AF Eaves, JD Tokmakoff, A Geissler, PL TI Electric field fluctuations drive vibrational dephasing in water SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID HYDROGEN-BOND DYNAMICS; ULTRAFAST INFRARED-SPECTROSCOPY; HOLE-BURNING SPECTROSCOPY; DIELECTRIC SOLVATION DYNAMICS; QUANTUM-CLASSICAL DYNAMICS; LIQUID WATER; COLLECTIVE EXCITATIONS; LOCAL SUBSTRUCTURES; ENERGY RELAXATION; HEAVY-WATER AB We present a microscopic description of the vibrational spectroscopy of the OH stretch of HOD in liquid D2O, Our model predicts that OH frequency correlations decay with a sharp and rapid (approximate to 35 fs) decrease, followed by a beat at approximate to 125 fs from intermolecular oxygen vibrations. On a short time scale (approximate to 200 fs), ultrafast infrared spectroscopy of the OH stretch is sensitive to localized intermolecular motions. For times longer than approximate to 200 fs, cooperative molecular rearrangements drive dephasing. The interplay of electric field fluctuations, both local and cooperative, dictate vibrational frequency shifts and destroy vibrational coherence in water. C1 MIT, Dept Chem, Cambridge, MA 02139 USA. MIT, George Harrison Spect Lab, Cambridge, MA 02139 USA. Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Sci Mat, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Tokmakoff, A (reprint author), MIT, Dept Chem, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM tokmakof@mit.edu NR 57 TC 107 Z9 107 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD OCT 27 PY 2005 VL 109 IS 42 BP 9424 EP 9436 DI 10.1021/jp051364m PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 978EV UT WOS:000232857300008 PM 16866391 ER PT J AU Xantheas, SS Roth, W Fischer, I AF Xantheas, SS Roth, W Fischer, I TI Competition between van der Waals and hydrogen bonding interactions: Structure of the trans-1-naphthol/N-2 cluster SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID 2ND-ORDER MOLLER-PLESSET; AB-INITIO CALCULATIONS; WAVE-FUNCTIONS; BINDING-ENERGIES; BASIS-SET; WATER DIMER; IONIZATION SPECTROSCOPY; VANDERWAALS COMPLEXES; THRESHOLD IONIZATION; ELECTRONIC-STRUCTURE AB The excitation energy in the multiphoton ionization spectrum of the trans-1-naphthol/N-2 cluster shows only a small red shift with respect to isolated naphthol, indicating a van der Waals pi-bound structure rather than a hydrogen-bonded one. To confirm this interpretation, high-level electronic structure calculations were performed for several pi and hydrogen-bonded isomers of this cluster. The calculations were carried out at the second order Moller-Plesset (MP2) level of perturbation theory with the family of correlation consistent basis sets up to quintuple-xi quality including corrections for the basis set superposition error and extrapolation to the MP2 complete basis set (CBS) limit. We report the optimal geometries, vibrational frequencies, and binding energies (D-e), also corrected for harmonic zero-point energies (D-0), for three energetically low-lying isomers. In all calculations the lowest energy structure was found to be an isomer with the N-2 molecule bound to the pi-system of the naphthol ring carrying the OH group. In the CBS limit its dissociation energy was computed to be D-0 = 2.67 kcal/mol (934 cm(-1)) as compared to D-0 = 1.28 kcal/mol (448 cm(-1)) for the H-bound structure. The electronic structure calculations therefore confirm the assignment of the experimental electronic spectrum corresponding to a van der Waals pi-bound structure. The energetic stabilization of the pi-bound isomer with respect to the hydrogen-bonded one is rather unexpected when compared with previous findings in related systems, in particular phenol/N-2. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. Univ Wurzburg, Inst Chem Phys, D-97074 Wurzburg, Germany. RP Xantheas, SS (reprint author), Pacific NW Natl Lab, 906 Batelle Blvd,POB 999,MS K1-83, Richland, WA 99352 USA. EM sotiris.xantheas@pnl.gov; ingo@phys-chemie.uni-wuerzburg.de RI Fischer, Ingo/G-4824-2011; Xantheas, Sotiris/L-1239-2015; OI Fischer, Ingo/0000-0001-8978-4013; Xantheas, Sotiris/0000-0002-6303-1037 NR 47 TC 1 Z9 1 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD OCT 27 PY 2005 VL 109 IS 42 BP 9584 EP 9589 DI 10.1021/jp053708e PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 978EV UT WOS:000232857300028 PM 16866411 ER PT J AU Zhang, BP Janicke, MT Woodruff, WH Bailey, JA AF Zhang, BP Janicke, MT Woodruff, WH Bailey, JA TI Fast photoreduction of a heme peptide encapsulated in nanostructured materials SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Letter ID CHARGE-SEPARATION; MOLECULAR-SIEVE; CYTOCHROME-C; COMPLEXES; MCM-41; PUMP AB Microperoxidase-11 has been immobilized on siliceous materials MCM-41 and SBA-15 and on amino-functionalized SBA-15. Resonance Raman spectroscopy has provided solid evidence that the exogenous species occupy the pores of the mesoporous silica materials. Photoreduction of the microperoxidase-11 Fe-III center has been observed to occur in the immobilized samples and results in a long-lived stable reduced heme. Reoxidation of the heme occurs upon addition of oxygen, and the redox cycle can be repeated numerous times. The source of the electron resulting in reduction of the heme is proposed to originate from the silica matrix, and functionalization of silica surface is suggested to facilitate electron transfer to the heme. C1 Los Alamos Natl Lab, Div Chem, C PCS, Los Alamos, NM 87545 USA. RP Bailey, JA (reprint author), Los Alamos Natl Lab, Div Chem, C PCS, Mail Stop J586, Los Alamos, NM 87545 USA. EM jbailey@lanl.gov NR 17 TC 6 Z9 7 U1 1 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 27 PY 2005 VL 109 IS 42 BP 19547 EP 19549 DI 10.1021/jp0545997 PG 3 WC Chemistry, Physical SC Chemistry GA 978FB UT WOS:000232857900001 PM 16853526 ER PT J AU Hess, WP Joly, AG Beck, KM Henyk, M Sushko, PV Trevisanutto, PE Shluger, AL AF Hess, WP Joly, AG Beck, KM Henyk, M Sushko, PV Trevisanutto, PE Shluger, AL TI Laser control of desorption through selective surface excitation SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Review ID PHOTON-STIMULATED DESORPTION; SELF-TRAPPED EXCITON; ALKALI-HALIDE CRYSTALS; AB-INITIO CALCULATIONS; MAGNESIUM-OXIDE; IONIC SURFACES; METHYL-IODIDE; ELECTRONIC EXCITATION; UNIMOLECULAR REACTION; OPTICAL-TRANSITIONS AB We review recent developments in controlling photoinduced desorption processes of alkali halides. We focus primarily on hyperthermal desorption of halogen atoms and show that the yield, electronic state, and velocity distributions of desorbed atoms can be selected using tunable laser excitation. We demonstrate that the observed control is due to preferential excitation of surface excitons. This approach takes advantage of energetic differences between surface and bulk exciton states and probes the surface exciton directly. We demonstrate that desorption of these materials leads to controlled modification of their surface geometric and electronic structures. We then extend the exciton mechanism of desorption, developed for alkali halides, to metal oxide surfaces, in particular magnesium oxide. In addition, these results demonstrate that laser desorption can serve as a solid-state source of halogen and oxygen atoms, in well-defined electronic and velocity states, for studying chemical processes in the gas phase and at surfaces. C1 UCL, Dept Phys & Astron, London WC1E 6BT, England. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hess, WP (reprint author), UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. EM wayne.hess@pnl.gov; a.shluger@ucl.ac.uk RI Sushko, Peter/F-5171-2013 OI Sushko, Peter/0000-0001-7338-4146 NR 122 TC 44 Z9 44 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 27 PY 2005 VL 109 IS 42 BP 19563 EP 19578 DI 10.1021/jp0523672 PG 16 WC Chemistry, Physical SC Chemistry GA 978FB UT WOS:000232857900006 PM 16853531 ER PT J AU Wang, XQ Rodriguez, JA Hanson, JC Gamarra, D Martinez-Arias, A Fernandez-Garcia, M AF Wang, XQ Rodriguez, JA Hanson, JC Gamarra, D Martinez-Arias, A Fernandez-Garcia, M TI Unusual physical and chemical properties of cu in Ce1-xCuxO2 oxides SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID WATER-GAS-SHIFT; EFFECTIVE IONIC-RADII; MIXED-METAL OXIDES; X-RAY-DIFFRACTION; OXYGEN HANDLING PROPERTIES; FUEL-CELL APPLICATIONS; CARBON-MONOXIDE; PLANE-WAVE; STRUCTURAL CHARACTERISTICS; ELECTRONIC-PROPERTIES AB The structural and electronic properties of Ce1-xCuxO2 nano systems prepared by a reverse microemulsion method were characterized with synchrotron-based X-ray diffraction, X-ray absorption spectroscopy, Raman spectroscopy, and density functional calculations. The Cu atoms embedded in ceria had an oxidation state higher than those of the cations in Cu2O or CuO. The lattice of the Ce1-xCuxO2 systems still adopted a fluoritetype structure, but it was highly distorted with multiple cation-oxygen distances with respect to the single cation-oxygen bond distance seen in pure ceria. The doping of CeO2 with copper introduced a large strain into the oxide lattice and favored the formation of O vacancies, leading to a Ce1-xCuxO2-y stoichiometry for our materials. Cu approached the planar geometry characteristic of Cu(II) oxides, but with a strongly perturbed local order. The chemical activities of the Ce1-xCuxO2 nanoparticles were tested using the reactions with H-2 and O-2 as probes. During the reduction in hydrogen, an induction time was observed and became shorter after raising the reaction temperature. The fraction of copper that could be reduced in the Ce1-xCuxO2 oxides also depended strongly on the reaction temperature. A comparison with data for the reduction of pure copper oxides indicated that the copper embedded in ceria was much more difficult to reduce. The reduction of the Ce1-xCuxO2 nanoparticles was rather reversible, without the generation of a significant amount of CuO or Cu2O phases during reoxidation. This reversible process demonstrates the unusual structural and chemical properties of the Cu-doped ceria materials. C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. CSIC, Inst Catalisis & Petr Quim, Madrid 28049, Spain. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RI Hanson, jonathan/E-3517-2010; Fernandez-Garcia, Marcos/A-8122-2014 NR 84 TC 173 Z9 176 U1 11 U2 97 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 27 PY 2005 VL 109 IS 42 BP 19595 EP 19603 DI 10.1021/jp051970h PG 9 WC Chemistry, Physical SC Chemistry GA 978FB UT WOS:000232857900009 PM 16853534 ER PT J AU Liu, J Qi, SA Groves, JT Chakraborty, AK AF Liu, J Qi, SA Groves, JT Chakraborty, AK TI Phase segregation on different length scales in a model cell membrane system SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID LIPID RAFTS; PLASMA-MEMBRANE; BIOLOGICAL-MEMBRANES; SURFACE CHARGE; LIVING CELLS; DOMAINS; CHOLESTEROL; ACTIVATION; MICROSCOPY; COMPARTMENTATION AB Lipid rafts are sphingolipid- and cholesterol-enriched domains on cell membranes that have been implicated in many biological functions, especially in T lymphocytes. We used a field theory to examine the forces underlying raft formation on resting living cell membranes. We find that it is difficult to reconcile the observed size of rafts on living cell membranes (similar to 100 nm) with a mechanism that involves coupling between spontaneous curvature differences and concentration fluctuations. Such a mechanism seems to predict raft domain sizes that are larger and commensurate with those observed on synthetic membranes. Therefore, using a Poisson-Boltzmann approach, we explore whether electrostatic forces originating from transmembrane proteins and net negative charges on cell membranes could play a role in determining the raft size in living cell membranes. We find that a balance among the intrinsic tendency of raft components to segregate, the line tension, and the effective dipolar interactions among membrane constituents leads to a stable phase with a characteristic length scale commensurate with the observed size of rafts on living cell membranes. We calculate the phase diagram of a system in which these three types of forces are important. In a certain region of the parameter space, an interesting phase with mosaic-like morphology consisting of an intertwined pattern of raft and nonraft domains is predicted. Experiments that could further assess the importance of dipolar interactions for lateral organization of the components on multiple length scales in membranes are suggested. C1 Univ Calif Berkeley, Dept Chem, Dept Chem Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci & Mat Sci Div, Berkeley, CA 94720 USA. RP Chakraborty, AK (reprint author), Univ Calif Berkeley, Dept Chem, Dept Chem Engn, Berkeley, CA 94720 USA. EM arup@uclink.berkeley.edu RI Liu, Jian/C-6755-2011 NR 50 TC 25 Z9 25 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 27 PY 2005 VL 109 IS 42 BP 19960 EP 19969 DI 10.1021/jp053562j PG 10 WC Chemistry, Physical SC Chemistry GA 978FB UT WOS:000232857900056 PM 16853581 ER PT J AU Weber, CP Gedik, N Moore, JE Orenstein, J Stephens, J Awschalom, DD AF Weber, CP Gedik, N Moore, JE Orenstein, J Stephens, J Awschalom, DD TI Observation of spin Coulomb drag in a two-dimensional electron gas SO NATURE LA English DT Article ID STIMULATED RAMAN-SCATTERING; SEMICONDUCTORS; LIQUIDS AB An electron propagating through a solid carries spin angular momentum in addition to its mass and charge. Of late there has been considerable interest in developing electronic devices based on the transport of spin that offer potential advantages in dissipation, size and speed over charge-based devices(1). However, these advantages bring with them additional complexity. Because each electron carries a single, fixed value (-e) of charge, the electrical current carried by a gas of electrons is simply proportional to its total momentum. A fundamental consequence is that the charge current is not affected by interactions that conserve total momentum, notably collisions among the electrons themselves(2). In contrast, the electron's spin along a given spatial direction can take on two values, +/-(h) over bar /2 (conventionally up arrow, down arrow), so that the spin current and momentum need not be proportional. Although the transport of spin polarization is not protected by momentum conservation, it has been widely assumed that, like the charge current, spin current is unaffected by electron - electron ( e - e) interactions. Here we demonstrate experimentally not only that this assumption is invalid, but also that over a broad range of temperature and electron density, the flow of spin polarization in a two-dimensional gas of electrons is controlled by the rate of e - e collisions. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. CALTECH, Arthur Amos Noyes Lab Chem Phys, Lab Mol Sci, Pasadena, CA 91125 USA. Univ Calif Santa Barbara, Ctr Spintron & Quantum Computat, Santa Barbara, CA 93106 USA. RP Weber, CP (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM cpweber@lbl.gov RI Orenstein, Joseph/I-3451-2015; Moore, Joel/O-4959-2016 OI Moore, Joel/0000-0002-4294-5761 NR 18 TC 150 Z9 152 U1 6 U2 43 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD OCT 27 PY 2005 VL 437 IS 7063 BP 1330 EP 1333 DI 10.1038/nature04206 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 977UQ UT WOS:000232829100047 PM 16251958 ER PT J AU Bryantsev, VS Hay, BP AF Bryantsev, VS Hay, BP TI Influence of substituents on the strength of aryl C-H center dot center dot center dot anion hydrogen bonds SO ORGANIC LETTERS LA English DT Article ID CATION-PI INTERACTIONS; WATER CLUSTERS; BASIS-SETS; SYNTHETIC RECEPTORS; COMPLEXATION; HIGHLIGHTS; EXCHANGE; DENSITY; APPROXIMATION; COORDINATION AB [GRAPHICS] When electron-withdrawing substituents are present, aryl C-H groups become powerful hydrogen bond donors, forming stronger complexes than obtained with conventional O-H and N-H groups. C1 Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. RP Hay, BP (reprint author), Pacific NW Natl Lab, Div Chem Sci, POB 999, Richland, WA 99352 USA. EM ben.hay@pnl.gov RI Bryantsev, Vyacheslav/M-5111-2016 OI Bryantsev, Vyacheslav/0000-0002-6501-6594 NR 54 TC 83 Z9 83 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1523-7060 J9 ORG LETT JI Org. Lett. PD OCT 27 PY 2005 VL 7 IS 22 BP 5031 EP 5034 DI 10.1021/ol0520119 PG 4 WC Chemistry, Organic SC Chemistry GA 977QG UT WOS:000232817700062 PM 16235950 ER PT J AU Gronau, M AF Gronau, M TI A precise sum rule among four B -> K pi CP asymmetries SO PHYSICS LETTERS B LA English DT Article ID B-DECAYS; QCD FACTORIZATION; ISOSPIN ANALYSIS; PI-K; PHYSICS; PENGUINS; MESONS; LIGHT AB A sum rule relation is proposed for direct CP asymmetries in B ->. K pi decays. Leading terms are identical in the isospin symmetry limit, while subleading terms are equal in the flavor SU(3) and heavy quark limits. The sum rule predicts A(CP)(B-0 -> K(0)pi(0)) = -0.17 +/- 0.06 using current asymmetry measurements for the other three B -> K pi decays. A violation of the sum rule would be evidence for new physics in b -> s (q) over barq transitions. (c) 2005 Elsevier B.V. All rights reserved. C1 Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. RP Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. EM gronau@physics.technion.ac.il NR 51 TC 50 Z9 50 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD OCT 27 PY 2005 VL 627 BP 82 EP 88 DI 10.1016/j.physletb.2005.09.014 PG 7 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 979OW UT WOS:000232955700012 ER PT J AU Getova, VT Bontchev, RP Mehandjiev, DR Skumryev, V Bontchev, PR AF Getova, VT Bontchev, RP Mehandjiev, DR Skumryev, V Bontchev, PR TI Copper(II) complexes with 4-amino-alpha-(t-butylaminomethyl)-3,5-dichlorobenzyl alcohol hydrochloride (Clenbuterol). Crystal structures of the binuclear and mononuclear Cu(II) complexes with Clenbuterol SO POLYHEDRON LA English DT Article DE Cu(II) complexes; clenbuterol; X-ray data; magnetochemical properties; binuclear complex; structures AB Two new copper(II) complexes with the bronchodilator Clenbuterol (HL) have been synthesized: the binuclear complex CU(2)L(2)Cl(2)(.)4DMSO (1) and the mononuclear CuL(2)(.)2CH(3)OH (2) and have been studied using electronic, IR and EPR spectra, magnetochemical, thermogravinietric and single-crystal X-ray diffraction methods. Each of the Cu(II) centres in the binuclear complex 1 is four coordinated by one terminal chlorine and one nitrogen atom, and by two bridging oxygen atoms from two different ligand molecules. Each molecule of the binuclear complex also links four DMSO molecules by hydrogen bonds of the types S=(OH2N)-H-... and S=(OHN)-H-.... The overall structure is built by sheets of Cu2L2Cl2, parallel to the ab plane, separated by layers of DMSO. In the mononuclear moiety 2, CU(II) is coordinated bidentately with the N and O atoms of two Clenbuterol ligands, forming a nearly square-planar complex CuL2. Two CH3OH molecules are also incorporated in the unit cell, forming hydrogen bonds between the hydroxyl hydrogen atom of CH3OH and the oxygen atoms of the ligands, (CH3OHO)-O-...(1). Both structures correlate well with the spectral, magnetochernical and thermal behaviour of complexes 1 and 2. (c) 2005 Elsevier Ltd. All rights reserved. C1 Bulgarian Acad Sci, Inst Gen & Inorgan Chem, BU-1113 Sofia, Bulgaria. Univ Sofia, Fac Chem, BU-1126 Sofia, Bulgaria. Sandia Natl Labs, Albuquerque, NM 87185 USA. ICREA, Bellaterra 08193, Barcelona, Spain. Univ Autonoma Barcelona, Bellaterra 08193, Barcelona, Spain. RP Bontchev, PR (reprint author), Bulgarian Acad Sci, Inst Gen & Inorgan Chem, BU-1113 Sofia, Bulgaria. EM prbontchev@chem.uni-sofia.bg RI Bontchev, Panayot/A-4001-2008; Skumryev, Vassil/B-1440-2012 OI Skumryev, Vassil/0000-0003-1375-4824 NR 25 TC 7 Z9 7 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-5387 J9 POLYHEDRON JI Polyhedron PD OCT 27 PY 2005 VL 24 IS 15 BP 1983 EP 1990 DI 10.1016/j.poly.2005.05.017 PG 8 WC Chemistry, Inorganic & Nuclear; Crystallography SC Chemistry; Crystallography GA 978TV UT WOS:000232896800012 ER PT J AU Galinada, WA Kaczmarski, K Guiochon, G AF Galinada, WA Kaczmarski, K Guiochon, G TI Influence of microwave irradiation on the mass-transfer kinetics of propylbenzene in reversed-phase liquid chromatography SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID SURFACE-DIFFUSION; BEDS; TEMPERATURE; PARAMETERS; DISPERSION; RADIATION; COLUMNS AB The effect of microwave irradiation on the kinetics of mass transfer in reversed-phase liquid chromatography (RPLC) was studied by measuring its influence on the band profile of propylbenzene in a C-18-silica column eluted with an aqueous solution of methanol and placed inside a microwave oven. The elution peaks were measured by the pulse-response method, under linear conditions. The amount of microwave energy induced into the column was varied based on the microwave input power. The experimental data were analyzed using the conventional method of moment analysis and the lumped pore diffusion model. With input powers of 15 and 30 W, the effluent temperatures were 25 +/- 1 and 30 +/- 1 degrees C, respectively. The effect of microwave irradiation on the mass transfer of the studied solute was determined by comparing the band profiles obtained under the same experimental conditions, at the same temperature, with and without irradiation. The values of the intraparticle diffusion coefficient, D-e, measured with microwave irradiation were ca. 20% higher than those obtained without irradiation. Derived from the method of moments, the values of De at 15 W (25 +/- 1 degrees C) and 0 W (25 +/- 1 degrees C) were 8.408 x 10(-6) cm(2) s(-1) and 6.947 x 10(-6) cm(2) s(-1), respectively, while these values at 30 W (30 +/- 1 degrees C) and 0 W (30 +/- 1 degrees C) were 9.389 x 10(-6) cm(2) s(-1) and 7.848 x 10(-6) cm(2) s(-1), respectively. The values of the surface diffusivity, D-S, also increased with increasing power of the microwave irradiation. It is assumed that the increase in intraparticle diffusion for propylbenzene was caused by the molecular excitation of the organic modifier that has a higher dielectric loss than the solute. The values of D-e, were also analyzed and determined using the POR model. There was an excellent agreement between the results of the two independent methods. These preliminary results suggest that microwave irradiation may have a considerable influence on the mass transfer kinetics in RPLC. C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Rzeszow Univ Technol, Fac Chem, PL-35959 Rzeszow, Poland. RP Guiochon, G (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM guiochon@utk.edu NR 41 TC 7 Z9 8 U1 1 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD OCT 26 PY 2005 VL 44 IS 22 BP 8368 EP 8376 DI 10.1021/ie058017j PG 9 WC Engineering, Chemical SC Engineering GA 976PO UT WOS:000232745800023 ER PT J AU Kim, J Dohnalek, Z Kay, BD AF Kim, J Dohnalek, Z Kay, BD TI Cryogenic CO2 formation on oxidized gold clusters synthesized via reactive layer assisted deposition SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CARBON-MONOXIDE; AU(110)-(1 X-2); OXIDATION; OXYGEN; AU(111); NANOCLUSTERS; O-2; NANOPARTICLES; CATALYSIS; MODEL C1 Pacific NW Natl Lab, Div Chem Sci, Fundamental Sci Directorate, Richland, WA 99352 USA. RP Kay, BD (reprint author), Pacific NW Natl Lab, Div Chem Sci, Fundamental Sci Directorate, POB 999,Mail Stop K8-88, Richland, WA 99352 USA. EM Bruce.Kay@pnl.gov OI Dohnalek, Zdenek/0000-0002-5999-7867 NR 18 TC 30 Z9 31 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 26 PY 2005 VL 127 IS 42 BP 14592 EP 14593 DI 10.1021/ja055764z PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 977CV UT WOS:000232780900032 PM 16231910 ER PT J AU Xiao, YM Wang, HX George, SJ Smith, MC Adams, MWW Jenney, FE Sturhahn, W Alp, EE Zhao, JO Yoda, Y Dey, A Solomon, EI Cramer, SP AF Xiao, YM Wang, HX George, SJ Smith, MC Adams, MWW Jenney, FE Sturhahn, W Alp, EE Zhao, JO Yoda, Y Dey, A Solomon, EI Cramer, SP TI Normal mode analysis of Pyrococcus furiosus rubredoxin via nuclear resonance vibrational spectroscopy (NRVS) and resonance Raman spectroscopy SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CLOSTRIDIUM-PASTEURIANUM RUBREDOXIN; INELASTIC NEUTRON-SCATTERING; NORMAL COORDINATE ANALYSIS; CHARGE-TRANSFER DYNAMICS; ULTRAFAST PUMP-PROBE; BLUE COPPER PROTEINS; X-RAY-ABSORPTION; ACTIVE VIBRATIONS; IRON COORDINATION; ELECTRON-TRANSFER AB We have used Fe-57 nuclear resonance vibrational spectroscopy (NRVS) to study the Fe(S-cys)(4) site in reduced and oxidized rubredoxin (Rd) from Pyrococcus furiosus (Pt). The oxidized form has also been investigated by resonance Raman spectroscopy. In the oxidized Rd NRVS, strong asymmetric Fe-S stretching modes are observed between 355 and 375 cm(-1); upon reduction these modes shift to 300-320 cm(-1). This is the first observation of Fe-S stretching modes in a reduced Rd. The peak in S-Fe-S bend mode intensity is at similar to 150 cm(-1) for the oxidized protein and only slightly lower in the reduced case. A third band occurs near 70 cm(-1) for both samples; this is assigned primarily as a collective motion of entire cysteine residues with respect to the central Fe. The Fe-57 partial vibrational density of states (PVDOS) were interpreted by normal mode analysis with optimization of Urey-Bradley force fields. The three main bands were qualitatively reproduced using a D-2d Fe(SC)(4) model. A C-1 Fe(SCC)(4) model based on crystallographic coordinates was then used to simulate the splitting of the asymmetric stretching band into at least 3 components. Finally, a model employing complete cysteines and 2 additional neighboring atoms was used to reproduce the detailed structure of the PVDOS in the Fe-S stretch region. These results confirm the delocalization of the dynamic properties of the redox-active Fe site. Depending on the molecular model employed, the force constant KFe-S for Fe-S stretching modes ranged from 1.24 to 1.32 mdyn/angstrom. KFe-S is clearly diminished in reduced Rd; values from similar to 0.89 to 1.00 mdyn/angstrom were derived from different models. In contrast, in the final models the force constants for S-Fe-S bending motion, HS-Fe-S, were 0.18 mdyn/angstrom for oxidized Rd and 0.15 mdyn/angstrom for reduced Rd. The NRVS technique demonstrates great promise for the observation and quantitative interpretation of the dynamical properties of Fe-S proteins. C1 Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Stanford Univ, Dept Chem, Stanford, CA 94305 USA. Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. JASRI, SPring 8, Sayo, Hyogo 6795198, Japan. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Cramer, SP (reprint author), Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. EM spcramer@ucdavis.edu RI Dey, Abhishek/D-2825-2013 OI Dey, Abhishek/0000-0002-9166-3349 FU NIGMS NIH HHS [GM-44380, GM-60329, GM-65440] NR 60 TC 41 Z9 41 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 26 PY 2005 VL 127 IS 42 BP 14596 EP 14606 DI 10.1021/ja042960h PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA 977CV UT WOS:000232780900034 PM 16231912 ER PT J AU Liu, P Rodriguez, JA AF Liu, P Rodriguez, JA TI Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: The importance of ensemble effect SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID DENSITY-FUNCTIONAL THEORY; NICKEL PHOSPHIDE CATALYSTS; ACTIVE-SITE; DESULFOVIBRIO-GIGAS; IRON HYDROGENASE; FE-HYDROGENASES; CARBON-MONOXIDE; ACTIVATION; ADSORPTION; HYDRODESULFURIZATION AB Density functional theory (DFT) was employed to investigate the behavior of a series of catalysts used in the hydrogen evolution reaction (HER, 2H(+) + 2e(-) - H-2). The kinetics of the HER was studied on the [NiFe] hydrogenase, the [Ni(PS3*)(CO)](1-) and [Ni(PNP)(2)](2+) complexes, and surfaces such as Ni(111), Pt(111), or Ni2P(001). Our results show that the [NiFe] hydrogenase exhibits the highest activity toward the HER, followed by [Ni(PNP)(2)](2+) > Ni2P > [Ni(PS3*)(CO)](1-) > Pt > Ni in a decreasing sequence. The slow kinetics of the HER on the surfaces is due to the fact that the metal hollow sites bond hydrogen too strongly to allow the facile removal of H-2. In fact, the strong H-Ni interaction on Ni2P(001) can lead to poisoning of the highly active sites of the surface, which enhances the rate of the HER and makes it comparable to that of the [NiFe] hydrogenase. In contrast, the promotional effect of H-poisoning on the HER on Pt and Ni surfaces is relatively small. Our calculations suggest that among all of the systems investigated, Ni2P should be the best practical catalyst for the HER, combining the high thermostability of the surfaces and high catalytic activity of the [NiFe] hydrogenase. The good behavior of Ni2P(001) toward the HER is found to be associated with an ensemble effect, where the number of active Ni sites is decreased due to presence of P, which leads to moderate bonding of the intermediates and products with the surface. In addition, the P sites are not simple spectators and directly participate in the HER. C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Bldg 555, Upton, NY 11973 USA. EM rodrigez@bnl.gov NR 49 TC 186 Z9 188 U1 46 U2 231 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 26 PY 2005 VL 127 IS 42 BP 14871 EP 14878 DI 10.1021/ja0540019 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 977CV UT WOS:000232780900064 PM 16231942 ER PT J AU Rowsell, JLC Eckert, J Yaghi, OM AF Rowsell, JLC Eckert, J Yaghi, OM TI Characterization of H-2 binding sites in prototypical metal-organic frameworks by inelastic neutron scattering SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID HYDROGEN STORAGE; MOLECULAR-HYDROGEN; CARBON NANOTUBES; COORDINATION POLYMERS; POROUS MATERIAL; SINGLE-CRYSTAL; ADSORPTION; DYNAMICS; ZEOLITE; ROTATION AB The hindered rotor transitions of H-2 adsorbed in the chemically related and prototypical porous metal-organic frameworks IRMOF-1, IRMOF-8, IRMOF-11, and MOF-177 were studied by inelastic neutron scattering to gain information on the specifics of H-2 binding in this class of adsorbents. Remarkably sharp and complex spectra of these materials signify a diversity of well-defined binding sites. Similarities in the spectral features as a function of H-2 loading and correlations with recent crystallographic studies were used to assign transitions ranging in rotational barrier from <0.04 to 0.6 kcal/mol as corresponding to localized adsorption sites on the organic and inorganic components of these frameworks. We find that binding of H-2 at the inorganic cluster sites is affected by the nature of the organic link and is strongest in IRMOF-11 in accord with our adsorption isotherm data. The sites on the organic link have lower binding energies, but a much greater capacity for increases in H-2 loading, which demonstrates their importance for hydrogen uptake by these materials. C1 Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA. Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Eckert, J (reprint author), Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA. EM juergen@mrl.ucsb.edu; oyaghi@umich.edu OI Yaghi, Omar/0000-0002-5611-3325 NR 40 TC 217 Z9 217 U1 15 U2 98 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 26 PY 2005 VL 127 IS 42 BP 14904 EP 14910 DI 10.1021/ja0542690 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 977CV UT WOS:000232780900068 PM 16231946 ER PT J AU Kitamura, Y Sato, K Ikesawa, E Ikehara-Ohmori, K Kimura, G Kondo, H Ujiie, K Onishi, CT Kawabata, K Hashimoto, Y Mukoyoshi, H Masago, H AF Kitamura, Y Sato, K Ikesawa, E Ikehara-Ohmori, K Kimura, G Kondo, H Ujiie, K Onishi, CT Kawabata, K Hashimoto, Y Mukoyoshi, H Masago, H TI Melange and its seismogenic roof decollement: A plate boundary fault rock in the subduction zone - An example from the Shimanto Belt, Japan SO TECTONICS LA English DT Article ID OF-SEQUENCE THRUST; DEEP SEISMIC ZONE; ACCRETIONARY PRISM; SOUTHWEST JAPAN; OCEANIC-CRUST; SW JAPAN; VITRINITE REFLECTANCE; STRUCTURAL EVOLUTION; UNDERPLATING PROCESS; FLUID-INCLUSION AB The Mugi Melange located in western Shikoku of the Shimanto Belt shows systematic Y-P deformation fabrics formed by microshear and pressure solution that penetrate throughout the melange pile. Magnetic susceptibility ellipsoids obtained from the anisotropy of magnetic susceptibility (AMS) are highly oblate. Maximum and minimum axes of the ellipsoids are consistent with the shear orientation of the melange and the mean pole of P surfaces, respectively. This agreement suggests that the Mugi Melange was formed as a result of underthrusting of trench filling sediment. Vitrinite reflectance ranges from 2.52% to 3.08%, which corresponds to a maximum paleotemperature of similar to 180-200 degrees C. Pseudotachylyte, evidence of a seismogenic slip, was found in the upper boundary roof fault of the Mugi Melange. However, there is not a thermal gap between the melange and the overlying coherent piles, and the temperature from vitrinite reflectance gradually rises downward from the coherent piles to the melange beyond the boundary fault, which suggests that paleoisotherms parallel the boundary fault orientation. The isotherms in the seismogenic zone are estimated as subparallel to the plate boundary decollement. Therefore the setting of the cataclastic boundary fault, which includes pseudotachylyte, appears to be a major plate boundary thrust or a subhorizontal splay fault. A probable geologic setting that accounts for the Mugi Melange and the seismogenic roof fault is partitioning of the slip along the plate boundary fault in space and time: interseismic slip in the melange and seismic slip along the roof fault. C1 Univ Tokyo, Dept Earth & Planetary Sci, Bunkyo Ku, Tokyo 1130033, Japan. Kyoto Univ, Dept Geol & Mineral, Kyoto 6068502, Japan. Kochi Univ, Dept Nat Environm, Kochi 7808520, Japan. Japan Agcy Marine Earth Sci & Technol, Ctr Deep Earth Explorat, Kanazawa Ku, Yokohama, Kanagawa 2360001, Japan. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Japan Agcy Marine Earth Sci & Technol, Inst Res Earth Evolut, Kanazawa Ku, Yokohama, Kanagawa 2360001, Japan. RP Kitamura, Y (reprint author), Univ Tokyo, Dept Earth & Planetary Sci, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. EM yujin@eps.s.u-tokyo.ac.jp RI Kitamura, Yujin/G-4731-2011 OI Kitamura, Yujin/0000-0001-8839-1189 NR 86 TC 38 Z9 39 U1 1 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0278-7407 EI 1944-9194 J9 TECTONICS JI Tectonics PD OCT 26 PY 2005 VL 24 IS 5 AR TC5012 DI 10.1029/2004TC001635 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 981UD UT WOS:000233112600001 ER PT J AU Nixon, BT Yennawar, HP Doucleff, M Pelton, JG Wemmer, DE Krueger, S Kondrashkina, E AF Nixon, BT Yennawar, HP Doucleff, M Pelton, JG Wemmer, DE Krueger, S Kondrashkina, E TI SAS solution structures of the apo and Mg (2+)/BeF3--bound receiver domain of DctD, from Sinorhizobium meliloti SO BIOCHEMISTRY LA English DT Article ID RAY SOLUTION SCATTERING; SMALL-ANGLE SCATTERING; X-RAY; BIOLOGICAL MACROMOLECULES; RHIZOBIUM-LEGUMINOSARUM; CONFORMATIONAL-CHANGES; NEUTRON-SCATTERING; HIGH-RESOLUTION; DIMERIC STATES; SYSTEM AB Two-component signal transduction is the predominant information processing mechanism in prokaryotes and is also present in single-cell eukaryotes and higher plants. A phosphorylation-based switch is commonly used to activate as many as 40 different types of output domains in more than 6000 two-component response regulators that can be identified in the sequence databases. Previous biochemical and crystallographic studies showed that phosphorylation of the two-component receiver domain of DctD causes a switch between alternative dimeric forms, but it was unclear from the crystal lattice of the activated protein precisely which of four possible dimeric configurations is the biologically relevant one [Park, S., et al. (2002) FASEB J. 16, 1964-1966]. Here we report solution structures of the apo and activated DctD receiver domain derived from small angle scattering data. The apo dimer closely resembles that seen in the crystal structure, and the solution data for the activated protein eliminate two of the possible four dimeric conformations seen in the crystal lattice and strongly implicate one as the biologically relevant structure. These results corroborate the previously proposed model for how receiver domains regulate their downstream AAA+ ATPase domains. C1 Penn State Univ, Dept Biochem & Mol Biol, Frear Lab N 156, University Pk, PA 16802 USA. Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. IIT, BioCAT APS, Argonne Natl Lab, Argonne, IL 60439 USA. RP Nixon, BT (reprint author), Penn State Univ, Dept Biochem & Mol Biol, Frear Lab N 156, University Pk, PA 16802 USA. EM btn1@psu.edu RI ID, BioCAT/D-2459-2012 FU NCRR NIH HHS [RR-08630] NR 32 TC 10 Z9 11 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD OCT 25 PY 2005 VL 44 IS 42 BP 13962 EP 13969 DI 10.1021/bi051129u PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 979OK UT WOS:000232954500033 PM 16229485 ER PT J AU Krauss, RM Yang, HY Rieder, MJ Smith, JD Taylor, KD Williams, PT Wang, D Guo, XQ Simon, JA Hulley, S Waters, DD Saad, M Rotter, JI Nickerson, DA AF Krauss, RM Yang, HY Rieder, MJ Smith, JD Taylor, KD Williams, PT Wang, D Guo, XQ Simon, JA Hulley, S Waters, DD Saad, M Rotter, JI Nickerson, DA TI Haplotypes in the HMGCoA reductase gene influence plasma LDL level and LDL response to statin in African Americans and Caucasians SO CIRCULATION LA English DT Meeting Abstract CT 78th Annual Scientific Session of the American-Heart-Association CY NOV 13-16, 2005 CL Dallas, TX SP Amer Heart Assoc C1 Childrens Hosp, Oakland Res Inst, Oakland, CA 94609 USA. Cedars Sinai Med Ctr, Los Angeles, CA 90048 USA. Univ Washington, Seattle, WA 98195 USA. Lawrence Berkeley Natl Lab, Berkeley, CA USA. Univ Calif San Francisco, San Francisco, CA 94143 USA. San Francisco Gen Hosp, San Francisco, CA 94110 USA. Univ Calif Los Angeles, Los Angeles, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3261 USA SN 0009-7322 J9 CIRCULATION JI Circulation PD OCT 25 PY 2005 VL 112 IS 17 SU S MA 725 BP U187 EP U187 PG 1 WC Cardiac & Cardiovascular Systems; Peripheral Vascular Disease SC Cardiovascular System & Cardiology GA 979PD UT WOS:000232956400670 ER PT J AU Wigley, TML Ammann, CM Santer, BD Taylor, KE AF Wigley, TML Ammann, CM Santer, BD Taylor, KE TI Comment on "Climate forcing by the volcanic eruption of Mount Pinatubo'' by David H. Douglass and Robert S. Knox SO GEOPHYSICAL RESEARCH LETTERS LA English DT Editorial Material C1 Natl Ctr Atmospher Res, Boulder, CO 80307 USA. Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94550 USA. RP Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. EM wigley@cgd.ucar.edu RI Robock, Alan/B-6385-2016; Santer, Benjamin/F-9781-2011; Taylor, Karl/F-7290-2011; Wigley, Tom/B-4705-2008; OI Taylor, Karl/0000-0002-6491-2135; Robock, Alan/0000-0002-6319-5656 NR 12 TC 17 Z9 17 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 25 PY 2005 VL 32 IS 20 AR L20709 DI 10.1029/2005GL023312 PG 2 WC Geosciences, Multidisciplinary SC Geology GA 981RC UT WOS:000233104700002 ER PT J AU Hungria, AB Browning, ND Erni, RP Fernandez-Garcia, M Conesa, JC Perez-Omil, JA Martinez-Arias, A AF Hungria, AB Browning, ND Erni, RP Fernandez-Garcia, M Conesa, JC Perez-Omil, JA Martinez-Arias, A TI The effect of Ni in Pd-Ni/(Ce,Zr)O-x/Al2O3 catalysts used for stoichiometric CO and NO elimination. Part 1: Nanoscopic characterization of the catalysts SO JOURNAL OF CATALYSIS LA English DT Article DE Pd-Ni catalysts; CeO2-ZrO2; Al2O3; HREM; XEDS; STEM-EELS; Z-contrast images; FMR; XANES; XPS ID RAY PHOTOELECTRON-SPECTROSCOPY; 3-WAY CATALYSTS; ATOMIC-SCALE; BIMETALLIC CATALYSTS; MICROEMULSION METHOD; ALUMINATE SUPPORT; PHASE-TRANSITION; MIXED OXIDES; BEHAVIOR; ELECTRON AB Pd-Ni catalysts supported on Al2O3, (Ce,Zr)O-X/Al2O3, and (Ce.Zr)O-X are characterized at a nanoscopic level using mainly electron microscopy-related techniques (HREM images, XEDS, and Z-contrast images/EELS spectra done with TEM and STEM instruments). The presence of rather homogeneous Ce-Zr mixed oxide nanostructures is revealed from analysis of HREM pictures. Analysis of the Pd-Ni/(Ce,Zr)O-X/Al2O3 system shows the existence of preferential interactions of Pd and Ni with the (Ce,Zr)O-X and Al2O3 components, respectively, as evidenced mainly by XEDS and confirmed by FMR. Dispersion states of the metals and particle size distributions of palladium are inferred from analysis of Z-contrast images and EELS spectra. The results are complemented by XPS and XAFS results used to analyse the chemical state of the metallic components in the catalysts and their dispersion over the different supports. (c) 2005 Elsevier Inc. All rights reserved. C1 CSIC, Inst Catalisis & Petroleoquim, E-28049 Madrid, Spain. LBNL, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. Univ Calif Davis, Dept Chem Engn & Mat Sci, Berkeley, CA 94720 USA. Univ Cadiz, Fac Ciencias, Dpto Ciencia Mat & Ingn Met & Quim Inorgan, Cadiz 11510, Spain. RP Hungria, AB (reprint author), CSIC, Inst Catalisis & Petroleoquim, C Marie Curie 2,Campus Cantoblanco, E-28049 Madrid, Spain. EM abhungria@icp.csic.es; amartinez@icp.csic.es RI Conesa, Jose/H-6277-2011; Fernandez-Garcia, Marcos/A-8122-2014; Hungria, Ana/I-8739-2014; Erni, Rolf/P-7435-2014; OI Conesa, Jose/0000-0001-9906-8520; Hungria, Ana/0000-0002-4622-6967; Erni, Rolf/0000-0003-2391-5943; Browning, Nigel/0000-0003-0491-251X NR 39 TC 34 Z9 34 U1 3 U2 29 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD OCT 25 PY 2005 VL 235 IS 2 BP 251 EP 261 DI 10.1016/j.jcat.2005.08.011 PG 11 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 977PM UT WOS:000232815700001 ER PT J AU Pokrovski, KA Rhodes, MD Bell, AT AF Pokrovski, KA Rhodes, MD Bell, AT TI Effects of cerium incorporation into zirconia on the activity of Cu/ZrO2 for methanol synthesis via CO hydrogenation SO JOURNAL OF CATALYSIS LA English DT Article DE methanol synthesis; Cu; ZrO2; CO hydrogenation; Ce ID WATER-GAS SHIFT; TRANSFORM INFRARED-SPECTROSCOPY; OXYGEN STORAGE CAPACITY; CARBON-MONOXIDE; COPPER ZIRCONIA; SOLID-SOLUTION; PHASE-TRANSFORMATION; SYNTHESIS CATALYSTS; AEROGEL CATALYSTS; CEO2-ZRO2 SYSTEM AB The effects of Cc incorporation into ZrO2 on the catalytic performance of Cu/ZrO2 for the hydrogenation of CO were investigated. A Ce0.3Zr0.7O2 solid solution was synthesized by forced hydrolysis at low pH. After calcination at 873 K, X-ray diffraction and Raman spectroscopy characterization indicated that the Ce0.3Zr0.7O2 had a t(II) crystal structure. It was found that 1.2 wt% Cu/Ce0.3Zr0.7O2 exhibited H? The consumption peaks at low temperature (<473 K) during H-2-TPR, indicating that a significant fraction (similar to 70%) of Ce4+ is reduced to Ce3+ 1.2 wt% Cu/Ce0.3Zr0.7O2 is 2.7 times more active for methanol synthesis than 1.2 wt% Cu/m-ZrO2 at 3.0 MPa at temperatures between 473 and 523 K and exhibits a higher selectivity to methanol. In situ infrared spectroscopy shows that. analogous to Cu/m-ZrO2, the primary surface species on Cu/Ce0.3Zr0.7O2 during CO hydrogenation are formate and methoxide species. A shift in the band position of the bridged methoxide species indicated that some of these groups were bonded to both Zr4+ and Ce3+ cations. For both catalysts, the rate-limited step for methanol synthesis is the reductive elimination of methoxide species. The higher rate of methanol synthesis on Cu/Ce0.3Zr0.7O2 relative to Cu/m-ZrO2 was due primarily to a similar to 2.4 times higher apparent rate constant, k(app), for methoxide hydrogenation, which is attributed to the higher surface concentration of H atoms on the former catalyst. The increased capacity of the Ce-containing catalyst is attributed to interactions of H atoms with Ce-O pairs present at the surface of the oxide phase. (c) 2005 Elsevier Inc. All rights reserved. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Bell, AT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM bell@cchem.berkeley.edu OI Bell, Alexis/0000-0002-5738-4645 NR 70 TC 16 Z9 19 U1 4 U2 30 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD OCT 25 PY 2005 VL 235 IS 2 BP 368 EP 377 DI 10.1016/j.jcat.2005.09.002 PG 10 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 977PM UT WOS:000232815700013 ER PT J AU Nelson, M Cain, N Taylor, CE Ocko, BM Gin, DL Hammond, SR Schwartz, DK AF Nelson, M Cain, N Taylor, CE Ocko, BM Gin, DL Hammond, SR Schwartz, DK TI Periodic arrays of interfacial cylindrical reverse micelles SO LANGMUIR LA English DT Article ID ASSEMBLED MONOLAYER GROWTH; FILMS; DNA; ORGANIZATION; ACID; SURFACTANT; COMPLEXES; NETWORKS AB We report an approach for the fabrication of periodic molecular nanostructures on surfaces. The approach involves biomimetic self-organization of synthetic wedge-shaped amphiphilic molecules into multilayer arrays of cylindrical reverse micelles. The films were characterized by atomic force microscopy and X-ray reflectivity. These nanostructured films self-assemble in solution but remain stable upon removal and exposure to ambient conditions, making them potentially suitable for a variety of dry pattern transfer methods. We illustrate the generality of this approach by using two distinct molecular systems that vary in size by a factor of 2. C1 Univ Colorado, Boulder, CO 80309 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Schwartz, DK (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM daniel.schwartz@colorado.edu RI Schwartz, Daniel/H-5153-2012; OI GIN, DOUGLAS/0000-0002-6215-668X NR 35 TC 7 Z9 7 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD OCT 25 PY 2005 VL 21 IS 22 BP 9799 EP 9802 DI 10.1021/la050204z PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 976KG UT WOS:000232731700002 PM 16229494 ER PT J AU Shapiro, D Thibault, P Beetz, T Elser, V Howells, M Jacobsen, C Kirz, J Lima, E Miao, H Neiman, AM Sayre, D AF Shapiro, D Thibault, P Beetz, T Elser, V Howells, M Jacobsen, C Kirz, J Lima, E Miao, H Neiman, AM Sayre, D TI Biological imaging by soft x-ray diffraction microscopy SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE coherent x-ray diffraction imaging; x-ray microscopy ID TOMOGRAPHY; SPECIMENS; CRYSTALLOGRAPHY; INSTRUMENTATION; RECONSTRUCTION; RESOLUTION; RADIATION; CELLS AB We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffraction microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions. C1 SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Jacobsen, C (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. EM chris.jacobsen@stonybrook.edu RI Jacobsen, Chris/E-2827-2015; Thibault, Pierre/B-2656-2010 OI Jacobsen, Chris/0000-0001-8562-0353; NR 28 TC 328 Z9 333 U1 5 U2 45 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 25 PY 2005 VL 102 IS 43 BP 15343 EP 15346 DI 10.1073/pnas.0503305102 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 979GC UT WOS:000232929400015 PM 16219701 ER PT J AU Henkelman, G LaBute, MX Tung, CS Fenimore, PW McMahon, BH AF Henkelman, G LaBute, MX Tung, CS Fenimore, PW McMahon, BH TI Conformational dependence of a protein kinase phosphate transfer reaction SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE protein dynamics; quantum chemistry; reaction kinetics ID TOTAL-ENERGY CALCULATIONS; FINDING SADDLE-POINTS; ELASTIC BAND METHOD; WAVE BASIS-SET; STRUCTURAL BASIS; MOLECULAR-DYNAMICS; CATALYTIC SUBUNIT; CRYSTAL-STRUCTURE; LIGAND-BINDING; HEME-PROTEINS AB Atomic motions and energetics for a phosphate transfer reaction catalyzed by the cAMP-dependent protein kinase are calculated by plane-wave density functional theory, starting from structures of proteins crystallized in both the reactant conformation (RC) and the transition-state conformation (TC). In TC, we calculate that the reactants and products are nearly isoenergetic with a 20-kJ/mol barrier, whereas phosphate transfer is unfavorable by 120 kJ/mol in the RC, with an even higher barrier. With the protein in TC, the motions involved in reaction are small, with only P-gamma and the catalytic proton moving >0.5 angstrom. Examination of the structures reveals that in the RC the active site cleft is not completely closed and there is insufficient space for the phosphorylated serine residue in the product state. Together, these observations imply that the phosphate transfer reaction occurs rapidly and reversibly in a particular conformation of the protein, and that the reaction can be gated by changes of a few tenths of an angstrom in the catalytic site. C1 Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. Univ Texas, Dept Chem & Biochem, Univ Stn 1 A5300, Austin, TX 78712 USA. RP Los Alamos Natl Lab, Theoret Biol & Biophys Grp, MS-K710, Los Alamos, NM 87545 USA. EM mcmahon@lanl.gov RI Henkelman, Graeme/A-9301-2008 OI Henkelman, Graeme/0000-0002-0336-7153 NR 38 TC 20 Z9 20 U1 0 U2 4 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 25 PY 2005 VL 102 IS 43 BP 15347 EP 15351 DI 10.1073/pnas.0506425102 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 979GC UT WOS:000232929400016 PM 16227439 ER PT J AU Schoups, G Hopmans, JW Young, CA Vrugt, JA Wallender, WW Tanji, KK Panday, S AF Schoups, G Hopmans, JW Young, CA Vrugt, JA Wallender, WW Tanji, KK Panday, S TI Sustainability of irrigated agriculture in the San Joaquin Valley, California SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE regional hydrology; salinization; vadose zone ID ALLUVIAL AQUIFER SYSTEM; GROUNDWATER; MODEL; FLOW; SELENIUM; QUALITY; BORON AB The sustainability of irrigated agriculture in many arid and semiarid areas of the world is at risk because of a combination of several interrelated factors, including lack of fresh water, lack of drainage, the presence of high water tables, and salinization of soil and groundwater resources. Nowhere in the United States are these issues more apparent than in the San Joaquin Valley of California. A solid understanding of salinization processes at regional spatial and decadal time scales is required to evaluate the sustainability of irrigated agriculture. A hydro-salinity model was developed to integrate subsurface hydrology with reactive salt transport for a 1,400-kM(2) study area in the San Joaquin Valley. The model was used to reconstruct historical changes in salt storage by irrigated agriculture over the past 60 years. We show that patterns in soil and groundwater salinity were caused by spatial variations in soil hydrology, the change from local groundwater to snowmelt water as the main irrigation water supply, and by occasional droughts. Gypsum dissolution was a critical component of the regional salt balance. Although results show that the total salt input and output were about equal for the past 20 years, the model also predicts salinization of the deeper aquifers, thereby questioning the sustainability of irrigated agriculture. C1 Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. Hydrogeol Inc, Herndon, VA 20170 USA. RP Hopmans, JW (reprint author), Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. EM jwhopmans@ucdavis.edu RI Vrugt, Jasper/C-3660-2008; Schoups, Gerrit/F-8208-2014 NR 29 TC 96 Z9 106 U1 10 U2 101 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 25 PY 2005 VL 102 IS 43 BP 15352 EP 15356 DI 10.1073/pnas.0507723102 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 979GC UT WOS:000232929400017 PM 16230610 ER PT J AU Dove, PM Han, NZ De Yoreo, JJ AF Dove, PM Han, NZ De Yoreo, JJ TI Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE silica; kinetics; mineralization ID SOLUTION SATURATION STATE; ATOMIC-FORCE MICROSCOPY; PRECIPITATION KINETICS; FELDSPAR DISSOLUTION; SURFACE-MORPHOLOGY; CHEMICAL AFFINITY; WATER REACTIONS; ETCH PITS; PH 3; CRYSTALLIZATION AB The central control of mineral weathering rates on biogeochemical systems has motivated studies of dissolution for more than 50 years. A complete physical picture that explains widely observed variations in dissolution behavior is lacking, and some data show apparent serious inconsistencies that cannot be explained by the largely empirical kinetic "laws." Here, we show that mineral dissolution can, in fact, be understood through the same mechanistic theory of nucleation developed for mineral growth. In principle, this theory should describe dissolution but has never been tested. By generalizing nucleation rate equations to include dissolution, we arrive at a model that predicts how quartz dissolution processes change with undersaturation from step retreat, to defect-driven and homogeneous etch pit formation. This finding reveals that the "salt effect," recognized almost 100 years ago, arises from a crossover in dominant nucleation mechanism to greatly increase step density. The theory also explains the dissolution kinetics of major weathering aluminosilicates, kaolinite and K-feldspar. In doing so, it provides a sensible origin of discrepancies reported for the dependence of kaolinite dissolution and growth rates on saturation state by invoking a temperature-activated transition in the nucleation process. Although dissolution by nucleation processes was previously unknown for oxides or silicates, our mechanism-based findings are consistent with recent observations of dissolution (i.e., demineralization) in biological minerals. Nucleation theory may be the missing link to unifying mineral growth and dissolution into a mechanistic and quantitative framework across the continuum of driving force. C1 Virginia Polytech Inst & State Univ, Dept Geosci, Blacksburg, VA 24061 USA. Lawrence Livermore Natl Lab, Dept Chem & Mat Sci, Livermore, CA 94551 USA. RP Dove, PM (reprint author), Virginia Polytech Inst & State Univ, Dept Geosci, Blacksburg, VA 24061 USA. EM dove@vt.edu RI Dove, Patricia/A-7911-2010 NR 28 TC 126 Z9 128 U1 6 U2 68 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 25 PY 2005 VL 102 IS 43 BP 15357 EP 15362 DI 10.1073/pnas.0507777102 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 979GC UT WOS:000232929400018 PM 16230632 ER PT J AU Robins, H Press, WH AF Robins, H Press, WH TI Human microRNAs target a functionally distinct population of genes with AT-rich 3 ' UTRs SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE gene ontology; isochore; nucleotide content ID MESSENGER-RNAS; ISOCHORES; GENOME; SPECIFICITY; PREDICTIONS; VERTEBRATES; DATABASE; BODIES AB While investigating microRNA targets, we have found that human genes divide into two roughly equal populations, based on the fraction of A plus T bases in their 3' UTRs. Using the Gene Ontology database, we find significant functional differences between the two gene populations, with AT-rich genes implicated in transcription and translation processes, and GC-rich genes implicated in signal transduction and posttranslational protein modification. Better understanding of the background distribution of nucleotides in 3' UTRs may allow improved prediction of microRNA-targeted genes in humans. We predict at least 1,200 KnownGene transcripts to be regulated by microRNAs. The large majority of these microRNA targets are in the AT-rich 3' UTR population. However, notwithstanding this preference for AT-rich targets, microRNA targets are found preferentially to be regulatory genes themselves, including both transcription factors and posttranslational modifiers. These results suggest that some processes involving mRNA, of which microRNA regulation may be just one, require AT-richness of 3' UTRs for functionality. A relationship, not simply one-to-one, between these 3' UTR populations and large-scale genomic isochores is described. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Inst Adv Study, Princeton, NJ 08540 USA. RP Press, WH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM wpress@lanl.gov NR 21 TC 58 Z9 58 U1 0 U2 2 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 25 PY 2005 VL 102 IS 43 BP 15557 EP 15562 DI 10.1073/pnas.0507443102 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 979GC UT WOS:000232929400053 PM 16230613 ER PT J AU Gupta, P Jain, H Williams, DB Kalinin, SV Shin, J Jesse, S Baddorf, AP AF Gupta, P Jain, H Williams, DB Kalinin, SV Shin, J Jesse, S Baddorf, AP TI Observation of ferroelectricity in a confined crystallite using electron-backscattered diffraction and piezoresponse force microscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID GLASS-CERAMICS; 2ND-HARMONIC GENERATION; LABGEO5 AB LaBGeO5 is a model transparent ferroelectric glass-ceramic (TFGC) material, developed as an inexpensive alternative to single-crystal nonlinear optical materials. The optical activity of the TFGC originates from the ferroelectric phase which remains under a hydrostatic pressure exerted by the surrounding glass matrix. A combination of two techniques, electron-backscattered diffraction (EBSD) and piezoresponse force microscopy (PFM), is employed to monitor the development of the ferroelectric phase. A method is proposed to theoretically construct PFM amplitude maps from EBSD orientation maps. The theoretical vertical piezoresponse map is compared with the experimental piezoresponse map from PFM. A good correlation between the theoretical and experimental maps is observed. (C) 2005 American Institute of Physics. C1 Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA. Lehigh Univ, Ctr Opt Technol, Bethlehem, PA 18015 USA. Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN USA. RP Gupta, P (reprint author), Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA. EM h.jain@lehigh.edu; sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; Baddorf, Arthur/I-1308-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; Baddorf, Arthur/0000-0001-7023-2382 NR 18 TC 6 Z9 6 U1 2 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 24 PY 2005 VL 87 IS 17 AR 172903 DI 10.1063/1.2120919 PG 3 WC Physics, Applied SC Physics GA 976HK UT WOS:000232723700049 ER PT J AU Halliburton, LE Giles, NC Garces, NY Luo, M Xu, CC Bai, LH Boatner, LA AF Halliburton, LE Giles, NC Garces, NY Luo, M Xu, CC Bai, LH Boatner, LA TI Production of native donors in ZnO by annealing at high temperature in Zn vapor SO APPLIED PHYSICS LETTERS LA English DT Article ID SINGLE-CRYSTALS; OXYGEN VACANCIES; ZINC-OXIDE; PHOTOLUMINESCENCE; ABSORPTION; LUMINESCENCE; NANOWIRES; CENTERS; GROWTH; FILMS AB Zinc oxide crystals grown by the seeded chemical vapor transport method have been annealed in zinc vapor at 1100 degrees C for 30 min. These thermochemical reduction treatments produce a deep red coloration in the crystals and increase their n-type electrical conductivity. Electron paramagnetic resonance (EPR), optical absorption, and Hall measurements were used to monitor changes in the crystals. After an anneal, an intense optical absorption band is present that extends from the band edge out to approximately 550 nm, and the EPR signal near g=1.96 (due to shallow donors and/or conduction-band electrons), the free-carrier absorption, and the Hall electron concentration are all larger. Hydrogen was not present during these anneals, thus leaving oxygen vacancies and zinc interstitials as candidates for the added donors. Neutral oxygen vacancies are produced at high temperature by the additive-coloration mechanism, and are responsible for the broad near-edge absorption band. The observed increase in the number of free carriers is a result of either (1) the formation of zinc interstitials or (2) having the ground state of the neutral oxygen vacancy near the conduction band. (C) 2005 American Institute of Physics. C1 W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. RP Halliburton, LE (reprint author), W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. EM Larry.Halliburton@mail.wvu.edu RI Boatner, Lynn/I-6428-2013 OI Boatner, Lynn/0000-0002-0235-7594 NR 35 TC 105 Z9 112 U1 4 U2 45 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 24 PY 2005 VL 87 IS 17 AR 172108 DI 10.1063/1.2117630 PG 3 WC Physics, Applied SC Physics GA 976HK UT WOS:000232723700031 ER PT J AU Hu, YF Sutter, E Si, WD Li, Q AF Hu, YF Sutter, E Si, WD Li, Q TI Thermoelectric properties and microstructure of c-axis-oriented Ca3Co4O9 thin films on glass substrates SO APPLIED PHYSICS LETTERS LA English DT Article ID THERMAL-CONDUCTIVITY; CRYSTAL AB c-axis-oriented Ca3Co4O9 thin films have been grown directly on glass (fused silica) substrate by pulsed laser deposition. Detailed microstructure analysis showed stacking faults abundant throughout the films. However, the Seebeck coefficient (similar to 130 mu V/K) and resistivity (similar to 4.3 m Omega cm) of these films on glass substrate at room temperature were found comparable to those of the single-crystal samples. The presence of these structural defects could reduce thermal conductivity, and thus enhance the overall performance of cobaltate films to be potentially used in the thermoelectric devices. (C) 2005 American Institute of Physics. C1 Brookhaven Natl Lab, Dept Mat Sci, Upton, NY 11973 USA. Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Hu, YF (reprint author), Brookhaven Natl Lab, Dept Mat Sci, Upton, NY 11973 USA. EM qiangli@bnl.gov NR 15 TC 36 Z9 37 U1 3 U2 21 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 24 PY 2005 VL 87 IS 17 AR 171912 DI 10.1063/1.2117615 PG 3 WC Physics, Applied SC Physics GA 976HK UT WOS:000232723700020 ER PT J AU Menda, J Ulmen, B Vanga, LK Kayastha, VK Yap, YK Pan, ZW Ivanov, IN Puretzky, AA Geohegan, DB AF Menda, J Ulmen, B Vanga, LK Kayastha, VK Yap, YK Pan, ZW Ivanov, IN Puretzky, AA Geohegan, DB TI Structural control of vertically aligned multiwalled carbon nanotubes by radio-frequency plasmas SO APPLIED PHYSICS LETTERS LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; FIELD-EMISSION; ARRAYS AB Plasma-enhanced chemical vapor deposition is the only technique for growing individual vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) at desired locations. Inferior graphitic order has been a long-standing issue that has prevented realistic applications of these VA-MWCNTs. Previously, these VA-MWCNTs were grown by a one-plasma approach. Here, we demonstrate the capability of controlling graphitic order and diameters of VA-MWCNTs by decoupling the functions of the conventional single plasma into a dual-plasma configuration. Our results indicate that the ionic flux and kinetic energy of the growth species are important for improving graphitic order of VA-MWCMTs. (C) 2005 American Institute of Physics. C1 Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA. Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Yap, YK (reprint author), Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA. EM ykyap@mtu.edu RI ivanov, ilia/D-3402-2015; Puretzky, Alexander/B-5567-2016; Geohegan, David/D-3599-2013; OI ivanov, ilia/0000-0002-6726-2502; Puretzky, Alexander/0000-0002-9996-4429; Geohegan, David/0000-0003-0273-3139; Yap, Yoke Khin/0000-0002-1224-4120; Pan, Zhengwei/0000-0002-3854-958X NR 21 TC 13 Z9 13 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 24 PY 2005 VL 87 IS 17 AR 173106 DI 10.1063/1.2115068 PG 3 WC Physics, Applied SC Physics GA 976HK UT WOS:000232723700055 ER PT J AU Nweke, NI Toliver, P Runser, RJ McNown, SR Khurgin, JB Chapuran, TE Goodman, MS Hughes, RJ Peterson, CG McCabe, K Nordholt, JE Tyagi, K Hiskett, P Dallmann, N AF Nweke, NI Toliver, P Runser, RJ McNown, SR Khurgin, JB Chapuran, TE Goodman, MS Hughes, RJ Peterson, CG McCabe, K Nordholt, JE Tyagi, K Hiskett, P Dallmann, N TI Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels SO APPLIED PHYSICS LETTERS LA English DT Article ID KEY DISTRIBUTION AB Quantum key distribution (QKD) is a new technique for secure key distribution based on the laws of physics rather than mathematical or algorithmic computational complexity used by current systems. Understanding the compatibility of QKD at 1310 nm with the existing commercial optical networks bearing classical wavelength-division-multiplexed (WDM) channels at 1550 nm is important to advance the deployment of QKD systems in such networks. The minimum wavelength separation for multiplexing QKD and WDM channels on a shared fiber is experimentally determined for impairment-free QKD+WDM transmission. (C) 2005 American Institute of Physics. C1 Lab Telecommun Sci, Adelphi, MD 20783 USA. Telcordia Technol, Red Bank, NJ 07701 USA. Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Nweke, NI (reprint author), Lab Telecommun Sci, Adelphi, MD 20783 USA. EM nwekenna@yahoo.com RI khurgin, Jacob/A-3278-2010; McCabe, Kevin/H-3381-2013 NR 8 TC 14 Z9 16 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 24 PY 2005 VL 87 IS 17 AR 174103 DI 10.1063/1.2117616 PG 3 WC Physics, Applied SC Physics GA 976HK UT WOS:000232723700085 ER PT J AU Posadas, A Yau, JB Ahn, CH Han, J Gariglio, S Johnston, K Rabe, KM Neaton, JB AF Posadas, A Yau, JB Ahn, CH Han, J Gariglio, S Johnston, K Rabe, KM Neaton, JB TI Epitaxial growth of multiferroic YMnO3 on GaN SO APPLIED PHYSICS LETTERS LA English DT Article ID MOLECULAR-BEAM EPITAXY; SURFACES; FILMS AB In this work, we report on the epitaxial growth of multiferroic YMnO3 on GaN. Both materials are hexagonal with a nominal lattice mismatch of 4%, yet x-ray diffraction reveals an unexpected 30 degrees rotation between the unit cells of YMnO3 and GaN that results in a much larger lattice mismatch (10%) compared to the unrotated case. Estimates based on first principles calculations show that the bonding energy gained from the rotated atomic arrangement compensates for the increase in strain energy due to the larger lattice mismatch. Understanding the energy competition between chemical bonding energy and strain energy provides insight into the heteroepitaxial growth mechanisms of complex oxide-semiconductor systems. (C) 2005 American Institute of Physics. C1 Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA. Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA. Univ Geneva, Dept Phys Mat Condensee, CH-1211 Geneva, Switzerland. Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Mol Foundry, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Posadas, A (reprint author), Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA. EM charles.ahn@yale.edu RI Johnston, Karen/B-9153-2009; Neaton, Jeffrey/F-8578-2015 OI Johnston, Karen/0000-0002-5817-3479; Neaton, Jeffrey/0000-0001-7585-6135 NR 10 TC 49 Z9 58 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 24 PY 2005 VL 87 IS 17 AR 171915 DI 10.1063/1.2120903 PG 3 WC Physics, Applied SC Physics GA 976HK UT WOS:000232723700023 ER PT J AU Romero, MJ Jiang, CS Noufi, R Al-Jassim, M AF Romero, MJ Jiang, CS Noufi, R Al-Jassim, M TI Lateral electron transport in Cu(In,Ga)Se-2 investigated by electro-assisted scanning tunneling microscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID THIN-FILMS AB We investigate the lateral electron transport across grain boundaries in Cu(In,Ga)Se-2 (CIGS) by a combination of scanning tunneling microscopy (STM) with the excitation provided by the electron beam in electron microscopy-or electro-assisted STM. Using this method, we report evidence for a significant barrier for electron diffusion across grain boundaries in CuGaSe2 (CGS), which is not present in CuInSe2 (CIS). Finally, we discuss the effects of gallium addition. (C) 2005 American Institute of Physics. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Romero, MJ (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM manuel_romero@nrel.gov RI jiang, chun-sheng/F-7839-2012 NR 9 TC 21 Z9 21 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 24 PY 2005 VL 87 IS 17 AR 172106 DI 10.1063/1.2119422 PG 3 WC Physics, Applied SC Physics GA 976HK UT WOS:000232723700029 ER PT J AU Allen, BP Sharitz, RR Goebel, PC AF Allen, BP Sharitz, RR Goebel, PC TI Twelve years post-hurricane liana dynamics in an old-growth southeastern floodplain forest SO FOREST ECOLOGY AND MANAGEMENT LA English DT Article DE lianas; disturbance; old-growth bottomland hardwoods; Rhus radicans; Campsis radicans; Vitis spp ID BIOMASS; VINES; ANACARDIACEAE; DISTURBANCE; UNDERSTORY; COMMUNITY; ABUNDANCE; HISTORY; PANAMA; DAMAGE AB During the 12 years since Hurricane Hugo devastated portions of the old-growth floodplain forest of the Congaree National Park, liana communities have responded to the changes in forest structure. Liana communities were studied across hydrologic and disturbance gradients in eight 1-ha plots established during the winter and spring 1989-4990, and then re-sampled in 1994, 1998, and 2002. In heavily damaged bottomland hardwood forests, liana densities initially decreased when the host trees were severely damaged but exceeded pre-hurricane densities within 12 years. Stem densities of Rhus radicans, the most common liana, initially decreased by 55% in the heaviest damaged bottomland hardwood forests. In both low and high damaged hardwood forests, vine communities have experienced increasing recruitment rates and decreasing mortality rates in the 12 years since the hurricane. When compared with trees and shrubs, lianas appear to have higher stem mortality rates regardless of size in the Congaree floodplain forest. Liana diameter growth rates continue to reflect size- and species-specific differences, as well as colonization patterns and post-hurricane host damage. (c) 2005 Elsevier B.V. All rights reserved. C1 Ohio State Univ, Sch Nat Resources, Columbus, OH 43210 USA. Savannah River Ecol Lab, Aiken, SC 29802 USA. Ohio State Univ, Ohio Agr Res & Dev Ctr, Sch Nat Resources, Wooster, OH 44691 USA. RP Allen, BP (reprint author), Ohio State Univ, Sch Nat Resources, 2021 Coffey Rd, Columbus, OH 43210 USA. EM allen.851@osu.edu RI Goebel, Patrick/B-3657-2012 NR 37 TC 32 Z9 36 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-1127 J9 FOREST ECOL MANAG JI For. Ecol. Manage. PD OCT 24 PY 2005 VL 218 IS 1-3 BP 259 EP 269 DI 10.1016/j.foreco.2005.08.021 PG 11 WC Forestry SC Forestry GA 979VQ UT WOS:000232973500017 ER PT J AU Gill, RS Marquez, M Larsen, G AF Gill, RS Marquez, M Larsen, G TI Molecular imprinting of a cellulose/silica composite with caffeine and its characterization SO MICROPOROUS AND MESOPOROUS MATERIALS LA English DT Article DE silica; fiber; cellulose; filter; cellulose/silica composite ID FOOTPRINT CATALYSIS; SILICA; RECOGNITION; MEMBRANES; CAVITIES; POLYMERS; FIBERS AB A molecularly imprinted "paper" (MIP) based on molecular imprinting of caffeine on cellulose/silica composites was successfully produced. Several techniques such as diffuse reflectance infrared spectroscopy (DRIFTS), transmission Fourier transform infrared (FTIR) spectroscopy using demountable path length cell, liquid-phase adsorption rate measurements, scanning electron microscopy, and BET specific surface area tests were used to characterize these MIP composites. These materials not only show enhanced binding capabilities towards the template molecules (caffeine) in comparison to blank experiments, but also were found to discriminate between theophylline and caffeine with relatively good selectivity. A cellulose: silica ratio of 4:2 was found to be close to optimal. (c) 2005 Elsevier Inc. All rights reserved. C1 Univ Nebraska, Dept Chem Engn, Lincoln, NE 68588 USA. Kraft N Amer, Nanotek R&D, Glenview, IL 60025 USA. Los Alamos Natl Lab, Chem Sci & Technol Div, Los Alamos, NM 87545 USA. RP Larsen, G (reprint author), Univ Nebraska, Dept Chem Engn, 220 Othmer Hall, Lincoln, NE 68588 USA. EM rgill@engunx.unl.edu NR 33 TC 22 Z9 23 U1 3 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-1811 J9 MICROPOR MESOPOR MAT JI Microporous Mesoporous Mat. PD OCT 23 PY 2005 VL 85 IS 1-2 BP 129 EP 135 DI 10.1016/j.micromeso.2005.06.003 PG 7 WC Chemistry, Applied; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 975QM UT WOS:000232677000016 ER PT J AU Doucleff, M Chen, BY Maris, AE Wemmer, DE Kondrashkina, E Nixon, BT AF Doucleff, M Chen, BY Maris, AE Wemmer, DE Kondrashkina, E Nixon, BT TI Negative regulation of AAA+ ATPase assembly by two component receiver domains: A transcription activation mechanism that is conserved in mesophilic and extremely hyperthermophilic bacteria SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE NtrC1; sigma54; two component signal transduction; hyperther-mophile; gene regulation ID ENHANCER-BINDING PROTEIN; RHIZOBIUM-MELILOTI DCTD; PREDICTING COILED COILS; SINORHIZOBIUM-MELILOTI; CRYSTAL-STRUCTURE; ESCHERICHIA-COLI; B-LINKER; NTRC; PHOSPHORYLATION; SYSTEM AB Only a few transcriptional regulatory proteins have been characterized in extremely hyperthermophilic organisms, and most function as repressors. Structural features of the NtrC1 protein from the hyperthermophilic bacterium Aquifex aeolicus suggested that this protein functions similarly to the sigma(54)-polymerase activator DctD of Sinorhizobium meliloti. Here, we demonstrate that NtrC1 is an enzyme that hydrolyzes ATP to activate initiation of transcription by sigma(54)-holoenzyme. New structural data, including small-angle solution scattering data and the crystal structure of the phosphorylated receiver domain, show that NtrC1 uses a signal transduction mechanism very similar to that of DctD to control assembly of its AAA+ ATPase domain. As for DctD, the off-state of NtrC1 depends upon a tight dimer of the receiver domain to repress oligomerization of an intrinsically competent ATPase domain. Activation of NtrC1 stabilizes an alternative dimer configuration of the receiver domain that is very similar to the on-state dimers of the DctD and FixJ receiver domains. This alternative dimer appears to relieve repression of the ATPase domain by disrupting the off-state dimerization interface along the helical linker region between receiver and ATPase domains. Bacterial enhancer binding proteins typically have two linker sequences, one between N-terminal regulatory and central ATPase domains, and one between the central ATPase and C-terminal DNA binding domains. Sequence analyses reveal an intriguing correlation between the negative regulation mechanism of NtrC1 and DctD, and a structured N-terminal linker and unstructured C-terminal one; conversely, the very different, positive mechanism present in NtrC protein occurs in the context of an unstructured N-terminal linker and a structured C-terminal one. In both cases, the structured linkers significantly contribute to the stability of the off-state dimer conformation. These analyses also raise the possibility that a structured linker between N-terminal regulatory and central output domains is used frequently in regulatory proteins from hyperthermophilic organisms. (c) 2005 Elsevier Ltd. All rights reserved. C1 Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. IIT, BIOCAT, APS, Argonne Natl Lab, Argonne, IL 60439 USA. RP Nixon, BT (reprint author), Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA. EM btn1@psu.edu RI Chen, Baoyu/A-7072-2011; ID, BioCAT/D-2459-2012 OI Chen, Baoyu/0000-0002-6366-159X; FU NCRR NIH HHS [RR-08630]; NIGMS NIH HHS [GM-62163] NR 46 TC 42 Z9 43 U1 0 U2 3 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD OCT 21 PY 2005 VL 353 IS 2 BP 242 EP 255 DI 10.1016/j.jmb.2005.08.003 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 973EL UT WOS:000232505600004 PM 16169010 ER PT J AU Fretwurst, E Adey, J Al-Ajili, A Alfieri, G Allport, PP Artuso, M Assouak, S Avset, BS Barabashi, L Barcz, A Bates, R Biagi, SF Bilei, GM Bisello, D Blue, A Blumenau, A Boisvert, V Bolla, G Bondarenko, G Borchi, E Borrello, L Bortoletto, D Boscardin, M Bosisio, L Bowcock, TJV Brodbeck, TJ Broz, J Bruzzi, M Brzozowski, A Buda, M Buhmann, P Buttar, C Campabadal, F Campbell, D Candelori, A Casse, G Cavallini, A Charron, S Chilingarov, A Chren, D Cindro, V Collins, P Coluccia, R Contarato, D Coutinho, J Creanza, D Cunningham, L Dalla Betta, GF Dawson, I de Boer, W De Palma, M Demina, R Dervan, P Dittongo, S Dolezal, Z Dolgolenko, A Eberlein, T Eremin, V Fall, C Fasolo, F Ferbel, T Fizzotti, F Fleta, C Focardi, E Forton, E Garcia, C Garcia-Navarro, JE Gaubas, E Genest, MH Gill, KA Giolo, K Glaser, M Goessling, C Golovine, V Sevilla, SG Gorelov, I Goss, J Bates, AG Gregoire, G Gregori, P Grigoriev, E Grillo, AA Groza, A Guskov, J Haddad, L Harkonen, J Hauler, F Hoeferkamp, M Honniger, F Horazdovsky, T Horisberger, R Horn, M Houdayer, A Hourahine, B Hughes, G Ilyashenko, I Irmscher, K Ivanov, A Jarasiunas, K Johansen, KMH Jones, BK Jones, R Joram, C Jungermann, L Kalinina, E Kaminski, P Karpenko, A Karpov, A Kazlauskiene, V Kazukauskas, V Khivrich, V Khomenkov, V Kierstead, J Klaiber-Lodewigs, J Klingenberg, R Kodys, P Kohout, Z Korjenevski, S Koski, M Kozlowski, R Kozodaev, M Kramberger, G Krasel, O Kuznetsov, A Kwan, S Lagomarsino, S Lassila-Perini, K Lastovetsky, V Latino, G Lazanu, I Lazanu, S Lebedev, A Lebel, C Leinonen, K Leroy, C Li, Z Lindstrom, G Linhart, V Litovchenko, P Litovchenko, A Giudice, AL Lozano, M Luczynski, Z Luukka, P Macchiolo, A Makarenko, LF Mandic, I Manfredotti, C Manna, N Garcia, SM Marunko, S Mathieson, K Melone, J Menichelli, D Messineo, A Metcalfe, J Miglio, S Mikuz, M Miyamoto, J Moll, M Monakhov, E Moscatelli, F Naoumov, D Nossarzewska-Orlowska, E Nysten, J Olivero, P Oshea, V Palviainen, T Paolini, C Parkes, C Pesseri, D Pein, U Pellegrini, G Perera, L Petasecca, M Plemonte, C Pignatel, GU Pinho, N Pintilie, I Pintilie, L Polivtsev, L Polozov, P Popa, A Popule, J Pospisil, S Pozza, A Radicci, V Rafi, JM Rando, R Roeder, R Rohe, T Ronchin, S Rott, C Roy, A Ruzin, A Sadrozinski, HFW Sakalauskas, S Scaringella, M Schiavulli, L Schnetzer, S Schumm, B Sciortino, S Scorzoni, A Segneri, G Seidel, S Seiden, A Sellberg, G Sellin, P Sentenac, D Shipsey, I Sicho, P Sloan, T Solar, M Son, S Sopko, B Sopko, V Spencer, N Stahl, J Stolze, D Stone, R Storasta, J Strokan, N Sudzius, M Surma, B Suvorov, A Svensson, BG Tipton, P Tomasek, M Tsvetkov, A Tuominen, E Tuovinen, E Tuuva, T Tylchin, M Uebersee, H Uher, J Ullan, M Vaitkus, JV Velthuis, J Verbitskaya, E Vrba, V Wagner, G Wilhelm, I Worm, S Wright, V Wunstorf, R Yiuri, Y Zabierowski, P Zaluzhny, A Zavrtanik, M Zen, M Zhukov, V Zorzi, N AF Fretwurst, E Adey, J Al-Ajili, A Alfieri, G Allport, PP Artuso, M Assouak, S Avset, BS Barabashi, L Barcz, A Bates, R Biagi, SF Bilei, GM Bisello, D Blue, A Blumenau, A Boisvert, V Bolla, G Bondarenko, G Borchi, E Borrello, L Bortoletto, D Boscardin, M Bosisio, L Bowcock, TJV Brodbeck, TJ Broz, J Bruzzi, M Brzozowski, A Buda, M Buhmann, P Buttar, C Campabadal, F Campbell, D Candelori, A Casse, G Cavallini, A Charron, S Chilingarov, A Chren, D Cindro, V Collins, P Coluccia, R Contarato, D Coutinho, J Creanza, D Cunningham, L Dalla Betta, GF Dawson, I de Boer, W De Palma, M Demina, R Dervan, P Dittongo, S Dolezal, Z Dolgolenko, A Eberlein, T Eremin, V Fall, C Fasolo, F Ferbel, T Fizzotti, F Fleta, C Focardi, E Forton, E Garcia, C Garcia-Navarro, JE Gaubas, E Genest, MH Gill, KA Giolo, K Glaser, M Goessling, C Golovine, V Sevilla, SG Gorelov, I Goss, J Bates, AG Gregoire, G Gregori, P Grigoriev, E Grillo, AA Groza, A Guskov, J Haddad, L Harkonen, J Hauler, F Hoeferkamp, M Honniger, F Horazdovsky, T Horisberger, R Horn, M Houdayer, A Hourahine, B Hughes, G Ilyashenko, I Irmscher, K Ivanov, A Jarasiunas, K Johansen, KMH Jones, BK Jones, R Joram, C Jungermann, L Kalinina, E Kaminski, P Karpenko, A Karpov, A Kazlauskiene, V Kazukauskas, V Khivrich, V Khomenkov, V Kierstead, J Klaiber-Lodewigs, J Klingenberg, R Kodys, P Kohout, Z Korjenevski, S Koski, M Kozlowski, R Kozodaev, M Kramberger, G Krasel, O Kuznetsov, A Kwan, S Lagomarsino, S Lassila-Perini, K Lastovetsky, V Latino, G Lazanu, I Lazanu, S Lebedev, A Lebel, C Leinonen, K Leroy, C Li, Z Lindstrom, G Linhart, V Litovchenko, P Litovchenko, A Giudice, AL Lozano, M Luczynski, Z Luukka, P Macchiolo, A Makarenko, LF Mandic, I Manfredotti, C Manna, N Garcia, SM Marunko, S Mathieson, K Melone, J Menichelli, D Messineo, A Metcalfe, J Miglio, S Mikuz, M Miyamoto, J Moll, M Monakhov, E Moscatelli, F Naoumov, D Nossarzewska-Orlowska, E Nysten, J Olivero, P Oshea, V Palviainen, T Paolini, C Parkes, C Pesseri, D Pein, U Pellegrini, G Perera, L Petasecca, M Plemonte, C Pignatel, GU Pinho, N Pintilie, I Pintilie, L Polivtsev, L Polozov, P Popa, A Popule, J Pospisil, S Pozza, A Radicci, V Rafi, JM Rando, R Roeder, R Rohe, T Ronchin, S Rott, C Roy, A Ruzin, A Sadrozinski, HFW Sakalauskas, S Scaringella, M Schiavulli, L Schnetzer, S Schumm, B Sciortino, S Scorzoni, A Segneri, G Seidel, S Seiden, A Sellberg, G Sellin, P Sentenac, D Shipsey, I Sicho, P Sloan, T Solar, M Son, S Sopko, B Sopko, V Spencer, N Stahl, J Stolze, D Stone, R Storasta, J Strokan, N Sudzius, M Surma, B Suvorov, A Svensson, BG Tipton, P Tomasek, M Tsvetkov, A Tuominen, E Tuovinen, E Tuuva, T Tylchin, M Uebersee, H Uher, J Ullan, M Vaitkus, JV Velthuis, J Verbitskaya, E Vrba, V Wagner, G Wilhelm, I Worm, S Wright, V Wunstorf, R Yiuri, Y Zabierowski, P Zaluzhny, A Zavrtanik, M Zen, M Zhukov, V Zorzi, N TI Recent advancements in the development of radiation hard semiconductor detectors for S-LHC SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 5th International Conference on Radiation Effects on Semiconductor Materials, Detectors and Devices CY OCT 10-13, 2004 CL Florence, ITALY SP Univ Florence, Ist Nazl Fis Nucl DE radiation damage; serniconductor detectors; defect engineering; super-LHC ID DIFFERENT SILICON MATERIALS; OXYGEN-ENRICHED SILICON; RD48 ROSE COLLABORATION; FLOAT-ZONE SILICON; ELECTRON-IRRADIATION; CZOCHRALSKI SILICON; GAMMA; DAMAGE; STANDARD; HYDROGEN AB The proposed luminosity upgrade of the Large Hadron Collider (S-LHC) at CERN will demand the innermost layers of the vertex detectors to sustain fluences of about 10(16) hadrons/cm(2). Due to the high multiplicity of tracks, the required spatial resolution and the extremely harsh radiation field new detector concepts and semiconductor materials have to be explored for a possible solution of this challenge. The CERN RD50 collaboration "Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders" has started in 2002 an R&D program for the development of detector technologies that will fulfill the requirements of the S-LHC. Different strategies are followed by RD50 to improve the radiation tolerance. These include the development of defect engineered silicon like Czochralski, epitaxial and oxygen-enriched silicon and of other semiconductor materials like SiC and GaN as well as extensive studies of the microscopic defects responsible for the degradation of irradiated sensors. Further, with 3D, Semi-3D and thin devices new detector concepts have been evaluated. These and other recent advancements of the RD50 collaboration are presented and discussed. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Hamburg, Inst Phys Expt, Hamburg, Germany. Univ Exeter, Dept Phys, Exeter EX4 4QL, Devon, England. Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. Univ Oslo, Phys Dept Phys Elect, N-0316 Oslo, Norway. Univ Liverpool, Dept Phys, Liverpool L69 3BX, Merseyside, England. Syracuse Univ, Expt Particle Phys Grp, Syracuse, NY USA. Catholic Univ Louvain, Inst Phys Nucl, B-3000 Louvain, Belgium. SINTEF ICT, N-0314 Oslo, Norway. Ukrainian Acad Sci, Nucl Res Inst, UA-252601 Kiev, Ukraine. Ukrainian Acad Sci, Dept Radiat Phys, UA-252601 Kiev, Ukraine. PAS, Inst Phys, Warsaw, Poland. Inst Electr Mat Technol, Warsaw, Poland. Univ Perugia, I-06100 Perugia, Italy. Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. Univ Rochester, Rochester, NY 14627 USA. Purdue Univ, W Lafayette, IN 47907 USA. State Sci Ctr Russian Federat, Inst Theoret & Expt Phys, Moscow, Russia. Univ Florence, Ist Nazl Fis Nucl, Dept Energet, I-50121 Florence, Italy. Univ Pisa, I-56100 Pisa, Italy. Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. ITC, IRST, Microsyst Div, Trento, Italy. Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. Univ Trieste, I-34127 Trieste, Italy. Univ Lancaster, Dept Phys, Lancaster LA1 4YW, England. Charles Univ Prague, Prague, Czech Republic. Inst Elect Mat Technol, Warsaw, Poland. Natl Inst Mat Phys, Bucharest, Romania. CSIC, CNM, IMB, Ctr Nacl Microelect, Bologna, Italy. Univ Bologna, Dept Phys, I-40126 Bologna, Italy. Univ Montreal, Grp Phys Particules, Montreal, PQ H3C 3J7, Canada. Czech Tech Univ, CR-16635 Prague, Czech Republic. Univ Ljubljana, Jozef Stefan Inst, Ljubljana, Slovenia. Univ Ljubljana, Dept Phys, Ljubljana, Slovenia. CERN, CH-1211 Geneva, Switzerland. Dipartimento Interateneo Fis, Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. Univ Karlsruhe, Inst Expt Kernphys, D-7500 Karlsruhe, Germany. Russian Acad Sci, Ioffe Phisicotech Inst, St Petersburg, Russia. Univ Turin, Expt Phys Dept, I-10124 Turin, Italy. IFIC Valencia, Valencia 46071, Spain. Vilnius State Univ, Inst Mat Sci & Appl Res, Vilnius, Lithuania. Univ Dortmund, Lehrstuhl Expt Phys 4, Dortmund, Germany. Univ New Mexico, Albuquerque, NM 87131 USA. Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. Tel Aviv Univ, IL-69978 Tel Aviv, Israel. Helsinki Inst Phys, Helsinki, Finland. Paul Scherrer Inst, Lab Particle Phys, Villigen, Switzerland. Inst Kristallzuchtung, Berlin, Germany. Brookhaven Natl Lab, Upton, NY 11973 USA. Lappeenranta Univ Technol, Dept Elect Engn, Lappeenranta, Finland. Univ Bucharest, Fac Phys, Bucharest, Romania. Belarusian State Univ, Minsk 220050, Byelarus. Rutgers State Univ, Piscataway, NJ USA. Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. CIS Inst Mikrosensor GGMBH, Erfurt, Germany. Univ Surrey, Dept Phys, Guildford GU2 5XH, Surrey, England. RP Univ Hamburg, Inst Phys Expt, Martinistr 52, Hamburg, Germany. EM eckhart.fretwurst@desy.de RI Zavrtanik, Marko/A-1524-2008; Monakhov, Eduard/C-8716-2009; Coutinho, Jose/A-7251-2010; Pintilie, Ioana/C-4545-2011; Buttar, Craig/D-3706-2011; Mathieson, Keith/G-6308-2011; Lazanu, Sorina/B-7819-2012; Olivero, Paolo/J-2953-2012; Lo Giudice, Alessandro/J-4567-2012; Irmscher, Klaus/I-1490-2013; Rafi, Joan Marc/D-5500-2012; Dalla Betta, Gian-Franco/I-1783-2012; Focardi, Ettore/E-7376-2012; Khomenkov, Volodymyr (Vladimir)/I-5957-2013; Dawson, Ian/K-6090-2013; Grigoriev, Eugene/K-6650-2013; Marti-Garcia, Salvador/F-3085-2011; Rando, Riccardo/M-7179-2013; O'Shea, Val/G-1279-2010; Petasecca, Marco/C-6436-2014; Verbitskaya, Elena/D-1521-2014; Fleta, Celeste/D-7303-2014; Pellegrini, Giulio/F-4921-2011; Campabadal, Francesca/E-6651-2014; Ivanov, Alexander/E-3993-2014; Boscardin, Maurizio/A-4420-2014; Zorzi, Nicola/M-3141-2014; Moscatelli, Francesco/N-6333-2014; Garcia, Jose /H-6339-2015; Pintilie, Lucian/D-9475-2011; Bruzzi, Mara/K-1326-2015; Gorelov, Igor/J-9010-2015; Ullan, Miguel/P-7392-2015; Lozano, Manuel/C-3445-2011; Blue, Andrew/C-9882-2016; Ruzin, Arie/P-9445-2016; Makarenko, Leonid/Q-7662-2016; Tuominen, Eija/A-5288-2017; OI Hourahine, Benjamin/0000-0002-7667-7101; Zavrtanik, Marko/0000-0001-5606-6912; Mathieson, Keith/0000-0002-9517-8076; Lazanu, Sorina/0000-0003-0390-0779; Olivero, Paolo/0000-0002-7512-6295; Lo Giudice, Alessandro/0000-0003-4753-3165; Rafi, Joan Marc/0000-0003-4581-9477; Dalla Betta, Gian-Franco/0000-0001-5516-9282; Focardi, Ettore/0000-0002-3763-5267; Grigoriev, Eugene/0000-0001-7235-9715; O'Shea, Val/0000-0001-7183-1205; Fleta, Celeste/0000-0002-6591-6744; Pellegrini, Giulio/0000-0002-1606-3546; Campabadal, Francesca/0000-0001-7758-4567; Zorzi, Nicola/0000-0002-6650-3925; Moscatelli, Francesco/0000-0002-7676-3106; Pintilie, Lucian/0000-0002-4934-2912; Bruzzi, Mara/0000-0001-7344-8365; Gorelov, Igor/0000-0001-5570-0133; Lozano, Manuel/0000-0001-5826-5544; Blue, Andrew/0000-0002-7716-5626; Tuominen, Eija/0000-0002-7073-7767; Rott, Carsten/0000-0002-6958-6033; Passeri, Daniele/0000-0001-5322-2414; Petasecca, Marco/0000-0001-5958-7457; Lagomarsino, Stefano/0000-0002-1306-560X; Latino, Giuseppe/0000-0002-4098-3502; Coutinho, Jose/0000-0003-0280-366X; SCHIAVULLI, Luigi/0000-0003-0871-3585; Scorzoni, Andrea/0000-0003-4368-5233; Sciortino, Silvio/0000-0003-0570-7489; Luukka, Panja/0000-0003-2340-4641 NR 48 TC 24 Z9 24 U1 2 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2005 VL 552 IS 1-2 BP 7 EP 19 DI 10.1016/j.nima.2005.05.039 PG 13 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 978IU UT WOS:000232867600003 ER PT J AU Li, Z Bruzzi, M Eremin, V Harkonen, J Kierstead, J Luukka, P Menichelli, D Tuominen, D Tuovinen, E Verbitskaya, E AF Li, Z Bruzzi, M Eremin, V Harkonen, J Kierstead, J Luukka, P Menichelli, D Tuominen, D Tuovinen, E Verbitskaya, E TI Gamma radiation induced space charge sign inversion and re-inversion in p-type MCZ Si detectors and in proton-irradiated n-type MCZ Si detectors SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 5th International Conference on Radiation Effects on Semiconductor Materials, Detectors and Devices CY OCT 10-13, 2004 CL Florence, ITALY SP Univ Florence, Ist Nazl Fis Nucl DE Si detectors; MCZ Si; gamma radiation; radiation hardness; space charge sign inversion/re-inversion; material engineering ID SILICON DETECTORS; MICROSTRIP DETECTORS; JUNCTION DETECTORS; DAMAGE; EFF AB Positive space charge build-up was observed in proton-and neutron-irradiated high-resistivity magnetic Czochralski (MCZ) n-type Si detectors after gamma radiation. Space charge sign re-inversion (SCSRI) from negative to positive was achieved at the high dose of 454 Mrad in a low-fluence proton irradiated MCZ Si detector. No SCSRI has been observed yet for low-fluence neutron-irradiated MCZ Si detectors at the highest dose in this study (662 Mrad), but positive space charge is building up, and SCSRI is expected at higher doses. Up to the highest dose in this study, the double junction or double peak electric field distribution is still preserved even after SCSRI. No SCSRI was observed in control FZ Si detectors. Space charge sign inversion was also observed in high-resistivity as-processed MCZ p-type Si detectors after gamma radiation. (c) 2005 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. Univ Florence, I-50121 Florence, Italy. AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland. RP Li, Z (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM zhengl@bnl.gov RI Verbitskaya, Elena/D-1521-2014; Bruzzi, Mara/K-1326-2015; OI Bruzzi, Mara/0000-0001-7344-8365; Tuominen, Eija/0000-0002-7073-7767; Luukka, Panja/0000-0003-2340-4641 NR 19 TC 5 Z9 5 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2005 VL 552 IS 1-2 BP 34 EP 42 DI 10.1016/j.nima.2005.06.003 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 978IU UT WOS:000232867600006 ER PT J AU Harkonen, J Tuovinen, E Luukka, P Kauppinen, L Li, Z Moll, M Bates, A Kaska, K AF Harkonen, J Tuovinen, E Luukka, P Kauppinen, L Li, Z Moll, M Bates, A Kaska, K TI Proton irradiation results of p(+)/n(-)/n(+) Cz-Si detectors processed on p-type boron-doped substrates with thermal donor-induced space charge sign inversion SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 5th International Conference on Radiation Effects on Semiconductor Materials, Detectors and Devices CY OCT 10-13, 2004 CL Florence, ITALY SP Univ Florence, Ist Nazl Fis Nucl DE Si particle detectors; radiation hardness; material engineering ID CZOCHRALSKI-GROWN SILICON; BULK STACKING-FAULTS; HEAT-TREATED SILICON; KINETICS AB When processing boron-doped p-type high-resistivity Czochralski Silicon (Cz-Si), the Thermal Donor (TD) generation process can be utilized in order to produce p(+)/n(-)/n(+) detectors. The last thermal process step, i.e. the sintering of aluminum, is intentionally carried out at the temperature where TDs are created. Due to the generated donors the p-type bulk will eventually be compensated to n-type bulk. With this method it is possible, with low costs and with a process of low thermal budget, to fabricate detectors with high oxygen concentration. Moreover, the full depletion voltage of detectors could be tailored between a wide range from 30 V LIP to almost 1000 V by changing heat treatment duration at 400-450 degrees C from 20 to 80 min. The Space Charge Sign Inversion (SCSI) in the TD generated devices has been verified by the Transient Current Technique (TCT). The results of 24GeV/c proton irradiation to fluences up to 5 x 10(14) p/cm(2) show a very small increase of full depletion voltage. (c) 2005 Elsevier B.V. All rights reserved. C1 CERN, PH, Helsinki Inst Phys, CH-1211 Geneva, Switzerland. Brookhaven Natl Lab, Upton, NY 11973 USA. CERN, PH Dept, CH-1211 Geneva, Switzerland. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Vienna Tech Univ, A-1040 Vienna, Austria. RP Harkonen, J (reprint author), CERN, PH, Helsinki Inst Phys, CH-1211 Geneva, Switzerland. EM jaakko.haerkoenen@cern.ch OI Luukka, Panja/0000-0003-2340-4641 NR 23 TC 24 Z9 24 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2005 VL 552 IS 1-2 BP 43 EP 48 DI 10.1016/j.nima.2005.06.004 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 978IU UT WOS:000232867600007 ER PT J AU Gaubas, E Bauza, M Vaitkus, J Li, Z Harkonen, J Fretwurst, E AF Gaubas, E Bauza, M Vaitkus, J Li, Z Harkonen, J Fretwurst, E TI Study of carrier recombination and trapping processes in gamma-ray- and proton-irradiated silicon SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 5th International Conference on Radiation Effects on Semiconductor Materials, Detectors and Devices CY OCT 10-13, 2004 CL Florence, ITALY SP Univ Florence, Ist Nazl Fis Nucl DE silicon; microwave absorption; carrier lifetime; recombination; trapping; radiation defect ID DETECTORS; OXYGEN AB Carrier lifetime variations dependent on proton irradiation at fluences in the range from 5 x 10(12) to 10(15) cm(-2) and gamma-ray doses ranging from 50 to 400 Mrad were investigated in high-resistivity oxygenated silicon wafers and pad detectors. Fast recombination and slow trapping constituents within recombination transients have been distinguished by combining analyses of excess carrier decays dependent on excitation intensity and temperature, measured using the technique of microwave absorption by free carriers. Difference in defect formation rate and type of defects in the ranges of moderate and highest proton irradiation fluences as well as between gamma-ray- and proton-irradiated material have been revealed from the inverse lifetime dependence on irradiation fluence and on temperature. The activation factors of the capture centers have been evaluated from carrier lifetime variations in the range of low and elevated temperatures. (c) 2005 Elsevier B.V. All rights reserved. C1 Vilnius State Univ, Inst Mat Sci & Appl Res, Vilnius, Lithuania. Brookhaven Natl Lab, Upton, NY 11973 USA. Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland. Univ Hamburg, Inst Expt Phys, Hamburg, Germany. RP Vilnius State Univ, Inst Mat Sci & Appl Res, Vilnius, Lithuania. EM eugenijus.gaubas@ff.vu.lt NR 12 TC 1 Z9 1 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2005 VL 552 IS 1-2 BP 66 EP 70 DI 10.1016/j.nima.2005.06.008 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 978IU UT WOS:000232867600011 ER PT J AU Roy, A Bolla, G Bortoletto, D Li, Z AF Roy, A Bolla, G Bortoletto, D Li, Z TI Semi-3D silicon detector and initial results of its performance SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 5th International Conference on Radiation Effects on Semiconductor Materials, Detectors and Devices CY OCT 10-13, 2004 CL Florence, ITALY SP Univ Florence, Ist Nazl Fis Nucl DE semiconductor sensors; semi-3D sensors; radiation hardness AB A novel p(+)-n(+)/n/n(+) semi-3D structure configuration has been developed and it is expected to improve the radiation hardness of silicon sensors after space charge sign inversion (SCSI). A special configuration of serni-3D sensors facilitates depletion from both sides of the sensors after SCSI and reduces the depletion voltage by half or more. The reduction of depletion voltage will increase the ability of silicon detectors to operate in the presence of severe bulk radiation damage expected at high-intensity colliders. Semi-3D sensors can be manufactured using only single-sided, conventional planar processing. Electrical characterization of semi-3D test structures through I- V and C- V curves before and after irradiation is presented here. (c) 2005 Elsevier B.V. All rights reserved. C1 Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Roy, A (reprint author), Purdue Univ, Dept Phys, 525 NW Ave, W Lafayette, IN 47907 USA. EM amitroy@physics.purdue.edu NR 5 TC 4 Z9 5 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2005 VL 552 IS 1-2 BP 112 EP 117 DI 10.1016/j.nima.2005.06.016 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 978IU UT WOS:000232867600019 ER PT J AU Re, V Kirkby, D Bruinsma, M Curry, S Berryhill, J Burke, S Callahan, D Campagnari, C Dahmes, B Hale, D Hart, P Kyre, S Levy, S Long, O Mazur, M Richman, J Stoner, J Verkerke, W Beek, T Eisner, AM Kroseberg, J Lockman, WS Nesom, G Seiden, A Spradlin, P Walkowiak, W Wilson, M Bozzi, C Cibinetto, G Piemontese, L Snoek, HL Brown, D Charles, E Dardin, S Goozen, F Kerth, LT Gritsan, A Lynch, G Roe, NA Chen, C Houlsbergen, W Lae, CK Lillard, V Roberts, D Lazzaro, A Palombo, F Ratti, L Manfredi, F Mandelli, E Angelini, C Batignani, G Bettarini, S Bondioli, M Bosi, F Bucci, F Calderini, G Carpinelli, M Ceccanti, M Forti, F Giorgi, MA Lusiani, A Mammini, P Marchiori, G Morganti, M Morsani, F Neri, N Paoloni, E Profeti, A Rama, M Rizzo, G Simi, G Walsh, J Elmer, P Perazzo, A Burchat, P Edwards, AJ Majewski, S Petersen, BA Roat, C Bona, M Bianchi, F Gamba, D Trapani, P Bosislo, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Datta, M Mihalyi, A AF Re, V Kirkby, D Bruinsma, M Curry, S Berryhill, J Burke, S Callahan, D Campagnari, C Dahmes, B Hale, D Hart, P Kyre, S Levy, S Long, O Mazur, M Richman, J Stoner, J Verkerke, W Beek, T Eisner, AM Kroseberg, J Lockman, WS Nesom, G Seiden, A Spradlin, P Walkowiak, W Wilson, M Bozzi, C Cibinetto, G Piemontese, L Snoek, HL Brown, D Charles, E Dardin, S Goozen, F Kerth, LT Gritsan, A Lynch, G Roe, NA Chen, C Houlsbergen, W Lae, CK Lillard, V Roberts, D Lazzaro, A Palombo, F Ratti, L Manfredi, F Mandelli, E Angelini, C Batignani, G Bettarini, S Bondioli, M Bosi, F Bucci, F Calderini, G Carpinelli, M Ceccanti, M Forti, F Giorgi, MA Lusiani, A Mammini, P Marchiori, G Morganti, M Morsani, F Neri, N Paoloni, E Profeti, A Rama, M Rizzo, G Simi, G Walsh, J Elmer, P Perazzo, A Burchat, P Edwards, AJ Majewski, S Petersen, BA Roat, C Bona, M Bianchi, F Gamba, D Trapani, P Bosislo, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Datta, M Mihalyi, A TI What can be learned from the BABAR silicon vertex tracker running experience SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 5th International Conference on Radiation Effects on Semiconductor Materials, Detectors and Devices CY OCT 10-13, 2004 CL Florence, ITALY SP Univ Florence, Ist Nazl Fis Nucl DE silicon detectors; strip detectors; tracking; radiation damage ID DESIGN AB The Silicon Vertex Tracker (SVT) of the BABAR experiment at SLAC is a crucial tool to measure with precision the decay position of B mesons produced in the PEP-II electron-positron collisions. It is structured in five layers made of double-sided, AC coupled silicon microstrip sensors. In this paper, a review of some of the technical solutions chosen in the detector design phase is presented. In particular, we focus here on those elements which turned out to be sources of problems during the installation and the first few years of operation; the solutions adopted to solve the problems are presented together with recommendations and proposals for alternate future designs. (c) 2005 Elsevier B.V. All rights reserved. C1 INFN, Pisa, Italy. Univ Pisa, Pisa, Italy. INFN, Pavia, Italy. Univ Bergamo, Bergamo, Italy. Univ Calif Irvine, Irvine, CA USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. INFN, Ferrara, Italy. Univ Ferrara, I-44100 Ferrara, Italy. NIKHEF, Amsterdam, Netherlands. Lawrence Berkeley Lab, Berkeley, CA USA. Univ Maryland, College Pk, MD 20742 USA. INFN, Milan, Italy. Univ Milan, I-20122 Milan, Italy. Princeton Univ, Princeton, NJ 08544 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. INFN, Turin, Italy. Univ Turin, Turin, Italy. INFN, Trieste, Italy. Univ Trieste, Trieste, Italy. Univ Wisconsin, Madison, WI USA. RP INFN, Pisa, Italy. EM calderin@slac.stanford.edu RI Della Ricca, Giuseppe/B-6826-2013; Roe, Natalie/A-8798-2012; Lusiani, Alberto/A-3329-2016; Lusiani, Alberto/N-2976-2015; Rizzo, Giuliana/A-8516-2015; Forti, Francesco/H-3035-2011; Ratti, Lodovico/I-8836-2012; Grancagnolo, Sergio/J-3957-2015 OI RATTI, LODOVICO/0000-0003-1906-1076; Paoloni, Eugenio/0000-0001-5969-8712; Lanceri, Livio/0000-0001-8220-3095; Carpinelli, Massimo/0000-0002-8205-930X; Re, Valerio/0000-0003-0697-3420; Della Ricca, Giuseppe/0000-0003-2831-6982; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Kirkby, David/0000-0002-8828-5463; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; Rizzo, Giuliana/0000-0003-1788-2866; Forti, Francesco/0000-0001-6535-7965; Grancagnolo, Sergio/0000-0001-8490-8304 NR 5 TC 0 Z9 0 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2005 VL 552 IS 1-2 BP 224 EP 231 DI 10.1016/j.nima.2005.06.071 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 978IU UT WOS:000232867600038 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Arnoud, Y Askew, A Asman, B Assis Jesus, ACS Atramentov, O Autermann, C Avila, C Badaud, F Baden, A Bagby, L Baldin, B Balm, PW Banerjee, P Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Beauceron, S Begalli, M Begel, M Bellavance, A Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borcherding, F Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Cho, DK Choi, S Choudhary, B Christiansen, T Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cothenet, A Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D da Motta, H Das, M Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E De Oliveira Martins, C Dean, S Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dong, H Doulas, S Dudko, LV Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Eroshin, OV Estrada, J Evans, H Evdokimov, A Evdokimov, VN Fast, J Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Genser, K Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golling, T Gollub, N Gomez, B Gounder, K Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Gris, P Grivaz, JF Groer, L Grunendahl, S Grunewald, MW Gurzhiev, SN Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Hagopian, S Hall, I Hall, RE Han, C Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Huang, J Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jain, V Jakobs, K Jenkins, A Jesik, R Johns, K Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, J Karmanov, D Kasper, J Kau, D Kaur, R Kehoe, R Kermiche, S Kesisoglou, S Khanov, A Kharchilava, A Kharzheev, YM Kim, H Kim, TJ Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Kryemadhi, A Krzywdzinski, S Kulik, Y Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lager, S Lahrichi, N Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Leonidopoulos, C Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linn, SL Linnemann, J Lipaev, VV Lipton, R Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lueking, L Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK Mayorov, AA McCarthy, R McCroskey, R Meder, D Melnitchouk, A Mendes, A Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Mitrevski, J Molina, J Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mundim, L Mutaf, YD Nagy, E Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T Nurse, E O'Dell, V O'Neil, DC Oguri, V Oliveira, N Oshima, N Garzon, GJO Padley, P Parashar, N Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Petroff, P Petteni, M Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG Prado da Silva, WL Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rani, KJ Ranjan, K Rapidis, PA Ratoff, PN Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Smolek, K Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stanton, NR Stark, J Steele, J Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Titov, M Tomoto, M Toole, T Torborg, J Towers, S Trefzger, T Trincaz-Duvoid, S Tsybychev, D Tuchming, B Tully, C Turcot, AS Tuts, PM Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vlimant, J-R Von Toerne, E Vreeswijk, M Anh, VT Wahl, HD Wang, L Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wermes, N Wetstein, M White, A White, V Wicke, D Wijngaarden, DA Wilson, GW Wimpenny, SJ Wittlin, J Wobisch, M Womersley, J Wood, DR Wyatt, TR Xu, Q Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yen, Y Yip, K Yoo, HD Youn, SW Yu, J Yurkewicz, A Zabi, A Zatserklyaniy, A Zdrazil, M Zeitnitz, C Zhang, D Zhang, X Zhao, T Zhao, Z Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zitoun, R Zutshi, V Zverev, EG AF Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Arnoud, Y Askew, A Asman, B Assis Jesus, ACS Atramentov, O Autermann, C Avila, C Badaud, F Baden, A Bagby, L Baldin, B Balm, PW Banerjee, P Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Beauceron, S Begalli, M Begel, M Bellavance, A Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borcherding, F Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Cho, DK Choi, S Choudhary, B Christiansen, T Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cothenet, A Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D da Motta, H Das, M Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E De Oliveira Martins, C Dean, S Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dong, H Doulas, S Dudko, LV Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Eroshin, OV Estrada, J Evans, H Evdokimov, A Evdokimov, VN Fast, J Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Genser, K Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golling, T Gollub, N Gomez, B Gounder, K Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Gris, P Grivaz, JF Groer, L Grunendahl, S Grunewald, MW Gurzhiev, SN Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Hagopian, S Hall, I Hall, RE Han, C Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Huang, J Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jain, V Jakobs, K Jenkins, A Jesik, R Johns, K Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, J Karmanov, D Kasper, J Kau, D Kaur, R Kehoe, R Kermiche, S Kesisoglou, S Khanov, A Kharchilava, A Kharzheev, YM Kim, H Kim, TJ Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Kryemadhi, A Krzywdzinski, S Kulik, Y Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lager, S Lahrichi, N Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Leonidopoulos, C Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linn, SL Linnemann, J Lipaev, VV Lipton, R Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lueking, L Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK Mayorov, AA McCarthy, R McCroskey, R Meder, D Melnitchouk, A Mendes, A Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Mitrevski, J Molina, J Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mundim, L Mutaf, YD Nagy, E Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T Nurse, E O'Dell, V O'Neil, DC Oguri, V Oliveira, N Oshima, N Garzon, GJO Padley, P Parashar, N Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Petroff, P Petteni, M Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG Prado da Silva, WL Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rani, KJ Ranjan, K Rapidis, PA Ratoff, PN Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Smolek, K Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stanton, NR Stark, J Steele, J Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Titov, M Tomoto, M Toole, T Torborg, J Towers, S Trefzger, T Trincaz-Duvoid, S Tsybychev, D Tuchming, B Tully, C Turcot, AS Tuts, PM Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vlimant, J-R Von Toerne, E Vreeswijk, M Anh, VT Wahl, HD Wang, L Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wermes, N Wetstein, M White, A White, V Wicke, D Wijngaarden, DA Wilson, GW Wimpenny, SJ Wittlin, J Wobisch, M Womersley, J Wood, DR Wyatt, TR Xu, Q Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yen, Y Yip, K Yoo, HD Youn, SW Yu, J Yurkewicz, A Zabi, A Zatserklyaniy, A Zdrazil, M Zeitnitz, C Zhang, D Zhang, X Zhao, T Zhao, Z Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zitoun, R Zutshi, V Zverev, EG TI Measurement of semileptonic branching fractions of B mesons to narrow D-** states - art. no. 1711803 SO PHYSICAL REVIEW LETTERS LA English DT Article ID EFFECTIVE FIELD-THEORY; EXCITED CHARM MESONS; HEAVY QUARKS; DECAYS; PREDICTIONS; PHYSICS AB Using the data accumulated in 2002-2004 with the D0 detector in proton-antiproton collisions at the Fermilab Tevatron collider with a center-of-mass energy of 1.96 TeV, the branching fractions of the decays B ->(D) over bar (0)(1)(2420)mu(+)nu(mu)X and B ->(D) over bar (*0)(2)(2460)mu(+)nu(mu)X and their ratio have been measured: B (b) over bar -> B)xB(B -> (D) over bar (0)(1)mu(+)nu(mu)X)xB((D) over bar (0)(1)-> D(*-)pi(+))=[0.087 +/- 0.007(stat)+/- 0.014(syst)]%; B((b) over bar -> B)xB(B ->(D) over bar (*0)(2)mu(+)nu(mu)X)xB((D) over bar (*0)(2)-> D(*-)pi(+))=[0.035 +/- 0.007(stat)+/- 0.008(syst)]% and [B(B ->(D) over bar (*0)(2)mu(+)nu(mu)X)xB((D) over bar (*0)(2)-> D(*-)pi(+))]/[B(B ->(D) over bar (0)(1)mu(+)nu(mu)X)xB((D) over bar (0)(1)-> D(*-)pi(+))]=0.39 +/- 0.09(stat)+/- 0.12(syst), where the charge conjugated states are always implied. C1 Joint Nucl Res Inst, Dubna, Russia. Univ Buenos Aires, Buenos Aires, DF, Argentina. Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. Univ Alberta, Edmonton, AB, Canada. McGill Univ, Montreal, PQ, Canada. York Univ, Toronto, ON M3J 2R7, Canada. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. Univ Aix Marseille 2, CNRS, IN2P3, CPPM, Marseille, France. CNRS, Accelerateur Lineaire Lab, IN2P3, F-91405 Orsay, France. Univ Paris 06, CNRS, LPNHE, Paris, France. Univ Paris 07, Paris, France. CEA Saclay, DAPNIA, Serv Phys Particules, Gif Sur Yvette, France. Univ Strasbourg, CNRS, IN2P3, IReS, Strasbourg, France. Unit Haute Alsace, Mulhouse, France. Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. Rhein Westfal TH Aachen, Inst Phys 3 A, D-5100 Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, Freiburg, Germany. Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. FOM, Inst NIKHEF, NL-1098 SJ Amsterdam, Netherlands. Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. Radboud Univ Nijmegen, NIKHEF, Nijmegen, Netherlands. Inst Theoret & Expt Phys, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Lund Univ, Lund, Sweden. Royal Inst Technol, Stockholm, Sweden. Stockholm Univ, S-10691 Stockholm, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Lancaster, Lancaster, England. Univ London Imperial Coll Sci & Technol, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Joint Nucl Res Inst, Dubna, Russia. RI Bargassa, Pedrame/O-2417-2016; Juste, Aurelio/I-2531-2015; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Oguri, Vitor/B-5403-2013; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; KIM, Tae Jeong/P-7848-2015; Sznajder, Andre/L-1621-2016; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mundim, Luiz/A-1291-2012; Nomerotski, Andrei/A-5169-2010; Telford, Paul/B-6253-2011; Yip, Kin/D-6860-2013; Shivpuri, R K/A-5848-2010; OI Sawyer, Lee/0000-0001-8295-0605; Bargassa, Pedrame/0000-0001-8612-3332; Hedin, David/0000-0001-9984-215X; Wahl, Horst/0000-0002-1345-0401; Juste, Aurelio/0000-0002-1558-3291; de Jong, Sijbrand/0000-0002-3120-3367; Landsberg, Greg/0000-0002-4184-9380; Blessing, Susan/0000-0002-4455-7279; Gershtein, Yuri/0000-0002-4871-5449; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; Malik, Sudhir/0000-0002-6356-2655; Begel, Michael/0000-0002-1634-4399; Haas, Andrew/0000-0002-4832-0455; Weber, Michele/0000-0002-2770-9031; Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Filthaut, Frank/0000-0003-3338-2247; Naumann, Axel/0000-0002-4725-0766; Fatakia, Sarosh/0000-0003-0430-3191; Bertram, Iain/0000-0003-4073-4941; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Sznajder, Andre/0000-0001-6998-1108; Leonidopoulos, Christos/0000-0002-7241-2114; Bean, Alice/0000-0001-5967-8674; Madaras, Ronald/0000-0001-7399-2993; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; Blekman, Freya/0000-0002-7366-7098; Blazey, Gerald/0000-0002-7435-5758; Evans, Harold/0000-0003-2183-3127; Beuselinck, Raymond/0000-0003-2613-7446; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Qian, Jianming/0000-0003-4813-8167; Strovink, Mark/0000-0001-7020-7769 NR 24 TC 16 Z9 16 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 21 PY 2005 VL 95 IS 17 AR 171803 DI 10.1103/PhysRevLett.95.171803 PG 7 WC Physics, Multidisciplinary SC Physics GA 976HP UT WOS:000232724400022 PM 16383819 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Arnoud, Y Arov, M Askew, A Asman, B Assis Jesus, ACS Atramentov, O Autermann, C Avila, C Badaud, F Baden, A Bagby, L Baldin, B Balm, PW Banerjee, P Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Beauceron, S Begalli, M Begel, M Bellavance, A Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borcherding, F Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Cho, DK Choi, S Choudhary, B Christiansen, T Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cothenet, A Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D da Motta, H Das, M Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E De Oliveira Martins, C Dean, S Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dong, H Doulas, S Dudko, LV Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Eroshin, OV Estrada, J Evans, H Evdokimov, A Evdokimov, VN Fast, J Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Genser, K Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golling, T Gollub, N Gomez, B Gounder, K Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Gris, P Grivaz, JF Groer, L Grunendahl, S Grunewald, MW Gurzhiev, SN Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Hagopian, S Hall, I Hall, RE Han, C Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Huang, J Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jain, V Jakobs, K Jenkins, A Jesik, R Johns, K Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, J Karmanov, D Kasper, J Katsanos, I Kau, D Kaur, R Kehoe, R Kermiche, S Kesisoglou, S Khanov, A Kharchilava, A Kharzheev, YM Kim, H Kim, TJ Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Kryemadhi, A Krzywdzinski, S Kulik, Y Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lager, S Lahrichi, N Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Leonidopoulos, C Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linn, SL Linnemann, J Lipaev, VV Lipton, R Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lueking, L Luo, L Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, A-M Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK Mayorov, AA McCarthy, R McCroskey, R Meder, D Melnitchouk, A Mendes, A Mendoza, D Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Mitrevski, J Molina, J Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mundim, L Mutaf, YD Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T Nurse, E O'Dell, V O'Neil, DC Oguri, V Oliveira, N Oshima, N Otero y Garzon, GJ Padley, P Parashar, N Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Pawloski, G Perea, PM Perez, E Petroff, P Petteni, M Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, M-E Pompos, A Pope, BG Prado da Silva, WL Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rani, KJ Ranjan, K Rapidis, PA Ratoff, PN Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Smolek, K Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stanton, NR Stark, J Steele, J Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Titov, M Tomoto, M Toole, T Torborg, J Towers, S Trefzger, T Trincaz-Duvoid, S Tsybychev, D Tuchming, B Tully, C Turcot, AS Tuts, PM Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Kooten, RV van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vlimant, JR Von Toerne, E Vreeswijk, M Anh, TV Wahl, HD Wang, L Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wermes, N Wetstein, M White, A White, V Wicke, D Wijngaarden, DA Wilson, GW Wimpenny, SJ Wittlin, J Wobisch, M Womersley, J Wood, DR Wyatt, TR Xie, Y Xu, Q Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yen, Y Yip, K Yoo, HD Youn, SW Yu, J Yurkewicz, A Zabi, A Zatserklyaniy, A Zdrazil, M Zeitnitz, C Zhang, D Zhang, X Zhao, T Zhao, Z Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zitoun, R Zutshi, V Zverev, EG AF Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Arnoud, Y Arov, M Askew, A Asman, B Assis Jesus, ACS Atramentov, O Autermann, C Avila, C Badaud, F Baden, A Bagby, L Baldin, B Balm, PW Banerjee, P Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Beauceron, S Begalli, M Begel, M Bellavance, A Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borcherding, F Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Cho, DK Choi, S Choudhary, B Christiansen, T Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cothenet, A Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D da Motta, H Das, M Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E De Oliveira Martins, C Dean, S Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dong, H Doulas, S Dudko, LV Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Eroshin, OV Estrada, J Evans, H Evdokimov, A Evdokimov, VN Fast, J Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Genser, K Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golling, T Gollub, N Gomez, B Gounder, K Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Gris, P Grivaz, JF Groer, L Grunendahl, S Grunewald, MW Gurzhiev, SN Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Hagopian, S Hall, I Hall, RE Han, C Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Huang, J Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jain, V Jakobs, K Jenkins, A Jesik, R Johns, K Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, J Karmanov, D Kasper, J Katsanos, I Kau, D Kaur, R Kehoe, R Kermiche, S Kesisoglou, S Khanov, A Kharchilava, A Kharzheev, YM Kim, H Kim, TJ Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Kryemadhi, A Krzywdzinski, S Kulik, Y Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lager, S Lahrichi, N Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Leonidopoulos, C Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linn, SL Linnemann, J Lipaev, VV Lipton, R Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lueking, L Luo, L Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, A-M Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK Mayorov, AA McCarthy, R McCroskey, R Meder, D Melnitchouk, A Mendes, A Mendoza, D Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Mitrevski, J Molina, J Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mundim, L Mutaf, YD Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T Nurse, E O'Dell, V O'Neil, DC Oguri, V Oliveira, N Oshima, N Otero y Garzon, GJ Padley, P Parashar, N Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Pawloski, G Perea, PM Perez, E Petroff, P Petteni, M Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, M-E Pompos, A Pope, BG Prado da Silva, WL Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rani, KJ Ranjan, K Rapidis, PA Ratoff, PN Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Smolek, K Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stanton, NR Stark, J Steele, J Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Titov, M Tomoto, M Toole, T Torborg, J Towers, S Trefzger, T Trincaz-Duvoid, S Tsybychev, D Tuchming, B Tully, C Turcot, AS Tuts, PM Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Kooten, RV van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vlimant, JR Von Toerne, E Vreeswijk, M Anh, TV Wahl, HD Wang, L Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wermes, N Wetstein, M White, A White, V Wicke, D Wijngaarden, DA Wilson, GW Wimpenny, SJ Wittlin, J Wobisch, M Womersley, J Wood, DR Wyatt, TR Xie, Y Xu, Q Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yen, Y Yip, K Yoo, HD Youn, SW Yu, J Yurkewicz, A Zabi, A Zatserklyaniy, A Zdrazil, M Zeitnitz, C Zhang, D Zhang, X Zhao, T Zhao, Z Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zitoun, R Zutshi, V Zverev, EG TI Measurement of the lifetime difference in the B-s(0) system SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHYSICS; DECAYS AB We present a study of the decay B-s(0)-> J/psi phi. We obtain the CP-odd fraction in the final state at time zero R-perpendicular to = 0.16 +/- 0.10 (stat) +/- 0.02(syst), the average lifetime of the (B-s(0), (B) over bar (0)(s)) system, (tau) over bar (B-s(0)) = 1.39(-0.16)(+0.13)(stat)(-0.02)(+0.01)(syst) ps, and the relative width difference between the heavy and light mass eigen-states, Delta Gamma/(Gamma) over bar = (Gamma(L) - Gamma(H))/(Gamma) over bar = 0.24(-0.38)(+0.28)(stat)(-0.04)(+0.03)(syst). With the additional constraint from the world average of the B-s(0) lifetime measurements using semileptonic decays, we find (tau) over bar (B-s(0)) = 1.39 +/- 0.06 ps and Delta Gamma/(Gamma) over bar = 0.25(-0.15)(+0.14). For the ratio of the B-s(0) and B-0 lifetimes we obtain (tau) over bar (B-s(0))/tau(B-s(0)) = 0.91 +/- 0.09(stat) +/- 0.003(syst). C1 Joint Nucl Res Inst, Dubna, Russia. Univ Buenos Aires, Buenos Aires, DF, Argentina. LAFEX, Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Univ Alberta, Edmonton, AB, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. York Univ, Toronto, ON M3J 2R7, Canada. McGill Univ, Montreal, PQ, Canada. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague 12, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. Univ Mediteranee, CNRS, CPPM, IN2P3, Marseille, France. CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. Univ Paris 05, CNRS, IN2P3, LPNHE, F-75270 Paris, France. Univ Paris 07, Paris, France. CEA Saclay, DAPNIA, Serv Phys Particules, Gif Sur Yvette, France. Univ Strasbourg, IReS, CNRS, IN2P3, Strasbourg, France. Univ Haute Alsace, Mulhouse, France. Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. Rhein Westfal TH Aachen, Inst Phys 3 A, D-5100 Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, Freiburg, Germany. Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. FOM, Inst NIKHEF, NL-1098 SJ Amsterdam, Netherlands. Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. Radboud Univ Nijmegen, NIKHEF, Nijmegen, Netherlands. Inst Theoret & Expt Phys, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Lund Univ, Lund, Sweden. Royal Inst Technol, Stockholm, Sweden. Stockholm Univ, S-10691 Stockholm, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Lancaster, Lancaster, England. Univ London Imperial Coll Sci & Technol, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Joint Nucl Res Inst, Dubna, Russia. RI Oguri, Vitor/B-5403-2013; Alves, Gilvan/C-4007-2013; Telford, Paul/B-6253-2011; Nomerotski, Andrei/A-5169-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Mundim, Luiz/A-1291-2012; Sharyy, Viatcheslav/F-9057-2014; Santoro, Alberto/E-7932-2014; KIM, Tae Jeong/P-7848-2015; Sznajder, Andre/L-1621-2016; Deliot, Frederic/F-3321-2014 OI Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Bertram, Iain/0000-0003-4073-4941; Mundim, Luiz/0000-0001-9964-7805; Weber, Michele/0000-0002-2770-9031; Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Filthaut, Frank/0000-0003-3338-2247; Naumann, Axel/0000-0002-4725-0766; Fatakia, Sarosh/0000-0003-0430-3191; Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Sznajder, Andre/0000-0001-6998-1108; NR 10 TC 85 Z9 85 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 21 PY 2005 VL 95 IS 17 AR 171801 DI 10.1103/PhysRevLett.95.171801 PG 7 WC Physics, Multidisciplinary SC Physics GA 976HP UT WOS:000232724400020 PM 16241714 ER PT J AU Aubert, B Barate, R Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges-Pous, E Palano, A Pompili, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Borgland, AW Breon, AB Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Gritsan, AV Groysman, Y Jacobsen, RG Kadel, RW Kadyk, J Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Fritsch, M Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Schroeder, T Steinke, M Boyd, JT Chevalier, N Cottingham, WN Kelly, MP Latham, TE Wilson, FF Cuhadar-Donszelmann, T Hearty, C Knecht, NS Mattison, TS McKenna, JA Thiessen, D Khan, A Kyberd, P Teodorescu, L Blinov, AE Blinov, VE Druzhinin, VP Golubev, VB Ivanchenko, VN Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Yushkov, AN Best, D Bruinsma, M Chao, M Eschrich, I Kirkby, D Lankford, AJ Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Buchanan, C Hartfiel, BL Weinstein, AJR Foulkes, SD Gary, JW Shen, BC Wang, K del Re, D Hadavand, HK Hill, EJ MacFarlane, DB Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Lu, A Mazur, MA Richman, JD Verkerke, W Beck, TW Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dubois-Felsmann, GP Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Yang, S Jayatilleke, S Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, P Chen, S Ford, WT Nauenberg, U Olivas, A Rankin, P Ruddick, WO Smith, JG Ulmer, KA Zhang, J Zhang, L Chen, A Eckhart, EA Harton, JL Soffer, A Toki, WH Wilson, RJ Zeng, Q Spaan, B Altenburg, D Brandt, T Brose, J Dickopp, M Feltresi, E Hauke, A Lacker, HM Nogowski, R Otto, S Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Bernard, D Bonneaud, GR Grenier, P Schrenk, S Thiebaux, C Vasileiadis, G Verderi, M Bard, DJ Clark, PJ Muheim, F Playfer, S Xie, Y Andreotti, M Azzolini, V Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Piemontese, L Sarti, A Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Patteri, P Peruzzi, IM Piccolo, M Zallo, A Buzzo, A Capra, R Contri, R Crosetti, G Lo Vetere, M Macri, M Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Bailey, S Brandenburg, G Chaisanguanthum, KS Morii, M Won, E Dubitzky, RS Langenegger, U Marks, J Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Gaillard, JR Morton, GW Nash, JA Nikolich, MB Taylor, GP Charles, MJ Grenier, GJ Mallik, U Cochran, J Crawley, HB Lamsa, J Meyer, WT Prell, S Rosenberg, EI Rubin, AE Yi, J Arnaud, N Davier, M Giroux, X Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Petersen, TC Plaszczynski, S Schune, MH Wormser, G Cheng, CH Lange, DJ Simani, MC Wright, DM Bevan, AJ Chavez, CA Coleman, JP Forster, IJ Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Parry, RJ Payne, DJ Touramanis, C Cormack, CM Di Lodovico, F Brown, CL Cowan, G Flack, RL Flaecher, HU Green, MG Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Winter, MA Brown, D Davis, CL Allison, J Barlow, NR Barlow, RJ Hodgkinson, MC Lafferty, GD Williams, JC Chen, C Farbin, A Hulsbergen, WD Jawahery, A Kovalskyi, D Lae, CK Lillard, V Roberts, DA Blaylock, G Dallapiccola, C Hertzbach, SS Kofler, R Koptchev, VB Moore, TB Saremi, S Staengle, H Willocq, S Cowan, R Koeneke, K Sciolla, G Sekula, SJ Taylor, F Yamamoto, RK Mangeol, DJJ Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cte, D Taras, P Nicholson, H Cavallo, N Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Wilden, L Jessop, CP LoSecco, JM Allmendinger, T Gan, KK Honscheid, K Hufnagel, D Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Brau, J Frey, R Igonkina, O Lu, M Potter, CT Sinev, NB Strom, D Torrence, E Colecchia, F Dorigo, A Galeazzi, F Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Briand, H Chauveau, J David, P de la Vaissiere, C Del Buono, L Hamon, O John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Guo, QH Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bondioli, M Bucci, F Calderini, G Carpinelli, M Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rama, M Rizzo, G Simi, G Walsh, J Haire, M Judd, D Paick, K Wagoner, DE Danielson, N Elmer, P Lau, YP Lu, C Miftakov, V Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Li Gioi, L Mazzoni, MA Morganti, S Pierini, M Piredda, G Tehrani, FS Voena, C Christ, S Wagner, G Waldi, R Adye, T De Groot, N Franek, B Geddes, NI Gopal, GP Olaiya, EO Aleksan, R Emery, S Gaidot, A Ganzhur, SF Giraud, P-F de Monchenault, GH Kozanecki, W Legendre, M London, GW Mayer, B Schott, G Vasseur, G Yeche, C Zito, M Purohit, MV Weidemann, AW Wilson, JR Yumiceva, FX Abe, T Aston, D Bartoldus, R Berger, N Boyarski, AM Buchmueller, OL Claus, R Convery, MR Cristinziani, M De Nardo, G Dingfelder, JC Dong, D Dorfan, J Dujmic, D Dunwoodie, W Fan, S Field, RC Glanzman, T Gowdy, SJ Hadig, T Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Libby, J Luitz, S Luth, V Lynch, HL Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Soha, A Stelzer, J Strube, J Su, D Sullivan, MK Va'vra, J Wagner, SR Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Ahmed, M Ahmed, S Alam, MS Ernst, JA Saeed, MA Saleem, M Wappler, FR Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Kim, H Ritchie, JL Satpathy, A Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Bona, M Gallo, F Gamba, D Bosisio, L Cartaro, C Cossutti, F Ricca, GD Dittongo, S Grancagnolo, S Lanceri, L Poropat, P Vitale, L Vuagnin, G Martinez-Vidal, F Panvini, RS Banerjee, S Bhuyan, B Brown, CM Fortin, D Jackson, PD Kowalewski, R Roney, JM Sobie, RJ Back, JJ Harrison, PF Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Graham, M Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mihalyi, A Pan, Y Prepost, R Tan, P von Wimmersperg-Toeller, JH Wu, J Wu, SL Yu, Z Greene, MG Neal, H AF Aubert, B Barate, R Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges-Pous, E Palano, A Pompili, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Borgland, AW Breon, AB Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Gritsan, AV Groysman, Y Jacobsen, RG Kadel, RW Kadyk, J Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Fritsch, M Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Schroeder, T Steinke, M Boyd, JT Chevalier, N Cottingham, WN Kelly, MP Latham, TE Wilson, FF Cuhadar-Donszelmann, T Hearty, C Knecht, NS Mattison, TS McKenna, JA Thiessen, D Khan, A Kyberd, P Teodorescu, L Blinov, AE Blinov, VE Druzhinin, VP Golubev, VB Ivanchenko, VN Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Yushkov, AN Best, D Bruinsma, M Chao, M Eschrich, I Kirkby, D Lankford, AJ Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Buchanan, C Hartfiel, BL Weinstein, AJR Foulkes, SD Gary, JW Shen, BC Wang, K del Re, D Hadavand, HK Hill, EJ MacFarlane, DB Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Lu, A Mazur, MA Richman, JD Verkerke, W Beck, TW Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dubois-Felsmann, GP Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Yang, S Jayatilleke, S Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, P Chen, S Ford, WT Nauenberg, U Olivas, A Rankin, P Ruddick, WO Smith, JG Ulmer, KA Zhang, J Zhang, L Chen, A Eckhart, EA Harton, JL Soffer, A Toki, WH Wilson, RJ Zeng, Q Spaan, B Altenburg, D Brandt, T Brose, J Dickopp, M Feltresi, E Hauke, A Lacker, HM Nogowski, R Otto, S Petzold, A Schubert, J Schubert, KR Schwierz, R Sundermann, JE Bernard, D Bonneaud, GR Grenier, P Schrenk, S Thiebaux, C Vasileiadis, G Verderi, M Bard, DJ Clark, PJ Muheim, F Playfer, S Xie, Y Andreotti, M Azzolini, V Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Piemontese, L Sarti, A Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Patteri, P Peruzzi, IM Piccolo, M Zallo, A Buzzo, A Capra, R Contri, R Crosetti, G Lo Vetere, M Macri, M Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Bailey, S Brandenburg, G Chaisanguanthum, KS Morii, M Won, E Dubitzky, RS Langenegger, U Marks, J Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Gaillard, JR Morton, GW Nash, JA Nikolich, MB Taylor, GP Charles, MJ Grenier, GJ Mallik, U Cochran, J Crawley, HB Lamsa, J Meyer, WT Prell, S Rosenberg, EI Rubin, AE Yi, J Arnaud, N Davier, M Giroux, X Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Petersen, TC Plaszczynski, S Schune, MH Wormser, G Cheng, CH Lange, DJ Simani, MC Wright, DM Bevan, AJ Chavez, CA Coleman, JP Forster, IJ Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Parry, RJ Payne, DJ Touramanis, C Cormack, CM Di Lodovico, F Brown, CL Cowan, G Flack, RL Flaecher, HU Green, MG Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Winter, MA Brown, D Davis, CL Allison, J Barlow, NR Barlow, RJ Hodgkinson, MC Lafferty, GD Williams, JC Chen, C Farbin, A Hulsbergen, WD Jawahery, A Kovalskyi, D Lae, CK Lillard, V Roberts, DA Blaylock, G Dallapiccola, C Hertzbach, SS Kofler, R Koptchev, VB Moore, TB Saremi, S Staengle, H Willocq, S Cowan, R Koeneke, K Sciolla, G Sekula, SJ Taylor, F Yamamoto, RK Mangeol, DJJ Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cte, D Taras, P Nicholson, H Cavallo, N Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Wilden, L Jessop, CP LoSecco, JM Allmendinger, T Gan, KK Honscheid, K Hufnagel, D Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Brau, J Frey, R Igonkina, O Lu, M Potter, CT Sinev, NB Strom, D Torrence, E Colecchia, F Dorigo, A Galeazzi, F Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Briand, H Chauveau, J David, P de la Vaissiere, C Del Buono, L Hamon, O John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Guo, QH Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bondioli, M Bucci, F Calderini, G Carpinelli, M Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rama, M Rizzo, G Simi, G Walsh, J Haire, M Judd, D Paick, K Wagoner, DE Danielson, N Elmer, P Lau, YP Lu, C Miftakov, V Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Li Gioi, L Mazzoni, MA Morganti, S Pierini, M Piredda, G Tehrani, FS Voena, C Christ, S Wagner, G Waldi, R Adye, T De Groot, N Franek, B Geddes, NI Gopal, GP Olaiya, EO Aleksan, R Emery, S Gaidot, A Ganzhur, SF Giraud, P-F de Monchenault, GH Kozanecki, W Legendre, M London, GW Mayer, B Schott, G Vasseur, G Yeche, C Zito, M Purohit, MV Weidemann, AW Wilson, JR Yumiceva, FX Abe, T Aston, D Bartoldus, R Berger, N Boyarski, AM Buchmueller, OL Claus, R Convery, MR Cristinziani, M De Nardo, G Dingfelder, JC Dong, D Dorfan, J Dujmic, D Dunwoodie, W Fan, S Field, RC Glanzman, T Gowdy, SJ Hadig, T Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Libby, J Luitz, S Luth, V Lynch, HL Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Soha, A Stelzer, J Strube, J Su, D Sullivan, MK Va'vra, J Wagner, SR Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Ahmed, M Ahmed, S Alam, MS Ernst, JA Saeed, MA Saleem, M Wappler, FR Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Kim, H Ritchie, JL Satpathy, A Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Bona, M Gallo, F Gamba, D Bosisio, L Cartaro, C Cossutti, F Ricca, GD Dittongo, S Grancagnolo, S Lanceri, L Poropat, P Vitale, L Vuagnin, G Martinez-Vidal, F Panvini, RS Banerjee, S Bhuyan, B Brown, CM Fortin, D Jackson, PD Kowalewski, R Roney, JM Sobie, RJ Back, JJ Harrison, PF Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Graham, M Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mihalyi, A Pan, Y Prepost, R Tan, P von Wimmersperg-Toeller, JH Wu, J Wu, SL Yu, Z Greene, MG Neal, H TI Measurements of branching fractions and dalitz distributions for B-0 ->(DK0)-K-(*)+/-pi(-/+) decays SO PHYSICAL REVIEW LETTERS LA English DT Article AB We present measurments of the branching fractions for the three-body decays B-0 -> (DK0)-K-(*) -/+pi(+/-) and their resonant submodes B0 -> D(*)K--/+*(+/-) usinga sample of approximately 88 x 10(6) B (B) over bar pairs collected by the BABER detector at the SLAC PEP-II assymetric energy storage ring. We measure: B(B-0 ->(DK0)-K--/+pi(+/-)) = (4.9 +/- 0.7(stat) +/- 0.5(syst)) x 10(-4), B(B-0 -> D*K--/+(0)pi(+/-)) = (3.0 +/- 0.7(stat) +/- 0.3(syst)) x 10(-4), B(B-0 ->(DK)-K--/+*(+/-)) = (4.6 +/- 0.6(stat) +/- 0.5(syst)) x 10(-4), B(B-0 -> D*K--/+*(+/-) = (3.2 +/- 0.6(stat) +/- 0.3(syst)) x 10(-4). From these measurements we determine the fractions of resonant events to be f(B0 -> (DK)-K-+/-*(-/+)) = 0.63 +/- 0.08(stat) +/- 0.04(syst) and f(B-0 -> D*K--/+*(+/-)) = 0.72 +/- 0.14(stat) +/- 0.05(syst). C1 Phys Particules Lab, F-74941 Annecy Le Vieux, France. Univ Autonoma Barcelona, E-08193 Barcelona, Spain. Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. Univ Bari, Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Univ Calif Berkeley, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. Univ Ferrara, Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Univ Genoa, Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci & Technol, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ, Ames, IA 50011 USA. Accelerateur Lineaire Lab, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 72E, Merseyside, England. Queen Mary Univ London, London E1 4NS, England. Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Univ Milan, Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Lab Rene JA Levesque, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Univ Naples Federico II, Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF, Natl Inst Nucl & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Univ Padua, Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Phys Theor & Hautes Energies Lab, F-75252 Paris, France. Univ Paris 07, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Perugia, Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Univ Pisa, Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie Vien A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Univ Roma La Sapienza, Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Univ Turin, Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Univ Trieste, Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Valencia, E-46100 Burjassot, Spain. Vanderbilt Univ, Nashville, TN 37235 USA. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. RP Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Peters, Klaus/C-2728-2008; Cavallo, Nicola/F-8913-2012; Saeed, Mohammad Alam/J-7455-2012; de Groot, Nicolo/A-2675-2009; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; crosetti, nanni/H-3040-2011; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Kravchenko, Evgeniy/F-5457-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Grancagnolo, Sergio/J-3957-2015; Sarti, Alessio/I-2833-2012; M, Saleem/B-9137-2013; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016 OI Peters, Klaus/0000-0001-7133-0662; Saeed, Mohammad Alam/0000-0002-3529-9255; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Grancagnolo, Sergio/0000-0001-8490-8304; Sarti, Alessio/0000-0001-5419-7951; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636 NR 11 TC 196 Z9 197 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 21 PY 2005 VL 95 IS 17 AR 171802 DI 10.1103/PhysRevLett.95.171802 PG 7 WC Physics, Multidisciplinary SC Physics GA 976HP UT WOS:000232724400021 PM 16197131 ER PT J AU Chanowitz, MS AF Chanowitz, MS TI Chiral suppression of scalar-glueball decay SO PHYSICAL REVIEW LETTERS LA English DT Article ID PARTIAL-WAVE ANALYSIS; PP INTERACTIONS; ANOMALIES; TRACE; GEV/C AB Since glueballs are SU(3)(Flavor) singlets, they should couple equally to u, d, and s quarks, so that equal coupling strengths to pi(+)pi(-) and K+K- are expected. However, we show that chiral symmetry implies the scalar-glueball amplitude for G(0) -> qq is proportional to the quark mass, so that mixing with ss mesons is enhanced and decays to K+K- are favored over pi(+)pi(-) .Together with evidence from lattice calculations and experiment, this supports the hypothesis that f(0)(1710) is the ground state scalar glueball. C1 Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. EM chanowitz@lbl.gov NR 22 TC 50 Z9 50 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 21 PY 2005 VL 95 IS 17 AR 172001 DI 10.1103/PhysRevLett.95.172001 PG 4 WC Physics, Multidisciplinary SC Physics GA 976HP UT WOS:000232724400024 PM 16383821 ER PT J AU Gemelke, N Sarajlic, E Bidel, Y Hong, S Chu, S AF Gemelke, N Sarajlic, E Bidel, Y Hong, S Chu, S TI Parametric amplification of matter waves in periodically translated optical lattices SO PHYSICAL REVIEW LETTERS LA English DT Article ID BOSE-EINSTEIN CONDENSATE; INSTABILITIES; SUPERFLUID; STATES; ATOMS AB We observe the sudden growth of small classes of Bloch waves from atomic Bose-Einstein condensates held in periodically translated optical lattices. The effect is explained by narrowband parametric amplification of Bloch waves from noise, due to phase-matched scattering of atom pairs out of the condensate. Amplification occurs above a well-defined modulation threshold, described by dynamic shaping of single-particle band structure. C1 Stanford Univ, Dept Phys, Stanford, CA 94305 USA. Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Gemelke, N (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. NR 25 TC 60 Z9 60 U1 0 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 21 PY 2005 VL 95 IS 17 AR 170404 DI 10.1103/PhysRevLett.95.170404 PG 4 WC Physics, Multidisciplinary SC Physics GA 976HP UT WOS:000232724400004 PM 16383801 ER PT J AU Johnston, DC Baek, SH Zong, X Borsa, F Schmalian, J Kondo, S AF Johnston, DC Baek, SH Zong, X Borsa, F Schmalian, J Kondo, S TI Dynamics of magnetic defects in heavy fermion LiV2O4 from stretched exponential Li-7 NMR relaxation SO PHYSICAL REVIEW LETTERS LA English DT Article ID TRANSITION-METAL OXIDE; GLASSES AB Li-7 NMR measurements on LiV2O4 from 0.5 to 4.2 K are reported. A small concentration of magnetic defects within the structure drastically changes the Li-7 nuclear magnetization relaxation versus time from a pure exponential as in pure LiV2O4 to a stretched exponential, indicating glassy behavior of the magnetic defects. The stretched exponential function is described as arising from a distribution of Li-7 nuclear spin-lattice relaxation rates and we present a model for the distribution in terms of the dynamics of the magnetic defects. Our results explain the origin of recent puzzling Li-7 NMR literature data on LiV2O4 and our model is likely applicable to other glassy systems. C1 Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Johnston, DC (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Zong, Xiaopeng/F-1529-2011; Schmalian, Joerg/H-2313-2011; Baek, Seung-Ho/F-4733-2011 OI Baek, Seung-Ho/0000-0002-0059-8255 NR 19 TC 22 Z9 22 U1 0 U2 10 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 21 PY 2005 VL 95 IS 17 AR 176408 DI 10.1103/PhysRevLett.95.176408 PG 4 WC Physics, Multidisciplinary SC Physics GA 976HP UT WOS:000232724400051 PM 16383848 ER PT J AU Kondratyuk, S Blunden, PG Melnitchouk, W Tjon, JA AF Kondratyuk, S Blunden, PG Melnitchouk, W Tjon, JA TI Delta resonance contribution to two-photon exchange in electron-proton scattering SO PHYSICAL REVIEW LETTERS LA English DT Article ID FORM-FACTORS AB We calculate the effects on the elastic electron-proton scattering cross section of the two-photon exchange contribution with an intermediate Delta resonance. The Delta two-photon exchange contribution is found to be smaller in magnitude than the previously evaluated nucleon contribution, with an opposite sign at backward scattering angles. The sum of the nucleon and Delta two-photon exchange corrections has an angular dependence compatible with both the polarization-transfer and the Rosenbluth methods of measuring the nucleon electromagnetic form factors. C1 Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada. Jefferson Lab, Newport News, VA 23606 USA. Univ Maryland, Dept Phys, College Pk, MD 20742 USA. RP Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada. NR 26 TC 89 Z9 89 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 21 PY 2005 VL 95 IS 17 AR 172503 DI 10.1103/PhysRevLett.95.172503 PG 4 WC Physics, Multidisciplinary SC Physics GA 976HP UT WOS:000232724400027 PM 16383824 ER PT J AU Gur, I Fromer, NA Geier, ML Alivisatos, AP AF Gur, I Fromer, NA Geier, ML Alivisatos, AP TI Air-stable all-inorganic nanocrystal solar cells processed from solution SO SCIENCE LA English DT Article ID PHOTOVOLTAIC CELLS; SEMICONDUCTOR NANOCRYSTALS; HETEROSTRUCTURES; FILMS AB We introduce an ultrathin donor-acceptor solar cell composed entirely of inorganic nanocrystals spin-cast from solution. These devices are stable in air, and post-fabrication processing allows for power conversion efficiencies approaching 3% in initial tests. This demonstration elucidates a class of photovoltaic devices with potential for stable, tow-cost power generation. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM alivis@berkeley.edu RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 NR 23 TC 1232 Z9 1249 U1 20 U2 308 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 21 PY 2005 VL 310 IS 5747 BP 462 EP 465 DI 10.1126/science.1117908 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 977EU UT WOS:000232786000037 PM 16239470 ER PT J AU Wachowiak, A Yamachika, R Khoo, KH Wang, Y Grobis, M Lee, DH Louie, SG Crommie, MF AF Wachowiak, A Yamachika, R Khoo, KH Wang, Y Grobis, M Lee, DH Louie, SG Crommie, MF TI Visualization of the molecular Jahn-Teller effect in an insulating K4C60 monolayer SO SCIENCE LA English DT Article ID DOPED C-60 MONOLAYERS; ELECTRONIC-STRUCTURE; ORBITAL DEGENERACY; METAL; FULLERIDES; SUPERCONDUCTIVITY; TRANSITION; DISTORTION; SURFACE; STATES AB We present a low-temperature scanning tunneling microscopy (STM) study of KxC60 monolayers on Au(111) for 3 <= x <= 4. The STM spectrum evolves from one that is characteristic of a metal at x = 3 to one that is characteristic of an insulator at x = 4. This electronic transition is accompanied by a dramatic structural rearrangement of the C-60 molecules. The Jahn-Teller effect, a charge-induced mechanical deformation of molecular structure, is directly visualized in the K4C60 monolayer at the single-molecule level. These results, along with theoretical analyses, provide strong evidence that the transition from metal to insulator in KxC60 monolayers is caused by the Jahn-Teller effect. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Crommie, MF (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM crommie@berkeley.edu RI Khoo, Khoong Hong/G-3983-2012 OI Khoo, Khoong Hong/0000-0002-4628-1202 NR 27 TC 59 Z9 59 U1 1 U2 37 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 21 PY 2005 VL 310 IS 5747 BP 468 EP 470 DI 10.1126/science.1117303 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 977EU UT WOS:000232786000039 PM 16239471 ER PT J AU Zingale, M Woosley, SE Rendleman, CA Day, MS Bell, JB AF Zingale, M Woosley, SE Rendleman, CA Day, MS Bell, JB TI Three-dimensional numerical simulations of Rayleigh-Taylor unstable flames in type Ia supernovae SO ASTROPHYSICAL JOURNAL LA English DT Article DE conduction; hydrodynamics; methods : numerical; nuclear reactions, nucleosynthesis, abundances; supernovae : general; white dwarfs ID NUCLEAR FLAMES; WHITE-DWARFS; THERMONUCLEAR FLAMES; INSTABILITY; MODEL; DEFLAGRATIONS; PROPAGATION; COMBUSTION AB Flame instabilities play a dominant role in accelerating the burning front to a large fraction of the speed of sound in a Type Ia supernova. We present a three-dimensional numerical simulation of a Rayleigh-Taylor unstable carbon flame, following its evolution through the transition to turbulence. A low-Mach number hydrodynamics method is used, freeing us from the harsh time step restrictions imposed by sound waves. We fully resolve the thermal structure of the flame and its reaction zone, eliminating the need for a flame model. A single density is considered, 1.5 x 10(7) g cm(-3), and half-carbon, half-oxygen fuel: conditions under which the flame propagated in the flamelet regime in our related two-dimensional study. We compare to a corresponding two- dimensional simulation and show that while fire polishing keeps the small features suppressed in two dimensions, turbulence wrinkles the flame on far smaller scales in the three-dimensional case, suggesting that the transition to the distributed burning regime occurs at higher densities in three dimensions. Detailed turbulence diagnostics are provided. We show that the turbulence follows a Kolmogorov spectrum and is highly anisotropic on the large scales, with a much larger integral scale in the direction of gravity. Furthermore, we demonstrate that it becomes more isotropic as it cascades down to small scales. On the basis of the turbulent statistics and the flame properties of our simulation, we compute the Gibson scale. We show the progress of the turbulent flame through a classic combustion regime diagram, indicating that the flame just enters the distributed burning regime near the end of our simulation. C1 Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA. RP Zingale, M (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, 477 Clark Kerr Hall, Santa Cruz, CA 95064 USA. OI Zingale, Michael/0000-0001-8401-030X NR 32 TC 60 Z9 60 U1 0 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2005 VL 632 IS 2 BP 1021 EP 1034 DI 10.1086/433164 PN 1 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 974CO UT WOS:000232569100031 ER PT J AU Abraham, DP Reynolds, EM Sammann, E Jansen, AN Dees, DW AF Abraham, DP Reynolds, EM Sammann, E Jansen, AN Dees, DW TI Aging characteristics of high-power lithium-ion cells with LiNi0.8Co0.15Al0.05O2 and Li4/3Ti5/3O4 electrodes SO ELECTROCHIMICA ACTA LA English DT Article DE high-power; lithium-ion; impedance; aging; Li4/3Ti5/3O4 ID STRAIN INSERTION MATERIAL; SURFACE-FILM FORMATION; IMPEDANCE RISE; NEGATIVE ELECTRODES; BATTERIES; LI; SPECTROSCOPY; GRAPHITE; PERFORMANCE; MICROSCOPY AB The impedance rise that results from the accelerated aging of high-power lithium-ion cells containing LiNi0.8Co0.15Al0.05O2-based positive and graphite-based negative electrodes is dominated by contributions from the positive electrode. Data from various diagnostic experiments have indicated that a general degradation of the ionic pathway, apparently caused by surface film formation on the oxide particles, produces the positive electrode interface rise. One mechanistic hypothesis postulates that these surface films are components of the negative electrode solid electrolyte interphase (SEI) layer that migrate through the electrolyte and separator and subsequently coat the positive electrode. This hypothesis is examined in this article by subjecting cells with LiNi0.8Co0.15Al0.05O2-based positive and Li4/3Ti5/3O4-based negative electrodes to accelerated aging. The impedance rise in these cells was observed to be almost entirely from the positive electrode. Because reduction products are not expected on the 1.55 V Li4/3Ti5/3O4 electrode, the positive electrode impedance cannot be attributed to the migration of SEI-type fragments from the negative electrode. It follows then that the impedance rise results from mechanisms that are "intrinsic" to the positive electrode. (C) 2005 Elsevier Ltd. All rights reserved. C1 Argonne Natl Lab, Div Chem Engn, Argonne, IL 60439 USA. Univ Illinois, Ctr Microanal Mat, Urbana, IL 61801 USA. RP Abraham, DP (reprint author), Argonne Natl Lab, Div Chem Engn, 9700 S Cass Ave, Argonne, IL 60439 USA. EM abraham@cmt.anl.gov RI Jansen, Andrew/Q-5912-2016 OI Jansen, Andrew/0000-0003-3244-7790 NR 43 TC 44 Z9 44 U1 3 U2 61 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD OCT 20 PY 2005 VL 51 IS 3 BP 502 EP 510 DI 10.1016/j.electacta.2005.05.008 PG 9 WC Electrochemistry SC Electrochemistry GA 983IY UT WOS:000233226100014 ER PT J AU Roeper, DF Chidambararn, D Clayton, CR Halada, GP AF Roeper, DF Chidambararn, D Clayton, CR Halada, GP TI Development of an environmentally friendly protective coating for the depleted uranium-0.75 wt.% titanium alloy - Part II: Coating formation and evaluation SO ELECTROCHIMICA ACTA LA English DT Article DE uranium alloys; corrosion; molybdate coatings; electrochemistry; SEM ID CORROSION; MOLYBDATE; ALUMINUM AB Molybdenum oxide based coatings have been formed on the surface of the depleted Uranium-0.75 wt.% titanium alloy. Surface activation prior to coating formation has been examined using fluorides and concentrated nitric acid. The electrochemical characteristics of the coating formation processes were studied using open circuit potential measurements. Residual fluoride from the activation process has been found to interfere with coating formation and surface activation by nitric acid yields a relatively thinner but more robust coating. The corrosion protection characteristics of the coatings were evaluated by potentiodynamic polarization testing in quiescent 0.05 M sodium chloride. The coatings have been studied using scanning electron microscopy, energy dispersive spectroscopy and optical microscopy. (C) 2005 Elsevier Ltd. All rights reserved. C1 SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. RP Roeper, DF (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. EM droeper@notes.cc.sunysb.edu NR 23 TC 7 Z9 7 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD OCT 20 PY 2005 VL 51 IS 3 BP 545 EP 552 DI 10.1016/j.electacta.2005.05.015 PG 8 WC Electrochemistry SC Electrochemistry GA 983IY UT WOS:000233226100019 ER PT J AU Guttikunda, SK Tang, YH Carmichael, GR Kurata, G Pan, L Streets, DG Woo, JH Thongboonchoo, N Fried, A AF Guttikunda, SK Tang, YH Carmichael, GR Kurata, G Pan, L Streets, DG Woo, JH Thongboonchoo, N Fried, A TI Impacts of Asian megacity emissions on regional air quality during spring 2001 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TRACE-P EXPERIMENT; CHEMICAL-TRANSPORT MODEL; EAST-ASIA; DISTRIBUTIONS; POLLUTION; EVOLUTION; AEROSOLS; BIOMASS; CLIMATE; OZONE AB [1] Measurements from the Transport and Chemical Evolution over the Pacific (TRACE-P) and Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) field experiments obtained during the period of March - April 2001 are used to evaluate the impact of megacity emissions on regional air quality in east Asia. A classification method built upon back trajectory analysis and sensitivity runs using the Sulfur Transport and Emissions Model 2001 (STEM-2K1) regional chemical transport model are used to identify the aircraft observations that were influenced by megacity emissions. More than 30% of measurement points are classified as urban points, with a significant number of plumes found to have originated from Shanghai, Qingdao, Beijing, Taiyuan, Tianjin and Guiyang, Seoul, and Pusan. These data are then analyzed, and chemical characteristics of these megacities are compared. Emission estimates for the megacities are also presented and discussed in the context of expected similarities and differences in the chemical signals in the ambient air impacted by these cities. Comparisons of the observation-based ratios with emission-based estimates are presented and provide a means to test for the consistency of the emission estimates. The observation-based ratios are shown to be generally consistent with the emissions ratios. The megacity emissions are used in the STEM-2K1 model to study the effects of these emissions on criteria and photochemical species in the region. Over large portions of the Japan Sea, Yellow Sea, western Pacific Ocean, and the Bay of Bengal, megacity emissions contribute in excess of 10% of the near-surface ambient levels of O-3, CO, SO2, H2SO4, HCHO, and NOz. The megacity emissions are also used to study ozone levels in Asia under a scenario where all cities evolve their emissions in a manner such that they end up with the same VOC/NOx emission ratio as that for Tokyo. Monthly mean ozone levels are found to increase by at least 5%. C1 World Bank, Dept Environm, Washington, DC 20433 USA. Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA. Univ Iowa, Dept Chem & Biochem Engn, Iowa City, IA 52242 USA. Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. NE States Coordinated Air Use Management, Boston, MA 02114 USA. Natl Ctr Atmospher Res, Boulder, CO 80303 USA. RP World Bank, Dept Environm, Washington, DC 20433 USA. EM gcarmich@engineering.uiowa.edu RI Pan, Li/G-1327-2012; Tang, Youhua/D-5205-2016; OI Tang, Youhua/0000-0001-7089-7915; Streets, David/0000-0002-0223-1350 NR 19 TC 45 Z9 48 U1 3 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 20 PY 2005 VL 110 IS D20 AR D20301 DI 10.1029/2004JD004921 PG 27 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 977UM UT WOS:000232828700001 ER PT J AU Chen, Y Friedel, RHW Reeves, GD Onsager, TG Thomsen, MF AF Chen, Y Friedel, RHW Reeves, GD Onsager, TG Thomsen, MF TI Multisatellite determination of the relativistic electron phase space density at geosynchronous orbit: Methodology and results during geomagnetically quiet times SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID MAGNETOSPHERIC MAGNETIC-FIELD; INNER MAGNETOSPHERE; PARTICLES; FLUXES; MODELS; STORMS AB We develop and test a methodology to determine the relativistic electron phase space density distribution in the vicinity of geostationary orbit by making use of the pitch-angle resolved energetic electron data from three Los Alamos National Laboratory geosynchronous Synchronous Orbit Particle Analyzer instruments and magnetic field measurements from two GOES satellites. Owing to the Earth's dipole tilt and drift shell splitting for different pitch angles, each satellite samples a different range of Roederer L* throughout its orbit. We use existing empirical magnetic field models and the measured pitch-angle resolved electron spectra to determine the phase space density as a function of the three adiabatic invariants at each spacecraft. Comparing all satellite measurements provides a determination of the global phase space density gradient over the range L* similar to 6-7. We investigate the sensitivity of this method to the choice of the magnetic field model and the fidelity of the instrument intercalibration in order to both understand and mitigate possible error sources. Results for magnetically quiet periods show that the radial slopes of the density distribution at low energy are positive, while at high energy the slopes are negative, which confirms the results from some earlier studies of this type. We further show that the observed gradients near geosynchronous are generally small, making them very sensitive to both calibration and magnetic field model choice. This paper lays the foundation for this method for future applications to disturbed periods and for future inclusion of additional satellite data. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NOAA, Boulder, CO 80303 USA. RP Chen, Y (reprint author), Los Alamos Natl Lab, POB 1663,MS D466, Los Alamos, NM 87545 USA. EM cheny@lanl.gov; rfriedel@lanl.gov; reeves@lanl.gov; terry.onsager@noaa.gov; mthomsen@lanl.gov RI Friedel, Reiner/D-1410-2012; Reeves, Geoffrey/E-8101-2011; OI Friedel, Reiner/0000-0002-5228-0281; Reeves, Geoffrey/0000-0002-7985-8098; Chen, Jack/0000-0002-3764-1149 NR 26 TC 60 Z9 60 U1 1 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 20 PY 2005 VL 110 IS A10 AR A10210 DI 10.1029/2004JA010895 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 978DA UT WOS:000232851200001 ER PT J AU Wang, JL Jellinek, J Zhao, J Chen, ZF King, RB Schleyer, PV AF Wang, JL Jellinek, J Zhao, J Chen, ZF King, RB Schleyer, PV TI Hollow cages versus space-filling structures for medium-sized gold clusters: The spherical aromaticity of the Au-50 cage SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DENSITY-FUNCTIONAL CALCULATIONS; ION MOBILITY MEASUREMENTS; EFFECTIVE CORE POTENTIALS; TRANSITION-METAL ATOMS; MOLECULAR CALCULATIONS; ELECTRONIC-PROPERTIES; GENETIC ALGORITHM; CARBON-MONOXIDE; CHEMISTRY; AU-20 AB Candidates for the lowest energy structures of medium-sized Au-n, n = 32, 38, 44, 50, and 56, clusters were evaluated using gradient-corrected DFT computations. Both hollow cage and space-filling conformations were considered. The cages were constructed using fullerene-based templates. The space-filling structures were generated by employing a genetic algorithm. We have found that the space-filling isomers were lower in energy except for two notable cases. Like Au-32 [Johansson, M. P.; Sundholm, D.; Vaara, J. Angew. Chem. Int. Ed. 2004, 43, 2678], a hollow cage configuration of Au-50 is more stable than its alternative space-filling isomeric forms. The unusual stabilities of the cage Au-32 and Au-50 can be attributed to spherical aromaticity; both exhibit large negative nucleus-independent chemical shifts and exceptionally large HOMO-LUMO gaps. C1 Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. Washington State Univ, Inst Shock Phys, Pullman, WA 99164 USA. Univ Georgia, Dept Chem, Athens, GA 30602 USA. Univ Georgia, Ctr Computat Chem, Athens, GA 30602 USA. RP Jellinek, J (reprint author), Argonne Natl Lab, Div Chem, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jellinek@anl.gov RI Chen, Zhongfang/A-3397-2008; Wang, Jinlan/B-3507-2012; Wang, Jinlan/B-3503-2012; Zhao, Jijun/I-6030-2015 OI Wang, Jinlan/0000-0002-4529-874X; NR 51 TC 76 Z9 76 U1 2 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD OCT 20 PY 2005 VL 109 IS 41 BP 9265 EP 9269 DI 10.1021/jp052414q PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 974SP UT WOS:000232612000011 PM 16833267 ER PT J AU Montgomery, W Zaug, JM Howard, WM Goncharov, AF Crowhurst, JC Jeanloz, R AF Montgomery, W Zaug, JM Howard, WM Goncharov, AF Crowhurst, JC Jeanloz, R TI Melting curve and high-pressure chemistry of formic acid to 8 GPa and 600 K SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID CARBON-MONOXIDE; MOLECULES; CALIBRATION; METEORITES; COMETS; GAUGE; ARRAY AB We have determined the melting temperature of formic acid (HCOOH) as a function of pressure to 8.5 GPa using infrared absorption spectroscopy, Raman spectroscopy and visual observation of samples in a resistively heated diamond-anvil cell. The experimentally determined incongruent melting curve compares favorably with a two-phase thermodynamic model. Decomposition reactions were observed above the melting temperature up to a pressure of 6.5 GPa, with principal products being CO2, H2O. and CO. At pressures above 6.5 GPa, decomposition led to reaction products that could be quenched as solids to zero pressure, and infrared and Raman spectra indicate that pressure leads to the presence of sp3 carbon-carbon bonding in these reaction products. C1 Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94551 USA. RP Montgomery, W (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, 307 McCone Hall, Berkeley, CA 94720 USA. EM wren@cps.berkeley.edu RI Montgomery, Wren/K-6369-2013 OI Montgomery, Wren/0000-0002-8076-8575 NR 30 TC 18 Z9 18 U1 3 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 20 PY 2005 VL 109 IS 41 BP 19443 EP 19447 DI 10.1021/jp051967y PG 5 WC Chemistry, Physical SC Chemistry GA 974SQ UT WOS:000232612100060 PM 16853512 ER PT J AU Zhaunerchyk, V Hellberg, F Ehlerding, A Geppert, WD Larsson, M Vane, CR Bannister, ME Bahati, EM Osterdahl, F af Ugglas, M Thomas, RD AF Zhaunerchyk, V Hellberg, F Ehlerding, A Geppert, WD Larsson, M Vane, CR Bannister, ME Bahati, EM Osterdahl, F af Ugglas, M Thomas, RD TI Dissociative recombination study of PD2+ at CRYRING: absolute cross-section, chemical branching ratios and three-body fragmentation dynamics SO MOLECULAR PHYSICS LA English DT Article ID INTERSTELLAR PN; BOND-ENERGIES; STATES; IONS; SPECTRUM; H2O+; H3O+ AB The paper reports an investigation of the dissociative recombination of PD2+ at the heavy-ion storage ring CRYRING. The absolute cross-section has been measured as a function of centre-of-mass energy ranging from 1 meV to 0.1 eV. The experiment performed has shown the dissociative recombination of PD2+ to be dominated by three-body break-up, with a branching ratio of about 78%. Competition between the available three-body channels producing the ground state, P(S-4), and the. first two excited states, P(D-2) and P(P-2), is observed. The formation of the first excited state dominates over the other two almost equally probable channels with about 75% of all three-body events. The results indicate that the kinetic energy released in the three-body break- up of PD2+ is randomly shared between the deuterium atoms. The intra-molecular angle on dissociation has also been investigated. A comparative analysis of the dissociative recombination dynamics for the two isovalent systems, PD2+ and NH2+, is undertaken. C1 Stockholm Univ, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Royal Inst Technol, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. Stockholm Univ, Manne Siegbahn Lab, S-10405 Stockholm, Sweden. RP Zhaunerchyk, V (reprint author), Stockholm Univ, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. EM vitall.zhaunerchyk@physto.se RI Zhaunerchyk, Vitali/E-9751-2016 NR 31 TC 10 Z9 10 U1 0 U2 0 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0026-8976 J9 MOL PHYS JI Mol. Phys. PD OCT 20 PY 2005 VL 103 IS 20 BP 2735 EP 2745 DI 10.1080/00268970500185674 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 963OH UT WOS:000231813100004 ER PT J AU Toppani, A Robert, F Libourel, G de Donato, P Barres, O d'Hendecourt, L Ghanbaja, J AF Toppani, A Robert, F Libourel, G de Donato, P Barres, O d'Hendecourt, L Ghanbaja, J TI A 'dry' condensation origin for circumstellar carbonates SO NATURE LA English DT Article ID MINERAL FORMATION; MOLECULAR CLOUDS; STELLAR WINDS; SOLAR NEBULA; DUST; NGC-6302; SPECTROSCOPY; DISCOVERY; PROTOSTAR; EMISSION AB The signature of carbonate minerals has long been suspected in the mid-infrared spectra of various astrophysical environments such as protostars(1). Abiogenic carbonates are considered as indicators of aqueous mineral alteration(2) in the presence of CO2-rich liquid water. The recent claimed detection of calcite associated with amorphous silicates in two planetary nebulae(3) and protostars(4,5) devoid of planetary bodies questions the relevance of this indicator; but in the absence of an alternative mode of formation under circumstellar conditions, this detection remains controversial(6-8). The main dust component observed in circumstellar envelopes is amorphous silicates(9), which are thought to have formed by non-equilibrium condensation(10). Here we report experiments demonstrating that carbonates can be formed with amorphous silicates during the non-equilibrium condensation of a silicate gas in a H2O-CO2-rich vapour. We propose that the observed astrophysical carbonates have condensed in H2O(g)-CO2(g)-rich, high-temperature and high-density regions such as evolved stellar winds, or those induced by grain sputtering upon shocks in protostellar outflows. C1 Ctr Rech Petrog & Geochim, CNRS, UPR 2300, F-54501 Vandoeuvre Les Nancy, France. INPL, Ecole Natl Super Geol, F-54501 Vandoeuvre Les Nancy, France. Lab Environm & Mineral, CNRS, UMR 7569, F-54501 Vandoeuvre Les Nancy, France. Museum Natl Hist Nat, Lab Etud Mat Extraterr, CNRS, UMS 2679, F-75005 Paris, France. Univ Paris 11, Inst Astrophys Spatiale, CNRS, UMR 8617, F-91405 Orsay, France. Univ Nancy 1, Fac Sci, Serv Commun Microscopie Elect Transmiss, F-54506 Vandoeuvre Les Nancy, France. RP Toppani, A (reprint author), Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, 7000 East Ave,L-413, Livermore, CA 94550 USA. EM toppani2@llnl.gov RI Appourchaux, Thierry/F-4692-2010 NR 30 TC 23 Z9 23 U1 2 U2 4 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD OCT 20 PY 2005 VL 437 IS 7062 BP 1121 EP 1124 DI 10.1038/nature04128 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 975KD UT WOS:000232660500036 PM 16237436 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Arnoud, Y Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Badaud, F Baden, A Baldin, B Balm, PW Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Beauceron, S Begalli, M Begel, M Bellavance, A Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borcherding, F Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Cho, DK Choi, S Choudhary, B Christiansen, T Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cothenet, A Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D da Motta, H Das, M Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E Martins, CD Dean, S Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dong, H Doulas, S Dudko, LV Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Eroshin, OV Estrada, J Evans, H Evdokimov, A Evdokimov, VN Fast, J Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Genser, K Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golling, T Gollub, N Gomez, B Gounder, K Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Gris, P Grivaz, JF Groer, L Grunendahl, S Grunewald, MW Gurzhiev, SN Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Hagopian, S Hall, I Hall, RE Han, C Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Huang, J Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jain, V Jakobs, K Jenkins, A Jesik, R Johns, K Johnson, M Jonckheere, A Jonsson, P Juste, A Kado, MM Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, J Karmanov, D Kasper, J Kau, D Kaur, R Kehoe, R Kermiche, S Kesisoglou, S Khanov, A Kharchilava, A Kharzheev, YM Kim, H Kim, TJ Klima, B Klute, M Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Kryemadhi, A Krzywdzinski, S Kulik, Y Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lager, S Lahrichi, N Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Leonidopoulos, C Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linn, SL Linnemann, J Lipaev, VV Lipton, R Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lueking, L Lynker, M Lyon, AL Maciel, AKA Madams, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK Mayorov, AA McCarthy, R McCroskey, R Meder, D Melnitchouk, A Mendes, A Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Mitrevski, J Molina, J Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mundim, L Mutaf, YD Nagy, E Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T Nurse, E O'Dell, V O'Neil, DC Oguri, V Oliveira, N Oshima, N Garzon, GJOY Padley, P Parashar, N Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Petroff, P Petteni, M Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rani, KJ Ranjan, K Rapidis, PA Ratoff, PN Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Schellman, H Schieferdecker, P Schmitt, C Schwanenbergerz, C Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Smolek, K Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stanton, NR Stark, J Steele, J Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tomoto, M Toole, T Torborg, J Towers, S Trefzger, T Trincaz-Duvoid, S Tuchming, B Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vlimant, JR Von Toerne, E Vreeswijk, M Anh, TV Wahl, HD Wang, L Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wermes, N White, A White, V Wicke, D Wijngaarden, DA Wilson, GW Wimpenny, SJ Wittlin, J Wobisch, M Womersley, J Wood, DR Wyatt, TR Xu, Q Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yend, Y Yip, K Yoo, HD Youn, SW Yu, J Yurkewicz, A Zabi, A Zatserklyaniy, A Zdrazil, M Zeitnitz, C Zhang, D Zhang, X Zhao, T Zhao, Z Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zitoun, R Zutshi, V Zverev, EG AF Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Arnoud, Y Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Badaud, F Baden, A Baldin, B Balm, PW Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Beauceron, S Begalli, M Begel, M Bellavance, A Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borcherding, F Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Cho, DK Choi, S Choudhary, B Christiansen, T Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cothenet, A Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D da Motta, H Das, M Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E Martins, CD Dean, S Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dong, H Doulas, S Dudko, LV Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Eroshin, OV Estrada, J Evans, H Evdokimov, A Evdokimov, VN Fast, J Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Genser, K Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golling, T Gollub, N Gomez, B Gounder, K Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Gris, P Grivaz, JF Groer, L Grunendahl, S Grunewald, MW Gurzhiev, SN Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Hagopian, S Hall, I Hall, RE Han, C Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Huang, J Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jain, V Jakobs, K Jenkins, A Jesik, R Johns, K Johnson, M Jonckheere, A Jonsson, P Juste, A Kado, MM Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, J Karmanov, D Kasper, J Kau, D Kaur, R Kehoe, R Kermiche, S Kesisoglou, S Khanov, A Kharchilava, A Kharzheev, YM Kim, H Kim, TJ Klima, B Klute, M Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Kryemadhi, A Krzywdzinski, S Kulik, Y Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lager, S Lahrichi, N Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Leonidopoulos, C Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linn, SL Linnemann, J Lipaev, VV Lipton, R Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lueking, L Lynker, M Lyon, AL Maciel, AKA Madams, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK Mayorov, AA McCarthy, R McCroskey, R Meder, D Melnitchouk, A Mendes, A Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Mitrevski, J Molina, J Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mundim, L Mutaf, YD Nagy, E Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T Nurse, E O'Dell, V O'Neil, DC Oguri, V Oliveira, N Oshima, N Garzon, GJOY Padley, P Parashar, N Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Petroff, P Petteni, M Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rani, KJ Ranjan, K Rapidis, PA Ratoff, PN Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Schellman, H Schieferdecker, P Schmitt, C Schwanenbergerz, C Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Smolek, K Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stanton, NR Stark, J Steele, J Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tomoto, M Toole, T Torborg, J Towers, S Trefzger, T Trincaz-Duvoid, S Tuchming, B Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vlimant, JR Von Toerne, E Vreeswijk, M Anh, TV Wahl, HD Wang, L Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wermes, N White, A White, V Wicke, D Wijngaarden, DA Wilson, GW Wimpenny, SJ Wittlin, J Wobisch, M Womersley, J Wood, DR Wyatt, TR Xu, Q Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yend, Y Yip, K Yoo, HD Youn, SW Yu, J Yurkewicz, A Zabi, A Zatserklyaniy, A Zdrazil, M Zeitnitz, C Zhang, D Zhang, X Zhao, T Zhao, Z Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zitoun, R Zutshi, V Zverev, EG CA DO Collaboration TI Measurement of the t(t)over-bar production cross section in p(p)over-bar collisions at root s=1.96 TeV using lepton plus jets events with lifetime b-tagging SO PHYSICS LETTERS B LA English DT Article ID TOP-QUARK PRODUCTION; PHYSICS AB We present a measurement of the top quark pair (t (t) over bar) production cross section (sigma(t (t) over bar)) in pp collisions at root s = 1.96 TeV using 230 pb(-1) of data collected by the DO experiment at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), missing transverse energy, and jets in the final state. We employ lifetime-based b-jet identification techniques to further enhance the t F purity of the selected sample. For a top quark mass of 175 GeV, we measure sigma(t (t) over bar) 8.6(-1.5)(+1.6) (stat. + syst.) +/- 0.6(lumi.) pb, in agreement with the standard model expectation. (c) 2005 Published by Elsevier B.V. C1 Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Univ Alberta, Edmonton, AB, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. York Univ, Toronto, ON M3J 2R7, Canada. McGill Univ, Montreal, PQ, Canada. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. Univ Clermont Ferrand, Phys Corpusculaire Lab, IN2P3, CNRS, Clermont Ferrand, France. Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. Univ Aix Marseille 2, CPPM, IN2P3, CNRS, Marseille, France. CNRS, IN2P3, Lab Accelerateur Lineaire, Orsay, France. Univ Paris 04, CNRS, LPNHE, IN2P3, Paris, France. Univ Paris 07, Paris, France. CEA Saclay, DAPNIA, Serv Phys Particles, Saclay, France. Univ Strasbourg, CNRS, IReS, IN2P3, Strasbourg, France. Univ Haute Alsace, Mulhouse, France. Univ Lyon 1, CNRS, Inst Phys Nucl, IN2P3, F-69622 Villeurbanne, France. Rhein Westfal TH Aachen, Inst Phys 3, D-5100 Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, Freiburg, Germany. Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. Univ Amsterdam, FOM Inst NIKHEF, Amsterdam, Netherlands. Radboud Univ Nijmegen, NIKHEF H, Nijmegen, Netherlands. Dubna Joint Nucl Res Inst, Dubna 141980, Russia. Inst Theoret & Expt Phys, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Lund Univ, Lund, Sweden. Royal Inst Technol, Stockholm, Sweden. Stockholm Univ, S-10691 Stockholm, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Lancaster, Lancaster, England. Univ London Imperial Coll Sci Technol & Med, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77251 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. EM flera@fnal.gov RI De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Oguri, Vitor/B-5403-2013; Telford, Paul/B-6253-2011; Nomerotski, Andrei/A-5169-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; KIM, Tae Jeong/P-7848-2015; Sznajder, Andre/L-1621-2016 OI De, Kaushik/0000-0002-5647-4489; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Sznajder, Andre/0000-0001-6998-1108 NR 27 TC 34 Z9 34 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD OCT 20 PY 2005 VL 626 BP 35 EP 44 DI 10.1016/j.physletb.2005.08.103 PG 10 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 978FT UT WOS:000232859700005 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Arnoud, Y Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Badaud, F Baden, A Baldin, B Balm, PW Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Beauceron, S Begalli, M Begel, M Bellavance, A Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borcherding, F Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Cho, DK Choi, S Choudhary, B Christiansen, T Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cothenet, A Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D da Motta, H Das, M Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ Cruz-Burelo, ED Martins, CD Dean, S Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dong, H Doulas, S Dudko, LV Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Eroshin, OV Estrada, J Evans, H Evdokimov, A Evdokimov, VN Fast, J Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Genser, K Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golling, T Gollub, N Gomez, B Gounder, K Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Gris, P Grivaz, JF Groer, L Grunendahl, S Grunewald, MW Gurzhiev, SN Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Hagopian, S Hall, I Hall, RE Han, C Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Huang, J Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jain, V Jakobs, K Jenkins, A Jesik, R Johns, K Johnson, M Jonckheere, A Jonsson, P Juste, A Kado, MM Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, J Karmanov, D Kasper, J Kau, D Kaur, R Kehoe, R Kermiche, S Kesisoglou, S Khanov, A Kharchilava, A Kharzheev, YM Kim, H Kim, TJ Klima, B Klute, M Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Kryemadhi, A Krzywdzinski, S Kulik, Y Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lager, S Lahrichi, N Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Leonidopoulos, C Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linn, SL Linnemann, J Lipaevp, VV Lipton, R Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lueking, L Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK Mayorov, AA McCarthy, R McCroskey, R Meder, D Melnitchouk, A Mendes, A Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Mitrevski, J Molina, J Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mundim, L Mutaf, YD Nagy, E Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T Nurse, E O'Dell, V O'Neil, DC Oguri, V Oliveira, N Oshima, N Garzon, GJOY Padley, P Parashar, N Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Petroff, P Petteni, M Phaf, L Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rani, KJ Ranjan, K Rapidis, PA Ratoff, PN Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Smolek, K Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stanton, NR Stark, J Steele, J Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Surnowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tomoto, M Toole, T Torborg, J Towers, S Trefzger, T Trincaz-Duvoid, S Tuchming, B Tully, C Turcot, AS Tuts, PM Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vlimant, JR Von Toerne, E Vreeswijk, M Anh, TV Wahl, HD Wang, L Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wermes, N White, A White, V Whiteson, D Wicke, D Wijngaarden, DA Wilson, GW Wimpenny, SJ Wittlin, J Wobisch, M Womersley, J Wood, DR Wyatt, TR Xu, Q Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yen, Y Yip, K Yoo, HD Youn, SW Yu, J Yurkewicz, A Zabi, A Zatserklyaniy, A Zdrazil, M Zeitnitz, C Zhang, D Zhang, X Zhao, T Zhao, Z Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zitoun, R Zutshi, V Zverev, EG AF Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Arnoud, Y Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Badaud, F Baden, A Baldin, B Balm, PW Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Beauceron, S Begalli, M Begel, M Bellavance, A Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borcherding, F Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Cho, DK Choi, S Choudhary, B Christiansen, T Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cothenet, A Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D da Motta, H Das, M Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ Cruz-Burelo, ED Martins, CD Dean, S Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dong, H Doulas, S Dudko, LV Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Eroshin, OV Estrada, J Evans, H Evdokimov, A Evdokimov, VN Fast, J Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Genser, K Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golling, T Gollub, N Gomez, B Gounder, K Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Gris, P Grivaz, JF Groer, L Grunendahl, S Grunewald, MW Gurzhiev, SN Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Hagopian, S Hall, I Hall, RE Han, C Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Huang, J Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jain, V Jakobs, K Jenkins, A Jesik, R Johns, K Johnson, M Jonckheere, A Jonsson, P Juste, A Kado, MM Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, J Karmanov, D Kasper, J Kau, D Kaur, R Kehoe, R Kermiche, S Kesisoglou, S Khanov, A Kharchilava, A Kharzheev, YM Kim, H Kim, TJ Klima, B Klute, M Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Kryemadhi, A Krzywdzinski, S Kulik, Y Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lager, S Lahrichi, N Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Leonidopoulos, C Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linn, SL Linnemann, J Lipaevp, VV Lipton, R Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lueking, L Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK Mayorov, AA McCarthy, R McCroskey, R Meder, D Melnitchouk, A Mendes, A Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Mitrevski, J Molina, J Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mundim, L Mutaf, YD Nagy, E Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T Nurse, E O'Dell, V O'Neil, DC Oguri, V Oliveira, N Oshima, N Garzon, GJOY Padley, P Parashar, N Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Petroff, P Petteni, M Phaf, L Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rani, KJ Ranjan, K Rapidis, PA Ratoff, PN Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Smolek, K Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stanton, NR Stark, J Steele, J Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Surnowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tomoto, M Toole, T Torborg, J Towers, S Trefzger, T Trincaz-Duvoid, S Tuchming, B Tully, C Turcot, AS Tuts, PM Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vlimant, JR Von Toerne, E Vreeswijk, M Anh, TV Wahl, HD Wang, L Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wermes, N White, A White, V Whiteson, D Wicke, D Wijngaarden, DA Wilson, GW Wimpenny, SJ Wittlin, J Wobisch, M Womersley, J Wood, DR Wyatt, TR Xu, Q Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yen, Y Yip, K Yoo, HD Youn, SW Yu, J Yurkewicz, A Zabi, A Zatserklyaniy, A Zdrazil, M Zeitnitz, C Zhang, D Zhang, X Zhao, T Zhao, Z Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zitoun, R Zutshi, V Zverev, EG CA DO Collaboration TI Measurement of the t(t)over-bar production cross section in p(p)over-bar collisions at root s=1.96 TeV using kinematic characteristics of lepton plus jets events SO PHYSICS LETTERS B LA English DT Article ID PHYSICS AB We present a measurement of the top quark pair (t (t) over bar) production cross section (sigma(t (t) over bar)) in pp collisions at a center-of-mass energy of 1.96 TeV using 230 pb(-1) of data collected by the DO detector at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), large missing transverse energy, and at least four jets, and extract the t (t) over bar content of the sample based on the kinematic characteristics of the events. For a top quark mass of 175 GeV, we measure sigma(t (t) over bar) 6.7(-1.3)(+1.4)(stat)(-1.1)(+1.6)(syst) +/- 0.4(lumi) pb, in good agreement with the standard model prediction. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Buenos Aires, Buenos Aires, DF, Argentina. Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. Univ Estado Rio De Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Univ Alberta, Edmonton, AB, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. York Univ, Toronto, ON M3J 2R7, Canada. McGill Univ, Montreal, PQ, Canada. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco, Quito, Ecuador. Univ Clermont Ferrand, IN2P3, CNRS, Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Grenoble 1, CNRS, Lab Phys Subatom & Cosmol, IN2P3, Grenoble, France. Univ Aix Marseille 2, CNRS, IN2P3, CPPM, Marseille, France. CNRS, Lab Accelerateur Lineaire, CPPM, Orsay, France. CNRS, Lab Accelerateur Lineaire, IN2P3, Orsay, France. Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. CEA Saclay, DAPNIA, Serv Phys Particules, Saclay, France. Univ Strasbourg, CNRS, IN2P3, IReS, Strasbourg, France. Univ Haute Alsace, Mulhouse, France. Univ Lyon 1, CNRS, Inst Phys Nucl, IN2P3, F-69622 Villeurbanne, France. Rhein Westfal TH Aachen, Inst Phys 3, D-5100 Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, Freiburg, Germany. Univ Munich, Mainz, Germany. Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. Univ Amsterdam, FOM Inst, NIKHEF, Amsterdam, Netherlands. Radboud Univ Nijmegen, NIKHEF, Nijmegen, Netherlands. Dubna Joint Nucl Res Inst, Dubna 141980, Russia. Inst Theoret & Expt Phys, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Lund Univ, Lund, Sweden. Royal Inst Technol, Stockholm, Sweden. Stockholm Univ, S-10691 Stockholm, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Lancaster, Lancaster, England. Univ London Imperial Coll Sci Technol & Med, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Univ Oklahoma, Norman, OK 73019 USA. Langston Univ, Langston, OK 73050 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Univ Buenos Aires, Buenos Aires, DF, Argentina. EM gerber@fnal.gov RI Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; KIM, Tae Jeong/P-7848-2015; Sznajder, Andre/L-1621-2016; Telford, Paul/B-6253-2011; Nomerotski, Andrei/A-5169-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Oguri, Vitor/B-5403-2013 OI Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Sznajder, Andre/0000-0001-6998-1108; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; NR 22 TC 31 Z9 31 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD OCT 20 PY 2005 VL 626 BP 45 EP 54 DI 10.1016/j.physletb.2005.08.104 PG 10 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 978FT UT WOS:000232859700006 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Arnoud, Y Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Badaud, F Baden, A Baldin, B Balm, PW Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Beauceron, S Begalli, M Begel, M Bellavance, A Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borcherding, F Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Cho, DK Choi, S Choudhary, B Christiansen, T Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cothenet, A Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D da Motta, H Das, M Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E Martins, CD Dean, S Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dong, H Doulas, S Dudko, LV Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Eroshin, OV Estrada, J Evans, H Evdokimov, A Evdokimov, VN Fast, J Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Genser, K Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golling, T Gollub, N Gomez, B Gounder, K Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Gris, P Grivaz, JF Groer, L Grunendahl, S Grunewald, MW Gurzhiev, SN Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Hagopian, S Hall, I Hall, RE Han, C Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Huang, J Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jain, V Jakobs, K Jenkins, A Jesik, R Johns, K Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kado, MM Kahn, S Kajfasz, E Kalinin, AM Kalk, J Karmanov, D Kasper, J Kau, D Kaur, R Kehoe, R Kermiche, S Kesisoglou, S Khanov, A Kharchilava, A Kharzheev, YM Kim, H Kim, TJ Klima, B Klute, M Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Kryemadhi, A Krzywdzinski, S Kulik, Y Kumar, A Kunori, S Kupco, A Kurca, I Kvita, J Lager, S Lahrichi, N Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Leonidopoulos, C Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linn, SL Linnemann, J Lipaev, VV Lipton, R Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lueking, L Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK Mayorov, AA McCarthy, R McCroskey, R Meder, D Melnitchouk, A Mendes, A Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Mitrevski, J Molina, J Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mundim, L Mutaf, YD Nagy, E Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T Nurse, E O'Dell, V O'Neil, DC Oguri, V Oliveira, N Oshima, N Garzon, GJOY Padley, P Parashar, N Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Petroff, P Petteni, M Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rani, KJ Ranjan, K Rapidis, PA Ratoff, PN Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Smolek, K Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stanton, NR Stark, J Steele, J Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tomoto, M Toole, T Torborg, J Towers, S Trefzger, T Trincaz-Duvoid, S Tuchming, B Tully, C Turcot, AS Tuts, PM Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vlimant, JR Von Toerne, E Vreeswijk, M Anh, TV Wahl, HD Wang, L Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wermes, N White, A White, V Whiteson, D Wicke, D Wijngaarden, DA Wilson, GW Wimpenny, SJ Wittlin, J Wobisch, M Womersley, J Wood, DR Wyatt, TR Xu, Q Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yen, Y Yip, K Yoo, HD Youn, SW Yu, J Yurkewicz, A Zabi, A Zatserklyaniy, A Zdrazil, M Zeitnitz, C Zhang, D Zhang, X Zhao, T Zhao, Z Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zitoun, R Zutshi, V Zverev, EG AF Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Arnoud, Y Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Badaud, F Baden, A Baldin, B Balm, PW Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Beauceron, S Begalli, M Begel, M Bellavance, A Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borcherding, F Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Cho, DK Choi, S Choudhary, B Christiansen, T Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cothenet, A Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D da Motta, H Das, M Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E Martins, CD Dean, S Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dong, H Doulas, S Dudko, LV Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Eroshin, OV Estrada, J Evans, H Evdokimov, A Evdokimov, VN Fast, J Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Genser, K Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golling, T Gollub, N Gomez, B Gounder, K Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Gris, P Grivaz, JF Groer, L Grunendahl, S Grunewald, MW Gurzhiev, SN Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Hagopian, S Hall, I Hall, RE Han, C Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Huang, J Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jain, V Jakobs, K Jenkins, A Jesik, R Johns, K Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kado, MM Kahn, S Kajfasz, E Kalinin, AM Kalk, J Karmanov, D Kasper, J Kau, D Kaur, R Kehoe, R Kermiche, S Kesisoglou, S Khanov, A Kharchilava, A Kharzheev, YM Kim, H Kim, TJ Klima, B Klute, M Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Kryemadhi, A Krzywdzinski, S Kulik, Y Kumar, A Kunori, S Kupco, A Kurca, I Kvita, J Lager, S Lahrichi, N Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Leonidopoulos, C Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linn, SL Linnemann, J Lipaev, VV Lipton, R Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lueking, L Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK Mayorov, AA McCarthy, R McCroskey, R Meder, D Melnitchouk, A Mendes, A Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Mitrevski, J Molina, J Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mundim, L Mutaf, YD Nagy, E Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T Nurse, E O'Dell, V O'Neil, DC Oguri, V Oliveira, N Oshima, N Garzon, GJOY Padley, P Parashar, N Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Petroff, P Petteni, M Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rani, KJ Ranjan, K Rapidis, PA Ratoff, PN Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Smolek, K Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stanton, NR Stark, J Steele, J Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tomoto, M Toole, T Torborg, J Towers, S Trefzger, T Trincaz-Duvoid, S Tuchming, B Tully, C Turcot, AS Tuts, PM Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vlimant, JR Von Toerne, E Vreeswijk, M Anh, TV Wahl, HD Wang, L Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wermes, N White, A White, V Whiteson, D Wicke, D Wijngaarden, DA Wilson, GW Wimpenny, SJ Wittlin, J Wobisch, M Womersley, J Wood, DR Wyatt, TR Xu, Q Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yen, Y Yip, K Yoo, HD Youn, SW Yu, J Yurkewicz, A Zabi, A Zatserklyaniy, A Zdrazil, M Zeitnitz, C Zhang, D Zhang, X Zhao, T Zhao, Z Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zitoun, R Zutshi, V Zverev, EG CA DO Collaboration TI Measurement of the t(t)over-bar production cross section in p(p)over-bar collisions at root s=1.96 TeV in dilepton final states SO PHYSICS LETTERS B LA English DT Article ID TOP-QUARK; B-QUARK; DETECTOR; PHYSICS AB We present a measurement of the top quark pair (a) production cross section in pp collisions at root s = 1.96 TeV using events with two charged leptons in the final state. This analysis utilizes an integrated luminosity of 224-243 pb(-1) collected with the DO detector at the Fermilab Tevatron Collider. We observe 13 events in the e(+)e(-), e mu and mu(+)mu(-) channels with an expected background of 3.2 +/- 0.7 events. For a top quark mass of 175 GeV, we measure a t (t) over bar production cross section of sigma(t (t) over bar) = 8.6(-2.7)(+3.2) (stat) +/- 1.1(syst) +/- 0.6(lumi) pb, consistent with the standard model prediction. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Alberta, Edmonton, AB, Canada. York Univ, Toronto, ON M3J 2R7, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. McGill Univ, Montreal, PQ, Canada. Acad Sinica, Inst High Energy Phys, Beijing, Peoples R China. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco, Quito, Ecuador. Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. Univ Grenoble 1, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. Univ Aix Marseille 2, CPPM, IN2P3, CNRS, Marseille, France. CNRS, Lab Accelerateur Lineaire, IN2P3, Orsay, France. Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. Univ Paris 07, Paris, France. CEA Saclay, Serv Phys Particules, DAPNIA, Saclay, France. Univ Strasbourg 1, CNRS, IN2P3, IReS, Mulhouse, France. Univ Haute Alsace, Mulhouse, France. Univ Lyon 1, CNRS, Inst Phys Nucl, IN2P3, F-69622 Villeurbanne, France. Rhein Westfal TH Aachen, Inst Phys 3, D-5100 Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Bonn, Inst Phys, Freiburg, Germany. Univ Freiburg, Inst Phys, Freiburg, Germany. Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. Univ Amsterdam, FOM Inst, NIKHEF, Amsterdam, Netherlands. Radboud Univ Nijmegen, Nijmegen, Netherlands. Dubna Joint Nucl Res Inst, Dubna 141980, Russia. Inst Theoret & Expt Phys, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Lund Univ, Royal Inst Technol, Lund, Sweden. Stockholm Univ, S-10691 Stockholm, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Lancaster, Lancaster, England. Univ London Imperial Coll Sci Technol & Med, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Univ Alberta, Edmonton, AB, Canada. EM clement@fnal.gov RI Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; KIM, Tae Jeong/P-7848-2015; Sznajder, Andre/L-1621-2016; Dudko, Lev/D-7127-2012; Merkin, Mikhail/D-6809-2012; Telford, Paul/B-6253-2011; Nomerotski, Andrei/A-5169-2010; Novaes, Sergio/D-3532-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Oguri, Vitor/B-5403-2013; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Leflat, Alexander/D-7284-2012 OI Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Sznajder, Andre/0000-0001-6998-1108; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; NR 33 TC 17 Z9 17 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD OCT 20 PY 2005 VL 626 BP 55 EP 64 DI 10.1016/j.physletb.2005.08.105 PG 10 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 978FT UT WOS:000232859700007 ER PT J AU Kharzeev, D Tuchin, K AF Kharzeev, D Tuchin, K TI Chaos in the color glass condensate SO PHYSICS LETTERS B LA English DT Article ID GLUON DISTRIBUTION-FUNCTIONS; WEIZSACKER-WILLIAMS FIELD; LARGE NUCLEUS; DIFFRACTION DISSOCIATION; QCD; EVOLUTION; EQUATION; VETO AB The number of gluons in the hadron wave function is discrete, and their formation in the chain of small x evolution occurs over discrete rapidity intervals of Delta y similar or equal to 1/alpha(s). We therefore consider the evolution as a discrete quantum process. We show that the discrete version of the mean-field Kovchegov evolution equation gives rise to strong fluctuations in the scattering amplitude, not present in the continuous equation. We find that if the linear evolution is as fast as predicted by the perturbative BFKL dynamics, the scattering amplitude at high energies exhibits a chaotic behavior. As a consequence, the properties of diffraction at high energies become universal. (c) 2005 Published by Elsevier B.V. C1 Brookhaven Natl Lab, Dept Phys, Nucl Theory Grp, Upton, NY 11973 USA. RP Kharzeev, D (reprint author), Brookhaven Natl Lab, Dept Phys, Nucl Theory Grp, Upton, NY 11973 USA. EM kharzeev@bnl.gov NR 28 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD OCT 20 PY 2005 VL 626 BP 147 EP 150 DI 10.1016/j.physletb.2005.06.091 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 978FT UT WOS:000232859700018 ER PT J AU Tait, SL Dohnalek, Z Campbell, CT Kay, BD AF Tait, SL Dohnalek, Z Campbell, CT Kay, BD TI Methane adsorption and dissociation and oxygen adsorption and reaction with CO on Pd nanoparticles on MgO(100) and on Pd(111) SO SURFACE SCIENCE LA English DT Article DE methane; oxygen; palladium; catalysis; chemisorption; sticking; surface chemical reaction; nanostructures ID MOLECULAR-BEAM; CHEMICAL CONVERSION; PALLADIUM CLUSTERS; SITE REQUIREMENTS; REACTION PATHWAYS; CH4 DISSOCIATION; MAGNESIUM-OXIDE; 100 SURFACE; MGO FILMS; CHEMISORPTION AB We present measurements of the desorption kinetics and dissociative sticking probability of methane on the surfaces of Pd(111) and Pd nanoparticles supported on MgO(100). A molecular beam system was used to directly probe the fraction of methane molecules that dissociate at the Pd surfaces as a function of the molecular beam energy and incident angle. Measurements on the Pd(111) surface confirm "normal energy scaling" for the methane dissociative sticking probability, consistent with an activation barrier normal to the surface, although there may be additional barriers in other degrees of freedom, but with little corrugation parallel to the surface. Sticking measurements on supported Pd particles (similar to 3 mn wide) with the methane beam directed normal to the MgO(100) surface results in a large fraction, of the methane/Pd collisions occurring on regions of the particles where the beam direction is far from the local particle surface normal, resulting in lower sticking probability. We attempt to decouple this effect from the measured sticking probabilities in order to compare the intrinsic reactivity of the Pd particles with Pd(111). We find that the sticking probability on similar to 3 nm Pd particle surfaces is at most twice as large as on Pd(111). This result depends on our assumption that these annealed Pd particles have the known equilibrium particle shape (truncated half octahedron). We also discuss the need for detailed structural knowledge of the particles and careful geometric analysis when probing direct collisional activation barrier crossing using molecular beams. Temperature programmed desorption studies of physisorbed (not dissociated) methane reveal that the Pd particles bind methane more strongly than Pd(111). Oxygen adsorbs on the Pd nanoparticles via a mobile, molecular O(2) precursor state which is transiently adsorbed on the MgO(100) surface. An induction period is observed on Pd nanoparticles for the titration of adsorbed O by CO gas to make CO(2) which is not observed on Pd(111). This is attributed to inhibition by adsorbed O, whose saturation coverage on the Pd particles is 41% greater than on Pd(111). (c) 2005 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Fundamental Sci Directorate, Div Chem Sci, Richland, WA 99352 USA. Univ Washington, Dept Phys, Seattle, WA 98195 USA. Univ Washington, Dept Chem, Seattle, WA 98195 USA. RP Kay, BD (reprint author), Pacific NW Natl Lab, Fundamental Sci Directorate, Div Chem Sci, Richland, WA 99352 USA. EM bruce.kay@pnl.gov RI Tait, Steven/I-5985-2013; OI Tait, Steven/0000-0001-8251-5232; Dohnalek, Zdenek/0000-0002-5999-7867 NR 67 TC 27 Z9 27 U1 2 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD OCT 20 PY 2005 VL 591 IS 1-3 BP 90 EP 107 DI 10.1016/j.susc.2005.06.024 PG 18 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 968PV UT WOS:000232175400014 ER PT J AU Chang, KC Blakely, JM AF Chang, KC Blakely, JM TI Arrays of widely spaced atomic steps on Si(111) mesas due to sublimation SO SURFACE SCIENCE LA English DT Article DE computer simulations; atomic force microscopy; step formation and bunching; silicon; single crystal surfaces ID CONSERVING SHAPE CHANGES; SURFACE; SI(001); CRYSTALS AB Steps with spacings of microns form on top of mesas fabricated on Si(111) that is annealed at temperatures where sublimation becomes important. Upon annealing, mesas first develop ridges along their edges, effectively creating craters which then become step-free by a step flow process described in the literature [S. Tanaka, C.C. Umbach, J.M. Blakely, R.M, Tromp, M, Mankos, Appl. Phys. Lett. 69 (9) (1996) 1235; Y. Homma, N. Aizawa, T. Ogino, Jpn. J. Appl. Phys. 35 (213) (1996) L241]. Due to the miscut of the average surface from (111), ridge breakdown occurs on one edge of each mesa as sublimation proceeds. The breakdown point then acts as a source of steps which spread out over the mesa surface. The distribution of steps in the resulting step train depends on the sublimation rate, direct step-step interaction and the diffusive exchange of atoms among the steps. Insight into the role of these processes on the self-organization of the wide terrace distributions is provided by computer simulations using BCF (Burton, Cabrera and Frank) theory. This shows that step spacing can be controlled by varying the annealing temperature and the deposition flux. Comparison of the experimental and predicted step distributions suggest that the dynamics of the widely spaced steps are sublimation limited. (c) 2005 Elsevier B.V. All rights reserved. C1 Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. RP Chang, KC (reprint author), Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. EM kc53@cornell.edu RI Chang, Kee-Chul/O-9938-2014 OI Chang, Kee-Chul/0000-0003-1775-2148 NR 24 TC 3 Z9 3 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD OCT 20 PY 2005 VL 591 IS 1-3 BP 133 EP 141 DI 10.1016/j.susc.2005.06.087 PG 9 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 968PV UT WOS:000232175400017 ER PT J AU Velasco, E Lamb, B Pressley, S Allwine, E Westberg, H Jobson, BT Alexander, M Prazeller, P Molina, L Molina, M AF Velasco, E Lamb, B Pressley, S Allwine, E Westberg, H Jobson, BT Alexander, M Prazeller, P Molina, L Molina, M TI Flux measurements of volatile organic compounds from an urban landscape SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MODEL AB Direct measurements of volatile organic compound (VOC) emissions that include all sources in urban areas are a missing requirement to evaluate emission inventories and constrain current photochemical modelling practices. Here we demonstrate the use of micrometeorological techniques coupled with fast-response sensors to measure urban VOC fluxes from a neighbourhood of Mexico City, where the spatial variability of surface cover and roughness is high. Fluxes of olefins, methanol, acetone, toluene and C-2-benzenes were measured and compared with the local gridded emissions inventory. VOC fluxes exhibited a clear diurnal pattern with a strong relationship to vehicular traffic. Recent photochemical modelling results suggest that VOC emissions are significantly underestimated in Mexico City, but for the olefin class, toluene, C2-benzenes, and acetone fluxes measured in this work, the results show general agreement with the gridded emissions inventory. While these measurements do not address the full suite of VOC emissions, the comparison with the inventory suggests that other explanations may be needed to explain the photochemical modelling results. C1 Washington State Univ, Lab Atmospher Res, Pullman, WA 99164 USA. Battelle Pacific NW Natl Lab, Richland, WA 99352 USA. MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. RP Washington State Univ, Lab Atmospher Res, Pullman, WA 99164 USA. EM blamb@wsu.edu NR 11 TC 27 Z9 27 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 19 PY 2005 VL 32 IS 20 AR L20802 DI 10.1029/2005GL023356 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 977UI UT WOS:000232828300001 ER PT J AU Bindu, R Pandey, SK Kumar, A Khalid, S Pimpale, AV AF Bindu, R Pandey, SK Kumar, A Khalid, S Pimpale, AV TI Local distortion of MnO6 octahedron in La1-xSrxMnO3+delta (x=0.1-0.9): an EXAFS study SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID X-RAY-ABSORPTION; MIXED-VALENCE MANGANITES; TRANSPORT-PROPERTIES; DOPED MANGANITES; LA1-XCAXMNO3; TEMPERATURE; PEROVSKITES; TRANSITION; DISORDER; OXIDES AB Room-temperature Mn K-edge extended x-ray absorption fine structure (EXAFS) studies were carried out on La1-xSrxMnO3+delta (X = 0.1-0.9) compounds. It is found from the detailed EXAFS analysis that the local structure around Mn sites is different from the global structure inferred from x-ray diffraction, especially for x <= 0.4, indicating the presence of local distortions in MnO6 octahedra. For the rhombohedral compounds, x = 0.1 to 0.3, the distortion is maximum for x = 0.1 and two bond lengths are seen: a short one in the basal plane and a long one in the apical plane. For compounds with x = 0.4-0.8 two short bonds in the basal plane and four long bonds (two in the basal plane and the remaining two in the apical plane) are seen. For the compounds with compositions up to x = 0.3, the long bond length decreases and the short bond length increases with increase in x, whereas for the compounds with 0.4 <= x <=, 0.8 both types of bond length decrease. Such behaviour of bond lengths is an indication of the changed nature of distortion from Jahn-Teller type to breathing type at x = 0.4 composition. C1 UGC DAE Consortium Sci Res, Indore 452017, India. Devi Ahilya Univ, Sch Phys, Indore 452017, India. Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Pandey, SK (reprint author), UGC DAE Consortium Sci Res, Univ Campus,Khandwa Rd, Indore 452017, India. EM sk_iuc@rediffmail.com RI Pandey, Sudhir/C-6023-2011 OI Pandey, Sudhir/0000-0003-3673-4818 NR 35 TC 23 Z9 23 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 19 PY 2005 VL 17 IS 41 BP 6393 EP 6404 DI 10.1088/0953-8984/17/41/010 PG 12 WC Physics, Condensed Matter SC Physics GA 988JC UT WOS:000233589400015 ER PT J AU Huang, SCJ Artyukhin, AB Wang, YM Ju, JW Stroeve, P Noy, A AF Huang, SCJ Artyukhin, AB Wang, YM Ju, JW Stroeve, P Noy, A TI Persistence length control of the polyelectrolyte layer-by-layer self-assembly on carbon nanotubes SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ADSORPTION; MULTILAYERS; SURFACES; PARTICLE; POLYION C1 Lawrence Livermore Natl Lab, Biosecur & Nanosci Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA. Univ Calif Davis, Dept Mat Sci & Chem Engn, Davis, CA 95616 USA. RP Noy, A (reprint author), Lawrence Livermore Natl Lab, Biosecur & Nanosci Lab, Chem & Mat Sci Directorate, 7000 East Ave, Livermore, CA 94550 USA. EM noy1@llnl.gov RI Wang, Yinmin (Morris)/F-2249-2010 OI Wang, Yinmin (Morris)/0000-0002-7161-2034 NR 26 TC 28 Z9 29 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 19 PY 2005 VL 127 IS 41 BP 14176 EP 14177 DI 10.1021/ja053060j PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 974QD UT WOS:000232605600028 PM 16218599 ER PT J AU Grogan, MJ Kaizuka, Y Conrad, RM Groves, JT Bertozzi, CR AF Grogan, MJ Kaizuka, Y Conrad, RM Groves, JT Bertozzi, CR TI Synthesis of lipidated green fluorescent protein and its incorporation in supported lipid bilayers SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MEMBRANE-PROTEINS; CHEMICAL LIGATION; GLYCOPROTEIN; SURFACES; CELLS AB Herein we report a semisynthetic method of producing membrane-anchored proteins. Ligation of synthetic lipids with designed anchor structures to proteins was performed using native chemical ligation (NCL) of a C-terminal peptide thioester and an N-terminal cysteine lipid. This strategy mimics the natural glycosylphosphatidylinositol (GPI) linkage found in many natural membrane-associated proteins; however, the synthetic method utilizes simple lipid anchors without glycans. Synthetically lipidated recombinant green fluorescent protein (GFP) was shown to be stably anchored to the membrane, and its lateral fluidity was quantitatively characterized by direct fluorescence imaging in supported membranes. Circumventing the steps of purification from native cell membranes, this methodology facilitates the reconstitution of membrane-associated proteins. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Howard Hughes Med Inst, Berkeley, CA 94720 USA. RP Groves, JT (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM JTGroves@lbl.gov; bertozzi@cchem.berkeley.edu NR 20 TC 46 Z9 48 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 19 PY 2005 VL 127 IS 41 BP 14383 EP 14387 DI 10.1021/ja052407f PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 974QD UT WOS:000232605600062 PM 16218633 ER PT J AU Lewis, FD Zhang, LG Liu, XY Zuo, XB Tiede, DM Long, H Schatz, GC AF Lewis, FD Zhang, LG Liu, XY Zuo, XB Tiede, DM Long, H Schatz, GC TI DNA as helical ruler: Exciton-coupled circular dichroism in DNA conjugates SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID RESONANCE ENERGY-TRANSFER; DUPLEX STABILITY; DYNAMICS; HAIRPINS; STILBENE; LINKERS; TRACT; OLIGONUCLEOTIDES; TRANSITION; STACKING AB The structure and properties of oligonucleotide conjugates possessing stilbenedicarboxamide chromophores at both ends of a poly(dA):poly(dT) base-pair domain of variable length have been investigated using a combination of spectroscopic and computational methods. These conjugates form capped hairpin structures in which one stilbene serves as a hairpin linker and the other as a hydrophobic end-cap. The capping stilbene stabilizes the hairpin structures by ca. 2 kcal/mol, making possible the formation of a stable folded structure containing a single A:T base pair. Exciton coupling between the stilbene chromophores has little effect on the absorption bands of capped hairpins. However, exciton-coupled circular dichroism (EC-CD) can be observed for capped hairpins possessing as many as 11 base pairs. Both the sign and intensity of the EC-CD spectrum are sensitive to the number of base pairs separating the stilbene chromophores, as a consequence of the distance and angular dependence of exciton coupling. Calculated spectra obtained using a static vector model based on canonical B-DNA are in good agreement with the experimental spectra. Molecular dynamics simulations show that conformational fluctuations of the capped hairpins result in large deviations of the averaged spectra in both the positive and negative directions. These results demonstrate for the first time the ability of B-DNA to serve as a helical ruler for the study of electronic interactions between aligned chromophores. Furthermore, they provide important tests for atomistic theoretical models of DNA. C1 Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Lewis, FD (reprint author), Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. EM lewis@chem.northwestern.edu RI Zuo, Xiaobing/F-1469-2010; Long, Hai/C-5838-2015; OI Zuo, Xiaobing/0000-0002-0134-4804 NR 41 TC 93 Z9 93 U1 1 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 19 PY 2005 VL 127 IS 41 BP 14445 EP 14453 DI 10.1021/ja0539387 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 974QD UT WOS:000232605600069 PM 16218640 ER PT J AU Archer, PI Radovanovic, PV Heald, SM Gamelin, DR AF Archer, PI Radovanovic, PV Heald, SM Gamelin, DR TI Low-temperature activation and deactivation of high-Curie-temperature ferromagnetism in a new diluted magnetic semiconductor: Ni2+-doped SnO2 SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID NANOCRYSTALLINE TIN OXIDE; ELECTRICAL SPIN INJECTION; ROOM-TEMPERATURE; THIN-FILMS; COUPLED PAIRS; QUANTUM DOTS; ZNO; COMPLEXES; SPECTRA; IONS AB We report the synthesis of colloidal Ni2+-doped SnO2 (Ni2+:SnO2) nanocrystals and their characterization by electronic absorption, magnetic circular dichroism, X-ray absorption, magnetic susceptibility, scanning electron microscopy, and X-ray diffraction measurements. The Ni2+ clopants are found to occupy pseudooctahedral Sn4+ cation sites of rutile SnO2 without local charge compensation. The paramagnetic nanocrystals exhibit robust high-Curie-temperature (Tc) ferromagnetism (M-s(300 K) = 0.8 mu B/Ni2+, Tc >> 300 K) when spin-coated into films, attributed to the formation of interfacial fusion defects. Facile reversibility of the paramagnetic-ferromagnetic phase transition is also observed. This magnetic phase transition is studied as a function of temperature, time, and atmospheric composition, from which the barrier to ferromagnetic activation (Ea) is estimated to be 1200 cm(-1). This energy is associated with ligand mobility on the surfaces of the Ni2+:SnO2 nanocrystals. The phase transition is reversed under air but not under N-2, from which the microscopic identity of the activating defect is proposed to be interfacial oxygen vacancies. C1 Univ Washington, Dept Chem, Seattle, WA 98195 USA. Pacific NW Natl Lab, Fundamental Sci Directorate, Richland, WA 99352 USA. RP Gamelin, DR (reprint author), Univ Washington, Dept Chem, Seattle, WA 98195 USA. EM Gamelin@chem.washington.edu NR 48 TC 92 Z9 92 U1 5 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 19 PY 2005 VL 127 IS 41 BP 14479 EP 14487 DI 10.1021/ja054205p PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 974QD UT WOS:000232605600073 PM 16218644 ER PT J AU Mills, SA Marletta, MA AF Mills, SA Marletta, MA TI Metal binding characteristics and role of iron oxidation in the ferric uptake regulator from Escherichia coli SO BIOCHEMISTRY LA English DT Article ID UPTAKE REGULATION PROTEIN; REGULATION FUR REPRESSOR; OPERATOR; TRANSPORT; GENE; HOMEOSTASIS; PROMOTER; SEQUENCE; OPERON; DNA AB The ferric uptake regulator is a metal-dependent transcription repressor that is activated by divalent transition metal cations. Fe(II) is believed to be the primary functional metal in vivo; however, the ability of other divalent cations to activate Fur brings into question the true physiological metal. Furthermore, the role of different oxidation states of iron in activating Fur has not been determined. Comparison of the affinity of different metals with intracellular metal concentrations would suggest which metals activate Fur in vivo; however, no accurate determinations of the affinity of Fur for metals have been reported. In this study, methods for reconstituting Fur with Fe(II), Fe(III), Co(II), and Zn(II) are described. Reconstituted protein was assayed for DNA affinity by gel shift assays. Fur is activated for DNA binding when reconstituted with Fe(III), as well as Fe(II), Zn(II), Co(II), and Mn(II), with little difference in DNA affinity for the different metallo forms of Fur. The affinity of Fur for the different metals was determined and ranges over several orders of magnitude in the following order: Zn(II) >> Co(II) > Fe(II) > Mn(II). Only Fe(II) binds with sufficient affinity to activate Fur significantly at physiological metal concentrations, when compared to previously determined total metal concentrations in Escherichia coli. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys Biosci, Berkeley, CA 94720 USA. RP Marletta, MA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM marletta@bekeley.edu FU NCI NIH HHS [CA26731] NR 22 TC 62 Z9 62 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD OCT 18 PY 2005 VL 44 IS 41 BP 13553 EP 13559 DI 10.1021/bi0507579 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 975AI UT WOS:000232632100013 PM 16216078 ER PT J AU Akgun, B Brittain, WJ Li, XF Wang, J Foster, MD AF Akgun, B Brittain, WJ Li, XF Wang, J Foster, MD TI Interface roughness correlation in diblock copolymer brushes synthesized by atom transfer radical polymerization SO MACROMOLECULES LA English DT Article ID THIN-FILMS; X-RAY; SURFACES C1 Univ Akron, Maurice Morton Inst Polymer Sci, Akron, OH 44325 USA. Argonne Natl Lab, Expt Facilities Div, Argonne, IL 60439 USA. RP Foster, MD (reprint author), Univ Akron, Maurice Morton Inst Polymer Sci, 170 Univ Ave, Akron, OH 44325 USA. EM mfoster@uakron.edu RI Akgun, Bulent/H-3798-2011 NR 12 TC 6 Z9 6 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD OCT 18 PY 2005 VL 38 IS 21 BP 8614 EP 8616 DI 10.1021/ma051277s PG 3 WC Polymer Science SC Polymer Science GA 974AX UT WOS:000232564800003 ER PT J AU Hilty, C McDonnell, EE Granwehr, J Pierce, KL Han, SI Pines, A AF Hilty, C McDonnell, EE Granwehr, J Pierce, KL Han, SI Pines, A TI Microfluidic gas-flow profiling using remote-detection NMR SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE hyperpolarization; xenon; magnetic resonance imaging ID POISEUILLE FLOW; DEVICE; H-1-NMR; SAMPLES; LIQUID; MRI AB We have used nuclear magnetic resonance (NMR) to obtain spatially and temporally resolved profiles of gas flow in microfluidic devices. Remote detection of the NMR signal both overcomes the sensitivity limitation of NMR and enables time-of-flight measurement in addition to spatially resolved imaging. Thus, detailed insight is gained into the effects of flow, diffusion, and mixing in specific geometries. The ability for noninvasive measurement of microfluidic flow, without the introduction of foreign tracer particles, is unique to this approach and is important for the design and operation of microfluidic devices. Although here we demonstrate an application to gas flow, extension to liquids, which have higher density, is implicit. C1 Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Hilty, C (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM hilty@berkeley.edu RI Han, Songi/E-4723-2012; Hilty, Christian/C-1892-2015 OI Han, Songi/0000-0001-6489-6246; Hilty, Christian/0000-0003-2539-2568 NR 26 TC 53 Z9 53 U1 0 U2 13 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 18 PY 2005 VL 102 IS 42 BP 14960 EP 14963 DI 10.1073/pnas.0507566102 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 977NZ UT WOS:000232811800006 PM 16214884 ER PT J AU Breshears, DD Cobb, NS Rich, PM Price, KP Allen, CD Balice, RG Romme, WH Kastens, JH Floyd, ML Belnap, J Anderson, JJ Myers, OB Meyer, CW AF Breshears, DD Cobb, NS Rich, PM Price, KP Allen, CD Balice, RG Romme, WH Kastens, JH Floyd, ML Belnap, J Anderson, JJ Myers, OB Meyer, CW TI Regional vegetation die-off in response to global-change-type drought SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE tree mortality; vegetation dynamics; climate change impacts; woodlands; Pinus edulis ID PINUS-EDULIS; JUNIPERUS-MONOSPERMA; SOIL-MOISTURE; CLIMATE; PRECIPITATION; DISTURBANCE; SOUTHWEST; WOODLAND; DYNAMICS; IMPACTS AB Future drought is projected to occur under warmer temperature conditions as climate change progresses, referred to here as global-change-type drought, yet quantitative assessments of the triggers and potential extent of drought-induced vegetation die-off remain pivotal uncertainties in assessing climate-change impacts. Of particular concern is regional-scale mortality of overstory trees, which rapidly alters ecosystem type, associated ecosystem properties, and land surface conditions for decades. Here, we quantify regional-scale vegetation die-off across southwestern North American woodlands in 2002-2003 in response to drought and associated bark beetle infestations. At an intensively studied site within the region, we quantified that after 15 months of depleted soil water content, >90% of the dominant, overstory tree species (Pinus edulis, a pinon) died. The die-off was reflected in changes in a remotely sensed index of vegetation greenness (Normalized Difference Vegetation index), not only at the intensively studied site but also across the region, extending over 12,000 km(2) or more; aerial and field surveys confirmed the general extent of the die-off. Notably, the recent drought was warmer than the previous subcontinental drought of the 1950s. The limited, available observations suggest that die-off from the recent drought was more extensive than that from the previous drought, extending into wetter sites within the tree species' distribution. Our results quantify a trigger leading to rapid, drought-induced die-off of overstory woody plants at subcontinental scale and highlight the potential for such die-off to be more severe and extensive for future global-change-type drought under warmer conditions. C1 Univ Arizona, Sch Nat Resources, Inst Study Plant Earth, Tucson, AZ 85721 USA. Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA. No Arizona Univ, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86011 USA. No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA. Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Environm Stewardship Div, Los Alamos, NM 87545 USA. Univ Kansas, Dept Geog, Lawrence, KS 66045 USA. Univ Kansas, Dept Math, Lawrence, KS 66045 USA. Kansan Appl Remote Sensing Program, Lawrence, KS 66047 USA. US Geol Survey, Ft Collins Sci Ctr, Jemez Mt Field Stn, Los Alamos, NM 87544 USA. Colorado State Univ, Forest Rangeland & Watershed Stewardship, Ft Collins, CO 80523 USA. Prescott Coll, Environm Studies Program, Prescott, AZ 86301 USA. US Geol Survey, SW Biol Sci Ctr, Moab, UT 84532 USA. Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA. Univ New Mexico, Div Epidemiol & Biostat, Albuquerque, NM 87131 USA. RP Breshears, DD (reprint author), Univ Arizona, Sch Nat Resources, Inst Study Plant Earth, Tucson, AZ 85721 USA. EM daveb@email.arizona.edu RI Myers, Orrin/F-1130-2010; Breshears, David/B-9318-2009; Romme, William/C-7317-2016 OI Breshears, David/0000-0001-6601-0058; FU NIEHS NIH HHS [P30 ES012072, P30ES012072] NR 28 TC 838 Z9 867 U1 31 U2 352 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 18 PY 2005 VL 102 IS 42 BP 15144 EP 15148 DI 10.1073/pnas.0505734102 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 977NZ UT WOS:000232811800038 PM 16217022 ER PT J AU Darling, SB Yufa, NA Cisse, AL Bader, SD Sibener, SJ AF Darling, SB Yufa, NA Cisse, AL Bader, SD Sibener, SJ TI Self-organization of FePt nanoparticles on photochemically modified diblock copolymer templates SO ADVANCED MATERIALS LA English DT Article ID ATOMIC-FORCE MICROSCOPY; BLOCK-COPOLYMERS; POLY(METHYL METHACRYLATE); ULTRATHIN FILMS; NANOCRYSTALS; COALESCENCE; FABRICATION; EVOLUTION; MIXTURES; PATTERNS AB A cylindrical-phase diblock copolymer ultrathin film is modified with vacuum UV light to selectively remove one of the surface domain components. The corrugated film then serves as a template for the self-organization of colloidal magnetic nanoparticles (see Figure). This hierarchical methodology is a general route to the nanoscale assembly of functional materials. This work has ramifications for potential future bit-patterned magnetic-storage media. C1 Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. Univ Chicago, Dept Chem, Chicago, IL 60637 USA. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. Univ Chicago, Dept Phys, Chicago, IL 60637 USA. RP Sibener, SJ (reprint author), Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. EM s-sibener@uchicago.edu RI Bader, Samuel/A-2995-2013 NR 36 TC 137 Z9 137 U1 2 U2 39 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD OCT 17 PY 2005 VL 17 IS 20 BP 2446 EP + DI 10.1002/adma.200500960 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 976WP UT WOS:000232764500008 ER PT J AU Lee, JH Kim, CH Ho, KM Constant, K AF Lee, JH Kim, CH Ho, KM Constant, K TI Two-polymer microtransfer molding for highly layered microstructures SO ADVANCED MATERIALS LA English DT Article ID PHOTONIC CRYSTALS; FABRICATION; RESIN AB Two-polymer microtransfer molding (2P-mu TM), an advanced microtransfer molding technique, is developed for fabrication of 3D microstructures. The use of two different photocurable prepolymers and a simple and robust filling and coating method allows an extremely high yield in layer-by-layer microfabrication able to produce highly layered microstructures with high structural fidelity (see Figure). C1 Iowa State Univ Sci & Technol, Dept Phys & Astron, Ames Lab, US DOE, Ames, IA 50011 USA. Iowa State Univ Sci & Technol, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Lee, JH (reprint author), Iowa State Univ Sci & Technol, Dept Phys & Astron, Ames Lab, US DOE, Ames, IA 50011 USA. EM leejh@iastate.edu; constant@iastate.edu RI Constant, Kristen/C-3673-2014 OI Constant, Kristen/0000-0001-7138-9365 NR 19 TC 28 Z9 29 U1 5 U2 20 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD OCT 17 PY 2005 VL 17 IS 20 BP 2481 EP + DI 10.1002/adma.200500721 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 976WP UT WOS:000232764500017 ER PT J AU Czaplewski, DA Sullivan, JP Friedmann, TA Wendt, JR AF Czaplewski, DA Sullivan, JP Friedmann, TA Wendt, JR TI Temperature dependence of the mechanical properties of tetrahedrally coordinated amorphous carbon thin films SO APPLIED PHYSICS LETTERS LA English DT Article ID BRILLOUIN-SCATTERING; DIAMOND; SILICON; DEVICES; MEMS AB The complete elastic properties of tetrahedrally coordinated amorphous carbon (ta-C) thin films have been measured in the temperature range of 300-873 K. Flexural and torsional mechanical oscillators were fabricated from ta-C, and using the resonant frequency of the oscillators as a function of temperature, we calculated the temperature-dependent Young's and shear moduli (658 +/- 24 and 271 +/- 6.6 GPa, at 300 K, respectively). From these values, we calculated the bulk modulus, Poisson's ratio, and the elastic stiffness and compliance constants as a function of temperature. In addition, the temperature dependence of the coefficient of thermal expansion of ta-C was determined using a wafer curvature technique. (C) 2005 American Institute of Physics. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Czaplewski, DA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM daczapl@sandia.gov NR 18 TC 7 Z9 8 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 17 PY 2005 VL 87 IS 16 AR 161915 DI 10.1063/1.2108132 PG 3 WC Physics, Applied SC Physics GA 973YG UT WOS:000232557900029 ER PT J AU Foltyn, SR Wang, H Civale, L Jia, QX Arendt, PN Maiorov, B Li, Y Maley, MP MacManus-Driscoll, JL AF Foltyn, SR Wang, H Civale, L Jia, QX Arendt, PN Maiorov, B Li, Y Maley, MP MacManus-Driscoll, JL TI Overcoming the barrier to 1000 A/cm width superconducting coatings SO APPLIED PHYSICS LETTERS LA English DT Article ID CRITICAL-CURRENT-DENSITY; YBCO-COATED CONDUCTORS; EPITAXIAL MULTILAYERS; THICKNESS DEPENDENCE; FILM THICKNESS; BUFFER LAYERS; THIN-FILMS; IBAD-MGO; YBA2CU3O7-DELTA; MICROSTRUCTURE AB Remarkable progress has been made in the development of YBa2Cu3O7-delta (YBCO)-based coated conductors, and the problems of continuous processing of commercially viable tape lengths are being rapidly solved by companies around the world. However, the current carried by these tapes is presently limited to about 100 A for a 1-cm-wide tape, and this is due to a rapid decrease of critical current density (J(c)) as the coating thickness is increased. We have now overcome this problem by separating relatively thin YBCO layers with very thin layers of CeO2. Using this multilayer technology, we have achieved J(c) values on metal substrates of up to 4.0 MA/cm(2) (75 K, self-field) in films as thick as 3.5 mu m, for an extrapolated current of 1400 A/cm width. (C) 2005 American Institute of Physics. C1 Los Alamos Natl Lab, Superconduct Technol Ctr, Los Alamos, NM 87545 USA. Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. RP Foltyn, SR (reprint author), Los Alamos Natl Lab, Superconduct Technol Ctr, POB 1663, Los Alamos, NM 87545 USA. EM sfoltyn@lanl.gov RI Jia, Q. X./C-5194-2008; Wang, Haiyan/P-3550-2014; OI Wang, Haiyan/0000-0002-7397-1209; Maiorov, Boris/0000-0003-1885-0436 NR 28 TC 128 Z9 132 U1 2 U2 28 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 17 PY 2005 VL 87 IS 16 AR 162505 DI 10.1063/1.2106021 PG 3 WC Physics, Applied SC Physics GA 973YG UT WOS:000232557900042 ER PT J AU Karapetrov, G Fedor, J Iavarone, M Marshall, MT Divan, R AF Karapetrov, G Fedor, J Iavarone, M Marshall, MT Divan, R TI Imaging of vortex states in mesoscopic superconductors SO APPLIED PHYSICS LETTERS LA English DT Article ID FILMS AB Enhanced vortex pinning in nanoscale-engineered superconductors increases the superconducting critical currents by orders of magnitude. Spatial imaging of vortices in these systems at high magnetic fields would provide further insight into the pinning mechanisms and enable development of high-pinning-strength materials. We have developed a novel method of fabricating atomically flat superconductor surfaces containing periodic array of normal metal pinning centers. Using scanning tunneling microscopy and spectroscopy, we map the local density of states in this heterostructure showing the vortex distribution at different applied magnetic fields. By increasing the applied magnetic field, the normal metal pinning centers accommodate several vortices per center until reaching the saturation point, beyond which new vortices get accommodated in the interstitial superconducting regions. The arrangement and pinning of the interstitial vortices is determined by the periodic pinning potential, and repulsive vortex-vortex interaction. (C) 2005 American Institute of Physics. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Slovak Acad Sci, Inst Elect Engn, Bratislava 84104, Slovakia. Univ Illinois, Ctr Microanal Mat, Fukuoka 81801, Japan. Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Karapetrov, G (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM goran@anl.gov RI Iavarone, Maria/C-3628-2008; Karapetrov, Goran/C-2840-2008 OI Karapetrov, Goran/0000-0003-1113-0137 NR 13 TC 11 Z9 11 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 17 PY 2005 VL 87 IS 16 AR 162515 DI 10.1063/1.2105993 PG 3 WC Physics, Applied SC Physics GA 973YG UT WOS:000232557900052 ER PT J AU Li, SX Haller, EE Yu, KM Walukiewicz, W Ager, JW Wu, J Shan, W Lu, H Schaff, WJ AF Li, SX Haller, EE Yu, KM Walukiewicz, W Ager, JW Wu, J Shan, W Lu, H Schaff, WJ TI Effect of native defects on optical properties of InxGa1-xN alloys SO APPLIED PHYSICS LETTERS LA English DT Article ID MOLECULAR-BEAM EPITAXY; FUNDAMENTAL-BAND GAP; INN; ABSORPTION; SEMICONDUCTORS; GROWTH; FILMS AB The energy position of the optical-absorption edge and the free-carrier populations in InxGa1-xN ternary alloys can be controlled using high-energy He-4(+) irradiation. The blueshift of the absorption edge after irradiation in In-rich material (x>0.34) is attributed to the band-filling effect (Burstein-Moss shift) due to the native donors introduced by the irradiation. In Ga-rich material, optical-absorption measurements show that the irradiation-introduced native defects are inside the band gap, where they are incorporated as acceptors. The observed irradiation-produced changes in the optical-absorption edge and the carrier populations in InxGa1-xN are in excellent agreement with the predictions of the amphoteric defect model. (C) 2005 American Institute of Physics. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Cornell Univ, Dept Elect & Comp Engn, Ithaca, NY 14853 USA. RP Li, SX (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM w_walukiewicz@lbl.gov RI Wu, Junqiao/G-7840-2011; Yu, Kin Man/J-1399-2012; OI Wu, Junqiao/0000-0002-1498-0148; Yu, Kin Man/0000-0003-1350-9642; Ager, Joel/0000-0001-9334-9751 NR 15 TC 17 Z9 18 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 17 PY 2005 VL 87 IS 16 AR 161905 DI 10.1063/1.2108118 PG 3 WC Physics, Applied SC Physics GA 973YG UT WOS:000232557900019 ER PT J AU Ozaydin, G Ozcan, AS Wang, YY Ludwig, KF Zhou, H Headrick, RL Siddons, DP AF Ozaydin, G Ozcan, AS Wang, YY Ludwig, KF Zhou, H Headrick, RL Siddons, DP TI Real-time x-ray studies of Mo-seeded Si nanodot formation during ion bombardment SO APPLIED PHYSICS LETTERS LA English DT Article ID PATTERN-FORMATION; SURFACE; TOPOGRAPHY; EVOLUTION; GROWTH AB The formation of self-organized Si nanostructures induced by Mo seeding during normal incidence Ar+ ion bombardment at room temperature is reported. Silicon surfaces without Mo seeding develop only power-law roughness during 1000 eV ion bombardment at normal incidence, in agreement with scaling theory expectations of surface roughening. However, supplying Mo atoms to the surface during ion bombardment seeds the development of highly correlated, nanoscale structures ("dots") that are typically 3 nm high with a spatial wavelength of approximately 30 nm. With time, these saturate and further surface roughening is dominated by the growth of long-wavelength corrugations. (C) 2005 American Institute of Physics. C1 Boston Univ, Dept Aerosp & Mech Engn, Boston, MA 02215 USA. Boston Univ, Dept Phys, Boston, MA 02215 USA. Univ Vermont, Dept Phys, Burlington, VT 05405 USA. Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Boston Univ, Dept Aerosp & Mech Engn, Boston, MA 02215 USA. EM gozaydin@bu.edu RI Ozaydin-Ince, Gozde/F-3780-2011 NR 20 TC 90 Z9 90 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 17 PY 2005 VL 87 IS 16 AR 163104 DI 10.1063/1.2099521 PG 3 WC Physics, Applied SC Physics GA 973YG UT WOS:000232557900060 ER PT J AU Rutter, NA Durrell, JH Blamire, MG MacManus-Driscoll, JL Wang, H Foltyn, SR AF Rutter, NA Durrell, JH Blamire, MG MacManus-Driscoll, JL Wang, H Foltyn, SR TI Benefits of current percolation in superconducting coated conductors SO APPLIED PHYSICS LETTERS LA English DT Article AB The critical currents of coated conductors fabricated by metal-organic deposition (MOD) on rolling-assisted biaxially textured substrates (RABiTS) and by pulsed laser deposition (PLD) on ion-beam assisted deposition (IBAD) templates have been measured as a function of magnetic field orientation and compared to films grown on single crystal substrates. By varying the orientation of magnetic field applied in the plane of the film, we are able to determine the extent to which current flow in each type of conductor is percolative. Standard MOD/RABiTS conductors have also been compared to samples whose grain boundaries have been doped by diffusing Ca from an overlayer. We find that undoped MOD/RABiTS tapes have a less anisotropic in-plane field dependence than PLD/IBAD tapes and that the uniformity of critical current as a function of in-plane field angle is greater for MOD/RABiTS samples doped with Ca. (C) 2005 American Institute of Physics. C1 Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. Los Alamos Natl Lab, Superconduct Technol Ctr, Los Alamos, NM 87545 USA. RP Rutter, NA (reprint author), Univ Cambridge, Dept Mat Sci & Met, Pembroke St, Cambridge CB2 3QZ, England. EM nar20@cam.ac.uk RI Wang, Haiyan/P-3550-2014; Durrell, John/A-4052-2008 OI Wang, Haiyan/0000-0002-7397-1209; Durrell, John/0000-0003-0712-3102 NR 12 TC 18 Z9 18 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 17 PY 2005 VL 87 IS 16 AR 162507 DI 10.1063/1.2093920 PG 3 WC Physics, Applied SC Physics GA 973YG UT WOS:000232557900044 ER PT J AU Sutter, P Sutter, E Vescan, L AF Sutter, P Sutter, E Vescan, L TI Barrierless self-assembly of Ge quantum dots on Si(001) substrates with high local vicinality SO APPLIED PHYSICS LETTERS LA English DT Article ID HETEROEPITAXY; INSTABILITY; SURFACE; GROWTH AB In Ge heteroepitaxy on vicinal Si(001), miscut by 4.8 degrees toward [100], pyramid-shaped faceted quantum dot islands ("huts") form continuously from individual (105) facets on a wetting layer of coexisting (105) and (001) segments. Via this barrierless kinetic route the first three-dimensional islands rapidly form wherever there are substantial local gradients along < 100 > in-plane directions. (C) 2005 American Institute of Physics. C1 Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. Forschungszentrum Julich, Inst Schichten & Grenzflachen, D-52425 Julich, Germany. RP Sutter, P (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM psutter@bnl.gov NR 15 TC 11 Z9 11 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 17 PY 2005 VL 87 IS 16 AR 161916 DI 10.1063/1.2108133 PG 3 WC Physics, Applied SC Physics GA 973YG UT WOS:000232557900030 ER PT J AU Qian, XH Nimlos, MR Davis, M Johnson, DK Himmel, ME AF Qian, XH Nimlos, MR Davis, M Johnson, DK Himmel, ME TI Ab initio molecular dynamics simulations of beta-D-glucose and beta-D-xylose degradation mechanisms in acidic aqueous solution SO CARBOHYDRATE RESEARCH LA English DT Article DE beta-D-glucose; beta-D-xylose; degradation; pathway; acidic; water structure ID HIGH-TEMPERATURE; STRATEGIC PERSPECTIVE; CELLULOSE HYDROLYSIS; C-13 NMR; DENSITY; WATER; HYDRATION; KINETICS; ALDOSES; KETOSES AB Ab initio molecular dynamics simulations were employed to investigate, with explicit solvent water molecules, beta-D-glucose and beta-D-xylose degradation mechanisms in acidic media. The rate-limiting step in sugar degradation was found to be protonation of the hydroxyl groups on the sugar ring. We found that the structure of water molecules plays a significant role in the acidic sugar degradation pathways. Firstly, a water molecule competes with the hydroxyl group on the sugar ring for protons. Secondly, water forms hydrogen bonds with the hydroxyl groups on the sugar rings, thus weakening the C-C and C-O bonds (each to a different degree). Note that the reaction pathways could be altered due to the change of relative stability of the C-C and C-O bonds. Thirdly, water molecules that are hydrogen-bonded to sugar hydroxyls could easily extract a proton from the reaction intermediate, terminating the reaction. Indeed, the sugar degradation pathway is complex due to multiple protonation probabilities and the surrounding water structure. Our experimental data support multiple sugar acidic degradation pathways. (C) 2005 Elsevier Ltd. All rights reserved. C1 Rx Innovat Inc, Ft Collins, CO 80525 USA. Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Qian, XH (reprint author), Rx Innovat Inc, Ft Collins, CO 80525 USA. EM xianghong_qian@nrel.gov RI Johnson, David/G-4959-2011; Qian, Xianghong/C-4821-2014 OI Johnson, David/0000-0003-4815-8782; NR 32 TC 89 Z9 96 U1 4 U2 31 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0008-6215 J9 CARBOHYD RES JI Carbohydr. Res. PD OCT 17 PY 2005 VL 340 IS 14 BP 2319 EP 2327 DI 10.1016/j.carres.2005.07.021 PG 9 WC Biochemistry & Molecular Biology; Chemistry, Applied; Chemistry, Organic SC Biochemistry & Molecular Biology; Chemistry GA 967MQ UT WOS:000232095700012 PM 16095579 ER PT J AU Bonhomme, F Alam, TM Celestian, AJ Tallant, DR Boyle, TJ Cherry, BR Tissot, RG Rodriguez, MA Parise, JB Nyman, M AF Bonhomme, F Alam, TM Celestian, AJ Tallant, DR Boyle, TJ Cherry, BR Tissot, RG Rodriguez, MA Parise, JB Nyman, M TI Tribasic lead maleate and lead maleate: Synthesis and structural and spectroscopic characterizations SO INORGANIC CHEMISTRY LA English DT Article ID CRYSTAL-STRUCTURE DETERMINATION; BOND-VALENCE PARAMETERS; POWDER DIFFRACTION; STABILIZERS; REFINEMENT; CHEMISTRY AB We report on the synthesis and structure of tribasic lead maleate hemihydrate ([Pb4O3]C2H2(CO2)(2)(.)1/2H(2)O, TRIMAL) and lead maleate (PbC2H2(CO2)(2), PBMAL). The structure of [Pb4O3]C2H2(CO2)(2)(.)1/2H(2)O, solved ab initio from X-ray powder diffraction data, consists of infinite slabs of edge-sharing OPb4 tetrahedra, of composition [Pb4O3], running along the c axis and linked together into a three-dimensional network by tetradentate maleate anionic ligands. The structure of PbC2H2(CO2)2, solved from single crystal diffraction data, is lamellar and contains double layers of heptacoordinated lead atoms, bonded only to the oxygen atoms of the maleate ligands. In both compounds, lead is in the oxidation state 2+ and the coordination polyhedra around the Pb2+ exhibit a hemidirected geometry and are strongly distorted as a result of the lone pair of electrons. The absence of protons on the acidic portion of the maleate moieties was confirmed by Raman spectroscopy and by H-1 MAS and H-1-C-13 CP MAS NMR experiments. The two compounds were further characterized using chemical and thermogravimetric analyses. C1 Sandia Natl Labs, Mat Characterizat Dept, Albuquerque, NM 87185 USA. Sandia Natl Labs, Dept Geochem, Albuquerque, NM 87185 USA. Sandia Natl Labs, Dept Biomol & Chem Anal, Albuquerque, NM 87185 USA. Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. SUNY Stony Brook, Ctr Environm & Mol Sci, Stony Brook, NY 11794 USA. RP Tissot, RG (reprint author), Sandia Natl Labs, Mat Characterizat Dept, POB 5800, Albuquerque, NM 87185 USA. EM rgtisso@sandia.gov NR 21 TC 13 Z9 13 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD OCT 17 PY 2005 VL 44 IS 21 BP 7394 EP 7402 DI 10.1021/ic050611y PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 974RS UT WOS:000232609700029 PM 16212365 ER PT J AU Enriquez, AE Scott, BL Neu, MP AF Enriquez, AE Scott, BL Neu, MP TI Uranium(III)/(IV) nitrile adducts including UI4(N CPh)(4), a synthetically useful uranium(IV) complex SO INORGANIC CHEMISTRY LA English DT Article ID RAY CRYSTAL-STRUCTURES; X-RAY; POLY(PYRAZOL-1-YL)BORATE COMPLEXES; NEUTRON-DIFFRACTION; SOLVENT PURIFICATION; BORATE COMPLEXES; TETRAHALIDES; CHEMISTRY; METAL; TETRAKIS(ACETONITRILE)TETRACHLOROURANIUM(IV) AB The synthesis of complexes used to elucidate an understanding of fundamental An(III) and An(IV) coordination chemistry requires the development of suitable organic-soluble precursors. The reaction of oxide-free uranium metal turnings with 1.3 equivalents of elemental iodine in acetonitrile provided the U(III)/U(IV) complex salt, [U(N=CMe)(9)][Ul(6)][I] (1), in which the U(III) cation is surrounded by nine acetonitrile molecules in a tricapped trigonal prismatic arrangement, a [Ul(6)](2-) counterion, and a noncoordinating iodide. The U-N distances for the prismatic and capping nitrogens are 2.55(3) and 2.71(5) A, respectively. The same reaction performed in benzonitrile afforded crystalline Ul(4)(N=CPh)(4) (3) in 78% isolated yield. In the solid state, 3 shows an eight-coordinate U(IV) atom in a "puckered" square antiprismatic geometry with U-N and U-I distances of 2.56(1) and 3.027(1) angstrom, respectively. This benzonitrile Ul(4) adduct is a versatile U(IV) synthon that is soluble in methylene chloride, benzonitrile, and tetrahydrofuran, and moderately soluble in toluene and benzene, but decomposes in benzonitrile at 198 degrees C to [Ul(N=CPh)(8)][UI](6) (4), a U(III)/U(IV) salt analogous to 1. A toluene slurry of 3 treated with 2.2 equiv of Cp*(MgClTHF)-T-. (Cp* = pentamethylcyclopentadienide) provided CP*(2)Ul(2)(N=CPh) (5) in low yields. Single-crystal X-ray structure determination shows that the iodide ligands in 5 are in a rare cis configuration with an acute I-U-I angle of 83.16(7)degrees. Treatment of a methylene chloride solution of 3 with KTp* (Tp* = hydridotris(3,5-dimethylpyrazolylborate)) formed green Tp*UI3 (6) which was converted to yellow Tp*Ul(3)(N=CMe) (7) by rinsing with acetonitrile. Addition of 2.2 equiv of KTp* to a toluene solution of 3 followed by heating at 95 degrees C, filtration, and crystallization led to the isolation of the dinuclear species [Tp*Ul(dmpZ)](2)[mu-O] (9) (dmpz = 3,5-dimethylpyrazolide), presumably formed by hydrolytic cleavage of excess KTp* by adventitious water. The Tp* complexes 6, 7, and 9 were characterized by single-crystal X-ray diffraction, NMR, FT-IR, and optical absorbance spectroscopies. C1 Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Neu, MP (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM mneu@lanl.gov RI Scott, Brian/D-8995-2017 OI Scott, Brian/0000-0003-0468-5396 NR 67 TC 48 Z9 49 U1 1 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD OCT 17 PY 2005 VL 44 IS 21 BP 7403 EP 7413 DI 10.1021/ic050578f PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 974RS UT WOS:000232609700030 PM 16212366 ER PT J AU Wang, WM Fthenakis, V AF Wang, WM Fthenakis, V TI Kinetics study on separation of cadmium from tellurium in acidic solution media using ion-exchange resins SO JOURNAL OF HAZARDOUS MATERIALS LA English DT Article DE cadmium; tellurium; waste management; ion-exchange; recycling; photovoltaics ID AQUEOUS-SOLUTIONS; HEAVY-METALS; INDUSTRIAL WASTEWATERS; REMOVAL; ADSORPTION; SORPTION; WASTE; LEAD AB The feasibility of using ion-exchange resins to separate cadmium from tellurium in acidic solutions of the two metals was investigated. We studied the competitive adsorption of cadmium and tellurium in such resins under varying acid strengths and contact time. We found that low sulfuric acid strength (i.e., 0.5 M) was most effective in removing cadmium from solutions. Different ion-exchange resins were tested for their affinity for cadmium and tellurium ions. In the selected systems, the ion-exchange rate of cadmium was rapid in the first 20 min, and reached equilibrium within 2 h. The Lagergren first-order model described the kinetic data with high coefficient of determination and correlation values. At room temperatures the ion-exchange for cadmium onto the resin followed the Freundlich isotherm model. The maximum removal of cadmium obtained from batch studies using resin A was 91%. Column studies with the same resin showed a removal of cadmium of 99.99% or higher. (c) 2005 Published by Elsevier B.V. C1 Brookhaven Natl Lab, Natl Photovolta Environm Hlth & Safety Res Ctr, Upton, NY 11973 USA. RP Fthenakis, V (reprint author), Brookhaven Natl Lab, Natl Photovolta Environm Hlth & Safety Res Ctr, Upton, NY 11973 USA. EM vmf@bnl.gov NR 33 TC 22 Z9 24 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3894 J9 J HAZARD MATER JI J. Hazard. Mater. PD OCT 17 PY 2005 VL 125 IS 1-3 BP 80 EP 88 DI 10.1016/j.jhazmat.2005.02.013 PG 9 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 964XS UT WOS:000231914900008 PM 16118035 ER PT J AU Kelley, KC Hertel, NE Pitcher, EJ Devlin, M Mashnik, SG AF Kelley, KC Hertel, NE Pitcher, EJ Devlin, M Mashnik, SG TI Gd-148 production cross section measurements for 600-and 800-MeV protons on tantalum, tungsten, and gold SO NUCLEAR PHYSICS A LA English DT Article DE NUCLEAR REACTIONS, W, TA, Au(p, X)Gd-148, E=600, 800 MeV; measured cumulative production sigma, comparison with previous results, model predictions AB The production of Gd-148 due to the spallation of tantalum, tungsten, and gold interacting with 600-and 800-MeV protons is investigated. The cumulative 148Gd production cross section was measured using charged-particle spectroscopy at WNR's facility at LANSCE. These data are compared with previous measurements and theoretical predictions of Bertini + Dresner, CEM2k + GEM2, and INCL4-ABLA. The importance of the new data on the reaction models are discussed. Published by Elsevier B.V. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Georgia Inst Technol, Atlanta, GA 30332 USA. RP Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM corzine@lanl.gov RI Devlin, Matthew/B-5089-2013 OI Devlin, Matthew/0000-0002-6948-2154 NR 17 TC 4 Z9 4 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD OCT 17 PY 2005 VL 760 IS 3-4 BP 225 EP 233 DI 10.1016/j.nuclphysa.2005.06.002 PG 9 WC Physics, Nuclear SC Physics GA 969XC UT WOS:000232268100001 ER PT J AU Maruyama, T Muto, T Tatsumi, T Tsushima, K Thomas, AW AF Maruyama, T Muto, T Tatsumi, T Tsushima, K Thomas, AW TI Kaon condensation and lambda-nucleon loop in the relativistic mean-field approach SO NUCLEAR PHYSICS A LA English DT Review ID HEAVY-ION COLLISIONS; NEUTRON-STAR MATTER; STRANGE HADRONIC MATTER; CHARGE MATRIX-ELEMENTS; MESON COUPLING MODEL; IN-MEDIUM KAON; ANTIKAON PRODUCTION; DENSE NUCLEAR; DILEPTON PRODUCTION; HYPERONIC MATTER AB The possibility of kaon condensation in high-density symmetric nuclear matter is investigated including both s- and p-wave kaon-baryon interactions within the relativistic mean-field (RMF) theory. Above a certain density, we have a collective (D) over bar (S) state carrying the same quantum numbers as the antikaon. The appearance of the (K) over bar (S) state is caused by the time component of the axial-vector interaction between kaons and baryons. It is shown that the system becomes unstable with respect to condensation of K-(K) over bar (S) pairs. We consider how the effective baryon masses affect the kaon self-energy coming from the time component of the axial-vector interaction. Also, the role of the spatial component of the axial-vector interaction on the possible existence of the collective kaonic states is discussed in connection with A-mixing effects in the ground state of high-density matter: Implications of K (K) over bar (S) condensation for high-energy heavy-ion collisions are briefly mentioned. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA. Nihon Univ, Coll Bioresource Sci, Fujisawa, Kanagawa 2528510, Japan. Japan Atom Energy Res Inst, Tokai, Ibaraki 3191195, Japan. Chiba Inst Technol, Narashino, Chiba 2750023, Japan. Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. Univ Estadual Paulista, Inst Fis Teor, BR-01405900 Sao Paulo, Brazil. Univ Prebiteriana Mackenzie, FCBEE, BR-01302907 Sao Paulo, Brazil. Natl Ctr Theoret Sci Taipei, Taipei 10617, Taiwan. Jefferson Lab, Newport News, VA 23606 USA. RP Maruyama, T (reprint author), Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA. EM tomo@brs.nihon-u.ac.jp RI Thomas, Anthony/G-4194-2012 OI Thomas, Anthony/0000-0003-0026-499X NR 128 TC 15 Z9 15 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD OCT 17 PY 2005 VL 760 IS 3-4 BP 319 EP 345 DI 10.1016/j.nuclphysa.2005.06.008 PG 27 WC Physics, Nuclear SC Physics GA 969XC UT WOS:000232268100006 ER PT J AU Zawadzki, RJ Jones, SM Olivier, SS Zhao, MT Bower, BA Izatt, JA Choi, S Laut, S Werner, JS AF Zawadzki, RJ Jones, SM Olivier, SS Zhao, MT Bower, BA Izatt, JA Choi, S Laut, S Werner, JS TI Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging SO OPTICS EXPRESS LA English DT Article ID ULTRAHIGH-RESOLUTION; LASER; INTERFEROMETRY; VISION AB We have combined Fourier-domain optical coherence tomography (FD-OCT) with a closed-loop adaptive optics (AO) system using a Hartmann-Shack wavefront sensor and a bimorph deformable mirror. The adaptive optics system measures and corrects the wavefront aberration of the human eye for improved lateral resolution (similar to 4 mu m) of retinal images, while maintaining the high axial resolution (similar to 6 mu m) of stand alone OCT. The AO-OCT instrument enables the three-dimensional (3D) visualization of different retinal structures in vivo with high 3D resolution (4 x 4 x 6 mu m). Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic. (c) 2005 Optical Society of America. C1 Univ Calif Davis, Dept Ophthalmol & Vis Sci, Sacramento, CA 95817 USA. Lawrence Livermore Natl Lab, Livermore, CA USA. Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA. RP Zawadzki, RJ (reprint author), Univ Calif Davis, Dept Ophthalmol & Vis Sci, 4860 Y St,Suite 2400, Sacramento, CA 95817 USA. EM rjzawadzki@ucdavis.edu RI Zawadzki, Robert/E-7534-2011 OI Zawadzki, Robert/0000-0002-9574-156X FU NCRR NIH HHS [R21 RR019769]; NEI NIH HHS [R01 EY014743, R01 EY014743-03]; NIBIB NIH HHS [R24 EB000243] NR 31 TC 267 Z9 267 U1 6 U2 47 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD OCT 17 PY 2005 VL 13 IS 21 BP 8532 EP 8546 DI 10.1364/OPEX.13.008532 PG 15 WC Optics SC Optics GA 975HK UT WOS:000232651400023 PM 19096728 ER PT J AU Veauthier, JM Carlson, CN Collis, GE Kiplinger, JL John, KD AF Veauthier, JM Carlson, CN Collis, GE Kiplinger, JL John, KD TI The synthesis of poly-nitrile aromatic and oligopyridine ligands via palladium-catalyzed cyanation of aryl halides SO SYNTHESIS-STUTTGART LA English DT Article DE palladium-catalyzed cyanation; aryl halide; bipyridine; terpyridine; nitrile ID COMPLEXES; 2,2'-BIPYRIDINES; YTTERBOCENE; ROUTE; UNITS; RING AB Modification of Beller's palladium-catalyzed cyanation procedure for simple aromatic halides leads to a versatile and rapid route to complex multi-nitrile aryl and oligopyridyl ligands that improves on known literature methods. By heating the reagents in the high boiling solvent mesitylene to reflux temperatures at ambient pressure, we have observed the conversion of halogenated precursors to the corresponding nitrile compounds. The resulting compounds can be precipitated from CH2Cl2, solutions of the reaction mixtures and isolated as pure compounds in moderate to high yields. The current approach offers a safer alternative to the pressure tube method, as it does not involve the use of KCN at high pressures. C1 Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP John, KD (reprint author), Los Alamos Natl Lab, Div Chem, MS J582, Los Alamos, NM 87545 USA. EM kjohn@lanl.gov RI Kiplinger, Jaqueline/B-9158-2011; Collis, Gavin/D-6343-2011; OI Kiplinger, Jaqueline/0000-0003-0512-7062; John, Kevin/0000-0002-6181-9330 NR 36 TC 29 Z9 29 U1 0 U2 5 PU GEORG THIEME VERLAG KG PI STUTTGART PA RUDIGERSTR 14, D-70469 STUTTGART, GERMANY SN 0039-7881 J9 SYNTHESIS-STUTTGART JI Synthesis PD OCT 17 PY 2005 IS 16 BP 2683 EP 2686 DI 10.1055/s-2005-872113 PG 4 WC Chemistry, Organic SC Chemistry GA 977RU UT WOS:000232821700009 ER PT J AU Millen, RL Kawaguchi, T Granger, MC Porter, MD AF Millen, RL Kawaguchi, T Granger, MC Porter, MD TI Giant magnetoresistive sensors and superparamagnetic nanoparticles: A chip-scale detection strategy for immunosorbent assays SO ANALYTICAL CHEMISTRY LA English DT Article ID MAGNETICALLY LABELED BIOMOLECULES; GMR SENSORS; SPECTROSCOPY; DESIGN; MICROBEADS; ANTIGEN; SYSTEMS; ARRAYS; DEVICE AB Thin structures of alternating magnetic and nonmagnetic layers with a total thickness of a few hundred nanometers exhibit a phenomenon known as giant magnetoresistance. The resistance of microfabricated giant magnetoresistors (GMRs) is dependent on the strength of an external magnetic field. This paper examines magnetic labeling methodologies and surface derivatization approaches based on protein-protein binding that are aimed at forming a general set of protocols to move GMR concepts into the bioanalytical arena. As such, GMRs have been used to observe and quantify the immunological interaction between surface-bound mouse IgG and alpha-mouse IgG coated on superparamagnetic particles. Results show the response of a GMR network connected together as a set of two sense GMRs and two reference GMRs in a Wheat-stone bridge as a means to compensate for temperature effects. The response can be readily correlated to the amount of the magnetically labeled a-mouse IgG that is captured by an immobilized layer of mouse IgG, the presence of which is confirmed with X-ray photoelectron spectroscopy and atomic force microscopy. These results, along with a detailed description of the experimental testing platform, are described in terms of sensitivity, detection limits, and potential for multiplexing. C1 Iowa State Univ, Dept Chem, Ames Lab, US DOE, Ames, IA 50011 USA. Iowa State Univ, Dept Chem & Biol Engn, Ames Lab, US DOE, Ames, IA 50011 USA. Iowa State Univ, Inst Combinatorial Discovery, Ames, IA 50011 USA. RP Porter, MD (reprint author), Iowa State Univ, Dept Chem, Ames Lab, US DOE, Ames, IA 50011 USA. EM mporter@porter1.ameslab.gov RI Granger, Michael/G-3299-2012 OI Granger, Michael/0000-0002-2385-6413 NR 32 TC 55 Z9 59 U1 2 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD OCT 15 PY 2005 VL 77 IS 20 BP 6581 EP 6587 DI 10.1021/ac0509049 PG 7 WC Chemistry, Analytical SC Chemistry GA 977ET UT WOS:000232785900009 PM 16223243 ER PT J AU Dutta, P Chapman, PJ Datskos, PG Sepaniak, MJ AF Dutta, P Chapman, PJ Datskos, PG Sepaniak, MJ TI Characterization of ligand-functionalized microcantilevers for metal ion sensing SO ANALYTICAL CHEMISTRY LA English DT Article ID SELF-ASSEMBLED MONOLAYER; MICROMECHANICAL CANTILEVER ARRAY; CHEMIMECHANICAL TRANSDUCTION; COATED MICROCANTILEVER; ARTIFICIAL NOSE; SENSOR; CHROMATOGRAPHY; FILMS; NANOMECHANICS; SELECTIVITY AB A sensor for metal cations is demonstrated using single and binary mixtures of different thiolated ligands as self-assembled monolayers (SAMs) functionalized on silicon microcantilevers (MCs) with gold nanostructured surfaces. Binding of charged metal ions to the active surface of a cantilever induces an apparent surface stress, thereby causing static bending of the MC that is detected in this work by a beam-bending technique. A MC response mechanism based on changes in surface charge is discussed. The monodentated ligands arranged as SAMs on the MC surface are not expected to fully satisfy the coordination sphere of the detected metals. This leads to lower binding constants than would be expected for chelating ligands, but reversible responses. The modest binding constants are compensated in terms of the magnitudes of responses by the inherent higher sensitivity of the nanostructured approach as opposed to more traditional smooth surface MCs. Response characteristics are optimized in terms of SAM formation time, concentration of ligand solution, and pH of working buffer solution. Limits of detection for the tested mono-, di-, and trivalent metal ions are in low to submicromolar range. The results indicated that shapes and magnitudes of response profiles are characteristics of the metal ions and type of SAM. The response factors for a given SAM with the tested metal ions, or for a given metal with the tested SAMs, varied by roughly 1 order of magnitude. While the observed selectivity is not large, it is anticipated that sufficient ionic recognition contrast is available for selective metal ion identification when differentially functionalized arrays of MCs (different ligands on different cantilevers in the array) are used in conjunction with pattern recognition techniques. C1 Univ Tennessee, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Sepaniak, MJ (reprint author), Univ Tennessee, Knoxville, TN 37996 USA. EM msepaniak@utk.edu NR 48 TC 25 Z9 25 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD OCT 15 PY 2005 VL 77 IS 20 BP 6601 EP 6608 DI 10.1021/ac051082i PG 8 WC Chemistry, Analytical SC Chemistry GA 977ET UT WOS:000232785900012 PM 16223246 ER PT J AU Liu, CY Mao, XL Mao, SS Greif, R Russo, RE AF Liu, CY Mao, XL Mao, SS Greif, R Russo, RE TI Particle size dependent chemistry from laser ablation of brass SO ANALYTICAL CHEMISTRY LA English DT Article ID PLASMA-MASS SPECTROMETRY; INDUCED ELEMENTAL FRACTIONATION; ICP-MS; SIGNAL INTENSITY; FEMTOSECOND; NANOSECOND; GLASS; PARTICULATE; SEPARATION; TRANSPORT AB The proportion of zinc and copper in particles formed by laser ablation of brass was found to vary with the particle diameter. Energy-dispersive X-ray analysis showed that smaller particles were zinc enhanced while larger particles were composed mostly of copper. A model based on condensation of vapor onto large droplets ejected from a melted liquid layer is proposed to describe the change in particle composition versus size. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Russo, RE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM rerusso@lbl.gov NR 31 TC 40 Z9 41 U1 2 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD OCT 15 PY 2005 VL 77 IS 20 BP 6687 EP 6691 DI 10.1021/ac0508696 PG 5 WC Chemistry, Analytical SC Chemistry GA 977ET UT WOS:000232785900023 PM 16223257 ER PT J AU Shen, YF Smith, RD Unger, KK Kumar, D Lubda, D AF Shen, YF Smith, RD Unger, KK Kumar, D Lubda, D TI Ultrahigh-throughput proteomics using fast RPLC separations with ESI-MS/MS SO ANALYTICAL CHEMISTRY LA English DT Article ID PERFORMANCE LIQUID-CHROMATOGRAPHY; RESONANCE MASS-SPECTROMETRY; SUBMICRON SIZE RANGE; ENHANCED FLUIDITY; MOBILE PHASES; IONIZATION; COVERAGE; SILICAS; MICRON; ONLINE AB We describe approaches for proteomics analysis using electrospray ionization-tandem mass spectrometry coupled with fast reversed-phase liquid chromatography (RPLC) separations. The RPLC separations used 50-mu m-i.d. fused-silica capillaries packed with submicrometer-sized C18-bonded porous silica particles and achieved peak capacities of 130-420 for analytes from proteome tryptic digests. When these separations were combined with linear ion trap tandem mass spectrometry measurements, similar to 1000 proteins could be identified in 50 min from similar to 4000 identified tryptic peptides; similar to 550 proteins in 20 min from similar to 1800 peptides; and similar to 250 proteins in 8 min from similar to 700 peptides for a S. oneidensis tryptic digest. The dynamic range for protein identification with the fast separations was determined to be similar to 3-4 orders of magnitude of relative protein abundance on the basis of known proteins in human blood plasma analyses. We found that 55% of the MS/MS spectra acquired during the entire analysis (and up to 100% of the MS/MS spectra acquired from the most data-rich zone) provided sufficient quality for identifying peptides. The results confirm that such analyses using very fast (minutes) RPLC separations based on columns packed with microsized porous particles are primarily limited by the MS/MS analysis speed. C1 Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. Univ Mainz, Inst Anorgan Chem & Analyt Chem, D-55099 Mainz, Germany. Merck KGaA, Life Sci Analyt, D-64271 Darmstadt, Germany. RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NCRR NIH HHS [RR18522] NR 26 TC 59 Z9 59 U1 0 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD OCT 15 PY 2005 VL 77 IS 20 BP 6692 EP 6701 DI 10.1021/ac050876u PG 10 WC Chemistry, Analytical SC Chemistry GA 977ET UT WOS:000232785900024 PM 16223258 ER PT J AU Zhu, ZM Kelley, MJ AF Zhu, ZM Kelley, MJ TI Grafting onto poly(ethylene terephthalate) driven by 172 nm UV light SO APPLIED SURFACE SCIENCE LA English DT Article DE photografting; surface characterization; Excimer lamp; polymer photochemistry ID TOF-SIMS; IRRADIATION; SURFACES; PET; REACTIVITY; POLYMERS AB The reactivity of the surface of poly(ethylene terephthalate) (PET) film under 172 nm UV irradiation (xenon excimer lamp) towards nitrogen-borne 1-octene, n-nonane and heptafluorodecene vapor was investigated. Materials receiving from 0 to 24 J/ cm(2) of UV were examined by X-ray photoelectron spectroscopy (XPS), time of flight secondary ion mass spectroscopy (ToF/ SIMS), water and mineral oil contact angle measurement and atomic force microscopy (AFM). A uniform nanoscale layer developed on PET surface attributed to the grafting reaction between photolytically-produced polymer radicals and vapor phase molecules. (c) 2005 Elsevier B.V. All rights reserved. C1 Coll William & Mary, Appl Res Ctr, Dept Appl Sci, Newport News, VA 23606 USA. Appl Res Ctr, Jefferson Lab, Free Electron Laser Dept, Newport News, VA 23606 USA. RP Kelley, MJ (reprint author), Coll William & Mary, Appl Res Ctr, Dept Appl Sci, 12050 Jefferson Ave,Suite 601, Newport News, VA 23606 USA. EM mkelley@jlab.org NR 14 TC 17 Z9 18 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD OCT 15 PY 2005 VL 252 IS 2 BP 303 EP 310 DI 10.1016/j.apsusc.2004.12.056 PG 8 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 968PH UT WOS:000232174000003 ER PT J AU Shabde, VS Emets, SV Mann, U Hoo, KA Carlson, NN Gladysz, GM AF Shabde, VS Emets, SV Mann, U Hoo, KA Carlson, NN Gladysz, GM TI Modeling a hollow micro-particle production process SO COMPUTERS & CHEMICAL ENGINEERING LA English DT Article; Proceedings Paper CT Symposium on Modeling of Complex Processes CY MAR 01-03, 2005 CL Texas A&M Univ, College Stn, TX HO Texas A&M Univ DE micro-hollow particle; spray drying technology; solvent evaporation AB The process to be modeled produces micro-hollow particles based on spray drying technology. This process involves droplet formation, solvent evaporation, formation of the impermeable outer layer, and decomposition of a blowing agent. The objective of this work is to develop a fundamental model that describes the formation of the hollow particles starting from a single droplet. This model is then used to predict the time to skin formation and total drying time. The effect of parameter uncertainties and varying operating conditions are investigated. (c) 2005 Elsevier Ltd. All rights reserved. C1 Texas Tech Univ, Dept Chem Engn, Lubbock, TX 79409 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Hoo, KA (reprint author), Texas Tech Univ, Dept Chem Engn, Lubbock, TX 79409 USA. EM karlene.hoo@ttu.edu NR 10 TC 17 Z9 18 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-1354 J9 COMPUT CHEM ENG JI Comput. Chem. Eng. PD OCT 15 PY 2005 VL 29 IS 11-12 BP 2420 EP 2428 DI 10.1016/j.compchemeng.2005.05.019 PG 9 WC Computer Science, Interdisciplinary Applications; Engineering, Chemical SC Computer Science; Engineering GA 995CQ UT WOS:000234077900015 ER PT J AU Ginder-Vogel, M Borch, T Mayes, MA Jardine, PM Fendorf, S AF Ginder-Vogel, M Borch, T Mayes, MA Jardine, PM Fendorf, S TI Chromate reduction and retention processes within arid subsurface environments SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID CHROMIUM(VI) REDUCTION; CR(VI) REDUCTION; AQUEOUS CR(VI); SURFACES; MAGNETITE; SORPTION; SOILS; IRON; 25-DEGREES-C; PASSIVATION AB Chromate is a widespread contaminant that has deleterious impacts on human health, the mobility and toxicity of which are diminished by reduction to Cr(III). While biological and chemical reduction reactions of Cr(VI) are well resolved, reduction within natural sediments, particularly of and environments, remains poorly described. Here, we examine chromate reduction within and sediments from the Hanford, WA site, where Fe(Ill) (hydr)oxide and carbonate coatings limit mineral reactivity. Chromium(VI) reduction by Hanford sediments is negligible unless pretreated with acid; acidic pretreatment of packed mineral beds having a Cr(VI) feed solution results in Cr(111) associating with the minerals antigorite and lizardite in addition to magnetite and Fe(II)-bearing clay minerals. Highly alkaline conditions (pH > 14), representative of conditions near high-level nuclear waste tanks, result in Fe(11) dissolution and concurrent Cr(Vl) reduction. Additionally, Cr(111) and Cr(Vl) are found associated with portlandite, suggesting a secondary mechanism for chromium retention at high pH. Thus, mineral reactivity is limited within this and environment and appreciable reduction of Cr(VI) is restricted to highly alkaline conditions resulting near leaking radioactive waste disposal tanks. C1 Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Fendorf, S (reprint author), Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. EM fendorf@stanford.edu RI Borch, Thomas/A-2288-2008 OI Borch, Thomas/0000-0002-4251-1613 NR 38 TC 28 Z9 29 U1 1 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD OCT 15 PY 2005 VL 39 IS 20 BP 7833 EP 7839 DI 10.1021/es050535y PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 976UH UT WOS:000232758400015 PM 16295844 ER PT J AU Slowey, AJ Johnson, SB Rytuba, JJ Brown, GE AF Slowey, AJ Johnson, SB Rytuba, JJ Brown, GE TI Role of organic acids in promoting colloidal transport of mercury from mine tailings SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID NATURAL POROUS-MEDIA; AQUIFER SAND; SULFUR-BANK; SPECIATION; RELEASE; ADSORPTION; SORPTION; WATER; SOIL; SPECTROSCOPY AB A number of factors affect the transport of dissolved and particulate mercury (Hg) from inoperative Hg mines, including the presence of organic acids in the rooting zone of vegetated mine waste. We examined the role of the two most common organic acids in soils (oxalic and citric acid) on Hg transport from such waste by pumping a mixed organic acid solution (pH 5.7) at 1 mL/min through Hg mine tailings columns. For the two total organic acid concentrations investigated (20 mu M and 1 mM), particle-associated Hg was mobilized, with the onset of particulate Hg transport occurring later for the lower organic acid concentration. Chemical analyses of column effluent indicate that 98 wt % of Hg mobilized from the column was particulate. Hg speciation was determined using extended X-ray absorption fine structure spectroscopy and transmission electron microscopy, showing that HgS minerals are dominant in the mobilized particles. Hg adsorbed to colloids is another likely mode of transport due to the abundance of Fe-(oxyhydr)oxides, Fe-sulfides, alunite, and jarosite in the tailings to which Hg(II) adsorbs. Organic acids produced by plants are likely to enhance the transport of colloid-associated Hg from vegetated Hg mine tailings by dissolving cements to enable colloid release. C1 Stanford Univ, Surface & Aqueous Geochem Grp, Dept Geog & Environm Sci, Stanford, CA 94305 USA. US Geol Survey, Menlo Pk, CA 94025 USA. Stanford Synchrotron Radiat Lab, SLAC, Menlo Pk, CA 94025 USA. RP Slowey, AJ (reprint author), Stanford Univ, Surface & Aqueous Geochem Grp, Dept Geog & Environm Sci, Stanford, CA 94305 USA. EM aslowey@pangea.stanford.edu NR 39 TC 33 Z9 33 U1 3 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD OCT 15 PY 2005 VL 39 IS 20 BP 7869 EP 7874 DI 10.1021/es0504643 PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 976UH UT WOS:000232758400020 PM 16295849 ER PT J AU Dong, WM Ball, WP Liu, CX Wang, ZM Stone, AT Bai, J Zachara, JM AF Dong, WM Ball, WP Liu, CX Wang, ZM Stone, AT Bai, J Zachara, JM TI Influence of calcite and dissolved calcium on uranium(VI) sorption to a Hanford subsurface sediment SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SURFACE COMPLEXATION MODEL; FLUORESCENCE SPECTROSCOPY; SOLUTION INTERFACE; U(VI) SORPTION; ADSORPTION; CARBONATE; SITE; DISSOLUTION; MIXTURES; MINERALS AB The influence of calcite and dissolved calcium on U(VI) adsorption was investigated using a calcite-containing sandy silt/clay sediment from the U. S. Department of Energy Hanford site. U(VI) adsorption to sediment, treated sediment, and sediment size fractions was studied in solutions that both had and had not been preequilibrated with calcite, at initial [U(VI)] = 10(-7)-10(-5) mol/L and final pH = 6.0-10.0. Kinetic and reversibility studies (pH 8.4) showed rapid sorption (30 min), with reasonable reversibility in the 3-day reaction time. Sorption from solutions equilibrated with calcite showed maximum 01) adsorption at pH 8.4 +/- 0.1. In contrast, calcium-free systems showed the greatest adsorption at pH 6.0-7.2. At pH > 8.4, U(VI) adsorption was identical from calcium-free and calcium-containing solutions. For calcite-presatu rated systems, both speciation calculations and laser-induced fluorescence spectroscopic analyses indicated that aqueous U(VI) was increasingly dominated by Ca2UO2(CO3)(3)(0)(aq) at pH < 8.4 and that formation of Ca2UO2(CO3)(3)(0)(aq) is what suppresses U(VI) adsorption. Above pH 8.4, aqueous U(VI) speciation was dominated by UO2(CO3)(3)(4-) in all solutions. Finally, results also showed that U(VI) adsorption was additive in regard to size fraction but not in regard to mineral mass: Carbonate minerals may have blocked U(VI) access to surfaces of higher sorption affinity. C1 Johns Hopkins Univ, Dept Geog & Environm Engn, Baltimore, MD 21218 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Ball, WP (reprint author), Johns Hopkins Univ, Dept Geog & Environm Engn, 313 Ames Hall,3400 N Charles St, Baltimore, MD 21218 USA. EM bball@jhu.edu RI Liu, Chongxuan/C-5580-2009; Wang, Zheming/E-8244-2010; Ball, William/A-3285-2010; Stone, Alan/A-2569-2010; Dong, Wenming/G-3221-2015 OI Wang, Zheming/0000-0002-1986-4357; Ball, William/0000-0001-5217-8108; Stone, Alan/0000-0002-3660-1129; Dong, Wenming/0000-0003-2074-8887 NR 42 TC 65 Z9 68 U1 6 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD OCT 15 PY 2005 VL 39 IS 20 BP 7949 EP 7955 DI 10.1021/es0505088 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 976UH UT WOS:000232758400031 PM 16295860 ER PT J AU Ericksen, JA Gustin, MS Lindberg, SE Olund, SD Krabbenhoft, DP AF Ericksen, JA Gustin, MS Lindberg, SE Olund, SD Krabbenhoft, DP TI Assessing the potential for re-emission of mercury deposited in precipitation from arid soils using a stable isotope SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ATMOSPHERIC MERCURY; GAS-CHROMATOGRAPHY; GASEOUS MERCURY; EMISSIONS; METHYLATION; MOBILITY; BEHAVIOR; NEVADA AB A solution containing Hg-198 in the form of HgCl2 was added to a 4 m(2) area of desert soils in Nevada, and soil Hg fluxes were measured using three dynamic flux chambers. There was an immediate release of Hg-198 after it was applied, and then emissions decreased exponentially. Within the first 6 h after the isotope was added to the soil, similar to 12 ng m(-2) of Hg-198 was emitted to the atmosphere, followed by a relatively steady flux of the isotope at 0.2 +/- 0.2 ng m(-2) h(-1) for the remainder of the experiment (62 days). Over this time, similar to 200 ng m(-2) or 2% of the Hg-198 isotope was emitted from the soil, and we estimate that similar to 6% of the isotope would be re-emitted in a year's time. During the experiment, dry deposition of elemental Hg from the atmosphere was measured with an average deposition rate of 0.2 +/- 0.1 ng m(-2) h(-1). Emission of ambient Hg from the soil was observed after soil wetting with the isotope solution and after a storm event. However,the added moisture from the storm event did not affect 198Hg flux. Results suggest that in this desert environment, where there is limited precipitation, Hg deposited by wet processes is not readily re-emitted and that dry deposition of elemental Hg may be an important process. C1 Univ Nevada, Reno, NV 89557 USA. US Geol Survey, Middleton, WI 53562 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Gustin, MS (reprint author), Univ Nevada, 1664 N Virginia St,MS 370, Reno, NV 89557 USA. EM msg@unr.nevada.edu NR 36 TC 53 Z9 59 U1 4 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD OCT 15 PY 2005 VL 39 IS 20 BP 8001 EP 8007 DI 10.1021/es0505651 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 976UH UT WOS:000232758400038 PM 16295867 ER PT J AU Lukens, WW Bucher, JJ Shuh, DK Edelstein, NM AF Lukens, WW Bucher, JJ Shuh, DK Edelstein, NM TI Evolution of technetium speciation in reducing grout SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ABSORPTION FINE-STRUCTURE; OXYGEN DIFFUSION; POLYMER-FILMS; WASTE FORMS; CRYSTAL; BOND; SPECTROSCOPY; COMPLEXES; EXAFS AB Cementitious waste forms (CWFs) are an important component of the strategy to stabilize nuclear waste resulting from plutonium production by the U. S. Department of Energy. Technetium (Tc-99) is an abundant fission product of particular concern in CWFs because of the high solubility and mobility of Tc(VII), pertechnetate (TcO4-), the stable form of technetium in aerobic environments. CWFs can more effectively stabilize 99Tc if they contain additives that chemically reduce mobile TcO4- to immobile Tc(IV) species. The 99Tc leach rate of reducing CWFs that contain Tc(IV) is much lower than that for CWFs that contain TcO4-, Previous X-ray absorption fine structure studies showed that Tc(IV) species were oxidized to TcO4- in reducing grout samples prepared on a laboratory scale. Whether the oxidizer was atmospheric O-2 or NO3- in the waste simulant was not determined. In actual CWFs, rapid oxidation of Tc(IV) by NO3- would be of concern, whereas oxidation by atmospheric O-2 would be of less concern due to the slow diffusion and reaction Of 02 with the reducing CWF. To address this uncertainty, two series of reducing grouts were prepared using TcO4- containing waste simulants with and without NO3-, In the first series of samples, referred to as "permeable samples", the TcO4- was completely reduced using Na2S, and the samples were sealed in cuvettes made of polystyrene, which has a relatively large O-2 diffusion coefficient. In these samples, all of the technetium was initially present as a Tc(IV) sulfide compound, TcSx, which was characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy. The EXAFS data is consistent with a structure consisting of triangular clusters of Tc(IV) centers linked together through a combination of disulfide and sulfide bridges as in MoS3. From the EXAFS model, the stoichionnetry of TcSx is Tc3S10, which is presumably the compound generally referred to as "Tc2S7". The TcSx initially present in the permeable samples was steadily oxidized over 4 years. In the second series of samples, called "impermeable samples", the TcO4- was not initially completely reduced, and the grout samples were sealed in cuvettes made of poly(methyl methacrylate), which has a small O-2 diffusion coefficient. In the impermeable samples, the remaining TcO4- continued to be reduced, presumably by blast furnace slag in the grout, as the samples aged. When the impermeable samples were opened and exposed to atmosphere, the lower-valent technetium species were rapidly oxidized to TcO4-. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Actinide Chem Grp, Berkeley, CA 94720 USA. RP Lukens, WW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Actinide Chem Grp, Berkeley, CA 94720 USA. EM wwlukens@lbl.gov NR 47 TC 45 Z9 45 U1 3 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD OCT 15 PY 2005 VL 39 IS 20 BP 8064 EP 8070 DI 10.1021/es050155c PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 976UH UT WOS:000232758400047 PM 16295876 ER PT J AU Brown, TA Cecconi, C Tkachuk, AN Bustamante, C Clayton, DA AF Brown, TA Cecconi, C Tkachuk, AN Bustamante, C Clayton, DA TI Replication of mitochondrial DNA occurs by strand displacement with alternative light-strand origins, not via a strand-coupled mechanism SO GENES & DEVELOPMENT LA English DT Article DE replication; mtDNA; branch migration; atomic force microscopy; 2D agarose gels; strand displacement ID MOUSE L-CELLS; CLOSED CIRCULAR TEMPLATE; 5' ENDS; MOLECULES; GENOME; RNA; COMPLEXES; SEQUENCE; BUBBLE; BURST AB The established strand-displacement model for mammalian mitochondrial DNA (mtDNA) replication has recently been questioned in light of new data using two-dimensional (2D) agarose gel electrophoresis. It has been proposed that a synchronous, strand-coupled mode of replication occurs in tissues, thereby casting doubt on the general validity of the "orthodox," or strand-displacement model. We have examined mtDNA replicative intermediates from mouse liver using atomic force microscopy and 2D agarose gel electrophoresis in order to resolve this issue. The data provide evidence for only the orthodox, strand-displacement mode of replication and reveal the presence of additional, alternative origins of lagging light-strand mtDNA synthesis. The conditions used for 2D agarose gel analysis are favorable for branch migration of asymmetrically replicating nascent strands. These data reconcile the original displacement mode of replication with the data obtained from 2D gel analyses. C1 Howard Hughes Med Inst, Chevy Chase, MD 20815 USA. NINDS, NIH, Bethesda, MD 20892 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Clayton, DA (reprint author), Howard Hughes Med Inst, Chevy Chase, MD 20815 USA. EM brownt@hhmi.org; clayton@hhmi.org RI Cecconi, Ciro/K-5028-2016 OI Cecconi, Ciro/0000-0002-6101-2609 NR 41 TC 103 Z9 103 U1 1 U2 3 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI WOODBURY PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA SN 0890-9369 J9 GENE DEV JI Genes Dev. PD OCT 15 PY 2005 VL 19 IS 20 BP 2466 EP 2476 DI 10.1101/gad.1352105 PG 11 WC Cell Biology; Developmental Biology; Genetics & Heredity SC Cell Biology; Developmental Biology; Genetics & Heredity GA 975PV UT WOS:000232675300009 PM 16230534 ER PT J AU Ainsworth, CC Zachara, JM Wagnon, K McKinley, S Liu, C Smith, SC Schaef, HT Gassman, PL AF Ainsworth, CC Zachara, JM Wagnon, K McKinley, S Liu, C Smith, SC Schaef, HT Gassman, PL TI Impact of highly basic solutions on sorption of Cs+ to subsurface sediments from the Hanford site, USA SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID SOLID/LIQUID DISTRIBUTION COEFFICIENTS; MOLAR KOH SOLUTIONS; HIGH PH; HYPERALKALINE CONDITIONS; PHASE TRANSFORMATIONS; BIOTITE DISSOLUTION; OPALINUS SHALE; ION-EXCHANGE; FLY-ASH; ZEOLITES AB The effect of caustic NaNO3 solutions on the sorption of Cs-137 to a Hanford site micaceous subsurface sediment was investigated as a function of base exposure time (up to 168 d), temperature (10 degrees C or 50 degrees C), and NaOH concentration (0.1 mol/L to 3 mol/L). At 10 degrees C and 0.1 M NaOH, the slow evolution of [Al](aq) was in stark contrast to the rapid increase and subsequent loss of [Al](aq) observed at 50 degrees C (regardless of base concentration). Exposure to 0.1 M NaOH at 10 degrees C for up to 168 d exhibited little if any measurable effect on sediment mineralogy, Cs+ sorption, or Cs+ selectivity; sorption was well described with a two-site ion exchange model modified to include enthalpy effects. At 50 degrees C, dissolution of phyllosilicate minerals increased with [OH]. A zeolite (tetranatrolite; Na(2)Al(2)Si(3)O(10)center dot 2H(2)O) precipitated in 0.1 M NaOH after about 7 days, while an unnamed mineral phase (Na(14)Al(12)Si(13)O(51)center dot 6H(2)O) precipitated after 4 and 2 days of exposure to I M and 3 M NaOH solutions, respectively. Short-term (16 h) Cs+ sorption isotherms (10(-9)-10(-2) mol/L) were measured on sediment after exposure to 0.1 M NaOH for 56, 112, and 168 days at 50 degrees C. There was a trend toward slightly lower conditional equilibrium exchange constants (Delta log (Cs)(Na) similar to 0.25) over the entire range of surface coverage, and a slight loss of high affinity sites (15%) after 168 days of pretreatment with 0.1 M base solution. Cs+ sorption to sediment over longer times was also measured at 50 degrees C in the presence of NaOH (0.1 M, 1 M, and 3 M NaOH) at Cs+ concentrations selected to probe a range of adsorption densities. Model simulations of Cs+ sorption to the sediment in the presence of 0.1 M NaOH for 112 days slightly under-predicted sorption at the lower Cs+ adsorption densities. At the higher adsorption densities, model simulations under-predicted sorption by 57%. This under-prediction was surmised to be the result of tetranatrolite precipitation, and subsequent slow Na -> Cs exchange. At higher OH concentrations, Cs+ sorption in the presence of base for 112 days was unexpectedly equal to, or greater than that expected for pristine sediment. The precipitation of secondary phases, coupled with the fairly unique mica distribution and quantity across all size-fractions in the Hanford sediment, appears to mitigate the impact of base dissolution on Cs+ sorption. Copyright (c) 2005 Elsevier Ltd. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Ainsworth, CC (reprint author), Pacific NW Natl Lab, MSIN P7-54,POB 999, Richland, WA 99352 USA. EM calvin.ainsworth@pnl.gov RI Liu, Chongxuan/C-5580-2009 NR 48 TC 9 Z9 9 U1 1 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD OCT 15 PY 2005 VL 69 IS 20 BP 4787 EP 4800 DI 10.1016/j.gca.2005.06.007 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 983YE UT WOS:000233267500004 ER PT J AU Gorman-Lewis, D Fein, JB Soderholm, L Jensen, MP Chiang, MH AF Gorman-Lewis, D Fein, JB Soderholm, L Jensen, MP Chiang, MH TI Experimental study of neptunyl adsorption onto Bacillus subtilis SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID CATION-CATION COMPLEXES; BACTERIAL SURFACES; METAL ADSORPTION; CD ADSORPTION; NEUTRAL PH; MICROORGANISMS; REVERSIBILITY; NEPTUNIUM(V); SPECIATION; REDUCTION AB The subsurface mobility of Np is difficult to predict in part due to uncertainties associated with itssorption behavior in geologic systems. In this study, we measured Np adsorption onto a common grampositive soil bacterium, Bacillus subtilis. We performed batch adsorption experiments with Np(V) solutions as a function of pH, from 2.5 to 8, as a function of total Np concentration from 1.29 x 10(-5) M to 2.57 x 10(-4) M, and as a function of ionic strength from 0.001 to 0.5 M NaClO4. Under most pH conditions, Np adsorption is reversible and exhibits an inverse relationship with ionic strength, with adsorption increasing with increasing pH. At low pH in the 0.1 M ionic strength systems, we observed irreversible adsorption, which is consistent with reduction of Np(V) to Np(IV). We model the adsorption reaction using a nonelectrostatic surface complexation approach to yield ionic strength dependent NpO2+-bacteria surface stability constants. The data require two bacterial surface complexation reactions to account for the observed adsorption behavior: R-L-1- + NpO2+ <-> R-L-1-NpO2degrees and R-L-2(-) + NpO2+ <-> R-L-2-NpO2degrees, where R represents the bacterium to which each functional group is attached, and L-1 and L-2 represent the first and second of four discrete site types on the bacterial surface. Stability constants (log K values) for the L, and L2 reactions in the 0.001 M system are 2.3 +/- 0.3 and 2.3 +/- 0.2, and in the 0.1 M system the values are 1.7 +/- 0.2 and 1.6 +/- 0.2, respectively. The calculated neptunyl-bacterial surface stability constants are not consistent with values predicted using the linear free energy correlation approach from Fein et al. (2001), suggesting that possible unfavorable steric interactions and the low charge of NpO2+ affects Np-bacterial adsorption. Copyright (c) 2005 Elsevier Ltd. C1 Univ Notre Dame, Notre Dame, IN 46616 USA. Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Gorman-Lewis, D (reprint author), Univ Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46616 USA. EM dgorman1@nd.edu RI Jensen, Mark/G-9131-2012; Chiang, Ming-Hsi/E-2044-2015 OI Jensen, Mark/0000-0003-4494-6693; Chiang, Ming-Hsi/0000-0002-7632-9369 NR 35 TC 18 Z9 18 U1 0 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD OCT 15 PY 2005 VL 69 IS 20 BP 4837 EP 4844 DI 10.1016/j.gca.2005.06.028 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 983YE UT WOS:000233267500008 ER PT J AU Lewicki, JL Hilley, GE Oldenburg, CM AF Lewicki, JL Hilley, GE Oldenburg, CM TI An improved strategy to detect CO2 leakage for verification of geologic carbon sequestration SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID FLUX MEASUREMENTS; SOIL; CALIFORNIA; EFFLUX AB The long-term storage of CO2 must be verified to ensure the success of geologic carbon sequestration projects. To detect subtle CO2 leakage signals, we present a strategy that integrates near-surface measurements of CO2 fluxes or concentrations with an algorithm that enhances temporally- and spatially-correlated leakage signals while suppressing random background noise. We assess the performance of this strategy using synthetic CO2 flux data sets and modeled surface CO2 leakage. These simulations provide a means of estimating the number of measurements required to detect a potential CO2 leakage signal of given magnitude and area. Results show that given a rigorous and well-planned field sampling program, subtle surface CO2 leakage may be detected using the algorithm; however, leakage of very limited spatial extent or exceedingly small magnitude may be difficult to detect with a reasonable set of monitoring resources. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. RP Lewicki, JL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd,MS 90-1116, Berkeley, CA 94720 USA. EM jllewicki@lbl.gov RI Oldenburg, Curtis/L-6219-2013 OI Oldenburg, Curtis/0000-0002-0132-6016 NR 15 TC 34 Z9 34 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 15 PY 2005 VL 32 IS 19 AR L19403 DI 10.1029/2005GL024281 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 975TS UT WOS:000232686100008 ER PT J AU Ahituv, N Prabhakar, S Rubin, EM Couronne, O AF Ahituv, N Prabhakar, S Rubin, EM Couronne, O TI Mapping cis-regulatory domains in the human genome using multi-species conservation of synteny SO HUMAN MOLECULAR GENETICS LA English DT Article ID TRANSCRIPTION FACTOR; MAMMALIAN GENOMES; GENE-EXPRESSION; HOT-SPOT; KB; TRANSLOCATION; SEQUENCE; DNA; DISRUPTION; EVOLUTION AB Our inability to associate distant regulatory elements with the genes they regulate has largely precluded their examination for sequence alterations contributing to human disease. One major obstacle is the large genomic space surrounding targeted genes in which such elements could potentially reside. In order to delineate gene regulatory boundaries, we used whole-genome human-mouse-chicken (HMC) and human-mouse-frog (HMF) multiple alignments to compile conserved blocks of synteny (CBSs), under the hypothesis that these blocks have been kept intact throughout evolution at least in part by the requirement of regulatory elements to stay linked to the genes they regulate. A total of 2116 and 1942 CBSs > 200 kb were assembled for HMC and HMF, respectively, encompassing 1.53 and 0.86 Gb of human sequence. To support the existence of complex long-range regulatory domains within these CBSs, we analyzed the prevalence and distribution of chromosomal aberrations leading to position effects (disruption of a gene's regulatory environment), observing a clear bias not only for mapping onto CBS but also for longer CBS size. Our results provide an extensive data set characterizing the regulatory domains of genes and the conserved regulatory elements within them. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. US DOE, Joint Genome Inst, Walnut Creek, CA USA. RP Couronne, O (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, 1 Cyclotron Rd,MS 84-171, Berkeley, CA 94720 USA. EM ocouronne@mac.com RI Couronne, Olivier Couronne/G-1244-2012; OI Ahituv, Nadav/0000-0002-7434-8144 FU NHLBI NIH HHS [U1HL66681B] NR 42 TC 51 Z9 53 U1 2 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0964-6906 J9 HUM MOL GENET JI Hum. Mol. Genet. PD OCT 15 PY 2005 VL 14 IS 20 BP 3057 EP 3063 DI 10.1093/hmg/ddi338 PG 7 WC Biochemistry & Molecular Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Genetics & Heredity GA 972AG UT WOS:000232425600011 PM 16155111 ER PT J AU Eriksson, O Wills, JM Colarieti-Tosti, M Lebegue, S Grechnev, A AF Eriksson, O Wills, JM Colarieti-Tosti, M Lebegue, S Grechnev, A TI Many-body projector orbitals for electronic structure theory of strongly correlated electrons SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY LA English DT Article DE electronic structure; electron correlation; f-electron materials; self-energy; projection orbitals ID DENSITY-FUNCTIONAL THEORY; SPIN; EXCHANGE; SYSTEMS; APPROXIMATION; PARAMETERS; MAGNETISM; SOLIDS; METALS; STATES AB We describe a technique to evaluate projector functions to be used, e.g., in self-interaction corrected versions of the Kohn-Sham equation (or in the LSDA+U method). The projector functions reproduce by construction the expectation values of spin and orbital moments (or any other property one is interested in) for the atomic many-body state. We therefore refer to these projector functions as many-body projector orbitals (MBPO). We describe how, once these projector states have been calculated, one can use them in any electronic structure method for a solid or molecule, to calculate ground-state properties of materials with strongly correlated states. (c) 2005 Wiley Periodicals, Inc. C1 Uppsala Univ, Dept Phys, S-75121 Uppsala, Sweden. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Linkoping Univ, Dept Phys & Measurement Technol, S-58183 Linkoping, Sweden. RP Eriksson, O (reprint author), Uppsala Univ, Dept Phys, Box 530, S-75121 Uppsala, Sweden. EM olle.eriksson@fysik.uu.se RI Lebegue, sebastien/A-7851-2010; Eriksson, Olle/E-3265-2014; Colarieti Tosti, Massimiliano/D-1360-2015 OI Eriksson, Olle/0000-0001-5111-1374; Colarieti Tosti, Massimiliano/0000-0002-2036-1060 NR 27 TC 3 Z9 3 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0020-7608 EI 1097-461X J9 INT J QUANTUM CHEM JI Int. J. Quantum Chem. PD OCT 15 PY 2005 VL 105 IS 2 BP 160 EP 165 DI 10.1002/qua.20669 PG 6 WC Chemistry, Physical; Mathematics, Interdisciplinary Applications; Physics, Atomic, Molecular & Chemical SC Chemistry; Mathematics; Physics GA 969KE UT WOS:000232232200008 ER PT J AU Dalpian, GM Wei, SH AF Dalpian, GM Wei, SH TI Transition from ferromagnetism to antiferromagnetism in Ga1-xMnxN SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MOLECULAR-BEAM-EPITAXY; GAN; SEMICONDUCTORS; (GA,MN)N; ENERGY; GAMNN AB Using density-functional theory, we study the magnetic stability of the Ga1-xMnxN alloy system. We show that unlike Ga1-xMnxAs, which shows only ferromagnetic phase, Ga1-xMnxN can be stable in either ferromagnetic or antiferromagnetic phases depending on the alloy concentration. The magnetic order can also be altered by applying pressure or with charge compensation. A band-structure model is used to explain these behaviors. (c) 2005 American Institute of Physics. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Dalpian, GM (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM suhuai_wei@nrel.gov RI Dalpian, Gustavo/B-9746-2008 OI Dalpian, Gustavo/0000-0001-5561-354X NR 25 TC 15 Z9 15 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2005 VL 98 IS 8 AR 083905 DI 10.1063/1.2115091 PG 4 WC Physics, Applied SC Physics GA 979JF UT WOS:000232937500048 ER PT J AU Devanathan, R Weber, WJ AF Devanathan, R Weber, WJ TI Insights into the radiation response of pyrochlores from calculations of threshold displacement events SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ION IRRADIATION; WASTE FORM; PLUTONIUM; CASCADES; OXIDES AB We have used molecular-dynamics simulations to examine the displacement threshold energy (E-d) surface for cations and anions in Gd2Ti2O7 and Gd2Zr2O7 pyrochlores. In both pyrochlores, the E-d surface is highly anisotropic and it requires less energy to displace anions than cations. Both anion and cation E-d values are higher in the titanate compared to the zirconate. Titanium displacement energies are in excess of 170 eV for all directions examined, because cation exchange is less energetically favorable in Gd2Ti2O7 compared to Gd2Zr2O7. These high-energy Ti displacements result in the formation of defect clusters that may prevent efficient defect recovery. This provides an explanation for the difference in susceptibility to amorphization between titanate and zirconate pyrochlores. C1 Pacific NW Natl Lab, Fundamental Sci Directorate, Richland, WA 99352 USA. RP Devanathan, R (reprint author), Pacific NW Natl Lab, Fundamental Sci Directorate, Richland, WA 99352 USA. EM ram.devanathan@pnl.gov RI Weber, William/A-4177-2008; Devanathan, Ram/C-7247-2008 OI Weber, William/0000-0002-9017-7365; Devanathan, Ram/0000-0001-8125-4237 NR 14 TC 20 Z9 20 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2005 VL 98 IS 8 AR 086110 DI 10.1063/1.2120889 PG 3 WC Physics, Applied SC Physics GA 979JF UT WOS:000232937500110 ER PT J AU Libal, A Grimsditch, M Metlushko, V Vavassori, P Janko, B AF Libal, A Grimsditch, M Metlushko, V Vavassori, P Janko, B TI Control of magnetic vortex chirality in square ring micromagnets SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ELECTRON-BEAM; PERMALLOY AB We investigate the effect of a deliberately introduced shape asymmetry on magnetization reversal in small, square-shaped, magnetic rings. The magnetization reversal process is investigated using the diffracted magneto-optical Kerr effect combined with micromagnetic simulations. Experimentally we find that the reversal path is sensitive to small (+/- 1 degrees) changes in the direction of the applied field. Micromagnetic simulations that reproduce the measured zeroth- and first-order loops allow us to identify the reversal mechanisms as due to different intermediate states, namely, the so-called vortex and horseshoe states. Based on our results we are now able to prescribe a methodology for writing a vortex state with specific chirality in these asymmetric rings. Such control will be necessary if patterned arrays of this kind are to be used as magnetic storage elements. (c) 2005 American Institute of Physics. C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. Argonne Natl Lab, Div Sci Mat, Argonne, IL 60439 USA. Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60607 USA. INFM, Natl Ctr S3, Ferrara, Italy. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. RP Libal, A (reprint author), Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. EM alibal@nd.edu RI Vavassori, Paolo/B-4299-2014 OI Vavassori, Paolo/0000-0002-4735-6640 NR 14 TC 18 Z9 18 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2005 VL 98 IS 8 AR 083904 DI 10.1063/1.2113407 PG 6 WC Physics, Applied SC Physics GA 979JF UT WOS:000232937500047 ER PT J AU Nazzal, AY Fu, HX Wang, LW AF Nazzal, AY Fu, HX Wang, LW TI Electronic properties and tunability in Si quantum rings SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID DOTS; NANOCRYSTALS; EMISSION AB We present an unconventional scheme that is able to dramatically modify single-electron states as well as their couplings in semiconductor nanostructures. The approach consists in perturbing the wave-function core (rather than the insignificant tail) of nanostructure states. We demonstrate this approach using a structure of silicon quantum rings. Anomalous interstate mixing, large tunability of orbital energy, and uncommon s/p level crossing are predicted. (c) 2005 American Institute of Physics. C1 Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Nazzal, AY (reprint author), Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. EM hfu@uark.edu NR 27 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2005 VL 98 IS 8 AR 083703 DI 10.1063/1.2089165 PG 4 WC Physics, Applied SC Physics GA 979JF UT WOS:000232937500037 ER PT J AU Vescovo, E Kim, HJ Ablett, JM Chambers, SA AF Vescovo, E Kim, HJ Ablett, JM Chambers, SA TI Spin-polarized conduction in localized ferromagnetic materials: The case of Fe3O4 on MgO(100) SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID VERWEY TRANSITION; FILMS; MAGNETORESISTANCE; PHOTOEMISSION AB The surface electronic structure of 1500-angstrom-thick Fe3O4(100) films has been investigated by spin-resolved photoemission spectroscopy with vacuum ultraviolet synchrotron radiation. The films, epitaxially grown on MgO(100) substrates using plasma-assisted molecular-beam deposition, are briefly exposed to air during transfer to the photoemission chamber. It is shown that clean surfaces of Fe3O4 films after exposure to air can be recovered through mild annealing in an oxygen atmosphere. The presence of the characteristic Verwey transition, as detected in the valence-band photoemission spectra, provides evidence for the excellent electronic quality at the surface of these films. The top of the valence band is found to be negatively spin polarized, with a value of approximate to-50%; this result strongly points towards the localized nature of the 3d states in this system. (c) 2005 American Institute of Physics. C1 Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. Pacific NW Natl Lab, Fundamental Sci Directorate, Richland, WA 99352 USA. RP Vescovo, E (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. EM vescovo@bnl.gov NR 22 TC 11 Z9 11 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2005 VL 98 IS 8 AR 084507 DI 10.1063/1.2085316 PG 5 WC Physics, Applied SC Physics GA 979JF UT WOS:000232937500086 ER PT J AU Wernet, P Testemale, D Hazemann, JL Argoud, R Glatzel, P Pettersson, LGM Nilsson, A Bergmann, U AF Wernet, P Testemale, D Hazemann, JL Argoud, R Glatzel, P Pettersson, LGM Nilsson, A Bergmann, U TI Spectroscopic characterization of microscopic hydrogen-bonding disparities in supercritical water SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID NEUTRON-SCATTERING EXPERIMENTS; PAIR CORRELATION-FUNCTIONS; COMPUTER-SIMULATION; LIQUID WATER; HEAVY-WATER; ICE; DIFFRACTION; EDGE; TEMPERATURES; AMBIENT AB The local hydrogen-bonding environment in supercritical water (380 degrees C, 300 bars, density 0.54 g/cm(3)) was studied by x-ray Raman scattering at the oxygen K edge. The spectra are compared to those of the gas phase, liquid surface, bulk liquid, and bulk ice, as well as to calculated spectra. The experimental model systems are used to assign spectral features and to quantify specific local hydrogen-bonding situations in supercritical water. The first coordination shell of the molecules is characterized in more detail with the aid of the calculations. Our analysis suggests that similar to 65% of the molecules in supercritical water are hydrogen bonded in configurations that are distinctly different from those in liquid water and ice. In contrast to liquid water the bonded molecules in supercritical water have four intact hydrogen bonds and in contrast to ice large variations of bond angles and distances are observed. The remaining similar to 35% of the molecules exhibit two free O-H bonds and are thus either not involved in hydrogen bonding at all or have one or two hydrogen bonds on the oxygen side. We determine an average O-O distance of 3.1 +/- 0.1 angstrom in supercritical water for the H bonded molecules at the conditions studied here. This and the corresponding hydrogen bond lengths are shown to agree with neutron- and x-ray-diffraction data at similar conditions. Our results on the local hydrogen-bonding environment with mainly two disparate hydrogen-bonding configurations are consistent with an extended structural model of supercritical water as a heterogeneous system with small patches of bonded molecules in various tetrahedral configurations and surrounding nonbonded gas-phase-like molecules. (c) 2005 American Institute of Physics. C1 Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. BESSY, D-12489 Berlin, Germany. CNRS, Lab Cristallog, F-38042 Grenoble, France. Univ Utrecht, NL-3584 CA Utrecht, Netherlands. Stockholm Univ, AlbaNova, FYSIKUM, S-10691 Stockholm, Sweden. Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. RP Nilsson, A (reprint author), Stanford Synchrotron Radiat Lab, POB 20450, Stanford, CA 94309 USA. EM nilsson@slac.stanford.edu; bergmann@slac.stanford.edu RI Nilsson, Anders/E-1943-2011; Pettersson, Lars/F-8428-2011; Glatzel, Pieter/E-9958-2010; Wernet, Philippe/A-7085-2013; ID, BioCAT/D-2459-2012; Pettersson, Lars/J-4925-2013 OI Nilsson, Anders/0000-0003-1968-8696; Glatzel, Pieter/0000-0001-6532-8144; Wernet, Philippe/0000-0001-7011-9072; Pettersson, Lars/0000-0003-1133-9934 FU NCRR NIH HHS [RR-08630] NR 37 TC 59 Z9 59 U1 0 U2 28 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 15 PY 2005 VL 123 IS 15 AR 154503 DI 10.1063/1.2064867 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 975XR UT WOS:000232697900025 PM 16252958 ER PT J AU Rutherford, SW Kurtz, RE Smith, MG Honnell, KG Coons, JE AF Rutherford, SW Kurtz, RE Smith, MG Honnell, KG Coons, JE TI Measurement and correlation of sorption and transport properties of ethylene-propylene-diene monomer (EPDM) elastomers SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE barrier membranes; composite membranes; diffusion; gas and vapor permeation ID PERVAPORATION; SEPARATION; MEMBRANES; PERMEATION; DIFFUSION; GASES; WATER AB The diffusivity and solubility of argon, methane, oxygen, and carbon dioxide in two EPDM-based polymers, one formulated with 34 wt% carbon black and the other formulated without carbon black, have been measured at 20 degrees C and at a range of pressures up to 266.448 x 10(2) Pa (2000 Torr). A linear relationship was observed between the amount sorbed and pressure for all gases, indicative of Henry's law behavior. The uptake kinetic measurements were well represented by a Fickian diffusion model and the resulting diffusivity was found to be independent of pressure. Analysis of solubility data revealed that the carbon black filler appeared to uptake negligible quantities of gas. The observed effect of non-porous filler on diffusivity and permeability was compared with Maxwell theory prediction and fell within experimental error. The experimental results were used to assess the applicability of a corresponding-states based correlation for predicting gas diffusivity and solubility in polymers. This correlation was found to adequately represent an order of magnitude estimate of the data for all gases, allowing estimates to be made for other gases not considered in this investigation. (c) 2005 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Engn Sci & Applicat Div, Los Alamos, NM 87545 USA. RP Rutherford, SW (reprint author), Los Alamos Natl Lab, Engn Sci & Applicat Div, MS C926, Los Alamos, NM 87545 USA. EM stevenr@lanl.gov OI Coons, Jim/0000-0003-1392-298X NR 29 TC 11 Z9 11 U1 0 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 J9 J MEMBRANE SCI JI J. Membr. Sci. PD OCT 15 PY 2005 VL 263 IS 1-2 BP 57 EP 65 DI 10.1016/j.memsci.2005.04.015 PG 9 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA 972FJ UT WOS:000232439300005 ER PT J AU Strachan, DM Scheele, RD Buck, EC Icenhower, JP Kozelisky, AE Sell, RL Elovich, RJ Buchmiller, WC AF Strachan, DM Scheele, RD Buck, EC Icenhower, JP Kozelisky, AE Sell, RL Elovich, RJ Buchmiller, WC TI Radiation damage effects in candidate titanates for Pu disposition: Pyrochlore SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID HEAVY-ION IRRADIATION; ACTINIDE HOST PHASES; NUCLEAR-WASTE FORM; PLUTONIUM IMMOBILIZATION; ZIRCONOLITE; GD2TI2O7; CERAMICS; ENTHALPIES; SPECIMENS AB Laboratory experiments on titanate ceramics were performed to verify whether certain assumptions are valid regarding the swelling, chemical durability, and microcracking that might occur as Pu-239 decays. Titanate ceramics are the material of choice for the immobilization of surplus weapons-grade Pu. The short-lived isotope Pu-238, was incorporated into the ceramic formulation to accelerate the effects of radiation-induced damage. We report on the effects of this damage on the density (volumetric swelling < 6%), crystal structure of pyrochlore-bearing specimens (amorphous after about 2 x 10(18) alpha/g), and dissolution (no change from the fully crystalline specimen). Even though the specimens became amorphous during the tests, there was no evidence for microcracking in the photomicrographs from the scanning electron microscope. Thus, although pyrochlore is susceptible to radiation-induced damage, the material remains chemically and physically viable as a material for immobilizing surplus weapons-grade Pu. (c) 2005 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Strachan, DM (reprint author), Pacific NW Natl Lab, POB 999,902 Battelle Blvd, Richland, WA 99352 USA. EM denis.strachan@pnl.gov RI Icenhower, Jonathan/E-8523-2011; Buck, Edgar/D-4288-2009; Buck, Edgar/N-7820-2013 OI Buck, Edgar/0000-0001-5101-9084 NR 67 TC 40 Z9 41 U1 3 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT 15 PY 2005 VL 345 IS 2-3 BP 109 EP 135 DI 10.1016/j.jnucmat.2005.04.064 PG 27 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 966SJ UT WOS:000232041400004 ER PT J AU Sencer, BH Maloy, SA Hamilton, ML Garner, FA AF Sencer, BH Maloy, SA Hamilton, ML Garner, FA TI Micro structural evolution of both as-irradiated and subsequently deformed microstructures of 316 L stainless steel irradiated at 30-160 degrees C at LANSCE SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID NEUTRON-IRRADIATION; FRACTURE PROCESSES; LOW-TEMPERATURES; HYDROGEN; DEFORMATION; ALLOYS; FUSION; DEPENDENCE; STRENGTH; ALUMINUM AB Specimens of 316 L stainless steel were irradiated to 0.5 10.3 dpa at 30-80 degrees C with a mixture of 500 800 MeV protons and spallation neutrons at the Los Alamos Neutron Science Center (LANSCE), Tensile test results of irradiated 316 L reported earlier had showed hardening and embrittlement with increasing irradiation dose, with significant irradiation hardening occurring at a dose of as low as 0.5 dpa. Transmission electron microscope (TEM) examination of the irradiated microstructure of 316 L showed black-spot damage (small loops) and somewhat larger faulted Frank loops to produce the hardening. There was an initial decrease in uniform elongation at low dose levels from 49% (unirradiated) to 30% at 1.1 dpa, followed by a second. rather abrupt contribution to ductility loss at higher doses (similar to 2.5 dpa) from 21% at 2.5 dpa to 0.5% at 3 dpa. This second drop in ductility was not accompanied by any visible new or enhanced microstructural development. In the current study additional transmission electron microscope investigation was conducted on both as-irradiated and irradiated plus subsequently deformed 316 L in the vicinity of the second abrupt ductility loss (similar to 2.5 dpa). The steel was observed to deform mainly by twinning and no brittle phases were found in the deformation microstructure. It is proposed that gas accumulation with increasing dpa. especially of hydrogen, may be a contributor to this second abrupt decrease in uniform elongation, Although the retained gas (helium and hydrogen) levels approached similar to 0.6 at.% total at the highest exposure level, no discernible cavities were observed. (c) 2005 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Sencer, BH (reprint author), Los Alamos Natl Lab, MST-8, Los Alamos, NM 87545 USA. EM sencer@lanl.gov RI Maloy, Stuart/A-8672-2009 OI Maloy, Stuart/0000-0001-8037-1319 NR 31 TC 5 Z9 5 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT 15 PY 2005 VL 345 IS 2-3 BP 136 EP 145 DI 10.1016/j.jnucmat.2005.05.005 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 966SJ UT WOS:000232041400005 ER PT J AU Pierce, EM Icenhower, JP Serne, RJ Catalano, JG AF Pierce, EM Icenhower, JP Serne, RJ Catalano, JG TI Experimental determination of UO2(cr) dissolution kinetics: Effects of solution saturation state and pH SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID RAY-ABSORPTION-SPECTRA; GIBBS FREE-ENERGIES; NEAR-EDGE STRUCTURE; ZERO-VALENT IRON; ANODIC-OXIDATION; URANIUM-COMPOUNDS; SURFACE-AREA; UO2; MINERALS; U(VI) AB To evaluate the release of uranium from natural ore deposits, spent nuclear fuel repositories, and REDOX permeable reactive barriers (PRB), knowledge of the fundamental reaction kinetics associated with the dissolution of uranium dioxide is necessary. Dissolution of crystalline uranium (IV) dioxide under environmental conditions has been studied for four decades but a cardinal gap in the published literature is the effect of pH and solution saturation state on UO2(cr) dissolution. To resolve inconsistencies, UO2 dissolution experiments have been conducted under oxic conditions using the single-pass flow-through system. Experiments were conducted as it function of total dissolved carbonate ([CO3-3](T)) from 0.001 to 0.1 M: pH from 7.5 to 11.1: ratio of flow-through rate (q) to specific surface area (S), constant ionic strength (I) = 0. 1 M, and temperatures (T) from 23 to 60 degrees C utilizing both powder and monolithic specimens. The results show that UO2 dissolution varies as a function of the ratio q/S and temperature. At values of log(10)q/S > -7,0, UO2 dissolution becomes invariant with respect to q/S, which can be interpreted its evidence for dissolution at the forward rate of reaction. The data collected in these experiments show the rate of UO2 dissolution increased by an order of magnitude with a 30 degrees C increase in temperature. The results also show the overall dissolution rate increases with an increase in pH and decreases as the dissolved uranium concentration approaches saturation with respect to secondary reaction products. Thus, as the value of the reaction quotient, Q, approaches equilibrium K, (with respect to a potential secondary phase) the dissolution rate decreases. This decrease in dissolution rate (r) was also observed when comparing measured UO2 dissolution rates from static tests where r = 1.7 +/- 0.14 x 10 (8) mol m (2)s (1) to the rate for flow-through reactors where r = 3.1 +/- 1.2 x 10(-7) mol m (-2) s(-1) . Thus, using traditional static test methods can result in an underestimation of the true forward rate of UO2(cr) dissolution. These results illustrate the importance of pH solution saturation state, and the concentration of dissolved carbonate on the release of uranium from UO2 in the natural environment. Published by Elsevier B.V. C1 Pacific NW Natl Lab, Environm Technol Div, Appl Geol & Geochem Grp, Richland, WA 99352 USA. Stanford Univ, Dept Geog & Environm Sci, Stanford, CA 94305 USA. RP Pierce, EM (reprint author), Pacific NW Natl Lab, Environm Technol Div, Appl Geol & Geochem Grp, POB 999,MS K6-81, Richland, WA 99352 USA. EM eric.pierce@pnl.gov RI Icenhower, Jonathan/E-8523-2011; Catalano, Jeffrey/A-8322-2013; Pierce, Eric/G-1615-2011 OI Catalano, Jeffrey/0000-0001-9311-977X; Pierce, Eric/0000-0002-4951-1931 NR 66 TC 38 Z9 39 U1 1 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT 15 PY 2005 VL 345 IS 2-3 BP 206 EP 218 DI 10.1016/j.jmucmat.2005.05.012 PG 13 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 966SJ UT WOS:000232041400011 ER PT J AU Sankaranarayanan, K Wassom, JS AF Sankaranarayanan, K Wassom, JS TI Ionizing radiation and genetic risks - XIV. Potential research directions in the post-genome era based on knowledge of repair of radiation-induced DNA double-strand breaks in mammalian somatic cells and the origin of deletions associated with human genomic disorders SO MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS LA English DT Review DE DNA double-strand break repair; genomic disorders; genetic risks of radiation ID SPERMATOGONIAL STEM-CELLS; DEPENDENT PROTEIN-KINASE; LOW-COPY REPEATS; SMITH-MAGENIS-SYNDROME; RECENT SEGMENTAL DUPLICATIONS; DENSITY-LIPOPROTEIN RECEPTOR; NEUROFIBROMATOSIS TYPE-1 NF1; PELIZAEUS-MERZBACHER-DISEASE; COMBINED IMMUNE-DEFICIENCY; RAY-INDUCED TRANSLOCATIONS AB Recent estimates of genetic risks from exposure of human populations to ionizing radiation are those presented in the 2001 report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). These estimates incorporate two important concepts, namely, the following: (1) most radiation-induced mutations are DNA deletions, often encompassing multiple genes, but only a small proportion of the induced deletions is compatible with offspring viability; and (2) the viability-compatible deletions induced in germ cells are more likely to manifest themselves as multi-system developmental anomalies rather than as single gene disorders. This paper: (a) pursues these concepts further in the light of knowledge of mechanisms of origin of deletions and other rearrangements from two fields of contemporary research: repair of radiation-induced DNA double-strand breaks (DSBs) in mammalian somatic cells and human molecular genetics; and (b) extends them to deletions induced in the germ cell stages of importance for radiation risk estimation, namely, stem cell spermatogonia in males and oocytes in females. DSB repair studies in somatic cells have elucidated the roles of two mechanistically distinct pathways, namely, homologous recombination repair (HRR) that utilizes extensive sequence homology and non-homologous end-joining (NHEJ) that requires little or no homology at the junctions. A third process, single-strand annealing (SSA), which utilizes short direct repeat sequences, is considered a variant of HRR. HRR is most efficient in late S and G(2) phases of the cell cycle and is a high fidelity mechanism. NHEJ operates in all cell cycle phases, but is especially important in G(1). In the context of radiation-induced DSBs, NHEJ is error-prone. SSA is also an error-prone mechanism and its role is presumably similar to that of HRR. Studies in human molecular genetics have demonstrated that the occurrence of large deletions, duplications or other rearrangements in certain regions of the genome is related to the presence of large segments of repetitive DNA called segmental duplications (also called duplicons or low copy repeats, LCRs) in such regions. The mechanism that is envisaged for the origin of deletions and other rearrangements involves misalignment Of region-specific LCRs of homologous chromosomes in meiosis followed by unequal crossing-over (i.e., non-allelic homologous recombination, NAHR). We hypothesize that: (a) in spermatogonial stem cells, NHEJ is probably the principal mechanism underlying the origin of radiation-induced deletions, although SSA and NAHR may also be involved to some extent, especially at low doses; and (b) in irradiated oocytes, NAHR is likely to be the main mechanism for generating deletions. We suggest future research possibilities, including the development of models for identifying regions of the genome that are susceptible to radiation-induced deletions. Such efforts may have particular significance in the context of the estimation of genetic risks of radiation exposure of human females, a problem that is still with us. (C) 2005 Elsevier B.V. All rights reserved. C1 Leiden Univ, Med Ctr, Sylvius Labs, Dept Toxicogenet, NL-2333 AL Leiden, Netherlands. YAHSGS, LLC, Richland, WA 99352 USA. Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37830 USA. RP Sankaranarayanan, K (reprint author), Leiden Univ, Med Ctr, Sylvius Labs, Dept Toxicogenet, Wassenaarseweg 72, NL-2333 AL Leiden, Netherlands. EM sankaran@lumc.nl NR 276 TC 32 Z9 32 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0027-5107 J9 MUTAT RES-FUND MOL M JI Mutat. Res.-Fundam. Mol. Mech. Mutagen. PD OCT 15 PY 2005 VL 578 IS 1-2 BP 333 EP 370 DI 10.1016/j.mrfmmm.2005.06.020 PG 38 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA 976QF UT WOS:000232747600032 PM 16084534 ER PT J AU Selby, PB Earhart, VS Raymer, GD AF Selby, PB Earhart, VS Raymer, GD TI The influence of dominant lethal mutations on litter size and body weight and the consequent impact on transgenerational carcinogenesis SO MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS LA English DT Article DE transgenerational carcinogenesis; dominant lethal mutations; body weight; caloric restriction; radiation ID PATERNAL X-IRRADIATION; LUNG-TUMOR INDUCTION; MALE-MICE; PULMONARY TUMORS; LIFE-SPAN; URETHANE; MOUSE; CANCER; SUSCEPTIBILITY; TRANSMISSION AB The reported untreated mouse control data from the Oak Ridge National Laboratory assessment of dominant damage (ADD) experiments demonstrate a strong negative correlation between body weight at 4, 5, 7, 9, and 11 weeks of age and number in litter at 3 weeks of age. Independently from the above finding, mother mice are also shown to differ substantially as to the mean weights of their litters. Much literature suggests that, as a general rule, (a) heavier mice are more likely to develop spontaneous and induced tumors earlier and (b) caloric restriction decreases body weights and tumor incidences and increases longevity. The above findings make it likely that many experiments that have been interpreted to demonstrate radiation-induced transgenerational carcinogenesis have instead merely illustrated a confounding effect of extensive induced dominant lethality. That is, because of induced dominant lethality, experimental groups contain heavier mice or rats, which accordingly develop more spontaneous tumors at a faster rate than control groups, with the increased tumor rates having nothing to do with induction of dominant tumor mutations. Our findings prompt suggestions as to possible modifications in the analysis and experimental design of such experiments. (C) 2005 Elsevier B.V. All rights reserved. C1 RiskMuTox, Oak Ridge, TN 37830 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Selby, PB (reprint author), RiskMuTox, 131 Clemson Dr, Oak Ridge, TN 37830 USA. EM pbs@mac.com FU NIEHS NIH HHS [222Y01-ES-10067] NR 36 TC 4 Z9 4 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0027-5107 J9 MUTAT RES-FUND MOL M JI Mutat. Res.-Fundam. Mol. Mech. Mutagen. PD OCT 15 PY 2005 VL 578 IS 1-2 BP 382 EP 394 DI 10.1016/j.mrfmmm.2005.06.025 PG 13 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA 976QF UT WOS:000232747600034 PM 16157353 ER PT J AU Jun, SC George, JS Pare-Blagoev, J Plis, SM Ranken, DM Schmidt, DM Wood, CC AF Jun, SC George, JS Pare-Blagoev, J Plis, SM Ranken, DM Schmidt, DM Wood, CC TI Spatiotemporal Bayesian inference dipole analysis for MEG neuroimaging data SO NEUROIMAGE LA English DT Article DE Bayesian inference; source localization; spatiotemporal analysis; dipole analysis; magnetoencephalography; Markov chain Monte Carlo ID SOMATOSENSORY EVOKED-POTENTIALS; INVERSE PROBLEM; SOURCE LOCALIZATION; REVERSIBLE JUMP; HUMAN BRAIN; CORTEX; RECORDINGS; ALGORITHM; NOISE; MAGNETOENCEPHALOGRAPHY AB Recently, we described a Bayesian inference approach to the MEG/ EEG inverse problem that used numerical techniques to estimate the full posterior probability distributions of likely solutions upon which all inferences were based [Schmidt, D.M., George, J.S., Wood, C.C., 1999. Bayesian inference applied to the electromagnetic inverse problem. Human Brain Mapping 7,195; Schmidt, D.M., George, J.S., Ranken, D.M., Wood, C.C., 2001. Spatial-temporal bayesian inference for MEG/EEG. In: Nenonen, J., Ilmoniemi, R. J., Katila, T. (Eds.), Biomag 2000: 12th International Conference on Biomagnetism. Espoo, Norway, p. 671]. Schmidt et al. (1999) focused on the analysis of data at a single point in time employing an extended region source model. They subsequently extended their work to a spatiotemporal Bayesian inference analysis of the full spatiotemporal MEG/EEG data set. Here, we formulate spatiotemporal Bayesian inference analysis using a multidipole model of neural activity. This approach is faster than the extended region model, does not require use of the subject's anatomical information, does not require prior determination of the number of dipoles, and yields quantitative probabilistic inferences. In addition, we have incorporated the ability to handle much more complex and realistic estimates of the background noise, which may be represented as a sum of Kronecker products of temporal and spatial noise covariance components. This reduces the effects of undermodeling noise. In order to reduce the rigidity of the multi-dipole formulation which commonly causes problems due to multiple local minima, we treat the given covariance of the background as uncertain and marginalize over it in the analysis. Markov Chain Monte Carlo (MCMC) was used to sample the many possible likely solutions. The spatiotemporal Bayesian dipole analysis is demonstrated using simulated and empirical whole-head MEG data. (c) 2005 Elsevier Inc. All rights reserved. C1 Los Alamos Natl Lab, Biol & Quantum Phys Grp, Los Alamos, NM 87545 USA. RP Jun, SC (reprint author), Los Alamos Natl Lab, Biol & Quantum Phys Grp, MS D454, Los Alamos, NM 87545 USA. EM jschan@lanl.gov OI Plis, Sergey/0000-0003-0040-0365; JUN, SUNG CHAN/0000-0001-5357-4436 FU NIBIB NIH HHS [2 R01 EB000310-05] NR 39 TC 37 Z9 37 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1053-8119 J9 NEUROIMAGE JI Neuroimage PD OCT 15 PY 2005 VL 28 IS 1 BP 84 EP 98 DI 10.1016/j.neuroimage.2005.06.003 PG 15 WC Neurosciences; Neuroimaging; Radiology, Nuclear Medicine & Medical Imaging SC Neurosciences & Neurology; Radiology, Nuclear Medicine & Medical Imaging GA 974XA UT WOS:000232623500010 PM 16023866 ER PT J AU Negres, RA DeMange, P Demos, SG AF Negres, RA DeMange, P Demos, SG TI Investigation of laser annealing parameters for optimal laser-damage performance in deuterated potassium dihydrogen phosphate SO OPTICS LETTERS LA English DT Article ID PULSE LENGTH DEPENDENCE; CRYSTALS; IRRADIATION; KH2PO4; KD2PO4; DKDP AB Laser annealing via preexposure to laser pulses at sub-damage-threshold fluences is known to improve the resistance of KDP crystals to laser-induced damage. Using a specific damage-testing method, we investigate the laser annealing process as a function of fluence and number of preexposure pulses (at 355 nm, 2.5 ns). Our aim is to reveal the key laser parameters in order to devise a practical and efficient protocol for optimizing performance of the material for operation in laser systems in the near UV. Results suggest that a near twofold improvement to the laser-damage performance can be achieved with a limited number of preexposure pulses. (c) 2005 Optical Society of America C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Negres, RA (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. EM negres2@llnl.gov NR 17 TC 20 Z9 22 U1 4 U2 12 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD OCT 15 PY 2005 VL 30 IS 20 BP 2766 EP 2768 DI 10.1364/OL.30.002766 PG 3 WC Optics SC Optics GA 973JG UT WOS:000232518100028 PM 16252768 ER PT J AU Bielenberg, JR Brenner, H AF Bielenberg, JR Brenner, H TI A hydrodynamic/Brownian motion model of thermal diffusion in liquids SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS LA English DT Article DE thermal diffusion; Soret effect; Ludwig-Soret effect; liquids ID FIELD-FLOW FRACTIONATION; PARTICLE THERMOPHORESIS; SORET COEFFICIENT; POLYMER-SOLUTIONS; MASS DIFFUSION; MIXTURES; SOLVENTS; MECHANISM AB A recently modified formulation of fluid-mechanical transport processes, which has been shown to correctly predict the thermophoretic force on a rigid isolated particle in a single-component fluid continuum (gas or liquid), is combined with steady-state Stokes-Einstein-type sedimentation-equilibrium/Boltzmann distribution-like arguments appropriate to a dilute suspension of such particles, each regarded as Brownian, so as to furnish an elementary hydrodynamic theory for thermal diffusion separation phenomena in dilute binary liquid-phase mixtures (the Ludwig/Soret effect) for the case of a disparate solute/solvent molecular size ratio. The results of the theory are shown to accord well with experiments on polymer solutions in regard to both the magnitude and algebraic sign of the Soret coefficient, as well as with respect to the effects of temperature and mixture composition on this coefficient. An extension (albeit less rigorous) of the preceding theory to the case of nondilute, thermodynamically ideal, binary solutions of miscible liquids of comparable molecular size also yields results in reasonable accord with experiments. (c) 2005 Elsevier B.V. All rights reserved. C1 MIT, Dept Chem Engn, Cambridge, MA 02139 USA. Los Alamos Natl Lab, ESA MEE, Los Alamos, NM 87545 USA. RP Brenner, H (reprint author), MIT, Dept Chem Engn, Cambridge, MA 02139 USA. EM bielen@lanl.gov; hbrenner@mit.edu NR 55 TC 41 Z9 41 U1 0 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-4371 J9 PHYSICA A JI Physica A PD OCT 15 PY 2005 VL 356 IS 2-4 BP 279 EP 293 DI 10.1016/j.physa.2005.03.033 PG 15 WC Physics, Multidisciplinary SC Physics GA 961QB UT WOS:000231675800003 ER PT J AU Mushkin, A Balick, LK Gillespie, AR AF Mushkin, A Balick, LK Gillespie, AR TI Extending surface temperature and emissivity retrieval to the mid-infrared (3-5 mu m) using the Multispectral Thermal Imager (MTI) SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE emissivity; surface temperature; mid-infrared; Multispectral Thermal Imager (MTI) ID ALGORITHM AB Surface-temperature (T) and emissivity (epsilon) estimation from remotely sensed mid-infrared (MIR: 3-5 mu m) data requires modifications to existing long-wave infrared (LWIR: 8-12 mu m) T/epsilon separation algorithms because of the significantly different characteristics of Planck's function between the MIR and LWIR wavelength regions and the strong effects of reflected solar irradiance in the MIR. A modified version of the normalized emissivity method (NEM), utilizing independently scaled maximum emissivities in each channel, was applied to thermal data acquired by the Multispectral Thermal Imager (MTI) with two MIR channels, J (3.81 mu m) and K (4.97 mu m), and three LWIR channels, L (8.26 mu m), M (8.65 mu m), and N (10.51 mu m). Atmosphere-free simulations of T and epsilon retrieval over a wide variety of terrestrial surfaces yielded T values within +/- 0.75 K of 'true T' in the range of 270-330 K and epsilon values within +/- 0.011 of true epsilon in channels L, M and N, and +/- 0.019 and +/- 0.023 in channels K and J, respectively. The algorithm was tested successfully using MTI data over the Mauna Loa caldera in Hawaii. Unconstrained effects of shading and unresolved shadows in channel J daytime data, and the strong atmospheric effects in channel K limit the application of the algorithm, in its present form, to night-time data. (C) 2005 Published by Elsevier Inc. C1 Univ Washington, Seattle, WA 98195 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Mushkin, A (reprint author), Univ Washington, Seattle, WA 98195 USA. EM mushkin@u.washington.edu NR 15 TC 20 Z9 21 U1 1 U2 6 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD OCT 15 PY 2005 VL 98 IS 2-3 BP 141 EP 151 DI 10.1016/j.rse.2005.06.003 PG 11 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 976OL UT WOS:000232742900001 ER PT J AU Peper, S Gonczy, C Runde, W AF Peper, S Gonczy, C Runde, W TI Cs+-selective membrane electrodes based on ethylene glycol-functionalized polymeric microspheres SO TALANTA LA English DT Article DE cesium; ion-selective electrode; ethylene glycol; immobilized ionophore ID LOWER DETECTION LIMIT; POLY(VINYL CHLORIDE); CESIUM ION; 1,3-ALTERNATE CONFORMATION; CHEMICAL SENSORS; LIQUID MEMBRANES; IONOPHORE; PLASTICIZER; SOLVENT; ETHERS AB A new strategy for improving the robustness of membrane-based ion-selective electrodes (ISEs) is introduced based on the incorporation of microsphere-immobilized ionophores into plasticized polymer membranes. As a model system, a Cs+-selective electrode was developed by doping ethylene glycol -functionalized cross-linked polystyrene microspheres (P-EG) into a plasticized poly(vinyl chloride) (PVC matrix containing sodium tetrakis-[3,5-bis(trifluoromethyl)phenyl] borate (TFPB) as the ion exchanger. Electrodes were evaluated with respect to Cs+ in terms of sensitivity, selectivity, and dynamic response. ISEs containing P-EG and TFPB that were plasticized with 2-nitrophenyl octyl ether (NPOE) yielded a linear range from 10(-1) to 10(-5) M Cs+, a slope of 55.4 mV/decade, and a lower detection limit (log a(Cs) ) of -5.3. In addition, these membranes also demonstrated superior selectivity over Li+, Na+, and alkaline earth metal ion interferents when compared to analogous membranes plasticized with bis(2-ethylhexyl) sebacate (DOS) or membranes containing a lipophilic, mobile ethylene glycol derivative (ethylene glycol monooctadecyl ether (U-EG)) as ionophore. (c) 2005 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Peper, S (reprint author), Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. EM speper@lanl.gov NR 53 TC 14 Z9 14 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-9140 J9 TALANTA JI Talanta PD OCT 15 PY 2005 VL 67 IS 4 BP 713 EP 717 DI 10.1016/j.talanta.2005.03.014 PG 5 WC Chemistry, Analytical SC Chemistry GA 966AV UT WOS:000231992900007 PM 18970229 ER PT J AU Skubal, LR Biedron, SG Newville, M Schneider, JF Milton, SV Pianetta, P O'Neill, HJ AF Skubal, LR Biedron, SG Newville, M Schneider, JF Milton, SV Pianetta, P O'Neill, HJ TI Mercury transformations in chemical agent simulant as characterized by X-ray absorption fine spectroscopy SO TALANTA LA English DT Article DE mercury; thiodiglycol; XAFS; chemical warfare agent simulant; mustard ID EXAFS AB Chemical analyses of U.S. stockpiled mustard chemical warfare agent show some agent destined for destruction contains mercury [L. Ember, Chem. Eng. News 82 (2004) 8]. Because of its toxicity, mercury must be removed from agent prior to incineration or be scrubbed from incineration exhaust to prevent release into the atmosphere. Understanding mercury/agent interactions is critical if either atmospheric or aqueous treatment processes are used. We investigate and compare the state of mercury in water to that in thiodiglycol, a mustard simulant, as co-contaminants are introduced. The effects of sodium hypochlorite and sodium hydroxide, common neutralization chemicals, on mercury in water and simulant with and without co-contaminants present are examined using X-ray absorption fine spectroscopy (XAFS). (c) 2005 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Argonne, IL 60439 USA. Univ Chicago, Consortium Adv Radiat Sci, Argonne, IL 60439 USA. Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Skubal, LR (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM lskubal@anl.gov NR 14 TC 1 Z9 1 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-9140 J9 TALANTA JI Talanta PD OCT 15 PY 2005 VL 67 IS 4 BP 730 EP 735 DI 10.1016/j.talanta.2005.03.030 PG 6 WC Chemistry, Analytical SC Chemistry GA 966AV UT WOS:000231992900010 PM 18970232 ER PT J AU Miller, MS Palmer, BM Ruch, S Martin, LA Farman, GP Wang, Y Robbins, J Irving, TC Maughan, DW AF Miller, MS Palmer, BM Ruch, S Martin, LA Farman, GP Wang, Y Robbins, J Irving, TC Maughan, DW TI The essential light chain N-terminal extension alters force and fiber kinetics in mouse cardiac muscle SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID NONMUSCLE MYOSIN-II; CONTRACTILE ACTIVATION; PHOSPHATE RELEASE; SARCOMERE-LENGTH; MOLECULAR MOTORS; ISOMETRIC FORCE; TRANSGENIC MICE; STRIATED-MUSCLE; BINDING-SITES; SMOOTH-MUSCLE AB The functional significance of the actin-binding region at the N terminus of the cardiac myosin essential light chain (ELC) remains elusive. In a previous experiment, the endogenous ventricular ELC was replaced with a protein containing a 10-amino acid deletion at positions 5 - 14 (ELC1v Delta 5 - 14, referred to as 1v Delta 5 - 14), a region that interacts with actin (Sanbe, A., Gulick, J., Fewell, J., and Robbins, J. ( 2001) J. Biol. Chem. 276, 32682 - 32686). 1v Delta 5 - 14 mice showed no discernable mutant phenotype in skinned ventricular strips. However, because the myofilament lattice swells upon skinning, the mutant phenotype may have been concealed by the inability of the ELC to reach the actin- binding site. Using the same mouse model, we repeated earlier measurements and performed additional experiments on skinned strips osmotically compressed to the intact lattice spacing as determined by x-ray diffraction. 1v Delta 5 - 14 mice exhibited decreased maximum isometric tension without a change in calcium sensitivity. The decreased force was most evident in 5 - 6-month-old mice compared with 13 - 15-month-old mice and may account for the greater ventricular wall thickness in young 1v Delta 5 - 14 mice compared with age-matched controls. No differences were observed in unloaded shortening velocity at maximum calcium activation. However, 1v Delta 5 - 14 mice exhibited a significant difference in the frequency at which minimum complex modulus amplitude occurred, indicating a change in cross-bridge kinetics. We hypothesize that the ELC N-terminal extension interaction with actin inhibits the reversal of the power stroke, thereby increasing isometric force. Our results strongly suggest that an interaction between residues 5 - 14 of the ELC N terminus and the C-terminal residues of actin enhances cardiac performance. C1 Univ Vermont, Dept Mol Physiol & Biophys, Burlington, VT 05405 USA. IIT, Biophys Collaborat Access Team, Chicago, IL 60616 USA. IIT, Ctr Synchrotron Radiat Res & Instrumentat, Dept Biol Chem & Phys Sci, Chicago, IL 60616 USA. Childrens Hosp Res Fdn, Div Mol Cardiovasc Biol, Cincinnati, OH 45229 USA. Univ Cincinnati, Dept Pediat, Cincinnati, OH 45229 USA. RP Miller, MS (reprint author), Univ Vermont, Dept Mol Physiol & Biophys, 127 HSRF Bldg,149 Beaumont Ave, Burlington, VT 05405 USA. EM mmiller@cems.uvm.edu RI Miller, Mark/B-6523-2008; ID, BioCAT/D-2459-2012 FU NCRR NIH HHS [RR08630]; NHLBI NIH HHS [P01 HL69779, R01 HL068034, R01 HL68034] NR 43 TC 20 Z9 21 U1 0 U2 1 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD OCT 14 PY 2005 VL 280 IS 41 BP 34427 EP 34434 DI 10.1074/jbc.M508430200 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 971SD UT WOS:000232403900008 PM 16085933 ER PT J AU Cape, JL Strahan, JR Lenaeus, MJ Yuknis, BA Le, TT Shepherd, JN Bowman, MK Kramer, DM AF Cape, JL Strahan, JR Lenaeus, MJ Yuknis, BA Le, TT Shepherd, JN Bowman, MK Kramer, DM TI The respiratory substrate rhodoquinol induces Q-cycle bypass reactions in the yeast cytochrome bc(1) complex - Mechanistic and physiological implications SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID ELECTRON-TRANSPORT CHAIN; IRON-SULFUR PROTEIN; ANAEROBICALLY FUNCTIONING EUKARYOTES; FUMARATE REDUCTASE-ACTIVITY; THERMOPHILIC BACTERIUM PS3; LUMBRICOIDES VAR SUIS; Q(O) SITE; UBIQUINOL OXIDATION; RHODOBACTER-SPHAEROIDES; RHODOSPIRILLUM-RUBRUM AB The mitochondrial cytochrome bc(1) complex catalyzes the transfer of electrons from ubiquinol to cyt c while generating a proton motive force for ATP synthesis via the "Q-cycle" mechanism. Under certain conditions electron flow through the Q-cycle is blocked at the level of a reactive intermediate in the quinol oxidase site of the enzyme, resulting in "bypass reactions," some of which lead to superoxide production. Using analogs of the respiratory substrates ubiquinol-3 and rhodoquinol-3, we show that the relative rates of Q-cycle bypass reactions in the Saccharomyces cerevisiae cyt bc1 complex are highly dependent by a factor of up to 100-fold on the properties of the substrate quinol. Our results suggest that the rate of Q-cycle bypass reactions is dependent on the steady state concentration of reactive intermediates produced at the quinol oxidase site of the enzyme. We conclude that normal operation of the Q-cycle requires a fairly narrow window of redox potentials with respect to the quinol substrate to allow normal turnover of the complex while preventing potentially damaging bypass reactions. C1 Gonzaga Univ, Dept Chem, Spokane, WA 99258 USA. Washington State Univ, Inst Biol Chem, Pullman, WA 99164 USA. Battelle NW Lab, Struct Biol & Microimaging, Richland, WA 99352 USA. RP Shepherd, JN (reprint author), Gonzaga Univ, Dept Chem, 502 E Boone Ave, Spokane, WA 99258 USA. EM shepherd@gonzaga.edu RI Bowman, Michael/F-4265-2011 OI Bowman, Michael/0000-0003-3464-9409 FU NIGMS NIH HHS [GM61904] NR 80 TC 20 Z9 22 U1 0 U2 2 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD OCT 14 PY 2005 VL 280 IS 41 BP 34654 EP 34660 DI 10.1074/jbc.M507616200 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 971SD UT WOS:000232403900034 PM 16087663 ER PT J AU Asnin, L Guiochon, G AF Asnin, L Guiochon, G TI Chromatographic separation of phenylpropanol enantiomers on a quinidine carbamate-type chiral stationary phase SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE l-phenylpropanol; 3-chloro-l-phenylpropanol; 2-phenylpropanol; quinidine carbamate; enantioseparation; HPLC; compensation effect ID PERFORMANCE LIQUID-CHROMATOGRAPHY; CINCHONA ALKALOIDS; ANION-EXCHANGERS; AMINO-ACIDS; BAND PROFILES; MOBILE-PHASE; QUININE; SILICA; RECOGNITION; RESOLUTION AB The retention and the separation of the enantiomers of 1-phenylpropanol (1PP), 2-phenylpropanol (2PP), and 3-chloro-1-phenylpropanol (3CPP) on silica-bonded quinidine carbamate under normal phase HPLC conditions were investigated. A relatively high selectivity of the stationary phase for 3CPP and 1PP (alpha approximate to 1.07 - 1.09) was achieved with eluents containing ethyl acetate as the polar modifier. These mobile phases were examined in detail. Based on the set of chromatographic and thermodynamic data collected, conclusions regarding the mechanism of enantioselectivity and the structure of the selector chiral center are made. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Guiochon, G (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM guiochon@utk.edu OI Asnin, Leonid/0000-0001-6309-6140 NR 39 TC 13 Z9 13 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD OCT 14 PY 2005 VL 1091 IS 1-2 BP 11 EP 20 DI 10.1016/j.chroma.2005.07.006 PG 10 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 970XF UT WOS:000232345000002 PM 16395788 ER PT J AU Asnin, L Gotmar, G Guiochon, G AF Asnin, L Gotmar, G Guiochon, G TI Chromatographic behavior of the enantiomers of 2,2,2-trifluoro-1-(9-anthryl)ethanol on a quinidine-carbamate chiral stationary phase SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE chiral stationary phase; quinidine carbamate; enantiomer separation; 2,2,2-trifluoro-1-(9-anthryl)ethanol ID PERFORMANCE LIQUID-CHROMATOGRAPHY; ANION-EXCHANGERS; SEPARATION; ADSORPTION; RETENTION; PRESSURE AB The enantioseparation of 2,2,2-trifluoro-1-(9-anthryl)ethanol on silica-bonded quinidine carbamate was examined under linear chromatographic conditions. The significant impact of nonselective adsorption on the retention was demonstrated. The influences of a polar additive in the mobile phase on the retention, the selectivity and the thermodynamic quantities of the retention were measured. A small effect of the pressure on the selectivity and on the accuracy of the thermodynamic measurements was observed. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. RP Guiochon, G (reprint author), Univ Tennessee, Dept Chem, 552 Buehler Hall, Knoxville, TN 37996 USA. EM guiochon@utk.edu OI Asnin, Leonid/0000-0001-6309-6140 NR 9 TC 10 Z9 10 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD OCT 14 PY 2005 VL 1091 IS 1-2 BP 183 EP 186 DI 10.1016/j.chroma.2005.07.079 PG 4 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 970XF UT WOS:000232345000023 PM 16395809 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Arnoud, Y Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Badaud, F Baden, A Bagby, L Baldin, B Balm, PW Banerjee, P Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Beauceron, S Begalli, M Begel, M Bellavance, A Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borcherding, F Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Cho, DK Choi, S Choudhary, B Christiansen, T Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cothenet, A Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D da Motta, H Das, M Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E De Oliveira Martins, C Dean, S Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dong, H Doulas, S Dudko, LV Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Eroshin, OV Estrada, J Evans, H Evdokimov, A Evdokimov, VN Fast, J Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Genser, K Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golling, T Gollub, N Gomez, B Gounder, K Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Gris, P Grivaz, JF Groer, L Grunendahl, S Grunewald, MW Gurzhiev, SN Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Hagopian, S Hall, I Hall, RE Han, C Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Huang, J Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jain, V Jakobs, K Jenkins, A Jesik, R Johns, K Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, J Karmanov, D Kasper, J Kau, D Kaur, R Kehoe, R Kermiche, S Kesisoglou, S Khanov, A Kharchilava, A Kharzheev, YM Kim, H Kim, TJ Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Kryemadhi, A Krzywdzinski, S Kulik, Y Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lager, S Lahrichi, N Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Leonidopoulos, C Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linn, SL Linnemann, J Lipaev, VV Lipton, R Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lueking, L Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK Mayorov, AA McCarthy, R McCroskey, R Meder, D Melnitchouk, A Mendes, A Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Mitrevski, J Molina, J Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mundim, L Mutaf, YD Nagy, E Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T Nurse, E O'Dell, V O'Neil, DC Oguri, V Oliveira, N Oshima, N Otero y Garzon, GJ Padley, P Parashar, N Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Petroff, P Petteni, M Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG Prado da Silva, WL Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rani, KJ Ranjan, K Rapidis, PA Ratoff, PN Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Smolek, K Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stanton, NR Stark, J Steele, J Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Titov, M Tomoto, M Toole, T Torborg, J Towers, S Trefzger, T Trincaz-Duvoid, S Tsybychev, D Tuchming, B Tully, C Turcot, AS Tuts, PM Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vlimant, JR Von Toerne, E Vreeswijk, M Vu Anh, T Wahl, HD Wang, L Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wermes, N Wetstein, M White, A White, V Wicke, D Wijngaarden, DA Wilson, GW Wimpenny, SJ Wittlin, J Wobisch, M Womersley, J Wood, DR Wyatt, TR Xu, Q Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yen, Y Yip, K Yoo, HD Youn, SW Yu, J Yurkewicz, A Zabi, A Zatserklyaniy, A Zdrazil, M Zeitnitz, C Zhang, D Zhang, X Zhao, T Zhao, Z Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zitoun, R Zutshi, V Zverev, EG AF Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Arnoud, Y Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Badaud, F Baden, A Bagby, L Baldin, B Balm, PW Banerjee, P Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Beauceron, S Begalli, M Begel, M Bellavance, A Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borcherding, F Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burke, S Burnett, TH Busato, E Buszello, CP Butler, JM Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Cho, DK Choi, S Choudhary, B Christiansen, T Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cothenet, A Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D da Motta, H Das, M Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E De Oliveira Martins, C Dean, S Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dong, H Doulas, S Dudko, LV Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Eroshin, OV Estrada, J Evans, H Evdokimov, A Evdokimov, VN Fast, J Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, A Gay, P Gele, D Gelhaus, R Genser, K Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golling, T Gollub, N Gomez, B Gounder, K Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Gris, P Grivaz, JF Groer, L Grunendahl, S Grunewald, MW Gurzhiev, SN Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Hagopian, S Hall, I Hall, RE Han, C Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Huang, J Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jain, V Jakobs, K Jenkins, A Jesik, R Johns, K Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, J Karmanov, D Kasper, J Kau, D Kaur, R Kehoe, R Kermiche, S Kesisoglou, S Khanov, A Kharchilava, A Kharzheev, YM Kim, H Kim, TJ Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Kryemadhi, A Krzywdzinski, S Kulik, Y Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lager, S Lahrichi, N Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Leonidopoulos, C Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linn, SL Linnemann, J Lipaev, VV Lipton, R Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lueking, L Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK Mayorov, AA McCarthy, R McCroskey, R Meder, D Melnitchouk, A Mendes, A Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Mitrevski, J Molina, J Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mundim, L Mutaf, YD Nagy, E Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T Nurse, E O'Dell, V O'Neil, DC Oguri, V Oliveira, N Oshima, N Otero y Garzon, GJ Padley, P Parashar, N Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Petroff, P Petteni, M Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Pompos, A Pope, BG Prado da Silva, WL Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rani, KJ Ranjan, K Rapidis, PA Ratoff, PN Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Smolek, K Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stanton, NR Stark, J Steele, J Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Titov, M Tomoto, M Toole, T Torborg, J Towers, S Trefzger, T Trincaz-Duvoid, S Tsybychev, D Tuchming, B Tully, C Turcot, AS Tuts, PM Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vlimant, JR Von Toerne, E Vreeswijk, M Vu Anh, T Wahl, HD Wang, L Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wermes, N Wetstein, M White, A White, V Wicke, D Wijngaarden, DA Wilson, GW Wimpenny, SJ Wittlin, J Wobisch, M Womersley, J Wood, DR Wyatt, TR Xu, Q Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yen, Y Yip, K Yoo, HD Youn, SW Yu, J Yurkewicz, A Zabi, A Zatserklyaniy, A Zdrazil, M Zeitnitz, C Zhang, D Zhang, X Zhao, T Zhao, Z Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zitoun, R Zutshi, V Zverev, EG TI Search for large extra spatial dimensions in dimuon production with the D0 detector SO PHYSICAL REVIEW LETTERS LA English DT Article ID GRAVITY; TEV; MILLIMETER AB We present the results of a search for the effects of large extra spatial dimensions in p (p) over bar collisions at root s = 1: 96 TeV in events containing a pair of energetic muons. The data correspond to 246 pb(-1) of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron Collider. Good agreement with the expected background was found, yielding no evidence for large extra dimensions. We set 95% C. L. lower limits on the fundamental Planck scale between 0.85 and 1.27 TeV within several formalisms. These are the most stringent limits achieved in the dimuon channel to date. C1 Univ Buenos Aires, Buenos Aires, DF, Argentina. Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Univ Alberta, Edmonton, AB, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. McGill Univ, Montreal, PQ, Canada. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republic, Ctr Particle Phys, Inst Phys, Prague, Czech Republic. Univ San Francisco, Quito, Ecuador. Univ Clermont Ferrand, Phys Corpusculaire Lab, IN2P3, CNRS, Clermont Ferrand, France. Univ Grenoble 1, Lab Phys Subatom & Cosmol, IN2P3, CNRS, Grenoble, France. Univ Aix Marseille 2, CPPM, IN2P3, CNRS, Marseille, France. CNRS, Lab Accelerateur Lineaire, IN2P3, F-91405 Orsay, France. Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. Univ Paris 07, Paris, France. CEA Saclay, DAPNIA, Serv Phys Particules, Saclay, France. Univ Strasbourg 1, IReS, IN2P3, CNRS, Mulhouse, France. Univ Haute Alsace, Mulhouse, France. Univ Lyon 1, CNRS, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. Rhein Westfal TH Aachen, Inst Phys 3, D-5100 Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, Freiburg, Germany. Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. Univ Amsterdam, NIKHEF H, Amsterdam, Netherlands. Univ Amsterdam, FOM, Inst NIKHEF, Amsterdam, Netherlands. Radboud Univ Nijmegen, NIKHEF, Nijmegen, Netherlands. Joint Inst Nucl Res, Dubna, Russia. Inst Theoret & Expt Phys, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Inst High Energy Phys, Protvino, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Lund Univ, Lund, Sweden. Stockholm Univ, Royal Inst Technol, S-10691 Stockholm, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Lancaster, Lancaster, England. Univ London Imperial Coll Sci Technol & Med, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Iowa State Univ, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mundim, Luiz/A-1291-2012; Nomerotski, Andrei/A-5169-2010; Telford, Paul/B-6253-2011; Yip, Kin/D-6860-2013; Shivpuri, R K/A-5848-2010; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Oguri, Vitor/B-5403-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; KIM, Tae Jeong/P-7848-2015; Sznajder, Andre/L-1621-2016; Bargassa, Pedrame/O-2417-2016 OI Fatakia, Sarosh/0000-0003-0430-3191; Bertram, Iain/0000-0003-4073-4941; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Sznajder, Andre/0000-0001-6998-1108; Bean, Alice/0000-0001-5967-8674; Bargassa, Pedrame/0000-0001-8612-3332 NR 18 TC 30 Z9 30 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 14 PY 2005 VL 95 IS 16 AR 161602 DI 10.1103/PhysRevLett.95.161602 PG 8 WC Physics, Multidisciplinary SC Physics GA 973YL UT WOS:000232558400010 PM 16241783 ER PT J AU Fujii, H Gelis, F Venugopalan, R AF Fujii, H Gelis, F Venugopalan, R TI Quantitative study of the violation of k(perpendicular to) factorization in hadroproduction of quarks at collider energies SO PHYSICAL REVIEW LETTERS LA English DT Article ID NUCLEUS COLLISIONS; GLUON PRODUCTION; PA-COLLISIONS; COLOR FIELD; GLASS AB We demonstrate the violation of k(perpendicular to) factorization for quark production in high energy hadronic collisions. This violation is quantified in the color glass condensate framework and studied as a function of the quark mass, the quark transverse momentum, and the saturation scale Q(s), which is a measure of large parton densities. At x values where parton densities are large but leading twist shadowing effects are still small, violations of k(perpendicular to) factorization can be significant-especially for lighter quarks. At very small x, where leading twist shadowing is large, we show that violations of k(perpendicular to) factorization are relatively weaker. C1 Univ Tokyo, Inst Phys, Tokyo 1538902, Japan. CEA, DSM, SPhT, F-91191 Gif Sur Yvette, France. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. ECT, I-38050 Trento, Italy. RP Univ Tokyo, Inst Phys, Tokyo 1538902, Japan. NR 17 TC 44 Z9 44 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 14 PY 2005 VL 95 IS 16 AR 162002 DI 10.1103/PhysRevLett.95.162002 PG 4 WC Physics, Multidisciplinary SC Physics GA 973YL UT WOS:000232558400013 PM 16241786 ER PT J AU Hizi, U Sharma, P Henley, CL AF Hizi, U Sharma, P Henley, CL TI Semiclassical ordering in the large-N pyrochlore antiferromagnet SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUANTUM ANTIFERROMAGNETS; EXPANSION; KAGOME AB We study the semiclassical limit of the Sp(N) generalization of the pyrochlore lattice Heisenberg antiferromagnet by expanding about the N ->infinity saddlepoint in powers of a generalized inverse spin. To leading order, we write down an effective Hamiltonian as a series in loops on the lattice. Using this as a formula for calculating the energy of any classical ground state, we perform Monte Carlo simulations and find a unique collinear ground state. This state is not a ground state of linear spin-wave theory, and can therefore not be a physical (N=1) semiclassical ground state. C1 Cornell Univ, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Cornell Univ, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA. EM uh22@cornell.edu NR 16 TC 11 Z9 11 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 14 PY 2005 VL 95 IS 16 AR 167203 DI 10.1103/PhysRevLett.95.167203 PG 4 WC Physics, Multidisciplinary SC Physics GA 973YL UT WOS:000232558400067 PM 16241838 ER PT J AU Hu, SX Vrinceanu, D Mazevet, S Collins, LA AF Hu, SX Vrinceanu, D Mazevet, S Collins, LA TI Molecular-dynamics simulations of cold antihydrogen formation in strongly magnetized plasmas SO PHYSICAL REVIEW LETTERS LA English DT Article ID ATOMS AB Employing a high-order symplectic integrator and an adaptive time-step algorithm, we perform molecular-dynamics simulations of antihydrogen formation, in a cold plasma confined by a strong magnetic field, over time scales of microseconds. Sufficient positron-antiproton recombination events occur to allow a statistical analysis for various properties of the formed antihydrogen atoms. Giant-dipole states are formed in the initial stage of recombination. In addition to neutral atoms, we also observe antihydrogen positive ions ((H) over bar (+)), in which two positrons simultaneously bind to an antiproton. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. EM suxing@lanl.gov RI Hu, Suxing/A-1265-2007 OI Hu, Suxing/0000-0003-2465-3818 NR 16 TC 14 Z9 14 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 14 PY 2005 VL 95 IS 16 AR 163402 DI 10.1103/PhysRevLett.95.163402 PG 4 WC Physics, Multidisciplinary SC Physics GA 973YL UT WOS:000232558400026 PM 16241799 ER PT J AU Japel, S Schwager, B Boehler, R Ross, M AF Japel, S Schwager, B Boehler, R Ross, M TI Melting of copper and nickel at high pressure: The role of d electrons SO PHYSICAL REVIEW LETTERS LA English DT Article ID INITIO MOLECULAR-DYNAMICS; DIAMOND-ANVIL CELL; TRANSITION-METALS; CURVE; PLATINUM; SILVER; CORE; IRON; KBAR; GOLD AB Melting curves of Cu and Ni were measured in the laser-heated diamond cell to 97 GPa (3800 K) and 60 GPa (2970 K), respectively. The temperatures of Cu are in good agreement with recent theoretical calculations. The Cu melting slope (dT/dP) is about 2.5 times steeper than for Ni. The present results confirm the key role d-shell electrons play in determining the temperature dependence of high pressure melting curves in transition metals that have filled or partially filled d electron bands. C1 Max Planck Inst Chem, D-55020 Mainz, Germany. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Max Planck Inst Chem, Postfach 3060, D-55020 Mainz, Germany. NR 21 TC 60 Z9 64 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 14 PY 2005 VL 95 IS 16 AR 167801 DI 10.1103/PhysRevLett.95.167801 PG 4 WC Physics, Multidisciplinary SC Physics GA 973YL UT WOS:000232558400071 PM 16241842 ER PT J AU Karapetrov, G Fedor, J Iavarone, M Rosenmann, D Kwok, WK AF Karapetrov, G Fedor, J Iavarone, M Rosenmann, D Kwok, WK TI Direct observation of geometrical phase transitions in mesoscopic superconductors by scanning tunneling microscopy SO PHYSICAL REVIEW LETTERS LA English DT Article ID VORTEX; LATTICE AB Using scanning tunneling microscopy, we mapped the distribution of the local density of states in a single crystal superconductor heterostructure with an array of submicron normal metal islands. We observe the coexistence of strongly interacting multiquanta vortex lattice with interstitial Abrikosov vortices. The newly formed composite magnetic flux structure undergoes a series of phase transitions between different topological configuration states. The vortex configuration states are strongly dependent on the number of flux quanta and the nanoscale confinement architecture of the mesoscopic superconductor. Here, we present images of vortex phase transitions due to confinement effects when the number of magnetic flux quanta in the system changes. The vortex dynamics in these systems could serve as a model for behavior of confined many-body systems when the number of particles changes. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Slovak Acad Sci, Inst Elect Engn, Bratislava 84104, Slovakia. RP Karapetrov, G (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Iavarone, Maria/C-3628-2008; Karapetrov, Goran/C-2840-2008 OI Karapetrov, Goran/0000-0003-1113-0137 NR 17 TC 73 Z9 74 U1 3 U2 15 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 14 PY 2005 VL 95 IS 16 AR 167002 DI 10.1103/PhysRevLett.95.167002 PG 4 WC Physics, Multidisciplinary SC Physics GA 973YL UT WOS:000232558400062 PM 16241833 ER PT J AU Kimmel, GA Petrik, NG Dohnalek, Z Kay, BD AF Kimmel, GA Petrik, NG Dohnalek, Z Kay, BD TI Crystalline ice growth on Pt(111): Observation of a hydrophobic water monolayer SO PHYSICAL REVIEW LETTERS LA English DT Article ID AMORPHOUS SOLID WATER; VIBRATIONAL SPECTROSCOPY; FILMS; DESORPTION; KINETICS; ADSORPTION; SUBSTRATE; H2O AB The growth of crystalline water films on Pt(111) is investigated using rare gas physisorption. The water monolayer wets Pt(111) at all temperatures investigated (20-155 K). At low temperatures (T <= 120 K), additional water layers kinetically wet the monolayer surface. However, crystalline ice films grown at higher temperatures (T > 135 K) do not wet the water monolayer. These results are consistent with recent theory and experiments suggesting that the molecules in the water monolayer form a surface with no dangling OH bonds or lone pair electrons, giving rise to a hydrophobic water monolayer on Pt(111). C1 Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. RP Kimmel, GA (reprint author), Pacific NW Natl Lab, Div Chem Sci, POB 999, Richland, WA 99352 USA. RI Petrik, Nikolay/G-3267-2015; OI Petrik, Nikolay/0000-0001-7129-0752; Kimmel, Greg/0000-0003-4447-2440; Dohnalek, Zdenek/0000-0002-5999-7867 NR 23 TC 124 Z9 126 U1 3 U2 45 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 14 PY 2005 VL 95 IS 16 AR 166102 DI 10.1103/PhysRevLett.95.166102 PG 4 WC Physics, Multidisciplinary SC Physics GA 973YL UT WOS:000232558400047 PM 16241818 ER PT J AU Lazicki, A Maddox, B Evans, WJ Yoo, CS McMahan, AK Pickett, WE Scalettar, RT Hu, MY Chow, P AF Lazicki, A Maddox, B Evans, WJ Yoo, CS McMahan, AK Pickett, WE Scalettar, RT Hu, MY Chow, P TI New cubic phase of Li3N: Stability of the N3- ion to 200 GPa SO PHYSICAL REVIEW LETTERS LA English DT Article ID REVERSIBLE HYDROGEN-STORAGE; X-RAY-SCATTERING; LITHIUM NITRIDE; MOLECULAR-DYNAMICS; ELECTRONIC-STRUCTURE; PRESSURE; STATE; METALLIZATION; MIXTURES; EQUATION AB Diamond-anvil cell experiments augmented by first-principles calculations have found a remarkable stability of the N3- ion in Li3N to a sixfold volume reduction. A new (gamma) phase is discovered above 40(+/- 5) GPa, with an 8% volume collapse and a band gap quadrupling at the transition determined by synchrotron x-ray diffraction and inelastic x-ray scattering. gamma-Li3N (Fm3m, Li3Bi-like structure) remains stable up to 200 GPa, and calculations do not predict metallization until similar to 8 TPa. The high structural stability, wide band gap, and simple electronic structure make this N3- based system analogous to lower valency compounds (MgO, NaCl, Ne), meriting its use as an internal pressure standard. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. Argonne Natl Lab, HPCAT, APS, Argonne, IL 60439 USA. RP Lazicki, A (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 32 TC 31 Z9 31 U1 3 U2 13 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 14 PY 2005 VL 95 IS 16 AR 165503 DI 10.1103/PhysRevLett.95.165503 PG 4 WC Physics, Multidisciplinary SC Physics GA 973YL UT WOS:000232558400042 PM 16241815 ER PT J AU Ling, WL Bartelt, NC McCarty, KF Carter, CB AF Ling, WL Bartelt, NC McCarty, KF Carter, CB TI Twin boundaries can be moved by step edges during film growth SO PHYSICAL REVIEW LETTERS LA English DT Article ID THIN-FILMS AB We track individual twin boundaries in Ag films on Ru(0001) using low-energy electron microscopy. The twin boundaries, which separate film regions whose close-packed planes are stacked differently, move readily during film growth but relatively little during annealing. The growth-driven motion of twin boundaries occurs as film steps advance across the surface-as a new atomic Ag layer reaches an fcc twin boundary, the advancing step edge carries along the boundary. This coupling of the microstructural defect (twin boundary) and the surface step during growth can produce film regions over 10 mu m wide that are twin free. C1 Sandia Natl Labs, Livermore, CA 94550 USA. Univ Minnesota, Minneapolis, MN 55455 USA. RP Ling, WL (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. RI McCarty, Kevin/F-9368-2012; Ling, Wai Li/F-9823-2012; Bartelt, Norman/G-2927-2012; Carter, C. Barry/E-6478-2010 OI McCarty, Kevin/0000-0002-8601-079X; Ling, Wai Li/0000-0002-4264-5750; Carter, C. Barry/0000-0003-4251-9102 NR 17 TC 12 Z9 12 U1 1 U2 10 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 14 PY 2005 VL 95 IS 16 AR 166105 DI 10.1103/PhysRevLett.95.166105 PG 4 WC Physics, Multidisciplinary SC Physics GA 973YL UT WOS:000232558400050 PM 16241821 ER PT J AU Strauch, S Berman, BL Adams, G Ambrozewicz, P Anghinolfi, M Asavapibhop, B Asryan, G Audit, G Avakian, H Bagdasaryan, H Baillie, N Ball, JP Baltzell, NA Barrow, S Batourine, V Battaglieri, M Beard, K Bedlinskiy, I Bektasoglu, M Bellis, M Benmouna, N Bennhold, C Biselli, AS Boiarinov, S Bouchigny, S Bradford, R Branford, D Briscoe, WJ Brooks, WK Bultmann, S Burkert, VD Butuceanu, C Calarco, JR Careccia, SL Carman, DS Carnahan, B Chen, S Cole, PL Coleman, A Coltharp, P Cords, D Corvisiero, P Crabb, D Crannell, H Cummings, JP Degtyarenko, PV Denizli, H Dennis, L De Sanctis, E Deur, A DeVita, R Dharmawardane, KV Dhuga, KS Djalali, C Dodge, GE Donnelly, J Doughty, D Dragovitsch, P Dugger, M Dytman, S Dzyubak, OP Egiyan, H Egiyan, KS Elouadrhiri, L Empl, A Eugenio, P Fatemi, R Fedotov, G Feldman, G Feuerbach, RJ Fix, A Forest, TA Funsten, H Gavalian, G Gilfoyle, GP Giovanetti, KL Girod, FX Goetz, JT Gothe, RW Griffioen, KA Guidal, M Guler, N Guo, L Gyurjyan, V Hadjidakis, C Hakobyan, RS Hardie, J Heddle, D Hersman, FW Hicks, K Hleiqawi, I Holtrop, M Hu, J Huertas, M Hyde-Wright, CE Ilieva, Y Ireland, DG Ishkhanov, BS Ito, MM Jenkins, D Jo, HS Joo, K Juengst, HG Kellie, JD Khandaker, M Kim, KY Kim, K Kim, W Klein, A Klein, FJ Klimenko, AV Klusman, M Kossov, M Kramer, LH Kubarovsky, V Kuhn, J Kuhn, SE Lachniet, J Laget, JM Langheinrich, J Lawrence, D Lee, T Lima, ACS Livingston, K Lukashin, K Manak, JJ Marchand, C McAleer, S McKinnon, B McNabb, JWC Mecking, BA Mestayer, MD Meyer, CA Mibe, T Mikhailov, K Minehart, R Mirazita, M Miskimen, R Mokeev, V Morrow, SA Muccifora, V Mueller, J Mutchler, GS Nadel-Turonski, P Napolitano, J Nasseripour, R Niccolai, S Niculescu, G Niculescu, I Niczyporuk, BB Niyazov, RA Nozar, M O'Rielly, GV Osipenko, M Ostrovidov, AI Park, K Pasyuk, E Paterson, C Philips, SA Pierce, J Pivnyuk, N Pocanic, D Pogorelko, O Polli, E Pozdniakov, S Preedom, BM Price, JW Prok, Y Protopopescu, D Qin, LM Raue, BA Riccardi, G Ricco, G Ripani, M Ritchie, BG Roberts, W Ronchetti, F Rosner, G Rossi, P Rowntree, D Rubin, PD Sabatie, F Salgado, C Santoro, JP Sapunenko, V Schumacher, RA Serov, VS Shafi, A Sharabian, YG Shaw, J Skabelin, AV Smith, ES Smith, LC Sober, DI Stavinsky, A Stepanyan, SS Stepanyan, S Stokes, BE Stoler, P Strakovsky, II Suleiman, R Taiuti, M Taylor, S Tedeschi, DJ Thoma, U Thompson, R Tkabladze, A Tkachenko, S Todor, L Tur, C Ungaro, M Vineyard, MF Vlassov, AV Wang, K Weinstein, LB Weygand, DP Williams, M Wolin, E Wood, MH Yegneswaran, A Yun, J Zana, L Zhang, J AF Strauch, S Berman, BL Adams, G Ambrozewicz, P Anghinolfi, M Asavapibhop, B Asryan, G Audit, G Avakian, H Bagdasaryan, H Baillie, N Ball, JP Baltzell, NA Barrow, S Batourine, V Battaglieri, M Beard, K Bedlinskiy, I Bektasoglu, M Bellis, M Benmouna, N Bennhold, C Biselli, AS Boiarinov, S Bouchigny, S Bradford, R Branford, D Briscoe, WJ Brooks, WK Bultmann, S Burkert, VD Butuceanu, C Calarco, JR Careccia, SL Carman, DS Carnahan, B Chen, S Cole, PL Coleman, A Coltharp, P Cords, D Corvisiero, P Crabb, D Crannell, H Cummings, JP Degtyarenko, PV Denizli, H Dennis, L De Sanctis, E Deur, A DeVita, R Dharmawardane, KV Dhuga, KS Djalali, C Dodge, GE Donnelly, J Doughty, D Dragovitsch, P Dugger, M Dytman, S Dzyubak, OP Egiyan, H Egiyan, KS Elouadrhiri, L Empl, A Eugenio, P Fatemi, R Fedotov, G Feldman, G Feuerbach, RJ Fix, A Forest, TA Funsten, H Gavalian, G Gilfoyle, GP Giovanetti, KL Girod, FX Goetz, JT Gothe, RW Griffioen, KA Guidal, M Guler, N Guo, L Gyurjyan, V Hadjidakis, C Hakobyan, RS Hardie, J Heddle, D Hersman, FW Hicks, K Hleiqawi, I Holtrop, M Hu, J Huertas, M Hyde-Wright, CE Ilieva, Y Ireland, DG Ishkhanov, BS Ito, MM Jenkins, D Jo, HS Joo, K Juengst, HG Kellie, JD Khandaker, M Kim, KY Kim, K Kim, W Klein, A Klein, FJ Klimenko, AV Klusman, M Kossov, M Kramer, LH Kubarovsky, V Kuhn, J Kuhn, SE Lachniet, J Laget, JM Langheinrich, J Lawrence, D Lee, T Lima, ACS Livingston, K Lukashin, K Manak, JJ Marchand, C McAleer, S McKinnon, B McNabb, JWC Mecking, BA Mestayer, MD Meyer, CA Mibe, T Mikhailov, K Minehart, R Mirazita, M Miskimen, R Mokeev, V Morrow, SA Muccifora, V Mueller, J Mutchler, GS Nadel-Turonski, P Napolitano, J Nasseripour, R Niccolai, S Niculescu, G Niculescu, I Niczyporuk, BB Niyazov, RA Nozar, M O'Rielly, GV Osipenko, M Ostrovidov, AI Park, K Pasyuk, E Paterson, C Philips, SA Pierce, J Pivnyuk, N Pocanic, D Pogorelko, O Polli, E Pozdniakov, S Preedom, BM Price, JW Prok, Y Protopopescu, D Qin, LM Raue, BA Riccardi, G Ricco, G Ripani, M Ritchie, BG Roberts, W Ronchetti, F Rosner, G Rossi, P Rowntree, D Rubin, PD Sabatie, F Salgado, C Santoro, JP Sapunenko, V Schumacher, RA Serov, VS Shafi, A Sharabian, YG Shaw, J Skabelin, AV Smith, ES Smith, LC Sober, DI Stavinsky, A Stepanyan, SS Stepanyan, S Stokes, BE Stoler, P Strakovsky, II Suleiman, R Taiuti, M Taylor, S Tedeschi, DJ Thoma, U Thompson, R Tkabladze, A Tkachenko, S Todor, L Tur, C Ungaro, M Vineyard, MF Vlassov, AV Wang, K Weinstein, LB Weygand, DP Williams, M Wolin, E Wood, MH Yegneswaran, A Yun, J Zana, L Zhang, J TI Beam-helicity asymmetries in double-charged-pion photoproduction on the proton SO PHYSICAL REVIEW LETTERS LA English DT Article ID PAIR PRODUCTION; BREMSSTRAHLUNG; POLARIZATION; PHOTONS; REGION AB Beam-helicity asymmetries for the two-pion-photoproduction reaction gamma -> p -> p pi(+)pi(-) have been studied for the first time in the resonance region for center-of-mass energies between 1.35 and 2.30 GeV. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer using circularly polarized tagged photons incident on an unpolarized hydrogen target. Beam-helicity-dependent angular distributions of the final-state particles were measured. The large cross-section asymmetries exhibit strong sensitivity to the kinematics and dynamics of the reaction. The data are compared with the results of various phenomenological model calculations, and show that these models currently do not provide an adequate description for the behavior of this new observable. C1 George Washington Univ, Washington, DC 20052 USA. Arizona State Univ, Tempe, AZ 85287 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Catholic Univ Amer, Washington, DC 20064 USA. CEA Saclay, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. Christopher Newport Univ, Newport News, VA 23606 USA. Univ Connecticut, Storrs, CT 06269 USA. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Florida Int Univ, Miami, FL 33199 USA. Florida State Univ, Tallahassee, FL 32306 USA. Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. Idaho State Univ, Pocatello, ID 83209 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. Inst Phys Nucl, F-91406 Orsay, France. Inst Theoret & Expt Phys, Moscow 117259, Russia. James Madison Univ, Harrisonburg, VA 22807 USA. Kyungpook Natl Univ, Taegu 702701, South Korea. MIT, Cambridge, MA 02139 USA. Univ Massachusetts, Amherst, MA 01003 USA. Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. Moscow MV Lomonosov State Univ, Skobeltsyn Nucl Phys Inst, Moscow 119899, Russia. Univ New Hampshire, Durham, NH 03824 USA. Norfolk State Univ, Norfolk, VA 23504 USA. Ohio Univ, Athens, OH 45701 USA. Old Dominion Univ, Norfolk, VA 23529 USA. Univ Pittsburgh, Pittsburgh, PA 15260 USA. Rensselaer Polytech Inst, Troy, NY 12180 USA. Rice Univ, Houston, TX 77005 USA. Univ Richmond, Richmond, VA 23173 USA. Univ S Carolina, Columbia, SC 29208 USA. Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. Union Coll, Schenectady, NY 12308 USA. Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. Univ Virginia, Charlottesville, VA 22901 USA. Coll William & Mary, Williamsburg, VA 23187 USA. Yerevan Phys Inst, Yerevan 375036, Armenia. RP George Washington Univ, Washington, DC 20052 USA. RI Brooks, William/C-8636-2013; Schumacher, Reinhard/K-6455-2013; Meyer, Curtis/L-3488-2014; Sabatie, Franck/K-9066-2015; Zhang, Jixie/A-1461-2016; Ireland, David/E-8618-2010; Bektasoglu, Mehmet/A-2074-2012; Protopopescu, Dan/D-5645-2012; riccardi, gabriele/A-9269-2012; Zana, Lorenzo/H-3032-2012; Ishkhanov, Boris/E-1431-2012; OI Brooks, William/0000-0001-6161-3570; Schumacher, Reinhard/0000-0002-3860-1827; Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975; Hyde, Charles/0000-0001-7282-8120; Ireland, David/0000-0001-7713-7011; Bellis, Matthew/0000-0002-6353-6043 NR 29 TC 39 Z9 39 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 14 PY 2005 VL 95 IS 16 AR 162003 DI 10.1103/PhysRevLett.95.162003 PG 5 WC Physics, Multidisciplinary SC Physics GA 973YL UT WOS:000232558400014 PM 16241787 ER PT J AU Trimble, T Tang, L Vasiljevic, N Dimitrov, N van Schilfgaarde, M Friesen, C Thompson, CV Seel, SC Floro, JA Sieradzki, K AF Trimble, T Tang, L Vasiljevic, N Dimitrov, N van Schilfgaarde, M Friesen, C Thompson, CV Seel, SC Floro, JA Sieradzki, K TI Anion adsorption induced reversal of coherency strain SO PHYSICAL REVIEW LETTERS LA English DT Article ID CRYSTAL-SURFACES; SULFURIC-ACID; THIN-FILMS; STRESS; GROWTH; CU(111); AU; CU; ELECTROCAPILLARITY; ELECTROLYTE AB Experimental results are presented for stress evolution, in vacuum and electrolyte, for the first monolayer of Cu on Au(111). In electrolyte the monolayer is pseudomorphic and the stress-thickness change is -0.60 N/m, while conventional epitaxy theory predicts a value of +7.76 N/m. In vacuum, the monolayer is incoherent with the underlying gold. Using a combination of first-principles based calculations and molecular dynamic simulations we analyzed these results and demonstrate that in electrolyte, overlayer coherency is maintained owing to anion adsorption. C1 Arizona State Univ, Ira A Fulton Sch Engn, Tempe, AZ 85287 USA. MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Sieradzki, K (reprint author), Arizona State Univ, Ira A Fulton Sch Engn, Tempe, AZ 85287 USA. EM Karl.Sieradzki@asu.edu OI Vasiljevic, Natasa/0000-0002-7515-9708 NR 22 TC 16 Z9 16 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 14 PY 2005 VL 95 IS 16 AR 166106 DI 10.1103/PhysRevLett.95.166106 PG 4 WC Physics, Multidisciplinary SC Physics GA 973YL UT WOS:000232558400051 PM 16241822 ER PT J AU Zhao, W Mestayer, JJ Lancaster, JC Dunning, FB Reinhold, CO Yoshida, S Burgdorfer, J AF Zhao, W Mestayer, JJ Lancaster, JC Dunning, FB Reinhold, CO Yoshida, S Burgdorfer, J TI Engineering very-high-n polarized Rydberg states using tailored half-cycle-pulse sequences SO PHYSICAL REVIEW LETTERS LA English DT Article ID ATOMS; LOCALIZATION; NOISE AB We show that strongly polarized very-high-n (n similar to 600) potassium Rydberg atoms can be produced by manipulating lower-n (n similar to 350) polarized atoms using a tailored sequence of ultrashort half-cycle pulses (HCPs). The protocol for this involves first a weak HCP that generates transient phase-space localization whereupon a second large HCP of opposite polarity excites the electron to a broad distribution of highly elongated states. This distribution is then refocused by a short periodic train of HCPs using the properties of (un)stable manifolds near fixed points in phase space. C1 Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria. Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Rice Univ, Dept Phys & Astron, 6100 Main St, Houston, TX 77005 USA. OI Reinhold, Carlos/0000-0003-0100-4962 NR 22 TC 10 Z9 10 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 14 PY 2005 VL 95 IS 16 AR 163007 DI 10.1103/PhysRevLett.95.163007 PG 4 WC Physics, Multidisciplinary SC Physics GA 973YL UT WOS:000232558400024 PM 16241797 ER PT J AU Cao, WQ Duan, YX AF Cao, WQ Duan, YX TI Optical fiber-based evanescent ammonia sensor SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE ammonia; sensors; optical fiber; evanescent field; sol-gel ID NEAR-INFRARED DYE; GASEOUS AMMONIA; WAVE SENSOR; GAS SENSOR; FILMS; AIR; POLYANILINE; SPECTROSCOPY; CORE AB An optical fiber-based evanescent gaseous ammonia sensor is designed and developed. The sensing dye, bromocresol purple (BCP), is immobilized in the substitutional cladding using sol-gel process. The sensing properties of the optical fiber sensor to gaseous ammonia at room temperature are presented. This newly developed ammonia sensor exhibits good reversibility and repeatability. The effect of different carrier gases, argon, nitrogen, and air on sensing properties of the ammonia sensor is investigated. The sensor with air as carrier gas has the best response time and sensitivity. In order to improve the response time of the optical fiber evanescent ammonia sensor, an elevated ambient temperature is applied and thoroughly investigated. A fast response time of 10s was obtained at 55.5 degrees C with the carrier gas of air or argon. These experimental results have demonstrated that a fast response optical fiber evanescent gaseous ammonia sensor can be constructed by applying slightly elevated ambient temperature. Published by Elsevier B.V. C1 Los Alamos Natl Lab, C ACS, Los Alamos, NM 87545 USA. RP Duan, YX (reprint author), Los Alamos Natl Lab, C ACS, MS K484, Los Alamos, NM 87545 USA. EM yduan@lanl.gov NR 42 TC 96 Z9 97 U1 4 U2 23 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD OCT 14 PY 2005 VL 110 IS 2 BP 252 EP 259 DI 10.1016/j.snb.2005.02.015 PG 8 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 975ZI UT WOS:000232702200012 ER PT J AU Rocha, RC Brown, MG Londergan, CH Salsman, JC Kubiak, CP Shreve, AP AF Rocha, RC Brown, MG Londergan, CH Salsman, JC Kubiak, CP Shreve, AP TI Intervalence-resonant Raman spectroscopy of strongly coupled mixed-valence cluster dimers of ruthenium SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID CREUTZ-TAUBE ION; ELECTRON-TRANSFER RATES; VIBRATIONAL-SPECTRA; BRIDGING LIGAND; LINE SHAPE; COMPLEXES; TRANSITION; MODEL; DELOCALIZATION; MOLECULE AB Resonance Raman spectroelectrochemistry (RR-SEC) at -20 degrees C has been performed on the pyrazine-bridged dimer of mu-oxo-centered trinuclear ruthenium-acetate "clusters" [(dmap)(CO)(mu-OAc)(6)(mu(3)-O)Ru-3(mu-L-b)Ru-3(mu(3)-O)(mu-OAc)(6)(CO)(dmap)]" (where dmap = 4-(dimethylamino)pyridine and L-b = pyrazine-h(4) and pyrazine-d(4))-in three oxidation states: n = 0, -1, and -2. In the one-electron reduced, "mixed-valent" state (overall -1 charge and a single odd electron; formal oxidation states [II, II, III]-[III, III, II] on the metal centers), the Raman excitation at 800 nm is resonant with a cluster-to-cluster intervalence charge-transfer (IVCT) band. Under these conditions, scattering enhancement is observed for all four totally symmetric vibrational modes of the bridging pyrazine ligand (v(8a), v(9a), v(1), and v(6a)) in the investigated spectral range (100-2000 cm(-1)), and there is no evidence of activity in non-totally symmetric vibrations. Resonantly enhanced Raman peaks related to peripheral pyridyl (dmap) ligand modes and low-frequency features arising from the trigonal Ru3O cluster core and the cluster[Ru]-[N]ligand vibrations were also observed in the spectra of the intermediate-valence (n = -1) cluster dimer. The vibrational assignments and interpretations proposed in this work were reinforced by observation of characteristic isotopic frequency shifts accompanying deuteration of the bridging pyrazine. The results reveal that the fully symmetric (A(g)) vibrational motions of the organic bridge are coupled to the nominally metal cluster-to-metal cluster fast intramolecular electron transfer (ET) and provide validation of the near-delocalized description according to a predicted three-site/three-state (e.g., metal-bridge-metal) vibronic. coupling model, in which the important role of the bridging ligand in mediating electronic communication and delocalization between charge centers is explicitly considered. Further compelling evidence supporting an extended five-state model, which incorporates the peripheral cluster-bound pyridyl ligands, is also presented. C1 Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. Univ Calif San Diego, Dept Chem, La Jolla, CA 92093 USA. RP Shreve, AP (reprint author), Los Alamos Natl Lab, Biosci Div, MS G755, Los Alamos, NM 87545 USA. EM shreve@lanl.gov NR 37 TC 29 Z9 29 U1 0 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD OCT 13 PY 2005 VL 109 IS 40 BP 9006 EP 9012 DI 10.1021/jp051482+ PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 972VX UT WOS:000232482400009 PM 16332005 ER PT J AU Beran, GJO Austin, B Sodt, A Head-Gordon, M AF Beran, GJO Austin, B Sodt, A Head-Gordon, M TI Unrestricted perfect pairing: The simplest wave-function-based model chemistry beyond mean field SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID MOLECULAR EQUILIBRIUM STRUCTURES; APPROXIMATE COULOMB POTENTIALS; CLUSTER DOUBLES MODEL; CONSISTENT BASIS-SETS; AUXILIARY BASIS-SETS; VALENCE-BOND THEORY; COUPLED-CLUSTER; ITERATIVE SUBSPACE; SYMMETRY-BREAKING; DIRECT INVERSION AB The perfect pairing (PP) approximation from generalized valence bond theory is formulated in an unrestricted fashion for both closed- and open-shell systems using a coupled cluster ansatz. In the model chemistry proposed here, active electron pairs are correlated, but the unpaired or radical electrons remain uncorrelated, leading to a linear number of decoupled cluster amplitudes which can be solved for analytically. The alpha and beta spatial orbitals are variationally optimized independently. This minimal treatment of electron -electron correlation noticeably improves upon symmetry-breaking problems and other pathologies in Hartree-Fock (HF) theory and may be computed using the resolution of the identity approximation at only a factor of several times more effort than HF itself. PP also generally predicts improved molecular structures over HE This compact, correlated wave function potentially provides a useful starting point for dynamical correlation corrections. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Head-Gordon, M (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RI Beran, Gregory/B-8684-2011 OI Beran, Gregory/0000-0002-2229-2580 NR 57 TC 25 Z9 25 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD OCT 13 PY 2005 VL 109 IS 40 BP 9183 EP 9192 DI 10.1021/jp053780c PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 972VX UT WOS:000232482400032 PM 16332028 ER PT J AU Barbieri, R Hall, LJ Oliver, SJ Strumia, A AF Barbieri, R Hall, LJ Oliver, SJ Strumia, A TI Dark energy and right-handed neutrinos SO PHYSICS LETTERS B LA English DT Article ID COSMOLOGICAL CONSTANT; GOLDSTONE BOSONS; SUPERNOVAE; AXION AB We explore the possibility that a CP violating phase of the neutrino mass matrix is promoted to a pseudo-Goldstone-boson field and is identified as the quintessence field for Dark Energy. By requiring that the quintessence potential be calculable from a Lagrangian, and that the extreme flatness of the potential be stable under radiative corrections, we are led to an essentially unique model. Lepton number is violated only by Majorana masses of light right-handed neutrinos, comparable to the Dirac masses that mix right- with left-handed neutrinos. We outline the rich and constrained neutrino phenomenology that results from this proposal. (c) 2005 Elsevier B.V. All rights reserved. C1 Scuola Normale Super Pisa, I-56126 Pisa, Italy. Ist Nazl Fis Nucl, I-56126 Pisa, Italy. CERN, Div Theoret Phys, CH-1211 Geneva, Switzerland. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. Univ Pisa, Dipartimento Fis, I-56100 Pisa, Italy. RP Strumia, A (reprint author), Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy. EM astrumia@mail.df.unipi.it NR 20 TC 33 Z9 33 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD OCT 13 PY 2005 VL 625 IS 3-4 BP 189 EP 195 DI 10.1016/j.physletb.2005.08..075 PG 7 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 972IK UT WOS:000232447300004 ER PT J AU Smith, JF Chiara, CJ Carpenter, MP Chantler, HJ Choy, PTW Davids, CN Devlin, M Durell, JL Fossan, DB Freeman, SJ Janssens, RVF Kelsall, NS Koike, T LaFosse, DR Paul, ES Reiter, P Sarantites, DG Seweryniak, D Starosta, K Wadsworth, R Wilson, AN Heenen, PH AF Smith, JF Chiara, CJ Carpenter, MP Chantler, HJ Choy, PTW Davids, CN Devlin, M Durell, JL Fossan, DB Freeman, SJ Janssens, RVF Kelsall, NS Koike, T LaFosse, DR Paul, ES Reiter, P Sarantites, DG Seweryniak, D Starosta, K Wadsworth, R Wilson, AN Heenen, PH TI First observation of very neutron-deficient Ce-122 SO PHYSICS LETTERS B LA English DT Article ID EVEN-EVEN NUCLEI; MASS REGION; HIGH-SPIN; DEFORMATION; QUADRUPOLE; STATES; GAMMASPHERE; DETECTORS; ISOTOPES; BANDS AB Excited states have been identified in the very neutron-deficient Ce-122 nucleus. This is the first observation of this nucleus and its excited states. The ground-state rotational band has been observed up to spin 14 h. The band has been assigned to 122Ce by detecting gamma rays in coincidence with evaporated charged particles and neutrons. The E(2(1)+) value suggests a rather large ground-state deformation of beta(2) = 0.35, in good agreement with Hartree-Fock-Bogoliubov (HFB) mean-field calculations. The aligned angular momentum of the band has been studied and is compared with those of the neighboring even-even cerium isotopes, and to Woods-Saxon cranking calculations. The non-observation of the pi(h(11/2))(2) alignment until at least 0.4 MeV/h is consistent with the extracted value of beta(2.) (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. Washington Univ, Dept Chem, St Louis, MO 63130 USA. Argonne Natl Lab, Argonne, IL 60439 USA. Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England. Los Alamos Natl Lab, LANSCE3, Los Alamos, NM 87545 USA. Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. Michigan State Univ, Natl Supercond Cyclotron Lab, E Lansing, MI 48854 USA. Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48854 USA. Free Univ Brussels, Serv Phys Nucl Theor, B-1050 Brussels, Belgium. RP Smith, JF (reprint author), Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. EM john.f.smith@manchester.ac.uk RI Freeman, Sean/B-1280-2010; Devlin, Matthew/B-5089-2013; Carpenter, Michael/E-4287-2015; OI Freeman, Sean/0000-0001-9773-4921; Devlin, Matthew/0000-0002-6948-2154; Carpenter, Michael/0000-0002-3237-5734; Wilson, Anna/0000-0001-6928-1689 NR 31 TC 5 Z9 5 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD OCT 13 PY 2005 VL 625 IS 3-4 BP 203 EP 211 DI 10.1016/j.physletb.2005.08.035 PG 9 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 972IK UT WOS:000232447300006 ER PT J AU Idilbi, A Ji, XD Yuan, F AF Idilbi, A Ji, XD Yuan, F TI Transverse momentum distribution through soft-gluon resummation in effective field theory SO PHYSICS LETTERS B LA English DT Article ID HIGGS-BOSON PRODUCTION; YAN CROSS-SECTION; LOGARITHMIC CORRECTIONS; HADRONIC COLLISIONS; HARD PROCESSES; QCD; FACTORIZATION; DECAY AB We study resummation of transverse-momentum-related large logarithms generated from soft-gluon radiations in soft-collinear effective field theory. The anomalous dimensions of the effective quark and gluon currents, an important ingredient for the resummation, are calculated to two-loop order. The result at next-to-leading-log reproduces that obtained using the standard method for deep-inelastic scattering, Drell-Yan process, and Higgs production through gluon-gluon fusion. We comment on the extension of the calculation to next-to-next-to-leading logarithms. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Maryland, Dept Phys, College Pk, MD 20742 USA. Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. RP Idilbi, A (reprint author), Univ Maryland, Dept Phys, College Pk, MD 20742 USA. EM idilbi@physics.umd.edu; xji@physics.umd.edu; fyuan@quark.phy.bnl.gov RI Yuan, Feng/N-4175-2013 NR 32 TC 39 Z9 39 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD OCT 13 PY 2005 VL 625 IS 3-4 BP 253 EP 263 DI 10.1016/j.physletb.2005.08.038 PG 11 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 972IK UT WOS:000232447300012 ER PT J AU Deacon, AN Freeman, SJ Janssens, RVF Xu, FR Carpenter, MP Calderin, IR Chowdhury, P Hammond, NJ Lauritsen, T Lister, CJ Seweryniak, D Smith, JF Tabor, SL Varley, BJ Zhu, S AF Deacon, AN Freeman, SJ Janssens, RVF Xu, FR Carpenter, MP Calderin, IR Chowdhury, P Hammond, NJ Lauritsen, T Lister, CJ Seweryniak, D Smith, JF Tabor, SL Varley, BJ Zhu, S TI Changes in vg(9/2) shape polarisation across the odd neutron-rich Cr isotopes (vol 622, pg 151, 2005) SO PHYSICS LETTERS B LA English DT Correction C1 Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. Argonne Natl Lab, Argonne, IL 60439 USA. Beijing Univ, Dept Tech Phys, Beijing 100871, Peoples R China. Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. Univ Massachusetts, Lowell, MA 01854 USA. RP Freeman, SJ (reprint author), Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. EM sean.freeman@manchester.ac.uk RI Freeman, Sean/B-1280-2010; Xu, Furong/K-4178-2013; Carpenter, Michael/E-4287-2015 OI Freeman, Sean/0000-0001-9773-4921; Carpenter, Michael/0000-0002-3237-5734 NR 1 TC 2 Z9 2 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD OCT 13 PY 2005 VL 625 IS 3-4 BP 375 EP 375 DI 10.1016/j.physletb.2005.08.060 PG 1 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 972IK UT WOS:000232447300025 ER PT J AU Jain, AK West, TO Yang, XJ Post, WM AF Jain, AK West, TO Yang, XJ Post, WM TI Assessing the impact of changes in climate and CO2 on potential carbon sequestration in agricultural soils SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID LAND-COVER; CROPLANDS AB Changes in soil management can potentially increase the accumulation of soil organic carbon (SOC), thereby sequestering CO2 from the atmosphere. However, the amount of carbon sequestered in soils can be augmented or lessened due to changes in climate and atmospheric CO2 concentration. The purpose of this paper is to study the influence of climate and CO2 feedbacks on soil carbon sequestration using a terrestrial carbon cycle model. Model simulations consist of observed adoption rates of no-tillage practices on croplands in the U. S. and Canada between 1981 - 2000. Model results indicate potential sequestration rates between 0.4 - 0.6 MgC/ha/yr in the Midwestern U. S. with decreasing rates towards the western, dryer regions of the U. S. It is estimated here that changes in climate and CO2 between 1981 - 2000 could be responsible for an additional soil carbon sequestration of 42 Tg. This is 5% of the soil carbon estimated to be potentially sequestered as the result of conversion to no-tillage in the U. S. and Canada. C1 Univ Illinois, Dept Atmospher Sci, Urbana, IL 61801 USA. Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Jain, AK (reprint author), Univ Illinois, Dept Atmospher Sci, 105 S Gregory Ave, Urbana, IL 61801 USA. EM jain@atmos.uiuc.edu RI daorui, han/G-3767-2011; Post, Wilfred/B-8959-2012; West, Tristram/C-5699-2013; Yang, Xiaojuan/I-3643-2016; Jain, Atul/D-2851-2016 OI West, Tristram/0000-0001-7859-0125; Yang, Xiaojuan/0000-0002-2686-745X; Jain, Atul/0000-0002-4051-3228 NR 24 TC 8 Z9 8 U1 0 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 12 PY 2005 VL 32 IS 19 AR L19711 DI 10.1029/2005GL023922 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 975TP UT WOS:000232685800005 ER PT J AU Bain, RL Dayton, DC Carpenter, DL Czernik, SR Feik, CJ French, RJ Magrini-Bair, KA Phillips, SD AF Bain, RL Dayton, DC Carpenter, DL Czernik, SR Feik, CJ French, RJ Magrini-Bair, KA Phillips, SD TI Evaluation of catalyst deactivation during catalytic steam reforming of biomass-derived syngas SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID SYNTHETIC GASIFICATION GAS; IN-BED USE; FLUIDIZED-BED; HOT GAS; CALCINED DOLOMITE; OXYGEN MIXTURES; RAW GAS; MOLECULAR CHARACTERIZATION; SUPPORTED CATALYSTS; CLEANING CATALYSTS AB Mitigation of tars produced during biomass gasification continues to be a technical barrier to developing systems. This effort combined the measurement of tar-reforming catalyst deactivation kinetics and the production of syngas in a pilot-scale biomass gasification system at a single steady-state condition with mixed woods, producing a gas with an H-2-to-CO ratio of 2 and 13% methane. A slipstream from this process was introduced into a bench-scale 5.25 cm diameter fluidized-bed catalyst reactor charged with an alkali-promoted Ni-based/Al2O3 catalyst. Catalyst conversion tests were performed at a constant space time and five temperatures from 775 to 875 degrees C. The initial catalyst-reforming activity for all measured components (benzene, toluene, naphthalene, and total tars) except light hydrocarbons was 100%. The residual steady-state conversion of tar ranged from 96.6% at 875 degrees C to 70.5% at 775 degrees C. Residual steady-state conversions at 875 'C for benzene and methane were 81% and 32%, respectively. Catalytic deactivation models with residual activity were developed and evaluated based on experimentally measured changes in conversion efficiencies as a function of time on stream for the catalytic reforming of tars, benzene, methane, and ethane. Both first- and second-order models were evaluated for the reforming reaction and for catalyst deactivation. Comparison of experimental and modeling results showed that the reforming reactions were adequately modeled by either first-order or second-order global kinetic expressions. However, second-order kinetics resulted in negative activation energies for deactivation. Activation energies were determined for first-order reforming reactions and catalyst deactivation. For reforming, the representative activation energies were 32 kJ/g(.)mol for ethane, 19 kJ/g(.)mol for tars, 45 kJ/g(.)mol for tars plus benzene, and 8-9 kJ/g(.)mol for benzene and toluene. For catalyst deactivation, representative activation energies were 146 kJ/g(.)mol for ethane, 121 kJ/g(.)mol for tars plus benzene, 74 kJ/g(.)mol for benzene, and 19 kJ/g(.)mol for total tars. Methane was also modeled by a second-order reaction, with an activation energy of 18.6 kJ/g(.)mol and a catalyst deactivation energy of 5.8 kJ/g(.)mol. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Bain, RL (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM richard_bain@nrel.gov NR 65 TC 60 Z9 60 U1 1 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD OCT 12 PY 2005 VL 44 IS 21 BP 7945 EP 7956 DI 10.1021/ie050098w PG 12 WC Engineering, Chemical SC Engineering GA 971UN UT WOS:000232410400006 ER PT J AU Ko, D Siriwardane, R Biegler, LT AF Ko, D Siriwardane, R Biegler, LT TI Optimization of pressure swing adsorption and fractionated vacuum pressure swing adsorption processes for CO2 capture SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID AIR SEPARATION; PSA PROCESS; SIMULATION AB This work focuses on the optimization of cyclic adsorption processes to improve the performance of CO2 capture from flue gas, consisting of nitrogen and carbon dioxide. The adopted processes are the PSA (pressure swing adsorption) process and the FVPSA (fractionated vacuum pressure swing adsorption) process, modified from the FVSA (fractionated vacuum swing adsorption) process developed by Air Products and Chemicals, Inc. The system models are currently bench scale and adopt zeolite13X as an adsorbent. The high-temperature PSA is better for high purity of product (CO2) and the high-temperature FVPSA is much better than the normal-temperature PSA processes. The main goal of this study is to improve the purity and recovery of carbon dioxide. The Langmuir isotherm parameters were calculated from experimental data taken at National Energy Technology Laboratory (Siriwardane, R.; NETL, DOE, 2004). Moreover, efficient optimization strategies are essential to compare these processes. To perform optimization work more efficiently, we modified the previous optimization method by Ko et al. (Ind. Eng. Chem. Res. 2003, 42, 339-348) in a manner similar to that by Jiang et al. (AIChE J. 2003, 49, 11401157). This allows us to obtain optimization results with more accurate cyclic steady states (CSSs), better convergence, and faster computation. As a result, optimal conditions at CSS are found for these systems. C1 Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Biegler, LT (reprint author), Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. EM lb01@andrew.cmu.edu NR 24 TC 84 Z9 87 U1 8 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD OCT 12 PY 2005 VL 44 IS 21 BP 8084 EP 8094 DI 10.1021/ie050012z PG 11 WC Engineering, Chemical SC Engineering GA 971UN UT WOS:000232410400021 ER PT J AU Deen, PP Paolasini, L Kernavanois, N Braithwaite, D Raymond, S Barla, A Lapertot, G Sanchez, JP Canfield, P AF Deen, PP Paolasini, L Kernavanois, N Braithwaite, D Raymond, S Barla, A Lapertot, G Sanchez, JP Canfield, P TI Probing the (p, T) phase diagram of CeFe2 and SmS using resonant x-ray scattering SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Workshop on Medium Pressure Advances for Neutron Scattering CY OCT 20-23, 2004 CL Inst Laue Langevine, Grenoble, FRANCE SP City Grenoble, ISIS, UK Pulsed Neutron & Muon Source, MN13, Integrated Infrastruct Initiat Neutron Scattering & Muon Spectroscopy, Reg Rhone Alpes, Top Ind HO Inst Laue Langevine ID HIGH-PRESSURE; METALLIC SMS; ABSORPTION AB Two strongly correlated electron systems CeFe2 and SmS have been studied using x-ray magnetic resonant scattering at low temperatures and high pressures. First, the magnetic ground state of CeFe2 doped with 7% Co has been probed by means of resonant x-ray magnetic scattering across the temperature range 10-95 K at pressures up to 9.5 kbar. A strong increase of the Neel temperature with pressure has been evidenced. Furthermore, a large increase in scattering intensity is observed just before T-N at 9.5 kbar. These results reveal that the itinerant character of the 4f electrons which stabilize the antiferromagnetic state has been probed. Secondly, the structural and electronic properties of SmS have been studied under pressure up to 29 kbar and at temperatures down to 4.5 K via absorption and diffraction techniques. The measurements are a direct probe of the valence of Sm in SmS at low temperature from the black insulator phase to the gold metallic phase and furthermore across the magnetic transition. In particular, it is found that Sm in SmS has an intermediate valence (2.81(4)) in the magnetically ordered phase at 29 kbar and 4.5 K. C1 European Synchrotron Radiat Facil, F-38043 Grenoble, France. Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. CEA, SPSMS, Dept Rech Fondamentale Mat Condensee, F-38054 Grenoble, France. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Deen, PP (reprint author), European Synchrotron Radiat Facil, BP 220, F-38043 Grenoble, France. EM deen@esrf.fr; paolasin@esrf.fr; kema@ill.fr RI LAPERTOT, Gerard/B-3354-2008; Barla, Alessandro/C-4282-2015 OI Barla, Alessandro/0000-0002-5632-4915 NR 20 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 12 PY 2005 VL 17 IS 40 SI SI BP S3149 EP S3154 DI 10.1088/0953-8984/17/40/018 PG 6 WC Physics, Condensed Matter SC Physics GA 980EP UT WOS:000232997300019 ER PT J AU McIntyre, GJ Melesi, L Guthrie, M Tulk, CA Xu, J Parise, JB AF McIntyre, GJ Melesi, L Guthrie, M Tulk, CA Xu, J Parise, JB TI One picture says it all - high-pressure cells for neutron Laue diffraction on VIVALDI SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article; Proceedings Paper CT International Workshop on Medium Pressure Advances for Neutron Scattering CY OCT 20-23, 2004 CL Inst Laue Langevine, Grenoble, FRANCE SP City Grenoble, ISIS, UK Pulsed Neutron & Muon Source, MN13, Integrated Infrastruct Initiat Neutron Scattering & Muon Spectroscopy, Reg Rhone Alpes, Top Ind HO Inst Laue Langevine ID CRYSTAL-STRUCTURE; METAL CLUSTER; ANTIFERROMAGNET; REFINEMENT; NATROLITE AB Possible applications of the neutron single-crystal Laue diffraction technique with a large image-plate detector to high-pressure studies are examined. One opposed-piston cell with a Ti-Zr casing is shown to be acceptable for medium pressures, For higher pressures a moissanite-anvil cell with reasonably large accessibility is shown to offer impressive gains in data collection rate as compared to the monochromatic technique. Moreover, the projected forms of the reflections from the sample and anvils facilitate alignment, and the wide wavelength band of the Lane technique allows recovery of reflections masked by the cell pillars, simply by rotation of the cell. C1 Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. Univ Edinburgh, Sch Phys, CSEC, Edinburgh EH9 3JZ, Midlothian, Scotland. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11749 USA. SUNY Stony Brook, Dept Chem, Stony Brook, NY 11749 USA. RP McIntyre, GJ (reprint author), Inst Max Von Laue Paul Langevin, BP156, F-38042 Grenoble, France. EM mcintyre@ill.fr; melesi@ill.tr; mguthrie@ph.ed.ac.uk; tulkca@ornl.gov RI Guthrie, Malcolm/K-3099-2012; Tulk, Chris/R-6088-2016 OI Tulk, Chris/0000-0003-3400-3878 NR 19 TC 12 Z9 12 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 12 PY 2005 VL 17 IS 40 SI SI BP S3017 EP S3024 DI 10.1088/0953-8984/17/40/004 PG 8 WC Physics, Condensed Matter SC Physics GA 980EP UT WOS:000232997300005 ER PT J AU Fan, HY Chen, Z Brinker, CJ Clawson, J Alam, T AF Fan, HY Chen, Z Brinker, CJ Clawson, J Alam, T TI Synthesis of organo-silane functionalized nanocrystal micelles and their self-assembly SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID GOLD NANOPARTICLES; SUPERLATTICES; ORGANIZATION; ARRAYS C1 Sandia Natl Labs, Adv Mat Lab, Chem Synth & Nanomat Dept, Albuquerque, NM 87106 USA. Univ New Mexico, Dept Chem & Nucl Engn, Ctr Microengn Mat, Albuquerque, NM 87131 USA. RP Fan, HY (reprint author), Sandia Natl Labs, Adv Mat Lab, Chem Synth & Nanomat Dept, 1001 Univ Blvd, Albuquerque, NM 87106 USA. EM hfan@sandia.gov RI Chen, Zhu/M-3834-2015 NR 19 TC 47 Z9 49 U1 2 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 12 PY 2005 VL 127 IS 40 BP 13746 EP 13747 DI 10.1021/ja053795o PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 971VQ UT WOS:000232413300002 PM 16201768 ER PT J AU Manaa, MR Mitchell, AR Garza, RG Pagoria, PF Watkins, BE AF Manaa, MR Mitchell, AR Garza, RG Pagoria, PF Watkins, BE TI Flash ignition and initiation of explosives-nanotubes mixture SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CARBON NANOTUBES C1 Lawrence Livermore Natl Lab, Energet Mat Ctr, Livermore, CA 94551 USA. RP Manaa, MR (reprint author), Lawrence Livermore Natl Lab, Energet Mat Ctr, POB 808,L-282, Livermore, CA 94551 USA. EM Manaa1@llnl.gov NR 11 TC 34 Z9 35 U1 2 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 12 PY 2005 VL 127 IS 40 BP 13786 EP 13787 DI 10.1021/ja0547127 PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 971VQ UT WOS:000232413300022 PM 16201788 ER PT J AU Chan, EM Alivisatos, AP Mathies, RA AF Chan, EM Alivisatos, AP Mathies, RA TI High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID INTERFACIAL-TENSION; SEGMENTED FLOW; REACTORS; NANOPARTICLES; MICROREACTOR; CHANNELS; BREAKUP; SYSTEM; GROWTH; DROPS AB The high-temperature synthesis of CdSe nanocrystals in nanoliter-volume droplets flowing in a perfluorinated carrier fluid through a microfabricated reactor is presented. A flow-focusing nanojet structure with a step increase in channel height reproducibly generated octadecene droplets in Fomblin Y 06/6 perfluorinated polyether at capillary numbers up to 0.81 and with a droplet:carrier fluid viscosity ratio of 0.035. Cadmium and selenium precursors flowing in octadecene droplets through a high-temperature (240-300 degrees C) glass microreactor produced high-quality CdSe nanocrystals, as verified by optical spectroscopy and transmission electron microscopy. Isolating the reaction solution in droplets prevented particle deposition and hydrodynamic dispersion, allowing the reproducible synthesis of nanocrystals at three different temperatures and four different residence times in the span of 4 h. Our synthesis of a wide range of nanocrystals at high temperatures, high capillary numbers, and low viscosity ratio illustrates the general utility of droplet-based microfluidic reactors to encapsulate nanoliter volumes of organic or aqueous solutions and to precisely control chemical or biochemical reactions. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Mathies, RA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM rich@zinc.cchem.berkeley.edu RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 NR 41 TC 233 Z9 235 U1 15 U2 113 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 12 PY 2005 VL 127 IS 40 BP 13854 EP 13861 DI 10.1021/ja051381p PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 971VQ UT WOS:000232413300040 PM 16201806 ER PT J AU Chen, YS Fulton, JL Partenheimer, W AF Chen, YS Fulton, JL Partenheimer, W TI The structure of the homogeneous oxidation catalyst, Mn(II)(Br-1)(x), in supercritical water: An X-ray absorption fine-structure study SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TEREPHTHALIC ACID SYNTHESIS; REVISED POURBAIX-DIAGRAMS; TEMPERATURE LIQUID WATER; ACETIC-ACID; SODIUM-BROMIDE; CARBOXYLIC-ACIDS; COBALT ACETATE; MOLECULAR-DYNAMICS; AROMATIC-COMPOUNDS; CHEMICAL-REACTIONS AB Extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopies were used to probe the first-shell coordination structure about Mn(II) and Br-1 ions that exist as contact ion pairs in supercritical water. This work was performed to clarify why solutions of MnBr2 in supercritical water are known to effectively catalyze the aerobic oxidative synthesis of terephthalic acid from p-xylene as well as a number of other methylaromatic compounds. The Mn and Br K-edge spectra were collected at the bending magnet beamline (sector 20) at the Advanced Photon Source, Argonne National Laboratory. The first-shell coordination structure about the Mn(II) ion changes from octahedral at ambient conditions to tetrahedral at supercritical conditions. Under supercritical conditions, the measured bond distances of Mn-OH2 and Mn-Br are 2.14 and 2.46 angstrom, respectively. Direct contact ion pairs form with about 2 Br-1 ions present in the first coordination shell of the Mn(II) ion. The structure of dissolved MnBr2, below 1.0 m, changes from essentially [Mn(II)(H2O)(6)](+2) to [Mn(II)(H2O)(2)(Br-1)(2)] in supercritical water (scH(2)O). When an excess of Br-1 ion is added, the bromide coordination number increases and the number of water molecules decreases. The results show that the initial MnBr2 catalyst in scH(2)O is tetrahedral with two Mn-Br contact ion pairs. The presence of the acetate anion deactivates the catalyst by formation of insoluble MnO. C1 Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. DuPont Co Inc, Cent Res & Dev, Expt Stn, Wilmington, DE 19880 USA. RP Fulton, JL (reprint author), Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. EM john.fulton@pnl.gov RI Chen, Yongsheng/P-4800-2014 NR 54 TC 26 Z9 26 U1 2 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 12 PY 2005 VL 127 IS 40 BP 14085 EP 14093 DI 10.1021/ja053421v PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 971VQ UT WOS:000232413300065 PM 16201831 ER PT J AU Freifeld, BM Trautz, RC Kharaka, YK Phelps, TJ Myer, LR Hovorka, SD Collins, DJ AF Freifeld, BM Trautz, RC Kharaka, YK Phelps, TJ Myer, LR Hovorka, SD Collins, DJ TI The U-tube: A novel system for acquiring borehole fluid samples from a deep geologic CO2 sequestration experiment SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID AQUIFER DISPOSAL AB [1] A novel system has been deployed to obtain geochemical samples of water and gas, at in situ pressure, during a geologic CO2 sequestration experiment conducted in the Frio brine aquifer in Liberty County, Texas. Project goals required high-frequency recovery of representative and uncontaminated aliquots of a rapidly changing two-phase fluid (supercritical CO2 and brine) fluid from 1.5 km depth. The data sets collected, using both the liquid and gas portions of the downhole samples, provide insights into the coupled hydrogeochemical issues affecting CO2 sequestration in brine-filled formations. While the basic premise underlying the U-tube sampler is not new, the system is unique because careful consideration was given to the processing of the recovered two-phase fluids. In particular, strain gauges mounted beneath the high-pressure surface sample cylinders measured the ratio of recovered brine to supercritical CO2. A quadrupole mass spectrometer provided real-time gas analysis for perfluorocarbon and noble gas tracers that were injected along with the CO2. The U-tube successfully acquired frequent samples, facilitating accurate delineation of the arrival of the CO2 plume, and on-site analysis revealed rapid changes in geochemical conditions. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. US Geol Survey, Menlo Pk, CA 94035 USA. Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. Univ Texas, Bur Econ Geol, Austin, TX 78713 USA. Sandia Technol LLC, Houston, TX 77066 USA. RP Freifeld, BM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, MS 90-1116, Berkeley, CA 94720 USA. EM bmfreifeld@lbl.gov RI Freifeld, Barry/F-3173-2010; phelps, tommy/A-5244-2011 NR 9 TC 78 Z9 81 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD OCT 11 PY 2005 VL 110 IS B10 AR B10203 DI 10.1029/2005JB003735 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 975UO UT WOS:000232688900002 ER PT J AU Striolo, A Gubbins, KE Gruszkiewicz, MS Cole, DR Simonson, JM Chialvo, AA AF Striolo, A Gubbins, KE Gruszkiewicz, MS Cole, DR Simonson, JM Chialvo, AA TI Effect of temperature on the adsorption of water in porous carbons SO LANGMUIR LA English DT Article ID CRITICAL-POINT SHIFTS; CAPILLARY CONDENSATION; ACTIVATED CARBONS; PHASE COEXISTENCE; MONTE-CARLO; MOLECULAR SIMULATION; NITROGEN ADSORPTION; MESOPOROUS SILICA; PORE CONDENSATION; NARROW PORES AB We report experimental and simulation studies to investigate the effect of temperature on the adsorption isotherms for water in carbons. Adsorption isotherms are measured by a gravimetric technique in carbon-fiber monoliths at 378 and 423 K and studied by molecular simulation in ideal carbon pores in the temperature range 298-600 K. Experimental adsorption isotherms show a gradual water uptake, as the pressure increases, and narrow adsorption-desorption hysteresis loops. In contrast, simulated adsorption isotherms at room temperature are characterized by negligible uptake at low pressures, sudden and complete pore filling once a threshold pressure is reached, and wide adsorption-desorption hysteresis loops. As the temperature increases, the relative pressure at which pore filling occurs increases and the size of the hysteresis loop decreases. Experimental adsorption-desorption hysteresis loops are narrower than those from simulation. Discrepancies between simulation and experimental results are attributed to heterogeneities in chemical composition, pore connectivity, and nonuniform pore-size distribution, which are not accounted for in the simulation model. The hysteresis phase diagram for confined water is obtained by recording the pressure-density conditions that bound the simulated hysteresis loop at each temperature. We find that the hysteresis critical temperature, i.e., the lowest temperature at which no hysteresis is detected, can be hundreds of degrees lower than the vapor-liquid critical temperature for bulk model water. The properties of confined water are discussed with the aid of simulation snapshots and by analyzing the structure of the confined fluid. C1 Vanderbilt Univ, Dept Chem Engn, Nashville, TN 37235 USA. N Carolina State Univ, Dept Chem Engn, Raleigh, NC 27695 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. RP Striolo, A (reprint author), Univ Oklahoma, Dept Chem Biol & Mat Engn, 100 E Boyd, 100 E Boyd,Room T235, Norman, OK 73019 USA. EM astriolo@ou.edu RI Striolo, Alberto/G-2926-2011; Gruszkiewicz, Miroslaw/L-2389-2016; Burchell, Tim/E-6566-2017; OI Gruszkiewicz, Miroslaw/0000-0002-6551-6724; Burchell, Tim/0000-0003-1436-1192; Chialvo, Ariel/0000-0002-6091-4563 NR 61 TC 59 Z9 60 U1 3 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD OCT 11 PY 2005 VL 21 IS 21 BP 9457 EP 9467 DI 10.1021/la051120t PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 972KS UT WOS:000232453300016 PM 16207022 ER PT J AU Brutchey, RL Ruddy, DA Andersen, LK Tilley, TD AF Brutchey, RL Ruddy, DA Andersen, LK Tilley, TD TI Influence of surface modification of Ti-SBA15 catalysts on the epoxidation mechanism for cyclohexene with aqueous hydrogen peroxide SO LANGMUIR LA English DT Article ID SOURCE MOLECULAR PRECURSOR; MESOPOROUS SILICA; SELECTIVE EPOXIDATION; ALKENE EPOXIDATION; OLEFIN EPOXIDATION; TITANIUM SILICALITE; LOCAL-STRUCTURE; MIXED OXIDES; ACTIVE-SITE; TI AB The thermolytic molecular precursor method was used to introduce site-isolated Ti(IV) centers onto the surface of a mesoporous SBA15 support. The resulting surface Si-OH/Ti-OH sites of the Ti-SBA15 catalysts were modified with a series of (NN-dimethylamino)trialkylsilanes, Me2N-SiMe2(R) (where R = Me, Bu-n, or (n)Oc). Compared with the unmodified catalysts, the surface-modified catalysts are more active in the oxidation of cyclohexene with H2O2 and exhibit a significantly higher selectivity (up to 58%) for cyclohexene oxide formation (vs allylic oxidation products). In situ Fourier transform infrared (FTIR) and diffuse reflectance UV visible (DRUV-vis) spectroscopies were used to probe this phenomenon, and it was determined that active sites with capped titanol centers, (SiOsurface)(3)Ti(OSiR3), likely undergo Ti-OOH formation upon addition of H2O2 in a manner analogous to that for active sites of the type (SiOsurface)3TiOH. On the basis of the observation of similar Ti-OOH intermediates for both species, the electron-withdrawing effects on the Ti(IV) active site, resulting from the surface modification, are likely responsible for the observed increase in selectivity. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Livermore Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA. Lawrence Livermore Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Tilley, TD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RI Brutchey, Richard/C-4506-2008 NR 54 TC 40 Z9 43 U1 0 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD OCT 11 PY 2005 VL 21 IS 21 BP 9576 EP 9583 DI 10.1021/la051182j PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 972KS UT WOS:000232453300032 PM 16207038 ER PT J AU Le Pimpec, F Kirby, RE King, F Pivi, M AF Le Pimpec, F Kirby, RE King, F Pivi, M TI Properties of TiN and TiZrV thin film as a remedy against electron cloud SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE thin film; multipacting; getter; NEG; electron cloud; secondary electron emission; secondary electron yield ID RAY PHOTOELECTRON-SPECTROSCOPY; EMISSION; SURFACE; COATINGS AB In many accelerators running positively charged beams, ionization of residual gas and secondary electron emission in the beam pipe will give rise to an electron cloud which can cause beam blow-up or the loss of the circulating beam. One solution to avoid the electron cloud is to ensure that the vacuum wall has low secondary emission yield (SEY). The SEY of thin films of TiN and sputter-deposited non-evaporable getter were measured for a variety of conditions, including the effect of recontamination in an ultra high vacuum environment. (c) 2005 Elsevier B.V. All rights reserved. C1 Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Pivi, M (reprint author), Stanford Linear Accelerator Ctr, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM mpivi@slac.stanford.edu NR 26 TC 23 Z9 23 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 11 PY 2005 VL 551 IS 2-3 BP 187 EP 199 DI 10.1016/j.nimr.2005.05.048 PG 13 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 975PU UT WOS:000232675200001 ER PT J AU Covrig, SD Beise, EJ Carr, R Gustafsson, KK Hannelius, L Herda, MC Jones, CE Liu, J McKeown, RD Neveling, R Rauf, AW Smith, G AF Covrig, SD Beise, EJ Carr, R Gustafsson, KK Hannelius, L Herda, MC Jones, CE Liu, J McKeown, RD Neveling, R Rauf, AW Smith, G TI The cryogenic target for the G(0) experiment at Jefferson lab SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE liquid hydrogen target; unpolarized targets; density variations; parity violation AB A cryogenic horizontal single loop target has been designed, built, tested and operated for the G(0) experiment in Hall C at Jefferson Lab. The target cell is 20 cm long, the loop volume is 6.51 and the target operates with the cryogenic pump fully immersed in the fluid. The target has been designed to operate at 30 Hz rotational pump speed with either liquid hydrogen or liquid deuterium. The high-power heat exchanger is able to remove 1000 W of heat from the liquid hydrogen, while the nominal electron beam with current of 40 mu A and energy of 3 GeV deposits about 320 W of heat into the liquid. The increase in the systematic uncertainty due to the liquid hydrogen target is negligible on the scale of a parity violation experiment. The global normalized yield reduction for 40 mu A beam is about 1.5% and the target density fluctuations contribute less than 238 ppm (parts per million) to the total asymmetry width, typically about 1200 ppm, in a Q(2) bin. (c) 2005 Elsevier B.V. All rights reserved. C1 CALTECH, Kellogg Radiat Lab, Pasadena, CA 91125 USA. Univ Maryland, Dept Phys, College Pk, MD 20472 USA. Univ Illinois, Loomis Lab Phys, Urbana, IL 61801 USA. Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. TRIUMF, Vancouver, BC V6T 2A3, Canada. RP Covrig, SD (reprint author), CALTECH, Kellogg Radiat Lab, 106-38, Pasadena, CA 91125 USA. EM sdc@physics.unh.edu NR 7 TC 13 Z9 13 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 11 PY 2005 VL 551 IS 2-3 BP 218 EP 235 DI 10.1016/j.nima.2005.05.074 PG 18 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 975PU UT WOS:000232675200004 ER PT J AU Shapira, D Liang, JF Gross, CJ Varner, RL Amro, H Harlin, C Kolata, JJ Novotny, S AF Shapira, D Liang, JF Gross, CJ Varner, RL Amro, H Harlin, C Kolata, JJ Novotny, S TI A high-efficiency compact setup to study evaporation residues formed in reactions induced by low-intensity radioactive ion beams SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE fusion evaporation; time of flight; ionization chamber; position sensitive detectors; timing detector ID SUBBARRIER FUSION; SPECTROGRAPH; ENHANCEMENT; BARRIER; HRIBF AB A setup for measuring cross-sections of evaporation residues produced in the collision of two heavy ions is described. The system, which detects all reaction products in a narrow angular range around the beam direction, is designed to work best with low-intensity beams (<= 10(5) ions/s) and can be highly efficient for reactions studied in inverse kinematic conditions, i.e., heavy-mass beam on lighter-mass targets. The system as presented here has been optimized to study evaporation residues from reactions induced by radioactive ion beams with charges near Z similar to 50 and energies near 4 MeV/nucleon. Continuous sampling of the beam velocity, energy loss and position allow for the measurement of accurate evaporation residue cross-sections also in situations where the beam contains a mixture nuclides. (c) 2005 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. Univ Heidelberg, D-6900 Heidelberg, Germany. RP Shapira, D (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM shapirad@ornl.gov RI Novotny, Steffen/E-8378-2012 OI Novotny, Steffen/0000-0002-9259-0903 NR 23 TC 23 Z9 23 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 11 PY 2005 VL 551 IS 2-3 BP 330 EP 338 DI 10.1016/j.nima.2005.05.079 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 975PU UT WOS:000232675200013 ER PT J AU Link, JM Yager, PM Anjos, JC Bediaga, I Castromonte, C Gobel, C Machado, AA Magnin, J Massafferri, A de Miranda, JM Pepe, IM Polycarpo, E dos Reis, AC Carrillo, S Casimiro, E Cuautle, E Sanchez-Hernandez, A Uribe, C Vazquez, F Agostino, L Cinquini, L Cumalat, JP O'Reilly, B Segoni, I Stenson, K Butler, JN Cheung, HWK Chiodini, G Gaines, I Garbincius, PH Garren, LA Gottschalk, E Kasper, PH Kreymer, AE Kutschke, R Wang, M Benussi, L Bertani, M Bianco, S Fabbri, FL Pacetti, S Zallo, A Reyes, M Cawlfield, C Kim, DY Rahimi, A Wiss, J Gardner, R Kryemadhi, A Chung, YS Kang, JS Ko, BR Kwak, JW Lee, KB Cho, K Park, H Alimonti, G Barberis, S Boschini, M Cerutti, A D'Angelo, P DiCorato, M Dini, P Edera, L Erba, S Inzani, P Leveraro, F Malvezzi, S Menasce, D Mezzadri, M Moroni, L Pedrini, D Pontoglio, C Prelz, F Rovere, M Sala, S Davenport, TF Arena, V Boca, G Bonomi, G Gianini, G Liguori, G Pegna, DL Merlo, MM Pantea, D Ratti, SP Riccardi, C Vitulo, P Hernandez, H Lopez, AM Mendez, H Paris, A Quinones, J Ramirez, JE Zhang, Y Wilson, JR Handler, T Mitchell, R Engh, D Hosack, M Johns, WE Luiggi, E Moore, JE Nehring, M Sheldon, PD Vaandering, EW Webster, M Sheaff, M AF Link, JM Yager, PM Anjos, JC Bediaga, I Castromonte, C Gobel, C Machado, AA Magnin, J Massafferri, A de Miranda, JM Pepe, IM Polycarpo, E dos Reis, AC Carrillo, S Casimiro, E Cuautle, E Sanchez-Hernandez, A Uribe, C Vazquez, F Agostino, L Cinquini, L Cumalat, JP O'Reilly, B Segoni, I Stenson, K Butler, JN Cheung, HWK Chiodini, G Gaines, I Garbincius, PH Garren, LA Gottschalk, E Kasper, PH Kreymer, AE Kutschke, R Wang, M Benussi, L Bertani, M Bianco, S Fabbri, FL Pacetti, S Zallo, A Reyes, M Cawlfield, C Kim, DY Rahimi, A Wiss, J Gardner, R Kryemadhi, A Chung, YS Kang, JS Ko, BR Kwak, JW Lee, KB Cho, K Park, H Alimonti, G Barberis, S Boschini, M Cerutti, A D'Angelo, P DiCorato, M Dini, P Edera, L Erba, S Inzani, P Leveraro, F Malvezzi, S Menasce, D Mezzadri, M Moroni, L Pedrini, D Pontoglio, C Prelz, F Rovere, M Sala, S Davenport, TF Arena, V Boca, G Bonomi, G Gianini, G Liguori, G Pegna, DL Merlo, MM Pantea, D Ratti, SP Riccardi, C Vitulo, P Hernandez, H Lopez, AM Mendez, H Paris, A Quinones, J Ramirez, JE Zhang, Y Wilson, JR Handler, T Mitchell, R Engh, D Hosack, M Johns, WE Luiggi, E Moore, JE Nehring, M Sheldon, PD Vaandering, EW Webster, M Sheaff, M TI Application of genetic programming to high energy physics event selection SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE genetic programming; event selection; classification ID SPECTROMETER; FOCUS AB We review genetic programming principles, their application to FOCUS data samples, and use the method to study the doubly Cabibbo suppressed decay D+ -> K(+)pi(+)pi(-) relative to its Cabibbo favored counterpart, D+ -> K(-)pi(+)pi(+). We find that this technique is able to improve upon more traditional analysis methods. To our knowledge, this is the first application of the genetic programming technique to High Energy Physics data. (c) 2005 Elsevier B.V. All rights reserved. C1 Vanderbilt Univ, Nashville, TN 37235 USA. Univ Calif Davis, Davis, CA 95616 USA. Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. CINVESTAV, Mexico City 07000, DF, Mexico. Univ Colorado, Boulder, CO 80309 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Guanajuato, Leon 37150, Guanajuato, Mexico. Univ Illinois, Urbana, IL 61801 USA. Indiana Univ, Bloomington, IN 47405 USA. Korea Univ, Seoul 136701, South Korea. Kyungpook Natl Univ, Taegu 702701, South Korea. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Milan, I-20122 Milan, Italy. Univ N Carolina, Asheville, NC 28804 USA. Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. Ist Nazl Fis Nucl, I-27100 Pavia, Italy. Univ Puerto Rico, Mayaguez, PR 00681 USA. Univ S Carolina, Columbia, SC 29208 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Wisconsin, Madison, WI 53706 USA. RP Vaandering, EW (reprint author), Vanderbilt Univ, 221 Kirkland Hall, Nashville, TN 37235 USA. EM ewv@fnal.gov RI Bonomi, Germano/G-4236-2010; Kwak, Jungwon/K-8338-2012; Anjos, Joao/C-8335-2013; Link, Jonathan/L-2560-2013; Castromonte Flores, Cesar Manuel/O-6177-2014; Benussi, Luigi/O-9684-2014; Gobel Burlamaqui de Mello, Carla /H-4721-2016; Menasce, Dario Livio/A-2168-2016; Gianini, Gabriele/M-5195-2014; OI Bonomi, Germano/0000-0003-1618-9648; Link, Jonathan/0000-0002-1514-0650; Castromonte Flores, Cesar Manuel/0000-0002-9559-3704; Benussi, Luigi/0000-0002-2363-8889; Gobel Burlamaqui de Mello, Carla /0000-0003-0523-495X; Kutschke, Robert/0000-0001-9315-2879; Menasce, Dario Livio/0000-0002-9918-1686; Pacetti, Simone/0000-0002-6385-3508; Gianini, Gabriele/0000-0001-5186-0199; bianco, stefano/0000-0002-8300-4124; Kryemadhi, Abaz/0000-0002-1240-2803 NR 12 TC 15 Z9 15 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 11 PY 2005 VL 551 IS 2-3 BP 504 EP 527 DI 10.1016/j.nima.2005.05.069 PG 24 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 975PU UT WOS:000232675200029 ER PT J AU Dullmann, CE Folden, CM Gregorich, KE Hoffman, DC Leitner, D Pang, GK Sudowe, R Zielinski, PM Nitsche, H AF Dullmann, CE Folden, CM Gregorich, KE Hoffman, DC Leitner, D Pang, GK Sudowe, R Zielinski, PM Nitsche, H TI Heavy-ion-induced production and physical preseparation of short-lived isotopes for chemistry experiments SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE cocktail beam; physical preseparation; recoil separator; recoil transfer chamber; chemistry of transactinides ID SISAK-SYSTEM; JET SYSTEM; SEPARATION; FISSION AB Physical separation of short-lived isotopes produced in heavy-ion-induced fusion reactions is a powerful and well-known method and often applied in investigations of the heaviest elements, called the transactinides (Z >= 104). By extracting these isotopes from a recoil separator, they can be made available for transport to setups located outside the heavily shielded irradiation position such as chemistry setups. This physical preseparation technique overcomes many limitations currently faced in the chemical investigation of transactinides. Here we describe the basic principle using relatively short-lived isotopes of the lighter group 4 elements zirconium (Zr) and hafnium (Hf) used as analogs of the lightest transactinide element, rutherfordium (Rf, element 104). The Zr and Hf isotopes were produced at the LBNL 88-Inch Cyclotron using a cocktail of O-18 and Ti-50 beams and the appropriate targets. Subsequently, the isotopes were physically separated in the Berkeley Gas-filled Separator (BGS) and guided to a Recoil Transfer Chamber (RTC) to transfer them to chemistry setups. The magnetic rigidities of the reaction products in low-pressure helium gas were measured and their identities determined with gamma-spectroscopy. Using preseparated isotopes has the advantages of low background and beam plasma free environment for chemistry experiments. The new possibilities that open up for chemical investigations of transactinide elements are described. The method can readily be applied to homologous elements within other groups in the periodic table. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Dullmann, CE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd,MS 88R0192, Berkeley, CA 94720 USA. EM CEDuellmann@lbl.gov RI Folden, Charles/F-1033-2015 OI Folden, Charles/0000-0002-2814-3762 NR 30 TC 33 Z9 33 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 11 PY 2005 VL 551 IS 2-3 BP 528 EP 539 DI 10.1016/j.nima.2005.05.077 PG 12 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 975PU UT WOS:000232675200030 ER PT J AU Escoffier, S Bertin, PY Brossard, M Burtin, E Cavata, C Colombel, N de Jager, CW Delbart, A Lhuillier, D Marie, F Mitchell, J Neyret, D Pussieux, T AF Escoffier, S Bertin, PY Brossard, M Burtin, E Cavata, C Colombel, N de Jager, CW Delbart, A Lhuillier, D Marie, F Mitchell, J Neyret, D Pussieux, T TI Accurate measurement of the electron beam polarization in JLab Hall A using Compton polarimetry SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Compton polarimeter; optical cavity; polarized beams ID FABRY-PEROT CAVITY; SCATTERING AB A major advance in accurate electron beam polarization measurement has been achieved at Jlab Hall A with a Compton polarimeter based on a Fabry-Perot cavity photon beam amplifier. At an electron energy of 4.6 GeV and a beam current of 40 mu A, a total relative uncertainty of 1.5% is typically achieved within 40 min of data taking. Under the same conditions monitoring of the polarization is accurate at a level of 1%. These unprecedented results make Compton polarimetry an essential tool for modern parity-violation experiments, which require very accurate electron beam polarization measurements. (c) 2005 Elsevier B.V. All rights reserved. C1 CEA Saclay, DSM, DAPNIA, SPHN, F-91191 Gif Sur Yvette, France. Univ Clermont Ferrand, F-63177 Aubiere, France. IN2P3, CNRS, LPC, F-63177 Aubiere, France. Jefferson Lab, Newport News, VA 23606 USA. RP CEA Saclay, DSM, DAPNIA, SPHN, Bat 703, F-91191 Gif Sur Yvette, France. EM dlhuillier@cea.fr RI CAVATA, Christian/P-6496-2015 NR 15 TC 16 Z9 16 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 11 PY 2005 VL 551 IS 2-3 BP 563 EP 574 DI 10.1016/j.nima.2005.05.067 PG 12 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 975PU UT WOS:000232675200033 ER PT J AU Gilbert, RJC Beales, L Blond, D Simon, MN Lin, BY Chisari, FV Stuart, DI Rowlands, DJ AF Gilbert, RJC Beales, L Blond, D Simon, MN Lin, BY Chisari, FV Stuart, DI Rowlands, DJ TI Hepatitis B small surface antigen particles are octahedral SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE cryo-EM; subviral particle; virus structure ID ELECTRON-MICROSCOPY; RECOMBINANT YEAST; PROTEIN; CRYOMICROSCOPY; RESOLUTION; TOPOLOGY; ANGSTROM; HBSAG; COLI AB The infectious component of hepatitis B (HB) virus (HBV), the Dane particle, has a diameter of approximate to 44 nm and consists of a double-layered capsid particle enclosing a circular, incomplete double-stranded DNA genome. The outer capsid layer is formed from the HB surface antigen (HBsAg) and lipid, whereas the inner layer is formed from the HB core Ag assembled into an icosahedral structure. During chronic infection HBsAg is expressed in large excess as noninfectious quasispherical particles and tubules with approximate to 22-nm diameter. Here, we report cryo-EM reconstructions of spherical HBsAg particles at approximate to 12-angstrom resolution. We show that the particles possess different diameters and have separated them into two predominant populations, both of which have octahedral symmetry. Despite their differing diameters, the two forms of the particle have the same mass and are built through conformational switching of the same building block, a dimer of HBsAg. We propose that this conformational switching, combined with interactions with the underlying core, leads to the formation of HBV Dane particles of different sizes, dictated by the symmetry of the icosahedral core. C1 Univ Oxford, Henry Wellcome Bldg Genom Med, Div Struct Biol, Oxford OX3 7BN, England. Univ Oxford, Cent Chem Lab, Oxford Ctr Mol Sci, Oxford OX1 3QH, England. Univ Leeds, Sch Biochem & Microbiol, Leeds LS2 9JT, W Yorkshire, England. Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. Scripps Res Inst, Div Expt Pathol, La Jolla, CA 92037 USA. RP Stuart, DI (reprint author), Univ Oxford, Henry Wellcome Bldg Genom Med, Div Struct Biol, Roosevelt Dr, Oxford OX3 7BN, England. EM dave@strubi.ox.ac.uk; d.j.rowlands@leeds.ac.uk RI Chisari, Francis/A-3086-2008; OI Chisari, Francis/0000-0002-4832-1044 FU NCRR NIH HHS [P41 RR001777, P41-RR01777] NR 34 TC 49 Z9 51 U1 1 U2 3 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 11 PY 2005 VL 102 IS 41 BP 14783 EP 14788 DI 10.1073/pnas.0505062102 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 974PJ UT WOS:000232603600055 PM 16203986 ER PT J AU Choi, W Matias, V Lee, JK Findikoglu, AT AF Choi, W Matias, V Lee, JK Findikoglu, AT TI Dependence of carrier mobility on grain mosaic spread in < 001 >-oriented Si films grown on polycrystalline substrates SO APPLIED PHYSICS LETTERS LA English DT Article ID ELECTRICAL PROPERTIES; THIN-FILMS; SILICON; TRANSISTORS; BOUNDARIES; SEMICONDUCTORS; DEFECTS AB We studied the dependence of carrier mobility on grain mosaic spread for < 001 >-oriented, 200-to-400-nm-thick Si thin films grown on polycrystalline metal substrates. The Hall mobility increased from 1% to 23% of that in bulk single-crystal Si with decreasing grain mosaic spread from 14 degrees to 2 degrees. For the same range of parameters, a model combining intragrain and grain boundary scattering yielded a decrease of the energy barrier height from 0.1 eV to less than 10(-3) eV and an accompanying decrease of trap density from 6x10(11) cm(-2) to less than 3x10(10) cm(-2). These results demonstrate that, for polycrystalline Si films, improving the intergrain alignment is an effective and practical alternative to increasing the grain size to achieve enhanced mobility. (C) 2005 American Institute of Physics. C1 Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Choi, W (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM woong@lanl.gov; findik@lanl.gov NR 12 TC 19 Z9 19 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 10 PY 2005 VL 87 IS 15 AR 152104 DI 10.1063/1.2103405 PG 3 WC Physics, Applied SC Physics GA 972GL UT WOS:000232442200040 ER PT J AU Chon, CH Kihm, KD Lee, SP Choi, SUS AF Chon, CH Kihm, KD Lee, SP Choi, SUS TI Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement SO APPLIED PHYSICS LETTERS LA English DT Article ID SUSPENSIONS; NANOPARTICLES AB In this letter, we report an experimental correlation [Eqs. (1a d1b) or (1c)] for the thermal conductivity of Al2O3 nanofluids as a function of nanoparticle size (ranging from 11 nm to 150 nm nominal diameters) over a wide range of temperature (from 21 to 71 degrees C). Following the previously proposed conjecture from the theoretical point-of-view (Jang and Choi, 2004), it is experimentally validated that the Brownian motion of nanoparticles constitutes a key mechanism of the thermal conductivity enhancement with increasing temperature and decreasing nanoparticle sizes. (C) 2005 American Institute of Physics. C1 Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. Kyonggi Univ, Dept Mech Engn, Suwon 443760, South Korea. Argonne Natl Lab, Div Energy Technol, Argonne, IL 60439 USA. RP Kihm, KD (reprint author), Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. EM kkihm@utk.edu NR 20 TC 442 Z9 447 U1 8 U2 61 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 10 PY 2005 VL 87 IS 15 AR 153107 DI 10.1063/1.2093936 PG 3 WC Physics, Applied SC Physics GA 972GL UT WOS:000232442200055 ER PT J AU Han, SH Hasoon, FS Pankow, JW Hermann, AM Levi, DH AF Han, SH Hasoon, FS Pankow, JW Hermann, AM Levi, DH TI Effect of Cu deficiency on the optical bowing of chalcopyrite CuIn1-xGaxSe2 SO APPLIED PHYSICS LETTERS LA English DT Article ID SPECIAL QUASIRANDOM STRUCTURES; THIN-FILMS; ALLOYS; DIFFERENTIATION; DIFFRACTION; CUINSE2 AB Optical bowing coefficients are used to describe the band gap variation of a composite semiconductor alloy. It is known to be related to the electronic structure and the lattice deformation in the semiconductor alloys. Spectroscopic ellipsometry study shows that the optical bowing coefficient of slightly Cu-poor polycrystalline Cu0.9In1-xGaxSe2 is larger than that of stoichiometric polycrystalline CuIn1-xGaxSe2 and band gaps are larger when Cu becomes poor. This can be explained by an increase in valence band offset due to reduced p-d coupling and an increase of perturbation potential Delta V due to lattice deformation. (C) 2005 American Institute of Physics. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. Univ Colorado, Dept Phys, Boulder, CO 80309 USA. RP Han, SH (reprint author), Georgia Inst Technol, Sch Elect & Comp Engn, COPE, Atlanta, GA 30332 USA. EM sung-ho.han@ece.gatech.edu RI Han, Sung-Ho/B-7678-2008 NR 24 TC 26 Z9 26 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 10 PY 2005 VL 87 IS 15 AR 151904 DI 10.1063/1.2089154 PG 3 WC Physics, Applied SC Physics GA 972GL UT WOS:000232442200027 ER PT J AU Nelson, AJ Dunn, J Hunter, J Widmann, K AF Nelson, AJ Dunn, J Hunter, J Widmann, K TI Time-resolved x-ray laser induced photoelectron spectroscopy of isochoric heated copper SO APPLIED PHYSICS LETTERS LA English DT Article ID DIFFRACTION; TRANSITION; DYNAMICS; METALS; PULSES; FILMS AB Time-resolved x-ray photoelectron spectroscopy is used to probe the nonsteady-state evolution of the valence band electronic structure of laser heated ultrathin (50 nm) copper. A metastable phase is studied using a 527 nm wavelength 400 fs laser pulse containing 0.1-2.5 mJ laser energy focused in a large 500x700 mu m(2) spot to create heated conditions of 0.07-1.8x10(12) W cm(-2) intensity. Valence band photoemission spectra are presented showing the changing occupancy of the Cu 3d level with heating are presented. These picosecond x-ray laser induced time-resolved photoemission spectra of laser-heated ultrathin Cu foil show dynamic changes in the electronic structure. The ultrafast nature of this technique lends itself to true single-state measurements of shocked and heated materials. (C) 2005 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Nelson, AJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. NR 27 TC 4 Z9 4 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 10 PY 2005 VL 87 IS 15 AR 154102 DI 10.1063/1.2093938 PG 3 WC Physics, Applied SC Physics GA 972GL UT WOS:000232442200075 ER PT J AU Seymour, FH Kaydanov, V Ohno, TR Albin, D AF Seymour, FH Kaydanov, V Ohno, TR Albin, D TI Cu and CdCl2 influence on defects detected in CdTe solar cells with admittance spectroscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID IDENTIFICATION AB Admittance spectroscopy was used with a custom built temperature stage to study deep level defects in four polycrystalline thin-film CdTe solar cells that had postdeposition back contact treatments with and without Cu and CdCl2. One hole trap signature with activation energy E(a)approximate to 0.13 eV was detected in all four cells and was attributed to a combination of V-Cd(-) and related complexes. A second hole trap with E(a)approximate to 0.30 eV and detected only in Cu-treated cells was attributed to Cu-Cd(-). A third hole trap with E(a)approximate to 0.47 eV was detected only in non-Cu-treated cells. The relationships and relative concentrations between these distinct trap levels are discussed. (C) 2005 American Institute Physics. C1 Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Seymour, FH (reprint author), Colorado Sch Mines, Dept Phys, 1523 Illinois St, Golden, CO 80401 USA. EM fseymour@mines.edu RI Ohno, Timothy/J-9384-2014 NR 13 TC 19 Z9 20 U1 1 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 10 PY 2005 VL 87 IS 15 AR 153507 DI 10.1063/1.2099515 PG 3 WC Physics, Applied SC Physics GA 972GL UT WOS:000232442200068 ER PT J AU Wang, CM Shutthanandan, V Thevuthasan, S Duscher, G AF Wang, CM Shutthanandan, V Thevuthasan, S Duscher, G TI Direct imaging of quantum antidots in MgO dispersed with Au nanoclusters SO APPLIED PHYSICS LETTERS LA English DT Article ID ATOMIC-SCALE; IMPLANTATION; MGO(100); RECONSTRUCTION; CLUSTERS AB Formation of quantum antidots at the immediate neighborhood of Au nanocluster has been proposed in order to explain the observed nonlinear optical behavior of magnesium oxide (MgO) when Au nanoclusters were dispersed in it. In this letter, using high-angle annular dark-field imaging in an aberration-corrected scanning transmission electron microscope, we report the direct observation of clustering of vacancies in excess of Au atoms to form quantum antidots at the immediate neighborhood of the Au clusters, leading to a spatially associated Au nanoclusters and the quantum antidots. The antidots show a terraced layer structure and are typically faceted along the MgO{100} planes. (C) 2005 American Institute of Physics. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27607 USA. Oak Ridge Natl Lab, Div Solid State, Oak Ridge, TN 37831 USA. RP Wang, CM (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM chongmin.wang@pnl.gov RI Duscher, Gerd/G-1730-2014 OI Duscher, Gerd/0000-0002-2039-548X NR 21 TC 7 Z9 7 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 10 PY 2005 VL 87 IS 15 AR 153104 DI 10.1063/1.2099518 PG 3 WC Physics, Applied SC Physics GA 972GL UT WOS:000232442200052 ER PT J AU Cohn, JD Kadota, K AF Cohn, JD Kadota, K TI Uncertainties in the Sunyaev-Zel'dovich-selected cluster angular power spectrum SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic microwave background; cosmological parameters; galaxies : clusters : general ID DARK-MATTER HALOES; HUBBLE VOLUME SIMULATIONS; LARGE-SCALE BIAS; X-RAY-PROPERTIES; GALAXY CLUSTERS; RELATIVISTIC CORRECTIONS; COSMOLOGICAL CONSTRAINTS; TEMPERATURE PROFILE; POINT SOURCES; MASS AB Large Sunyaev- Zel'dovich - selected galaxy cluster surveys are beginning imminently. We compare the dependence of the galaxy cluster angular power spectrum on cosmological parameters, different modeling assumptions, and statistical observational errors. We quantify the degeneracies between theoretical assumptions such as the mass function and cosmological parameters such as sigma(8). We also identify a rough scaling behavior of this angular power spectrum with sigma(8) alone. C1 Space Sci Lab, Berkeley, CA 94720 USA. Theoret Astrophys Ctr, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Fermilab Natl Accelerator Lab, NASA, Fermilab Astrophys Ctr, Batavia, IL 60510 USA. RP Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. EM jcohn@astron.berkeley.edu; kadota@fnal.gov NR 71 TC 3 Z9 3 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2005 VL 632 IS 1 BP 1 EP 14 DI 10.1086/432706 PN 1 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 971EZ UT WOS:000232366000001 ER PT J AU Socrates, A Blaes, O Hungerford, A Fryer, CL AF Socrates, A Blaes, O Hungerford, A Fryer, CL TI The neutrino bubble instability: A mechanism for generating pulsar kicks SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational waves; instabilities; MHD; pulsars : general; stars : evolution; stars : oscillations ID X-RAY-EMISSION; STAR KICKS; GRAVITATIONAL-RADIATION; ASYMMETRIC SUPERNOVA; CONVECTIVE ENGINE; STELLAR COLLAPSE; PARITY VIOLATION; MAGNETIC-FIELDS; PHOTON BUBBLES; RADIO PULSARS AB An explanation for the large random velocities of pulsars is presented. Like many other models, we propose that the momentum imparted to the star is given at birth. The ultimate source of energy is provided by the intense optically thick neutrino flux that is responsible for radiating the proto-neutron star's gravitational binding energy during the Kelvin- Helmholtz phase. The central feature of the kick mechanism is a radiatively driven magnetoacoustic instability, which we refer to as ''neutrino bubbles.'' Identical in nature to the photon bubble instability, the neutrino bubble instability requires the presence of an equilibrium radiative flux, as well as a coherent steady background magnetic field. Over regions of large magnetic flux densities, the neutrino bubble instability is allowed to grow on dynamical timescales similar to 1 ms, potentially leading to large luminosity enhancements and density fluctuations. Local luminosity enhancements, which preferentially occur over regions of strong magnetic field, lead to a net global asymmetry in the neutrino emission, and the young neutron star is propelled in the direction opposite to these regions. For favorable values of magnetic field structure, size, and strength, as well as neutrino bubble saturation amplitude, momentum kicks in excess of 1000 km s(-1) can be achieved. Since the neutrino-powered kick is delivered over the duration of the Kelvin- Helmholtz time, a few seconds, one expects spin-kick alignment from this neutrino bubble powered model. C1 Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Arizona, Tucson, AZ 85721 USA. RP Socrates, A (reprint author), Princeton Univ, Dept Astrophys Sci, Peyton Hall,Ivy Lane, Princeton, NJ 08544 USA. EM socrates@astro.princeton.edu; blaes@physics.ucsb.edu; aimee@lanl.gov; fryer@lanl.gov NR 66 TC 30 Z9 30 U1 0 U2 1 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2005 VL 632 IS 1 BP 531 EP 562 DI 10.1086/431786 PN 1 PG 32 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 971EZ UT WOS:000232366000038 ER PT J AU Halpern, JP Gotthelf, EV Becker, RH Helfand, DJ White, RL AF Halpern, JP Gotthelf, EV Becker, RH Helfand, DJ White, RL TI Discovery of radio emission from the transient anomalous X-ray pulsar XTE J1810-197 SO ASTROPHYSICAL JOURNAL LA English DT Article DE pulsars : general; pulsars : individual (XTE J1810-197, AX J1844.8-0256); radio continuum : stars; X-rays : stars ID GALACTIC PLANE; SUPERNOVA REMNANT; XTE J1810-197; MAGNETAR SGR-1806-20; WIND NEBULAE; GIANT FLARE; VELA PULSAR; COUNTERPART; COINCIDENT; OUTBURST AB We report the first detection of radio emission from any anomalous X-ray pulsar (AXP). Data from the Very Large Array (VLA) Multi-Array Galactic Plane Imaging Survey with angular resolution of 6" reveal a point source of flux density 4.5 +/- 0.5 mJy at 1.4 GHz at the precise location of the 5.54 s pulsar XTE J1810-197. This is greater than upper limits from all other AXPs and from quiescent states of soft gamma-ray repeaters (SGRs). The detection was made in 2004 January, 1 year after the discovery of XTE J1810-197 during its only known outburst. Additional VLA observations both before and after the outburst yield only upper limits that are comparable to or larger than the single detection, neither supporting nor ruling out a decaying radio afterglow related to the X-ray turn-on. Another hypothesis is that, unlike the other AXPs and SGRs, XTE J1810-197 may power a radio synchrotron nebula by the interaction of its particle wind with a moderately dense environment that was not evacuated by previous activity from this least luminous, in X-rays, of the known magnetars. C1 Columbia Univ, Dept Astron, New York, NY 10027 USA. Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Halpern, JP (reprint author), Columbia Univ, Dept Astron, 550 W 120th St, New York, NY 10027 USA. EM jules@astro.columbia.edu RI White, Richard/A-8143-2012 NR 36 TC 50 Z9 50 U1 0 U2 1 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2005 VL 632 IS 1 BP L29 EP L32 DI 10.1086/497537 PN 2 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 971FC UT WOS:000232366400008 ER PT J AU Chen, KS Hickner, MA Noble, DR AF Chen, KS Hickner, MA Noble, DR TI Simplified models for predicting the onset of liquid water droplet instability at the gas diffusion layer/gas flow channel interface SO INTERNATIONAL JOURNAL OF ENERGY RESEARCH LA English DT Article DE polymer electrolyte fuel cells; modeling; liquid water removal; droplet instability; GDL/GFC interface ID PEM FUEL-CELLS; 3-DIMENSIONAL FLUID DROPLETS; NON-HORIZONTAL SURFACES; NUMBER SHEAR FLOWS; 2-PHASE FLOW; SOLID-SURFACES; CATHODE; TRANSPORT; DISPLACEMENT; ABILITY AB Simplified models that are based on macroscopic force balances and droplet-geometry approximations are presented for predicting the onset of instability leading to removal of water droplets at the gas diffusion layer (GDL)/gas flow channel (GFC) interface. Visualization experiments are carried out to observe the formation, growth, and removal or instability of the water droplets at the GDL/GFC interface of a simulated polymer electrolyte fuel cell cathode. Droplet-instability diagrams or 'windows' computed by the simplified models are compared with those measured experimentally, and good agreement is obtained. Two-dimensional flow simulations employing the finite element method coupled with an arbitrary Lagrangian-Eulerian formulation for determining the liquid/gas interface position are also performed to assess the simplified cylindrical-droplet model. Necessary conditions for preventing fully grown droplets from lodging in the flow channel are derived using the simplified models. It is found that droplet removal can be enhanced by increasing flow channel length or mean gas flow velocity, decreasing channel height or contact angle hysteresis, or making the GDL/GFC interface more hydrophobic. Copyright (c) 2005 John Wiley & Sons, Ltd. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Chen, KS (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM kschen@sandia.gov NR 25 TC 102 Z9 102 U1 4 U2 20 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0363-907X J9 INT J ENERG RES JI Int. J. Energy Res. PD OCT 10 PY 2005 VL 29 IS 12 BP 1113 EP 1132 DI 10.1002/er.1143 PG 20 WC Energy & Fuels; Nuclear Science & Technology SC Energy & Fuels; Nuclear Science & Technology GA 971KD UT WOS:000232381900008 ER PT J AU Zhang, DL Liu, SM Jing, XN Luo, JL Zhang, XG Wang, RJ Kang, N Chen, ZJ Lu, L Lin, JJ AF Zhang, DL Liu, SM Jing, XN Luo, JL Zhang, XG Wang, RJ Kang, N Chen, ZJ Lu, L Lin, JJ TI Electronic transport properties of alpha-TiAl alloys SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B LA English DT Article DE electronic transport; resistivity saturation; separation of electron and phonon thermal conductivity ID UPPER CRITICAL-FIELD; ELECTRICAL-RESISTIVITY; MAGNETIC-SUSCEPTIBILITY; THERMAL-CONDUCTIVITY; TI1-XALX ALLOYS; QUASI-CRYSTALS; METALS; SUPERCONDUCTIVITY; THERMOPOWER; SATURATION AB The electrical resistivity, thermal conductivity, and thermopower of alpha-TiAl alloy samples with A1 content from 0 at.% to 10 at.% are measured from room temperature down to liquid helium temperature. It is found that with the increase in A1 content the single phonon scattering contribution to the resistivity remains nearly constant, but the multiphonon scattering contribution monotonously increases. This provides an alternative explanation of resistivity saturation to the shunt-resistor model. The Wiedemann-Ranz law holds for the whole temperature range, allowing the separation of the electron and phonon contributions to the thermal conductivity. The data from samples with different doping levels enable us to separate the band and the scattering terms in the thermopower. C1 Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China. Northwestern Univ, Dept Phys, Xian, Peoples R China. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Natl Chiao Tung Univ, Inst Phys, Hsinchu 300, Taiwan. Natl Chiao Tung Univ, Dept Electrophys, Hsinchu 300, Taiwan. RP Zhang, DL (reprint author), Chinese Acad Sci, Inst Phys, POB 603, Beijing 100080, Peoples R China. RI Lin, Juhn-Jong/C-3504-2013 OI Lin, Juhn-Jong/0000-0001-8640-3617 NR 37 TC 1 Z9 1 U1 0 U2 11 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-9792 J9 INT J MOD PHYS B JI Int. J. Mod. Phys. B PD OCT 10 PY 2005 VL 19 IS 25 BP 3869 EP 3895 DI 10.1142/S0217979205032450 PG 27 WC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical SC Physics GA 980PX UT WOS:000233031600006 ER PT J AU Barad, M Colella, P AF Barad, M Colella, P TI A fourth-order accurate local refinement method for Poisson's equation SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Poisson equation; mesh refinement; multigrid methods ID NAVIER-STOKES EQUATIONS; PROJECTION METHOD; GRIDS AB We present a block-structured local refinement method for computing solutions to Poisson's equation in two and three dimensions. It is based on a conservative, finite-volume formulation of the classical Mehrstellen methods. This is combined with finite volume local refinement discretizations to obtain a method that is fourth-order accurate in solution error, and with easily verifiable solvability conditions for Neumann and periodic boundary conditions. (c) 2005 Elsevier Inc. All rights reserved. C1 Univ Calif Davis, Lawrence Berkeley Natl Lab, Dept Civil & Environm Engn, Davis, CA 95616 USA. Lawrence Berkeley Natl Lab, Appl Numer Algorithms Grp, Berkeley, CA 94720 USA. RP Barad, M (reprint author), Univ Calif Davis, Lawrence Berkeley Natl Lab, Dept Civil & Environm Engn, Cyclotron Rd Mail Stop 50A1148, Davis, CA 95616 USA. EM mfbarad@ucdavis.edu NR 14 TC 35 Z9 35 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD OCT 10 PY 2005 VL 209 IS 1 BP 1 EP 18 DI 10.1016/j.jcp.2005.02.027 PG 18 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 938MY UT WOS:000230008700001 ER PT J AU Sjogreen, B Petersson, NA AF Sjogreen, B Petersson, NA TI Perfectly matched layers for Maxwell's equations in second order formulation SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article ID ABSORBING BOUNDARY-CONDITIONS; DIFFERENCE APPROXIMATIONS; WAVE-EQUATION; PML; COEFFICIENT AB We consider the two-dimensional Maxwell's equations in domains external to perfectly conducting objects of complex shape. The equations are discretized using a node-centered finite-difference scheme on a Cartesian grid and the boundary condition are discretized to second order accuracy employing an embedded technique which does not suffer from a "small-cell" time-step restriction in the explicit time-integration method. The computational domain is truncated by a perfectly matched layer (PML). We derive estimates for both the error due to reflections at the outer boundary of the PML, and due to discretizing the continuous PML equations. Using these estimates, we show how the parameters of the PML can be chosen to make the discrete solution of the PML equations converge to the solution of Maxwell's equations on the unbounded domain, as the grid size goes to zero. Several numerical examples are given. (c) 2005 Elsevier Inc. All rights reserved. C1 Ctr Appl Sci Comp, Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Royal Inst Technol, S-10044 Stockholm, Sweden. RP Petersson, NA (reprint author), Ctr Appl Sci Comp, Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM bjorns@nada.kth.se; andersp@llnl.gov NR 21 TC 19 Z9 20 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD OCT 10 PY 2005 VL 209 IS 1 BP 19 EP 46 DI 10.1016/j.jcp.2005.03.011 PG 28 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 938MY UT WOS:000230008700002 ER PT J AU Loubere, R Shashkov, MJ AF Loubere, R Shashkov, MJ TI A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE remapping; conservative interpolation; ALE methods ID FINITE-ELEMENT-METHOD; CONSERVATION-LAWS; COMPUTING-METHOD; FLOW SPEEDS; HYDRODYNAMICS; EFFICIENT; PHYSICS; REPAIR; MESH AB We describe a new remapping algorithm for use in arbitrary Lagrangian-Eulerian (ALE) simulations. The new features of this remapper are designed to complement a staggered-mesh Lagrangian phase in which the cells may be general polygons (in two dimensions), and which uses subcell discretizations to control unphysical mesh distortion and hourglassing. Our new remapping algorithm consists of three stages. A gathering stage, in which we interpolate momentum, internal energy, and kinetic energy to the subcells in a conservative way. A subcell remapping stage, in which we conservatively remap mass, momentum, internal, and kinetic energy from the subcells of the Lagrangian mesh to the subcells of the new rezoned mesh. A scattering stage, in which we conservatively recover the primary variables: subcell density, nodal velocity, and cell-centered specific internal energy on the new rezoned mesh. We prove that our new remapping algorithm is conservative, reversible, and satisfies the DeBar consistency condition. We also demonstrate computationally that our new remapping method is robust and accurate for a series of test problems in one and two dimensions. (c) 2005 Elsevier Inc. All rights reserved. C1 Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Shashkov, MJ (reprint author), Los Alamos Natl Lab, T-7,MS B284, Los Alamos, NM 87544 USA. EM loubere@lanl.gov; misha@t7.lanl.gov NR 33 TC 62 Z9 66 U1 1 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD OCT 10 PY 2005 VL 209 IS 1 BP 105 EP 138 DI 10.1016/j.jcp.2005.03.019 PG 34 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 938MY UT WOS:000230008700005 ER PT J AU Goyal, S Perkins, NC Lee, CL AF Goyal, S Perkins, NC Lee, CL TI Nonlinear dynamics and loop formation in Kirchhoff rods with implications to the mechanics of DNA and cables SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE kirchhoff rod; dynamics; supercoiling; looping; cable mechanics; DNA mechanics ID SYMMETRIC TOP MACROMOLECULES; GENERALIZED-ALPHA METHOD; TIME INTEGRATION; CIRCULAR-CYLINDERS; SPATIAL EQUILIBRIA; ELASTIC STABILITY; LAC REPRESSOR; SELF-CONTACT; CONFIGURATIONS; MOLECULES AB The paper contributes a general dynamical formulation and numerical solution procedure for studying nonlinear and three-dimensional dynamics of Kirchhoff rods. Target applications include the dynamic formation of DNA loops and supercoils as well as loops (hockles) in marine cables. The formulation accommodates non-homogeneous and non-isotropic inextensible rods both with and without coupling of tension and torsion. The utility of this formulation is illustrated by studying the dynamics and quasi-static response of a clamped-clamped rod subject to compression and/or twist. For slow loading rates, the computed quasi-static responses converge to published equilibrium solutions for a benchmark problem. As loading rates increase, new behaviors are observed including hysteresis in the neighborhood of equilibrium bifurcations. The addition of chirality in the form of tension-torsion coupling has a pronounced influence on the computed looped geometries. This finding has implications for DNA loops formed by DNA-protein binding as well as loop formation in helically wound wire and synthetic cables. (c) 2005 Elsevier Inc. All rights reserved. C1 Univ Michigan, GG Brown Labs 2250, Ann Arbor, MI 48109 USA. Lawrence Livermore Natl Lab, New Technol Engn Div, Livermore, CA 94550 USA. RP Perkins, NC (reprint author), Univ Michigan, GG Brown Labs 2250, 2350 Hayward St, Ann Arbor, MI 48109 USA. EM ncp@umich.edu NR 47 TC 95 Z9 97 U1 1 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD OCT 10 PY 2005 VL 209 IS 1 BP 371 EP 389 DI 10.1016/j.jcp.2005.03.027 PG 19 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 938MY UT WOS:000230008700016 ER PT J AU Barone, MF Lele, SK AF Barone, MF Lele, SK TI Receptivity of the compressible mixing layer SO JOURNAL OF FLUID MECHANICS LA English DT Article ID FREE SHEAR LAYERS; INFINITE VORTEX SHEET; INSTABILITY WAVES; TRAILING-EDGE; ACOUSTIC RADIATION; EXCITATION; SOUND; FLOW; STABILITY; STREAM AB Receptivity of compressible mixing layers to general source distributions is examined by a combined theoretical/computational approach. The properties of solutions to the adjoint Navier-Stokes equations are exploited to derive expressions for receptivity in terms of the local value of the adjoint solution. The result is a description of receptivity for arbitrary small-amplitude mass, momentum, and heat sources in the vicinity of a mixing-layer flow, including the edge-scattering effects due to the presence of a splitter plate of finite width. The adjoint solutions are examined in detail for a Mach 1.2 mixing-layer flow. The near field of the adjoint solution reveals regions of relatively high receptivity to direct forcing within the mixing layer, with receptivity to nearby acoustic sources depending on the source type and position. Receptivity 'nodes' are present at certain locations near the splitter plate edge where the flow is not sensitive to forcing. The presence of the nodes is explained by interpretation of the adjoint solution as the superposition of incident and scattered fields. The adjoint solution within the boundary layer upstream of the splitter-plate trailing edge reveals a mechanism for transfer of energy from boundary-layer stability modes to Kelvin-Helmholtz modes. Extension of the adjoint solution to the far field using a Kirchhoff surface gives the receptivity of the mixing layer to incident Sound from distant sources. C1 Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. RP Barone, MF (reprint author), Sandia Natl Labs, POB 5800,MS 0825, Albuquerque, NM 87185 USA. NR 55 TC 19 Z9 20 U1 1 U2 2 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 40 WEST 20TH ST, NEW YORK, NY 10011-4211 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD OCT 10 PY 2005 VL 540 BP 301 EP 335 DI 10.1017/S0022112005005884 PG 35 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 976QA UT WOS:000232747000015 ER PT J AU Henson, BF Voss, LF Wilson, KR Robinson, JM AF Henson, BF Voss, LF Wilson, KR Robinson, JM TI Thermodynamic model of quasiliquid formation on H2O ice: Comparison with experiment SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID X-RAY-SCATTERING; TRANSITION LAYER; SURFACE; WATER; CHEMISTRY; FORCES; FILMS AB We have developed a new thermodynamic theory of the quasiliquid layer, which has been shown to be effective in modeling the phenomenon in a number of molecular systems. Here we extend our analysis to H2O ice, which has obvious implications for environmental and atmospheric chemistry. In the model, the liquid layer exists in contact with an ice defined as a two-dimensional lattice of sites. The system free energy is defined by the bulk free energies of ice I-h and liquid water and is minimized in the grand canonical ensemble. An additional configurational entropy term arises from the occupation of the lattice sites. Furthermore, the theory predicts that the layer thickness as a function of temperature depends only on the liquid activity. Two additional models are derived, where slightly different approximations are used to define the free energy. With these two models, we illustrate the connection between the quasiliquid phenomenon and multilayer adsorption and the possibility of a two-dimensional phase transition connecting a dilute low coverage phase of adsorbed H2O and the quasiliquid phase. The model predictions are in agreement with a subset of the total suite of experimental measurements of the liquid thickness on H2O ice as a function of temperature. The theory indicates that the quasiliquid layer is actually equivalent to normal liquid water, and we discuss the impact of such an identification. In particular, observations of the liquid layer to temperatures as low as 200 K indicate the possibility that the quasiliquid is, in fact, an example of deeply supercooled normal water. Finally, we briefly discuss the obvious extension of the pure liquid theory to a thermodynamic theory of interfacial solutions on ice in the environment. (c) 2005 American Institute of Physics. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Henson, BF (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM henson@lanl.gov NR 39 TC 13 Z9 13 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 8 PY 2005 VL 123 IS 14 AR 144707 DI 10.1063/1.2056541 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 973OH UT WOS:000232532000052 PM 16238416 ER PT J AU Roszak, S Gee, RH Balasubramanian, K Fried, LE AF Roszak, S Gee, RH Balasubramanian, K Fried, LE TI New theoretical insight into the interactions and properties of formic acid: Development of a quantum-based pair potential for formic acid SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID CORRELATED MOLECULAR CALCULATIONS; AB-INITIO CALCULATIONS; GAUSSIAN-BASIS SETS; INTERMOLECULAR INTERACTIONS; DYNAMICS SIMULATIONS; NEUTRON-SCATTERING; INTERACTION ENERGY; CARBOXYLIC ACIDS; HYDROGEN-BONDS; MONTE-CARLO AB We performed ab initio quantum-chemical studies for the development of intra- and intermolecular interaction potentials for formic acid for use in molecular-dynamics simulations of formic acid molecular crystal. The formic acid structures considered in the ab initio studies include both the cis and trans monomers which are the conformers that have been postulated as part of chains constituting liquid and crystal phases under extreme conditions. Although the cis to trans transformation is not energetically favored, the trans isomer was found as a component of stable gas-phase species. Our decomposition scheme for the interaction energy indicates that the hydrogen-bonded complexes are dominated by the Hartree-Fock forces while parallel clusters are stabilized by the electron correlation energy. The calculated three-body and higher interactions are found to be negligible, thus rationalizing the development of an atom-atom pair potential for formic acid based on high-level ab initio calculations of small formic acid clusters. Here we present an atom-atom pair potential that includes both intra- and inter molecular degrees of freedom for formic acid. The newly developed pair potential is used to examine formic acid in the condensed phase via molecular-dynamics simulations. The isothermal compression under hydrostatic pressure obtained from molecular-dynamics simulations is in good agreement with experiment. Further, the calculated equilibrium melting temperature is found to be in good agreement with experiment. (c) 2005 American Institute of Physics. C1 Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. Wroclaw Univ Technol, Inst Phys & Theoret Chem, PL-50370 Wroclaw, Poland. Univ Calif Davis, Ctr Image Proc & Integrated Computing, Livermore, CA 94550 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Glenn T Seaborg Ctr, Berkeley, CA 94720 USA. RP Gee, RH (reprint author), Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. EM gee10@llnl.gov RI Fried, Laurence/L-8714-2014 OI Fried, Laurence/0000-0002-9437-7700 NR 59 TC 19 Z9 19 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 8 PY 2005 VL 123 IS 14 AR 144702 DI 10.1063/1.2052707 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 973OH UT WOS:000232532000047 PM 16238411 ER PT J AU Prasad, TG McClean, JL Hunke, EC Semtner, AJ Ivanova, D AF Prasad, TG McClean, JL Hunke, EC Semtner, AJ Ivanova, D TI A numerical study of the western Cosmonaut polynya in a coupled ocean-sea ice model SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID DYNAMICS; THICKNESS AB [1] Employing results from a 0.4 degrees, 40-level fully global, coupled ocean - sea ice model, we investigated the role of physical processes emanating from atmosphere, ocean, and ice in the initiation, maintenance, and termination of a sensible heat polynya with a focus on the western Cosmonaut polynya that occurred during May - July 1999. The Cosmonaut polynya first appeared in early May 1999 in the form of an ice-free embayment, transformed into an enclosed polynya on 5 - 9 July, and disappeared by late July, when the ice from the surrounding regions began to encircle the embayment. Except for the differences in ice concentrations, the time of appearance, size, and shape of the Cosmonaut polynya simulated by the model are in approximate agreement with the Special Sensor Microwave/ Imager (SSM/I) observations. Between May and July 1999 the Cosmonaut Sea experienced two synoptic storms, both lasting similar to 5 days. Followed by the passage of the first storm on 12 - 19 June, there was a remarkable growth in the size of the embayment by 21 x 10(3) km(2). Associated with this, the sea surface temperature (SST) rose by 0.15 degrees C, the upward heat flux jumped from 5 to 94 W m(-2), and a net freshwater flux into the ocean increased by 2 cm d(-1). By running the model simulation with a 20% wind speed increase, it is demonstrated that the twofold increase in SST and upward heat flux increased the embayment area by 15 x 10(3) km(2) and decreased the ice concentration by approximately 10% from the control run. A similar, but somewhat weaker wind event that took place on 30 June to 10 July had less influence on the embayment area although the upward heat flux ( 65 W m(-2)) was comparable to the first event. By examining the vertical displacement of the - 1.6 degrees C isotherm depth prior to, during, and after these two storms, we demonstrate that the impetus provided by these storms was able to raise the - 1.6 degrees C isotherm depth by 30 m through wind-driven mixing, making sufficient oceanic heat input from beneath the mixed layer available to prevent freezing and/or delay ice formation while ice in the adjacent regions continued to grow. A sudden shift in the ice drift direction from southwest to northeast ( 3 July) followed by the second storm, accompanied by large air-sea temperature differences, caused the enclosure of the embayment, subsequent formation of the polynya, and its termination. C1 USN, Dept Oceanog, Postgrad Sch, Monterey, CA 93943 USA. Los Alamos Natl Lab, Div Theoret, Climate Ocean & Sea Ice Modeling Project, Los Alamos, NM 87545 USA. RP Prasad, TG (reprint author), Univ So Mississippi, Dept Marine Sci, Stennis Space Ctr, MS 39529 USA. EM thoppil@nrlssc.navy.mil; eclare@lanl.gov; sbert@nps.edu; dpivanov@nps.edu NR 33 TC 8 Z9 8 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD OCT 8 PY 2005 VL 110 IS C10 AR C10008 DI 10.1029/2004JC002858 PG 21 WC Oceanography SC Oceanography GA 973WY UT WOS:000232554500003 ER PT J AU Bourne, NK Gray, GT AF Bourne, NK Gray, GT TI Computational design of recovery experiments for ductile metals SO PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE recovery; shock wave; hydrocode; defects; modelling ID SHOCK; ALUMINUM; COPPER; STEEL AB Previous work on the shock loading of metals, has shown that one-dimensional strain histories may be only be approximated in a loaded sample if it is to be recovered at late times to examine microstructure. This proceeds through the use of a system of partial momentum traps and soft, shock-recovery techniques. However, limitations in the degree of uniaxial loading, and on the trapping of tensile pulses, have led to redesign of the target. In the current paper the technique is first assessed, and then modifications are explored to further refine it. Additionally it is illustrated how it may be applied to successfully recover targets of lower innate fracture toughness than has been previously documented. In the first part of the paper, the authors review work undergone to shock recover metals, and highlight associated constraints. In the latter part of the paper, a series of hydrocode simulations is presented to illustrate the design of an improved shock recovery technique that has now been adopted. C1 Univ Manchester, Manchester M60 1QD, Lancs, England. Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Univ Manchester, POB 88,Sackville St, Manchester M60 1QD, Lancs, England. EM neil.bourne@manchester.ac.uk RI Bourne, Neil/A-7544-2008 NR 31 TC 19 Z9 19 U1 1 U2 7 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-5021 EI 1471-2946 J9 P ROY SOC A-MATH PHY JI Proc. R. Soc. A-Math. Phys. Eng. Sci. PD OCT 8 PY 2005 VL 461 IS 2062 BP 3297 EP 3312 DI 10.1098/rspa.2005.1501 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 969YY UT WOS:000232273400016 ER PT J AU Wei, YN Fu, D AF Wei, YN Fu, D TI Selective metal binding to a membrane-embedded aspartate in the Escherichia coli metal transporter YiiP (FieF) SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID ZINC TRANSPORTER; ALCALIGENES-EUTROPHUS; METALLIDURANS CH34; PROTEINS; RESISTANCE; FAMILY; MECHANISM; SYSTEM; MODEL; UHPT AB The cation diffusion facilitators (CDF) are a ubiquitous family of metal transporters that play important roles in homeostasis of a wide range of divalent metal cations. Molecular identities of substrate-binding sites and their metal selectivity in the CDF family are thus far unknown. By using isothermal titration calorimetry and stopped-flow spectrofluorometry, we directly examined metal binding to a highly conserved aspartate in the Escherichia coli CDF transporter YiiP (FieF). A D157A mutation abolished a Cd2+-binding site and impaired the corresponding Cd2+ transport. In contrast, substitution of Asp-157 with a cysteinyl coordination residue resulted in intact Cd2+ binding as well as full transport activity. A similar correlation was found for Zn2+ binding and transport, suggesting that Asp-157 is a metal coordination residue required for binding and transport of Cd2+ and Zn2+. The location of Asp-157 was mapped topologically to the hydrophobic core of transmembrane segment 5 (TM-5) where D157C was found partially accessible to thiol-specific labeling of maleimide polyethylene-oxide biotin. Binding of Zn2+ and Cd2+, but not Fe2+, Hg2+, Co2+, Ni2+, Mn2+, Ca2+, and Mg2+, protected D157C from maleimide polyethyleneoxide biotin labeling in a concentration-dependent manner. Furthermore, isothermal titration calorimetry analysis of YiiP(D157A) showed no detectable change in Fe2+ and Hg2+ calorimetric titrations, indicating that Asp-157 is not a coordination residue for Fe2+ and Hg2+ binding. Our results provided direct evidence for selective binding of Zn2+ and Cd2+ to the highly conserved Asp-157 and defined its functional role in metal transport. C1 Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Wei, YN (reprint author), Brookhaven Natl Lab, Dept Biol, Bldg 463, Upton, NY 11973 USA. EM dax@bnl.gov FU NIGMS NIH HHS [R01 GM65137] NR 27 TC 50 Z9 51 U1 2 U2 12 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD OCT 7 PY 2005 VL 280 IS 40 BP 33716 EP 33724 DI 10.1074/jbc.M506107200 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 969JF UT WOS:000232229700006 PM 16049012 ER PT J AU Martin, M Guiochon, G AF Martin, M Guiochon, G TI Effects of high pressure in liquid chromatography SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE pressure ID SELF-DIFFUSION COEFFICIENT; SYRINGE-TYPE PUMPS; SOLUTE RETENTION; PLATE HEIGHT; COLUMNS; DEPENDENCE; TEMPERATURE; EQUATION; PERFORMANCE; SEPARATION AB All the experimental parameters that the chromatographers are used to consider as constant (the column length and its diameter, the particle size, the column porosities, the phase ratio, the column hold-up volume, the pressure gradient along the column, the mobile phase density and its viscosity, the diffusion coefficients, the equilibrium constants, the retention factors, the efficiency parameters) depend on pressure to some extent. While this dependence is negligible as long as experiments, measurements, and separations are carried out under conventional pressures not exceeding a few tens of megapascal, it is no longer so when the inlet pressure becomes much larger and exceeds 100 MPa. Equations are developed to determine the extent of the influence of pressure on all these parameters and to account for it. The results obtained are illustrated with graphics. The essential results are that (1) many parameters depend on the inlet pressure, hence on the flow rate; (2) the apparent reproducibility of parameters as simple as the retention factor will be poor if measurements are carried out at different flow rates, unless due corrections are applied to the results; (3) the influence of the temperature on the equilibrium constants should be studied under constant inlet pressure rather than at a constant flow rate, to minimize the coupling effect of pressure and temperature through the temperature dependence of the viscosity; and (4) while reproducibility of results obtained at constant pressure and flow rate will not be affected, method development becomes far more complex because of the pressure dependence of everything. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Ecole Super Phys & Chim Ind Ville Paris, Phys & Mecan Milieux Heterogenes Lab, F-75231 Paris, France. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Guiochon, G (reprint author), Univ Tennessee, Dept Chem, 552 Buehler Hall, Knoxville, TN 37996 USA. EM guiochon@utk.edu NR 51 TC 125 Z9 126 U1 0 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD OCT 7 PY 2005 VL 1090 IS 1-2 BP 16 EP 38 DI 10.1016/j.chroma.2005.06.005 PG 23 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 963CQ UT WOS:000231781100003 PM 16196131 ER PT J AU Gritti, F Guiochon, G AF Gritti, F Guiochon, G TI Separation mechanism of nortriptyline and amytriptyline in RPLC SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE adsorption equilibrium; single and competitive adsorption isotherms; frontal analysis; column heterogeneity; affinity energy distribution; retention mechanism; preparative chromatography; silica; discovery-C-18; nortriptyline; amytriptyline; acetonitrile ID PHASE LIQUID-CHROMATOGRAPHY; OVERLOADED BAND PROFILES; IONIC-STRENGTH; ADSORPTION MECHANISM; IONIZABLE COMPOUNDS; ISOTHERM PARAMETERS; BASIC COMPOUNDS; LEAST-SQUARES; BONDED SILICA; MOBILE-PHASE AB The single and the competitive equilibrium isotherms of nortriptyline and amytriptyline were acquired by frontal analysis (FA) on the C-18-bonded discovery column, using a 28/72 (v/v) mixture of acetonitrile and water buffered with phosphate (20 mM, pH 2.70). The adsorption energy distributions (AED) of each compound were calculated from the raw adsorption data. Both the fitting of the adsorption data using multi-linear regression analysis and the AEDs are consistent with a trimodal isotherm model. The single-component isotherm data fit well to the tri-Langmuir isotherm model. The extension to a competitive two-component tri-Langmuir isotherm model based on the best parameters of the single-component isotherms does not account well for the breakthrough curves nor for the overloaded band profiles measured for mixtures of nortriptyline and amytriptyline. However, it was possible to derive adjusted parameters of a competitive tri-Langmuir model based on the fitting of the adsorption data obtained for these mixtures. A very good agreement was then found between the calculated and the experimental overloaded band profiles of all the mixtures injected. (c) 2005 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Guiochon, G (reprint author), Oak Ridge Natl Lab, Div Chem Sci, POB 2008, Oak Ridge, TN 37831 USA. EM guiochon@utk.edu NR 31 TC 13 Z9 13 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD OCT 7 PY 2005 VL 1090 IS 1-2 BP 39 EP 57 DI 10.1016/j.chroma.2005.06.079 PG 19 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 963CQ UT WOS:000231781100004 PM 16196132 ER PT J AU Yu, GX Park, BH Chandramohan, P Munavalli, R Geist, A Samatova, NF AF Yu, GX Park, BH Chandramohan, P Munavalli, R Geist, A Samatova, NF TI In silico discovery of enzyme-substrate specificity-determining residue clusters SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE surface patch ranking; enzyme-substrate specificity-determining residues; sequence conservation; correlated mutations; mutagenesis ID CYTOPLASMIC MALATE-DEHYDROGENASE; PROTEIN-PROTEIN INTERACTIONS; MAMMALIAN ADENYLYL-CYCLASE; CRYSTAL-STRUCTURE; CORRELATED MUTATIONS; 3-DIMENSIONAL STRUCTURE; MOLECULAR RECOGNITION; SEQUENCE ALIGNMENTS; SIGNAL-TRANSDUCTION; SECONDARY STRUCTURE AB The binding between an enzyme and its substrate is highly specific, despite the fact that many different enzymes show significant sequence and structure similarity. There must be, then, substrate specificity-determining residues that enable different enzymes to recognize their unique substrates. We reason that a coordinated, not independent, action of both conserved and non-conserved residues determine enzymatic activity and specificity. Here, we present a surface patch ranking (SPR) method for in silico discovery of substrate specificity-determining residue clusters by exploring both sequence conservation and correlated mutations. As case studies we apply SPR to several highly homologous enzymatic protein pairs, such as guanylyl versus adenylyl cyclases, lactate versus malate dehydrogenases, and trypsin versus chymotrypsin. Without using experimental data, we predict several single and multiresidue clusters that are consistent with previous mutagenesis experimental results. Most single-residue clusters are directly involved in enzyme-substrate interactions, whereas multi-residue clusters are vital for domain-domain and regulator-enzyme interactions, indicating their complementary role in specificity determination. These results demonstrate that SPR may help the selection of target residues for mutagenesis experiments and, thus, focus rational drug design, protein engineering, and functional annotation to the relevant regions of a protein. Published by Elsevier Ltd. C1 Oak Ridge Natl Lab, Computat Biol Inst, Oak Ridge, TN 37831 USA. RP Samatova, NF (reprint author), Oak Ridge Natl Lab, Computat Biol Inst, POB 2008, Oak Ridge, TN 37831 USA. EM samatovan@ornl.gov NR 78 TC 18 Z9 20 U1 0 U2 3 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD OCT 7 PY 2005 VL 352 IS 5 BP 1105 EP 1117 DI 10.1016/j.jmb.2005.08.008 PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 968UD UT WOS:000232187100009 PM 16140329 ER PT J AU Bourne, NK Gray, GT AF Bourne, NK Gray, GT TI Soft-recovery of shocked polymers and composites SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article AB It is a pressing present objective to understand the mechanical behaviour of polymeric materials, in particular composite systems where plastics are used as the binder phase (such as plastic bonded explosives). A recovery experiment is then required to determine operating mechanisms during shock wave interactions under a global one-dimensional strain state. Previous work in metals has shown that one-dimensional load-unload histories may be approximated under shock conditions to isolate operating mechanisms. This proceeds by using a system of partial momentum traps. This technique is further developed, and it is illustrated how it may be applied to successfully recover polymer targets. A series of experiments and design hydrocode simulations are presented to illustrate the formulation of the technique. C1 Univ Manchester, Manchester M60 1QD, Lancs, England. Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Bourne, NK (reprint author), Univ Manchester, POB 88,Sackville St, Manchester M60 1QD, Lancs, England. EM Neil.Bourne@manchester.ac.uk RI Bourne, Neil/A-7544-2008 NR 9 TC 13 Z9 14 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD OCT 7 PY 2005 VL 38 IS 19 BP 3690 EP 3694 DI 10.1088/0022-3727/38/19/018 PG 5 WC Physics, Applied SC Physics GA 980OC UT WOS:000233026800019 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Arnoud, Y Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Badaud, F Baden, A Baldin, B Balm, PW Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Beauceron, S Begel, M Bellavance, A Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borcherding, F Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burnett, TH Busato, E Buszello, CP Butler, JM Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Cho, DK Choi, S Choudhary, B Christiansen, T Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cothenet, A Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D da Motta, H Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E Martins, CD Dean, S Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dong, H Doulas, S Dudko, LV Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Eroshin, OV Estrada, J Evans, H Evdokimov, A Evdokimov, VN Fast, J Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, P Gele, D Gelhaus, R Genser, K Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golling, T Gollub, N Gomez, B Gounder, K Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Gris, P Grivaz, JF Groer, L Grunendahl, S Grunewald, MW Gurzhiev, SN Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Hagopian, S Hall, I Hall, RE Han, C Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Huang, J Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jain, V Jakobs, K Jenkins, A Jesik, R Johns, K Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, J Karmanov, D Kasper, J Kau, D Kaur, R Kehoe, R Kermiche, S Kesisoglou, S Khanov, A Kharchilava, A Kharzheev, YM Kim, H Kim, TJ Klima, B Kohli, JM Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Kryemadhi, A Krzywdzinski, S Kulik, Y Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lager, S Lahrichi, N Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Leonidopoulos, C Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linn, SL Linnemann, J Lipaev, VV Lipton, R Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lueking, L Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK Mayorov, AA McCarthy, R McCroskey, R Meder, D Melnitchouk, A Mendes, A Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Mitrevski, J Molina, J Mondal, NK Moore, RW Muanza, GS Mulders, M Mutaf, YD Nagy, E Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T Nurse, E O'Dell, V O'Neil, DC Oguri, V Oliveira, N Oshima, N Garzon, GJOY Padley, P Parashar, N Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Petroff, P Petteni, M Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pompos, A Pope, BG da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rani, KJ Ranjan, K Rapidis, PA Ratoff, PN Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Smolek, K Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stanton, NR Stark, J Steele, J Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tomoto, M Toole, T Torborg, J Towers, S Trefzger, T Trincaz-Duvoid, S Tuchming, B Tully, C Turcot, AS Tuts, PM Uvarov, L Uvarov, S Uzunyan, S Vachon, B Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vlimant, JR Von Toerne, E Vreeswijk, M Anh, TV Wahl, HD Wang, L Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wegner, M Wermes, N White, A White, V Wicke, D Wijngaarden, DA Wilson, GW Wimpenny, SJ Wittlin, J Wobisch, M Womersley, J Wood, DR Wyatt, TR Xu, Q Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yen, Y Yip, K Yoo, HD Youn, SW Yu, J Yurkewicz, A Zabi, A Zatserklyaniy, A Zdrazil, M Zeitnitz, C Zhang, D Zhang, X Zhao, T Zhao, Z Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zitoun, R Zutshi, V Zverev, EG AF Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Arnoud, Y Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Badaud, F Baden, A Baldin, B Balm, PW Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Beauceron, S Begel, M Bellavance, A Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borcherding, F Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burnett, TH Busato, E Buszello, CP Butler, JM Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Cho, DK Choi, S Choudhary, B Christiansen, T Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cothenet, A Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D da Motta, H Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E Martins, CD Dean, S Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dong, H Doulas, S Dudko, LV Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Eroshin, OV Estrada, J Evans, H Evdokimov, A Evdokimov, VN Fast, J Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, P Gele, D Gelhaus, R Genser, K Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golling, T Gollub, N Gomez, B Gounder, K Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Gris, P Grivaz, JF Groer, L Grunendahl, S Grunewald, MW Gurzhiev, SN Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Hagopian, S Hall, I Hall, RE Han, C Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Huang, J Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jain, V Jakobs, K Jenkins, A Jesik, R Johns, K Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, J Karmanov, D Kasper, J Kau, D Kaur, R Kehoe, R Kermiche, S Kesisoglou, S Khanov, A Kharchilava, A Kharzheev, YM Kim, H Kim, TJ Klima, B Kohli, JM Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Kryemadhi, A Krzywdzinski, S Kulik, Y Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lager, S Lahrichi, N Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Leonidopoulos, C Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linn, SL Linnemann, J Lipaev, VV Lipton, R Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lueking, L Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK Mayorov, AA McCarthy, R McCroskey, R Meder, D Melnitchouk, A Mendes, A Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Mitrevski, J Molina, J Mondal, NK Moore, RW Muanza, GS Mulders, M Mutaf, YD Nagy, E Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T Nurse, E O'Dell, V O'Neil, DC Oguri, V Oliveira, N Oshima, N Garzon, GJOY Padley, P Parashar, N Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Petroff, P Petteni, M Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pompos, A Pope, BG da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rani, KJ Ranjan, K Rapidis, PA Ratoff, PN Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Smolek, K Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stanton, NR Stark, J Steele, J Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tomoto, M Toole, T Torborg, J Towers, S Trefzger, T Trincaz-Duvoid, S Tuchming, B Tully, C Turcot, AS Tuts, PM Uvarov, L Uvarov, S Uzunyan, S Vachon, B Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vlimant, JR Von Toerne, E Vreeswijk, M Anh, TV Wahl, HD Wang, L Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wegner, M Wermes, N White, A White, V Wicke, D Wijngaarden, DA Wilson, GW Wimpenny, SJ Wittlin, J Wobisch, M Womersley, J Wood, DR Wyatt, TR Xu, Q Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yen, Y Yip, K Yoo, HD Youn, SW Yu, J Yurkewicz, A Zabi, A Zatserklyaniy, A Zdrazil, M Zeitnitz, C Zhang, D Zhang, X Zhao, T Zhao, Z Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zitoun, R Zutshi, V Zverev, EG CA D0 Collaboration TI Search for supersymmetry via associated production of charginos and neutralinos in final states with three leptons SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHYSICS AB A search for associated production of charginos and neutralinos is performed using data recorded with the D0 detector at a p (p) over bar center-of-mass energy of 1.96 TeV at the Fermilab Tevatron Collider. This analysis considers final states with missing transverse energy and three charged leptons, of which at least two are electrons or muons. No evidence for supersymmetry is found in a data set corresponding to an integrated luminosity of 320 pb(-1). Limits on the product of the production cross section and leptonic branching fraction are set. For the minimal supergravity model, a chargino lower mass limit of 117 GeV at the 95% C.L. is derived in regions of parameter space with enhanced leptonic branching fractions. C1 Dubna Joint Nucl Res Inst, Dubna 141980, Russia. Univ Buenos Aires, Buenos Aires, DF, Argentina. Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. Univ Estado Rio De Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Univ Alberta, Edmonton, AB, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. York Univ, Toronto, ON M3J 2R7, Canada. McGill Univ, Montreal, PQ, Canada. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republ, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. Univ Clermont Ferrand, Phys Corpusculaire Lab, IN2P3, CNRS, Clermont Ferrand, France. Univ Grenoble 1, CNRS, Lab Phys Subatom & Cosmol, IN2P3, Grenoble, France. Univ Mediterranee, CPPM, IN2P3, CNRS, Marseille, France. CNRS, Lab Accelerateur Lineaire, IN2P3, F-91405 Orsay, France. Univ Paris 06, LPNHE, IN2P3, CNRS, Paris, France. Univ Paris 07, LPNHE, IN2P3, CNRS, Paris, France. CEA Saclay, DAPNIA, Serv Phys Particules, Gif Sur Yvette, France. Univ Strasbourg 1, CNRS, IReS, IN2P3, Strasbourg, France. Univ Haute Alsace, Mulhouse, France. Univ Lyon 1, CNRS, Inst Phys Nucl, IN2P3, F-69622 Villeurbanne, France. Rhein Westfal TH Aachen, Phys Inst A 3, D-5100 Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Univ Gesamthsch Wuppertal, Fachbereich Phys, D-5600 Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. NIKHEF H, FOM Inst, NL-1009 DB Amsterdam, Netherlands. Univ Amsterdam, NIKHEF H, Amsterdam, Netherlands. Radboud Univ Nijmegen, NIKHEF H, Nijmegen, Netherlands. Moscow Theoret & Expt Phys Inst, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Protvino High Energy Phys Inst, Protvino 142284, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Lund Univ, Lund, Sweden. Royal Inst Technol, Stockholm, Sweden. Stockholm Univ, S-10691 Stockholm, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Lancaster, Lancaster, England. Univ London Imperial Coll Sci Technol & Med, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Iowa State Univ Sci & Technol, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Dubna Joint Nucl Res Inst, Dubna 141980, Russia. RI Telford, Paul/B-6253-2011; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Nomerotski, Andrei/A-5169-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Oguri, Vitor/B-5403-2013; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; KIM, Tae Jeong/P-7848-2015; Sznajder, Andre/L-1621-2016; OI Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Naumann, Axel/0000-0002-4725-0766; Fatakia, Sarosh/0000-0003-0430-3191; Bertram, Iain/0000-0003-4073-4941; Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Sznajder, Andre/0000-0001-6998-1108; Weber, Michele/0000-0002-2770-9031; Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Filthaut, Frank/0000-0003-3338-2247 NR 12 TC 19 Z9 19 U1 0 U2 3 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 7 PY 2005 VL 95 IS 15 AR 151805 DI 10.1103/PhysRevLett.95.151805 PG 7 WC Physics, Multidisciplinary SC Physics GA 972GX UT WOS:000232443400019 PM 16241718 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Arnoud, Y Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Badaud, F Baden, A Baldin, B Balm, PW Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Beauceron, S Begel, M Bellavance, A Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borcherding, F Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burnett, TH Busato, E Buszello, CP Butler, JM Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Cho, DK Choi, S Choudhary, B Christiansen, T Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cothenet, A Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D da Motta, H Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E Martins, CD Dean, S Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dong, H Doulas, S Dudko, LV Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Eroshin, OV Estrada, J Evans, H Evdokimov, A Evdokimov, VN Fast, J Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, P Gele, D Gelhaus, R Genser, K Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golling, T Gollub, N Gomez, B Gounder, K Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Gris, P Grivaz, JF Groer, L Grunendahl, S Grunewald, MW Gurzhiev, SN Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Hagopian, S Hall, I Hall, RE Han, C Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Huang, J Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jain, V Jakobs, K Jenkins, A Jesik, R Johns, K Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, J Karmanov, D Kasper, J Kau, D Kaur, R Kehoe, R Kermiche, S Kesisoglou, S Khanov, A Kharchilava, A Kharzheev, YM Kim, H Kim, TJ Klima, B Kohli, JM Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Kryemadhi, A Krzywdzinski, S Kulik, Y Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lager, S Lahrichi, N Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Leonidopoulos, C Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linn, SL Linnemann, J Lipaev, VV Lipton, R Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lueking, L Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK Mayorov, AA McCarthy, R McCroskey, R Meder, D Melnitchouk, A Mendes, A Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Mitrevski, J Molina, J Mondal, NK Moore, RW Muanza, GS Mulders, M Mutaf, YD Nagy, E Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T Nurse, E O'Dell, V O'Neil, DC Oguri, V Oliveira, N Oshima, N Garzon, GJOY Padley, P Parashar, N Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Petroff, P Petteni, M Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pompos, A Pope, BG da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rani, KJ Ranjan, K Rapidis, PA Ratoff, PN Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Smolek, K Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stanton, NR Stark, J Steele, J Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tomoto, M Toole, T Torborg, J Towers, S Trefzger, T Trincaz-Duvoid, S Tuchming, B Tully, C Turcot, AS Tuts, PM Uvarov, L Uvarov, S Uzunyan, S Vachon, B Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vlimant, JR Von Toerne, E Vreeswijk, M Vu Anh, T Wahl, HD Wang, L Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wegner, M Wermes, N White, A White, V Wicke, D Wijngaarden, DA Wilson, GW Wimpenny, SJ Wittlin, J Wobisch, M Womersley, J Wood, DR Wyatt, TR Xu, Q Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yen, Y Yip, K Yoo, HD Youn, SW Yu, J Yurkewicz, A Zabi, A Zatserklyaniy, A Zdrazil, M Zeitnitz, C Zhang, D Zhang, X Zhao, T Zhao, Z Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zitoun, R Zutshi, V Zverev, EG AF Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Agelou, M Agram, JL Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Andeen, T Anderson, S Andrieu, B Arnoud, Y Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Badaud, F Baden, A Baldin, B Balm, PW Banerjee, S Barberis, E Bargassa, P Baringer, P Barnes, C Barreto, J Bartlett, JF Bassler, U Bauer, D Bean, A Beauceron, S Begel, M Bellavance, A Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Binder, M Biscarat, C Black, KM Blackler, I Blazey, G Blekman, F Blessing, S Bloch, D Blumenschein, U Boehnlein, A Boeriu, O Bolton, TA Borcherding, F Borissov, G Bos, K Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Buchanan, NJ Buchholz, D Buehler, M Buescher, V Burdin, S Burnett, TH Busato, E Buszello, CP Butler, JM Cammin, J Caron, S Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chapin, D Charles, F Cheu, E Cho, DK Choi, S Choudhary, B Christiansen, T Christofek, L Claes, D Clement, B Clement, C Coadou, Y Cooke, M Cooper, WE Coppage, D Corcoran, M Cothenet, A Cousinou, MC Cox, B Crepe-Renaudin, S Cutts, D da Motta, H Davies, B Davies, G Davis, GA De, K de Jong, P de Jong, SJ De La Cruz-Burelo, E Martins, CD Dean, S Degenhardt, JD Deliot, F Demarteau, M Demina, R Demine, P Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Doidge, M Dong, H Doulas, S Dudko, LV Duflot, L Dugad, SR Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Edwards, T Ellison, J Elmsheuser, J Elvira, VD Eno, S Ermolov, P Eroshin, OV Estrada, J Evans, H Evdokimov, A Evdokimov, VN Fast, J Fatakia, SN Feligioni, L Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fleck, I Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gardner, J Gavrilov, V Gay, P Gele, D Gelhaus, R Genser, K Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golling, T Gollub, N Gomez, B Gounder, K Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Gris, P Grivaz, JF Groer, L Grunendahl, S Grunewald, MW Gurzhiev, SN Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Hagopian, S Hall, I Hall, RE Han, C Han, L Hanagaki, K Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Heinmiller, JM Heinson, AP Heintz, U Hensel, C Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hong, SJ Hooper, R Houben, P Hu, Y Huang, J Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jain, V Jakobs, K Jenkins, A Jesik, R Johns, K Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kahn, S Kajfasz, E Kalinin, AM Kalk, J Karmanov, D Kasper, J Kau, D Kaur, R Kehoe, R Kermiche, S Kesisoglou, S Khanov, A Kharchilava, A Kharzheev, YM Kim, H Kim, TJ Klima, B Kohli, JM Kopal, M Korablev, VM Kotcher, J Kothari, B Koubarovsky, A Kozelov, AV Kozminski, J Kryemadhi, A Krzywdzinski, S Kulik, Y Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lager, S Lahrichi, N Landsberg, G Lazoflores, J Le Bihan, AC Lebrun, P Lee, WM Leflat, A Lehner, F Leonidopoulos, C Leveque, J Lewis, P Li, J Li, QZ Lima, JGR Lincoln, D Linn, SL Linnemann, J Lipaev, VV Lipton, R Lobo, L Lobodenko, A Lokajicek, M Lounis, A Love, P Lubatti, HJ Lueking, L Lynker, M Lyon, AL Maciel, AKA Madaras, RJ Mattig, P Magass, C Magerkurth, A Magnan, AM Makovec, N Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martens, M Mattingly, SEK Mayorov, AA McCarthy, R McCroskey, R Meder, D Melnitchouk, A Mendes, A Merkin, M Merritt, KW Meyer, A Meyer, J Michaut, M Miettinen, H Mitrevski, J Molina, J Mondal, NK Moore, RW Muanza, GS Mulders, M Mutaf, YD Nagy, E Narain, M Naumann, NA Neal, HA Negret, JP Nelson, S Neustroev, P Noeding, C Nomerotski, A Novaes, SF Nunnemann, T Nurse, E O'Dell, V O'Neil, DC Oguri, V Oliveira, N Oshima, N Garzon, GJOY Padley, P Parashar, N Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Perea, PM Perez, E Petroff, P Petteni, M Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pompos, A Pope, BG da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rani, KJ Ranjan, K Rapidis, PA Ratoff, PN Reucroft, S Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Royon, C Rubinov, P Ruchti, R Rud, VI Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Schellman, H Schieferdecker, P Schmitt, C Schwanenberger, C Schwartzman, A Schwienhorst, R Sengupta, S Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shephard, WD Shivpuri, RK Shpakov, D Sidwell, RA Simak, V Sirotenko, V Skubic, P Slattery, P Smith, RP Smolek, K Snow, GR Snow, J Snyder, S Soldner-Rembold, S Song, X Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stanton, NR Stark, J Steele, J Stevenson, K Stolin, V Stone, A Stoyanova, DA Strandberg, J Strang, MA Strauss, M Strohmer, R Strom, D Strovink, M Stutte, L Sumowidagdo, S Sznajder, A Talby, M Tamburello, P Taylor, W Telford, P Temple, J Tomoto, M Toole, T Torborg, J Towers, S Trefzger, T Trincaz-Duvoid, S Tuchming, B Tully, C Turcot, AS Tuts, PM Uvarov, L Uvarov, S Uzunyan, S Vachon, B Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vartapetian, A Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vlimant, JR Von Toerne, E Vreeswijk, M Vu Anh, T Wahl, HD Wang, L Warchol, J Watts, G Wayne, M Weber, M Weerts, H Wegner, M Wermes, N White, A White, V Wicke, D Wijngaarden, DA Wilson, GW Wimpenny, SJ Wittlin, J Wobisch, M Womersley, J Wood, DR Wyatt, TR Xu, Q Xuan, N Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yen, Y Yip, K Yoo, HD Youn, SW Yu, J Yurkewicz, A Zabi, A Zatserklyaniy, A Zdrazil, M Zeitnitz, C Zhang, D Zhang, X Zhao, T Zhao, Z Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zitoun, R Zutshi, V Zverev, EG CA D0 Collaboration TI Search for neutral supersymmetric Higgs bosons in multijet events at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID STANDARD MODEL; PHYSICS; PHENOMENOLOGY AB We have performed a search for neutral Higgs bosons produced in association with bottom quarks in p (p) over bar collisions, using 260 pb(-1) of data collected with the D0 detector in Run II of the Fermilab Tevatron Collider. The cross sections for these processes are enhanced in many extensions of the standard model (SM), such as in its minimal supersymmetric extension at large tan beta. The results of our analysis agree with expectations from the SM, and we use our measurements to set upper limits on the production of neutral Higgs bosons in the mass range of 90 to 150 GeV. C1 Dubna Joint Nucl Res Inst, Dubna 141980, Russia. Univ Buenos Aires, Buenos Aires, DF, Argentina. Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. Univ Estado Rio De Janeiro, Rio De Janeiro, Brazil. Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. Univ Alberta, Edmonton, AB, Canada. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. York Univ, Toronto, ON M3J 2R7, Canada. McGill Univ, Montreal, PQ, Canada. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Sci & Technol China, Hefei 230026, Peoples R China. Univ Los Andes, Bogota, Colombia. Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. Czech Tech Univ, CR-16635 Prague, Czech Republic. Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. Univ Clermont Ferrand, Phys Corpusculaire Lab, IN2P3, CNRS, Clermont Ferrand, France. Univ Grenoble 1, CNRS, Lab Phys Subatom & Cosmol, IN2P3, Grenoble, France. Univ Aix Marseille 2, CPPM, IN2P3, CNRS, Marseille, France. CNRS, Lab Accelerateur Lineaire, IN2P3, F-91405 Orsay, France. Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. Univ Paris 07, CNRS, LPNHE, IN2P3, Paris, France. CEA Saclay, DAPNIA, Serv Phys Particules, Saclay, France. Univ Strasbourg, CNRS, IReS, IN2P3, Strasbourg, France. Univ Haute Alsace, Mulhouse, France. Univ Lyon 1, CNRS, Inst Phys Nucl, IN2P3, F-69622 Villeurbanne, France. Rhein Westfal TH Aachen, Phys Inst 3 A, D-5100 Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. Univ Freiburg, Inst Phys, Freiburg, Germany. Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. Univ Munich, Munich, Germany. Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. Panjab Univ, Chandigarh 160014, India. Univ Delhi, Delhi 110007, India. Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. Univ Coll Dublin, Dublin 2, Ireland. Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. CINVESTAV, Mexico City 14000, DF, Mexico. NIKHEF H, FOM Inst, NL-1009 DB Amsterdam, Netherlands. Univ Amsterdam, NIKHEF H, Amsterdam, Netherlands. Radboud Univ Nijmegen, NIKHEF H, Nijmegen, Netherlands. Moscow Theoret & Expt Phys Inst, Moscow 117259, Russia. Moscow MV Lomonosov State Univ, Moscow, Russia. Protvino High Energy Phys Inst, Protvino 142284, Russia. Petersburg Nucl Phys Inst, St Petersburg, Russia. Lund Univ, Lund, Sweden. Royal Inst Technol, Stockholm, Sweden. Stockholm Univ, S-10691 Stockholm, Sweden. Uppsala Univ, Uppsala, Sweden. Univ Lancaster, Lancaster, England. Univ London Imperial Coll Sci Technol & Med, London, England. Univ Manchester, Manchester, Lancs, England. Univ Arizona, Tucson, AZ 85721 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Florida State Univ, Tallahassee, FL 32306 USA. Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Illinois, Chicago, IL 60607 USA. No Illinois Univ, De Kalb, IL 60115 USA. Northwestern Univ, Evanston, IL 60208 USA. Indiana Univ, Bloomington, IN 47405 USA. Univ Notre Dame, Notre Dame, IN 46556 USA. Iowa State Univ Sci & Technol, Ames, IA 50011 USA. Univ Kansas, Lawrence, KS 66045 USA. Kansas State Univ, Manhattan, KS 66506 USA. Louisiana Tech Univ, Ruston, LA 71272 USA. Univ Maryland, College Pk, MD 20742 USA. Boston Univ, Boston, MA 02215 USA. Northeastern Univ, Boston, MA 02115 USA. Univ Michigan, Ann Arbor, MI 48109 USA. Michigan State Univ, E Lansing, MI 48824 USA. Univ Mississippi, University, MS 38677 USA. Univ Nebraska, Lincoln, NE 68588 USA. Princeton Univ, Princeton, NJ 08544 USA. Columbia Univ, New York, NY 10027 USA. Univ Rochester, Rochester, NY 14627 USA. SUNY Stony Brook, Stony Brook, NY 11794 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Langston Univ, Langston, OK 73050 USA. Univ Oklahoma, Norman, OK 73019 USA. Brown Univ, Providence, RI 02912 USA. Univ Texas, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. Univ Washington, Seattle, WA 98195 USA. RP Dubna Joint Nucl Res Inst, Dubna 141980, Russia. RI Oguri, Vitor/B-5403-2013; Alves, Gilvan/C-4007-2013; Telford, Paul/B-6253-2011; Nomerotski, Andrei/A-5169-2010; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Mundim, Luiz/A-1291-2012; Sharyy, Viatcheslav/F-9057-2014; Santoro, Alberto/E-7932-2014; KIM, Tae Jeong/P-7848-2015; Sznajder, Andre/L-1621-2016; Deliot, Frederic/F-3321-2014 OI Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Bertram, Iain/0000-0003-4073-4941; Mundim, Luiz/0000-0001-9964-7805; Weber, Michele/0000-0002-2770-9031; Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Filthaut, Frank/0000-0003-3338-2247; Naumann, Axel/0000-0002-4725-0766; Fatakia, Sarosh/0000-0003-0430-3191; Sharyy, Viatcheslav/0000-0002-7161-2616; KIM, Tae Jeong/0000-0001-8336-2434; Sznajder, Andre/0000-0001-6998-1108; NR 23 TC 85 Z9 85 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 7 PY 2005 VL 95 IS 15 AR 151801 DI 10.1103/PhysRevLett.95.151801 PG 7 WC Physics, Multidisciplinary SC Physics GA 972GX UT WOS:000232443400015 PM 16241714 ER PT J AU Adams, J Adler, C Aggarwal, MM Ahammed, Z Amonett, J Anderson, BD Arkhipkin, D Averichev, GS Badyal, SK Balewski, J Barannikova, O Barnby, LS Baudot, J Bekele, S Belaga, VV Bellwied, R Berger, J Bezverkhny, BI Bhardwaj, S Bhati, AK Bichsel, H Billmeier, A Bland, LC Blyth, CO Bonner, BE Botje, M Boucham, A Brandin, A Bravar, A Cadman, RV Cai, XZ Caines, H Sanchez, MCDB Carroll, J Castillo, J Cebra, D Chaloupka, P Chattopadhyay, S Chen, HF Chen, Y Chernenko, SP Cherney, M Chikanian, A Christie, W Coffin, JP Cormier, TM Cramer, JG Crawford, HJ Das, D Das, S Derevschikov, AA Didenko, L Dietel, T Dong, WJ Dong, X Draper, JE Du, F Dubey, AK Dunin, VB Dunlop, JC Majumdar, MRD Eckardt, V Efimov, LG Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Fachini, P Faine, V Faivre, J Fatemi, R Filimonov, K Filip, P Finch, E Fisyak, Y Flierl, D Foley, KJ Fu, J Gagliardi, CA Gagunashvili, N Gans, J Ganti, MS Gaudichet, L Geurts, F Ghazikhanian, V Ghosh, P Gonzalez, JE Grachov, O Grebenyuk, O Gronstal, S Grosnick, D Guertin, SM Gupta, A Gutierrez, TD Hallman, TJ Hamed, A Hardtke, D Harris, JW Heinz, M Henry, TW Heppelmann, S Herston, T Hippolyte, B Hirsch, A Hjort, E Hoffmann, GW Horsley, M Huang, HZ Huang, SL Hughes, E Humanic, TJ Igo, G Ishihara, A Jacobs, P Jacobs, WW Janik, M Jiang, H Johnson, I Jones, PG Judd, EG Kabana, S Kaplan, M Keane, D Khodyrev, VY Kiryluk, J Kisiel, A Klay, J Klein, SR Klyachko, A Koetke, DD Kollegger, T Kopytine, M Kotchenda, L Kovalenko, AD Kramer, M Kravtsov, P Kravtsov, VI Krueger, K Kuhn, C Kulikov, AI Kumar, A Kunde, GJ Kunz, CL Kutuev, RK Kuznetsov, AA Lamont, MAC Landgraf, JM Lange, S Lasiuk, B Laue, F Lauret, J Lebedev, A Lednicky, R LeVine, MJ Li, C Li, Q Lindenbaum, SJ Lisa, MA Liu, F Liu, L Liu, Z Liu, QJ Ljubicic, T Llope, WJ Long, H Longacre, RS Lopez-Noriega, M Love, WA Ludlam, T Lynn, D Ma, J Ma, YG Magestro, D Mahajan, S Mangotra, LK Mahapatra, DP Majka, R Manweiler, R Margetis, S Markert, C Martin, L Marx, J Matis, HS Matulenko, YA McClain, CJ McShane, TS Meissner, F Melnick, Y Meschanin, A Miller, ML Milosevich, Z Minaev, NG Mironov, C Mischke, A Mishra, D Mitchell, J Mohanty, B Molnar, L Moore, CF Mora-Corral, MJ Morozov, DA Morozov, V de Moura, MM Munhoz, MG Nandi, BK Nayak, SK Nayak, TK Nelson, JM Netrakanti, PK Nikitin, VA Nogach, LV Norman, B Nurushev, SB Odyniec, G Ogawa, A Okorokov, V Oldenburg, M Olson, D Paic, G Pal, SK Panebratsev, Y Panitkin, SY Pavlinov, AI Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Petrov, VA Phatak, SC Picha, R Planinic, M Pluta, J Porile, N Porter, J Poskanzer, AM Potekhin, M Potrebenikova, E Potukuchi, BVKS Prindle, D Pruneau, C Putschke, J Rai, G Rakness, G Raniwala, R Raniwala, S Ravel, O Ray, RL Razin, SV Reichhold, D Reid, JG Renault, G Retiere, F Ridiger, A Ritter, HG Roberts, JB Rogachevski, OV Romero, JL Rose, A Roy, C Ruan, LJ Sahoo, R Sakrejda, I Salur, S Sandweiss, J Savin, I Schambach, J Scharenberg, RP Schmitz, N Schroeder, LS Schweda, K Seger, J Seyboth, P Shahaliev, E Shao, M Shao, W Sharma, M Shestermanov, KE Shimanskii, SS Singaraju, RN Simon, F Skoro, G Smirnov, N Snellings, R Sood, G Sorensen, P Sowinski, J Speltz, J Spinka, HM Srivastava, B Stanislaus, TDS Stock, R Stolpovsky, A Strikhanov, M Stringfellow, B Struck, C Suaide, AAP Sugarbaker, E Suire, C Sumbera, M Surrow, B Symons, TJM de Toledo, AS Szarwas, P Tai, A Takahashi, J Tang, AH Thein, D Thomas, JH Timoshenko, S Tokarev, M Tonjes, MB Trainor, TA Trentalange, S Tribble, RE Tsai, O Ullrich, T Underwood, DG Van Buren, G VanderMolen, AM Varma, R Vasilevski, I Vasiliev, AN Vernet, R Vigdor, SE Viyogi, YP Voloshin, SA Vznuzdaev, M Waggoner, W Wang, F Wang, G Wang, G Wang, XL Wang, Y Wang, ZM Ward, H Watson, JW Webb, JC Wells, R Westfall, GD Whitten, C Wieman, H Willson, R Wissink, SW Witt, R Wood, J Wu, J Xu, N Xu, Z Xu, ZZ Yamamoto, E Yepes, P Yurevich, VI Yuting, B Zanevski, YV Zhang, H Zhang, WM Zhang, ZP Zhaomin, ZP Zizong, ZP Zolnierczuk, PA Zoulkarneev, R Zoulkarneeva, J Zubarev, AN AF Adams, J Adler, C Aggarwal, MM Ahammed, Z Amonett, J Anderson, BD Arkhipkin, D Averichev, GS Badyal, SK Balewski, J Barannikova, O Barnby, LS Baudot, J Bekele, S Belaga, VV Bellwied, R Berger, J Bezverkhny, BI Bhardwaj, S Bhati, AK Bichsel, H Billmeier, A Bland, LC Blyth, CO Bonner, BE Botje, M Boucham, A Brandin, A Bravar, A Cadman, RV Cai, XZ Caines, H Sanchez, MCDB Carroll, J Castillo, J Cebra, D Chaloupka, P Chattopadhyay, S Chen, HF Chen, Y Chernenko, SP Cherney, M Chikanian, A Christie, W Coffin, JP Cormier, TM Cramer, JG Crawford, HJ Das, D Das, S Derevschikov, AA Didenko, L Dietel, T Dong, WJ Dong, X Draper, JE Du, F Dubey, AK Dunin, VB Dunlop, JC Majumdar, MRD Eckardt, V Efimov, LG Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Fachini, P Faine, V Faivre, J Fatemi, R Filimonov, K Filip, P Finch, E Fisyak, Y Flierl, D Foley, KJ Fu, J Gagliardi, CA Gagunashvili, N Gans, J Ganti, MS Gaudichet, L Geurts, F Ghazikhanian, V Ghosh, P Gonzalez, JE Grachov, O Grebenyuk, O Gronstal, S Grosnick, D Guertin, SM Gupta, A Gutierrez, TD Hallman, TJ Hamed, A Hardtke, D Harris, JW Heinz, M Henry, TW Heppelmann, S Herston, T Hippolyte, B Hirsch, A Hjort, E Hoffmann, GW Horsley, M Huang, HZ Huang, SL Hughes, E Humanic, TJ Igo, G Ishihara, A Jacobs, P Jacobs, WW Janik, M Jiang, H Johnson, I Jones, PG Judd, EG Kabana, S Kaplan, M Keane, D Khodyrev, VY Kiryluk, J Kisiel, A Klay, J Klein, SR Klyachko, A Koetke, DD Kollegger, T Kopytine, M Kotchenda, L Kovalenko, AD Kramer, M Kravtsov, P Kravtsov, VI Krueger, K Kuhn, C Kulikov, AI Kumar, A Kunde, GJ Kunz, CL Kutuev, RK Kuznetsov, AA Lamont, MAC Landgraf, JM Lange, S Lasiuk, B Laue, F Lauret, J Lebedev, A Lednicky, R LeVine, MJ Li, C Li, Q Lindenbaum, SJ Lisa, MA Liu, F Liu, L Liu, Z Liu, QJ Ljubicic, T Llope, WJ Long, H Longacre, RS Lopez-Noriega, M Love, WA Ludlam, T Lynn, D Ma, J Ma, YG Magestro, D Mahajan, S Mangotra, LK Mahapatra, DP Majka, R Manweiler, R Margetis, S Markert, C Martin, L Marx, J Matis, HS Matulenko, YA McClain, CJ McShane, TS Meissner, F Melnick, Y Meschanin, A Miller, ML Milosevich, Z Minaev, NG Mironov, C Mischke, A Mishra, D Mitchell, J Mohanty, B Molnar, L Moore, CF Mora-Corral, MJ Morozov, DA Morozov, V de Moura, MM Munhoz, MG Nandi, BK Nayak, SK Nayak, TK Nelson, JM Netrakanti, PK Nikitin, VA Nogach, LV Norman, B Nurushev, SB Odyniec, G Ogawa, A Okorokov, V Oldenburg, M Olson, D Paic, G Pal, SK Panebratsev, Y Panitkin, SY Pavlinov, AI Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Petrov, VA Phatak, SC Picha, R Planinic, M Pluta, J Porile, N Porter, J Poskanzer, AM Potekhin, M Potrebenikova, E Potukuchi, BVKS Prindle, D Pruneau, C Putschke, J Rai, G Rakness, G Raniwala, R Raniwala, S Ravel, O Ray, RL Razin, SV Reichhold, D Reid, JG Renault, G Retiere, F Ridiger, A Ritter, HG Roberts, JB Rogachevski, OV Romero, JL Rose, A Roy, C Ruan, LJ Sahoo, R Sakrejda, I Salur, S Sandweiss, J Savin, I Schambach, J Scharenberg, RP Schmitz, N Schroeder, LS Schweda, K Seger, J Seyboth, P Shahaliev, E Shao, M Shao, W Sharma, M Shestermanov, KE Shimanskii, SS Singaraju, RN Simon, F Skoro, G Smirnov, N Snellings, R Sood, G Sorensen, P Sowinski, J Speltz, J Spinka, HM Srivastava, B Stanislaus, TDS Stock, R Stolpovsky, A Strikhanov, M Stringfellow, B Struck, C Suaide, AAP Sugarbaker, E Suire, C Sumbera, M Surrow, B Symons, TJM de Toledo, AS Szarwas, P Tai, A Takahashi, J Tang, AH Thein, D Thomas, JH Timoshenko, S Tokarev, M Tonjes, MB Trainor, TA Trentalange, S Tribble, RE Tsai, O Ullrich, T Underwood, DG Van Buren, G VanderMolen, AM Varma, R Vasilevski, I Vasiliev, AN Vernet, R Vigdor, SE Viyogi, YP Voloshin, SA Vznuzdaev, M Waggoner, W Wang, F Wang, G Wang, G Wang, XL Wang, Y Wang, ZM Ward, H Watson, JW Webb, JC Wells, R Westfall, GD Whitten, C Wieman, H Willson, R Wissink, SW Witt, R Wood, J Wu, J Xu, N Xu, Z Xu, ZZ Yamamoto, E Yepes, P Yurevich, VI Yuting, B Zanevski, YV Zhang, H Zhang, WM Zhang, ZP Zhaomin, ZP Zizong, ZP Zolnierczuk, PA Zoulkarneev, R Zoulkarneeva, J Zubarev, AN CA STAR Collaboration TI Distributions of charged hadrons associated with high transverse momentum particles in pp and Au plus Au collisions at root(S)(NN)=200 GeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID ENERGY-LOSS; QCD AB Charged hadrons in 0.15 < p(perpendicular to)< 4 GeV/c associated with particles of p(perpendicular to)(trig)> 4 GeV/c are reconstructed in pp and Au+Au collisions at root s(NN)=200 GeV. The associated multiplicity and p(perpendicular to) magnitude sum are found to increase from pp to central Au+Au collisions. The associated p(perpendicular to) distributions, while similar in shape on the nearside, are significantly softened on the awayside in central Au+Au relative to pp and not much harder than that of inclusive hadrons. The results, consistent with jet quenching, suggest that the awayside fragments approach equilibration with the medium traversed. C1 Univ Birmingham, Birmingham, W Midlands, England. Argonne Natl Lab, Argonne, IL 60439 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Los Angeles, Los Angeles, CA 90095 USA. CALTECH, Pasadena, CA 91125 USA. Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. Creighton Univ, Omaha, NE 68178 USA. Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. JINR, High Energy Lab, Dubna, Russia. JINR, Particle Phys Lab, Dubna, Russia. Goethe Univ Frankfurt, D-6000 Frankfurt, Germany. Indian Inst Technol, Bombay 400076, Maharashtra, India. Indiana Univ, Bloomington, IN 47408 USA. Inst Phys, Bhubaneswar 751005, Orissa, India. Inst Rech Subatom, Strasbourg, France. Univ Jammu, Jammu 180001, India. Kent State Univ, Kent, OH 44242 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. Michigan State Univ, E Lansing, MI 48824 USA. Moscow Engn Phys Inst, Moscow 115409, Russia. CUNY City Coll, New York, NY 10031 USA. NIKHEF H, NL-1009 DB Amsterdam, Netherlands. Ohio State Univ, Columbus, OH 43210 USA. Panjab Univ, Chandigarh 160014, India. Penn State Univ, University Pk, PA 16802 USA. Protvino High Energy Phys Inst, Protvino 142284, Russia. Purdue Univ, W Lafayette, IN 47907 USA. Univ Rajasthan, Jaipur 302004, Rajasthan, India. Rice Univ, Houston, TX 77251 USA. Univ Sao Paulo, Sao Paulo, Brazil. Univ Sci & Technol China, Anhua 230027, Peoples R China. Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China. SUBATECH, Nantes, France. Texas A&M Univ, College Stn, TX 77843 USA. Univ Texas, Austin, TX 78712 USA. Valparaiso Univ, Valparaiso, IN 46383 USA. Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. Warsaw Univ Technol, Warsaw, Poland. Univ Washington, Seattle, WA 98195 USA. Wayne State Univ, Detroit, MI 48201 USA. Hua Zhong Normal Univ, Inst Particle Phys, CCNU, Wuhan 430079, Peoples R China. Yale Univ, New Haven, CT 06520 USA. Univ Zagreb, HR-10002 Zagreb, Croatia. RP Univ Birmingham, Birmingham, W Midlands, England. RI Strikhanov, Mikhail/P-7393-2014; Kisiel, Adam/O-8754-2015; Chaloupka, Petr/E-5965-2012; Suaide, Alexandre/L-6239-2016; Peitzmann, Thomas/K-2206-2012; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Witt, Richard/H-3560-2012; Skoro, Goran/F-3642-2010; Lednicky, Richard/K-4164-2013; Sumbera, Michal/O-7497-2014; Skoro, Goran/P-1229-2014; Planinic, Mirko/E-8085-2012; Castillo Castellanos, Javier/G-8915-2013; Voloshin, Sergei/I-4122-2013; Johnson, Ian/I-2439-2013; Chen, Yu/E-3788-2012; Takahashi, Jun/B-2946-2012; Barnby, Lee/G-2135-2010; Mischke, Andre/D-3614-2011 OI Strikhanov, Mikhail/0000-0003-2586-0405; Kisiel, Adam/0000-0001-8322-9510; Suaide, Alexandre/0000-0003-2847-6556; Peitzmann, Thomas/0000-0002-7116-899X; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Sumbera, Michal/0000-0002-0639-7323; Skoro, Goran/0000-0001-7745-9045; Castillo Castellanos, Javier/0000-0002-5187-2779; Takahashi, Jun/0000-0002-4091-1779; Barnby, Lee/0000-0001-7357-9904; NR 32 TC 384 Z9 384 U1 2 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 7 PY 2005 VL 95 IS 15 AR 152301 DI 10.1103/PhysRevLett.95.152301 PG 6 WC Physics, Multidisciplinary SC Physics GA 972GX UT WOS:000232443400022 ER PT J AU Aubert, B Barate, R Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Pappagallo, M Pompili, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Breon, AB Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Gritsan, AV Groysman, Y Jacobsen, RG Kadel, RW Kadyk, J Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Fritsch, M Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Chevalier, N Cottingham, WN Kelly, MP Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, AE Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Yushkov, AN Best, D Bondioli, M Bruinsma, M Chao, M Eschrich, I Kirkby, D Lankford, AJ Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Buchanan, C Hartfiel, BL Weinstein, AJR Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L del Re, D Hadavand, HK Hill, EJ MacFarlane, DB Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Mazur, MA Richman, JD Verkerke, W Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dubois-Felsmann, GP Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Jayatilleke, S Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, P Chen, S Ford, WT Nauenberg, U Olivas, A Rankin, P Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Zeng, Q Altenburg, D Feltresi, E Hauke, A Spaan, B Brandt, T Brose, J Dickopp, M Klose, V Lacker, HM Nogowski, R Otto, S Petzold, A Schott, G Schubert, J Schubert, KR Schwierz, R Sundermann, JE Bernard, D Bonneaud, GR Grenier, P Schrenk, S Thiebaux, C Vasileiadis, G Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Xie, Y Andreotti, M Azzolini, V Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Piemontese, L Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Patteri, P Peruzzi, IM Piccolo, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, M Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Bailey, S Brandenburg, G Chaisanguanthum, KS Morii, M Won, E Wu, J Dubitzky, RS Langenegger, U Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Morton, GW Nash, JA Nikolich, MB Taylor, GP Vazquez, WP Charles, MJ Mader, WF Mallik, U Mohapatra, AK Cochran, J Crawley, HB Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Yi, J Arnaud, N Davier, M Giroux, X Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Petersen, TC Pierini, M Plaszczynski, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wormser, G Cheng, CH Lange, DJ Simani, MC Wright, DM Bevan, AJ Chavez, CA Coleman, JP Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Parry, RJ Payne, DJ Schofield, KC Touramanis, C Cormack, CM Di Lodovico, F Sacco, R Brown, CL Cowan, G Flaecher, HU Green, MG Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, D Davis, CL Allison, J Barlow, NR Barlow, RJ Hodgkinson, MC Lafferty, GD Naisbit, MT Williams, JC Chen, C Farbin, A Hulsbergen, WD Jawahery, A Kovalskyi, D Lae, CK Lillard, V Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Kofler, R Koptchev, VB Li, X Moore, TB Saremi, S Staengle, H Willocq, S Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Taras, P Viaud, B Nicholson, H Cavallo, N De Nardo, G Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Wilden, L Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Brau, J Frey, R Igonkina, O Lu, M Potter, CT Sinev, NB Strom, D Strube, J Torrence, E Dorigo, A Galeazzi, F Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Briand, H Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Guo, QH Panetta, J Biasini, M Covarelli, R Pacetti, S Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rama, M Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Schroder, H Wagner, G Waldi, R Adye, T De Groot, N Franek, B Gopal, GP Olaiya, EO Wilson, FF Aleksan, R Emery, S Gaidot, A Ganzhur, SF Giraud, PF Graziani, G de Monchenault, GH Kozanecki, W Legendre, M London, GW Mayer, B Vasseur, G Yeche, C Zito, M Purohit, MV Weidemann, AW Wilson, JR Yumiceva, FX Abe, T Allen, MT Aston, D Bartoldus, R Berger, N Boyarski, AM Buchmueller, OL Claus, R Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dujmic, D Dunwoodie, W Fan, S Field, RC Glanzman, T Gowdy, SJ Hadig, T Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Libby, J Luitz, S Luth, V Lynch, HL Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, S Thompson, JM Va'vra, J Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Ahmed, M Ahmed, S Alam, MS Ernst, JA Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Bona, M Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Martinez-Vidal, F Panvini, RS Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Graham, M Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Pan, Y Prepost, R Tan, P von Wimmersperg-Toeller, JH Wu, SL Yu, Z Neal, H AF Aubert, B Barate, R Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges, E Palano, A Pappagallo, M Pompili, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Battaglia, M Breon, AB Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Gritsan, AV Groysman, Y Jacobsen, RG Kadel, RW Kadyk, J Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Fritsch, M Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Chevalier, N Cottingham, WN Kelly, MP Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Kyberd, P Saleem, M Teodorescu, L Blinov, AE Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Yushkov, AN Best, D Bondioli, M Bruinsma, M Chao, M Eschrich, I Kirkby, D Lankford, AJ Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Buchanan, C Hartfiel, BL Weinstein, AJR Foulkes, SD Gary, JW Long, O Shen, BC Wang, K Zhang, L del Re, D Hadavand, HK Hill, EJ MacFarlane, DB Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Mazur, MA Richman, JD Verkerke, W Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dubois-Felsmann, GP Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Andreassen, R Jayatilleke, S Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, P Chen, S Ford, WT Nauenberg, U Olivas, A Rankin, P Ruddick, WO Smith, JG Ulmer, KA Wagner, SR Zhang, J Chen, A Eckhart, EA Soffer, A Toki, WH Wilson, RJ Zeng, Q Altenburg, D Feltresi, E Hauke, A Spaan, B Brandt, T Brose, J Dickopp, M Klose, V Lacker, HM Nogowski, R Otto, S Petzold, A Schott, G Schubert, J Schubert, KR Schwierz, R Sundermann, JE Bernard, D Bonneaud, GR Grenier, P Schrenk, S Thiebaux, C Vasileiadis, G Verderi, M Bard, DJ Clark, PJ Gradl, W Muheim, F Playfer, S Xie, Y Andreotti, M Azzolini, V Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Piemontese, L Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Patteri, P Peruzzi, IM Piccolo, M Zallo, A Buzzo, A Capra, R Contri, R Lo Vetere, M Macri, M Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Bailey, S Brandenburg, G Chaisanguanthum, KS Morii, M Won, E Wu, J Dubitzky, RS Langenegger, U Marks, J Schenk, S Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Flack, RL Gaillard, JR Morton, GW Nash, JA Nikolich, MB Taylor, GP Vazquez, WP Charles, MJ Mader, WF Mallik, U Mohapatra, AK Cochran, J Crawley, HB Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Yi, J Arnaud, N Davier, M Giroux, X Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Oyanguren, A Petersen, TC Pierini, M Plaszczynski, S Rodier, S Roudeau, P Schune, MH Stocchi, A Wormser, G Cheng, CH Lange, DJ Simani, MC Wright, DM Bevan, AJ Chavez, CA Coleman, JP Forster, IJ Fry, JR Gabathuler, E Gamet, R George, KA Hutchcroft, DE Parry, RJ Payne, DJ Schofield, KC Touramanis, C Cormack, CM Di Lodovico, F Sacco, R Brown, CL Cowan, G Flaecher, HU Green, MG Hopkins, DA Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Brown, D Davis, CL Allison, J Barlow, NR Barlow, RJ Hodgkinson, MC Lafferty, GD Naisbit, MT Williams, JC Chen, C Farbin, A Hulsbergen, WD Jawahery, A Kovalskyi, D Lae, CK Lillard, V Roberts, DA Simi, G Blaylock, G Dallapiccola, C Hertzbach, SS Kofler, R Koptchev, VB Li, X Moore, TB Saremi, S Staengle, H Willocq, S Cowan, R Koeneke, K Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Kim, H Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Taras, P Viaud, B Nicholson, H Cavallo, N De Nardo, G Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Wilden, L Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Jackson, PD Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Brau, J Frey, R Igonkina, O Lu, M Potter, CT Sinev, NB Strom, D Strube, J Torrence, E Dorigo, A Galeazzi, F Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Briand, H Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Guo, QH Panetta, J Biasini, M Covarelli, R Pacetti, S Pioppi, M Angelini, C Batignani, G Bettarini, S Bucci, F Calderini, G Carpinelli, M Cenci, R Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rama, M Rizzo, G Walsh, J Haire, M Judd, D Wagoner, DE Biesiada, J Danielson, N Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Schroder, H Wagner, G Waldi, R Adye, T De Groot, N Franek, B Gopal, GP Olaiya, EO Wilson, FF Aleksan, R Emery, S Gaidot, A Ganzhur, SF Giraud, PF Graziani, G de Monchenault, GH Kozanecki, W Legendre, M London, GW Mayer, B Vasseur, G Yeche, C Zito, M Purohit, MV Weidemann, AW Wilson, JR Yumiceva, FX Abe, T Allen, MT Aston, D Bartoldus, R Berger, N Boyarski, AM Buchmueller, OL Claus, R Convery, MR Cristinziani, M Dingfelder, JC Dong, D Dorfan, J Dujmic, D Dunwoodie, W Fan, S Field, RC Glanzman, T Gowdy, SJ Hadig, T Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Libby, J Luitz, S Luth, V Lynch, HL Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, S Thompson, JM Va'vra, J Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Ahmed, M Ahmed, S Alam, MS Ernst, JA Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Satpathy, A Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Bona, M Gallo, F Gamba, D Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Vitale, L Martinez-Vidal, F Panvini, RS Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Kowalewski, R Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Graham, M Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mellado, B Mihalyi, A Pan, Y Prepost, R Tan, P von Wimmersperg-Toeller, JH Wu, SL Yu, Z Neal, H CA BABAR Collaboration TI Measurement of time-dependent CP asymmetries and the CP-odd fraction in the decay B-0 -> D-* + D*- SO PHYSICAL REVIEW LETTERS LA English DT Article ID VIOLATING ASYMMETRIES AB We present an updated measurement of time-dependent CP asymmetries and the CP-odd fraction in the decay B-0 -> D*+D*- using 232x10(6)B (B) over bar pairs collected by the BABAR detector at the SLAC PEP-II B factory. We determine the CP-odd fraction to be 0.125 +/- 0.044(stat) +/- 0.007(syst). The time-dependent CP asymmetry parameters C+ and S+ are determined to be 0.06 +/- 0.17(stat)+/- 0.03(syst) and -0.75 +/- 0.25(stat) +/- 0.03(syst), respectively. The standard model predicts these parameters to be 0 and -sin2 beta, respectively, in the absence of penguin amplitude contributions. C1 Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. Univ Autonoma Barcelona, IFAE, E-08193 Barcelona, Spain. Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. Ecole Polytech, LLR, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ Sci & Technol, Ames, IA 50011 USA. Lab Accelerateur Lineaire, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 72E, Merseyside, England. Univ London, London E1 4NS, England. Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Lab Rene JA Levesque, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Ist Nazl Fis Nucl, I-80126 Naples, Italy. NIKHEF H, Natl Inst Nucl & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM, DAPNIA, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Politecn Valencia, IFIC, CSIC, E-46071 Valencia, Spain. Vanderbilt Univ, Nashville, TN 37235 USA. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. Univ Basilicata, Potenza, Italy. RP Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. RI de Sangro, Riccardo/J-2901-2012; M, Saleem/B-9137-2013; Cavallo, Nicola/F-8913-2012; Peters, Klaus/C-2728-2008; de Groot, Nicolo/A-2675-2009; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; crosetti, nanni/H-3040-2011; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; Lusiani, Alberto/A-3329-2016; Lo Vetere, Maurizio/J-5049-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Luppi, Eleonora/A-4902-2015; Martinez Vidal, F*/L-7563-2014; Monge, Maria Roberta/G-9127-2012; Kolomensky, Yury/I-3510-2015; Grancagnolo, Sergio/J-3957-2015; Mir, Lluisa-Maria/G-7212-2015; Della Ricca, Giuseppe/B-6826-2013; Sarti, Alessio/I-2833-2012; Kravchenko, Evgeniy/F-5457-2015; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Calabrese, Roberto/G-4405-2015; Oyanguren, Arantza/K-6454-2014 OI de Sangro, Riccardo/0000-0002-3808-5455; Peters, Klaus/0000-0001-7133-0662; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; Lusiani, Alberto/0000-0002-6876-3288; Lo Vetere, Maurizio/0000-0002-6520-4480; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Luppi, Eleonora/0000-0002-1072-5633; Martinez Vidal, F*/0000-0001-6841-6035; Monge, Maria Roberta/0000-0003-1633-3195; Kolomensky, Yury/0000-0001-8496-9975; Grancagnolo, Sergio/0000-0001-8490-8304; Mir, Lluisa-Maria/0000-0002-4276-715X; Della Ricca, Giuseppe/0000-0003-2831-6982; Sarti, Alessio/0000-0001-5419-7951; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Calabrese, Roberto/0000-0002-1354-5400; Oyanguren, Arantza/0000-0002-8240-7300 NR 17 TC 26 Z9 26 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 7 PY 2005 VL 95 IS 15 AR 151804 DI 10.1103/PhysRevLett.95.151804 PG 7 WC Physics, Multidisciplinary SC Physics GA 972GX UT WOS:000232443400018 PM 16090798 ER PT J AU Aubert, B Barate, R Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges-Pous, E Palano, A Pompili, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Borgland, AW Breon, AB Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Gritsan, AV Groysman, Y Jacobsen, RG Kadel, RW Kadyk, J Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Fritsch, M Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Chevalier, N Cottingham, WN Kelly, MP Latham, TE Wilson, FF Cuhadar-Donszelmann, T Hearty, C Knecht, NS Mattison, TS McKenna, JA Thiessen, D Khan, A Kyberd, P Teodorescu, L Blinov, AE Blinov, VE Druzhinin, VP Golubev, VB Ivanchenko, VN Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Yushkov, AN Best, D Bruinsma, M Chao, M Eschrich, I Kirkby, D Lankford, AJ Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Buchanan, C Hartfiel, BL Weinstein, AJR Foulkes, SD Gary, JW Long, O Shen, BC Wang, K del Re, D Hadavand, HK Hill, EJ MacFarlane, DB Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Lu, A Mazur, MA Richman, JD Verkerke, W Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dubois-Felsmann, GP Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Yang, S Jayatilleke, S Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, P Chen, S Ford, WT Nauenberg, U Olivas, A Rankin, P Ruddick, WO Smith, JG Ulmer, KA Zhang, J Zhang, L Chen, A Eckhart, EA Harton, JL Soffer, A Toki, WH Wilson, RJ Zeng, Q Spaan, B Altenburg, D Brandt, T Brose, J Dickopp, M Feltresi, E Hauke, A Lacker, HM Maly, E Nogowski, R Otto, S Petzold, A Schott, G Schubert, J Schubert, KR Schwierz, R Sundermann, JE Bernard, D Bonneaud, GR Grenier, P Schrenk, S Thiebaux, C Vasileiadis, G Verderi, M Bard, DJ Clark, PJ Muheim, F Playfer, S Xie, Y Andreotti, M Azzolini, V Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Piemontese, L Sarti, A Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Patteri, P Peruzzi, IM Piccolo, M Zallo, A Buzzo, A Capra, R Contri, R Crosetti, G Lo Vetere, M Macri, M Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Bailey, S Brandenburg, G Chaisanguanthum, KS Morii, M Won, E Dubitzky, RS Langenegger, U Marks, J Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Gaillard, JR Morton, GW Nash, JA Nikolich, MB Taylor, GP Charles, MJ Grenier, GJ Mallik, U Mohapatra, AK Cochran, J Crawley, HB Lamsa, J Meyer, WT Prell, S Rosenberg, EI Rubin, AE Yi, J Arnaud, N Davier, M Giroux, X Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Petersen, TC Pierini, M Plaszczynski, S Schune, MH Wormser, G Cheng, CH Lange, DJ Simani, MC Wright, DM Bevan, AJ Chavez, CA Coleman, JP Forster, IJ Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Parry, RJ Payne, DJ Touramanis, C Cormack, CM Di Lodovico, F Brown, CL Cowan, G Flack, RL Flaecher, HU Green, MG Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Winter, MA Brown, D Davis, CL Allison, J Barlow, NR Barlow, RJ Hodgkinson, MC Lafferty, GD Naisbit, MT Williams, JC Chen, C Farbin, A Hulsbergen, WD Jawahery, A Kovalskyi, D Lae, CK Lillard, V Roberts, DA Blaylock, G Dallapiccola, C Hertzbach, SS Kofler, R Koptchev, VB Moore, TB Saremi, S Staengle, H Willocq, S Cowan, R Koeneke, K Sciolla, G Sekula, SJ Taylor, F Yamamoto, RK Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Taras, P Nicholson, H Cavallo, N Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Wilden, L Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Brau, J Frey, R Igonkina, O Lu, M Potter, CT Sinev, NB Strom, D Torrence, E Colecchia, F Dorigo, A Galeazzi, F Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Briand, H Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Guo, QH Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bondioli, M Bucci, F Calderini, G Carpinelli, M Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rama, M Rizzo, G Simi, G Walsh, J Haire, M Judd, D Paick, K Wagoner, DE Danielson, N Elmer, P Lau, YP Lu, C Miftakov, V Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Christ, S Schroder, H Wagner, G Waldi, R Adye, T De Groot, N Franek, B Gopal, GP Olaiya, EO Aleksan, R Emery, S Gaidot, A Ganzhur, SF Giraud, PF de Monchenault, GH Kozanecki, W Legendre, M London, GW Mayer, B Vasseur, G Yeche, C Zito, M Purohit, MV Weidemann, AW Wilson, JR Yumiceva, FX Abe, T Aston, D Bartoldus, R Berger, N Boyarski, AM Buchmueller, OL Claus, R Convery, MR Cristinziani, M De Nardo, G Dingfelder, JC Dong, D Dorfan, J Dujmic, D Dunwoodie, W Fan, S Field, RC Glanzman, T Gowdy, SJ Hadig, T Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Libby, J Luitz, S Luth, V Lynch, HL Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Soha, A Stelzer, J Strube, J Su, D Sullivan, MK Va'vra, J Wagner, SR Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Ahmed, M Ahmed, S Alam, MS Ernst, JA Saeed, MA Saleem, M Wappler, FR Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Kim, H Ritchie, JL Satpathy, A Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Bona, M Gallo, F Gamba, D Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Poropat, P Vitale, L Vuagnin, G Martinez-Vidal, F Panvini, RS Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Jackson, PD Kowalewski, R Roney, JM Sobie, RJ Back, JJ Harrison, PF Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Graham, M Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mihalyi, A Pan, Y Prepost, R Tan, P von Wimmersperg-Toeller, JH Wu, J Wu, SL Yu, Z Greene, MG Neal, H AF Aubert, B Barate, R Boutigny, D Couderc, F Karyotakis, Y Lees, JP Poireau, V Tisserand, V Zghiche, A Grauges-Pous, E Palano, A Pompili, A Chen, JC Qi, ND Rong, G Wang, P Zhu, YS Eigen, G Ofte, I Stugu, B Abrams, GS Borgland, AW Breon, AB Brown, DN Button-Shafer, J Cahn, RN Charles, E Day, CT Gill, MS Gritsan, AV Groysman, Y Jacobsen, RG Kadel, RW Kadyk, J Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Mir, LM Oddone, PJ Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Wenzel, WA Barrett, M Ford, KE Harrison, TJ Hart, AJ Hawkes, CM Morgan, SE Watson, AT Fritsch, M Goetzen, K Held, T Koch, H Lewandowski, B Pelizaeus, M Peters, K Schroeder, T Steinke, M Boyd, JT Burke, JP Chevalier, N Cottingham, WN Kelly, MP Latham, TE Wilson, FF Cuhadar-Donszelmann, T Hearty, C Knecht, NS Mattison, TS McKenna, JA Thiessen, D Khan, A Kyberd, P Teodorescu, L Blinov, AE Blinov, VE Druzhinin, VP Golubev, VB Ivanchenko, VN Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Yushkov, AN Best, D Bruinsma, M Chao, M Eschrich, I Kirkby, D Lankford, AJ Mandelkern, M Mommsen, RK Roethel, W Stoker, DP Buchanan, C Hartfiel, BL Weinstein, AJR Foulkes, SD Gary, JW Long, O Shen, BC Wang, K del Re, D Hadavand, HK Hill, EJ MacFarlane, DB Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Lu, A Mazur, MA Richman, JD Verkerke, W Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Nesom, G Schalk, T Schumm, BA Seiden, A Spradlin, P Williams, DC Wilson, MG Albert, J Chen, E Dubois-Felsmann, GP Dvoretskii, A Hitlin, DG Narsky, I Piatenko, T Porter, FC Ryd, A Samuel, A Yang, S Jayatilleke, S Mancinelli, G Meadows, BT Sokoloff, MD Blanc, F Bloom, P Chen, S Ford, WT Nauenberg, U Olivas, A Rankin, P Ruddick, WO Smith, JG Ulmer, KA Zhang, J Zhang, L Chen, A Eckhart, EA Harton, JL Soffer, A Toki, WH Wilson, RJ Zeng, Q Spaan, B Altenburg, D Brandt, T Brose, J Dickopp, M Feltresi, E Hauke, A Lacker, HM Maly, E Nogowski, R Otto, S Petzold, A Schott, G Schubert, J Schubert, KR Schwierz, R Sundermann, JE Bernard, D Bonneaud, GR Grenier, P Schrenk, S Thiebaux, C Vasileiadis, G Verderi, M Bard, DJ Clark, PJ Muheim, F Playfer, S Xie, Y Andreotti, M Azzolini, V Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Luppi, E Negrini, M Piemontese, L Sarti, A Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Patteri, P Peruzzi, IM Piccolo, M Zallo, A Buzzo, A Capra, R Contri, R Crosetti, G Lo Vetere, M Macri, M Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Bailey, S Brandenburg, G Chaisanguanthum, KS Morii, M Won, E Dubitzky, RS Langenegger, U Marks, J Uwer, U Bhimji, W Bowerman, DA Dauncey, PD Egede, U Gaillard, JR Morton, GW Nash, JA Nikolich, MB Taylor, GP Charles, MJ Grenier, GJ Mallik, U Mohapatra, AK Cochran, J Crawley, HB Lamsa, J Meyer, WT Prell, S Rosenberg, EI Rubin, AE Yi, J Arnaud, N Davier, M Giroux, X Grosdidier, G Hocker, A Le Diberder, F Lepeltier, V Lutz, AM Petersen, TC Pierini, M Plaszczynski, S Schune, MH Wormser, G Cheng, CH Lange, DJ Simani, MC Wright, DM Bevan, AJ Chavez, CA Coleman, JP Forster, IJ Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Parry, RJ Payne, DJ Touramanis, C Cormack, CM Di Lodovico, F Brown, CL Cowan, G Flack, RL Flaecher, HU Green, MG Jackson, PS McMahon, TR Ricciardi, S Salvatore, F Winter, MA Brown, D Davis, CL Allison, J Barlow, NR Barlow, RJ Hodgkinson, MC Lafferty, GD Naisbit, MT Williams, JC Chen, C Farbin, A Hulsbergen, WD Jawahery, A Kovalskyi, D Lae, CK Lillard, V Roberts, DA Blaylock, G Dallapiccola, C Hertzbach, SS Kofler, R Koptchev, VB Moore, TB Saremi, S Staengle, H Willocq, S Cowan, R Koeneke, K Sciolla, G Sekula, SJ Taylor, F Yamamoto, RK Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Reidy, J Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Taras, P Nicholson, H Cavallo, N Fabozzi, F Gatto, C Lista, L Monorchio, D Paolucci, P Piccolo, D Sciacca, C Baak, M Bulten, H Raven, G Snoek, HL Wilden, L Jessop, CP LoSecco, JM Allmendinger, T Benelli, G Gan, KK Honscheid, K Hufnagel, D Kagan, H Kass, R Pulliam, T Rahimi, AM Ter-Antonyan, R Wong, QK Brau, J Frey, R Igonkina, O Lu, M Potter, CT Sinev, NB Strom, D Torrence, E Colecchia, F Dorigo, A Galeazzi, F Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Benayoun, M Briand, H Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O John, MJJ Leruste, P Malcles, J Ocariz, J Roos, L Therin, G Behera, PK Gladney, L Guo, QH Panetta, J Biasini, M Covarelli, R Pioppi, M Angelini, C Batignani, G Bettarini, S Bondioli, M Bucci, F Calderini, G Carpinelli, M Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rama, M Rizzo, G Simi, G Walsh, J Haire, M Judd, D Paick, K Wagoner, DE Danielson, N Elmer, P Lau, YP Lu, C Miftakov, V Olsen, J Smith, AJS Telnov, AV Bellini, F Cavoto, G D'Orazio, A Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Tehrani, FS Voena, C Christ, S Schroder, H Wagner, G Waldi, R Adye, T De Groot, N Franek, B Gopal, GP Olaiya, EO Aleksan, R Emery, S Gaidot, A Ganzhur, SF Giraud, PF de Monchenault, GH Kozanecki, W Legendre, M London, GW Mayer, B Vasseur, G Yeche, C Zito, M Purohit, MV Weidemann, AW Wilson, JR Yumiceva, FX Abe, T Aston, D Bartoldus, R Berger, N Boyarski, AM Buchmueller, OL Claus, R Convery, MR Cristinziani, M De Nardo, G Dingfelder, JC Dong, D Dorfan, J Dujmic, D Dunwoodie, W Fan, S Field, RC Glanzman, T Gowdy, SJ Hadig, T Halyo, V Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, P Kocian, ML Leith, DWGS Libby, J Luitz, S Luth, V Lynch, HL Marsiske, H Messner, R Muller, DR O'Grady, CP Ozcan, VE Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Soha, A Stelzer, J Strube, J Su, D Sullivan, MK Va'vra, J Wagner, SR Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Roat, C Ahmed, M Ahmed, S Alam, MS Ernst, JA Saeed, MA Saleem, M Wappler, FR Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Kim, H Ritchie, JL Satpathy, A Schwitters, RF Izen, JM Kitayama, I Lou, XC Ye, S Bianchi, F Bona, M Gallo, F Gamba, D Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Dittongo, S Grancagnolo, S Lanceri, L Poropat, P Vitale, L Vuagnin, G Martinez-Vidal, F Panvini, RS Banerjee, S Bhuyan, B Brown, CM Fortin, D Hamano, K Jackson, PD Kowalewski, R Roney, JM Sobie, RJ Back, JJ Harrison, PF Mohanty, GB Band, HR Chen, X Cheng, B Dasu, S Datta, M Eichenbaum, AM Flood, KT Graham, M Hollar, JJ Johnson, JR Kutter, PE Li, H Liu, R Mihalyi, A Pan, Y Prepost, R Tan, P von Wimmersperg-Toeller, JH Wu, J Wu, SL Yu, Z Greene, MG Neal, H CA BABAR Collaboration TI Improved measurements of CP-violating asymmetry amplitudes in B-0 ->pi(+)pi(-) decays SO PHYSICAL REVIEW LETTERS LA English DT Article ID B-DECAYS; PHYSICS AB We present updated measurements of the CP-violating parameters S-pi pi and C-pi pi in B-0 ->pi(+)pi(-) decays. Using a sample of 227x10(6) Upsilon(4S) -> B (B) over bar decays collected with the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) collider at SLAC, we observe 467 +/- 33 signal decays and measure S-pi pi = -0.30 +/- 0.17(stat) +/- 0.03(syst) and C-pi pi = -0.09 +/- 0.15(stat) +/- 0.04(syst). C1 Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. Univ Autonoma Barcelona, IFAE, E-08193 Barcelona, Spain. Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. Univ Bari, Ist Nazl Fis Nucl, I-70126 Bari, Italy. Inst High Energy Phys, Beijing 100039, Peoples R China. Univ Bergen, Inst Phys, N-5007 Bergen, Norway. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. Univ Birmingham, Birmingham B15 2TT, W Midlands, England. Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. Univ Bristol, Bristol BS8 1TL, Avon, England. Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. Brunel Univ, Uxbridge UB8 3PH, Middx, England. Budker Inst Nucl Phys, Novosibirsk 630090, Russia. Univ Calif Irvine, Irvine, CA 92697 USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Calif Riverside, Riverside, CA 92521 USA. Univ Calif San Diego, La Jolla, CA 92093 USA. Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. CALTECH, Pasadena, CA 91125 USA. Univ Cincinnati, Cincinnati, OH 45221 USA. Univ Colorado, Boulder, CO 80309 USA. Colorado State Univ, Ft Collins, CO 80523 USA. Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. Tech Univ Dresden, Inst Kern & Teilchenphy, D-01062 Dresden, Germany. Ecole Polytech, LLR, F-91128 Palaiseau, France. Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. Univ Ferrara, Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. Univ Genoa, Ist Nazl Fis Nucl, I-16146 Genoa, Italy. Harvard Univ, Cambridge, MA 02138 USA. Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. Univ Iowa, Iowa City, IA 52242 USA. Iowa State Univ Sci & Technol, Ames, IA 50011 USA. Lab Accelerateur Lineaire, F-91898 Orsay, France. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Univ Liverpool, Liverpool L69 72E, Merseyside, England. Univ London, London E1 4NS, England. Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. Univ Louisville, Louisville, KY 40292 USA. Univ Manchester, Manchester M13 9PL, Lancs, England. Univ Maryland, College Pk, MD 20742 USA. Univ Massachusetts, Amherst, MA 01003 USA. MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. McGill Univ, Montreal, PQ H3A 2T8, Canada. Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. Univ Milan, Ist Nazl Fis Nucl, I-20133 Milan, Italy. Univ Mississippi, University, MS 38677 USA. Univ Montreal, Lab Rene JA Levesque, Montreal, PQ H3C 3J7, Canada. Mt Holyoke Coll, S Hadley, MA 01075 USA. Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. Univ Naples Federico II, Ist Nazl Fis Nucl, I-80126 Naples, Italy. Natl Inst Nucl & High Energy Phys, NIKHEF H, NL-1009 DB Amsterdam, Netherlands. Univ Notre Dame, Notre Dame, IN 46556 USA. Ohio State Univ, Columbus, OH 43210 USA. Univ Oregon, Eugene, OR 97403 USA. Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. Univ Padua, Ist Nazl Fis Nucl, I-35131 Padua, Italy. Univ Paris 06, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Paris 07, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. Univ Penn, Philadelphia, PA 19104 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Perugia, Ist Nazl Fis Nucl, I-06100 Perugia, Italy. Scuola Normale Super Pisa, Dipartimento Fis, I-56127 Pisa, Italy. Univ Pisa, Ist Nazl Fis Nucl, I-56127 Pisa, Italy. Prairie View A&M Univ, Prairie View, TX 77446 USA. Princeton Univ, Princeton, NJ 08544 USA. Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Univ Roma La Sapienza, Ist Nazl Fis Nucl, I-00185 Rome, Italy. Univ Rostock, D-18051 Rostock, Germany. Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. CEA Saclay, DSM, DAPNIA, F-91191 Gif Sur Yvette, France. Univ S Carolina, Columbia, SC 29208 USA. Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. Stanford Univ, Stanford, CA 94305 USA. SUNY Albany, Albany, NY 12222 USA. Univ Tennessee, Knoxville, TN 37996 USA. Univ Texas, Austin, TX 78712 USA. Univ Texas, Richardson, TX 75083 USA. Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. Univ Turin, Ist Nazl Fis Nucl, I-10125 Turin, Italy. Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. Univ Trieste, Ist Nazl Fis Nucl, I-34127 Trieste, Italy. Univ Politecn Valencia, IFIC, CSIC, E-46071 Valencia, Spain. Vanderbilt Univ, Nashville, TN 37235 USA. Univ Victoria, Victoria, BC V8W 3P6, Canada. Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. Univ Wisconsin, Madison, WI 53706 USA. Yale Univ, New Haven, CT 06511 USA. Univ Basilicata, I-85100 Potenza, Italy. RP Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. RI Lusiani, Alberto/A-3329-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Luppi, Eleonora/A-4902-2015; Kravchenko, Evgeniy/F-5457-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Grancagnolo, Sergio/J-3957-2015; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Sarti, Alessio/I-2833-2012; Cavallo, Nicola/F-8913-2012; Peters, Klaus/C-2728-2008; de Groot, Nicolo/A-2675-2009; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; crosetti, nanni/H-3040-2011; Roe, Natalie/A-8798-2012; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011 OI Lusiani, Alberto/0000-0002-6876-3288; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Raven, Gerhard/0000-0002-2897-5323; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Grancagnolo, Sergio/0000-0001-8490-8304; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Sarti, Alessio/0000-0001-5419-7951; Peters, Klaus/0000-0001-7133-0662; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965 NR 21 TC 28 Z9 28 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 7 PY 2005 VL 95 IS 15 AR 151803 DI 10.1103/PhysRevLett.95.151803 PG 7 WC Physics, Multidisciplinary SC Physics GA 972GX UT WOS:000232443400017 ER PT J AU Christian, DC Felix, J Gottschalk, EE Gutierrez, G Hartouni, EP Knapp, BC Kreisler, MN Moreno, G Reyes, MA Sosa, M Wang, MHLS Wehmann, A AF Christian, DC Felix, J Gottschalk, EE Gutierrez, G Hartouni, EP Knapp, BC Kreisler, MN Moreno, G Reyes, MA Sosa, M Wang, MHLS Wehmann, A TI Search for exotic baryons in 800 GeV pp -> p Xi(+/-) pi(+/-) X reactions SO PHYSICAL REVIEW LETTERS LA English DT Article ID DEEP-INELASTIC SCATTERING; POSITIVE-STRANGENESS; PENTAQUARK; PHOTOPRODUCTION; RESONANCE; STATE; HERA AB We report the results of a high-statistics, sensitive search for narrow baryon resonances decaying to Xi(-)pi(-), Xi(-)pi(+), (Xi) over bar (+)pi(-), and (Xi) over bar (+)pi(+). The only resonances observed are the well known Xi(0)(1530) and (Xi) over bar (0)(1530). No evidence is found for the states near 1862 MeV, previously reported by NA49 [Phys. Rev. Lett. 92, 042003 (2003)]. At the 95% confidence level, we find the upper limit for the production of a Gaussian enhancement with sigma=7.6 MeV in the Xi(-)pi(-) effective mass spectrum to be 0.3% of the number of observed Xi(0)(1530)->Xi(-)pi(+). We find similarly restrictive upper limits for an enhancement at 1862 MeV in the Xi(-)pi(+), (Xi) over bar (+)pi(-), and (Xi) over bar (+)pi(+) mass spectra. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Guanajuato, Guanajuato 37150, Mexico. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. Columbia Univ, Nevis Lab, Irvington, NY 10533 USA. Univ Massachusetts, Amherst, MA 01003 USA. RP Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. NR 24 TC 10 Z9 10 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 7 PY 2005 VL 95 IS 15 AR 152001 DI 10.1103/PhysRevLett.95.152001 PG 4 WC Physics, Multidisciplinary SC Physics GA 972GX UT WOS:000232443400020 ER PT J AU Du, DX Srolovitz, DJ Coltrin, ME Mitchell, CC AF Du, DX Srolovitz, DJ Coltrin, ME Mitchell, CC TI Systematic prediction of kinetically limited crystal growth morphologies SO PHYSICAL REVIEW LETTERS LA English DT Article ID EPITAXIAL LATERAL OVERGROWTH; SURFACES; ENERGY AB We develop a new, combined experimental and theoretical approach to make reliable predictions for the limiting case of surface reaction kinetics controlled growth. We solve the inverse problem of determining the growth velocity from observations of the evolution of the morphology of GaN islands grown by metalorganic chemical vapor deposition and make use of crystal symmetry and established theorems. We are able to predict the growth for both convex and concave surfaces, with faceted and curved features. We also give a general guideline for deducing growth velocities from experimental observations. C1 Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08540 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Du, DX (reprint author), Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08540 USA. NR 17 TC 65 Z9 65 U1 1 U2 35 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 7 PY 2005 VL 95 IS 15 AR 155503 DI 10.1103/PhysRevLett.95.155503 PG 4 WC Physics, Multidisciplinary SC Physics GA 972GX UT WOS:000232443400037 PM 16241736 ER PT J AU Fajans, J Bertsche, W Burke, K Chapman, SF van der Werf, DP AF Fajans, J Bertsche, W Burke, K Chapman, SF van der Werf, DP TI Effects of extreme magnetic quadrupole fields on penning traps and the consequences for antihydrogen trapping SO PHYSICAL REVIEW LETTERS LA English DT Article ID PLASMAS; PARTICLE AB Measurements on electrons confined in a Penning trap show that extreme quadrupole fields destroy particle confinement. Much of the particle loss comes from the hitherto unrecognized ballistic transport of particles directly into the wall. The measurements scale to the parameter regime used by ATHENA and ATRAP to create antihydrogen, and suggest that quadrupoles cannot be used to trap antihydrogen. C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Coll Swansea, Dept Phys, Swansea SA2 8PP, W Glam, Wales. RP Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM joel@physics.berkeley.edu RI Bertsche, William/A-3678-2012; Fajans, Joel/J-6597-2016; OI Bertsche, William/0000-0002-6565-9282; Fajans, Joel/0000-0002-4403-6027; van der Werf, Dirk/0000-0001-5436-5214 NR 16 TC 48 Z9 49 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 7 PY 2005 VL 95 IS 15 AR 155001 DI 10.1103/PhysRevLett.95.155001 PG 4 WC Physics, Multidisciplinary SC Physics GA 972GX UT WOS:000232443400032 PM 16241731 ER PT J AU Fournee, V Sharma, HR Shimoda, M Tsai, AP Unal, B Ross, AR Lograsso, TA Thiel, PA AF Fournee, V Sharma, HR Shimoda, M Tsai, AP Unal, B Ross, AR Lograsso, TA Thiel, PA TI Quantum size effects in metal thin films grown on quasicrystalline substrates SO PHYSICAL REVIEW LETTERS LA English DT Article ID AG AB We have investigated by scanning tunneling microscopy the growth of Bi and Ag thin films on the fivefold surface of Al63Cu24Fe13 and Al72Pd19.5Mn8.5 quasicrystal, respectively. For both systems, we observe the formation of islands with magic height, corresponding to the stacking of a specific number of atomic layers. We interpret this unusual growth morphology in terms of quantum size effects, arising from the confinement of the electron within the film. The magic island heights are thus a direct manifestation of the electronic structure of the quasicrystalline substrates. C1 Ecole Mines, CNRS, UMR 7584, LSG2M, F-54042 Nancy, France. Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan. Tohoku Univ, Inst Interdisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan. Iowa State Univ, Dept Chem, Ames Lab, Ames, IA 50011 USA. RP Fournee, V (reprint author), Ecole Mines, CNRS, UMR 7584, LSG2M, Parc Saurupt, F-54042 Nancy, France. RI Sharma, Hem /E-9936-2010; OI Sharma, Hem /0000-0003-0456-6258; Shimoda, Masahiko/0000-0002-6822-2836 NR 23 TC 51 Z9 51 U1 1 U2 16 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 7 PY 2005 VL 95 IS 15 AR 155504 DI 10.1103/PhysRevLett.95.155504 PG 4 WC Physics, Multidisciplinary SC Physics GA 972GX UT WOS:000232443400038 PM 16241737 ER PT J AU Ismail-Beigi, S Louie, SG AF Ismail-Beigi, S Louie, SG TI Self-trapped excitons in silicon dioxide: Mechanism and properties SO PHYSICAL REVIEW LETTERS LA English DT Article ID ALPHA-QUARTZ; SIO2; CRYSTALLINE; CENTERS; BAND; LUMINESCENCE; EXCITATIONS; PRINCIPLES; MODEL AB Irradiating silica produces self-trapped excitons (STEs) that spontaneously create atomic-scale distortions on which they localize themselves. Despite enduring interest in STEs and subsequent defects in this key technological material, the trapping mechanism and geometry remain a mystery. Our ab initio study of STEs in alpha-quartz using a many-electron Green's function approach answers both questions. The STE comprises a broken O-Si bond with the hole localized on the defected oxygen and the electron on the defected silicon atom in a planar sp(2) conformation. The results further explain quantitatively the measured STE spectra. C1 Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Ismail-Beigi, S (reprint author), Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA. RI Ismail-Beigi, Sohrab/F-2382-2014 OI Ismail-Beigi, Sohrab/0000-0002-7331-9624 NR 34 TC 51 Z9 51 U1 0 U2 17 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 7 PY 2005 VL 95 IS 15 AR 156401 DI 10.1103/PhysRevLett.95.156401 PG 4 WC Physics, Multidisciplinary SC Physics GA 972GX UT WOS:000232443400044 PM 16241743 ER PT J AU Savici, AT Fukaya, A Gat-Malureanu, IM Ito, T Russo, PL Uemura, YJ Wiebe, CR Kyriakou, PP MacDougall, GJ Rovers, MT Luke, GM Kojima, KM Goto, M Uchida, S Kadono, R Yamada, K Tajima, S Masui, T Eisaki, H Kaneko, N Greven, M Gu, GD AF Savici, AT Fukaya, A Gat-Malureanu, IM Ito, T Russo, PL Uemura, YJ Wiebe, CR Kyriakou, PP MacDougall, GJ Rovers, MT Luke, GM Kojima, KM Goto, M Uchida, S Kadono, R Yamada, K Tajima, S Masui, T Eisaki, H Kaneko, N Greven, M Gu, GD TI Muon spin relaxation studies of magnetic-field-induced effects in high-T-c superconductors SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTOR; SUPERFLUID DENSITY; LA2-XSRXCUO4; ROTATION AB Muon spin relaxation measurements in high transverse magnetic fields (parallel to c<^>) revealed strong field-induced quasistatic magnetism in the underdoped and Eu-doped (La,Sr)(2)CuO4 and La1.875Ba0.125CuO4, existing well above T-c and T-N. The susceptibility counterpart of Cu spin polarization, derived from the muon spin relaxation rate, exhibits a divergent behavior towards T similar to 25 K. No field-induced magnetism was detected in overdoped La1.81Sr0.19CuO4, optimally doped Bi2212, and Zn-doped YBa2Cu3O7. C1 Columbia Univ, Dept Phys, New York, NY 10027 USA. McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. Univ Tokyo, Dept Phys, Tokyo 1138656, Japan. KEK, Inst Mat Struct Sci, Tsukuba, Ibaraki, Japan. Kyoto Univ, Inst Chem Res, Uji, Kyoto 6110011, Japan. ISTEC, Koto Ku, Tokyo 1350062, Japan. Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Uemura, YJ (reprint author), Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. RI Yamada, Kazuyoshi/C-2728-2009; Gu, Genda/D-5410-2013; Savici, Andrei/F-2790-2013; Luke, Graeme/A-9094-2010; OI Gu, Genda/0000-0002-9886-3255; Savici, Andrei/0000-0001-5127-8967; Luke, Graeme/0000-0003-4762-1173; MacDougall, Gregory/0000-0002-7490-9650 NR 22 TC 39 Z9 39 U1 1 U2 8 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 7 PY 2005 VL 95 IS 15 AR 157001 DI 10.1103/PhysRevLett.95.157001 PG 4 WC Physics, Multidisciplinary SC Physics GA 972GX UT WOS:000232443400053 PM 16241752 ER PT J AU Tang, XZ Boozer, AH AF Tang, XZ Boozer, AH TI Constrained resonance in magnetic self-organization SO PHYSICAL REVIEW LETTERS LA English DT Article ID COAXIAL HELICITY INJECTION; CURRENT DRIVE; SPHERICAL TORUS; RELAXED STATES; PLASMA; SUSTAINMENT; RELAXATION; SPHEROMAK; FIELDS; PINCH AB In a linear driven problem with integral constraints, resonant phenomena can still persist but occur away from the fundamental frequencies of the unconstrained linear system. The frequency and the mode structure of the constrained resonances are found to be the intrinsic properties of the undriven and unconstrained linear systems. This is shown with a Taylor-relaxed magnetized plasma in a torus that conserves the net toroidal flux. The constrained resonance leads to a number of modifications to the standard paradigm of Taylor relaxation in a toroidal plasma. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. RP Tang, XZ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. NR 19 TC 5 Z9 5 U1 1 U2 5 PU AMERICAN PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 7 PY 2005 VL 95 IS 15 AR 155002 DI 10.1103/PhysRevLett.95.155002 PG 4 WC Physics, Multidisciplinary SC Physics GA 972GX UT WOS:000232443400033 PM 16241732 ER PT J AU Tang, ZX Donohoe, ST Robinson, JA Chiarelli, PA Wang, HL AF Tang, ZX Donohoe, ST Robinson, JA Chiarelli, PA Wang, HL TI Film formation, surface character, and relative density for electrochromic PEI/(PSS : PEDOT) multilayered thin films SO POLYMER LA English DT Article DE polyelectrolyte; electrochromic; self-assembly ID BY-LAYER MANIPULATION; CONJUGATED POLYMERS; POLYELECTROLYTE MULTILAYERS; WEAK POLYELECTROLYTES; FABRICATION; POLY(3,4-ETHYLENEDIOXYTHIOPHENE); POLYANILINE; HETEROSTRUCTURES; NANOCOMPOSITES; DERIVATIVES AB Thin films of alternating layer composition were constructed from the polyelectrolyte complex PEDOT:PSS and the polycation PEI, using ionic self assembly (ISA). The PEI/PEDOT:PSS system displays a consistent trend in film growth, as evidenced by UV-visible spectroscopy and ellipsometry. We find that the overall density of PEDOT increases with increasing number of layers. The density of PSS during multilayer deposition differs from PEDOT, with a sharp drop in density between the 3rd and 6th bilayers. Combining film deposition estimates with contact angle measurement, we distinguish three regions of growth, separated by the 3rd and 6th layers. We ascertain that a constant level of interpenetration between PEI and PEDOT:PSS is reached by the 6th layer. Results from kinetics experiments and pH variation reveal a local increase in pH for the PEDOT species as it comes into contact with the PEI surface. Electrochemical charactefization indicates that our films have an interpenetrated PEDOT network and a relatively hydrophilic surface. We demonstrate that ISA can be used to generate robust thin films, stable over a large pH range, whose coloration and conductivity may be manipulated on a large scale using applied voltage, and may be fine-tuned by changing the pH. The films exhibit electrochromic properties similar to other PEDOT derivatives, with a change in transmittance of 51% for 16 bilayers at 643 nm. (c) 2005 Elsevier Ltd. All rights reserved. C1 Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. Univ Oxford, Fac Clin Med, Oxford OX1 3JA, England. RP Chiarelli, PA (reprint author), Los Alamos Natl Lab, Biosci Div, POB 1663, Los Alamos, NM 87545 USA. EM peter.chiarelli@linacre.ox.ac.uk; hwang@lanl.gov NR 44 TC 32 Z9 32 U1 5 U2 36 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 J9 POLYMER JI Polymer PD OCT 7 PY 2005 VL 46 IS 21 BP 9043 EP 9052 DI 10.1016/j.polymer.2005.07.023 PG 10 WC Polymer Science SC Polymer Science GA 968OX UT WOS:000232172900017 ER PT J AU Huang, H Meakin, P Liu, MB McCreery, GE AF Huang, H Meakin, P Liu, MB McCreery, GE TI Modeling of multiphase fluid motion in fracture intersections and fracture networks SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID UNSATURATED FLOW; VOLUME-TRACKING; DYNAMICS AB A two- dimensional volume of fluid ( VOF) method was used to simulate liquid movement within unsaturated fracture intersections and fracture networks. Fragmentation and merging of liquid interfaces are automatically handled, without resorting to adaptive mesh refinement or interface repairing algorithms. Wetting effects are modeled by imposing different contact angles depending on whether the liquid interface is advancing, receding, or essentially stationary. The numerical examples and experimental validation presented in this study clearly demonstrate the potential value of the VOF method for the modeling of liquid motion in unsaturated fractures, fracture junctions and fracture networks. C1 Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Idaho Natl Lab, POB 1625,MS 2025, Idaho Falls, ID 83415 USA. EM paul.meakin@inl.gov NR 12 TC 11 Z9 11 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 6 PY 2005 VL 32 IS 19 AR L19402 DI 10.1029/2005GL023899 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 973WA UT WOS:000232552100006 ER PT J AU Roux, P Sabra, KG Gerstoft, P Kuperman, WA Fehler, MC AF Roux, P Sabra, KG Gerstoft, P Kuperman, WA Fehler, MC TI P-waves from cross-correlation of seismic noise SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ANDREAS FAULT ZONE; AMBIENT NOISE; CALIFORNIA; PARKFIELD; TOMOGRAPHY AB We present results from the cross- correlations of seismic noise recordings among pairs of stations in the Parkfield network, California. When performed on many station pairs at short ranges, the noise correlation function ( NCF) is the passive analog to a shot gather made with active sources. We demonstrate the presence of both a P- wave and a Rayleigh wave in the NCF. A time- frequency analysis allows us to separate the two wave packets that are further identified through their polarization. Arrival times were estimated from the NCF and they compared favorably with predictions using ray tracing in a regional velocity model and with the velocity gradient across the San Andreas Fault. C1 Univ Calif San Diego, Marine Phys Lab, La Jolla, CA 92093 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Univ Calif San Diego, Marine Phys Lab, La Jolla, CA 92093 USA. EM ksabra@ucsd.edu RI Gerstoft, Peter/B-2842-2009; roux, philippe/B-8538-2014; OI Gerstoft, Peter/0000-0002-0471-062X NR 18 TC 139 Z9 150 U1 4 U2 30 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 6 PY 2005 VL 32 IS 19 AR L19303 DI 10.1029/2005GL023803 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 973WA UT WOS:000232552100005 ER PT J AU Deng, HF Gifford, AN Zvonok, AM Cui, GJ Li, XY Fan, PS Deschamps, JR Flippen-Anderson, JL Gatley, SJ Makriyannis, A AF Deng, HF Gifford, AN Zvonok, AM Cui, GJ Li, XY Fan, PS Deschamps, JR Flippen-Anderson, JL Gatley, SJ Makriyannis, A TI Potent cannabinergic indole analogues as radioiodinatable brain imaging agents for the CB1 cannabinoid receptor SO JOURNAL OF MEDICINAL CHEMISTRY LA English DT Article ID RAT-BRAIN; BINDING; ANTAGONISTS; CHLORIDE; AGONISTS; ACID AB A series of novel aminoalkylindoles was synthesized in an effort to develop compounds that are potent agonists at the CB1 cannabinoid receptor and that are also easily labeled with radioisotopes of iodine for biochemical and imaging studies. 2-lodophenyl-[1-(l-methylpiperidin2-ylmethyl)-1H-indol-3-yllmethanone (8, AM2233) had a very high affinity for the rat CB1 receptor, with most of the affinity residing with the (R)-enantiomer. Radioiodinated 8, (R)-8, and (S)-8 were prepared by radioiododestannylation of the tributyltin analogues in high yields, radiochemical purities, and specific radioactivities. In a mouse hippocampal membrane preparation with [I-131](R)-8 as radioligand, racemic 8 exhibited a K-i value of 0.2 nM compared with 1.6 nM for WIN55212-2. In autoradiographic experiments with mouse brain sections, the distribution of radioiodinated 8 was consistent with that of brain CB1 receptors. Again, very little specific binding was seen with the (S)-enantiomer [I-131](S)-8 and none occurred with the (R)-enantiomer [I-131] (R)-8 in sections from CB1 receptor knockout mice. Radioiodinated 8 thus appears to be a suitable radioligand for studies of CB1 cannabinoid receptors. C1 Northeastern Univ, Ctr Drug Discovery, Boston, MA 02115 USA. Brookhaven Natl Lab, Ctr Translat Neuroimaging, Upton, NY 11973 USA. USN, Res Lab, Washington, DC 20375 USA. RP Makriyannis, A (reprint author), Northeastern Univ, Ctr Drug Discovery, 360 Huntington Ave,116 Mugar Life Sci Bldg, Boston, MA 02115 USA. EM a.makriyannis@neu.edu OI Deschamps, Jeffrey/0000-0001-5845-0010 FU NIDA NIH HHS [DA112-01, DA3801, DA9158] NR 27 TC 26 Z9 27 U1 1 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-2623 J9 J MED CHEM JI J. Med. Chem. PD OCT 6 PY 2005 VL 48 IS 20 BP 6386 EP 6392 DI 10.1021/jm0501351 PG 7 WC Chemistry, Medicinal SC Pharmacology & Pharmacy GA 971TC UT WOS:000232406600022 PM 16190764 ER PT J AU Townsend, D Li, W Lee, SK Gross, RL Suits, AG AF Townsend, D Li, W Lee, SK Gross, RL Suits, AG TI Universal and state-resolved imaging of chemical dynamics SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DIFFERENTIAL CROSS-SECTIONS; HYDROGEN-EXCHANGE REACTION; EXTREME NONLINEAR OPTICS; POTENTIAL-ENERGY SURFACE; ULTRAVIOLET PHOTODISSOCIATION; ANGULAR-DISTRIBUTION; MOLECULAR-BEAM; HCL DIMER; 193 NM; VIBRATIONAL PREDISSOCIATION AB We showcase the use of high-resolution ion imaging with complementary state-resolved and "universal" vacuum ultraviolet probes to address a broad range of fundamental problems in chemical reaction dynamics. Examples from our recent work include applications in state-correlated unimolecular reactions, ion pair dissociation dynamics and spectroscopy, crossed-beam reactive scattering, and atomic angular momentum polarization in photodissociation. These studies are all directed to achieving a detailed understanding of atomic and molecular interactions, with particular emphasis on reaction mechanisms outside the scope of transition state theory; on spectroscopy and dynamics of highly excited, transient species; on nonadiabatic reaction mechanisms; and on chemical dynamics in polyatornic systems. C1 Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. Stony Brook Univ, Dept Chem, Stony Brook, NY 11794 USA. RP Suits, AG (reprint author), Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. EM asuits@chem.wayne.edu RI Townsend, Dave/K-3461-2015 NR 97 TC 34 Z9 34 U1 3 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD OCT 6 PY 2005 VL 109 IS 39 BP 8661 EP 8674 DI 10.1021/jp0526086 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 970ML UT WOS:000232314200001 PM 16834268 ER PT J AU Waterland, MR Howell, SL Gordon, KC Burrell, AK AF Waterland, MR Howell, SL Gordon, KC Burrell, AK TI Structural changes upon photoexcitation into the metal-to-ligand charge-transfer state of [Cu(pqx)(PPh3)(2)](+) probed by resonance Raman spectroscopy and density functional theory SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID RESOLVED INFRARED-SPECTROSCOPY; SENSITIZED SOLAR-CELLS; CYCLOMETALATED IRIDIUM COMPLEXES; ELECTRONIC EXCITED-STATES; LIGHT-EMITTING DEVICES; AB-INITIO CALCULATIONS; CONFORMATIONAL STABILITY; INTENSITY ANALYSIS; REORGANIZATION ENERGIES; VIBRATIONAL ASSIGNMENTS AB The structural changes that occur when [Cu(pqx)(PPh3)(2)](+) (pqx is 2-(2'-pyridyl)quinoxaline) undergoes excitation through a metal-to-ligand charge-transfer (MLCT) transition are investigated using resonance Raman excitation profiles coupled with density functional theory (DFT). The DFT calculations predict bond lengths to within 3 pm and absolute deviations of 7 cm(-1) for the vibrational frequencies of [Cu(pqx)(PPh3)(2)](+). TDDFT calculations of oscillator strengths (f = 0.089) and band positions (419 nm) showed close agreement with experiment (f = 0.07, 431 nm). Resonance Raman spectra show the 527 cm(-1) (v(29)) and 1476 cm(-1) (v(75)) modes undergo the largest dimensionless displacement (Delta = 1.5 and 1.1, respectively) following photoexcitation into the MLCT Franck-Condon region. The solvent couples strongly to the MLCT transition and resonance Raman intensity analysis (RRIA) gives a solvent reorganization energy of 3400 cm(-1) for dichloromethane and 2800 cm(-1) for chloroform solutions. A large inner-sphere reorganization of 3430 cm(-1) in dichloromethane solution (3520 cm(-1) in chloroform solution) was found for [Cu(pqx)(PPh3)(2)](+), indicating that the molecule as a whole undergoes significant distortion following MLCT excitation. C1 Massey Univ, Inst Fundamental Sci, MacDiarmid Inst Adv Mat & Nanotechnol, Palmerston North, New Zealand. Univ Otago, Dept Chem, MacDiarmid Inst Adv Mat & Nanotechnol, Dunedin, New Zealand. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Waterland, MR (reprint author), Massey Univ, Inst Fundamental Sci, MacDiarmid Inst Adv Mat & Nanotechnol, Palmerston North, New Zealand. EM M.Waterland@massey.ac.nz; kgordon@alkali.otago.ac.nz RI Gordon, Keith/B-7149-2008; OI Gordon, Keith/0000-0003-2833-6166 NR 57 TC 29 Z9 29 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD OCT 6 PY 2005 VL 109 IS 39 BP 8826 EP 8833 DI 10.1021/jp052954n PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 970ML UT WOS:000232314200019 PM 16834286 ER PT J AU Colligan, M Lee, Y Vogt, T Celestian, AJ Parise, JB Marshall, WG Hriljac, JA AF Colligan, M Lee, Y Vogt, T Celestian, AJ Parise, JB Marshall, WG Hriljac, JA TI High-pressure neutron diffraction study of superhydrated natrolite SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Letter ID SILICEOUS ZEOLITE-Y; NA-A; CRYSTAL-STRUCTURE; INDUCED HYDRATION; IONIC-CONDUCTION; LI-A; AMORPHIZATION; PARANATROLITE; SCOLECITE; BEHAVIOR AB Neutron powder diffraction data were collected on a sample of natrolite and a 1: 1 (v/v) mixture of perdeuterated methanol and water at a pressure of 1.87(11) GPa. The natrolite sample was superhydrated, with a water content double that observed at ambient pressure. All of the water deuterium atoms were located and the nature and extent of the hydrogen bonding elucidated for the first time. This has allowed the calculation of bond valence sums for the water oxygen atoms, and from this, it can be deduced that the key energetic factor leading to loss of the additional water molecule upon pressure release is the poor coordination to sodium cations within the pores. C1 Univ Birmingham, Sch Chem, Birmingham B15 2TT, W Midlands, England. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. SUNY Stony Brook, Ctr Environm Mol Sci, Stony Brook, NY 11794 USA. SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. RP Hriljac, JA (reprint author), Univ Birmingham, Sch Chem, Birmingham B15 2TT, W Midlands, England. EM j.a.hriljac@bham.ac.uk RI Vogt, Thomas /A-1562-2011; Lee, Yongjae/K-6566-2016 OI Vogt, Thomas /0000-0002-4731-2787; NR 28 TC 31 Z9 34 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 6 PY 2005 VL 109 IS 39 BP 18223 EP 18225 DI 10.1021/jp054142x PG 3 WC Chemistry, Physical SC Chemistry GA 970OC UT WOS:000232318500004 PM 16853343 ER PT J AU Dimitrijevic, NM Rajh, T Ahrenkiel, SP Nedeljkovic, JM Micic, OI Nozik, AJ AF Dimitrijevic, NM Rajh, T Ahrenkiel, SP Nedeljkovic, JM Micic, OI Nozik, AJ TI Charge separation in heterostructures of InP nanocrystals with metal particles SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID SEMICONDUCTOR QUANTUM RODS; GOLD NANOPARTICLES; STRUCTURAL-PROPERTIES; FERMI-LEVEL; DOTS; GROWTH; NANOSTRUCTURES; RESONANCE; COLLOIDS; WIRES AB The optical and electron paramagnetic resonance (EPR) properties of InP nanocrystals, in which metallic gold or indium is present as an incorporated part of the nanocrystals, have been studied. A study of Au/InP quantum rods supports different carrier localization regimes compared to metal-free quantum rods, including the charge-separated state for which the electron and hole are located in different parts of the heterostructure. They also show that elongated semiconductors that grow on metallic catalysts have electronic properties that are different from those of pure semiconductor nanocrystals of the same shape. We have also developed a simple method for growing melted indium particles on the surface of colloidal spherical InP nanocrystals, and in these In/InP nanocrystals the emission is completely quenched while the absorption spectrum moves to red due to the strong mixing of the semiconductor and metal electronic states. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Micic, OI (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM Olga_Micic@nrel.gov RI Nozik, Arthur/A-1481-2012; Nozik, Arthur/P-2641-2016 NR 26 TC 7 Z9 8 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 6 PY 2005 VL 109 IS 39 BP 18243 EP 18249 DI 10.1021/jp051201y PG 7 WC Chemistry, Physical SC Chemistry GA 970OC UT WOS:000232318500008 PM 16853347 ER PT J AU Wunderlich, B AF Wunderlich, B TI Effect of decoupling of molecular segments, microscopic stress-transfer and confinement of the nanophases in semicrystalline polymers SO MACROMOLECULAR RAPID COMMUNICATIONS LA English DT Review DE decoupling; glass transition; irreversible thermodynamics; melting point; nanophase ID CRYSTALLIZATION; POLYETHYLENE; POLY(OXY-2,6-DIMETHYL-1,4-PHENYLENE); MACROMOLECULES; TRANSITIONS; CALORIMETRY; FIBERS; PHASE; MASS AB Semi-crystalline macromolecules are globally metastable, multi-phase systems with phase dimensions ranging from micrometers to nanometers. The polymer molecules, being usually longer than one micrometer, cross the boundaries and decouple at the interfaces. This decoupling is often not complete and different degrees of influence are extended across the interfaces. Thermodynamically, crystals can be characterized by their melting behavior and non-crystalline phases by their glass transition. On weak coupling, the non-crystalline segments only show a broadening of the glass transition to higher temperature. With stronger coupling, non-crystalline material may remain solid at the transition of the bulk-amorphous phase and form a separate, rigid-amorphous nanophase, or rigid amorphous fraction, RAF. The RAF undergoes its glass transition either below, at, or even above, the melting temperature. In the presence of a RAF, the semi-crystalline polymers may be a system of three or more types of phases with different relaxation effects due to the coupling between the phases. This and other examples of decoupling are discussed here and a general concept is developed. This applies to positional decoupling at positions of chemical changes within the molecule, such as in copolymers, and to physical changes, such as in entanglements, and is not limited to decoupling at interfaces. Finally, it is pointed out that there is also the possibility of a temporal decoupling of thermodynamically simultaneous changes, which on sufficiently slow kinetics in one may change to consecutive changes. Many of these aspects of decoupling on a molecular scale influence the macroscopic properties and must be considered for the analysis and application of modern materials. C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. RP Wunderlich, B (reprint author), 200 Baltusrol Rd, Knoxville, TN 37934 USA. EM Wunderlich@CharterTN.net NR 32 TC 16 Z9 16 U1 0 U2 13 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1022-1336 J9 MACROMOL RAPID COMM JI Macromol. Rapid Commun. PD OCT 6 PY 2005 VL 26 IS 19 BP 1521 EP 1531 DI 10.1002/marc.200500488 PG 11 WC Polymer Science SC Polymer Science GA 976RQ UT WOS:000232751300001 ER PT J AU Gomberg, J Johnson, P AF Gomberg, J Johnson, P TI Seismology - Dynamic triggering of earthquakes SO NATURE LA English DT Editorial Material ID DEFORMATIONS C1 US Geol Survey, Memphis, TN 38152 USA. Los Alamos Natl Lab, Geophys Grp EES11, Los Alamos, NM 87545 USA. RP Gomberg, J (reprint author), US Geol Survey, Suite 2, Memphis, TN 38152 USA. EM gomberg@usgs.gov NR 10 TC 57 Z9 59 U1 2 U2 7 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD OCT 6 PY 2005 VL 437 IS 7060 BP 830 EP 830 DI 10.1038/nature04167 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 970VB UT WOS:000232338600034 PM 16208360 ER PT J AU Yan, N Chai, JJ Lee, ES Gu, LC Liu, Q He, JQ Wu, JW Kokel, D Li, HL Hao, Q Xue, D Shi, YG AF Yan, N Chai, JJ Lee, ES Gu, LC Liu, Q He, JQ Wu, JW Kokel, D Li, HL Hao, Q Xue, D Shi, YG TI Structure of the CED-4-CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans SO NATURE LA English DT Article ID REGULATORS CED-9; PROTEIN CED-9; ENCODES; EGL-1; ACTIVATION; APOPTOSIS; CRYSTALLOGRAPHY; OLIGOMERIZATION; RECOGNITION; ASSOCIATION AB Interplay among four genes - egl-1, ced-9, ced-4 and ced-3 - controls the onset of programmed cell death in the nematode Caenorhabditis elegans. Activation of the cell-killing protease CED-3 requires CED-4. However, CED-4 is constitutively inhibited by CED-9 until its release by EGL-1. Here we report the crystal structure of the CED-4 - CED-9 complex at 2.6 angstrom resolution, and a complete reconstitution of the CED-3 activation pathway using homogeneous proteins of CED-4, CED-9 and EGL-1. One molecule of CED-9 binds to an asymmetric dimer of CED-4, but specifically recognizes only one of the two CED-4 molecules. This specific interaction prevents CED-4 from activating CED-3. EGL-1 binding induces pronounced conformational changes in CED-9 that result in the dissociation of the CED-4 dimer from CED-9. The released CED-4 dimer further dimerizes to form a tetramer, which facilitates the autoactivation of CED-3. Together, our studies provide important insights into the regulation of cell death activation in C. elegans. C1 Princeton Univ, Lewis Thomas Lab, Dept Mol Biol, Princeton, NJ 08544 USA. Univ Colorado, Dept Mol Cellular & Dev Biol, Boulder, CO 80309 USA. Gwangju Inst Sci & Technol, Dept Life Sci, Kwangju 500712, South Korea. Cornell Univ, Ithaca, NY 14853 USA. Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Shi, YG (reprint author), Princeton Univ, Lewis Thomas Lab, Dept Mol Biol, Washington Rd, Princeton, NJ 08544 USA. EM yshi@molbio.princeton.edu RI He, Jiaqing/A-2245-2010; Liu, Qun/A-8757-2011; Hao, Quan/C-4304-2009; OI Liu, Qun/0000-0002-1179-290X; kokel, david/0000-0002-1981-1511; XUE, DING/0000-0002-8429-8136 NR 40 TC 136 Z9 148 U1 4 U2 51 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD OCT 6 PY 2005 VL 437 IS 7060 BP 831 EP 837 DI 10.1038/nature04002 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 970VB UT WOS:000232338600035 PM 16208361 ER PT J AU Fox, DB Frail, DA Price, PA Kulkarni, SR Berger, E Piran, T Soderberg, AM Cenko, SB Cameron, PB Gal-Yam, A Kasliwal, MM Moon, DS Harrison, FA Nakar, E Schmidt, BP Penprase, B Chevalier, RA Kumar, P Roth, K Watson, D Lee, BL Shectman, S Phillips, MM Roth, M McCarthy, PJ Rauch, M Cowie, L Peterson, BA Rich, J Kawai, N Aoki, K Kosugi, G Totani, T Park, HS MacFadyen, A Hurley, KC AF Fox, DB Frail, DA Price, PA Kulkarni, SR Berger, E Piran, T Soderberg, AM Cenko, SB Cameron, PB Gal-Yam, A Kasliwal, MM Moon, DS Harrison, FA Nakar, E Schmidt, BP Penprase, B Chevalier, RA Kumar, P Roth, K Watson, D Lee, BL Shectman, S Phillips, MM Roth, M McCarthy, PJ Rauch, M Cowie, L Peterson, BA Rich, J Kawai, N Aoki, K Kosugi, G Totani, T Park, HS MacFadyen, A Hurley, KC TI The afterglow of GRB 050709 and the nature of the short-hard gamma-ray bursts SO NATURE LA English DT Article ID 25 APRIL 1998; UNUSUAL SUPERNOVA; ENERGY RESERVOIR; SHORT-DURATION; EMISSION; MERGERS; IMAGES; STARS; LONG AB The final chapter in the long-standing mystery of the gamma-ray bursts (GRBs) centres on the origin of the short-hard class of bursts, which are suspected on theoretical grounds to result from the coalescence of neutron-star or black-hole binary systems. Numerous searches for the afterglows of short-hard bursts have been made, galvanized by the revolution in our understanding of long-duration GRBs that followed the discovery in 1997 of their broadband (X-ray, optical and radio) afterglow emission. Here we present the discovery of the X-ray afterglow of a short-hard burst, GRB 050709, whose accurate position allows us to associate it unambiguously with a star-forming galaxy at redshift z = 0.160, and whose optical lightcurve definitively excludes a supernova association. Together with results from three other recent short-hard bursts, this suggests that short-hard bursts release much less energy than the long-duration GRBs. Models requiring young stellar populations, such as magnetars and collapsars, are ruled out, while coalescing degenerate binaries remain the most promising progenitor candidates. C1 Natl Radio Astron Observ, Socorro, NM 87801 USA. CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. Carnegie Observ, Pasadena, CA 91101 USA. Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. Pomona Coll, Claremont, CA 91711 USA. Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA. Univ Texas, Dept Astron, Austin, TX 78731 USA. Gemini Observ, Hilo, HI 96720 USA. Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H8, Canada. Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. Kyoto Univ, Sch Sci, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Inst Adv Study, Princeton, NJ 08540 USA. Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Frail, DA (reprint author), Natl Radio Astron Observ, POB O, Socorro, NM 87801 USA. EM dfox@astro.psu.edu; dfrail@nrao.edu RI Watson, Darach/E-4521-2015 OI Watson, Darach/0000-0002-4465-8264 NR 43 TC 351 Z9 358 U1 0 U2 12 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD OCT 6 PY 2005 VL 437 IS 7060 BP 845 EP 850 DI 10.1038/nature04189 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 970VB UT WOS:000232338600037 PM 16208362 ER PT J AU Gehrels, N Sarazin, CL O'Brien, PT Zhang, B Barbier, L Barthelmy, SD Blustin, A Burrows, DN Cannizzo, J Cummings, JR Goad, M Holland, ST Hurkett, CP Kennea, JA Levan, A Markwardt, CB Mason, KO Meszaros, P Page, M Palmer, DM Rol, E Sakamoto, T Willingale, R Angelini, L Beardmore, A Boyd, PT Breeveld, A Campana, S Chester, MM Chincarini, G Cominsky, LR Cusumano, G de Pasquale, M Fenimore, EE Giommi, P Gronwall, C Grupe, D Hill, JE Hinshaw, D Hjorth, J Hullinger, D Hurley, KC Klose, S Kobayashi, S Kouveliotou, C Krimm, HA Mangano, V Marshall, FE McGowan, K Moretti, A Mushotzky, RF Nakazawa, K Norris, JP Nousek, JA Osborne, JP Page, K Parsons, AM Patel, S Perri, M Poole, T Romano, P Roming, PWA Rosen, S Sato, G Schady, P Smale, AP Sollerman, J Starling, R Still, M Suzuki, M Tagliaferri, G Takahashi, T Tashiro, M Tueller, J Wells, AA White, NE Wijers, RAMJ AF Gehrels, N Sarazin, CL O'Brien, PT Zhang, B Barbier, L Barthelmy, SD Blustin, A Burrows, DN Cannizzo, J Cummings, JR Goad, M Holland, ST Hurkett, CP Kennea, JA Levan, A Markwardt, CB Mason, KO Meszaros, P Page, M Palmer, DM Rol, E Sakamoto, T Willingale, R Angelini, L Beardmore, A Boyd, PT Breeveld, A Campana, S Chester, MM Chincarini, G Cominsky, LR Cusumano, G de Pasquale, M Fenimore, EE Giommi, P Gronwall, C Grupe, D Hill, JE Hinshaw, D Hjorth, J Hullinger, D Hurley, KC Klose, S Kobayashi, S Kouveliotou, C Krimm, HA Mangano, V Marshall, FE McGowan, K Moretti, A Mushotzky, RF Nakazawa, K Norris, JP Nousek, JA Osborne, JP Page, K Parsons, AM Patel, S Perri, M Poole, T Romano, P Roming, PWA Rosen, S Sato, G Schady, P Smale, AP Sollerman, J Starling, R Still, M Suzuki, M Tagliaferri, G Takahashi, T Tashiro, M Tueller, J Wells, AA White, NE Wijers, RAMJ TI A short gamma-ray burst apparently associated with an elliptical galaxy at redshift z=0.225 SO NATURE LA English DT Article ID SHORT-DURATION; NEUTRON-STARS; AFTERGLOWS; SGR-1806-20; BINARIES; FLARE AB Gamma-ray bursts (GRBs) come in two classes(1): long (> 2 s), soft-spectrum bursts and short, hard events. Most progress has been made on understanding the long GRBs, which are typically observed at high redshift ( z approximate to 1) and found in subluminous star-forming host galaxies. They are likely to be produced in core-collapse explosions of massive stars(2). In contrast, no short GRB had been accurately (< 1000) and rapidly ( minutes) located. Here we report the detection of the X-ray afterglow from - and the localization of - the short burst GRB 050509B. Its position on the sky is near a luminous, non-star-forming elliptical galaxy at a redshift of 0.225, which is the location one would expect(3,4) if the origin of this GRB is through the merger of neutron-star or blackhole binaries. The X-ray afterglow was weak and faded below the detection limit within a few hours; no optical afterglow was detected to stringent limits, explaining the past difficulty in localizing short GRBs. C1 NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. Univ Virginia, Dept Astron, Charlottesville, VA 22903 USA. Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. Univ Nevada, Dept Phys, Las Vegas, NV 89154 USA. UCL, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. Univ Maryland Baltimore Cty, Joint Ctr Astrophys, Baltimore, MD 21250 USA. CNR, Washington, DC 20418 USA. Univ Space Res Assoc, Columbia, MD 21044 USA. Univ Maryland, Dept Astron, College Pk, MD 20742 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. INAF, Osservatorio Astron Brera, I-23807 Merate, Italy. Univ Milano Bicocca, I-20126 Milan, Italy. Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. INAF, Ist Astrofis Spaziale & Cosm, I-90146 Palermo, Italy. ASI Sci Data Ctr, I-00044 Frascati, Italy. SP Syst Inc, Greenbelt, MD 20770 USA. Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. Thuringer Landessternwarte Tautenburg, D-07778 Tautenburg, Germany. NASA, George C Marshall Space Flight Ctr, NSSTC, Huntsville, AL 35805 USA. JAXA, Inst Space & Astronaut Sci, Kanagawa 2298510, Japan. Univ Space Res Assoc, NSSTC, Huntsville, AL 35805 USA. NASA Headquarters, Off Space Sci, Washington, DC 20546 USA. Stockholm Observ, Dept Astron, S-10691 Stockholm, Sweden. Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. Saitama Univ, Dept Phys, Sakura, Saitama 3388570, Japan. RP Gehrels, N (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM gehrels@milkyway.gsfc.nasa.gov RI Barthelmy, Scott/D-2943-2012; Parsons, Ann/I-6604-2012; Tashiro, Makoto/J-4562-2012; Hjorth, Jens/M-5787-2014; White, Nicholas/B-6428-2012; Boyd, Patricia/D-3274-2012; Gehrels, Neil/D-2971-2012; Tueller, Jack/D-5334-2012 OI Hjorth, Jens/0000-0002-4571-2306; Campana, Sergio/0000-0001-6278-1576; giommi, paolo/0000-0002-2265-5003; Wijers, Ralph/0000-0002-3101-1808; Cusumano, Giancarlo/0000-0002-8151-1990; moretti, alberto/0000-0002-9770-0315; White, Nicholas/0000-0003-3853-3462; NR 30 TC 379 Z9 385 U1 0 U2 8 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD OCT 6 PY 2005 VL 437 IS 7060 BP 851 EP 854 DI 10.1038/nature04142 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 970VB UT WOS:000232338600038 PM 16208363 ER PT J AU Villasenor, JS Lamb, DQ Ricker, GR Atteia, JL Kawai, N Butler, N Nakagawa, Y Jernigan, JG Boer, M Crew, GB Donaghy, TQ Doty, J Fenimore, EE Galassi, M Graziani, C Hurley, K Levine, A Martel, F Matsuoka, M Olive, JF Prigozhin, G Sakamoto, T Shirasaki, Y Suzuki, M Tamagawa, T Vanderspek, R Woosley, SE Yoshida, A Braga, J Manchanda, R Pizzichini, G Takagishi, K Yamauchi, M AF Villasenor, JS Lamb, DQ Ricker, GR Atteia, JL Kawai, N Butler, N Nakagawa, Y Jernigan, JG Boer, M Crew, GB Donaghy, TQ Doty, J Fenimore, EE Galassi, M Graziani, C Hurley, K Levine, A Martel, F Matsuoka, M Olive, JF Prigozhin, G Sakamoto, T Shirasaki, Y Suzuki, M Tamagawa, T Vanderspek, R Woosley, SE Yoshida, A Braga, J Manchanda, R Pizzichini, G Takagishi, K Yamauchi, M TI Discovery of the short gamma-ray burst GRB 050709 SO NATURE LA English DT Article ID 28 FEBRUARY 1997; SGR-1806-20; AFTERGLOW; SPECTRA; CATALOG; FLARE AB Gamma-ray bursts (GRBs) fall into two classes: short-hard and long-soft bursts(1-3). The latter are now known to have X-ray(4) and optical(5) afterglows, to occur at cosmological distances(6) in star-forming galaxies(7), and to be associated with the explosion of massive stars(8,9). In contrast, the distance scale, the energy scale and the progenitors of the short bursts have remained a mystery. Here we report the discovery of a short-hard burst whose accurate localization has led to follow-up observations that have identified the X-ray afterglow(10) and ( for the first time) the optical afterglow(10,11) of a short-hard burst; this in turn led to the identification of the host galaxy of the burst as a late-type galaxy at z = 0.16 (ref. 10). These results show that at least some short-hard bursts occur at cosmological distances in the outskirts of galaxies, and are likely to be caused by the merging of compact binaries. C1 MIT, Kavli Inst, Cambridge, MA 02139 USA. Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. Observ Midi Pyrenees, Astrophys Lab, F-31400 Toulouse, France. Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. Aoyama Gakuin Univ, Dept Math & Phys, Kanagawa 2298558, Japan. Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. Observ Midi Pyrenees, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse, France. Noqsi Aerosp Ltd, Pine, CO 80470 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Espace Inc, Hull, MA 02045 USA. Japan Aerosp Explorat Agcy, Tsukuba Space Ctr, Tsukuba, Ibaraki 3058505, Japan. NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. Natl Astron Observ, Tokyo 1818588, Japan. RIKEN, Wako, Saitama 3510198, Japan. Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, Brazil. Tata Inst Fundamental Res, Dept Astron & Astrophys, Bombay 400005, Maharashtra, India. INAF IASF Bologna, I-40129 Bologna, Italy. Miyazaki Univ, Fac Engn, Miyazaki 8892192, Japan. RP Ricker, GR (reprint author), MIT, Kavli Inst, 70 Vassar St, Cambridge, MA 02139 USA. EM jsvilla@space.mit.edu; grr@space.mit.edu NR 28 TC 187 Z9 189 U1 0 U2 2 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD OCT 6 PY 2005 VL 437 IS 7060 BP 855 EP 858 DI 10.1038/nature04213 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 970VB UT WOS:000232338600039 PM 16208364 ER PT J AU Johnson, PA Jia, X AF Johnson, PA Jia, X TI Nonlinear dynamics, granular media and dynamic earthquake triggering SO NATURE LA English DT Article ID SLOW DYNAMICS; STRESS-FIELD; DEFORMATIONS; SEISMICITY; CALIFORNIA; ELASTICITY; TRANSIENT; LANDERS; ZONE AB The 1992 magnitude 7.3 Landers earthquake triggered an exceptional number of additional earthquakes within California and as far north as Yellowstone and Montana(1-3). Since this observation, other large earthquakes have been shown to induce dynamic triggering at remote distances - for example, after the 1999 magnitude 7.1 Hector Mine(1) and the 2002 magnitude 7.9 Denali(4) earthquakes - and in the near-field as aftershocks(5). The physical origin of dynamic triggering, however, remains one of the least understood aspects of earthquake nucleation(1-5). The dynamic strain amplitudes from a large earthquake are exceedingly small once the waves have propagated more than several fault radii. For example, a strain wave amplitude of 10(-6) and wavelength 1 m corresponds to a displacement amplitude of about 10(-7) m. Here we show that the dynamic, elastic-nonlinear behaviour of fault gouge perturbed by a seismic wave may trigger earthquakes, even with such small strains. We base our hypothesis on recent laboratory dynamic experiments conducted in granular media, a fault gouge surrogate(6,7). From these we infer that, if the fault is weak(8-10), seismic waves cause the fault core modulus to decrease abruptly and weaken further. If the fault is already near failure, this process could therefore induce fault slip. C1 Los Alamos Natl Lab, Geophys Grp EES11, Los Alamos, NM 87545 USA. Univ Marne la Vallee, CNRS, UMR 8108, Lab Phys Mat Divises & Interfaces, F-77454 Marne La Vallee, France. RP Johnson, PA (reprint author), Los Alamos Natl Lab, Geophys Grp EES11, MS D443, Los Alamos, NM 87545 USA. EM paj@lanl.gov NR 28 TC 150 Z9 155 U1 1 U2 32 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD OCT 6 PY 2005 VL 437 IS 7060 BP 871 EP 874 DI 10.1038/nature04015 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 970VB UT WOS:000232338600043 PM 16208368 ER PT J AU Chen, JW Detmold, W AF Chen, JW Detmold, W TI Universality of the EMC effect SO PHYSICS LETTERS B LA English DT Article ID EFFECTIVE-FIELD THEORY; PARTON DISTRIBUTIONS; NUCLEAR-STRUCTURE; MATRIX-ELEMENTS; DEPENDENCE; SCATTERING; LATTICE; QCD; OPERATORS; SYSTEMS AB Using effective field theory, we investigate nuclear modification of nucleon parton distributions (for example, the EMC effect). We show that the universality of the shape distortion in nuclear parton distributions (the factorisation of the Bjorken x and atomic number (A) dependence) is model independent and emerges naturally in effective field theory. We then extend our analysis to study the analogous nuclear modifications in isospin and spin-dependent parton distributions and generalised parton distributions. (c) 2005 Elsevier B.V. All rights reserved. C1 Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. Natl Taiwan Univ, Natl Ctr Theoret Sci, Taipei 10617, Taiwan. Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Chen, JW (reprint author), Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. EM jwc@phys.ntu.edu.tw; wdetmold@phys.washington.edu OI Detmold, William/0000-0002-0400-8363; Chen, Jiunn-Wei/0000-0002-8650-9371 NR 45 TC 10 Z9 10 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD OCT 6 PY 2005 VL 625 IS 1-2 BP 165 EP 170 DI 10.1016/j.physletb.2005.08.041 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 968NN UT WOS:000232169300022 ER PT J AU Abdel-Fattah, AI AF Abdel-Fattah, AI TI Recent advances in electrokinetics: A collection of papers presented at the 7th International Electrokinetic Phenomena Conference (ELKIN 2004), Pittsburgh, USA, June 2004 - Preface SO COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS LA English DT Editorial Material C1 Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Abdel-Fattah, AI (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. EM amr2450@lanl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-7757 J9 COLLOID SURFACE A JI Colloid Surf. A-Physicochem. Eng. Asp. PD OCT 5 PY 2005 VL 267 IS 1-3 BP 1 EP 2 DI 10.1016/j.colsurfa.2005.06.029 PG 2 WC Chemistry, Physical SC Chemistry GA 977GY UT WOS:000232792600001 ER PT J AU Koomey, JG AF Koomey, JG TI Economic models of climate change: A critique SO ECOLOGICAL ECONOMICS LA English DT Book Review C1 Lawrence Berkeley Natl Lab, Berkeley, CA USA. Stanford Univ, Stanford, CA 94305 USA. RP Koomey, JG (reprint author), Stanford Univ, Stanford, CA 94305 USA. EM JGKoomey@stanford.edu NR 5 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-8009 EI 1873-6106 J9 ECOL ECON JI Ecol. Econ. PD OCT 5 PY 2005 VL 55 IS 1 BP 131 EP 132 DI 10.1016/j.ecolecon.2005.01.003 PG 2 WC Ecology; Economics; Environmental Sciences; Environmental Studies SC Environmental Sciences & Ecology; Business & Economics GA 972UO UT WOS:000232478900012 ER PT J AU Lamarque, JF Kiehl, JT Brasseur, GP Butler, T Cameron-Smith, P Collins, WD Collins, WJ Granier, C Hauglustaine, D Hess, PG Holland, EA Horowitz, L Lawrence, MG McKenna, D Merilees, P Prather, MJ Rasch, PJ Rotman, D Shindell, D Thornton, P AF Lamarque, JF Kiehl, JT Brasseur, GP Butler, T Cameron-Smith, P Collins, WD Collins, WJ Granier, C Hauglustaine, D Hess, PG Holland, EA Horowitz, L Lawrence, MG McKenna, D Merilees, P Prather, MJ Rasch, PJ Rotman, D Shindell, D Thornton, P TI Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: Analysis of nitrogen deposition SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID GENERAL-CIRCULATION MODEL; CHEMICAL-TRANSPORT MODELS; GASEOUS DRY DEPOSITION; TROPOSPHERIC OZONE; CLIMATE MODEL; 3-DIMENSIONAL SIMULATION; NONMETHANE HYDROCARBONS; TERRESTRIAL ECOSYSTEMS; SURFACE RESISTANCES; ASSIMILATED WINDS AB [1] In this study, we present the results of nitrogen deposition on land from a set of 29 simulations from six different tropospheric chemistry models pertaining to present-day and 2100 conditions. Nitrogen deposition refers here to the deposition ( wet and dry) of all nitrogen-containing gas phase chemical species resulting from NOx (NO + NO2) emissions. We show that under the assumed IPCC SRES A2 scenario the global annual average nitrogen deposition over land is expected to increase by a factor of similar to 2.5, mostly because of the increase in nitrogen emissions. This will significantly expand the areas with annual average deposition exceeding 1 gN/m(2)/year. Using the results from all models, we have documented the strong linear relationship between models on the fraction of the nitrogen emissions that is deposited, regardless of the emissions ( present day or 2100). On average, approximately 70% of the emitted nitrogen is deposited over the landmasses. For present-day conditions the results from this study suggest that the deposition over land ranges between 25 and 40 Tg(N)/year. By 2100, under the A2 scenario, the deposition over the continents is expected to range between 60 and 100 Tg( N)/year. Over forests the deposition is expected to increase from 10 Tg( N)/year to 20 Tg( N)/year. In 2100 the nitrogen deposition changes from changes in the climate account for much less than the changes from increased nitrogen emissions. C1 Natl Ctr Atmospher Res, Boulder, CO 80305 USA. Max Planck Inst Meteorol, D-20146 Hamburg, Germany. Max Planck Inst Chem, D-55128 Mainz, Germany. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. Met Off, Hadley Ctr, Exeter EX1 3PB, Devon, England. Inst Pierre Simon Laplace, Serv Aeron, Paris, France. NOAA, CIRES, Aeron Lab, Boulder, CO USA. Inst Pierre Simon Laplace, Lab Sci Climat & Environm, F-91191 Gif Sur Yvette, France. NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA. Univ Calif Irvine, Irvine, CA 92697 USA. NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Natl Ctr Atmospher Res, Boulder, CO 80305 USA. EM lamar@ucar.edu RI Cameron-Smith, Philip/E-2468-2011; McKenna, Daniel/E-7806-2014; Thornton, Peter/B-9145-2012; Collins, William/A-5895-2010; Butler, Tim/G-1139-2011; Shindell, Drew/D-4636-2012; Collins, William/J-3147-2014; Granier, Claire/D-5360-2013; Hess, Peter/M-3145-2015; Horowitz, Larry/D-8048-2014; Lamarque, Jean-Francois/L-2313-2014 OI Cameron-Smith, Philip/0000-0002-8802-8627; McKenna, Daniel/0000-0002-4360-4782; Thornton, Peter/0000-0002-4759-5158; Collins, William/0000-0002-7419-0850; Collins, William/0000-0002-4463-9848; Granier, Claire/0000-0001-7344-7995; Hess, Peter/0000-0003-2439-3796; Horowitz, Larry/0000-0002-5886-3314; Lamarque, Jean-Francois/0000-0002-4225-5074 NR 73 TC 102 Z9 104 U1 11 U2 23 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 5 PY 2005 VL 110 IS D19 AR D19303 DI 10.1029/2005JD005825 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 973WN UT WOS:000232553400003 ER PT J AU McFarland, JM Francis, MB AF McFarland, JM Francis, MB TI Reductive alkylation of proteins using iridium catalyzed transfer hydrogenation SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID COPPER(I)-CATALYZED AZIDE-ALKYNE; WATER; COMPLEXES; BIOCONJUGATION; HYDRIDE; RHODIUM C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Francis, MB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM francis@cchem.berkeley.edu RI Fitzmaurice, Richard/C-1508-2008 FU NIGMS NIH HHS [GM072700-01] NR 15 TC 85 Z9 88 U1 5 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 5 PY 2005 VL 127 IS 39 BP 13490 EP 13491 DI 10.1021/ja054686c PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 969TG UT WOS:000232257100024 PM 16190700 ER PT J AU George, SJ Seravalli, J Ragsdale, SW AF George, SJ Seravalli, J Ragsdale, SW TI And infrared spectroscopic evidence that a kinetically competent paramagnetic intermediate is formed when acetyl-coenzyme A synthase reacts with CO SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CARBON-MONOXIDE DEHYDROGENASE; CLOSTRIDIUM-THERMOACETICUM; ELECTRONIC-PROPERTIES; METAL CENTERS; COMPLEX; BINDING; CLUSTER; SITE; CATALYSIS; SUBUNIT C1 Univ Nebraska, Dept Biochem, Lincoln, NE 68588 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Ragsdale, SW (reprint author), Univ Nebraska, Dept Biochem, Lincoln, NE 68588 USA. EM sragsdale1@unl.edu FU NIGMS NIH HHS [GM39451] NR 26 TC 30 Z9 33 U1 2 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 5 PY 2005 VL 127 IS 39 BP 13500 EP 13501 DI 10.1021/ja0528329 PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 969TG UT WOS:000232257100029 PM 16190705 ER PT J AU Vayssieres, L Sathe, C Butorin, SM Shuh, DK Nordgren, J Guo, JH AF Vayssieres, L Sathe, C Butorin, SM Shuh, DK Nordgren, J Guo, JH TI One-dimensional quantum-confinement effect in alpha-Fe2O3 ultrafine nanorod arrays SO ADVANCED MATERIALS LA English DT Article ID X-RAY-SCATTERING; ABSORPTION-SPECTROSCOPY; OXIDES; EXCITATIONS; HEMATITE; SPECTRA; MNO AB A ID quantum confinement effect in hematite thin films consisting of oriented ultrafine nanorod bundles (see Figure) is investigated by resonant inelastic x-ray scattering of synchrotron radiation. The direct observation of a substantial bandgap increase compared to bulk hematite is revealed. This finding shows that these low-dimensional nanomaterials may be used for the generation of hydrogen by solar illumination without applied bias. C1 Natl Inst Mat Sci, ICYS, Tsukuba, Ibaraki 3050044, Japan. Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. Uppsala Univ, Dept Phys, SE-75121 Uppsala, Sweden. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Vayssieres, L (reprint author), Natl Inst Mat Sci, ICYS, Namiki 1-1, Tsukuba, Ibaraki 3050044, Japan. EM vayssieres.lionel@nims.go.jp RI Sathe, Conny/P-8139-2016 OI Sathe, Conny/0000-0001-7799-8575 NR 25 TC 213 Z9 216 U1 11 U2 143 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD OCT 4 PY 2005 VL 17 IS 19 BP 2320 EP + DI 10.1002/adma.200500992 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 974XY UT WOS:000232625900005 ER PT J AU Knyushko, TV Sharov, VS Williams, TD Schoneich, C Bigelow, DJ AF Knyushko, TV Sharov, VS Williams, TD Schoneich, C Bigelow, DJ TI 3-Nitrotyrosine modification of SERCA2a in the aging heart: A distinct signature of the cellular redox environment SO BIOCHEMISTRY LA English DT Article ID NITRIC-OXIDE SYNTHASE; SARCOPLASMIC-RETICULUM CA2+-ATPASE; PROTEIN-TYROSINE NITRATION; RAT SKELETAL-MUSCLE; CALCIUM-PUMP; CONTRACTILE DYSFUNCTION; REACTIVE OXYGEN; CA-ATPASE; PEROXYNITRITE; OXIDATION AB In the aging heart, decreased rates of calcium transport mediated by the SERCA2a isoform of the sarcoplasmic reticulum (SR) Ca-ATPase are responsible for the slower sequestration of cytosolic calcium and consequent prolonged muscle relaxation times. We report a 60% decrease in Ca-ATPase activity in the senescent Fischer 344 rat heart relative to that of young adult hearts; this functional decrease can be attributed, in part, to the 18% lower abundance of SERCA2a protein. Here, we show that the additional loss of activity is a result of increased 3-nitrotyrosine modification of the Ca-ATPase. Age-dependent increases in nitration of cardiac SERCA2a are identified using multiple analytical methods. In the young (adult) heart 1 molar equivalent of nitrotyrosine is distributed over at least five tyrosines within the Ca-ATPase, identified as Tyr(122), Tyr(130), Tyr(497), Tyr(186), and Tyr(990). In the senescent heart, the stoichiometry of nitration increases by more than two nitrotyrosines per Ca-ATPase, coinciding with the appearance of nitrated Tyr(294), Tyr(295), and Tyr(753). The abundant recovery of native analogues for each of the nitrated peptides indicates partial modification of multiple tyrosines within cardiac SERCA2a. In contrast, within skeletal muscle SERCA2a, a homogeneous pattern of nitration appears, with full site (1 mol/mol) nitration of Tyr(153), in young, with additional nitration of Tyr(294) and Tyr295, in senescent muscle. The nitration of these latter vicinal sites correlates with diminished transport function in both striated muscle types, suggesting that these sites provide a mechanism for downregulation of ATP utilization by the Ca-ATPase under conditions of nitrative stress. C1 Pacific NW Natl Lab, Cell Biol & Biochem Grp, Div Biol Sci, Richland, WA 99352 USA. Univ Kansas, Dept Pharmaceut Chem, Lawrence, KS 66045 USA. Univ Kansas, Mass Spect Lab, Lawrence, KS 66045 USA. RP Bigelow, DJ (reprint author), Pacific NW Natl Lab, Cell Biol & Biochem Grp, Div Biol Sci, POB 999,MS P7-56, Richland, WA 99352 USA. EM diana.bigelow@pnl.gov FU NIA NIH HHS [AG18013, AG12993] NR 50 TC 74 Z9 76 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD OCT 4 PY 2005 VL 44 IS 39 BP 13071 EP 13081 DI 10.1021/bi051226n PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 969RZ UT WOS:000232253700016 PM 16185075 ER PT J AU Murphy, AR Liu, JS Luscombe, C Kavulak, D Frechet, JMJ Kline, RJ McGehee, MD AF Murphy, AR Liu, JS Luscombe, C Kavulak, D Frechet, JMJ Kline, RJ McGehee, MD TI Synthesis, characterization, and field-effect transistor performance of carboxylate-functionalized polythiophenes with increased air stability SO CHEMISTRY OF MATERIALS LA English DT Article ID THIN-FILM TRANSISTORS; POLYMER PHOTOVOLTAIC CELLS; CONJUGATED POLYMERS; POLY(ALKYL THIOPHENE-3-CARBOXYLATES); HIGH-MOBILITY; SOLAR-CELLS; REGIOREGULAR POLY(3-HEXYLTHIOPHENE); MOLECULAR-WEIGHT; SEMICONDUCTORS; THERMOCHROMISM AB Synthetic strategies to access both regiorandom and regioregular polythiophenes containing electron-withdrawing carboxylate substituents have been developed. Although these polymers have extended conjugation lengths, they provide better oxidative doping stability than conventional polythiophenes due to the lowering of the HOMO energy levels by approximately 0.5 eV. These materials are highly crystalline and exhibit very small pi-pi-stacking distances in the solid state. High charge mobilities are observed as a result of the close ordering of the polymer chains, and top-contact organic thin-film transistors (OTFTs) fabricated entirely in air had measured mobilities averaging 0.06 cm(2)/V.S with on/off ratios > 10(5). off currents in these devices remained low over a period of months, demonstrating the low propensity of these materials toward p-doping by molecular oxygen. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. RP Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM frechet@berkeley.edu RI Kline, Regis/B-8557-2008; OI Luscombe, Christine/0000-0001-7456-1343; Frechet, Jean /0000-0001-6419-0163 NR 43 TC 146 Z9 146 U1 2 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD OCT 4 PY 2005 VL 17 IS 20 BP 4892 EP 4899 DI 10.1021/cm05091ld PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 970RG UT WOS:000232326700002 ER PT J AU Turgeman, R Gershevitz, O Deutsch, M Ocko, BM Gedanken, A Sukenik, CN AF Turgeman, R Gershevitz, O Deutsch, M Ocko, BM Gedanken, A Sukenik, CN TI Crystallization of highly oriented ZnO microrods on carboxylic acid-terminated SAMs SO CHEMISTRY OF MATERIALS LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; MOLECULAR-BEAM EPITAXY; ZINC-OXIDE; THIN-FILMS; LANGMUIR MONOLAYERS; SOLUTION DEPOSITION; CRYSTAL-GROWTH; PHOTOLUMINESCENCE; ELECTRODEPOSITION; CONDUCTIVITY AB Highly oriented microrods ZnO crystals having a narrow size distribution were successfully crystallized on Si wafers coated with SiCl3(CH2)(11)-O-C6H4-COOH. The relationship between surface properties and the crystallization products was investigated by ellipsometry, wetting measurements, X-ray reflectivity (XR), and grazing incidence diffraction (GID). The influence of the phenyl ether chromophore and the carboxylic group were explored by comparing the crystallization products obtained on monolayers made from SiCl3(CH2)(11)-O-C6H4-COOCH3, SiCl3(CH2)(16)-COOH, and SiCl3(CH2)(16)-COOCH3 molecules. The results demonstrate that the carboxylic acid end group is crucial for achieving a highly oriented growth. C1 Bar Ilan Univ, Ctr Adv Mat & Nanotechnol, Dept Chem, IL-52900 Ramat Gan, Israel. Bar Ilan Univ, Ctr Adv Mat & Nanotechnol, Kanbar Lab Nanomat, IL-52900 Ramat Gan, Israel. Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Gedanken, A (reprint author), Bar Ilan Univ, Ctr Adv Mat & Nanotechnol, Dept Chem, IL-52900 Ramat Gan, Israel. NR 67 TC 27 Z9 27 U1 2 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD OCT 4 PY 2005 VL 17 IS 20 BP 5048 EP 5056 DI 10.1021/cm051234q PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 970RG UT WOS:000232326700021 ER PT J AU Pless, JD Maxwell, RS Philips, MLF Helean, KB Axness, MY Nenoff, TA AF Pless, JD Maxwell, RS Philips, MLF Helean, KB Axness, MY Nenoff, TA TI Structure-property relationship of permutite-like amorphous silicates, Nax+2yMx3+Si1-xO2+y (M3+ = Al, Mn, Fe, Y), for ion-exchange reactions SO CHEMISTRY OF MATERIALS LA English DT Article ID INFRA-RED SPECTRA; SPECTROSCOPY; GLASSES; NMR; ALUMINOSILICATES; FRAMEWORK; ZEOLITES; CAPACITY; SODIUM; WATER AB A series of amorphous silicate materials with the general formula Nax+2yMx3+Si1-xO2+y (M3+ = Al, Mn, Fe, Y) were studied. Samples were synthesized by a precipitation reaction at room temperature. The results indicate that the ion-exchange capacity (IEC) decreases as follows: Al > Fe > Mn > Y. Additionally, the IEC increases with increasing aluminum concentration. Structural studies show that the relative amount of octahedrally coordinated aluminum increases with increasing Al content, as does the total amount of AlO4 species increases. The data suggest that the IEC value of these amorphous aluminosilicates is dependent on the tetrahedrally coordinated aluminum. Regeneration of the Al-silicate with acetic acid does not decrease the IEC significantly. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Nenoff, TA (reprint author), Sandia Natl Labs, POB 5800,MS 0734, Albuquerque, NM 87185 USA. EM tmnenof@sandia.gov NR 41 TC 11 Z9 11 U1 2 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD OCT 4 PY 2005 VL 17 IS 20 BP 5101 EP 5108 DI 10.1021/cm050547i PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 970RG UT WOS:000232326700028 ER PT J AU Nagasubramanian, G Doughty, DH AF Nagasubramanian, G Doughty, DH TI 18650 Li-ion cells with reference electrode and in situ characterization of electrodes SO JOURNAL OF POWER SOURCES LA English DT Article DE Li-ion cells; charge/discharge curves; cell impedance ID PERFORMANCE; BATTERIES; ENERGY; POWER AB At Sandia National Laboratories, we have built 18650 Li-ion cells with Li reference electrode for in situ characterization of electrodes including impedance and other electrochemical properties. At a 200 mA (similar to C/5 rate) discharge, the cell gave similar to 900 mAh. Impedance measurements indicate that the anode dominates the cell impedance. For example, at 0 degrees C, the anode and cathode impedances at 10 mHz were around 149 and 53 m Omega, respectively, and the total cell impedance at 10 mHz was similar to 203 m Omega. The three-electrode configuration also permits measurement of individual electrode voltages during charge and discharge. During discharge, while the cell voltage drops from 4.1 to 3 V, the cathode and the anode voltages change from 4.1 to 3.7 and from similar to 0 to 0.7 V, respectively. During charge, the cathode and anode voltages trace back to their initial values before discharging. The voltage swing for the anode is higher than that for the cathode. This also indicates that the impedance for the anode is higher than for the cathode. Pulse measurements on the cells indicate the voltage drop of the full-cell is equal to the sum of the anode and cathode voltage drops for a 2 A discharge pulse. (c) 2005 Published by Elsevier B.V. C1 Sandia Natl Labs, Lithium Battery R&D 2521, Albuquerque, NM 87185 USA. RP Nagasubramanian, G (reprint author), Sandia Natl Labs, Lithium Battery R&D 2521, POB 5800, Albuquerque, NM 87185 USA. EM gnagasu@sandia.gov NR 5 TC 9 Z9 9 U1 2 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD OCT 4 PY 2005 VL 150 BP 182 EP 186 DI 10.1016/j.jpowsour.2005.02.024 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 972CT UT WOS:000232432300018 ER PT J AU Qiu, WL Pyda, M Nowak-Pyda, E Habenschuss, A Wunderlich, B AF Qiu, WL Pyda, M Nowak-Pyda, E Habenschuss, A Wunderlich, B TI Reversibility between glass and melting transitions of poly(oxyethylene) SO MACROMOLECULES LA English DT Article ID TEMPERATURE-MODULATED CALORIMETRY; DIFFERENTIAL SCANNING CALORIMETRY; HEAT-CAPACITY; THERMODYNAMIC PROPERTIES; LINEAR MACROMOLECULES; POLY(ETHYLENE OXIDE); THERMAL-PROPERTIES; CHAIN CRYSTALS; POLYETHYLENE; POLYMERS AB The heat capacities, C, of poly(oxyethylene), POE, with molar masses from 1500 to 900 000 Da, were analyzed by differential scanning calorimetry (DSC), quasi-isothermal, temperature-modulated DSC (TMDSC), and wide-angle X-ray diffraction (WAXD). There is no change in crystal structure before melting, but the lattice parameters increase rapidly in the melting region. Perfected extended-chain and once- or twice-folded crystals of the oligomers with a molar mass above 1100 Da melt practically fully irreversibly and permit direct measurement of the thermodynamic C-p The folded-chain crystals of high molar mass show some locally reversible melting. The reversing, apparent C-p depends on molar mass and amplitude and frequency of modulation. After separation from the latent heat effects, the reversible, thermodynamic C-p depends on the melting temperature for low molar masses and increases beyond the vibrational C-p due to conformational. motion. Molar masses of 8000-20 000 have almost the same C-p These observations permit a quantitative discussion of the thermodynamic C-p and the locally reversible melting of the globally metastable POE in the melting range. The increase in C-p between 250 K and the melting temperature is interpreted as a glass transition within the crystal. C1 Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Wunderlich, B (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. NR 42 TC 34 Z9 34 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD OCT 4 PY 2005 VL 38 IS 20 BP 8454 EP 8467 DI 10.1021/ma050861y PG 14 WC Polymer Science SC Polymer Science GA 969FH UT WOS:000232218700042 ER PT J AU Kipper, MJ Hou, SS Seifert, S Thiyagarajan, P Schmidt-Rohr, K Narasimhan, B AF Kipper, MJ Hou, SS Seifert, S Thiyagarajan, P Schmidt-Rohr, K Narasimhan, B TI Nanoscale morphology of polyanhydride copolymers SO MACROMOLECULES LA English DT Article ID SOLID-STATE NMR; BIOERODIBLE POLYANHYDRIDES; DRUG-DELIVERY; POLYMERS; RELEASE; DEGRADATION; SCATTERING; EROSION; H-1 AB The microphase separation in polyanhydride random copolymers composed of 1,6-bis(p-carboxyphenoxy)hexane and sebacic acid is described. Though the copolymers are random, the monomers are sufficiently long and the segment-segment interaction parameter is sufficiently high to promote microphase separation when the copolymer is rich in one component. Solid-state NMR spin diffusion experiments and synchrotron small-angle X-ray scattering are used to discern the length scales of the microphase separation. Both techniques reveal a nanostructure with domain sizes less than 25 angstrom. This nanostructure is compared to approximate calculations of chain dimensions based on a random coil model and discussed in the context of the rational design of these materials for drug delivery applications. C1 Iowa State Univ, Dept Biol & Chem Engn, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA. RP Narasimhan, B (reprint author), Iowa State Univ, Dept Biol & Chem Engn, Ames, IA 50011 USA. EM nbalaji@iastate.edu RI Narasimhan, Balaji/A-5487-2008; Kipper, Matt/B-6941-2013 OI Narasimhan, Balaji/0000-0002-7955-5353; Kipper, Matt/0000-0002-8818-745X NR 21 TC 9 Z9 9 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD OCT 4 PY 2005 VL 38 IS 20 BP 8468 EP 8472 DI 10.1021/ma051267r PG 5 WC Polymer Science SC Polymer Science GA 969FH UT WOS:000232218700043 ER PT J AU Nath, SK Frischknecht, AL Curro, JG McCoy, JD AF Nath, SK Frischknecht, AL Curro, JG McCoy, JD TI Density functional theory and molecular dynamics simulation of poly(dimethylsiloxane) melts near silica surfaces SO MACROMOLECULES LA English DT Article ID NONUNIFORM POLYATOMIC SYSTEMS; MONTE-CARLO SIMULATIONS; POLYETHYLENE LIQUIDS; REALISTIC MODELS; HARD-WALL; POLYMER; PRESSURE; FLUIDS; TRANSITIONS; INTERFACE AB Classical density functional theory (DFT) is applied to study properties of fully detailed, realistic models of poly(dimethylsiloxane) liquids near silica surfaces and compared to results from molecular dynamics simulations. In solving the DFT equations, the direct correlation functions are obtained from the polymer reference interaction site model (PRISM) theory for the repulsive parts of the interatomic interactions, and the attractions are treated via the random-phase approximation (RPA). Good agreement between density profiles calculated from DFT and from the simulations is obtained with empirical scaling of the direct correlation functions. Separate scaling factors are required for the PRISM and RPA parts of the direct correlation functions. Theoretical predictions of stress profiles, normal pressure, and surface tensions are also in reasonable agreement with simulation results. C1 New Mexico Inst Min & Technol, Dept Mat Engn, Socorro, NM 87801 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. RP Nath, SK (reprint author), New Mexico Inst Min & Technol, Dept Mat Engn, Socorro, NM 87801 USA. EM shyam_nath@hotmail.com RI McCoy, John/B-3846-2010; Frischknecht, Amalie/N-1020-2014 OI McCoy, John/0000-0001-5404-1404; Frischknecht, Amalie/0000-0003-2112-2587 NR 49 TC 6 Z9 6 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD OCT 4 PY 2005 VL 38 IS 20 BP 8562 EP 8573 DI 10.1021/ma051001k PG 12 WC Polymer Science SC Polymer Science GA 969FH UT WOS:000232218700054 ER PT J AU Gardinier, WE Baker, GA Baker, SN Bright, FV AF Gardinier, WE Baker, GA Baker, SN Bright, FV TI Behavior of pyrene end-labeled poly(dimethylsiloxane) polymer tails in mixtures of 1-butyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide and toluene SO MACROMOLECULES LA English DT Article ID TEMPERATURE IONIC LIQUIDS; EXCIMER FORMATION; FLUORESCENCE-SPECTRA; PICOSECOND FLUORESCENCE; SOLVENT POLARITIES; ENERGY TRANSFER; PY SCALE; CYCLIZATION; FILMS; SPECTROSCOPY AB We report on the steady-state and time-resolved fluorescence of a linear poly(dimethylsiloxane) polymer that is end-labeled with pyrene (Py-PDMS-Py, M-n = 3100, M-w/M-n = 1.07) when it is dissolved at low concentration in an ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethyl)-sulfonylimide ([C(4)mim][Tf2N]), as a function of temperature and added cosolvent (toluene). Toluene is a good solvent for PDMS. The Py-PDMS-Py behavior in [C(4)mim][Tf2N]/toluene is reminiscent, in part, of its behavior in liquid MeOH, a poor PDMS solvent. The Py residues are surrounded by a PDMS-rich microenvironment at all toluene loadings (0-50 vol %). No detectable excimer-like emission is seen in pure [C(4)mim][Tf2N] or [C(4)mim] [Tf2N]/toluene mixtures until 50 vol % toluene. The Py-PDMS-Py ground state is heterogeneous, containing monomers and preformed dimers prior to photoexcitation. The observed excimer-like emission does not arise from a dynamic excimer. The Py-PDMS-Py time-resolved intensity decay data reveal the presence of at least four emitting species. In the [C(4)mim][Tf2N]/50% toluene mixture the species are (i) a Py monomer in a PDMS-rich microenvironment, (ii) a Py monomer in a microenvironment between pure toluene and pure [C(4)mim] [Tf2N], (iii) a static ground-state dimer that has a geometry akin to a classical dynamically formed excimer, and (iv) a ground-state dimer that has the Py residues misaligned in comparison to (iii). Steady-state fluorescence anisotropy experiments are not consistent with the formation of rigid aggregates (i.e., (Py-PDMS-Py)(n)); results are consistent with Py residues and PDMS segments of individual Py-PDMS-Py molecules reorienting in a correlated manner. C1 SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. Los Alamos Natl Lab, Div Chem, Struct Inorgan Chem, C SIC, Los Alamos, NM 87545 USA. RP Bright, FV (reprint author), SUNY Buffalo, Dept Chem, Nat Sci Complex, Buffalo, NY 14260 USA. EM chefvb@acsu.buffalo.edu RI Baker, Gary/H-9444-2016 OI Baker, Gary/0000-0002-3052-7730 NR 60 TC 18 Z9 18 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD OCT 4 PY 2005 VL 38 IS 20 BP 8574 EP 8582 DI 10.1021/ma051313n PG 9 WC Polymer Science SC Polymer Science GA 969FH UT WOS:000232218700055 ER PT J AU Morgan, WF Sowa, MB AF Morgan, WF Sowa, MB TI Effects of ionizing radiation in nonirradiated cells SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Editorial Material ID INDUCED GENOMIC INSTABILITY; CHROMOSOMAL INSTABILITY; IN-VIVO; EXPOSURE; TRANSMISSION; IRRADIATION; PARTICLES; MUTATION; CANCER; DAMAGE C1 Univ Maryland, Radiat Oncol Res Lab, Baltimore, MD 21201 USA. Univ Maryland, Marlene & Stewart Greenebaum Canc Ctr, Baltimore, MD 21201 USA. Pacific NW Natl Lab, Richland, WA 99352 USA. RP Morgan, WF (reprint author), Univ Maryland, Radiat Oncol Res Lab, BRB 7-011, Baltimore, MD 21201 USA. EM wfmorgan@som.umaryland.edu NR 19 TC 48 Z9 51 U1 1 U2 2 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 4 PY 2005 VL 102 IS 40 BP 14127 EP 14128 DI 10.1073/pnas.0507119102 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 971OD UT WOS:000232392900002 PM 16186485 ER PT J AU Smith, JD Cappa, CD Wilson, KR Cohen, RC Geissler, PL Saykally, RJ AF Smith, JD Cappa, CD Wilson, KR Cohen, RC Geissler, PL Saykally, RJ TI Unified description of temperature-dependent hydrogen-bond rearrangements in liquid water SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE continuous distribution; hydrogen-bond structure; isosbestic points ID OH STRETCHING BAND; INFRARED-SPECTROSCOPY; COMPUTER-SIMULATIONS; MOLECULAR-DYNAMICS; ISOSBESTIC POINTS; MIXTURE MODEL; HOD SOLUTIONS; D2O; ABSORPTION; NETWORK AB The unique chemical and physical properties of liquid water are a direct result of its highly directional hydrogen-bond (HB) network structure and associated dynamics. However, despite intense experimental and theoretical scrutiny spanning more than four decades, a coherent description of this HB network remains elusive. The essential question of whether continuum or multicomponent ("intact," "broken bond," etc.) models best describe the HB interactions in liquid water has engendered particularly intense discussion. Most notably, the temperature dependence of water's Raman spectrum has long been considered to be among the strongest evidence for a multicomponent distribution. Using a combined experimental and theoretical approach, we show here that many of the features of the Raman spectrum that are considered to be hallmarks of a multistate system, including the asymmetric band profile, the isosbestic (temperature invariant) point, and van't Hoff behavior, actually result from a continuous distribution. Furthermore, the excellent agreement between our newly remeasured Raman spectra and our model system further supports the locally tetrahedral description of liquid water, which has recently been called into question. C1 Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Geissler, PL (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM geissler@cchem.berkeley.edu; saykally@berkeley.edu RI Cohen, Ronald/A-8842-2011 OI Cohen, Ronald/0000-0001-6617-7691 NR 29 TC 218 Z9 225 U1 5 U2 68 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 4 PY 2005 VL 102 IS 40 BP 14171 EP 14174 DI 10.1073/pnas.0506899102 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 971OD UT WOS:000232392900011 PM 16179387 ER PT J AU Kim, S Jeon, TJ Oberai, A Yang, D Schmidt, JJ Bowie, JU AF Kim, S Jeon, TJ Oberai, A Yang, D Schmidt, JJ Bowie, JU TI Transmembrane glycine zippers: Physiological and pathological roles in membrane proteins SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE amyloid-beta; membrane channel; membrane protein structure; prion; transmembrane helix ID SOLUBLE AMYLOID OLIGOMERS; PYLORI VACUOLATING TOXIN; HELIX-HELIX INTERACTIONS; MISFOLDING DISEASES; GXXXG MOTIF; ALZHEIMERS-DISEASE; BILAYER-MEMBRANES; CRYSTAL-STRUCTURE; CHANNEL FORMATION; COMMON MECHANISM AB We have observed a common sequence motif in membrane proteins, which we call a glycine zipper. Glycine zipper motifs are strongly overrepresented and conserved in membrane protein sequences, and mutations in glycine zipper motifs are deleterious to function in many cases. The glycine zipper has a significant structural impact, engendering a strong driving force for right-handed packing against a neighboring helix. Thus, the presence of a glycine zipper motif leads directly to testable structural hypotheses, particularly for a subclass of glycine zipper proteins that form channels. For example, we suggest that the membrane pores formed by the amyloid-beta peptide in vitro are constructed by glycine zipper packing and find that mutations in the glycine zipper motif block channel formation. Our findings highlight an important structural motif in a wide variety of normal and pathological processes. C1 Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. Univ Calif Los Angeles, UCLA DOE Inst Genom & Proteom, Los Angeles, CA 90095 USA. Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA. RP Bowie, JU (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. EM bowie@mbi.ucla.edu RI Jeon, Tae-Joon/D-4725-2013 OI Jeon, Tae-Joon/0000-0002-4882-9040 FU NIGMS NIH HHS [R01 GM063919-08, GM3919, R01 GM063919, R01 GM063919-05, R01 GM063919-06, R01 GM063919-07] NR 44 TC 141 Z9 142 U1 3 U2 13 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 4 PY 2005 VL 102 IS 40 BP 14278 EP 14283 DI 10.1073/pnas.0501234102 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 971OD UT WOS:000232392900030 PM 16179394 ER PT J AU Doughty, C Takeuchi, S Amano, K Shimo, M Tsang, CF AF Doughty, C Takeuchi, S Amano, K Shimo, M Tsang, CF TI Application of multirate flowing fluid electric conductivity logging method to well DH-2, Tono Site, Japan SO WATER RESOURCES RESEARCH LA English DT Article ID FRACTURE INFLOW PARAMETERS; LOGS AB [1] In the flowing fluid electric conductivity (FEC) logging method, well bore fluid is replaced with deionized water, following which FEC profiles in the well bore are measured at a series of times while the well is pumped at a constant rate. Locations where fluid enters the well bore show peaks in the FEC logs, which are analyzed to infer inflow strengths and salinities of permeable features intersected by the borehole. In multirate flowing FEC logging, the flowing FEC logging method is repeated using two or more pumping rates. The results, coupled with those of a conventional well test over the entire borehole, enable the transmissivities and inherent pressure heads of permeable features to be determined. Multirate FEC logging is carried out on a deep borehole in fractured granitic rock using three different pumping rates. Results identify 19 hydraulically conducting fractures and indicate that transmissivity, pressure head, and salinity vary significantly among them. Using three pumping rates rather than the minimum number of two permits an internal consistency check on the analysis that provides a measure of the uncertainty of the results. Good comparisons against static FEC profiles and against independent chemical, geological, and hydrogeological data have further enhanced confidence in the results of the multirate flowing FEC logging method. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. Japan Nucl Cycle Dev Inst, Mizunami Underground Res Lab, Gifu 5096132, Japan. Taisei Corp, Civil Engn Res Inst, Ctr Technol, Kanagawa 2450051, Japan. RP Doughty, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd,MS 90-1116, Berkeley, CA 94720 USA. EM cadoughty@lbl.gov RI Doughty, Christine/G-2389-2015 NR 21 TC 14 Z9 14 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT 4 PY 2005 VL 41 IS 10 AR W10401 DI 10.1029/2004WR003708 PG 16 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 975IT UT WOS:000232654900002 ER PT J AU Hor, YS Welp, U Ito, Y Xiao, ZL Patel, U Mitchell, JF Kwok, WK Crabtree, GW AF Hor, YS Welp, U Ito, Y Xiao, ZL Patel, U Mitchell, JF Kwok, WK Crabtree, GW TI Superconducting NbSe2 nanowires and nanoribbons converted from NbSe3 nanostructures SO APPLIED PHYSICS LETTERS LA English DT Article ID ELECTRODEPOSITION; TRANSPORT; LATTICE; MEMORY AB We describe the synthesis of superconducting NbSe2 nanowires and nanoribbons by the nondestructive removal of Se from one-dimensional NbSe3 nanostructure precursors. We report scanning electron microscopy imaging, x-ray diffraction, and transmission electron microscopy analyses of the morphology, composition, and crystallinity of the converted NbSe2 nanostructures. Transport measurements on individual nanowires/ribbons confirm their superconductivity with T(c)similar to 7.2 K, and the appearance of current-induced resistance steps is attributed to localized phase slip centers, akin to those reported in other superconducting nanostructures. (C) 2005 American Institute of Physics. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Hor, YS (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM xiao@anl.gov RI Patel, Umeshkumar/A-8643-2013 OI Patel, Umeshkumar/0000-0002-8259-1646 NR 26 TC 25 Z9 25 U1 0 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 3 PY 2005 VL 87 IS 14 AR 142506 DI 10.1063/1.2072847 PG 3 WC Physics, Applied SC Physics GA 969HR UT WOS:000232225700040 ER PT J AU Klie, RF Zhu, Y Altman, EI Liang, Y AF Klie, RF Zhu, Y Altman, EI Liang, Y TI Atomic structure of epitaxial SrTiO3-GaAs(001) heterojunctions SO APPLIED PHYSICS LETTERS LA English DT Article ID GROWTH; OXIDES; FILMS; GAAS AB We have examined the atomic and electronic structures of epitaxial SrTiO3 thin films on GaAs (001) deposited under different growth conditions in order to understand the interfacial structure-property relationships. High-resolution Z-contrast images show an atomically sharp heterointerface with SrTiO3[110] in perfect registry with GaAs [100] and the interfacial structure remains unchanged if a submonolayer of Ti was deposited prior to the SrTiO3 film growth. X-ray photoelectron spectroscopy shows that the Fermi level was pinned during the initial stage of growth when a submonolayer of Ti was deposited on As-terminated GaAs(001); subsequent SrTiO3 growth alleviated this pinning. These results indicate a self-driven interfacial atomic structure formation, independent of the initial stage of growth. (C) 2005 American Institute of Physics. C1 Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11021 USA. Yale Univ, Dept Chem Engn, New Haven, CT 06520 USA. Freescale Semicond Inc, Adv Prod Res & Dev Lab, Tempe, AZ 85284 USA. RP Klie, RF (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11021 USA. EM klie@bnl.gov NR 14 TC 23 Z9 23 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 3 PY 2005 VL 87 IS 14 AR 143106 DI 10.1063/1.2077837 PG 3 WC Physics, Applied SC Physics GA 969HR UT WOS:000232225700055 ER PT J AU Lai, K Ye, PD Pan, W Tsui, DC Lyon, SA Muhlberger, M Schaffler, F AF Lai, K Ye, PD Pan, W Tsui, DC Lyon, SA Muhlberger, M Schaffler, F TI Modulation of the high mobility two-dimensional electrons in Si/SiGe using atomic-layer-deposited gate dielectric SO APPLIED PHYSICS LETTERS LA English DT Article ID HETEROSTRUCTURES AB Metal-oxide-semiconductor field-effect-transistors using atomic-layer-deposited (ALD) Al2O3 as the gate dielectric are fabricated on the Si/Si1-xGex heterostructures. The low-temperature carrier density of a two-dimensional electron system (2DES) in the strained Si quantum well can be controllably tuned from 2.5x10(11) to 4.5x10(11) cm(-2), virtually without any gate leakage current. Magnetotransport data show the homogeneous depletion of 2DES under gate biases. The characteristic of vertical modulation using ALD dielectric is shown to be better than that using Schottky barrier or the SiO2 dielectric formed by plasma-enhanced chemical-vapor-deposition. (C) 2005 American Institute of Physics. C1 Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. Sandia Natl Labs, Albuquerque, NM 87185 USA. Univ Linz, Inst Halbleiterphys, A-4040 Linz, Austria. RP Lai, K (reprint author), Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. EM klai@princeton.edu; yep@purdue.edu RI Muhlberger, Michael/A-6586-2010; Schaffler, Friedrich/C-7026-2017; OI Schaffler, Friedrich/0000-0002-7093-2554; Muhlberger, Michael/0000-0001-7542-8552 NR 10 TC 8 Z9 8 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 3 PY 2005 VL 87 IS 14 AR 142103 DI 10.1063/1.2076439 PG 3 WC Physics, Applied SC Physics GA 969HR UT WOS:000232225700030 ER PT J AU Shen, TD Schwarz, RB Zhang, X AF Shen, TD Schwarz, RB Zhang, X TI Bulk nanostructured alloys prepared by flux melting and melt solidification SO APPLIED PHYSICS LETTERS LA English DT Article ID FERROMAGNETIC GLASSES; FE; NI; BEHAVIOR; COPPER; SILVER AB We have prepared bulk nanostructured Ag60Cu40 alloys by a flux-melting and melt-solidification technique. The flux purifies the melts, leading to a large undercooling and nanometer-sized microstructure. The as-prepared alloys are composed of nanolayered Ag and Cu within micrometer-sized grains. The bulk nanostructured alloys have an ultimate tensile strength of approximately 560 MPa, similar yield strength in tension and compression, elongation of 7% in tension, strain hardening exponent of 0.1, and relatively high mechanical and thermal stability up to 400 degrees C. (C) 2005 American Institute of Physics. C1 Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. RP Shen, TD (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, MS G755,MST-8, Los Alamos, NM 87545 USA. EM tdshen@lanl.gov NR 16 TC 10 Z9 10 U1 0 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 3 PY 2005 VL 87 IS 14 AR 141906 DI 10.1063/1.2056610 PG 3 WC Physics, Applied SC Physics GA 969HR UT WOS:000232225700016 ER PT J AU Takamura, Y Grepstad, JK Chopdekar, RV Suzuki, Y Marshall, AF Zheng, H Mitchell, JF AF Takamura, Y Grepstad, JK Chopdekar, RV Suzuki, Y Marshall, AF Zheng, H Mitchell, JF TI Structural, magnetic, and electronic properties of (110)-oriented epitaxial thin films of the bilayer manganite La1.2Sr1.8Mn2O7 SO APPLIED PHYSICS LETTERS LA English DT Article ID PEROVSKITE LA2-2XSR1+2XMN2O7; LAYERED LA1.2SR1.8MN2O7; GIANT MAGNETORESISTANCE; SINGLE-CRYSTALS; OXIDES; DIFFRACTION; SURFACE; CHARGE; SPIN AB We have synthesized (110)-oriented epitaxial thin films of the bilayer (n=2) manganite, La1.2Sr1.8Mn2O7, with the metallic/ferromagnetic a-b planes lying perpendicular to the substrate surface and the c-axis aligned in the plane of the film. X-ray diffraction and transmission electron microscopy confirm the alignment of the a-b planes along the [1 (1) over bar0] substrate direction. The films consist primarily of the n=2 phase with a minor component of the n=1 (La,Sr)(2)MnO4 and n=infinity (La,Sr)MnO3 phases. A resistivity maximum coincides with a ferromagnet/paramagnet transition at a reduced T-c similar to 90 K (versus 120 K for bulk), indicative of the effects of epitaxial strain. The films display similar anisotropic properties to their bulk counterpart with the magnetically easy direction confined to the a-b planes and 20-200 times lower resistivity for current flowing along the a-b planes compared to the c-axis. (C) 2005 American Institute of Physics. C1 Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Stanford Univ, Adv Mat Lab, Stanford, CA 94305 USA. Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. Norwegian Univ Sci & Technol, N-7034 Trondheim, Norway. Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. RP Takamura, Y (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM takamura@berkeley.edu RI Chopdekar, Rajesh/D-2067-2009 OI Chopdekar, Rajesh/0000-0001-6727-6501 NR 18 TC 5 Z9 5 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 3 PY 2005 VL 87 IS 14 AR 142508 DI 10.1063/1.2077850 PG 3 WC Physics, Applied SC Physics GA 969HR UT WOS:000232225700042 ER PT J AU Nozik, AJ AF Nozik, AJ TI Exciton multiplication and relaxation dynamics in quantum dots: Applications to ultrahigh-efficiency solar photon conversion SO INORGANIC CHEMISTRY LA English DT Article ID COLLOIDAL SEMICONDUCTOR NANOCRYSTALS; IMPACT IONIZATION; ELECTRON RELAXATION; MOLECULAR PHOTOVOLTAICS; CELL EFFICIENCY; BOX SYSTEMS; PBS; PHOTOELECTROCHEMISTRY; PHOTOLUMINESCENCE; PERSPECTIVES AB Huge amounts of carbon-free energy will be required during the coming decades in order to stabilize atmospheric CO(2) to acceptable levels. Solar energy is the largest source of non-carbonaceous energy and can be used to produce both electricity and fuel. However, the ratio of the areal cost to the conversion efficiency for devices converting solar photons to electricity or fuel must be reduced by at least 1 order of magnitude from the present values; this requires large increases in the cell efficiency and large reductions in the cost per unit area. We have shown how semiconductor quantum dots may greatly increase photon conversion efficiencies by producing multiple excitons from a single photon. This is possible because quantization of energy levels in quantum dots slows the cooling of hot excitons, promotes multiple exciton generation, and lowers the photon energy threshold for this process. Quantum yields of 300% for exciton formation in PbSe quantum dots have been reported at photon energies 3.8 times the HOMO-LUMO transition energy, indicating the formation of three excitons/photon for all photoexcited quantum dots. Similar high quantum yields have also been reported for PbS quantum dots. A new model for this effect that is based on a coherent superposition of multiple excitonic states has been proposed. C1 Natl Renewable Energy Lab, Ctr Basic Sci, Golden, CO 80401 USA. Univ Colorado, Dept Chem, Boulder, CO 80309 USA. RP Nozik, AJ (reprint author), Natl Renewable Energy Lab, Ctr Basic Sci, Golden, CO 80401 USA. EM arthur_nozik@nrel.gov RI Nozik, Arthur/A-1481-2012; Nozik, Arthur/P-2641-2016 NR 53 TC 247 Z9 251 U1 1 U2 60 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD OCT 3 PY 2005 VL 44 IS 20 BP 6893 EP 6899 DI 10.1021/ic0508425 PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 970CD UT WOS:000232281900008 PM 16180844 ER PT J AU Gemmill, WR Smith, MD Mozharivsky, YA Miller, GJ zur Loye, HC AF Gemmill, WR Smith, MD Mozharivsky, YA Miller, GJ zur Loye, HC TI Crystal growth, structural transitions, and magnetic properties of the fluorite-related osmates: Sm3OsO7, Eu3OsO7, and Gd3OsO7 SO INORGANIC CHEMISTRY LA English DT Article ID M = NB; RARE-EARTH; THERMAL-PROPERTIES; DOUBLE PEROVSKITES; PHASES LN3MO7; LN; ND; SM; EU; PR AB The Ln(3)OsO(7) (Ln = Sm, Eu, Gd) compounds were grown as single crystals from molten hydroxide fluxes. At temperatures above 235, 330, and 430 K, respectively, the Ln(3)OsO(7) (Ln = Sm, Eu, Gd) compounds exist in the orthorhombic space group Cmcm. When they are cooled below these temperatures, the compounds undergo a structural phase transition from space group Cmcm to P2(1)nb. The structure transition results in a loss of lattice centering, a doubling of the b axis, a distortion of the vertex-shared Os-O chains, and a reduction in the coordination of one of the rare earth cations from 8-fold to 7-fold. SM3OsO7 and Eu3OsO7 exhibit complex magnetic behavior below about 50 K, and Gd3OsO7 shows a ferromagnetic-like order at 34 K in applied fields of less than 10 kG. C1 Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, Ames, IA USA. RP zur Loye, HC (reprint author), Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. EM zurloye@mail.chem.sc.edu OI zur Loye, Hans-Conrad/0000-0001-7351-9098 NR 38 TC 38 Z9 38 U1 2 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD OCT 3 PY 2005 VL 44 IS 20 BP 7047 EP 7055 DI 10.1021/ic0506106 PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 970CD UT WOS:000232281900030 PM 16180866 ER PT J AU Sigurdson, AJ Hauptmann, M Alexander, BH Doody, MM Thomas, CB Struewing, JP Jones, IM AF Sigurdson, AJ Hauptmann, M Alexander, BH Doody, MM Thomas, CB Struewing, JP Jones, IM TI DNA damage among thyroid cancer and multiple cancer cases, controls, and long-lived individuals SO MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS LA English DT Article DE comet assay; multiple cancers; genetic variation; risk factors; hyper-normal controls ID COMET ASSAY; BREAST-CANCER; REPAIR; SUSCEPTIBILITY; ASSOCIATION; INSTABILITY; HUMANS; CELLS AB Variation in the detection, signaling, and repair of DNA damage contributes to human cancer risk. To assess capacity to modulate endogenous DNA damage among radiologic technologists who had been diagnosed with breast cancer and another malignancy (breast-other, n = 42), early-onset breast cancer (early-onset, age <= 35; n = 38), thyroid cancer (n = 69), long-lived cancer-free individuals (hyper-normals, n = 20) and cancer-free controls (n = 49) we quantified DNA damage (single strand breaks and abasic sites) in untreated lymphoblastoid cell lines using the alkaline comet assay. Komet (TM) software provided comet tail length, % DNA in tail (tail DNA), comet distributed moment (CDM), and Olive tail moment (OTM) summarized as the geometric mean of 100 cells. Category cut-points (median and 75th percentile) were determined from the distribution among controls. Tail length (for >= 75% versus below the median, age-adjusted) was most consistently associated with the highest odds ratios in the breast-other, early-onset, and thyroid cancer groups (with risk increased 10-, 5- or 19-fold, respectively, with wide confidence intervals) and decreased risk among the hyper-normal group. For the other three comet measures, risk of breast-other was elevated approximately three-fold. Risk of early-onset breast cancer was mixed and risk of thyroid cancer ranged from null to a two-fold increase. The hyper-normal group showed decreased odds ratios for tail DNA and OTM, but not CDM. DNA damage, as estimated by all comet measures, was relatively unaffected by survival time, reproductive factors, and prior radiation treatment. We detected a continuum of endogenous DNA damage that was highest among cancer cases, less in controls, and suggestively lowest in hyper-normal individuals. Measuring this DNA damage phenotype may contribute to the identification of susceptible sub-groups. Our observations require replication in a prospective study with a large number of pre-diagnostic samples. (c) 2005 Elsevier B.V. All rights reserved. C1 NCI, Radiat Epidemiol Branch, Div Canc Epidemiol & Genet, NIH,DHHS, Bethesda, MD 20892 USA. NCI, Biostat Branch, Div Canc Epidemiol & Genet, NIH,DHHS, Bethesda, MD 20892 USA. Univ Minnesota, Div Environm & Occupat Hlth, Minneapolis, MN 55455 USA. Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. NCI, Lab Populat Genet, Canc Res Ctr, NIH,DHHS, Bethesda, MD 20892 USA. RP Sigurdson, AJ (reprint author), NCI, Radiat Epidemiol Branch, Div Canc Epidemiol & Genet, NIH,DHHS, 6120 Execut Blvd,EPS 7092,MSC 7238, Bethesda, MD 20892 USA. EM sigurdsa@mail.nih.gov; hauptmam@mail.nih.gov; balex@umn.edu; doodym@mail.nih.gov; thomas5@llnl.gov; struewij@mail.nih.gov; jones20@llnl.gov RI Struewing, Jeffery/C-3221-2008; Struewing, Jeffery/I-7502-2013 OI Struewing, Jeffery/0000-0002-4848-3334 FU NCI NIH HHS [N01-CP-15673, N01-CP-51016, N02-CP-81005, N02-CP-81121] NR 25 TC 27 Z9 30 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1383-5718 J9 MUTAT RES-GEN TOX EN JI Mutat. Res. Genet. Toxicol. Environ. Mutagen. PD OCT 3 PY 2005 VL 586 IS 2 BP 173 EP 188 DI 10.1016/j.mrgentox.2005.07.001 PG 16 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA 966CB UT WOS:000231996100008 PM 16099702 ER PT J AU Hatta, Y Iancu, E Itakura, K McLerran, L AF Hatta, Y Iancu, E Itakura, K McLerran, L TI Odderon in the color glass condensate SO NUCLEAR PHYSICS A LA English DT Article ID HIGH-ENERGY QCD; DEEP-INELASTIC-SCATTERING; HEISENBERG SPIN MAGNETS; GLUON DISTRIBUTION-FUNCTIONS; ABELIAN GAUGE-THEORY; SMALL-X; NONLINEAR EVOLUTION; PERTURBATIVE QCD; UNITARITY CORRECTIONS; BFKL POMERON AB We discuss the definition and the energy evolution of scattering amplitudes with C-odd ("odderon") quantum numbers within the effective theory for the color glass condensate (CGC) endowed with the functional, JIMWLK, evolution equation. We explicitly construct gauge-invariant amplitudes describing multiple odderon exchanges in the scattering between the CGC and two types of projectiles: a color-singlet quark-antiquark pair (or 'color dipole') and a system of three quarks in a colorless state. We deduce the energy evolution of these amplitudes from the general JIMWLK equation, which for this purpose is recast in a more synthetic form, which is manifestly infrared finite. For the dipole odderon, we confirm and extend the non-linear evolution equations recently proposed by Kovchegov, Szymanowski and Wallon, which couple the evolution of the odderon to that of the pomeron, and predict the rapid suppression of the odderon exchanges in the saturation regime at high energy. For the 3-quark system, we focus on the linear regime at relatively low energy, where our general equations are shown to reduce to the Bartels-Kwiecinski-Praszalowicz equation. Our gauge-invariant amplitudes, and the associated evolution equations, stay explicitly outside the Mobius representation, which is the Hilbert space where the BFKL Hamiltonian exhibits holomorphic separability. (c) 2005 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RIKEN, BNL Res Ctr, Upton, NY 11973 USA. Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. CEA Saclay, Serv Phys Theor, F-91191 Gif Sur Yvette, France. RP Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM iancu@spht.saclay.cea.fr NR 99 TC 56 Z9 57 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD OCT 3 PY 2005 VL 760 IS 1-2 BP 172 EP 207 DI 10.1016/j.nuclphysa.2005.05.163 PG 36 WC Physics, Nuclear SC Physics GA 965GR UT WOS:000231939100008 ER EF