FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Bollinger, T McGowan, C AF Bollinger, Terry McGowan, Clement TI A Critical Look at Software Capability Evaluations: An Update SO IEEE SOFTWARE LA English DT Article C1 [Bollinger, Terry] MITRE, Bedford, MA USA. [McGowan, Clement] US Natl Ocean & Atmospher Adm, GOES R Geostat Operat Environm Satellite R Series, Goddard Space Flight Ctr, Ground Segment Project, Washington, DC USA. RP Bollinger, T (reprint author), MITRE, Bedford, MA USA. EM terry.bollinger.ctr@osd.mil; mcgowan@noblis.org NR 6 TC 2 Z9 2 U1 0 U2 2 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0740-7459 J9 IEEE SOFTWARE JI IEEE Softw. PD SEP-OCT PY 2009 VL 26 IS 5 BP 80 EP 83 PG 4 WC Computer Science, Software Engineering SC Computer Science GA 483YB UT WOS:000269008200021 ER PT J AU Kuwata, Y Teo, J Fiore, G Karaman, S Frazzoli, E How, JP AF Kuwata, Yoshiaki Teo, Justin Fiore, Gaston Karaman, Sertac Frazzoli, Emilio How, Jonathan P. TI Real-Time Motion Planning With Applications to Autonomous Urban Driving SO IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY LA English DT Article DE Autonomous; DARPA urban challenge; dynamic and uncertain environment; real-time motion planning; rapidly-exploring random tree (RRT); urban driving ID DARPA GRAND CHALLENGE; SPECIAL-ISSUE AB This paper describes a real-time motion planning algorithm, based on the rapidly-exploring random tree (RRT) approach, applicable to autonomous vehicles operating in an urban environment. Extensions to the standard RRT are predominantly motivated by: 1) the need to generate dynamically feasible plans in real-time; 2) safety requirements; 3) the constraints dictated by the uncertain operating (urban) environment. The primary novelty is in the use of closed-loop prediction in the framework of RRT. The proposed algorithm was at the core of the planning and control software for Team MIT's entry for the 2007 DARPA Urban Challenge, where the vehicle demonstrated the ability to complete a 60 mile simulated military supply mission, while safely interacting with other autonomous and human driven vehicles. C1 [Kuwata, Yoshiaki; Teo, Justin; Fiore, Gaston; Frazzoli, Emilio; How, Jonathan P.] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA. [Karaman, Sertac] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. RP Kuwata, Y (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM yoshiaki.kuwata@jpl.nasa.gov; csteo@mit.edu; gafiore@alum.mit.edu; sertac@mit.edu; frazzoli@mit.edu; jhow@mit.edu OI How, Jonathan/0000-0001-8576-1930 FU Defense Advanced Research Projects Agency [W369/00] FX This work was sponsored by Defense Advanced Research Projects Agency, Program: Urban Challenge, DARPA Order No. W369/00, Program Code: DIRO. Issued by DARPA/CMO under Contract HR0011-06-C-0149, with Prof. J. Leonard, Prof. S. Teller, Prof. J. How at MIT, and Prof. D. Barrett at Olin College as the principal investigators. NR 35 TC 159 Z9 165 U1 11 U2 32 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1063-6536 EI 1558-0865 J9 IEEE T CONTR SYST T JI IEEE Trans. Control Syst. Technol. PD SEP PY 2009 VL 17 IS 5 BP 1105 EP 1118 DI 10.1109/TCST.2008.2012116 PG 14 WC Automation & Control Systems; Engineering, Electrical & Electronic SC Automation & Control Systems; Engineering GA 489SQ UT WOS:000269443200010 ER PT J AU Wiebe, H Heygster, G Markus, T AF Wiebe, Heidrun Heygster, Georg Markus, Thorsten TI Comparison of the ASI Ice Concentration Algorithm With Landsat-7 ETM+ and SAR Imagery SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article; Proceedings Paper CT 10th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment CY MAR 11-14, 2008 CL Florence, ITALY SP Ctr Telerilevamento Microonde, Inst Fisica Appl, GRSS, IEEE, IEEE Italy Sect, URSI, ThalesAlenia, Ente Cassa Risparmio Firenze DE Remote sensing; sea ice ID ARCTIC SEA-ICE; SNOW AB Continuous monitoring of sea ice and its changes is mainly done by passive microwave sensors on satellites. One frequently used technique of retrieving sea-ice concentrations is the Arctic Radiation and Turbulence Interaction STudy Sea Ice (ASI) algorithm, which uses the near-90-GHz channels, here those of the Advanced Microwave Scanning Radiometer-Earth Observing System to calculate sea-ice concentrations. The ASI ice concentrations are compared with ice concentrations derived from the following: 1) the multispectral imager Enhanced Thematic Mapper Plus operating on Landsat and 2) from Envisat and Radarsat SAR images. In this paper, we focus on marginal ice zones, as the ice concentrations in those regions are in general observed with higher errors. First-year ice (bias: -1%-0% and rms error: 1%-4%) and young ice (bias: -4%-0% and rms error: 3%-9%) are fairly well recognized with little underestimation of ASI ice concentrations with respect to Landsat ice concentrations. New ice is identified with less accuracy by the ASI algorithm (bias: -16%-9% and rms error: 18.3%-26.2%). Averaged over all ice types, the bias ranges between -8.4% and 4.5%, and the rms error ranges between 2.0% and 17.4%. Discrepancies mainly occur in polynya areas (underestimation by ASI) and along the ice edge (overestimation by ASI). The results of the ASI-SAR comparison yield contrasting results. ASI underestimates the ice concentrations near the ice edge but overestimates them in some interior areas (bias: -2.9%-2.5% and rms error: 16.9%-20.1%). The discrepancies between both comparisons may be due to the different interaction mechanisms of the different sensor types, particularly with the newly formed ice. C1 [Wiebe, Heidrun; Heygster, Georg] Univ Bremen, Inst Environm Phys, D-28334 Bremen, Germany. [Markus, Thorsten] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Wiebe, H (reprint author), Univ Bremen, Inst Environm Phys, D-28334 Bremen, Germany. EM hwiebe@uni-bremen.de; heygster@uni-bremen.de; thorsten.markus@nasa.gov RI Markus, Thorsten/D-5365-2012 NR 25 TC 6 Z9 7 U1 2 U2 11 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD SEP PY 2009 VL 47 IS 9 BP 3008 EP 3015 DI 10.1109/TGRS.2009.2026367 PG 8 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 486WA UT WOS:000269230100003 ER PT J AU Kurum, M Lang, RH O'Neill, PE Joseph, AT Jackson, TJ Cosh, MH AF Kurum, Mehmet Lang, Roger H. O'Neill, Peggy E. Joseph, Alicia T. Jackson, Thomas J. Cosh, Michael H. TI L-Band Radar Estimation of Forest Attenuation for Active/Passive Soil Moisture Inversion SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article; Proceedings Paper CT 10th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment CY MAR 11-14, 2008 CL Florence, ITALY SP Ctr Telerilevamento Microonde, Inst Fisica Appl, GRSS, IEEE, IEEE Italy Sect, URSI, Thales Alenia, Ente Cassa Risparmio Firenze DE Attenuation; frequency correlation function (FCF); microwave transient response; soil moisture; vegetation ID ELECTROMAGNETIC BACKSCATTERING; POLARIMETRIC SCATTEROMETER; SYSTEM; SAR; SCATTERING; INVENTORY; MISSION; CANOPY; LAYER AB In the radiometric sensing of soil moisture through a forest canopy, knowledge of canopy attenuation is required. Active sensors have the potential of providing this information since the backscatter signals are more sensitive to forest structure. In this paper, a new radar technique is presented for estimating canopy attenuation. The technique employs details found in a transient solution where the canopy (volume-scattering) and the tree-ground (double-interaction) effects appear at different times in the return signal. The influence that these effects have on the expected time-domain response of a forest stand is characterized through numerical simulations. A coherent forest scattering model, based on a Monte Carlo simulation, is developed to calculate the transient response from distributed scatterers over a rough surface. The forest transient-response model for linear copolarized cases is validated with the microwave deciduous tree data acquired by the Combined Radar/Radiometer (ComRAD) system. The attenuation algorithm is applicable when the forest height is sufficient to separate the components of the radar backscatter transient response. The frequency correlation functions of double-interaction and volume-scattering returns are normalized after being separated in the time domain. This ratio simply provides a physically based system of equations with reduced parameterizations for the forest canopy. Finally, the technique is used with ComRAD L-band stepped-frequency data to evaluate its performance under various physical conditions. C1 [Kurum, Mehmet; Lang, Roger H.] George Washington Univ, Dept Elect & Comp Engn, Washington, DC 20052 USA. [O'Neill, Peggy E.; Joseph, Alicia T.] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Hydrospher & Biospher Sci Lab, Greenbelt, MD 20771 USA. [Joseph, Alicia T.] Univ Maryland, College Pk, MD 20742 USA. [Jackson, Thomas J.; Cosh, Michael H.] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA. RP Kurum, M (reprint author), George Washington Univ, Dept Elect & Comp Engn, Washington, DC 20052 USA. EM kurum@gwmail.gwu.edu; lang@gwu.edu; Peggy.E.Oneill@nasa.gov; Alicia.T.Joseph@nasa.gov; Tom.Jackson@ars.usda.gov; Michael.Cosh@usda.gov RI O'Neill, Peggy/D-2904-2013; Cosh, MIchael/A-8858-2015 OI Cosh, MIchael/0000-0003-4776-1918 NR 31 TC 14 Z9 14 U1 0 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD SEP PY 2009 VL 47 IS 9 SI SI BP 3026 EP 3040 DI 10.1109/TGRS.2009.2026641 PG 15 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 486WA UT WOS:000269230100005 ER PT J AU Li, ZH Fielding, EJ Cross, P AF Li, Zhenhong Fielding, Eric J. Cross, Paul TI Integration of InSAR Time-Series Analysis and Water-Vapor Correction for Mapping Postseismic Motion After the 2003 Bam (Iran) Earthquake SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Bam earthquake; interferometry; postseismic motion; synthetic aperture radar (SAR); time series (TS); water-vapor effects ID SURFACE DEFORMATION; ALGORITHM; MAPS AB Atmospheric water-vapor effects represent a major limitation of interferometric synthetic aperture radar (InSAR) techniques, including InSAR time-series (TS) approaches (e. g., persistent or permanent scatterers and small-baseline subset). For the first time, this paper demonstrates the use of InSAR TS with precipitable water-vapor (InSAR TS + PWV) correction model for deformation mapping. We use MEdium Resolution Imaging Spectrometer (MERIS) near-infrafred (NIR) water-vapor data for InSAR atmospheric correction when they are available. For the dates when the NIR data are blocked by clouds, an atmospheric phase screen (APS) model has been developed to estimate atmospheric effects using partially water-vapor-corrected interferograms. Cross validation reveals that the estimated APS agreed with MERIS-derived line-of-sight path delays with a small standard deviation (0.3-0.5 cm) and a high correlation coefficient (0.84-0.98). This paper shows that a better TS of postseismic motion after the 2003 Bam (Iran) earthquake is achievable after reduction of water-vapor effects using the InSAR TS + PWV technique with coincident MERIS NIR water-vapor data. C1 [Li, Zhenhong] Univ Glasgow, Dept Geog & Earth Sci, Glasgow G12 8QQ, Lanark, Scotland. [Fielding, Eric J.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Cross, Paul] UCL, Dept Civil Environm & Geomat Engn, London WC1E 6BT, England. RP Li, ZH (reprint author), Univ Glasgow, Dept Geog & Earth Sci, Glasgow G12 8QQ, Lanark, Scotland. EM zhenhong.li@ges.gla.ac.uk; eric.j.fielding@jpl.nasa.gov; paul.cross@cege.ucl.ac.uk RI NCEO, COMET+`/A-3443-2013; Li, Zhenhong/F-8705-2010; Fielding, Eric/A-1288-2007 OI Li, Zhenhong/0000-0002-8054-7449; Fielding, Eric/0000-0002-6648-8067 FU OPA Project [200705003]; NSFC [40576044] FX This work was supported in part by OPA Project 200705003 and NSFC Project 40576044. This paper has supplementary downloadable material available at http:// ieeexplore. ieee. org, provided by the authors. This includes a GIF format movie clip, which shows InSAR time-series results for postseismic motions after the 2003MW 6.6 Bam (Iran) earthquake. This material is 6.4 MB in size. NR 30 TC 41 Z9 47 U1 1 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD SEP PY 2009 VL 47 IS 9 SI SI BP 3220 EP 3230 DI 10.1109/TGRS.2009.2019125 PG 11 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 486WA UT WOS:000269230100022 ER PT J AU Lecakes, GD Morris, JA Schmalzel, JL Mandayam, S AF Lecakes, George D., Jr. Morris, Jonathan A. Schmalzel, John L. Mandayam, Shreekanth TI Virtual Reality Environments for Integrated Systems Health Management of Rocket Engine Tests SO IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT LA English DT Article DE Automated test and diagnostic systems; human-computer interface; virtual measurement systems ID VISUALIZATION AB Integrated Systems Health Management (ISHM) consists of processes managing erroneous conditions that systems may encounter during their operational life by either designing out failures early on or defending and mitigating any possible failures. A successful implementation of ISHM consists of the following four components: data sensors, computations, data sinks, and visualization modules. In this paper, we explore the use of virtual reality (VR) platforms as a candidate for developing ISHM visualization modules. VR allows for a complete and spatially accurate 3-D model of a system to be displayed in real time. It provides a medium for improved data assimilation and analysis through its core tenants of immersion, interaction, and navigation. Furthermore, VR allows for integrating graphical, functional, and measurement data in the same platform-providing for the development of subsequent risk-analysis modules. The research objectives of this paper are focused on creating a detailed visual model of a multisensor rocket engine test facility inside a VR platform and demonstrating the capability of the VR platform in integrating graphical, measurement, and health data in an immersive, navigable, and interactive manner. A human-based performance evaluation of the VR platform is also presented. These research objectives are addressed using an example of a multisensor rocket-engine portable test stand at the National Aeronautics and Space Administration (NASA) Stennis Space Center's E-3 test facility. C1 [Lecakes, George D., Jr.; Mandayam, Shreekanth] Rowan Univ, Dept Elect & Comp Engn, Glassboro, NJ 08028 USA. [Morris, Jonathan A.; Schmalzel, John L.] NASA, Stennis Space Ctr, MS 39529 USA. RP Lecakes, GD (reprint author), Rowan Univ, Dept Elect & Comp Engn, Glassboro, NJ 08028 USA. FU National Aeronautics and Space Administration John C. Stennis Space Center [NNS06AC08P] FX Manuscript received June 30, 2008; revised February 16, 2009. Current version published August 12, 2009. This work was supported in part by the National Aeronautics and Space Administration John C. Stennis Space Center under Order NNS06AC08P. The Associate Editor coordinating the review process for this paper was Dr. Emil Petriu. NR 25 TC 3 Z9 3 U1 2 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9456 J9 IEEE T INSTRUM MEAS JI IEEE Trans. Instrum. Meas. PD SEP PY 2009 VL 58 IS 9 BP 3050 EP 3057 DI 10.1109/TIM.2009.2016823 PG 8 WC Engineering, Electrical & Electronic; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 482PL UT WOS:000268901100018 ER PT J AU Omar, AA Dib, NI Hettak, K Scardelletti, MC Shubair, RM AF Omar, Amjad A. Dib, Nihad I. Hettak, Khelifa Scardelletti, Maximilian C. Shubair, Raed M. TI Design of Coplanar Waveguide Elliptic Low Pass Filters SO INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING LA English DT Article DE coplanar waveguide; low pass filters; elliptic filters ID DEFECTED GROUND STRUCTURE; COMPACT AB This article proposes three design topologies of coplanar waveguide elliptic low pass filters. The design procedure is simple and explained in detail for the first topology. Numerical results are provided using the commercially available simulation softwares IE3D and HFSS to show the validity of the design with very good agreement. The proposed filters yield less than 0.1 dB attenuation in the passband (0-2 GHz), with a controllable slope of the transition between passband and stopband. The width of the rejection band is increased by simple filter cascading resulting in a passband to stopband ratio of up to 1:6. (C) 2009 Wiley Periodicals, Inc. Int J RF and Microwave CAE 19: 540-548, 2009. C1 [Dib, Nihad I.] Jordan Univ Sci & Technol, Dept Elect Engn, Irbid, Jordan. [Omar, Amjad A.] Yarmouk Univ, Dept Commun Engn, Hijjawi Fac Engn Technol, Irbid, Jordan. [Hettak, Khelifa] Commun Res Ctr, Ottawa, ON K2H 8S2, Canada. [Scardelletti, Maximilian C.] NASA, Glenn Res Ctr, Microwave Metrol Facil, Cleveland, OH USA. [Shubair, Raed M.] KUSTAR, Dept Commun Engn, Sharjah, U Arab Emirates. RP Dib, NI (reprint author), Jordan Univ Sci & Technol, Dept Elect Engn, Irbid, Jordan. EM nihad@just.edu.jo RI Dib, Nihad/M-4918-2015; OI Omar, Amjad/0000-0001-7953-3552; Dib, Nihad/0000-0002-2263-5512 NR 17 TC 0 Z9 0 U1 0 U2 2 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1096-4290 J9 INT J RF MICROW C E JI Int. J. RF Microw. Comput-Aid. Eng. PD SEP PY 2009 VL 19 IS 5 BP 540 EP 548 DI 10.1002/mmce.20376 PG 9 WC Computer Science, Interdisciplinary Applications; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 483EI UT WOS:000268944800003 ER PT J AU Pikuta, EV Hoover, RB Marsic, D Whitman, WB Lupa, B Tang, J Krader, P AF Pikuta, Elena V. Hoover, Richard B. Marsic, Damien Whitman, William B. Lupa, Boguslaw Tang, Jane Krader, Paul TI Proteocatella sphenisci gen. nov., sp nov., a psychrotolerant, spore-forming anaerobe isolated from penguin guano SO INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY LA English DT Article ID TISSIERELLA-PRAEACUTA; BACTERIUM; CLOSTRIDIUM; ALIGNMENT; LAKE AB A novel, obligately anaerobic, psychrotolerant bacterium, designated strain PPP2(T), was isolated from guano of the Magellanic penguin (Spheniscus magellanicus) in Chilean Patagonia. Cells were Gram-stain-positive, spore-forming, straight rods (0.7-0.8x3.0-5.0 pm) that were motile by means of peritrichous flagella. Growth was observed at pH 6.7-9.7 (optimum pH 8.3) and 2-37 degrees C (optimum 29 degrees C). Growth was observed between 0 and 4% (w/v) NaCl with optimum growth at 0.5% (w/v). Strain PPP2(T) was a catalase-negative chemo-organoheterotroph that was capable of fermentative metabolism. Peptone, bacto-tryptone, Casamino acids, oxalate, starch, chitin and yeast extract were utilized as substrates. The major metabolic products were acetate, butyrate and ethanol. Strain PPP2(T) was resistant to ampicillin, but sensitive to tetracycline, chloramphenicol, rifampicin, kanamycin, vancomycin and gentamicin. The DNA G + C content of strain PPP2(T) was 39.5 mol%. Phylogenetic analysis revealed that strain PPP2(T) was related most closely to Clostridium sticklandii SR (similar to 90% 16S rRNA gene sequence similarity). On the basis of phylogenetic analysis and phenotypic characteristics, strain PPP2(T) is considered to represent a novel species of a new genus, for which the name Proteocatella sphenisci gen. nov., sp. nov. is proposed. The type strain of Proteocatella sphenisci is PPP2(T) (= ATCC BAA-755(T) = JCM 12175(T) =CIP 108034(T)). C1 [Pikuta, Elena V.; Hoover, Richard B.] NASA, NSSTC, Astrobiol Lab, Huntsville, AL 35805 USA. [Marsic, Damien] Univ Alabama, Struct Biol Lab, MSB, Huntsville, AL 35899 USA. [Whitman, William B.; Lupa, Boguslaw] Univ Georgia, Dept Microbiol, Athens, GA 30602 USA. [Tang, Jane; Krader, Paul] Amer Type Culture Collect, Manassas, VA 20110 USA. RP Pikuta, EV (reprint author), NASA, NSSTC, Astrobiol Lab, 320 Sparkman Dr,Room 4247, Huntsville, AL 35805 USA. EM elena.pikuta@uah.edu RI Marsic, Damien/A-1087-2009 OI Marsic, Damien/0000-0003-0847-8095 FU University of Georgia, Athens; NASA JSC Astrobiology Institute for Biomarkers in Astromaterials FX We are grateful to Dr Vadim V. Kevbrin and Professor L Wiegel (University of Georgia, Athens) for assistance in measuring end products, and for access to phase-contrast microscopy. We wish to acknowledge the NASA JSC Astrobiology Institute for Biomarkers in Astromaterials for financial support. NR 28 TC 16 Z9 16 U1 0 U2 5 PU SOC GENERAL MICROBIOLOGY PI READING PA MARLBOROUGH HOUSE, BASINGSTOKE RD, SPENCERS WOODS, READING RG7 1AG, BERKS, ENGLAND SN 1466-5026 J9 INT J SYST EVOL MICR JI Int. J. Syst. Evol. Microbiol. PD SEP PY 2009 VL 59 BP 2302 EP 2307 DI 10.1099/ijs.0.002816-0 PG 6 WC Microbiology SC Microbiology GA 502YN UT WOS:000270497100033 PM 19620379 ER PT J AU Namsaraev, Z Akimov, V Tsapin, A Barinova, E Nealson, K Gorlenko, V AF Namsaraev, Zorigto Akimov, Vladimir Tsapin, Alexandre Barinova, Ekaterina Nealson, Kenneth Gorlenko, Vladimir TI Marinospirillum celere sp nov., a novel haloalkaliphilic, helical bacterium isolated from Mono Lake SO INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY LA English DT Article ID DEOXYRIBONUCLEIC ACID; KUSAYA GRAVY AB Two strains of a Gram-negative, helical, haloalkaliphilic bacterium were isolated from Mono Lake (USA). Both strains were mesophilic and grew between 13 and 55 degrees C, with optimum growth at 35-45 degrees C. The optimum pH for growth was 9.5. Growth was observed at NaCl concentrations of 0.5-12% (w/v), with optimum growth at 2% NaCl. Both isolates were motile by means of bipolar tuft flagella, coccoid body-forming and strictly aerobic. It was concluded that they belong to the same species, based on DNA-DNA hybridization values (95% DNA relatedness). DNA G + C contents of the novel strains were 52.1 and 52.3 mol%. On the basis of 16S rRNA gene sequence similarity, both strains were shown to be related closely to the members of the genus Marinospirillum (family Oceanospirillaceae, class Gammaproteobacteria). Sequence similarity of strain v1c_Sn-red(T) to the type strains of Marinospirillum alkaliphilum, Marinospirillum minutulum, Marinospirillum megaterium and Marinospirillum insulare was 95.0, 92.7, 91.8 and 91.8%, respectively. Chemotaxonomic data [major ubiquinone, Q8; major fatty acids, C(18:1)(n-7) and C(16:0)] and physiological and biochemical tests supported the affiliation of the novel strains to the genus Marinospirillum as members of a novel species, for which the name Marinospirillum celere sp. nov. is proposed, with the type strain v1c_Sn-red(T) (= LMG 24610(T) = VKM 2416(T)). C1 [Namsaraev, Zorigto; Barinova, Ekaterina; Gorlenko, Vladimir] RAS, Winogradsky Inst Microbiol, Moscow 117312, Russia. [Akimov, Vladimir] RAS, Skryabin Inst Biochem & Physiol Microorganisms, Pushchino 142290, Moscow Region, Russia. [Tsapin, Alexandre] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91109 USA. [Nealson, Kenneth] Univ So Calif, Los Angeles, CA 90089 USA. RP Namsaraev, Z (reprint author), RAS, Winogradsky Inst Microbiol, Pr 60 Letiya Oktyabrya 7-2, Moscow 117312, Russia. EM zorigto@gmail.com FU Russian Foundation for Basic Research [07-04-00651]; Russian Academy of Sciences 'Molecular and Cell Biology; Origin and Evolution of Biosphere; Russian Science Support Foundation; Jet Propulsion Laboratory, California Institute of Technology; National Aeronautics and Space Administration FX This work was supported by the Russian Foundation for Basic Research (grant 07-04-00651), the Programs of the Russian Academy of Sciences 'Molecular and Cell Biology' and 'Origin and Evolution of Biosphere' and the Russian Science Support Foundation. This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We also thank Anatoly Lysenko for determination of the DNA G + C content, Georgy Osipov for fatly acid analysis and Boris Baskunov for determination of quinone composition. NR 20 TC 3 Z9 3 U1 1 U2 4 PU SOC GENERAL MICROBIOLOGY PI READING PA MARLBOROUGH HOUSE, BASINGSTOKE RD, SPENCERS WOODS, READING RG7 1AG, BERKS, ENGLAND SN 1466-5026 J9 INT J SYST EVOL MICR JI Int. J. Syst. Evol. Microbiol. PD SEP PY 2009 VL 59 BP 2329 EP 2332 DI 10.1099/ijs-0.006825-0 PG 4 WC Microbiology SC Microbiology GA 502YN UT WOS:000270497100038 PM 19620364 ER PT J AU Dick, SJ AF Dick, Steven J. TI Keep Watching the Skies! The Story of Operation Moonwatch and the Dawn of the Space Age. SO ISIS LA English DT Book Review C1 [Dick, Steven J.] NASA, Washington, DC 20546 USA. [Dick, Steven J.] NASA Hist Off, Washington, DC USA. RP Dick, SJ (reprint author), NASA, Washington, DC 20546 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0021-1753 J9 ISIS JI Isis PD SEP PY 2009 VL 100 IS 3 BP 685 EP 686 PG 3 WC History & Philosophy Of Science SC History & Philosophy of Science GA 511GA UT WOS:000271150700068 ER PT J AU Feng, Q Yang, P Kattawar, GW Hsu, CN Tsay, SC Laszlo, I AF Feng, Qian Yang, Ping Kattawar, George W. Hsu, Christina N. Tsay, Si-Chee Laszlo, Istvan TI Effects of particle nonsphericity and radiation polarization on retrieving dust properties from MODIS observations SO JOURNAL OF AEROSOL SCIENCE LA English DT Article DE Dust aerosols; Nonspherical; Phase matrix; Retrieval ID LIGHT-SCATTERING; TROPOSPHERIC AEROSOLS; OPTICAL-PROPERTIES; MINERAL DUST; ABSORPTION; SPHEROIDS; SHAPE; SIZE; CLIMATOLOGY; SIMULATIONS AB The scattering and radiative properties of mineral dust aerosols at violet-to-blue (0.412, 0.441, and 0.470 mu m) and red (0.650 mu m) wavelengths are investigated. To account for the effect of particle nonsphericity on the optical properties of dust aerosols, in the present study, these particles are assumed to be spheroids. A combination of the T-matrix method and an improved geometric optics method is applied to the computation of the single-scattering properties of spheroidal particles with size parameters ranging from the Rayleigh to geometric optics regimes. For comparison, the Lorenz-Mie theory is employed to compute the optical properties of spherical dust particles that have the same volumes as their nonspherical counterparts. The differences between the phase functions of spheroidal and spherical particles lead to quite different lookup tables involved in retrieving dust aerosol properties. Moreover, the applicability of a hybrid approach based on the spheroid model for the phase function and the sphere model for the other phase matrix elements is also demonstrated. The present sensitivity study, employing the moderate resolution imaging spectroradiometer (MODIS) measurements and the fundamental principle of the Deep Blue algorithm, illustrates that neglecting the nonsphericity of dust particles usually leads to an underestimate of retrieved aerosol optical depth; although, depending on the scattering angle, an overestimate is noted in some cases. Furthermore, the effect of including full polarization treatment in forward radiative transfer simulation on dust property retrieval is also investigated. It is found that the effect of radiation polarization on the Deep Blue dust property retrieval is not negligible if the retrieval is based on two violet-blue channels centered at 0.412 and 0.470 mu m. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Yang, Ping] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77845 USA. [Hsu, Christina N.; Tsay, Si-Chee] NASA, Goddard Space Flight Ctr, Geenbelt, MD 20771 USA. [Laszlo, Istvan] NOAA, NESDIS, Off Res & Applicat, Camp Springs, MD 20746 USA. RP Yang, P (reprint author), Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77845 USA. EM pyang@ariel.met.tamu.edu RI Laszlo, Istvan/F-5603-2010; Yang, Ping/B-4590-2011; Hsu, N. Christina/H-3420-2013; Tsay, Si-Chee/J-1147-2014 OI Laszlo, Istvan/0000-0002-5747-9708; FU NASA's Radiation Sciences Program [NNX08AP29G]; NOAA [DG1 33EO8CN0231]; National Science Foundation (NSF) Physical & Dynamic Meteorology Program [ATM-0803779]; Office of Naval Research [N00014-06-1-0069] FX The authors thank Ms. Mary Gammon for editing the manuscript and Dr.J.F. De Haan for using his vector adding/doubling code. This research is supported by a grant (NNX08AP29G) from NASA's Radiation Sciences Program managed by Dr. Hal Maring and a NOAA grant (DG1 33EO8CN0231), and partly supported by a NOAA grant (DG1 33EO8CN0231). The effort on the single-scattering computation involved in this project is partly supported by a grant (ATM-0803779) from the National Science Foundation (NSF) Physical & Dynamic Meteorology Program managed by Dr. Bradley Smull. George W. Kattawar's research is also supported by the Office of Naval Research under contract N00014-06-1-0069. NR 49 TC 19 Z9 19 U1 0 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-8502 EI 1879-1964 J9 J AEROSOL SCI JI J. Aerosol. Sci. PD SEP PY 2009 VL 40 IS 9 BP 776 EP 789 DI 10.1016/j.jaerosci.2009.05.001 PG 14 WC Engineering, Chemical; Engineering, Mechanical; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 497WW UT WOS:000270096200005 ER PT J AU Doin, MP Lasserre, C Peltzer, G Cavalie, O Doubre, C AF Doin, M. -P. Lasserre, C. Peltzer, G. Cavalie, O. Doubre, C. TI Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models SO JOURNAL OF APPLIED GEOPHYSICS LA English DT Article; Proceedings Paper CT Fringe 2007 Workshop CY NOV 26-30, 2007 CL ESA ESRIN, Frascati, ITALY HO ESA ESRIN DE Radar interferometry; Phase propagation delay; Global climate model; Stratified atmosphere ID SATELLITE RADAR INTERFEROMETRY; WESTERN HAIYUAN FAULT; INTERSEISMIC STRAIN; SURFACE DEFORMATION; MOUNT-ETNA; GANSU; GPS; INTERFEROGRAMS; CHINA; INSAR AB The main limiting factor on the accuracy of Interferometric SAR measurements (InSAR) comes from phase propagation delays through the troposphere. The delay can be divided into a stratified component, which correlates with the topography and often dominates the tropospheric signal, and a turbulent component. We use Global Atmospheric Models (GAM) to estimate the stratified phase delay and delay-elevation ratio at epochs of SAR acquisitions, and compare them to observed phase delay derived from SAR interferograms. Three test areas are selected with different geographic and climatic environments and with large SAR archive available. The Lake Mead, Nevada, USA is covered by 79 ERS1/2 and ENVISAT acquisitions, the Haiyuan Fault area, Gansu, China, by 24 ERS1/2 acquisitions, and the Afar region, Republic of Djibouti, by 91 Radarsat acquisitions. The hydrostatic and wet stratified delays are computed from GAM as a function of atmospheric pressure P, temperature T, and water vapor partial pressure e vertical profiles. The hydrostatic delay, which depends on ratio P/T varies significantly at low elevation and cannot be neglected. The wet component of the delay depends mostly on the near surface specific humidity. CAM predicted delay-elevation ratios are in good agreement with the ratios derived from InSAR data away from deforming zones. Both estimations of the delay-elevation ratio can thus be used to perform a first order correction of the observed interferometric phase to retrieve a ground motion signal of low amplitude. We also demonstrate that aliasing of daily and seasonal variations in the stratified delay due to uneven sampling of SAR data significantly bias InSAR data stacks or time series produced after temporal smoothing. In all three test cases, the InSAR data stacks or smoothed time series present a residual stratified delay of the order of the expected deformation signal. In all cases, correcting interferograms from the stratified delay removes all these biases. We quantify the standard error associated with the correction of the stratified atmospheric delay. It varies from one site to another depending on the prevailing atmospheric conditions, but remains bounded by the standard deviation of the daily fluctuations of the stratified delay around the seasonal average. Finally we suggest that the phase delay correction can potentially be improved by introducing a non-linear dependence to the elevation derived from GAM. (C) 2009 Elsevier B.V. All rights reserved. C1 [Doin, M. -P.] Ecole Normale Super, CNRS, Geol Lab, UMR 8538, F-75231 Paris, France. [Lasserre, C.; Cavalie, O.] Univ Grenoble 1, Lab Geophys Interne & Tectonophys, CNRS, F-38041 Grenoble 09, France. [Peltzer, G.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA USA. [Peltzer, G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Doubre, C.] EOST IPGS, CNRS UdS, UMR 7516, F-67084 Strasbourg, France. RP Doin, MP (reprint author), Ecole Normale Super, CNRS, Geol Lab, UMR 8538, 24 Rue Lhomond, F-75231 Paris, France. EM doin@geologie.ens.fr RI Lasserre, Cecile/D-7073-2017 OI Lasserre, Cecile/0000-0002-0582-0775 NR 51 TC 100 Z9 105 U1 1 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-9851 EI 1879-1859 J9 J APPL GEOPHYS JI J. Appl. Geophys. PD SEP PY 2009 VL 69 IS 1 SI SI BP 35 EP 50 DI 10.1016/j.jappgeo.2009.03.010 PG 16 WC Geosciences, Multidisciplinary; Mining & Mineral Processing SC Geology; Mining & Mineral Processing GA 505KY UT WOS:000270693500005 ER PT J AU Duda, DP Minnis, P AF Duda, David P. Minnis, Patrick TI Basic Diagnosis and Prediction of Persistent Contrail Occurrence Using High-Resolution Numerical Weather Analyses/Forecasts and Logistic Regression. Part I: Effects of Random Error SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID UNITED-STATES; CLIMATE; SUPERSATURATION; ASSIMILATION; HUMIDITY; MODEL AB Straightforward application of the Schmidt-Appleman contrail formation criteria to diagnose persistent contrail occurrence from numerical weather prediction data is hindered by significant bias errors in the upper-tropospheric humidity. Logistic models of contrail occurrence have been proposed to overcome this problem, but basic questions remain about how random measurement error may affect their accuracy. A set of 5000 synthetic contrail observations is created to study the effects of random error in these probabilistic models. The simulated observations are based on distributions of temperature, humidity, and vertical velocity derived from Advanced Regional Prediction System (ARPS) weather analyses. The logistic models created from the simulated observations were evaluated using two common statistical measures of model accuracy: the percent correct (PC) and the Hanssen-Kuipers discriminant (HKD). To convert the probabilistic results of the logistic models into a dichotomous yes/no choice suitable for the statistical measures, two critical probability thresholds are considered. The HKD scores are higher (i.e., the forecasts are more skillful) when the climatological frequency of contrail occurrence is used as the critical threshold, whereas the PC scores are higher (i.e., the forecasts are more accurate) when the critical probability threshold is 0.5. For both thresholds, typical random errors in temperature, relative humidity, and vertical velocity are found to be small enough to allow for accurate logistic models of contrail occurrence. The accuracy of the models developed from synthetic data is over 85% for the prediction of both contrail occurrence and nonoccurrence, although, in practice, larger errors would be anticipated. C1 [Duda, David P.; Minnis, Patrick] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA. [Duda, David P.] Natl Inst Aerosp, Hampton, VA USA. RP Duda, DP (reprint author), NASA, Langley Res Ctr, Sci Directorate, Mail Stop 420, Hampton, VA 23681 USA. EM david.p.duda@nasa.gov RI Minnis, Patrick/G-1902-2010 OI Minnis, Patrick/0000-0002-4733-6148 FU NASA Earth Science Enterprise Radiation Sciences Division; NASA [NAG1-02044, NCCI-02043, NIA-2579]; National Science Foundation [0222623] FX This material is based upon work supported by the NASA Earth Science Enterprise Radiation Sciences Division, the NASA Modeling, Analysis, and Prediction Program, NASA Contracts NAG1-02044 and NCCI-02043 NIA-2579, and by the National Science Foundation under Grant 0222623. NR 27 TC 4 Z9 4 U1 0 U2 2 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD SEP PY 2009 VL 48 IS 9 BP 1780 EP 1789 DI 10.1175/2009JAMC2056.1 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 496WA UT WOS:000270009300003 ER PT J AU Duda, DP Minnis, P AF Duda, David P. Minnis, Patrick TI Basic Diagnosis and Prediction of Persistent Contrail Occurrence Using High-Resolution Numerical Weather Analyses/Forecasts and Logistic Regression. Part II: Evaluation of Sample Models SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID UNITED-STATES; PARAMETERIZATION; ASSIMILATION; FORECASTS; SYSTEM; RUC AB A probabilistic forecast to accurately predict contrail formation over the conterminous United States (CONUS) is created by using meteorological data based on hourly meteorological analyses from the Advanced Regional Prediction System (ARPS) and the Rapid Update Cycle (RUC) combined with surface and satellite observations of contrails. Two groups of logistic models were created. The first group of models (SURFACE models) is based on surface-based contrail observations supplemented with satellite observations of contrail occurrence. The most common predictors selected for the SURFACE models tend to be related to temperature, relative humidity, and wind direction when the models are generated using RUC or ARPS analyses. The second group of models (OUTBREAK models) is derived from a selected subgroup of satellite-based observations of widespread persistent contrails. The most common predictors for the OUTBREAK models tend to be wind direction, atmospheric lapse rate, temperature, relative humidity, and the product of temperature and humidity. C1 [Duda, David P.; Minnis, Patrick] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA. [Duda, David P.] Natl Inst Aerosp, Hampton, VA USA. RP Duda, DP (reprint author), NASA, Langley Res Ctr, Sci Directorate, Mail Stop 420, Hampton, VA 23681 USA. EM david.p.duda@nasa.gov RI Minnis, Patrick/G-1902-2010 OI Minnis, Patrick/0000-0002-4733-6148 FU NASA Earth Science Enterprise Radiation Sciences Division; NASA [NAG1-02044, NCCI-02043, NIA-2579]; National Science Foundation [0222623] FX This material is based upon work supported by the NASA Earth Science Enterprise Radiation Sciences Division, the NASA Modeling, Analysis, and Prediction Program, NASA Contracts NAG1-02044 and NCCI-02043 NIA-2579, and by the National Science Foundation under Grant 0222623. NR 28 TC 5 Z9 5 U1 0 U2 0 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD SEP PY 2009 VL 48 IS 9 BP 1790 EP 1802 DI 10.1175/2009JAMC2057.1 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 496WA UT WOS:000270009300004 ER PT J AU Bolvin, DT Adler, RF Huffman, GJ Nelkin, EJ Poutiainen, JP AF Bolvin, David T. Adler, Robert F. Huffman, George J. Nelkin, Eric J. Poutiainen, Jani P. TI Comparison of GPCP Monthly and Daily Precipitation Estimates with High-Latitude Gauge Observations SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID GLOBAL PRECIPITATION; UNITED-STATES; SATELLITE; RAINFALL; VALIDATION; PRODUCTS; DATASET; AFRICA AB Monthly and daily products of the Global Precipitation Climatology Project (GPCP) are evaluated through a comparison with Finnish Meteorological Institute (FMI) gauge observations for the period January 1995-December 2007 to assess the quality of the GPCP estimates at high latitudes. At the monthly scale both the final GPCP combination satellite-gauge (SG) product is evaluated, along with the satellite-only multisatellite (MS) product. The GPCP daily product is scaled to sum to the monthly product, so it implicitly contains monthly-scale gauge influence, although it contains no daily gauge information. As expected, the monthly SG product agrees well with the FMI observations because of the inclusion of limited gauge information. Over the entire analysis period the SG estimates are biased low by 6% when the same wind-loss adjustment is applied to the FMI gauges as is used in the SG analysis. The interannual anomaly correlation is about 0.9. The satellite-only MS product has a lesser, but still reasonably good, interannual correlation (similar to 0.6) while retaining a similar bias due to the use of a climatological bias adjustment. These results indicate the value of using even a few gauges in the analysis and provide an estimate of the correlation error to be expected in the SG analysis over ocean and remote land areas where gauges are absent. The daily GPCP precipitation estimates compare reasonably well at the 18 latitude 3 28 longitude scale with the FMI gauge observations in the summer with a correlation of 0.55, but less so in the winter with a correlation of 0.45. Correlations increase somewhat when larger areas and multiday periods are analyzed. The day-to-day occurrence of precipitation is captured fairly well by the GPCP estimates, but the corresponding precipitation event amounts tend to show wide variability. The results of this study indicate that the GPCP monthly and daily fields are useful for meteorological and hydrological studies but that there is significant room for improvement of satellite retrievals and analysis techniques in this region. It is hoped that the research here provides a framework for future high-latitude assessment efforts such as those that will be necessary for the upcoming satellite-based Global Precipitation Measurement (GPM) mission. C1 [Bolvin, David T.; Adler, Robert F.] NASA, GSFC, Atmospheres Lab, Greenbelt, MD 20771 USA. [Bolvin, David T.; Huffman, George J.; Nelkin, Eric J.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Lanham, MD USA. [Bolvin, David T.; Huffman, George J.; Nelkin, Eric J.] Sci Syst & Applicat Inc, Lanham, MD USA. [Adler, Robert F.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Poutiainen, Jani P.] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland. RP Bolvin, DT (reprint author), NASA, GSFC, Atmospheres Lab, Code 613-1, Greenbelt, MD 20771 USA. EM david.t.bolvin@nasa.gov RI Huffman, George/F-4494-2014; Measurement, Global/C-4698-2015 OI Huffman, George/0000-0003-3858-8308; FU Finnish Meteorological Institute FX The authors acknowledge and thank the Finnish Meteorological Institute for providing the high-quality Finnish gauge dataset used in this work. The authors also acknowledge the support of Dr. W. Scott Curtis for help in generating several figures. NR 22 TC 39 Z9 39 U1 0 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD SEP PY 2009 VL 48 IS 9 BP 1843 EP 1857 DI 10.1175/2009JAMC2147.1 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 496WA UT WOS:000270009300008 ER PT J AU McPheeters, CO Hill, CJ Lim, SH Derkacs, D Ting, DZ Yu, ET AF McPheeters, C. O. Hill, C. J. Lim, S. H. Derkacs, D. Ting, D. Z. Yu, E. T. TI Improved performance of In(Ga)As/GaAs quantum dot solar cells via light scattering by nanoparticles SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE current density; gallium arsenide; III-V semiconductors; indium compounds; infrared spectra; light scattering; nanoparticles; photoconductivity; refractive index; semiconductor quantum dots; semiconductor quantum wells; solar cells ID EFFICIENCY AB InAs quantum dots have been used to extend the absorption edge of InGaAs/GaAs quantum well solar cells from 940 to similar to 1100 nm. In order to improve absorption of infrared radiation by the thin (300 nm) active layer, we exploit its high refractive index, which acts as a waveguide for certain frequencies of light. Surface-deposited nanoparticles scatter incident radiation into waveguide modes of the devices, yielding improved infrared photocurrent generation of at least 10% at all wavelengths between 700 and 1100 nm, short-circuit current density increases of up to 16%, and corresponding gains in power conversion efficiency. C1 [McPheeters, C. O.; Lim, S. H.; Derkacs, D.; Yu, E. T.] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. [Hill, C. J.; Ting, D. Z.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP McPheeters, CO (reprint author), Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. EM ety@ece.utexas.edu RI Yu, Edward/A-3515-2017 OI Yu, Edward/0000-0001-9900-7322 FU NSF [DMR 0806755]; DoE [DE-FG36086018016] FX The authors would like to thank Jeremy Law (UCSD) for assistance with AFM scans and useful discussion, Peter Matheu (UC Berkeley) for advice on nanoparticle deposition and Thomas Darlington (nanoComposix, Inc.) for assistance with obtaining nanoparticles. Part of this work was supported by NSF (Grant No. DMR 0806755) and DoE (Grant No. DE-FG36086018016). NR 14 TC 20 Z9 20 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 1 PY 2009 VL 106 IS 5 AR 056101 DI 10.1063/1.3213366 PG 3 WC Physics, Applied SC Physics GA 494WN UT WOS:000269850300143 ER PT J AU Maximenko, N Niiler, P Rio, MH Melnichenko, O Centurioni, L Chambers, D Zlotnicki, V Galperin, B AF Maximenko, Nikolai Niiler, Peter Rio, Marie-Helene Melnichenko, Oleg Centurioni, Luca Chambers, Don Zlotnicki, Victor Galperin, Boris TI Mean Dynamic Topography of the Ocean Derived from Satellite and Drifting Buoy Data Using Three Different Techniques SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID NORTH-ATLANTIC; GENERAL-CIRCULATION; ALTIMETRY; PACIFIC; TOPEX/POSEIDON; VARIABILITY; CURRENTS; SYSTEM; AZORES; FRONT AB Presented here are three mean dynamic topography maps derived with different methodologies. The first method combines sea level observed by the high-accuracy satellite radar altimetry with the geoid model of the Gravity Recovery and Climate Experiment (GRACE), which has recently measured the earth's gravity with unprecedented spatial resolution and accuracy. The second one synthesizes near-surface velocities from a network of ocean drifters, hydrographic profiles, and ocean winds sorted according to the horizontal scales. In the third method, these global datasets are used in the context of the ocean surface momentum balance. The second and third methods are used to improve accuracy of the dynamic topography on fine space scales poorly resolved in the first method. When they are used to compute a multiyear time-mean global ocean surface circulation on a 0.58 horizontal resolution, both contain very similar, new small-scale midocean current patterns. In particular, extensions of western boundary currents appear narrow and strong despite temporal variability and exhibit persistent meanders and multiple branching. Also, the locations of the velocity concentrations in the Antarctic Circumpolar Current become well defined. Ageostrophic velocities reveal convergent zones in each subtropical basin. These maps present a new context in which to view the continued ocean monitoring with in situ instruments and satellites. C1 [Maximenko, Nikolai; Melnichenko, Oleg] Univ Hawaii Manoa, IPRC, SOEST, Honolulu, HI 96822 USA. [Niiler, Peter; Centurioni, Luca] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Rio, Marie-Helene] Collecte Localisat Satellites, Ramonville St Agne, France. [Melnichenko, Oleg] Natl Acad Sci Ukraine, Inst Marine Hydrophys, Sevastopol, Ukraine. [Chambers, Don] Univ Texas Austin, Ctr Space Res, Austin, TX 78712 USA. [Zlotnicki, Victor] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Galperin, Boris] Univ S Florida, Coll Marine Sci, St Petersburg, FL 33701 USA. RP Maximenko, N (reprint author), Univ Hawaii Manoa, IPRC, SOEST, 1680 East West Rd,POST Bldg 401, Honolulu, HI 96822 USA. EM maximenk@hawaii.edu OI Chambers, Don/0000-0002-5439-0257 FU NASA Ocean Surface Topography Science Team; NSF [OCE05-50853]; Japan Agency for Marine-Earth Science and Technology (JAMSTEC); NASA [NNX07AG53G]; NOAA [NA17RJ1230]; ARO [W911NF-05-1-0055]; ONR [N00014-07-11065] FX This work was supported by the NASA Ocean Surface Topography Science Team and NASA GRACE Science Team. N.M. and O.M. were also supported by NSF Grant OCE05-50853, the Japan Agency for Marine-Earth Science and Technology (JAMSTEC), NASA through Grant NNX07AG53G, and NOAA through Grant NA17RJ1230. NASA and NOAA sponsor research at the International Pacific Research Center. B. G. was partly supported by ARO Grant W911NF-05-1-0055 and ONR Grant N00014-07-11065. Satellite altimetry data were acquired from the Aviso and drifter data from the NOAA AOML. Help of Dr. Yoo-Yin Kim is gratefully acknowledged. NR 46 TC 119 Z9 123 U1 3 U2 28 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD SEP PY 2009 VL 26 IS 9 BP 1910 EP 1919 DI 10.1175/2009JTECHO672.1 PG 10 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 497WY UT WOS:000270096400013 ER PT J AU Lee, D Tippur, H Kirugulige, M Bogert, P AF Lee, Dongyeon Tippur, Hareesh Kirugulige, Madhu Bogert, Phillip TI Experimental Study of Dynamic Crack Growth in Unidirectional Graphite/Epoxy Composites using Digital Image Correlation Method and High-speed Photography SO JOURNAL OF COMPOSITE MATERIALS LA English DT Article DE dynamic fracture; mixed-mode crack growth; fiber reinforced composites; optical metrology; digital speckle correlation; high-speed photography; stress intensity factors ID FIBER-REINFORCED COMPOSITES; STRESS INTENSITY FACTORS; FRACTURE-TOUGHNESS; ORTHOTROPIC PLATES; DEFORMATION; INITIATION; BEHAVIOR; FINITE AB In this work, fracture behavior of multilayered unidirectional graphite/epoxy composite (T800/3900-2) materials is investigated. Rectangular coupons with a single-edged notch are studied under geometrically symmetric loading configurations and impact loading conditions. The notch orientation parallel to or at an angle to the fiber orientation is considered to produce mode-I or mixed-mode (mode-I and -II) fracture. Feasibility of studying stress-wave induced crack initiation and rapid crack growth in fiber-reinforced composites using the digital image correlation method and high-speed photography is demonstrated. Analysis of photographed random speckles on specimen surface provides information pertaining to crack growth history as well as surface deformations in the crack-tip vicinity. Measured deformation fields are used to estimate mixed-mode fracture parameters and examine the effect of fiber orientation (beta) on crack initiation and growth behaviors. The samples show differences in fracture responses depending upon the orientation of fibers. The maximum crack speed observed is the highest for mode-I dominant conditions and it decreases with fiber orientation angle. With increasing fiber orientation angle, crack takes longer to attain the maximum speed upon initiation. Continuous reduction of dynamic stress intensity factors after crack initiation under mode-I conditions is attributed to crack bridging. The crack initiation toughness values decrease with the degree-of-anisotropy or increase with fiber orientation angle. A rather good agreement between crack initiation toughness values and the ones from previous investigations is observed. There is also a good experimental correlation between dynamic stress intensity factor and crack-tip velocity histories for shallow fiber orientations of beta = 0, 15, and 30 degrees. C1 [Lee, Dongyeon; Tippur, Hareesh; Kirugulige, Madhu] Auburn Univ, Dept Mech Engn, Auburn, AL 36849 USA. [Bogert, Phillip] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Tippur, H (reprint author), Auburn Univ, Dept Mech Engn, Auburn, AL 36849 USA. EM htippur@eng.auburn.edu FU NASA Langley Research Center [NNX07AC64A] FX This research was sponsored by NASA Langley Research Center under a Grant/Cooperative Agreement (NNX07AC64A) with Auburn University, AL. NR 31 TC 20 Z9 23 U1 2 U2 19 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0021-9983 EI 1530-793X J9 J COMPOS MATER JI J. Compos Mater. PD SEP PY 2009 VL 43 IS 19 BP 2081 EP 2108 DI 10.1177/0021998309342139 PG 28 WC Materials Science, Composites SC Materials Science GA 487JE UT WOS:000269268100009 ER PT J AU Maghami, PG Lim, KB AF Maghami, Peiman G. Lim, Kyong B. TI Synthesis and Control of Flexible Systems With Component-Level Uncertainties SO JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME LA English DT Article DE control system synthesis; damping; flexible structures; structural engineering ID SUBSTRUCTURE SYNTHESIS AB An efficient and computationally robust method for synthesis of component dynamics is developed. The method defines the interface forces/moments as feasible vectors in transformed coordinates to ensure that connectivity requirements of the combined structure are met. The synthesized system is then defined in a transformed set of feasible coordinates. The simplicity of form is exploited to effectively deal with modeling parametric and nonparametric uncertainties at the substructure level. Uncertainty models of reasonable size and complexity are synthesized for the combined structure from those in the substructure models. In particular, we address frequency and damping uncertainties at the component level. The approach first considers the robustness of synthesized flexible systems. It is then extended to deal with nonsynthesized dynamic models with component-level uncertainties by projecting uncertainties to the system level. A numerical example is given to demonstrate the feasibility of the proposed approach. C1 [Maghami, Peiman G.] NASA, Goddard Space Flight Ctr, Attitude Control Syst Engn Branch, Greenbelt, MD 20771 USA. [Lim, Kyong B.] NASA, Langley Res Ctr, Guidance & Control Branch, Hampton, VA 23681 USA. RP Maghami, PG (reprint author), NASA, Goddard Space Flight Ctr, Attitude Control Syst Engn Branch, Greenbelt, MD 20771 USA. EM peiman.maghami@nasa.gov NR 14 TC 0 Z9 0 U1 1 U2 2 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-0434 EI 1528-9028 J9 J DYN SYST-T ASME JI J. Dyn. Syst. Meas. Control-Trans. ASME PD SEP PY 2009 VL 131 IS 5 AR 051005 DI 10.1115/1.3155010 PG 9 WC Automation & Control Systems; Instruments & Instrumentation SC Automation & Control Systems; Instruments & Instrumentation GA 485NZ UT WOS:000269131600005 ER PT J AU Zwart, SR Kloeris, VL Perchonok, MH Braby, L Smith, SM AF Zwart, S. R. Kloeris, V. L. Perchonok, M. H. Braby, L. Smith, S. M. TI Assessment of Nutrient Stability in Foods from the Space Food System After Long-Duration Spaceflight on the ISS SO JOURNAL OF FOOD SCIENCE LA English DT Article DE amino acid; stability; vitamins ID FEEDSTUFFS; CHROMATOGRAPHY; DATABASE; STATION; FLIGHT AB Maintaining an intact nutrient supply in the food system flown on spacecraft is a critical issue for mission success and crew health. Ground-based evidence indicates that some vitamins may be altered and fatty acids oxidized (and therefore rendered useless, or even dangerous) by long-term storage and by exposure to radiation, both of which will be issues for long-duration exploration missions in space. In this study, the stability of nutrients was investigated in food samples exposed to spaceflight on the Intl. Space Station (ISS). A total of 6 replicates of 5 different space food items, a multivitamin, and a vitamin D supplement were packaged into 4 identical kits and were launched in 2006 on the space shuttle. After 13, 353, 596, and 880 d of spaceflight aboard the ISS, the kits were returned to Earth. Nine replicates of each food item and vitamin, from the same lots as those sent into space, remained in an environmental chamber on Earth to serve as controls at each time point. Vitamins, hexanal, oxygen radical absorbance capacity, and amino acids were measured in identical-lot food samples at each time point. After 596 d of spaceflight, differences in intact vitamin concentrations due to duration of storage were observed for most foodstuffs, but generally, nutrients from flight samples did not degrade any faster than ground controls. This study provided the 1st set of spaceflight data for investigation of nutrient stability in the food system, and the results will help NASA design food systems for both ISS and space exploration missions. C1 [Zwart, S. R.; Kloeris, V. L.; Perchonok, M. H.; Braby, L.; Smith, S. M.] NASA, Lyndon B Johnson Space Ctr, Human Adaptat & Countermeasures Div, Houston, TX 77058 USA. RP Smith, SM (reprint author), NASA, Lyndon B Johnson Space Ctr, Human Adaptat & Countermeasures Div, Attn Mail Code SK3,2101 NASA Pkwy, Houston, TX 77058 USA. EM scott.m.smith@nasa.gov NR 31 TC 10 Z9 10 U1 7 U2 25 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-1147 J9 J FOOD SCI JI J. Food Sci. PD SEP PY 2009 VL 74 IS 7 BP H209 EP H217 DI 10.1111/j.1750-3841.2009.01265.x PG 9 WC Food Science & Technology SC Food Science & Technology GA 490JY UT WOS:000269498300042 PM 19895472 ER PT J AU Klosko, S Rowlands, D Luthcke, S Lemoine, F Chinn, D Rodell, M AF Klosko, S. Rowlands, D. Luthcke, S. Lemoine, F. Chinn, D. Rodell, M. TI Evaluation and validation of mascon recovery using GRACE KBRR data with independent mass flux estimates in the Mississippi Basin SO JOURNAL OF GEODESY LA English DT Article ID CLIMATE EXPERIMENT GRACE; GRAVITY RECOVERY; STORAGE CHANGES; WATER; ILLINOIS; SYSTEM; MODEL AB The direct recovery of surface mass anomalies using GRACE KBRR data processed in regional solutions provides mass variation estimates with 10-day temporal resolution. The approach undertaken herein uses a tailored orbit estimation strategy based solely on the KBRR data and directly estimates mass anomalies from the GRACE data. We introduce a set of temporal and spatial correlation constraints to enable high resolution mass flux estimates. The Mississippi Basin, with its well understood surface hydrological modelling available from the Global Land Data Assimilation System (GLDAS), which uses advanced land surface modeling and data assimilation techniques, and a wealth of groundwater data, provides an opportunity to quantitatively compare GRACE estimates of the mass flux in the entire hydrological column with those available from independent and reliable sources. Evaluating GRACE's performance is dependent on the accuracy ascribed to the hydrological information, which in and of itself is a complex challenge (Rodell in Hydrogeol J, doi:10.1007/s10040-006-0103-7, 2007). Nevertheless, the Mississippi Basin is one of the few regions having a large hydrological signal that can support a meaningful GRACE comparison on the spatial scale resolved byGRACE. The isolation of the hydrological signal is dependent on the adequacy of the forward mass flux modeling for tides and atmospheric pressure variations. While these models have non-uniform global performance they are excellent in the Mississippi Basin. Through comparisons with the independent hydrology, we evaluate the effect on the solution of changing correlation times and distances in the constraints, altering the parameter recovery for areas external to the Mississippi Basin, and changing the relative strength of the constraints with respect to the KBRR data. The accuracy and stability of the mascon solutions are thereby assessed, especially with regard to the constraints used to stabilize the solution. We show that the mass anomalies, as represented by surface layer of water within regional cells have accuracy estimates of +/- 2-3 cm on par with the best hydrological estimates and consistent with our accuracy estimates for GRACE mass anomaly estimates. These solutions are shown to be very stable, especially for the recovery of semi-annual and longer period trends, where for example, the phase agreement for the dominant annual signal agrees at the 10-day level of resolution provided by GRACE. This validation confirms that mascons provide critical environmental data records for a wide range of applications including monitoring ground water mass changes. C1 [Klosko, S.; Chinn, D.] SGT Inc, Greenbelt, MD 20770 USA. [Rowlands, D.; Luthcke, S.; Lemoine, F.] NASA, Planetary Geodynam Lab, GSFC, Greenbelt, MD 20771 USA. [Rodell, M.] NASA, Hydrol Sci Branch, GSFC, Greenbelt, MD 20771 USA. RP Klosko, S (reprint author), SGT Inc, 7701 Greenbelt Rd, Greenbelt, MD 20770 USA. EM sklosko@sgt-inc.com RI Rowlands, David/D-2751-2012; Luthcke, Scott/D-6283-2012; Rodell, Matthew/E-4946-2012; Lemoine, Frank/D-1215-2013 OI Rodell, Matthew/0000-0003-0106-7437; NR 22 TC 6 Z9 9 U1 1 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0949-7714 EI 1432-1394 J9 J GEODESY JI J. Geodesy PD SEP PY 2009 VL 83 IS 9 BP 817 EP 827 DI 10.1007/s00190-009-0301-x PG 11 WC Geochemistry & Geophysics; Remote Sensing SC Geochemistry & Geophysics; Remote Sensing GA 484PA UT WOS:000269057300003 ER PT J AU Gobinddass, ML Willis, P de Viron, O Sibthorpe, A Zelensky, NP Ries, JC Ferland, R Bar-Sever, Y Diament, M AF Gobinddass, M. L. Willis, P. de Viron, O. Sibthorpe, A. Zelensky, N. P. Ries, J. C. Ferland, R. Bar-Sever, Y. Diament, M. TI Systematic biases in DORIS-derived geocenter time series related to solar radiation pressure mis-modeling SO JOURNAL OF GEODESY LA English DT Article DE DORIS; Geocenter variations; Systematic errors; Solar radiation pressure ID TERRESTRIAL REFERENCE FRAME; GEODETIC APPLICATIONS; ORBIT DETERMINATION; TOPEX POSEIDON; TRACKING DATA; LOADING DATA; SEA-LEVEL; TOPEX/POSEIDON; SERVICE; SLR AB As any satellite geodesy technique, DORIS can monitor geocenter variations associated to mass changes within the Earth-Atmosphere-Continental hydrosphere-Oceans system. However, especially for the Z-component, corresponding to a translation of the Earth along its rotation axis, the estimated geocenter is usually affected by large systematic errors of unknown cause. By reprocessing old DORIS data, and by analyzing single satellite solutions in the frequency domain, we show that some of these errors are satellite-dependent and related to the current DORIS orbit determination strategy. In particular, a better handling of solar pressure radiation effects on SPOT-2 and TOPEX satellites is proposed which removes a large part of such artifacts. By empirically multiplying the current solar pressure model with a single coefficient (1.03 for TOPEX/Poseidon after 1993.57, and 0.96 before; and 1.08 for SPOT-2) estimated over a long time period, we can improve the measurement noise of the Z-geocenter component from 47.5 to 30.4 mm for the RMS and from 35 to 6 mm for the amplitude of the annual signal. However, the estimated SRP coefficient for SPOT-2 presents greater temporal variability, indicating that a new, dedicated solar radiation pressure model is still needed for precise geodetic applications. In addition, for the TOPEX satellite, a clear discontinuity of unknown cause is also detected on July 27, 1993. C1 [Gobinddass, M. L.; Willis, P.; de Viron, O.; Diament, M.] Inst Phys Globe, F-75205 Paris, France. [Gobinddass, M. L.] Inst Geog Natl, LAREG, F-77455 Marne La Vallee, France. [Willis, P.] Inst Geog Natl, Direct Tech, F-94165 St Mande, France. [de Viron, O.] Univ Paris Diderot, F-75205 Paris, France. [Zelensky, N. P.] SGT Inc, Greenbelt, MD 20770 USA. [Ries, J. C.] Univ Texas Austin, Ctr Space Res, Austin, TX 78712 USA. [Ferland, R.] Geomat Canada, NRCan, Ottawa, ON K1A OE9, Canada. [Sibthorpe, A.] UCL, Dept Civil Environm & Geomat Engn, London WC1E 6BT, England. [Bar-Sever, Y.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Willis, P (reprint author), Inst Phys Globe, 5 Rue Thomas Mann,UFR Step,Bat Lamarck,Case 7011, F-75205 Paris, France. EM willis@ipgp.jussieu.fr RI Willis, Pascal/A-8046-2008; Gobinddass, Marie-Line/B-2807-2010; Diament, Michel/F-8553-2010; Sibthorpe, Ant/C-1940-2012; de Viron, Olivier/N-6647-2014 OI Willis, Pascal/0000-0002-3257-0679; de Viron, Olivier/0000-0003-3112-9686 FU National Aeronautics and Space Administration FX This paper is IPGP contribution number 2450. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 42 TC 37 Z9 39 U1 1 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0949-7714 J9 J GEODESY JI J. Geodesy PD SEP PY 2009 VL 83 IS 9 BP 849 EP 858 DI 10.1007/s00190-009-0303-8 PG 10 WC Geochemistry & Geophysics; Remote Sensing SC Geochemistry & Geophysics; Remote Sensing GA 484PA UT WOS:000269057300005 ER PT J AU Petrov, L Gordon, D Gipson, J MacMillan, D Ma, CP Fomalont, E Walker, RC Carabajal, C AF Petrov, Leonid Gordon, David Gipson, John MacMillan, Dan Ma, Chopo Fomalont, Ed Walker, R. Craig Carabajal, Claudia TI Precise geodesy with the Very Long Baseline Array SO JOURNAL OF GEODESY LA English DT Article DE VLBI; Coordinate systems; Plate tectonics; VLBA ID RADIO INTERFEROMETRY; VLBI; CAPABILITIES; ASTROMETRY AB We report on a program of geodetic measurements between 1994 and 2007 which used the Very Long Baseline Array (VLBA) and up to ten globally distributed antennas. One of the goals of this program was to monitor positions of the array at a 1 mm level of accuracy and to tie the VLBA into the international terrestrial reference frame. We describe the analysis of these data and report several interesting geophysical results including measured station displacements due to crustal motion, earthquakes, and antenna tilt. In terms of both formal errors and observed scatter, these sessions are among the very best geodetic very long baseline interferometry experiments. C1 [Petrov, Leonid] NASA, ADNET Syst Inc, GSFC, Greenbelt, MD 20771 USA. [Gordon, David; Gipson, John; MacMillan, Dan] NASA, NVI Inc, GSFC, Greenbelt, MD 20771 USA. [Fomalont, Ed] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Walker, R. Craig] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Carabajal, Claudia] NASA, Sigma Space Corp, GSFC, Greenbelt, MD 20771 USA. RP Petrov, L (reprint author), NASA, ADNET Syst Inc, GSFC, Code 610-2, Greenbelt, MD 20771 USA. EM Leonid.Petrov@lpetrov.net RI Ma, Chopo/D-4751-2012 FU NASA [NAS5-01127] FX The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. We thank the staff of the VLBA for carrying out and correlating these observations in their usual efficient manner. We also thankM. Titus and B. Corey from Haystack Observatory for their efforts in re-correlation of the rdv22 data on the Haystack correlator. Lastly, we are thankful to A. Nothnagel and A. Niell for valuable comments that helped to improve this manuscript. This work was done while J. Gipson, D. Gordon, D. MacMillan and L. Petrov worked for NVI, Inc. under NASA contract NAS5-01127. NR 36 TC 35 Z9 36 U1 1 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0949-7714 J9 J GEODESY JI J. Geodesy PD SEP PY 2009 VL 83 IS 9 BP 859 EP 876 DI 10.1007/s00190-009-0304-7 PG 18 WC Geochemistry & Geophysics; Remote Sensing SC Geochemistry & Geophysics; Remote Sensing GA 484PA UT WOS:000269057300006 ER PT J AU Raj, R Kim, J McQuillen, J AF Raj, Rishi Kim, Jungho McQuillen, John TI Subcooled Pool Boiling in Variable Gravity Environments SO JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME LA English DT Article DE boiling; bubbles; capillarity; convection; nucleation; organic compounds; surface tension; zero gravity experiments ID HEAT-TRANSFER; THERMOCAPILLARY CONVECTION; REDUCED GRAVITY; DISSOLVED-GAS; BUBBLE; MICROGRAVITY; DYNAMICS; ORIGIN; FC-72 AB Virtually all data to date regarding parametric effects of gravity on pool boiling have been inferred from experiments performed in low-g, 1g, or 1.8g conditions. The current work is based on observations of boiling heat transfer obtained over a continuous range of gravity levels (0g-1.8g) under subcooled liquid conditions (n-perfluorohexane, Delta T-sub=26 degrees C, and 1 atm), two gas concentrations (220 ppm and 1216 ppm), and three heater sizes (full heater-7x7 mm(2), half heater-7x3.5 mm(2), and quarter heater-3.5x3.5 mm(2)). As the gravity level changed, a sharp transition in the heat transfer mechanism was observed at a threshold gravity level. Below this threshold (low-g regime), a nondeparting primary bubble governed the heat transfer and the effect of residual gravity was small. Above this threshold (high-g regime), bubble growth and departure dominated the heat transfer and gravity effects became more important. An increase in noncondensable dissolved gas concentration shifted the threshold gravity level to lower accelerations. Heat flux was found to be heater size dependent only in the low-g regime. C1 [Raj, Rishi; Kim, Jungho] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA. [McQuillen, John] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Kim, J (reprint author), Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA. EM rraj@umd.edu; kimjh@umd.edu; john.b.mcquillen@nasa.gov RI Raj, Rishi/A-5215-2010 OI Raj, Rishi/0000-0002-9805-0609 FU NASA [NNX08AI60A] FX This work was supported by NASA Grant No. NNX08AI60A. The authors are very grateful to the European Space Agency for accommodating the experiment on the 48th ESA Parabolic Flight Campaign in March 2008. The authors would also like to acknowledge Martin Karch and Jack Coursey for their help during the preparation and operation of test rig. NR 39 TC 9 Z9 9 U1 4 U2 14 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-1481 EI 1528-8943 J9 J HEAT TRANS-T ASME JI J. Heat Transf.-Trans. ASME PD SEP PY 2009 VL 131 IS 9 AR 091502 DI 10.1115/1.3122782 PG 10 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 463KU UT WOS:000267431600004 ER PT J AU Yang, WJ Zhang, NL Vrable, DL AF Yang, Wen-Jei Zhang, Nengli Vrable, Daniel L. TI Macro- to Microscale Boiling Heat Transfer From Metal-Graphite Composite Surfaces SO JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME LA English DT Article DE aluminium; boiling; bubbles; carbon fibre reinforced composites; copper; heat transfer; nucleation; rough surfaces; thermal conductivity AB This paper introduces a novel heat transfer enhancement surface, referred to as metal-graphite composite surface. It is comprised of high thermal conductivity graphite microfibers interspersed within a metal matrix (copper or aluminum) to enhance the bubble formation at the nucleation sites, and significantly improve the nucleate boiling heat transfer. Experiments revealed that its boiling heat transfer enhancement is comparable or in some respect even superior to the commercially available boiling heat transfer enhancement surfaces such as porous boiling surface and integral roughness surface. In addition, it does not result in any extra pressure loss and it minimizes surface fouling. Macro- to microscale heat transfer phenomena of the composite surfaces is treated. Discussions include characteristics of the surface, enhancement mechanisms, critical heat flux, boiling thermal hysteresis, bubble generation, growth and departure, and applications in electronic cooling, and under reduced gravity conditions. C1 [Yang, Wen-Jei] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. [Zhang, Nengli] NASA, Glen Res Ctr, Ohio Aerosp Inst, Cleveland, OH 44184 USA. [Vrable, Daniel L.] Thermal Management & Mat Technol, Del Mar, CA 92014 USA. RP Yang, WJ (reprint author), Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. EM wjyang@umich.eduf NR 21 TC 0 Z9 0 U1 1 U2 5 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-1481 J9 J HEAT TRANS-T ASME JI J. Heat Transf.-Trans. ASME PD SEP PY 2009 VL 131 IS 9 AR 091001 DI 10.1115/1.3153556 PG 8 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 463KU UT WOS:000267431600001 ER PT J AU Boyle, R Rabbitt, RD Highstein, SM AF Boyle, Richard Rabbitt, Richard D. Highstein, Stephen M. TI Efferent Control of Hair Cell and Afferent Responses in the Semicircular Canals SO JOURNAL OF NEUROPHYSIOLOGY LA English DT Article ID TURTLE POSTERIOR-CRISTA; FREE-SWIMMING TOADFISH; GENE-RELATED PEPTIDE; SUBSTANCE-P; VESTIBULAR SYSTEM; OPSANUS-TAU; GUINEA-PIG; HORSERADISH-PEROXIDASE; LATERAL LINE; SQUIRREL-MONKEY AB Boyle R, Rabbitt RD, Highstein SM. Efferent control of hair cell and afferent responses in the semicircular canals. J Neurophysiol 102: 1513-1525, 2009. First published July 1, 2009; doi:10.1152/jn.91367.2008. The sensations of sound and motion generated by the inner ear are controlled by the brain through extensive centripetal innervation originating within the brain stem. In the semicircular canals, brain stem efferent neurons make synaptic contacts with mechanosensory hair cells and with the dendrites of afferent neurons. Here, we examine the relative contributions of efferent action on hair cells and afferents. Experiments were performed in vivo in the oyster toadfish, Opsanus tau. The efferent system was activated via electrical pulses to the brain stem and sensory responses to motion stimuli were quantified by simultaneous voltage recording from afferents and intracellular current- and/or voltage-clamp recordings from hair cells. Results showed synaptic inputs to both afferents and hair cells leading to relatively long-latency intracellular signaling responses: excitatory in afferents and inhibitory in hair cells. Generally, the net effect of efferent action was an increase in afferent background discharge and a simultaneous decrease in gain to angular motion stimuli. Inhibition of hair cells was likely the result of a ligand-gated opening of a major basolateral conductance. The reversal potential of the efferent-evoked current was just below the hair cell resting potential, thus resulting in a small hyperpolarization. The onset latency averaged about 90 ms and latency to peak response was 150-400 ms. Hair cell inhibition often outlasted afferent excitation and, in some cases, latched hair cells in the "off" condition for >1 s following cessation of stimulus. These features endow the animal with a powerful means to adjust the sensitivity and dynamic range of motion sensation. C1 [Boyle, Richard] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Rabbitt, Richard D.] Univ Utah, Dept Bioengn, Salt Lake City, UT 84112 USA. [Highstein, Stephen M.] Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. [Boyle, Richard; Rabbitt, Richard D.; Highstein, Stephen M.] Marine Biol Lab, Woods Hole, MA 02543 USA. RP Boyle, R (reprint author), NASA, Ames Res Ctr, M-S 239-11, Moffett Field, CA 94035 USA. EM richard.boyle@nasa.gov FU National Institute on Deafness and Other Communication Disorders [P01 DC-01837, R01 DC-006685]; National Aeronautics Space Administration [03-OBPR-04] FX This work was supported, in large part, by National Institute on Deafness and Other Communication Disorders Grants P01 DC-01837 to R. Boyle, R. D. Rabbitt, and S. M. Highstein and R01 DC-006685 to R. D. Rabbit and, to a lesser extent, by National Aeronautics Space Administration Grant 03-OBPR-04 to R. Boyle. NR 71 TC 23 Z9 23 U1 1 U2 1 PU AMER PHYSIOLOGICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0022-3077 J9 J NEUROPHYSIOL JI J. Neurophysiol. PD SEP PY 2009 VL 102 IS 3 BP 1513 EP 1525 DI 10.1152/jn.91367.2008 PG 13 WC Neurosciences; Physiology SC Neurosciences & Neurology; Physiology GA 490JJ UT WOS:000269496700018 PM 19571186 ER PT J AU Suminski, RR Wier, LT Poston, W Arenare, B Randles, A Jackson, AS AF Suminski, Richard R. Wier, Larry T. Poston, Walker Arenare, Brian Randles, Anthony Jackson, Andrew S. TI The Effect of Habitual Smoking on Measured and Predicted VO(2)max SO JOURNAL OF PHYSICAL ACTIVITY & HEALTH LA English DT Article DE tobacco; non-exercise models; regression analysis ID CIGARETTE-SMOKING; OXYGEN-CONSUMPTION; ALCOHOL-CONSUMPTION; PHYSICAL-ACTIVITY; AEROBIC CAPACITY; LUNG-CANCER; EXERCISE; RESPONSES; SPORTSMEN; ENDURANCE AB Background: Nonexercise models were developed to predict maximal oxygen consumption (VO(2)max). While these models are accurate, they don't consider smoking, which negatively impacts measured VO(2)max. The purpose of this study was to examine the effects of smoking on both measured and predicted VO(2)max. Methods: Indirect calorimetry was used to measure VO(2)max in 2,749 men and women. Physical activity using the NASA Physical Activity Status Scale (PASS), body mass index (BMI), and smoking (pack-y = packs.day * y of smoking) also were assessed. Pack-y groupings were Never (0 pack-y), Light (1-10), Moderate (11-20), and Heavy (>20). Multiple regression analysis was used to examine the effect of smoking on VO(2)max predicted by PASS, age, BMI, and gender. Results: Measured VO(2)max was significantly lower in the heavy smoking group compared with the other pack-y groups. The combined effects of PASS, age, BMI, and gender on measured VO(2)max were significant. With smoking in the model, the estimated effects on measured VO(2)max from Light, Moderate, and Heavy smoking were -0.83, -0.85, and -2.56 respectively (P < .05). Conclusions: Given that 21% of American adults smoke and 12% of them are heavy smokers, it is recommended that smoking be considered when using nonexercise models to predict VO(2)max. C1 [Suminski, Richard R.] Kansas City Univ Med & Biosci, Dept Physiol, Kansas City, MO USA. [Wier, Larry T.] NASA, JSC, Wyle Labs, Houston, TX USA. [Poston, Walker; Randles, Anthony] Univ Missouri, Kansas City Sch Med Sci, Dept Basic Med Sci, Kansas City, MO 64110 USA. [Arenare, Brian] Kelsey Seybold NASA JSC, Houston, TX USA. [Jackson, Andrew S.] Univ Houston, Dept Human Performance, Houston, TX USA. RP Suminski, RR (reprint author), Kansas City Univ Med & Biosci, Dept Physiol, Kansas City, MO USA. NR 28 TC 9 Z9 9 U1 1 U2 2 PU HUMAN KINETICS PUBL INC PI CHAMPAIGN PA 1607 N MARKET ST, PO BOX 5076, CHAMPAIGN, IL 61820-2200 USA SN 1543-3080 J9 J PHYS ACT HEALTH JI J. Phys. Act. Health PD SEP PY 2009 VL 6 IS 5 BP 667 EP 673 PG 7 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA 662VI UT WOS:000282842000017 PM 19953845 ER PT J AU Fan, YL Ginis, I Hara, T Wright, CW Walsh, EJ AF Fan, Yalin Ginis, Isaac Hara, Tetsu Wright, C. Wayne Walsh, Edward J. TI Numerical Simulations and Observations of Surface Wave Fields under an Extreme Tropical Cyclone SO JOURNAL OF PHYSICAL OCEANOGRAPHY LA English DT Article ID SPECTRUM SPATIAL VARIATION; REDUCED DRAG COEFFICIENT; SEA MOMENTUM EXCHANGE; WIND-WAVES; PREDICTION SYSTEM; DATA ASSIMILATION; OCEAN; MODELS; INITIALIZATION; HURRICANES AB The performance of the wave model WAVEWATCH III under a very strong, category 5, tropical cyclone wind forcing is investigated with different drag coefficient parameterizations and ocean current inputs. The model results are compared with field observations of the surface wave spectra from an airborne scanning radar altimeter, National Data Buoy Center (NDBC) time series, and satellite altimeter measurements in Hurricane Ivan (2004). The results suggest that the model with the original drag coefficient parameterization tends to overestimate the significant wave height and the dominant wavelength and produces a wave spectrum with narrower directional spreading. When an improved drag parameterization is introduced and the wave-current interaction is included, the model yields an improved forecast of significant wave height, but underestimates the dominant wavelength. When the hurricane moves over a preexisting mesoscale ocean feature, such as the Loop Current in the Gulf of Mexico or a warm-and cold-core ring, the current associated with the feature can accelerate or decelerate the wave propagation and significantly modulate the wave spectrum. C1 [Fan, Yalin; Ginis, Isaac; Hara, Tetsu] Univ Rhode Isl, Grad Sch Oceanog, Narragansett, RI 02882 USA. [Wright, C. Wayne; Walsh, Edward J.] NASA, Goddard Space Flight Ctr, Wallops Isl, VA 23337 USA. RP Fan, YL (reprint author), Univ Rhode Isl, Grad Sch Oceanog, Narragansett, RI 02882 USA. EM yalin@gso.uri.edu RI Hara, Tetsu/G-9779-2011 FU NOAA [NOAA4400080656]; Korea Ocean Research and Development Institute (KORDI) [0001377]; Oceanography at URI; WeatherPredict Consulting Inc.; URI Foundation; NASA Physical Oceanography; ONR CBLAST program FX The authors wish to thank Dr. Hendrik Tolman for providing the latest version of NOAA's WAVEWATCH III model and valuable comments. Remko Scharroo (altimetrics. com) is thanked for collecting and organizing data from radar altimeters carried by five different satellites passing through the Hurricane Ivan geographic area during its lifetime. He supplied over 80 files of data along with annotated geographic maps of color-coded wind speed and wave height along the satellite tracks that made it much easier to identify the closest approach to Hurricane Ivan (Figs. 1, 9). We also thank NOAA/AOML/Hurricane Research Division for providing the wind analysis (HWIND). This research was funded by NOAA Grant NOAA4400080656 and Korea Ocean Research and Development Institute (KORDI) Grant 0001377 awarded to the Graduate School of Oceanography at URI, and WeatherPredict Consulting Inc. via a grant to the URI Foundation. Support for E. J. Walsh and the acquisition and analysis of the SRA data were provided by the NASA Physical Oceanography program and the ONR CBLAST program. NR 36 TC 24 Z9 28 U1 4 U2 11 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-3670 J9 J PHYS OCEANOGR JI J. Phys. Oceanogr. PD SEP PY 2009 VL 39 IS 9 BP 2097 EP 2116 DI 10.1175/2009JPO4224.1 PG 20 WC Oceanography SC Oceanography GA 496WL UT WOS:000270010500006 ER PT J AU Onasch, TB Jayne, JT Herndon, S Worsnop, DR Miake-Lye, RC Mortimer, IP Anderson, BE AF Onasch, Timothy B. Jayne, John T. Herndon, Scott Worsnop, Douglas R. Miake-Lye, Richard C. Mortimer, I. Phil Anderson, Bruce E. TI Chemical Properties of Aircraft Engine Particulate Exhaust Emissions SO JOURNAL OF PROPULSION AND POWER LA English DT Article ID AEROSOL MASS-SPECTROMETER; AERODYNAMIC DIAMETER MEASUREMENTS; ATMOSPHERIC BLACK CARBON; IN-SITU OBSERVATIONS; GAS-TURBINE ENGINE; DENSITY CHARACTERIZATION; HYDROCARBON EMISSIONS; COMMERCIAL AIRCRAFT; PARTICLE MORPHOLOGY; COMBINED MOBILITY AB The chemical properties of the particulate exhaust emissions from an in-use commercial aircraft engine were characterized in April 2004 as part of the Aircraft Particle Emissions Experiment. The test aircraft was the NASA DC-8 equipped with CFM56-2-C1 engines and the test matrix included I I different engine throttle levels, three fuel compositions, and three sampling distances. The variations in particle emissions number, size, mass, and chemical composition were measured using a suite of instruments, including an aerosol mass spectrometer. The particle emissions were characterized by a trimodal size distribution. The largest mode was dominated by ambient accumulation mode particles mixed into the plume. The middle mode consisted of carbon soot with sulfate and organic coatings. The smallest mode was completely volatile and consisted of sulfate and organic components. The soot emission indices increased with power from 2-120 mg/kg fuel. The semivolatile components increased with distance and decreased with power from 33-5 mg/kg fuel. The sulfate emissions increased with distance and fuel sulfur content. The emissions under low power were dominated by organics, and the high-power conditions were dominated by soot. The CFM56 engine was less efficient at the low thrust levels typically used on the ground at an airport. C1 [Onasch, Timothy B.; Jayne, John T.; Herndon, Scott; Worsnop, Douglas R.; Miake-Lye, Richard C.] Aerodyne Res Inc, Billerica, MA 01821 USA. [Mortimer, I. Phil] Johns Hopkins Univ, Mass Spectrometry Facil, Baltimore, MD 21218 USA. [Anderson, Bruce E.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Onasch, TB (reprint author), Aerodyne Res Inc, 45 Manning Rd, Billerica, MA 01821 USA. RI Worsnop, Douglas/D-2817-2009 OI Worsnop, Douglas/0000-0002-8928-8017 FU University of Missouri Center of Excellence for Aerospace Particulate Emissions Reduction Research (NASA) [NCC3-1084]; University of Missouri-Rolla [000729-02] FX The authors thank Chowen Wey (NASA Glenn Research Center) and Phil Whitefield (University of Missouri-Rolla) for the opportunity to participate in the Aircraft Particle Emissions Experiment measurement campaign. We thank Robert Prescott (Acrodyne Research, Inc.) for logistical support; Arnold Engineering Development Center, NASA, University of Missouri-Rolla, and U.S. Environmental Protection Agency crews for sampling probe design, installation, and operation; NASA Dryden Flight Research Center for providing the facilities; and the Aircraft Particle Emissions Experiment team for making the experiment a success. Funding for this project came from the University of Missouri Center of Excellence for Aerospace Particulate Emissions Reduction Research (NASA Cooperative Agreement NCC3-1084) under University of Missouri-Rolla Subcontract No. 000729-02. NR 58 TC 53 Z9 53 U1 3 U2 18 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0748-4658 J9 J PROPUL POWER JI J. Propul. Power PD SEP-OCT PY 2009 VL 25 IS 5 BP 1121 EP 1137 DI 10.2514/1.36371 PG 17 WC Engineering, Aerospace SC Engineering GA 494UV UT WOS:000269845200015 ER PT J AU Rinsland, CP Chiou, L Boone, C Bernath, P Mahieu, E Zander, R AF Rinsland, Curtis P. Chiou, Linda Boone, Chris Bernath, Peter Mahieu, Emmanuel Zander, Rodolphe TI Trend of lower stratospheric methane (CH4) from atmospheric chemistry experiment (ACE) and atmospheric trace molecule spectroscopy (ATMOS) measurements SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Methane; Remote sensing; Atmospheric chemistry; Composition; Trends ID INFRARED SOLAR; SPECTROMETER; JUNGFRAUJOCH; RETRIEVALS; SPECTRA AB The long-term trend of methane (CH4) in the lower stratosphere has been estimated for the 1985-2008 time period by combining spaceborne solar occultation measurements recorded with high spectral resolution Fourier transform spectrometers (FTSs). Volume mixing ratio (VMR) FTS measurements from the ATMOS (atmospheric trace molecule spectroscopy) FTS covering 120-10 hPa (similar to 16-30 km altitude) at 25 degrees N-35 degrees N latitude from 1985 and 1994 have been combined with Atmospheric Chemistry Experiment (ACE) SCISAT-1 FTS measurements covering the same latitude and pressure range from 2004 to 2008. The CH4 trend was estimated by referencing the VMRs to those measured for the long-lived constituent N2O to account for the dynamic history of the sampled airmasses. The combined measurement set shows that the VMR increase measured by ATMOS has been replaced by a leveling off during the ACE measurement time period. Our conclusion is consistent with both remote sensing and in situ measurements of the CH4 trend obtained over the same time span. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Rinsland, Curtis P.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Chiou, Linda] Sci Syst & Applicat Inc, Hampton, VA USA. [Boone, Chris; Bernath, Peter] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada. [Bernath, Peter] Univ York, Dept Chem, York YO10 5DD, N Yorkshire, England. [Mahieu, Emmanuel; Zander, Rodolphe] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. RP Rinsland, CP (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. EM curtis.p.rinsland@nasa.gov; linda.s.chiou@nasa.gov; cboone@sciborg.uwaterloo.ca; bernath@uwaterloo.ca; Emmanuel.Mahieu@ulg.ac.be; R.Zander@ulg.ac.be RI Bernath, Peter/B-6567-2012; OI Bernath, Peter/0000-0002-1255-396X; Mahieu, Emmanuel/0000-0002-5251-0286 NR 24 TC 4 Z9 4 U1 1 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD SEP PY 2009 VL 110 IS 13 BP 1066 EP 1071 DI 10.1016/j.jqsrt.2009.03.024 PG 6 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 467ER UT WOS:000267721200002 ER PT J AU Ding, SG Xie, Y Yang, P Weng, FZ Liu, QH Baum, B Hu, YX AF Ding, Shouguo Xie, Yu Yang, Ping Weng, Fuzhong Liu, Quanhua Baum, Bryan Hu, Yongxiang TI Estimates of radiation over clouds and dust aerosols: Optimized number of terms in phase function expansion SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Truncation of phase function; Radiative transfer; Aerosols; Clouds ID PLANETARY-ATMOSPHERES; LIGHT-SCATTERING; ICE CRYSTALS; ALGORITHMS AB The bulk-scattering properties of dust aerosols and clouds are computed for the community radiative transfer model (CRTM) that is a flagship effort of the joint Center for Satellite Data Assimilation (JCSDA). The delta-fit method is employed to truncate the forward peaks of the scattering phase functions and to compute the Legendre expansion coefficients for re-constructing the truncated phase function. Use of more terms in the expansion gives more accurate re-construction of the phase function, but the issue remains as to how many terms are necessary for different applications. To explore this issue further, the bidirectional reflectances associated with dust aerosols, water clouds, and ice clouds are simulated with various numbers of Legendre expansion terms. To have relative numerical errors smaller than 5%, the present analyses indicate that, in the visible spectrum, 16 Legendre polynomials should be used for dust aerosols, while 32 Legendre expansion terms should be used for both water and ice clouds. In the infrared spectrum, the brightness temperatures at the top of the atmosphere are computed by using the scattering properties of dust aerosols, water clouds and ice clouds. Although small differences of brightness temperatures compared with the counterparts computed with 4, 8,128 expansion terms are observed at large viewing angles for each layer, it is shown that 4 terms of Legendre polynomials are sufficient in the radiative transfer computation at infrared wavelengths for practical applications. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Ding, Shouguo; Xie, Yu; Yang, Ping] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Weng, Fuzhong] NOAA NESDIS, Ctr Satellite Applicat & Res, Satellite Meteorol & Climatol Div, Camp Springs, MD 20746 USA. [Liu, Quanhua] QSS Grp Inc, Camp Springs, MD 20746 USA. [Liu, Quanhua] NOAA NESDIS, Joint Ctr Satellite Data Assimilat, Camp Springs, MD 20746 USA. [Baum, Bryan] Univ Wisconsin, Ctr Space Sci & Engn, Madison, WI 53706 USA. [Hu, Yongxiang] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Yang, P (reprint author), Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. EM pyang@ariel.met.tamu.edu RI Xie, Yu/A-4266-2011; Yang, Ping/B-4590-2011; Baum, Bryan/B-7670-2011; Weng, Fuzhong/F-5633-2010; Liu, Quanhua/B-6608-2008; Ding, Shouguo/F-2673-2012; Hu, Yongxiang/K-4426-2012 OI Baum, Bryan/0000-0002-7193-2767; Weng, Fuzhong/0000-0003-0150-2179; Liu, Quanhua/0000-0002-3616-351X; FU Center for Satellite Data Assimilation (JCSDA) [DG133E07SE3473/NEED2000-7-15205] FX This study is supported by the joint Center for Satellite Data Assimilation (JCSDA) under contract DG133E07SE3473/ NEED2000-7-15205. NR 18 TC 10 Z9 10 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD SEP PY 2009 VL 110 IS 13 BP 1190 EP 1198 DI 10.1016/j.jqsrt.2009.03.032 PG 9 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 467ER UT WOS:000267721200012 ER PT J AU Mishchenko, MI AF Mishchenko, Michael I. TI Gustav Mie and the fundamental concept of electromagnetic scattering by particles: A perspective SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article; Proceedings Paper CT 11th Conference on Electromagnetic and Light Scattering CY SEP 07-12, 2008 CL Univ Hertfordshire, Hatfield, ENGLAND HO Univ Hertfordshire DE Electromagnetic scattering; Polarization; Multiple scattering; Radiative transfer; Coherent backscattering; Optical particle characterization; Remote sensing ID LIGHT-SCATTERING; NONSPHERICAL PARTICLES; SPECIAL-ISSUE; RADIATIVE-TRANSFER; INTERNATIONAL-SYMPOSIUM; REFRACTIVE-INDEX; GLORIES; PHOTON; MICRODROPLETS; RESONANCES AB This tutorial review provides a general discussion of the fundamental concept of electromagnetic scattering by particles and particle groups and dispels certain widespread yet profoundly confusing misconceptions. Published by Elsevier Ltd. C1 NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Mishchenko, MI (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM mmishchenko@giss.nasa.gov RI Mishchenko, Michael/D-4426-2012 NR 97 TC 38 Z9 38 U1 1 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD SEP-NOV PY 2009 VL 110 IS 14-16 SI SI BP 1210 EP 1222 DI 10.1016/j.jqsrt.2009.02.002 PG 13 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 476TO UT WOS:000268468700002 ER PT J AU Mishchenko, MI Dlugach, JM AF Mishchenko, Michael I. Dlugach, Janna M. TI Radar polarimetry of Saturn's rings: Modeling ring particles as fractal aggregates built of small ice monomers SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article; Proceedings Paper CT 11th Conference on Electromagnetic and Light Scattering CY SEP 07-12, 2008 CL Univ Hertfordshire, Hatfield, ENGLAND HO Univ Hertfordshire DE Polarimetry; Multiple scattering; Radiative transfer; Coherent backscattering; Remote sensing; Radar; Saturn's rings ID LIGHT-SCATTERING; T-MATRIX; REFERENCE DATABASE; WEAK-LOCALIZATION; CASSINI VIMS; B-RING; SOOT AB We analyze ground-based radar polarimetric observations of Saturn's rings at a wavelength of 12.6 cm by employing the model of a vertically and horizontally plane-parallel homogeneous slab composed of clumpy particles in the form of fractal aggregates of small ice monomers. Our model takes full account of the effects of polarization, multiple scattering, and coherent backscattering. Using efficient superposition T-matrix and vector radiative transfer codes, we perform computations of the backscattering circular polarization ratio for fractal aggregates generated with a cluster-cluster aggregation model and having the following characteristics: monomer refractive index m = 1.78+i0.003; monomer packing density p = 0.2; fractal dimensions D-f = 2.5 and 3; and overall fractal radii R in the range 4 <= R <= 10 cm. In order to obtain physically realistic values of single-scattering properties of the aggregates we perform averaging over an ensemble of clusters generated for the same values of fractal parameters but having different geometrical configurations of the monomers. We conclude that in the framework of the above morphological model of Saturn's rings and the specific cluster-cluster aggregation procedure, it may be problematic to obtain a satisfactory and realistic agreement between theoretical computations and the observed values of the radar circular polarization ratio. Published by Elsevier Ltd. C1 [Mishchenko, Michael I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Dlugach, Janna M.] Natl Acad Sci Ukraine, Main Astron Observ, UA-03680 Kiev, Ukraine. RP Mishchenko, MI (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM mmishchenko@giss.nasa.gov RI Mishchenko, Michael/D-4426-2012 NR 35 TC 6 Z9 6 U1 1 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD SEP-NOV PY 2009 VL 110 IS 14-16 SI SI BP 1706 EP 1712 DI 10.1016/j.jqsrt.2009.01.017 PG 7 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 476TO UT WOS:000268468700043 ER PT J AU La Duc, MT Osman, S Venkateswaran, K AF La Duc, Myron T. Osman, Shariff Venkateswaran, Kasthuri TI COMPARATIVE ANALYSIS OF METHODS FOR THE PURIFICATION OF DNA FROM LOW-BIOMASS SAMPLES BASED ON TOTAL YIELD AND CONSERVED MICROBIAL DIVERSITY SO JOURNAL OF RAPID METHODS AND AUTOMATION IN MICROBIOLOGY LA English DT Article ID SPACECRAFT ASSEMBLY FACILITY; MARS ODYSSEY SPACECRAFT; SP-NOV.; CABIN AIR; BACTERIA; PCR; EXTRACTION; SOIL; RNA; ENVIRONMENTS AB Despite advances in the specificity and sensitivity of molecular biological technologies, the efficient recovery of DNA from low-biomass samples remains extremely challenging. Optimal methods to purify biomolecules from such environments should (1) achieve the greatest total yield and (2) reflect the true microbial diversity of the sample. These attributes were assessed from five DNA purification regimes: a standard-manual procedure, MoBio Ultraclean and Promega Wizard kits, and an automated Axcyte AutoLyser method with and without bead-beating agitation. A homogenous mixture of known concentrations of nine distinct bacterial lineages isolated from low-biomass environments was prepared and suitable aliquots of subsamples were processed in parallel. DNA products from each of these methods were then subjected to polymerase chain reaction (PCR), quantitative PCR and 16S rRNA clone-library analysis. The Axcyte AutoLyser outperformed all other purification regimes examined. This automated method consistently both yielded the highest concentration of PCR-amplifiable DNA, and reported species composition most consistent with the starting solution. C1 [La Duc, Myron T.; Osman, Shariff; Venkateswaran, Kasthuri] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP La Duc, MT (reprint author), CALTECH, Jet Prop Lab, M-S 89,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM mtladuc@jpl.nasa.gov FU Mars Program Office FX Part of the research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the NASA. This research was funded by the Mars Program Office. We are grateful to members of the Biotechnology and Planetary Protection group for technical assistance. We also appreciate J. A. Spry and K. Buxbaum for valuable advice and encouragement. NR 40 TC 12 Z9 13 U1 0 U2 5 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1060-3999 J9 J RAPID METH AUT MIC JI J Rapid Methods Autom. Microbiol. PD SEP PY 2009 VL 17 IS 3 BP 350 EP 368 PG 19 WC Biotechnology & Applied Microbiology; Food Science & Technology SC Biotechnology & Applied Microbiology; Food Science & Technology GA 490XK UT WOS:000269541200009 ER PT J AU Korzun, AM Braun, RD Cruz, JR AF Korzun, Ashley M. Braun, Robert D. Cruz, Juan R. TI Survey of Supersonic Retropropulsion Technology for Mars Entry, Descent, and Landing SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT 2008 IEEE Aerospace Conference CY MAR 01-08, 2008 CL Big Sky, MT SP IEEE ID BODY; JET; EXPLORATION; INJECTION; FLOW; NOSE; GAS C1 [Korzun, Ashley M.; Braun, Robert D.] Georgia Inst Technol, Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA. [Cruz, Juan R.] NASA, Langley Res Ctr, Atmospher Flight & Entry Syst Branch, Hampton, VA 23681 USA. RP Korzun, AM (reprint author), Georgia Inst Technol, Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA. NR 46 TC 23 Z9 24 U1 1 U2 3 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD SEP-OCT PY 2009 VL 46 IS 5 BP 929 EP 937 DI 10.2514/1.41161 PG 9 WC Engineering, Aerospace SC Engineering GA 504YV UT WOS:000270655300001 ER PT J AU Williams, T Abate, M AF Williams, Trevor Abate, Matthew TI Capabilities of Furlable Solar Sails for Asteroid Proximity Operations SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article ID HOVERING SPACECRAFT; BODIES AB Missions have been proposed in which a spacecraft equipped with a large furlable solar sail transfers to a main-belt asteroid using the fully deployed sail for propulsion and then performs an inspection mission at the asteroid with the sail fully stowed. This paper examines ways in which the partially deployed sail could instead be used to maneuver the spacecraft while in the vicinity of the asteroid, with the goal of improving the science observations that could be made. Methods are presented for quantifying the performance that can be obtained by taking advantage of the freedom to select the active sail area for two types of hovering problems: one in which the spacecraft is to maintain a fixed position in the rotating sun-asteroid frame and the other in which it is to maintain a fixed position relative to a landmark on the rotating asteroid surface. In both of these problems, the ability to adjust the active sail area greatly expands the range of locations at which the spacecraft can satisfy the specified hover conditions. C1 [Williams, Trevor] Univ Cincinnati, Dept Aerosp Engn, Cincinnati, OH 45221 USA. [Abate, Matthew] Orbital Sci Corp, Guidance Nav & Control Design & Anal Grp, Dulles, VA 20166 USA. RP Williams, T (reprint author), NASA, Goddard Space Flight Ctr, Nav & Miss Design Branch, Greenbelt, MD 20771 USA. NR 15 TC 7 Z9 7 U1 0 U2 1 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD SEP-OCT PY 2009 VL 46 IS 5 BP 967 EP 975 DI 10.2514/1.30355 PG 9 WC Engineering, Aerospace SC Engineering GA 504YV UT WOS:000270655300005 ER PT J AU Pilinski, EB Lee, AY AF Pilinski, Emily B. Lee, Allan Y. TI Pointing-Stability Performance of the Cassini Spacecraft SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT AIAA Guidance, Navigation, and Control Conference CY AUG 18-21, 2008 CL Honolulu, HI SP Amer Inst Aeronaut & Astronaut ID MISSION AB The operations of Cassini optical remote sensing instruments require a high level of spacecraft-pointing stability to minimize image distortion during an exposure window. This paper summarizes the flight performance of the Cassini spacecraft's pointing stability with respect to mission requirements. Sources of spacecraft jitter, the Cassini spacecraft control modes, and pointing-stability metrics are discussed to provide a context for the results. In designing the Cassini attitude-control system, a pointing-stability performance metric that considered the frequency contents of the disturbance sources was employed. Cassini pointing-stability results using the root-mean-square stability metric are provided for both spacecraft control modes, using the reaction-wheel assembly or the reaction control system composed of eight thrusters. The pointing-stability results are then related to characteristics of the spacecraft and operations. For thruster-based control, the pointing-stability results are analyzed with respect to the per-axis dead band. Results from the scientific instruments onboard the Cassini spacecraft confirm that the pointing-stability results in either control mode have achieved high accuracy pointing capabilities critical to the success of the mission and have resulted in data to improve our understanding of Saturn. C1 [Pilinski, Emily B.; Lee, Allan Y.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Pilinski, EB (reprint author), BioServe Space Technol Univ Colorado, Boulder, CO 80309 USA. EM Emily.Pilinski@colorado.edu; Allan.Y.Lee@jpl.nasa.gov NR 10 TC 7 Z9 8 U1 0 U2 3 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD SEP-OCT PY 2009 VL 46 IS 5 BP 1007 EP 1015 DI 10.2514/1.41675 PG 9 WC Engineering, Aerospace SC Engineering GA 504YV UT WOS:000270655300010 ER PT J AU Stumpf, PW Gist, EM Goodson, TD Hahn, Y Wagner, SV Williams, PN AF Stumpf, P. W. Gist, E. M. Goodson, T. D. Hahn, Y. Wagner, S. V. Williams, P. N. TI Flyby Error Analysis Based on Contour Plots for Cassini Tour SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT AIAA/AAS Astrodynamics Specialist Conference CY AUG 18-21, 2008 CL Honolulu, HI SP Amer Aeronaut & Astronaut, AAS AB The maneuver cancellation analysis consists of cost contour plots employed by the Cassini maneuver team. The plots are two-dimensional linear representations of a larger six-dimensional solution to a multimaneuver, multiencounter mission at Saturn. This realization and the use of the tool itself is just one of the many significant engineering achievements that have come from the Cassini project. After inserting the cost contour capability with an enhancement (taking account of asymptote changes), a tool that was originally only used for analysis could be used for operations once the accuracy of the plots was determined to be acceptable for operations. The plots have been used extensively since the enhancement. By using contours plotted in the B plane with B circle R and B circle T components, it is possible to view the effects on Delta V for various encounter positions in the B plane. The plot is used in operations to help determine if the approach maneuver (ensuing encounter minus three days) and/or the cleanup maneuver (ensuing encounter plus three days) can be cancelled and is a linear check of an integrated solution. The plots have also been used to bias the targets of encounters to save A V. C1 [Stumpf, P. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Stumpf, PW (reprint author), CALTECH, Jet Prop Lab, Mail Stop 230-205,4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 7 TC 0 Z9 0 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD SEP-OCT PY 2009 VL 46 IS 5 BP 1016 EP 1022 DI 10.2514/1.42143 PG 7 WC Engineering, Aerospace SC Engineering GA 504YV UT WOS:000270655300011 ER PT J AU Siddiqi, A de Weck, OL Lee, GY Shull, SA AF Siddiqi, Afreen de Weck, Olivier L. Lee, Gene Y. Shull, Sarah A. TI Matrix Modeling Methods for Spaceflight Campaign Logistics Analysis SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article; Proceedings Paper CT AIAA Space 2008 Conference and Exposition CY SEP 08-12, 2008 CL San Diego, CA SP Amer Inst Aeronaut & Astronaut AB This paper proposes a matrix-based modeling approach for analyzing spaceflight campaign logistics. A campaign is considered to be a series of coordinated flights delivering cargo at a location or node. A matrix representation of the cargo carried by flights for consumption in different time periods (or missions) is formulated. The matrix adopts specific structures based on the nature of the campaign, thereby allowing a quick visualization of the campaign logistics properties. A logistics strategy index is proposed for quantifying manifesting strategies, and a flight criticality index is defined to help in identifying important flights from a cargo-delivery perspective and aid in assessing impact of flight cancellations, failures, and delays. The method is demonstrated on a lunar outpost establishment and is also applied in modeling the logistics of the International Space Station. A manifest (M) matrix and flight dependency (D) matrix is created for crew provisions cargo delivered to the ISS over a period of 10 years. It is found that the overall logistics strategy index for crew provisions has so far been 0.85 (meaning 85% of the crew provisions cargo is prepositioned on average for each mission) and that the prepositioning is for up to a maximum of four future missions at a time. C1 [Siddiqi, Afreen] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA. [de Weck, Olivier L.] MIT, Dept Aeronaut & Astronaut & Engn Syst, Cambridge, MA 02139 USA. [Lee, Gene Y.] CALTECH, Jet Prop Lab, Miss Syst Concepts Sect 312, Pasadena, CA 91109 USA. [Shull, Sarah A.] NASA, Lyndon B Johnson Space Ctr, Cargo Integrat & Operat Branch DO5, Miss Operat Directorate, Houston, TX 77058 USA. RP Siddiqi, A (reprint author), MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA. EM siddiqi@mit.edu; deweck@mit.edu; gene.y.lee@jpl.nasa.gov; sarah.a.shull@nasa.gov NR 11 TC 7 Z9 7 U1 0 U2 1 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD SEP-OCT PY 2009 VL 46 IS 5 BP 1037 EP 1048 DI 10.2514/1.43319 PG 12 WC Engineering, Aerospace SC Engineering GA 504YV UT WOS:000270655300013 ER PT J AU Muirhead, BK Shishko, R Fox, G AF Muirhead, Brian K. Shishko, Robert Fox, George TI Stochastic Analysis of Constellation Performance and Mass Margins SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article AB A new method for analyzing margins in the Constellation program is described and applied to the performance and mass margins for the integrated transportation system returning humans to the lunar surface. The approach treats the Ares-V Earth-departure-stage gross payload-delivery capability and the translunar injection masses of Orion and Altair as random variables. For various vehicle requirements, vehicle control masses, and design reference missions, a Monte Carlo simulation estimate is used to estimate the critical probability that the delivery capability exceeds that injected mass. This critical probability can be used to establish program performance and mass margins and, in conjunction with other measures, to manage vehicle selection and trades at the program level. C1 [Muirhead, Brian K.; Shishko, Robert; Fox, George] CALTECH, Jet Prop Lab, Miss Syst Concepts Sect, Pasadena, CA 91109 USA. RP Muirhead, BK (reprint author), CALTECH, Jet Prop Lab, Miss Syst Concepts Sect, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 62 TC 0 Z9 0 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD SEP-OCT PY 2009 VL 46 IS 5 BP 1077 EP 1088 DI 10.2514/1.40243 PG 12 WC Engineering, Aerospace SC Engineering GA 504YV UT WOS:000270655300016 ER PT J AU Stroud, LC Feiveson, AH Ploutz-Snyder, R De Witt, JK Everett, ME Gernhardt, ML AF Stroud, Leah C. Feiveson, Alan H. Ploutz-Snyder, Robert De Witt, John K. Everett, Meghan E. Gernhardt, Michael L. TI Comparison of metabolic gas analysis between a standard laboratory system and a portable device SO JOURNAL OF SPORTS SCIENCE AND MEDICINE LA English DT Letter ID AGREEMENT; ACCURACY; EXCHANGE C1 [Stroud, Leah C.; De Witt, John K.] Wyle Integrated Sci & Engn Grp, Houston, TX USA. [Feiveson, Alan H.; Gernhardt, Michael L.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Ploutz-Snyder, Robert] Univ Space Res Assoc, Houston, TX USA. [Everett, Meghan E.] Univ Houston, Houston, TX USA. RP Stroud, LC (reprint author), Wyle Integrated Sci & Engn Grp, Houston, TX USA. EM leah.stroud-1@nasa.gov NR 8 TC 2 Z9 2 U1 0 U2 0 PU JOURNAL SPORTS SCIENCE & MEDICINE PI BURSA PA MEDICAL FACULTY ULUDAG UNIV, DEPT SPORTS MEDICINE, BURSA, 16059, TURKEY SN 1303-2968 J9 J SPORT SCI MED JI J. Sport. Sci. Med. PD SEP PY 2009 VL 8 IS 3 BP 491 EP 492 PG 2 WC Sport Sciences SC Sport Sciences GA 505HQ UT WOS:000270683700025 PM 24137098 ER PT J AU Shams, QA Soto, HL Zuckerwar, AJ AF Shams, Qamar A. Soto, Hector L. Zuckerwar, Allan J. TI Contribution of crosstalk to the uncertainty of electrostatic actuator calibrations SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article AB Crosstalk in electrostatic actuator calibrations is defined as the ratio of the microphone response to the actuator excitation voltage at a given frequency with the actuator polarization voltage turned off to the response, at the excitation frequency, with the polarization voltage turned on. It consequently contributes to the uncertainty of electrostatic actuator calibrations. Two sources of crosstalk are analyzed: the first attributed to the stray capacitance between the actuator electrode and the microphone backplate, and the second to the ground resistance appearing as a common element in the actuator excitation and microphone input loops. Measurements conducted on 1/4, 1/2, and I in. air condenser microphones reveal that the crosstalk has no frequency dependence up to the membrane resonance frequency and that the level of crosstalk lies at about -60 dB for all three microphones-conclusions that are consistent with theory. The measurements support the stray capacitance model. The contribution of crosstalk to the measurement standard uncertainty of an electrostatic actuator calibration is therewith 0.01 dB. [DOI: 10.1121/1.3167483] C1 [Shams, Qamar A.; Soto, Hector L.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Zuckerwar, Allan J.] Analyt Serv & Mat Inc, Hampton, VA 23666 USA. RP Shams, QA (reprint author), NASA, Langley Res Ctr, Mail Stop 238, Hampton, VA 23681 USA. NR 4 TC 2 Z9 2 U1 0 U2 1 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD SEP PY 2009 VL 126 IS 3 BP 1107 EP 1110 DI 10.1121/1.3167483 PG 4 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA 494RR UT WOS:000269833600025 PM 19739723 ER PT J AU Fierro, AO Simpson, J LeMone, MA Straka, JM Smull, BF AF Fierro, Alexandre O. Simpson, Joanne LeMone, Margaret A. Straka, Jerry M. Smull, Bradley F. TI On How Hot Towers Fuel the Hadley Cell: An Observational and Modeling Study of Line-Organized Convection in the Equatorial Trough from TOGA COARE SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID EQUIVALENT POTENTIAL TEMPERATURE; VERTICAL VELOCITY EVENTS; AIRBORNE DOPPLER RADARS; TROPICAL SQUALL-LINE; 9 FEBRUARY 1993; NUMERICAL SIMULATIONS; OCEANIC CONVECTION; HURRICANE BONNIE; MOIST CONVECTION; PACIFIC-OCEAN AB An airflow trajectory analysis was carried out based on an idealized numerical simulation of the nocturnal 9 February 1993 equatorial oceanic squall line observed over the Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) ship array. This simulation employed a nonhydrostatic numerical cloud model, which features a sophisticated 12-class bulk microphysics scheme. A second convective system that developed immediately south of the ship array a few hours later under similar environmental conditions was the subject of intensive airborne quad-Doppler radar observations, allowing observed airflow trajectories to be meaningfully compared to those from the model simulation. The results serve to refine the so-called hot tower hypothesis, which postulated the notion of undiluted ascent of boundary layer air to the high troposphere, which has for the first time been tested through coordinated comparisons with both model output and detailed observations. For parcels originating ahead ( north) of the system near or below cloud base in the boundary layer (BL), the model showed that a majority (>62%) of these trajectories were able to surmount the 10-km level in their lifetime, with about 5% exceeding 14-km altitude, which was near the modeled cloud top (15.5 km). These trajectories revealed that during ascent, most air parcels first experienced a quick decrease of equivalent potential temperature (theta(e)) below 5-km MSL as a result of entrainment of lower ambient theta(e) air. Above the freezing level, ascending parcels experienced an increase in theta(e) with height attributable to latent heat release from ice processes consistent with previous hypotheses. Analogous trajectories derived from the evolving observed airflow during the mature stage of the airborne radar-observed system identified far fewer (similar to 5%) near-BL parcels reaching heights above 10 km than shown by the corresponding simulation. This is attributed to both the idealized nature of the simulation and to the limitations inherent to the radar observations of near-surface convergence in the subcloud layer. This study shows that latent heat released above the freezing level can compensate for buoyancy reduction by mixing at lower levels, thus enabling air originating in the boundary layer to contribute to the maintenance of both local buoyancy and the large-scale Hadley cell despite acknowledged dilution by mixing along updraft trajectories. A tropical "hot tower'' should thus be redefined as any deep convective cloud with a base in the boundary layer and reaching near the upper-tropospheric outflow layer. C1 [Fierro, Alexandre O.] NOAA, Atlantic Oceanog & Meteorol Lab, Hurricane Res Div, Miami, FL 33149 USA. [Simpson, Joanne] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [LeMone, Margaret A.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Straka, Jerry M.] Univ Oklahoma, Sch Meteorol, Norman, OK 73019 USA. [Smull, Bradley F.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. RP Fierro, AO (reprint author), Los Alamos Natl Lab, EES-16,MS D401, Los Alamos, NM 87545 USA. EM alexfierro@lanl.gov RI Fierro, Alexandre/C-4733-2014 OI Fierro, Alexandre/0000-0002-4859-1255 FU National Research Council (NRC); Oklahoma Supercomputing Center for Education and Research (OSCER); National Science Foundation (NSF) [ATM-0733539]; National Center of Atmospheric Research (NCAR) FX We thank the National Research Council (NRC) of the National Academy of Sciences for generously sponsoring Alexandre Fierro for one year and the Oklahoma Supercomputing Center for Education and Research (OSCER) for providing computing resources. Partial support for this research was also provided by the National Science Foundation (NSF) under the Grant ATM-0733539. Dr. Joanne Simpson would like to thank W.-K. Tao for all his help and inspiration over several decades. Dr. Bradley Smull's involvement has been supported by NSF's Independent Research and Development (IR/D) program during his assignment there. Dr. Dave Jorgensen (NOAA/NSSL) generously provided access to archived Doppler radar data. Dr. Thomas J. Matejka (formerly of NOAA) spearheaded the observationally derived trajectory analysis. Dr. M. LeMone would like to thank NSF for supporting the National Center of Atmospheric Research (NCAR). We also would like to thank Dr. Edward R. Mansell and Dr. Songlak Kang for supplying the software to produce the joint probability distributions. The authors would also like to thank Dr. Ed Zipser and the anonymous reviewer for their helpful comments. NR 53 TC 38 Z9 38 U1 1 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD SEP PY 2009 VL 66 IS 9 BP 2730 EP 2746 DI 10.1175/2009JAS3017.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 494LM UT WOS:000269814400012 ER PT J AU Franklin, WA Crichton, D Reid, M Mattmann, C Hart, A Deng, D Chesnut, P Logue, B Stelling, D Varella-Garcia, M Kennedy, TC Miller, YE AF Franklin, Wilbur A. Crichton, Dan Reid, Mary Mattmann, Chris Hart, Andrew Deng, Dayi Chesnut, Patrick Logue, Brian Stelling, Deanna Varella-Garcia, Marileila Kennedy, Timothy C. Miller, York E. TI A distributed bronchial mapping software tool for the tracking of cellular, molecular and imaging results in the central airways SO JOURNAL OF THORACIC ONCOLOGY LA English DT Meeting Abstract C1 [Franklin, Wilbur A.; Deng, Dayi; Chesnut, Patrick; Logue, Brian; Varella-Garcia, Marileila; Kennedy, Timothy C.; Miller, York E.] UCDenver, Aurora, CO USA. [Crichton, Dan; Mattmann, Chris; Hart, Andrew] NASA, Jet Prop Lab, Pasadena, CA USA. [Reid, Mary] Roswell Pk Canc Inst, Buffalo, NY 14263 USA. [Stelling, Deanna] Fred Hutchinson Canc Res Ctr, Seattle, WA 98104 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 1556-0864 J9 J THORAC ONCOL JI J. Thorac. Oncol. PD SEP PY 2009 VL 4 IS 9 BP S339 EP S339 PG 1 WC Oncology; Respiratory System SC Oncology; Respiratory System GA 490JC UT WOS:000269496001055 ER PT J AU Hughes, PP Coplan, MA DeFazio, JN Chornay, DJ Collier, MR Ogilvie, KW Shappirio, MD AF Hughes, Patrick P. Coplan, Michael A. DeFazio, Jeffery N. Chornay, Dennis J. Collier, Michael R. Ogilvie, Keith W. Shappirio, Mark D. TI Scattering of neutral hydrogen at energies less than 1 keV from tungsten and diamondlike carbon surfaces SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article DE atom-surface impact; diamond-like carbon; energy loss of particles; hydrogen; ion-surface impact; tungsten ID IMAGE MISSION; ATOMS; SPACE AB Neutral atom to negative ion conversion efficiencies were studied for polished tungsten and diamondlike carbon surfaces using a beam of incident hydrogen atoms. Neutral atoms at energies below 1 keV were scattered from the surfaces using incident angles between 6 degrees and 20 degrees measured from the surface plane. The angular and energy distributions of negative ions backscattering from the surfaces were measured and used to calculate the fraction of the incident beam that was converted to negative ions. The highest number and the lowest overall energy loss of backscattered ions were both observed near the specular reflection angle of the incident beam for the two surface materials studied. The total conversion efficiency was calculated to be near 2% for the tungsten and diamondlike carbon surfaces. Measurements taken while the surfaces were heated show a significant reduction in conversion efficiency, which is credited to the removal of adsorbates from the top layers of the surfaces. C1 [Hughes, Patrick P.; Coplan, Michael A.] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA. [DeFazio, Jeffery N.] Univ Denver, Dept Phys, Denver, CO 80208 USA. [Chornay, Dennis J.; Collier, Michael R.; Ogilvie, Keith W.; Shappirio, Mark D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20711 USA. RP Hughes, PP (reprint author), Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA. EM phughes@umd.edu RI Collier, Michael/I-4864-2013 OI Collier, Michael/0000-0001-9658-6605 FU ACT; NASA [NNGO5GQ37G] FX Support for this work was provided by the ACT grant and NASA Grant No. NNGO5GQ37G. NR 17 TC 3 Z9 3 U1 1 U2 6 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 EI 1520-8559 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD SEP PY 2009 VL 27 IS 5 BP 1188 EP 1195 DI 10.1116/1.3196788 PG 8 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 490SC UT WOS:000269523600014 ER PT J AU Greer, F Dickie, M Vasquez, RP Jones, TJ Hoenk, ME Nikzad, S AF Greer, Frank Dickie, Matthew Vasquez, R. P. Jones, Todd J. Hoenk, Michael E. Nikzad, Shouleh TI Plasma treatment methods to improve indium bump bonding via indium oxide removal SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID TIN OXIDE AB Flip chip hybridization, also known as bump bonding, is a packaging technique for microelectronic devices which directly connects an active element or a detector to a substrate readout face down, eliminating the need for wire bonding. Indium bump technology has been a part of hybridization for many years and has been extensively employed in the infrared imager industry. However, obtaining a reliable, high yield process for high density patterns of bumps can be quite difficult in part due to the tendency of the indium bumps to oxidize during exposure to air. In this study, plasma, thermal, and wet chemical methods were screened to determine their ability to remove indium oxide from indium bumps. A novel two-step plasma process using methane, argon, and hydrogen was developed that removes indium oxide from indium bumps after prolonged air exposure while maintaining a low sample temperature. This method was tested by fabricating a fully hybridized scientific grade visible complementary metal oxide semiconductor detector and imaging a standard test pattern. (C) 2009 American Vacuum Society. [DOI:10.1116/1.3204991] C1 [Greer, Frank; Dickie, Matthew; Vasquez, R. P.; Jones, Todd J.; Hoenk, Michael E.; Nikzad, Shouleh] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Greer, F (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM frank.greer@jpl.nasa.gov FU National Aeronautics and Space Administration FX The authors wish to thank David Cole, Thomas Cunningham, and Edward Blazejewski for their assistance in the testing the hybridized devices and interpreting results. This work was in part supported through a SARA grant from the National Aeronautics and Space Administration. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 10 TC 3 Z9 4 U1 1 U2 7 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD SEP PY 2009 VL 27 IS 5 BP 2132 EP 2137 DI 10.1116/1.3204991 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 502HH UT WOS:000270447400014 ER PT J AU Hatamleh, O Mishra, RS Oliveras, O AF Hatamleh, Omar Mishra, Rajiv S. Oliveras, Ovidio TI Peening effects on mechanical properties in friction stir welded AA 2195 at elevated and cryogenic temperatures SO MATERIALS & DESIGN LA English DT Article DE Friction stir welding; Laser peening; Shot peening; Mechanical properties; Digital image correlation; AA 2195 ID RESIDUAL-STRESSES; BEHAVIOR; MICROSTRUCTURE; ALLOYS AB The shot peening and laser peening effects on the mechanical properties of friction stir welded 2195 aluminum alloy were investigated at elevated and cryogenic temperatures. The tensile properties were evaluated at different regions of the weld using a digital image correlation (DIC) system and mini-tensile testing samples. The surface and through thickness residual stresses were also obtained by using X-ray diffraction and the contour method. The specimens processed using laser peening exhibited superior mechanical properties for both elevated and cryogenic temperatures. Moreover, an electron backscattered Kikuchi diffractometry (EBSD) technique indicated a decrease in surface grain size for the laser peened samples when compared to the as welded condition. Published by Elsevier Ltd. C1 [Hatamleh, Omar] NASA, Lyndon B Johnson Space Ctr, Struct Branch, Houston, TX 77058 USA. [Mishra, Rajiv S.] Missouri Univ Sci & Technol, Dept Mat Sci & Engn, Rolla, MO 65409 USA. [Oliveras, Ovidio] Jacobs Engn, Houston, TX 77058 USA. RP Hatamleh, O (reprint author), NASA, Lyndon B Johnson Space Ctr, Struct Branch, 2101 NASA Pkwy, Houston, TX 77058 USA. EM omar.hatamleh-1@nasa.gov RI Mishra, Rajiv/A-7985-2009 OI Mishra, Rajiv/0000-0002-1699-0614 NR 18 TC 10 Z9 10 U1 1 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0261-3069 J9 MATER DESIGN JI Mater. Des. PD SEP PY 2009 VL 30 IS 8 BP 3165 EP 3173 DI 10.1016/j.matdes.2008.11.010 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA 467NY UT WOS:000267746800041 ER PT J AU Cheng, YB Middleton, EM Hilker, T Coops, NC Black, TA Krishnan, P AF Cheng, Yen-Ben Middleton, Elizabeth M. Hilker, Thomas Coops, Nicholas C. Black, T. Andrew Krishnan, Praveena TI Dynamics of spectral bio-indicators and their correlations with light use efficiency using directional observations at a Douglas-fir forest SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article DE hyperspectral; light use efficiency; photochemical reflectance index; vegetation index ID PHOTOCHEMICAL REFLECTANCE INDEX; RADIATION-USE-EFFICIENCY; MODELING CANOPY PHOTOSYNTHESIS; XANTHOPHYLL CYCLE; SUNFLOWER LEAVES; GLOBAL RADIATION; DIRECT COMPONENT; LEAF MODELS; PRODUCTIVITY; FLUORESCENCE AB The carbon science community must rely on satellite remote sensing to obtain global estimates of photosynthetic activity, typically expressed as net primary production (NPP), gross primary production (GPP) or light use efficiency (LUE). The photochemical reflectance index (PRI), calculated as a normalized difference reflectance index using a physiologically active green band (similar to 531 nm) and another physiologically insensitive green reference band (similar to 570 nm), denoted as PRI(570), has been confirmed in many studies as being strongly related to LUE. Here, we examined the potential of utilizing PRI(570) observations under different illumination conditions for canopy LUE estimation of a forest. In order to evaluate this, directional hyperspectral reflectance measurements were collected continuously throughout the daytime periods using an automated spectroradiometer in conjunction with tower-based eddy covariance fluxes and environmental measurements at a coastal conifer forest in British Columbia, Canada throughout the 2006 growing season. A parameter calculated as the PRI(570) difference (dPRI(570)) between shaded versus sunlit canopy foliage sectors showed a strong correlation to tower-based LUE. The seasonal pattern for this correlation produced a dramatic change from high negative (r similar to -0.80) values in the springtime and early fall to high positive values (r similar to 0.80) during the summer months, which could represent the seasonality of physiological characteristics and environmental factors. Although the PRI(570) successfully tracked canopy LUE, one or both of its green bands (similar to 531 and 570 nm) used to calculate the PRI are unavailable on most existing and planned near-term satellites. Therefore, we examined the potential to use 24 other spectral indexes for LUE monitoring that might be correlated to PRI, and thereby a substitute for it. We also continued our previous investigations into the influence of illumination conditions on the observed PRI(570) and other indexes. Among the 24 indexes examined, three PRI indexes using different reference bands (488, 551 and 705 nm) showed high correlations to the traditional PRI(570), especially PRI(551) and PRI(705). This indicates three additional PRI variations for LUE monitoring if the traditional reference band at 570 nm is not available but the 531 nm band is available. Five other indexes also yielded high correlations to PRI(570): Dmax and DM705, two indexes calculated from derivative reflectance spectra; a simple ratio of reflectance values at 685 nm and 655 nm (SR685_655); and a double-peak optical index (DPI). The diurnal and seasonal dynamics of these eight indexes and PRI(570) were explored. All of these indexes except DPI expressed linear dependence on available sunlight and more strongly expressed diurnal dynamics in April than in August during summer drought. The differences for shaded versus sunlit canopy foliage sectors were also calculated for the eight indexes, and their correlations to canopy LUE across the season were examined. The performances were similar for the most successful and seasonally stable indexes: dPRI(551), dPRI(705) and dPRI(570). The other five indexes showed good correlation to LUE in some but not all the months, and the months with high correlations varied among them. C1 [Cheng, Yen-Ben; Middleton, Elizabeth M.] NASA, Biospher Sci Branch, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cheng, Yen-Ben] Earth Resources Technol Inc, Annapolis Jct, MD 20701 USA. [Hilker, Thomas; Coops, Nicholas C.] Univ British Columbia, Fac Forest Resources Management, Vancouver, BC V6T 1Z4, Canada. [Black, T. Andrew; Krishnan, Praveena] Univ British Columbia, Fac Land & Food Syst, Vancouver, BC V6T 1Z4, Canada. [Krishnan, Praveena] Atmospher Turbulence & Diffus Div, Natl Ocean & Atmospher Adm, Oak Ridge, TN 37830 USA. RP Cheng, YB (reprint author), NASA, Biospher Sci Branch, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Yen-Ben.Cheng@nasa.gov RI Cheng, Yen-Ben/G-1311-2012; Coops, Nicholas/J-1543-2012; Krishnan, Praveena/F-8169-2010 OI Coops, Nicholas/0000-0002-0151-9037; FU Goddard Space Flight Center; NASA HQ; German Academic Exchange Service (DAAD); Canadian NSERC FX This research was supported by the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA, and a Terrestrial Ecosystem research program (Spectral Bio-Indicators of Ecosystem Photosynthetic Light Use Efficiency; PI, E. M. Middleton) sponsored through Dr Diane Wickland at NASA HQ. This research was also partially funded by a scholarship of the German Academic Exchange Service (DAAD) to T Hilker and a Canadian NSERC Discovery grant to NC Coops. Y-B Cheng is currently affiliated with Earth Resources Technology, Inc. Most of the work presented in this paper was completed when he was a NASA Postdoctoral Program Fellow. NR 60 TC 21 Z9 22 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD SEP PY 2009 VL 20 IS 9 AR 095107 DI 10.1088/0957-0233/20/9/095107 PG 15 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 486FC UT WOS:000269180300009 ER PT J AU Horz, F Cintala, MJ See, TH Nakamupa-Messenger, K AF Horz, Friedrich Cintala, Mark J. See, Thomas H. Nakamupa-Messenger, Keiko TI Penetration tracks in aerogel produced by Al2O3 spheres SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID COMET 81P/WILD-2 DUST; HYPERVELOCITY CAPTURE; INTERPLANETARY DUST; IMPACT FEATURES; STARDUST; SAMPLES AB We conducted impact experiments into SiO2-based acrogel of uniform density (0.02 g cm(-3)) with spherical corundum projectiles. The highly refractory nature and mechanical strength of corundum minimizes projectile deformation and continuous mass loss by ablation that might have affected earlier experiments with soda-lime glass (SLG) impactors into aerogel targets. We find that corundum is a vastly superior penetrator producing tracks a factor of 2.5 longer, yet similar in diameter to those made by SLG. At velocities >4 km s(-1) a cylindrical "cavity" forms, largely by melting of aerogel. The diameter and length of this cavity increase with velocity and impactor size, and its volume dominates total track volume. A continuously tapering, exceptionally long and slender "stylus" emerges from this cavity and makes up some 80-90% of the total track length; this stylus is characterized by solid-state deformations. Tracks formed below 4 km s(-1) lack the molten cavity and consist only of a stylus. Projectile residues recovered from a track's terminus substantially resemble the initial impactors at V < 4 km s(-1), yet they display two distinct surfaces at higher velocities, such as a blunt, forward face and a well-preserved, hemispherical trailing side; a pronounced, circumferential ridge of compressed and molten aerogel separates these two Surfaces. Stringers and patches of melt flow towards the impactor's rear where they accumulate in a characteristic melt tip. SEM-EDS analyses indicate the presence of Al in these melts at velocities as low as 5.2 km s(-1), indicating that the melting point of corundum (2054 degrees C) was exceeded. The thermal model of aerogel impact by Anderson and Cherne (2008) suggests actual aerogel temperatures >5000 K at comparable conditions. We therefore propose that projectile melting occurs predominantly at those surfaces that are in contact with this very hot aerogel, at the expense of viscous heating and associated ablation. Exposure to superheated aerogel may be viewed as extreme form of "flash heating." This seems consistent with observations from the Stardust mission to comet Wild 2, such as relatively pristine interiors of rather large, terminal particles, yet total melting of most fine-grained dust components. C1 [Horz, Friedrich; See, Thomas H.; Nakamupa-Messenger, Keiko] LZ Technol Inc, ESCG, Houston, TX 77058 USA. [Cintala, Mark J.] NASA, Lyndon B Johnson Space Ctr, Astromat Res Branch, KR, Houston, TX 77058 USA. RP Horz, F (reprint author), LZ Technol Inc, ESCG, Mail Code JE 23,2224 Bay Area Blvd, Houston, TX 77058 USA. EM friedrich.p.horz@nasa.gov NR 27 TC 21 Z9 21 U1 1 U2 11 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2009 VL 44 IS 9 BP 1243 EP 1264 PG 22 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 518NC UT WOS:000271698600001 ER PT J AU Elsila, JE Glavin, DP Dworkin, JP AF Elsila, Jamie E. Glavin, Daniel P. Dworkin, Jason P. TI Cometary glycine detected in samples returned by Stardust SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID INTERSTELLAR ICE ANALOGS; RATIO MASS-SPECTROMETRY; AMINO-ACIDS; ORGANIC-MOLECULES; EARLY EARTH; METEORITES; DELIVERY; SEARCH; 81P/WILD-2 AB Our previous analysis of cometary samples returned to Earth by NASA's Stardust spacecraft showed several amines and amino acids, but the origin of these Compounds could not be firmly established. Here, we present the stable carbon isotopic ratios of glycine and epsilon-amino-n-caproic acid (EACA), the two most abundant amino acids identified in Stardust-returned foil samples measured by gas chromatography-mass spectrometry Coupled with isotope ratio mass spectrometry. The delta(13)C value for glycine of +29 +/- 6 parts per thousand strongly suggests an extraterrestrial origin for glycine, while the delta(13)C value for EACA of -25 +/- 2 parts per thousand indicates terrestrial contamination by Nylon-6 during curation. This represents the first detection of a cometary amino acid. C1 [Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Elsila, JE (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM jamie.elsila@nasa.gov RI Elsila, Jamie/C-9952-2012; Glavin, Daniel/D-6194-2012; Dworkin, Jason/C-9417-2012 OI Glavin, Daniel/0000-0001-7779-7765; Dworkin, Jason/0000-0002-3961-8997 FU NASA; Goddard Center for Astrobiology FX We thank M. Fogel for helpful advice on the derivatization method and GC-IRMS analyses; J. Stern, J. Eigenbrode. S. Sandford, M. Martin, and L. Leshin for useful discussions and technical assistance; Z. Martins for providing the GC column; the Stardust Sample Allocation Team for providing the Stardust foil samples, K. Righter for providing the sample of JSC Nylon bags, NASA's Stardust Sample Analysis Program, the NASA Astroblology Institute and the Goddard Center for Astrobiology for funding. NR 40 TC 163 Z9 164 U1 12 U2 58 PU METEORITICAL SOC PI FAYETTEVILLE PA DEPT CHEMISTRY/BIOCHEMISTRY, UNIV ARKANSAS, FAYETTEVILLE, AR 72701 USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2009 VL 44 IS 9 BP 1323 EP 1330 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 518NC UT WOS:000271698600004 ER PT J AU Weisberg, MK Smith, C Benedix, G Herd, CDK Righter, K Haack, H Yamaguchi, A Chennaoui Aoudjehane, H Grossman, JN AF Weisberg, Michael K. Smith, Caroline Benedix, Gretchen Herd, Christopher D. K. Righter, Kevin Haack, Henning Yamaguchi, Akira Chennaoui Aoudjehane, Hasnaa Grossman, Jeffrey N. TI The Meteoritical Bulletin, No. 96, September 2009 SO METEORITICS & PLANETARY SCIENCE LA English DT Article AB The Meteoritical Bulletin No. 96 contains a total of 1590 newly approved meteorite names with their relevant data. These include 12 from specific locations within Africa, 76 from northwest Africa, 9 from the Americas, 13 from Asia, I from Australia, 2 from Europe, 950 from Antarctica recovered by the Chinese Antarctic Research Expedition (CHINARE), and 527 from the American Antarctic program (ANSMET). Among these meteorites are 4 falls, Almahata Sitta. (Sudan), Sulagiri (India), Ash Creek (United States), and Maribo (Denmark). Almahata Sitta is an anomalous ureilite and is debris from asteroid 2008 TC3 and Maribo, is a CM2 chondrite. Other highlights include a lunar meteorite, a CM1 chondrite, and an anomalous IVA iron. C1 [Weisberg, Michael K.] CUNY, Kingsborough Community Coll, Dept Phys Sci, Brooklyn, NY 11235 USA. [Weisberg, Michael K.] CUNY, Grad Sch, Dept Phys Sci, Brooklyn, NY 11235 USA. [Weisberg, Michael K.] Amer Museum Nat Hist, Dept Earth & Planetary Sci, New York, NY 10024 USA. [Smith, Caroline; Benedix, Gretchen] Nat Hist Museum, Dept Mineral, London SW7 5BD, England. [Smith, Caroline] Univ Glasgow, Sch Geog & Earth Sci, Glasgow G12 8QQ, Lanark, Scotland. [Herd, Christopher D. K.] Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB T6G 2E3, Canada. [Righter, Kevin] NASA, Lyndon B Johnson Space Ctr, Code KT, Houston, TX 77058 USA. [Haack, Henning] Univ Copenhagen, Nat Hist Museum Denmark, DK-1350 Copenhagen K, Denmark. [Yamaguchi, Akira] Natl Inst Polar Res, Antarctic Meteorite Res Ctr, Tokyo 1908518, Japan. [Chennaoui Aoudjehane, Hasnaa] Univ Hassan II Casablanca, Fac Sci, Dept Geol, Casablanca, Morocco. [Grossman, Jeffrey N.] US Geol Survey, Reston, VA 20194 USA. RP Weisberg, MK (reprint author), CUNY, Kingsborough Community Coll, Dept Phys Sci, 2001 Oriental Blvd, Brooklyn, NY 11235 USA. EM meteorite@kingsborough.edu RI Haack, Henning/A-4807-2013; OI Haack, Henning/0000-0002-4618-3178; Benedix, Gretchen/0000-0003-0990-8878 NR 0 TC 13 Z9 13 U1 0 U2 3 PU METEORITICAL SOC PI FAYETTEVILLE PA DEPT CHEMISTRY/BIOCHEMISTRY, UNIV ARKANSAS, FAYETTEVILLE, AR 72701 USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2009 VL 44 IS 9 BP 1355 EP 1397 PG 43 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 518NC UT WOS:000271698600007 ER PT J AU Turk, FJ Sohn, BJ Oh, HJ Ebert, EE Levizzani, V Smith, EA AF Turk, Francis Joseph Sohn, Byung-Ju Oh, Hyun-Jong Ebert, Elizabeth E. Levizzani, Vincenzo Smith, Eric A. TI Validating a rapid-update satellite precipitation analysis across telescoping space and time scales SO METEOROLOGY AND ATMOSPHERIC PHYSICS LA English DT Article ID INTERCOMPARISON PROJECT; TROPICAL RAINFALL; PASSIVE MICROWAVE; DIURNAL CYCLE; RESOLUTION; TRMM; PRODUCTS AB In order to properly utilize remotely sensed precipitation estimates in hydrometeorological applications, knowledge of the accuracy of the estimates are needed. However, relatively few ground validation networks operate with the necessary spatial density and time-resolution required for validation of high-resolution precipitation products (HRPP) generated at fine space and time scales (e.g., hourly accumulations produced on a 0.25A degrees spatial scale). In this article, we examine over-land validation statistics for an operationally designed, meteorological satellite-based global rainfall analysis that blends intermittent passive microwave-derived rainfall estimates aboard a variety of low Earth-orbiting satellite platforms with sub-hourly time sampling capabilities of visible and infrared imagers aboard operational geostationary platforms. The validation dataset is comprised of raingauge data collected from the dense, nearly homogeneous, 1-min reporting Automated Weather Station (network of the Korean Meteorological Administration during the June to August 2000 summer monsoon season. The space-time RMS error, mean bias, and correlation matrices were computed using various time windows for the gauge averaging, centered about the satellite observation time. For +/- 10 min time window, a correlation of 0.6 was achieved at 0.1A degrees spatial scale by averaging more than 3 days; coarsening the spatial scale to 1.8A degrees produced the same correlation by averaging over 1 h. Finer than approximately 24-h and 1A degrees time and space scales, respectively, a rapid decay of the error statistics was obtained by trading-off either spatial or time resolution. Beyond a daily time scale, the blended estimates were nearly unbiased and with an RMS error of no worse than 1 mm day(-1). C1 [Turk, Francis Joseph] USN, Res Lab, Marine Meteorol Div, Monterey, CA 93940 USA. [Sohn, Byung-Ju; Oh, Hyun-Jong] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151747, South Korea. [Ebert, Elizabeth E.] Ctr Australian Weather & Climate Res, Bur Meteorol, Res Ctr, Melbourne, Vic 3001, Australia. [Levizzani, Vincenzo] ISAC CNR, Natl Res Council, Inst Atmospher Sci & Climate, I-40129 Bologna, Italy. [Smith, Eric A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Turk, FJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM jturk@jpl.nasa.gov; sohn@snu.ac.kr; ohj@kma.go.kr; e.ebert@bom.gov.au; v.levizzani@isac.cnr.it; eric.a.smith@nasa.gov RI Levizzani, Vincenzo/A-9070-2013 OI Levizzani, Vincenzo/0000-0002-7620-5235 FU Office of Naval Research [PE-0602435N]; National Aeronautics and Space Administration (NASA) [NNG04HK11I] FX The first author acknowledges the support of the research sponsors, the Office of Naval Research, Program Element (PE-0602435N) and the National Aeronautics and Space Administration (NASA) under grant NNG04HK11I. We acknowledge the efforts of the Microwave Surface and Precipitation Products System (MSPPS) at NOAA/NESDIS for the AMSU-B and MHS rainfall datasets, and the TRMM Precipitation Processing System (PPS) for the TMI and PR rainfall datasets. NR 31 TC 15 Z9 15 U1 0 U2 2 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-7971 J9 METEOROL ATMOS PHYS JI Meteorol. Atmos. Phys. PD SEP PY 2009 VL 105 IS 1-2 BP 99 EP 108 DI 10.1007/s00703-009-0037-4 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 490VA UT WOS:000269534200008 ER PT J AU Naumov, AV Kuznetsov, OA Harutyunyan, AR Green, AA Hersam, MC Resasco, DE Nikolaev, PN Weisman, RB AF Naumov, Anton V. Kuznetsov, Oleg A. Harutyunyan, Avetik R. Green, Alexander A. Hersam, Mark C. Resasco, Daniel E. Nikolaev, Pavel N. Weisman, R. Bruce TI Quantifying the Semiconducting Fraction in Single-Walled Carbon Nanotube Samples through Comparative Atomic Force and Photoluminescence Microscopies SO NANO LETTERS LA English DT Article ID CO-MO CATALYSTS; ELECTRONIC-STRUCTURE; RAMAN-SCATTERING; LASER-ABLATION; GROWTH; TRANSPARENT; ENRICHMENT; SEPARATION; DIAMETER; DISPROPORTIONATION AB A new method was used to measure the fraction of semiconducting nanotubes in various as-grown or processed single-walled carbon nanotube (SWCNT) samples. SWCNT number densities were compared in images from near-IR photoluminescence (semiconducting species) and AFM (all species) to compute the semiconducting fraction. The results show large variations among growth methods and effective sorting by density gradient ultracentrifugation. This counting-based method provides important information about SWCNT sample compositions that can guide controlled growth methods and help calibrate bulk characterization techniques. C1 [Weisman, R. Bruce] Rice Univ, Dept Chem, Houston, TX 77005 USA. [Weisman, R. Bruce] Rice Univ, Richard E Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA. [Naumov, Anton V.] Rice Univ, Appl Phys Program, Houston, TX 77005 USA. [Kuznetsov, Oleg A.; Harutyunyan, Avetik R.] Honda Res Inst USA Inc, Columbus, OH 43212 USA. [Green, Alexander A.; Hersam, Mark C.] Northwestern Univ, Dept Chem, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Resasco, Daniel E.] Univ Oklahoma, Sch Chem Biol & Mat Engn, Norman, OK 73019 USA. [Nikolaev, Pavel N.] NASA, Lyndon B Johnson Space Ctr, ERC Inc, Houston, TX 77058 USA. RP Weisman, RB (reprint author), Rice Univ, Dept Chem, 6100 Main St, Houston, TX 77005 USA. EM weisman@rice.edu RI Green, Alexander/B-6512-2008; Hersam, Mark/B-6739-2009; OI Green, Alexander/0000-0003-2058-1204; Weisman, R. Bruce/0000-0001-8546-9980 FU National Science Foundation [CHE-0809020, DMR-0520513, EEC-0647560, DMR-0706067]; Welch Foundation [C-0807]; NASA [NNJ05HI05C]; State of Texas, Space Act [SAA-AT-07-021 (RAN 0798) (UTA07-099)]; University of Oklahoma by the Department of Energy - Basic Energy Sciences [DEFG03-02ER15345, DE-FG0206ER64239] FX This research was supported at Rice University by grants from the National Science Foundation (CHE-0809020) and the Welch Foundation (C-0807); at Northwestern University by a Natural Sciences and Engineering Research Council of Canada Postgraduate Scholarship (A.A.G.) and grants from the National Science Foundation (DMR-0520513, EEC-0647560, and DMR-0706067); at Honda Research Institute USA Inc. by an internship grant; at NASA by contract no. NNJ05HI05C and support from the State of Texas, Space Act Agreement no. SAA-AT-07-021 (RAN 0798) (UTA07-099); and at the University of Oklahoma by the Department of Energy - Basic Energy Sciences (Grants DEFG03-02ER15345 and DE-FG0206ER64239). NR 50 TC 47 Z9 47 U1 2 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2009 VL 9 IS 9 BP 3203 EP 3208 DI 10.1021/nl9014342 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 492KQ UT WOS:000269654900020 PM 19640001 ER PT J AU de Carcer, IA Correcher, V Barboza-Flores, M D'Antoni, HL Jaque, F AF Aguirre de Carcer, I. Correcher, V. Barboza-Flores, M. D'Antoni, H. L. Jaque, F. TI Preliminary results on the identification of ultraviolet and beta radiation exposure in KCl:Eu2+ single crystals by thermoluminescence SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE UV; Halides; Luminescence ID OPTICALLY STIMULATED LUMINESCENCE; ACTINIC REGION; ALKALI-HALIDES; DOSIMETRY; IRRADIATION; KCL-EU2+; QUARTZ; SYSTEM AB The thermoluminescence (TL) sensitivity to ionising (beta source) and non-ionising (UV) radiation on KCl:Eu2+ single crystals has been investigated. The different shapes of the TL glow curves allow us to detect specific peaks (over 220-250 degrees C) due to UV exposure that exhibit a negligible contribution associated with ionising radiation. The UV-induced TL emission could be deconvoluted into five groups of components peaked at about 120, 150, 210, 250 and 330 degrees C assuming first order kinetic processes. Dose saturation and linearity region have been determined for a wavelength of 254.7 nm. The effect of several cycles of UV irradiation processes on the linearity of the high energy ultraviolet KCl:Eu2+ dosimeter has been also studied to determine the potential reusability. (C) 2009 Elsevier B.V. All rights reserved. C1 [Correcher, V.] CIEMAT, E-28040 Madrid, Spain. [Aguirre de Carcer, I.; Jaque, F.] Univ Autonoma Madrid, Dpto Fis Mat, E-28049 Madrid, Spain. [Barboza-Flores, M.] Univ Sonora, Ctr Invest Fis, Hermosillo 83190, Sonora, Mexico. [D'Antoni, H. L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Correcher, V (reprint author), CIEMAT, Av Complutense 22, E-28040 Madrid, Spain. EM v.correcher@ciemat.es RI Correcher, V/A-4091-2008 OI Correcher, V/0000-0003-0864-6861 FU Ministerio de Educacion y Ciencia, Spain [MAT2005-05950] FX This work has been partially funded by the Ministerio de Educacion y Ciencia (MAT2005-05950), Spain. NR 15 TC 2 Z9 2 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD SEP 1 PY 2009 VL 267 IS 17 BP 2870 EP 2873 DI 10.1016/j.nimb.2009.06.103 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 498RU UT WOS:000270161600012 ER PT J AU Dombrowsky, E Bertino, L Brassington, GB Chassignet, EP Davidson, F Hurlburt, HE Kamachi, M Lee, T Martin, MJ Mei, S Tonani, M AF Dombrowsky, Eric Bertino, Laurent Brassington, Gary B. Chassignet, Eric P. Davidson, Fraser Hurlburt, Harley E. Kamachi, Masafumi Lee, Tong Martin, Matthew J. Mei, Shan Tonani, Marina TI GODAE Systems in Operation SO OCEANOGRAPHY LA English DT Article ID GENERAL-CIRCULATION MODEL; DATA ASSIMILATION SYSTEM; OCEAN DATA ASSIMILATION; VARIATIONAL STATISTICAL-ANALYSIS; GLOBAL OCEAN; PREDICTION SYSTEM; RECURSIVE FILTERS; NUMERICAL ASPECTS; KALMAN FILTER; PACIFIC-OCEAN AB During the last 15 years, operational oceanography systems have been developed in several countries around the world. These developments have been fostered primarily by the Global Ocean Data Assimilation Experiment (GODAE), which coordinated these activities, encouraged partnerships, and facilitated constructive competition. This multinational coordination has been very beneficial for the development of operational oceanography. Today, several systems provide routine, real-time ocean analysis, forecast, and reanalysis products. These systems are based on (1) state-of-the-art Ocean General Circulation Model configurations, either global or regional (basin-scale), with resolutions that range from coarse to eddy-resolving, and (2) data assimilation techniques ranging from analysis correction to advanced three- or four-dimensional variational schemes. These systems assimilate altimeter sea level anomalies, sea surface temperature data, and in situ profiles of temperature and salinity, including Argo data. Some systems have implemented downscaling capacities, which consist of embedding higher-resolution local systems in global and basin-scale models (through open boundary exchange of data), especially in coastal regions, where small scale-phenomena are important, and also increasing the spatial resolution for these regional/coastal systems to be able to resolve smaller scales (so-called downscaling). Others have implemented coupling with the atmosphere and/or sea ice. This paper provides a short review of these operational GODAE systems. C1 [Dombrowsky, Eric] Mercator Ocean, Ramonville St Agne, France. [Bertino, Laurent] Nansen Environm & Remote Sensing Ctr, Modeling & Data Assimilat Grp, Bergen, Norway. [Brassington, Gary B.] Bur Meteorol, Ctr Australian Weather & Climate Res, Melbourne, Vic, Australia. [Chassignet, Eric P.] Florida State Univ, Ctr Ocean Atmospher Predict Studies, Tallahassee, FL 32306 USA. [Davidson, Fraser] Fisheries & Oceans Canada, St John, NF, Canada. [Hurlburt, Harley E.] USN, Res Lab, Stennis Space Ctr, MS 39529 USA. [Kamachi, Masafumi] Meteorol Res Inst, Oceanog Res Dept, Lab 2, Tsukuba, Ibaraki 305, Japan. [Lee, Tong] CALTECH, Jet Prop Lab, Div Sci, Pasadena, CA USA. [Martin, Matthew J.] Met Off, Exeter, Devon, England. [Mei, Shan] Natl Marine Environm Forecast Ctr, Beijing, Peoples R China. [Tonani, Marina] Ist Nazl Geofis & Vulcanol, Bologna, Italy. RP Dombrowsky, E (reprint author), Mercator Ocean, Ramonville St Agne, France. EM eric.dombrowsky@mercator-ocean.fr NR 60 TC 44 Z9 47 U1 0 U2 4 PU OCEANOGRAPHY SOC PI ROCKVILLE PA P.O. BOX 1931, ROCKVILLE, MD USA SN 1042-8275 J9 OCEANOGRAPHY JI Oceanography PD SEP PY 2009 VL 22 IS 3 SI SI BP 80 EP 95 PG 16 WC Oceanography SC Oceanography GA 490NA UT WOS:000269506500012 ER PT J AU Cummings, J Bertino, L Brasseur, P Fukumori, I Kamachi, M Martin, MJ Mogensen, K Oke, P Testut, CE Verron, J Weaver, A AF Cummings, James Bertino, Laurent Brasseur, Pierre Fukumori, Ichiro Kamachi, Masafumi Martin, Matthew J. Mogensen, Kristian Oke, Peter Testut, Charles Emmanuel Verron, Jacques Weaver, Anthony TI OCEAN DATA ASSIMILATION SYSTEMS FOR GODAE SO OCEANOGRAPHY LA English DT Article ID KALMAN FILTER; MODEL; TEMPERATURE; SALINITY; SMOOTHER AB Ocean data assimilation has matured to the point that observations are now routinely combined with model forecasts to produce a variety of ocean products. Approaches to ocean data assimilation vary widely both in terms of the sophistication of the method and the observations assimilated, and also in terms of specification of the forecast error covariances, model biases, observation errors, and quality-control procedures. In this paper, we describe some of the ocean data assimilation systems that have been developed within the Global Ocean Data Assimilation Experiment (GODAE) community. We discuss assimilation methods, observations assimilated, and techniques used to specify error covariances. In addition, we describe practical implementation aspects and present analysis performance results for some of the analysis systems. Finally, we describe plans for improving the assimilation systems in the post-GODAE time period beyond 2008. C1 [Cummings, James] USN, Res Lab, Monterey, CA USA. [Bertino, Laurent] Nansen Environm & Remote Sensing Ctr, Modeling & Data Assimilat Grp, Bergen, Norway. [Brasseur, Pierre] CNRS, LEGI, Grenoble, France. [Fukumori, Ichiro] CALTECH, Jet Prop Lab, Ocean Circulat Div, Pasadena, CA USA. [Kamachi, Masafumi] Meteorol Res Inst, Oceanog Res Dept, Lab 2, Tsukuba, Ibaraki 305, Japan. [Martin, Matthew J.] Met Off, Exeter, Devon, England. [Mogensen, Kristian] European Ctr Medium Range Weather Forecasting, Reading, Berks, England. [Oke, Peter] CSIRO, Hobart, Tas, Australia. [Testut, Charles Emmanuel] Mercator Ocean, Toulouse, France. [Verron, Jacques] CNRS, Lab Ecoulements Geophys & Ind, Grenoble, France. [Weaver, Anthony] Ctr Europeen Rech & Format Avancee Calcul Sci, Toulouse, France. RP Cummings, J (reprint author), USN, Res Lab, Monterey, CA USA. EM james.cummings@nrlmry.navy.mil RI Oke, Peter/C-5127-2011 OI Oke, Peter/0000-0002-3163-5610 NR 30 TC 46 Z9 46 U1 0 U2 8 PU OCEANOGRAPHY SOC PI ROCKVILLE PA P.O. BOX 1931, ROCKVILLE, MD USA SN 1042-8275 J9 OCEANOGRAPHY JI Oceanography PD SEP PY 2009 VL 22 IS 3 SI SI BP 96 EP 109 PG 14 WC Oceanography SC Oceanography GA 490NA UT WOS:000269506500013 ER PT J AU Balmaseda, MA Alves, OJ Arribas, A Awaji, T Behringer, DW Ferry, N Fujii, Y Lee, T Rienecker, M Rosati, T Stammer, D AF Balmaseda, Magdalena A. Alves, Oscar J. Arribas, Alberto Awaji, Toshiyuki Behringer, David W. Ferry, Nicolas Fujii, Yosuke Lee, Tong Rienecker, Michele Rosati, Tony Stammer, Detlef TI Ocean Initialization for Seasonal Forecasts SO OCEANOGRAPHY LA English DT Article ID DATA ASSIMILATION; KALMAN FILTER; SYSTEM; SIMULATIONS; CLIMATE AB Several operational centers routinely issue seasonal forecasts of Earth's climate using coupled ocean-atmosphere models, which require near-real-time knowledge of the state of the global ocean. This paper reviews existing ocean analysis efforts aimed at initializing seasonal forecasts. We show that ocean data assimilation improves the skill of seasonal forecasts in many cases, although its impact can be overshadowed by errors in the coupled models. The current practice, known as "uncoupled" initialization, has the advantage of better knowledge of atmospheric forcing fluxes, but it has the shortcoming of potential initialization shock. In recent years, the idea of obtaining truly "coupled" initialization, where the different components of the coupled system are well balanced, has stimulated several research activities that will be reviewed in light of their application to seasonal forecasts. C1 [Balmaseda, Magdalena A.] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England. [Alves, Oscar J.] Ctr Australian Weather & Climate Res, Seasonal Predict & Climate Variabil Grp, Melbourne, Vic, Australia. [Arribas, Alberto] Met Off, Exeter, Devon, England. [Awaji, Toshiyuki] Kyoto Univ, Kyoto, Japan. [Awaji, Toshiyuki] Data Res Ctr Marine Earth Sci & Technol, Yokohama, Kanagawa, Japan. [Behringer, David W.] Natl Ctr Environm Predict, NOAA, Camp Springs, MD USA. [Ferry, Nicolas] Mercator Ocean, Ramonville St Agne, France. [Fujii, Yosuke] Japan Meteorol Agcy, Oceanog Res Dept, Meteorol Res Inst, Tsukuba, Ibaraki, Japan. [Lee, Tong] CALTECH, Jet Prop Lab, Div Sci, Pasadena, CA USA. [Rienecker, Michele] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Rosati, Tony] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Stammer, Detlef] Univ Hamburg, Inst Meereskunde, D-2000 Hamburg, Germany. RP Balmaseda, MA (reprint author), European Ctr Medium Range Weather Forecasts, Shinfield Pk, Reading RG2 9AX, Berks, England. EM Magdalena.Balmaseda@ecnwf.int FU Mercator Ocean; National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction; Centre for Australian Weather and Climate Research; UK Met Office; NOAA Geophysical Fluid Dynamics Laboratory; Japan Agency for Marine-Earth Science and Technology; European Centre for Medium-Range Weather Forecasting; National Aeronautics and Space Administration's (NASA) Modeling, Analysis, and Prediction program; NASA Jet Propulsion Laboratory; Japan Meteorological Agency; the Japanese Ministry of Education, Culture, Sports, Science and Technology; University of Hamburg FX The following organizations and agencies are acknowledged for their financial and institutional support: Mercator Ocean; National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction; Centre for Australian Weather and Climate Research; UK Met Office; NOAA Geophysical Fluid Dynamics Laboratory; Japan Agency for Marine-Earth Science and Technology; European Centre for Medium-Range Weather Forecasting; National Aeronautics and Space Administration's (NASA) Modeling, Analysis, and Prediction program; NASA Jet Propulsion Laboratory; Japan Meteorological Agency; the Japanese Ministry of Education, Culture, Sports, Science and Technology; and the University of Hamburg. NR 21 TC 18 Z9 18 U1 0 U2 1 PU OCEANOGRAPHY SOC PI ROCKVILLE PA P.O. BOX 1931, ROCKVILLE, MD USA SN 1042-8275 J9 OCEANOGRAPHY JI Oceanography PD SEP PY 2009 VL 22 IS 3 SI SI BP 154 EP 159 PG 6 WC Oceanography SC Oceanography GA 490NA UT WOS:000269506500017 ER PT J AU Lee, T Awaji, T Balmaseda, MA Greiner, E Stammer, D AF Lee, Tong Awaji, Toshiyuki Balmaseda, Magdalena A. Greiner, Eric Stammer, Detlef TI Ocean State Estimation for Climate Research SO OCEANOGRAPHY LA English DT Article ID MERIDIONAL OVERTURNING CIRCULATION; NORTH-ATLANTIC; INTERANNUAL VARIABILITY; DATA ASSIMILATION; DECADAL CHANGES; MODEL; TEMPERATURE; MECHANISMS; TRANSPORTS; HEAT AB Spurred by the development of satellite and in situ observing systems, global ocean state estimation has flourished in the past decade. Today, a suite of global ocean state estimates has been generated and is being applied to studies over a wide range of subjects in physical oceanography and climate research as well as other disciplines. This paper highlights some examples Of using ocean state estimations for ocean and climate research. Many assimilation groups from different countries participated in a Climate Variability and Predictability program/Global Ocean Data Assimilation Experiment global ocean reanalysis evaluation effort in which intercomparisons were performed for a suite of diagnostic quantities and indices, including evaluations against observations. Examples of the intercomparisons are presented to highlight the consistencies and uncertainties of the estimation products and to examine the ability of these products to detect climate signals. Future challenges for state estimation for climate applications are also discussed. C1 [Lee, Tong] CALTECH, Jet Prop Lab, Div Sci, Pasadena, CA 91125 USA. [Awaji, Toshiyuki] Kyoto Univ, Kyoto, Japan. [Awaji, Toshiyuki] Marine Earth Sci & Technol, Data Res Ctr, Yokohama, Kanagawa, Japan. [Balmaseda, Magdalena A.] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England. [Stammer, Detlef] Univ Hamburg, Inst Meereskunde, D-2000 Hamburg, Germany. RP Lee, T (reprint author), CALTECH, Jet Prop Lab, Div Sci, Pasadena, CA 91125 USA. EM tong.lee@jpl.nasa.gov FU National Aeronautics and Space Administration (NASA) FX The research described in this paper was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). NR 38 TC 19 Z9 19 U1 0 U2 3 PU OCEANOGRAPHY SOC PI ROCKVILLE PA P.O. BOX 1931, ROCKVILLE, MD USA SN 1042-8275 J9 OCEANOGRAPHY JI Oceanography PD SEP PY 2009 VL 22 IS 3 SI SI BP 160 EP 167 PG 8 WC Oceanography SC Oceanography GA 490NA UT WOS:000269506500018 ER PT J AU Rahman, ZU Jobson, DJ Woodell, GA AF Rahman, Zia-ur Jobson, Daniel J. Woodell, Glenn A. TI Adaptive two-scale edge detection for visual pattern processing SO OPTICAL ENGINEERING LA English DT Article DE edge detection; adaptive edge detection ID IMAGE-ENHANCEMENT; RETINEX; CORTEX; MONKEY; PERFORMANCE AB Adaptive methods are defined and experimentally studied for a two-scale edge detection process that mimics human visual perception of edges and is inspired by the parvocellular (P) and magnocellular (M) physiological subsystems of natural vision. This two-channel processing consists of a high spatial acuity/coarse contrast channel (P) and a coarse acuity/fine contrast (M) channel. We perform edge detection after a very strong nonlinear image enhancement that uses smart Retinex image processing. Two conditions that arise from this enhancement demand adaptiveness in edge detection. These conditions are the presence of random noise further exacerbated by the enhancement process and the equally random occurrence of dense textural visual information. We examine how to best deal with both phenomena with an automatic adaptive computation that treats both high noise and dense textures as too much information and gracefully shifts from small-scale to medium-scale edge pattern priorities. This shift is accomplished by using different edge-enhancement schemes that correspond with the P-and M-channels of the human visual system. We also examine the case of adapting to a third image condition-namely, too little visual information-and automatically adjust edge-detection sensitivities when sparse feature information is encountered. When this methodology is applied to a sequence of images of the same scene but with varying exposures and lighting conditions, this edge-detection process produces pattern constancy that is very useful for several imaging applications that rely on image classification in variable imaging conditions. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3231534] C1 [Rahman, Zia-ur] Old Dominion Univ, Dept Elect & Comp Engn, Virginia Modeling Anal & Simulat Ctr, Norfolk, VA 23529 USA. [Jobson, Daniel J.; Woodell, Glenn A.] NASA, Langley Res Ctr, Sensors Res Branch MS 473 RM 123, Hampton, VA 23681 USA. RP Rahman, ZU (reprint author), Old Dominion Univ, Dept Elect & Comp Engn, Virginia Modeling Anal & Simulat Ctr, 231B Kaufman Hall, Norfolk, VA 23529 USA. EM zrahman@odu.edu FU NASA cooperative agreement [NNL07AA02A] FX The authors want to thank the NASA Aviation Safety Program for the funding that made this work possible. In particular, Dr. Rahman's work was supported under NASA cooperative agreement NNL07AA02A. NR 33 TC 0 Z9 2 U1 0 U2 1 PU SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 J9 OPT ENG JI Opt. Eng. PD SEP PY 2009 VL 48 IS 9 AR 097006 DI 10.1117/1.3231534 PG 9 WC Optics SC Optics GA 507VA UT WOS:000270882000021 ER PT J AU Strekalov, DV Schwefel, HGL Savchenkov, AA Matsko, AB Wang, LJ Yu, N AF Strekalov, D. V. Schwefel, H. G. L. Savchenkov, A. A. Matsko, A. B. Wang, L. J. Yu, N. TI Microwave whispering-gallery resonator for efficient optical up-conversion SO PHYSICAL REVIEW A LA English DT Article ID GENERATION; RADIATION; CRYSTALS; RECEIVER; UPCONVERSION; TEMPERATURE; MODULATOR AB Conversion of microwave radiation into the optical range has been predicted to reach unity quantum efficiency in whispering-gallery resonators made from an optically nonlinear crystal and supporting microwave and optical modes simultaneously. In this work, we theoretically explore and experimentally demonstrate a resonator geometry that can provide the required phase matching for such a conversion at any desired frequency in the sub-THz range. We show that such a ring-shaped resonator not only allows for the phase matching but also maximizes the overlap of the interacting fields. As a result, unity-efficient conversion is expected in a resonator with feasible parameters. C1 [Strekalov, D. V.; Yu, N.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Schwefel, H. G. L.; Wang, L. J.] Max Planck Inst Sci Light, D-91058 Erlangen, Germany. [Savchenkov, A. A.; Matsko, A. B.] OEwaves Inc, Pasadena, CA 91107 USA. RP Strekalov, DV (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Schwefel, Harald/D-2710-2009 OI Schwefel, Harald/0000-0002-4304-6469 FU NASA FX The experimental research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the NASA. NR 25 TC 19 Z9 19 U1 2 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD SEP PY 2009 VL 80 IS 3 AR 033810 DI 10.1103/PhysRevA.80.033810 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 501LR UT WOS:000270383900166 ER PT J AU Abbott, BP Abbott, R Adhikari, R Ajith, P Allen, B Allen, G Amin, RS Anderson, SB Anderson, WG Arain, MA Araya, M Armandula, H Armor, P Aso, Y Aston, S Aufmuth, P Aulbert, C Babak, S Baker, P Ballmer, S Barker, C Barker, D Barr, B Barriga, P Barsotti, L Barton, MA Bartos, I Bassiri, R Bastarrika, M Behnke, B Benacquista, M Betzwieser, J Beyersdorf, PT Bilenko, IA Billingsley, G Biswas, R Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Bodiya, TP Bogue, L Bork, R Boschi, V Bose, S Brady, PR Braginsky, VB Brau, JE Bridges, DO Brinkmann, M Brooks, AF Brown, DA Brummit, A Brunet, G Bullington, A Buonanno, A Burmeister, O Byer, RL Cadonati, L Camp, JB Cannizzo, J Cannon, KC Cao, J Cardenas, L Caride, S Castaldi, G Caudill, S Cavaglia, M Cepeda, C Chalermsongsak, T Chalkley, E Charlton, P Chatterji, S Chelkowski, S Chen, Y Christensen, N Chung, CTY Clark, D Clark, J Clayton, JH Cokelaer, T Colacino, CN Conte, R Cook, D Corbitt, TRC Cornish, N Coward, D Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Culter, RM Cumming, A Cunningham, L Danilishin, SL Danzmann, K Daudert, B Davies, G Daw, EJ Debra, D Degallaix, J Dergachev, V Desai, S DeSalvo, R Dhurandhar, S Diaz, M Dietz, A Donovan, F Dooley, KL Doomes, EE Drever, RWP Dueck, J Duke, I Dumas, JC Dwyer, JG Echols, C Edgar, M Effler, A Ehrens, P Espinoza, E Etzel, T Evans, M Evans, T Fairhurst, S Faltas, Y Fan, Y Fazi, D Fehrmann, H Finn, LS Flasch, K Foley, S Forrest, C Fotopoulos, N Franzen, A Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, T Fritschel, P Frolov, VV Fyffe, M Galdi, V Garofoli, JA Gholami, I Giaime, JA Giampanis, S Giardina, KD Goda, K Goetz, E Goggin, LM Gonzalez, G Gorodetsky, ML Gossler, S Gouaty, R Grant, A Gras, S Gray, C Gray, M Greenhalgh, RJS Gretarsson, AM Grimaldi, F Grosso, R Grote, H Grunewald, S Guenther, M Gustafson, EK Gustafson, R Hage, B Hallam, JM Hammer, D Hammond, GD Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Haughian, K Hayama, K Heefner, J Heng, IS Heptonstall, A Hewitson, M Hild, S Hirose, E Hoak, D Hodge, KA Holt, K Hosken, DJ Hough, J Hoyland, D Hughey, B Huttner, SH Ingram, DR Isogai, T Ito, M Ivanov, A Johnson, B Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kanner, J Kasprzyk, D Katsavounidis, E Kawabe, K Kawamura, S Kawazoe, F Kells, W Keppel, DG Khalaidovski, A Khalili, FY Khan, R Khazanov, E King, P Kissel, JS Klimenko, S Kokeyama, K Kondrashov, V Kopparapu, R Koranda, S Kozak, D Krishnan, B Kumar, R Kwee, P Lam, PK Landry, M Lantz, B Lazzarini, A Lei, H Lei, M Leindecker, N Leonor, I Li, C Lin, H Lindquist, PE Littenberg, TB Lockerbie, NA Lodhia, D Longo, M Lormand, M Lu, P Lubinski, M Lucianetti, A Luck, H Machenschalk, B MacInnis, M Mageswaran, M Mailand, K Mandel, I Mandic, V Marka, S Marka, Z Markosyan, A Markowitz, J Maros, E Martin, IW Martin, RM Marx, JN Mason, K Matichard, F Matone, L Matzner, RA Mavalvala, N McCarthy, R McClclland, DE McGuire, SC McHugh, M McIntyre, G McKechan, DJA McKenzie, K Mehmet, M Melatos, A Melissinos, AC Menendez, DF Mendell, G Mercer, RA Meshkov, S Messenger, C Meyer, MS Miller, J Minelli, J Mino, Y Mitrofanov, VP Mitselmakher, G Mittleman, R Miyakawa, O Moe, B Mohanty, SD Mohapatra, SRP Moreno, G Morioka, T Mors, K Mossavi, K MowLowry, C Mueller, G Muller-Ebhardt, H Muhammad, D Mukherjee, S Mukhopadhyay, H Mullavey, A Munch, J Murray, PG Myers, E Myers, J Nash, T Nelson, J Newton, G Nishizawa, A Numata, K O'Dell, J O'Reilly, B O'Shaughnessy, R Ochsner, E Ogin, GH Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Pan, Y Pankow, C Papa, MA Parameshwaraiah, V Patel, P Pedraza, M Penn, S Perreca, A Pierro, V Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Postiglione, F Principe, M Prix, R Prokhorov, L Punken, O Quetschke, V Raab, FJ Rabeling, DS Radkins, H Raffai, P Raics, Z Rainer, N Rakhmanov, M Raymond, V Reed, CM Reed, T Rehbein, H Reid, S Reitze, DH Riesen, R Riles, K Rivera, B Roberts, P Robertson, NA Robinson, C Robinson, EL Roddy, S Rover, C Rollins, J Romano, JD Romie, JH Rowan, S Rudiger, A Russell, P Ryan, K Sakata, S de la Jordana, LS Sandberg, V Sannibale, V Santamaria, L Saraf, S Sarin, P Sathyaprakash, BS Sato, S Satterthwaite, M Saulson, PR Savage, R Savov, P Scanlan, M Schilling, R Schnabel, R Schofield, R Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Searle, AC Sears, B Seifert, F Sellers, D Sengupta, AS Sergeev, A Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Sinha, S Sintes, AM Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, ND Somiya, K Sorazu, B Stein, A Stein, LC Steplewski, S Stochino, A Stone, R Strain, KA Strigin, S Stroeer, A Stuver, AL Summerscales, TZ Sun, KX Sung, M Sutton, PJ Szokoly, GP Talukder, D Tang, L Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Thacker, J Thorne, KA Thorne, KS Thuring, A Tokmakov, KV Torres, C Torrie, C Traylor, G Trias, M Ugolini, D Ulmen, J Urbanek, K Vahlbruch, H Vallisneri, M Van den Broeck, C van der Sluys, MV van Veggel, AA Vass, S Vaulin, R Vecchio, A Veitch, J Veitch, P Veltkamp, C Villar, A Vorvick, C Vyachanin, SP Waldman, SJ Wallace, L Ward, RL Weidner, A Weinert, M Weinstein, AJ Weiss, R Wen, L Wen, S Wette, K Whelan, JT Whitcomb, SE Whiting, BF Wilkinson, C Willems, PA Williams, HR Williams, L Willke, B Wilmut, I Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Woan, G Wooley, R Worden, J Wu, W Yakushin, I Yamamoto, H Yan, Z Yoshida, S Zanolin, M Zhang, J Zhang, L Zhao, C Zotov, N Zucker, ME zur Muhlen, H Zweizig, J Robinet, F AF Abbott, B. P. Abbott, R. Adhikari, R. Ajith, P. Allen, B. Allen, G. Amin, R. S. Anderson, S. B. Anderson, W. G. Arain, M. A. Araya, M. Armandula, H. Armor, P. Aso, Y. Aston, S. Aufmuth, P. Aulbert, C. Babak, S. Baker, P. Ballmer, S. Barker, C. Barker, D. Barr, B. Barriga, P. Barsotti, L. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Behnke, B. Benacquista, M. Betzwieser, J. Beyersdorf, P. T. Bilenko, I. A. Billingsley, G. Biswas, R. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Bodiya, T. P. Bogue, L. Bork, R. Boschi, V. Bose, S. Brady, P. R. Braginsky, V. B. Brau, J. E. Bridges, D. O. Brinkmann, M. Brooks, A. F. Brown, D. A. Brummit, A. Brunet, G. Bullington, A. Buonanno, A. Burmeister, O. Byer, R. L. Cadonati, L. Camp, J. B. Cannizzo, J. Cannon, K. C. Cao, J. Cardenas, L. Caride, S. Castaldi, G. Caudill, S. Cavaglia, M. Cepeda, C. Chalermsongsak, T. Chalkley, E. Charlton, P. Chatterji, S. Chelkowski, S. Chen, Y. Christensen, N. Chung, C. T. Y. Clark, D. Clark, J. Clayton, J. H. Cokelaer, T. Colacino, C. N. Conte, R. Cook, D. Corbitt, T. R. C. Cornish, N. Coward, D. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Culter, R. M. Cumming, A. Cunningham, L. Danilishin, S. L. Danzmann, K. Daudert, B. Davies, G. Daw, E. J. DeBra, D. Degallaix, J. Dergachev, V. Desai, S. DeSalvo, R. Dhurandhar, S. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Doomes, E. E. Drever, R. W. P. Dueck, J. Duke, I. Dumas, J. -C. Dwyer, J. G. Echols, C. Edgar, M. Effler, A. Ehrens, P. Espinoza, E. Etzel, T. Evans, M. Evans, T. Fairhurst, S. Faltas, Y. Fan, Y. Fazi, D. Fehrmann, H. Finn, L. S. Flasch, K. Foley, S. Forrest, C. Fotopoulos, N. Franzen, A. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. Fritschel, P. Frolov, V. V. Fyffe, M. Galdi, V. Garofoli, J. A. Gholami, I. Giaime, J. A. Giampanis, S. Giardina, K. D. Goda, K. Goetz, E. Goggin, L. M. Gonzalez, G. Gorodetsky, M. L. Gossler, S. Gouaty, R. Grant, A. Gras, S. Gray, C. Gray, M. Greenhalgh, R. J. S. Gretarsson, A. M. Grimaldi, F. Grosso, R. Grote, H. Grunewald, S. Guenther, M. Gustafson, E. K. Gustafson, R. Hage, B. Hallam, J. M. Hammer, D. Hammond, G. D. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Haughian, K. Hayama, K. Heefner, J. Heng, I. S. Heptonstall, A. Hewitson, M. Hild, S. Hirose, E. Hoak, D. Hodge, K. A. Holt, K. Hosken, D. J. Hough, J. Hoyland, D. Hughey, B. Huttner, S. H. Ingram, D. R. Isogai, T. Ito, M. Ivanov, A. Johnson, B. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kanner, J. Kasprzyk, D. Katsavounidis, E. Kawabe, K. Kawamura, S. Kawazoe, F. Kells, W. Keppel, D. G. Khalaidovski, A. Khalili, F. Y. Khan, R. Khazanov, E. King, P. Kissel, J. S. Klimenko, S. Kokeyama, K. Kondrashov, V. Kopparapu, R. Koranda, S. Kozak, D. Krishnan, B. Kumar, R. Kwee, P. Lam, P. K. Landry, M. Lantz, B. Lazzarini, A. Lei, H. Lei, M. Leindecker, N. Leonor, I. Li, C. Lin, H. Lindquist, P. E. Littenberg, T. B. Lockerbie, N. A. Lodhia, D. Longo, M. Lormand, M. Lu, P. Lubinski, M. Lucianetti, A. Lueck, H. Machenschalk, B. MacInnis, M. Mageswaran, M. Mailand, K. Mandel, I. Mandic, V. Marka, S. Marka, Z. Markosyan, A. Markowitz, J. Maros, E. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. McCarthy, R. McClclland, D. E. McGuire, S. C. McHugh, M. McIntyre, G. McKechan, D. J. A. McKenzie, K. Mehmet, M. Melatos, A. Melissinos, A. C. Menendez, D. F. Mendell, G. Mercer, R. A. Meshkov, S. Messenger, C. Meyer, M. S. Miller, J. Minelli, J. Mino, Y. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Miyakawa, O. Moe, B. Mohanty, S. D. Mohapatra, S. R. P. Moreno, G. Morioka, T. Mors, K. Mossavi, K. MowLowry, C. Mueller, G. Mueller-Ebhardt, H. Muhammad, D. Mukherjee, S. Mukhopadhyay, H. Mullavey, A. Munch, J. Murray, P. G. Myers, E. Myers, J. Nash, T. Nelson, J. Newton, G. Nishizawa, A. Numata, K. O'Dell, J. O'Reilly, B. O'Shaughnessy, R. Ochsner, E. Ogin, G. H. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Pan, Y. Pankow, C. Papa, M. A. Parameshwaraiah, V. Patel, P. Pedraza, M. Penn, S. Perreca, A. Pierro, V. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Postiglione, F. Principe, M. Prix, R. Prokhorov, L. Punken, O. Quetschke, V. Raab, F. J. Rabeling, D. S. Radkins, H. Raffai, P. Raics, Z. Rainer, N. Rakhmanov, M. Raymond, V. Reed, C. M. Reed, T. Rehbein, H. Reid, S. Reitze, D. H. Riesen, R. Riles, K. Rivera, B. Roberts, P. Robertson, N. A. Robinson, C. Robinson, E. L. Roddy, S. Roever, C. Rollins, J. Romano, J. D. Romie, J. H. Rowan, S. Ruediger, A. Russell, P. Ryan, K. Sakata, S. de la Jordana, L. Sancho Sandberg, V. Sannibale, V. Santamaria, L. Saraf, S. Sarin, P. Sathyaprakash, B. S. Sato, S. Satterthwaite, M. Saulson, P. R. Savage, R. Savov, P. Scanlan, M. Schilling, R. Schnabel, R. Schofield, R. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Searle, A. C. Sears, B. Seifert, F. Sellers, D. Sengupta, A. S. Sergeev, A. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Sinha, S. Sintes, A. M. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, N. D. Somiya, K. Sorazu, B. Stein, A. Stein, L. C. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. Stroeer, A. Stuver, A. L. Summerscales, T. Z. Sun, K. -X. Sung, M. Sutton, P. J. Szokoly, G. P. Talukder, D. Tang, L. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Thacker, J. Thorne, K. A. Thorne, K. S. Thuering, A. Tokmakov, K. V. Torres, C. Torrie, C. Traylor, G. Trias, M. Ugolini, D. Ulmen, J. Urbanek, K. Vahlbruch, H. Vallisneri, M. Van den Broeck, C. van der Sluys, M. V. van Veggel, A. A. Vass, S. Vaulin, R. Vecchio, A. Veitch, J. Veitch, P. Veltkamp, C. Villar, A. Vorvick, C. Vyachanin, S. P. Waldman, S. J. Wallace, L. Ward, R. L. Weidner, A. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wen, S. Wette, K. Whelan, J. T. Whitcomb, S. E. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, H. R. Williams, L. Willke, B. Wilmut, I. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Woan, G. Wooley, R. Worden, J. Wu, W. Yakushin, I. Yamamoto, H. Yan, Z. Yoshida, S. Zanolin, M. Zhang, J. Zhang, L. Zhao, C. Zotov, N. Zucker, M. E. zur Muehlen, H. Zweizig, J. Robinet, F. CA LIGO Scient Collaboration TI First LIGO search for gravitational wave bursts from cosmic (super)strings SO PHYSICAL REVIEW D LA English DT Article ID BRANE INFLATION; STRINGS; INTERFEROMETER AB We report on a matched-filter search for gravitational wave bursts from cosmic string cusps using LIGO data from the fourth science run (S4) which took place in February and March 2005. No gravitational waves were detected in 14.9 days of data from times when all three LIGO detectors were operating. We interpret the result in terms of a frequentist upper limit on the rate of gravitational wave bursts and use the limits on the rate to constrain the parameter space (string tension, reconnection probability, and loop sizes) of cosmic string models. Many grand unified theory-scale models (with string tension G mu/c(2) approximate to 10(-6)) can be ruled out at 90% confidence for reconnection probabilities p <= 10(-3) if loop sizes are set by gravitational back reaction. C1 [Abbott, B. P.; Abbott, R.; Adhikari, R.; Anderson, S. B.; Araya, M.; Armandula, H.; Aso, Y.; Ballmer, S.; Barton, M. A.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Boschi, V.; Brooks, A. F.; Cannon, K. C.; Cardenas, L.; Cepeda, C.; Chalermsongsak, T.; Chatterji, S.; Coyne, D. C.; Daudert, B.; DeSalvo, R.; Echols, C.; Ehrens, P.; Espinoza, E.; Etzel, T.; Fazi, D.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A.; Hodge, K. A.; Ivanov, A.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P.; Kondrashov, V.; Kozak, D.; Lazzarini, A.; Lei, M.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Miyakawa, O.; Nash, T.; Ogin, G. H.; Patel, P.; Pedraza, M.; Robertson, N. A.; Russell, P.; Sannibale, V.; Searle, A. C.; Sears, B.; Sengupta, A. S.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C.; Vass, S.; Villar, A.; Wallace, L.; Ward, R. L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Yamamoto, H.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Babak, S.; Behnke, B.; Chen, Y.; Gholami, I.; Grunewald, S.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Ajith, P.; Allen, B.; Aulbert, C.; Brinkmann, M.; Burmeister, O.; Danzmann, K.; Degallaix, J.; Dueck, J.; Fehrmann, H.; Frede, M.; Giampanis, S.; Gossler, S.; Grote, H.; Hewitson, M.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Roberts, P.; Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Gray, M.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Chen, Y.] Caltech CaRT, Pasadena, CA 91125 USA. [Clark, J.; Cokelaer, T.; Davies, G.; Dietz, A.; Fairhurst, S.; Harry, I. W.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Christensen, N.] Carleton Coll, Northfield, MN 55057 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Bartos, I.; Dwyer, J. G.; Khan, R.; Marka, S.; Marka, Z.; Matone, L.; Raics, Z.; Rollins, J.] Columbia Univ, New York, NY 10027 USA. [Gretarsson, A. M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Colacino, C. N.; Frei, Z.; Raffai, P.; Szokoly, G. P.] Eotvos Lorand Univ, ELTE, H-1053 Budapest, Hungary. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Khazanov, E.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Dhurandhar, S.; Mukhopadhyay, H.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Aufmuth, P.; Danzmann, K.; Franzen, A.; Hage, B.; Kwee, P.; Lueck, H.; Thuering, A.; Vahlbruch, H.; Willke, B.; zur Muehlen, H.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Barker, C.; Barker, D.; Bland, B.; Cook, D.; Effler, A.; Gray, C.; Guenther, M.; Ingram, D. R.; Johnson, B.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moreno, G.; Myers, E.; Myers, J.; Parameshwaraiah, V.; Raab, F. J.; Radkins, H.; Reed, C. M.; Rivera, B.; Ryan, K.; Sandberg, V.; Savage, R.; Schwinberg, P.; Sigg, D.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Bogue, L.; Bridges, D. O.; Evans, T.; Fricke, T.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Hoak, D.; Holt, K.; Lormand, M.; Meyer, M. S.; Muhammad, D.; O'Reilly, B.; Overmier, H.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thacker, J.; Thorne, K. A.; Torres, C.; Traylor, G.; Wooley, R.; Yakushin, I.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Barsotti, L.; Blackburn, L.; Bodiya, T. P.; Brunet, G.; Cao, J.; Corbitt, T. R. C.; Donovan, F.; Duke, I.; Evans, M.; Foley, S.; Fritschel, P.; Goda, K.; Grimaldi, F.; Harry, G. M.; Hughey, B.; Katsavounidis, E.; MacInnis, M.; Markowitz, J.; Mason, K.; Mavalvala, N.; Mittleman, R.; Sarin, P.; Shapiro, B.; Shoemaker, D. H.; Smith, N. D.; Stein, A.; Stein, L. C.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Amin, R. S.; Caudill, S.; Giaime, J. A.; Gonzalez, G.; Gouaty, R.; Johnson, W. W.; Kissel, J. S.; Matichard, F.; Slutsky, J.; Sung, M.; Wen, S.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Reed, T.; Scanlan, M.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [McHugh, M.] Loyola Univ, New Orleans, LA 70118 USA. [Baker, P.; Cornish, N.; Littenberg, T. B.] Montana State Univ, Bozeman, MT 59717 USA. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Tarabrin, S. P.; Vyachanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Camp, J. B.; Cannizzo, J.; Stroeer, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kawamura, S.; Kokeyama, K.; Morioka, T.; Nishizawa, A.; Sakata, S.; Sato, S.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Kalogera, V.; Mandel, I.; Raymond, V.; van der Sluys, M. V.] Northwestern Univ, Evanston, IL 60208 USA. [Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Brummit, A.; Greenhalgh, R. J. S.; Numata, K.; Wilmut, I.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Beyersdorf, P. T.] San Jose State Univ, San Jose, CA 95192 USA. [Saraf, S.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. [Allen, G.; Bullington, A.; Byer, R. L.; Clark, D.; DeBra, D.; Lantz, B.; Leindecker, N.; Lu, P.; Markosyan, A.; Sinha, S.; Sun, K. -X.; Ulmen, J.; Urbanek, K.] Stanford Univ, Stanford, CA 94305 USA. [Brown, D. A.; Garofoli, J. A.; Hirose, E.; Saulson, P. R.; Smith, J. R.] Syracuse Univ, Syracuse, NY 13244 USA. [Desai, S.; Finn, L. S.; Kopparapu, R.; Menendez, D. F.; Minelli, J.; O'Shaughnessy, R.; Owen, B. J.; Williams, H. R.] Penn State Univ, University Pk, PA 16802 USA. [Chung, C. T. Y.; Melatos, A.] Univ Melbourne, Parkville, Vic 3010, Australia. [Cavaglia, M.] Univ Mississippi, University, MS 38677 USA. [Daw, E. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Frei, M.; Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA. [Benacquista, M.; Creighton, T. D.; Diaz, M.; Grosso, R.; Hayama, K.; Lei, H.; Mohanty, S. D.; Mukherjee, S.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Tang, L.] Univ Texas Brownsville, Brownsville, TX 78520 USA. [Benacquista, M.; Creighton, T. D.; Diaz, M.; Grosso, R.; Hayama, K.; Lei, H.; Mohanty, S. D.; Mukherjee, S.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Tang, L.] Texas Southmost Coll, Brownsville, TX 78520 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [de la Jordana, L. Sancho; Sintes, A. M.; Trias, M.] Univ Illes Balears, E-07122 Palma de Mallorca, Spain. [Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P.] Univ Adelaide, Adelaide, SA 5005, Australia. [Aston, S.; Chelkowski, S.; Cruise, A. M.; Culter, R. M.; Freise, A.; Hallam, J. M.; Hild, S.; Kasprzyk, D.; Lodhia, D.; Perreca, A.; Vecchio, A.; Veitch, J.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Arain, M. A.; Dooley, K. L.; Faltas, Y.; Klimenko, S.; Lin, H.; Lucianetti, A.; Martin, R. M.; Mitselmakher, G.; Mueller, G.; Ottens, R. S.; Pankow, C.; Quetschke, V.; Reitze, D. H.; Tanner, D. B.; Whiting, B. F.; Williams, L.; Wu, W.] Univ Florida, Gainesville, FL 32611 USA. [Barr, B.; Bassiri, R.; Bastarrika, M.; Chalkley, E.; Cumming, A.; Cunningham, L.; Edgar, M.; Grant, A.; Hammond, G. D.; Haughian, K.; Heng, I. S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Martin, I. W.; Miller, J.; Murray, P. G.; Nelson, J.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Scott, J.; Sorazu, B.; Strain, K. A.; Tokmakov, K. V.; van Veggel, A. A.; Woan, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Buonanno, A.; Kanner, J.; Ochsner, E.; Pan, Y.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Mohapatra, S. R. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Caride, S.; Dergachev, V.; Goetz, E.; Gustafson, R.; Riles, K.; Zhang, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Harms, J.; Kandhasamy, S.; Mandic, V.] Univ Minnesota, Minneapolis, MN 55455 USA. [Brau, J. E.; Frey, R.; Harstad, E. D.; Ito, M.; Leonor, I.; Schofield, R.] Univ Oregon, Eugene, OR 97403 USA. [Forrest, C.; Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Conte, R.; Postiglione, F.] Univ Salerno, I-84084 Salerno, Italy. [Castaldi, G.; Galdi, V.; Longo, M.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Lockerbie, N. A.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [Barriga, P.; Blair, D.; Coward, D.; Dumas, J. -C.; Fan, Y.; Gras, S.; Hoyland, D.; Ju, L.; Wen, L.; Yan, Z.; Zhao, C.] Univ Western Australia, Crawley 6009, Australia. [Allen, B.; Anderson, W. G.; Armor, P.; Biswas, R.; Brady, P. R.; Clayton, J. H.; Creighton, J. D. E.; Flasch, K.; Fotopoulos, N.; Goggin, L. M.; Hammer, D.; Koranda, S.; Mercer, R. A.; Moe, B.; Papa, M. A.; Siemens, X.; Vaulin, R.; Wiseman, A. G.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Bose, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. [Robinet, F.] Univ Paris 11, CNRS, IN2P3, Lab Accelerateur Lineaire, Orsay, France. [Doomes, E. E.; McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [Doomes, E. E.; McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. RP Abbott, BP (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Frey, Raymond/E-2830-2016; Sergeev, Alexander/F-3027-2017; Ward, Robert/I-8032-2014; McClelland, David/E-6765-2010; Lucianetti, Antonio/G-7383-2014; Lam, Ping Koy/A-5276-2008; Danilishin, Stefan/K-7262-2012; Khalili, Farit/D-8113-2012; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Khan, Rubab/F-9455-2015; Ottaway, David/J-5908-2015; Postiglione, Fabio/O-4744-2015; Sigg, Daniel/I-4308-2015; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Bartos, Imre/A-2592-2017; Prokhorov, Leonid/I-2953-2012; Gorodetsky, Michael/C-5938-2008; Strigin, Sergey/I-8337-2012; Mitrofanov, Valery/D-8501-2012; Bilenko, Igor/D-5172-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Pitkin, Matthew/I-3802-2013; Schutz, Bernard/B-1504-2010; Vyatchanin, Sergey/J-2238-2012; Khazanov, Efim/B-6643-2014; Galdi, Vincenzo/B-1670-2008; Hammond, Giles/B-7861-2009; Hild, Stefan/A-3864-2010; Rowan, Sheila/E-3032-2010; Strain, Kenneth/D-5236-2011; Raab, Frederick/E-2222-2011; Martin, Iain/A-2445-2010; Lueck, Harald/F-7100-2011; Kawazoe, Fumiko/F-7700-2011; Freise, Andreas/F-8892-2011; Kawabe, Keita/G-9840-2011; Hammond, Giles/A-8168-2012; Finn, Lee Samuel/A-3452-2009; Santamaria, Lucia/A-7269-2012 OI Aulbert, Carsten/0000-0002-1481-8319; Scott, Jamie/0000-0001-6701-6515; Freise, Andreas/0000-0001-6586-9901; Mandel, Ilya/0000-0002-6134-8946; Whiting, Bernard F/0000-0002-8501-8669; Veitch, John/0000-0002-6508-0713; Principe, Maria/0000-0002-6327-0628; Papa, M.Alessandra/0000-0002-1007-5298; Kanner, Jonah/0000-0001-8115-0577; Minelli, Jeff/0000-0002-5330-912X; Santamaria, Lucia/0000-0002-5986-0449; Pierro, Vincenzo/0000-0002-6020-5521; Hallam, Jonathan Mark/0000-0002-7087-0461; Sorazu, Borja/0000-0002-6178-3198; Stuver, Amber/0000-0003-0324-5735; Nishizawa, Atsushi/0000-0003-3562-0990; Zweizig, John/0000-0002-1521-3397; O'Shaughnessy, Richard/0000-0001-5832-8517; Frey, Raymond/0000-0003-0341-2636; Stein, Leo/0000-0001-7559-9597; Ward, Robert/0000-0001-5503-5241; Whelan, John/0000-0001-5710-6576; McClelland, David/0000-0001-6210-5842; LONGO, Maurizio/0000-0001-8325-4003; Fairhurst, Stephen/0000-0001-8480-1961; Boschi, Valerio/0000-0001-8665-2293; Matichard, Fabrice/0000-0001-8982-8418; Pinto, Innocenzo M./0000-0002-2679-4457; Lam, Ping Koy/0000-0002-4421-601X; Danilishin, Stefan/0000-0001-7758-7493; Vecchio, Alberto/0000-0002-6254-1617; Khan, Rubab/0000-0001-5100-5168; Postiglione, Fabio/0000-0003-0628-3796; Sigg, Daniel/0000-0003-4606-6526; Gorodetsky, Michael/0000-0002-5159-2742; Allen, Bruce/0000-0003-4285-6256; Zhao, Chunnong/0000-0001-5825-2401; Pitkin, Matthew/0000-0003-4548-526X; Galdi, Vincenzo/0000-0002-4796-3600; Strain, Kenneth/0000-0002-2066-5355; Lueck, Harald/0000-0001-9350-4846; Finn, Lee Samuel/0000-0002-3937-0688; FU United States National Science Foundation; Particle Physics and Astronomy Research Council of the United Kingdom; Max-Planck-Society; State of Niedersachsen/Germany; Australian Research Council; Natural Sciences and Engineering Research Council of Canada; Council of Scientific and Industrial Research of India; Department of Science and Technology of India; Spanish Ministerio de Educacion y Ciencia; The National Aeronautics and Space Administration; John Simon Guggenheim Foundation; Alexander von Humboldt Foundation; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation; LIGO [LIGO-P0900026] FX The authors would like to thank Irit Maor and Alexander Vilenkin for useful discussions. The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory and the Particle Physics and Astronomy Research Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the Natural Sciences and Engineering Research Council of Canada, the Council of Scientific and Industrial Research of India, the Department of Science and Technology of India, the Spanish Ministerio de Educacion y Ciencia, The National Aeronautics and Space Administration, the John Simon Guggenheim Foundation, the Alexander von Humboldt Foundation, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. LIGO DCC No. LIGO-P0900026. NR 46 TC 39 Z9 39 U1 3 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP PY 2009 VL 80 IS 6 AR 062002 DI 10.1103/PhysRevD.80.062002 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 501ME UT WOS:000270385200007 ER PT J AU Abbott, BP Abbott, R Adhikari, R Ajith, P Allen, B Allen, G Amin, RS Anderson, SB Anderson, WG Arain, MA Araya, M Armandula, H Armor, P Aso, Y Aston, S Aufmuth, P Aulbert, C Babak, S Baker, P Ballmer, S Barker, C Barker, D Barr, B Barriga, P Barsotti, L Barton, MA Bartos, I Bassiri, R Bastarrika, M Behnke, B Benacquista, M Betzwieser, J Beyersdorf, PT Bilenko, IA Billingsley, G Biswas, R Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Bodiya, TP Bogue, L Bork, R Boschi, V Bose, S Brady, PR Braginsky, VB Brau, JE Bridges, DO Brinkmann, M Brooks, AF Brown, DA Brummit, A Brunet, G Bullington, A Buonanno, A Burmeister, O Byer, RL Cadonati, L Camp, JB Cannizzo, J Cannon, KC Cao, J Cardenas, L Cardoso, V Caride, S Castaldi, G Caudill, S Cavaglia, M Cepeda, C Chalermsongsak, T Chalkley, E Charlton, P Chatterji, S Chelkowski, S Chen, Y Christensen, N Chung, CTY Clark, D Clark, J Clayton, JH Cokelaer, T Colacino, CN Conte, R Cook, D Corbitt, TRC Cornish, N Coward, D Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Culter, RM Cumming, A Cunningham, L Danilishin, SL Danzmann, K Daudert, B Davies, G Daw, EJ DeBra, D Degallaix, J Dergachev, V Desai, S DeSalvo, R Dhurandhar, S Diaz, M Dietz, A Donovan, F Dooley, KL Doomes, EE Drever, RWP Dueck, J Duke, I Dumas, JC Dwyer, JG Echols, C Edgar, M Effler, A Ehrens, P Espinoza, E Etzel, T Evans, M Evans, T Fairhurst, S Faltas, Y Fan, Y Fazi, D Fehrmann, H Finn, LS Flasch, K Foley, S Forrest, C Fotopoulos, N Franzen, A Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, T Fritschel, P Frolov, VV Fyffe, M Galdi, V Garofoli, JA Gholami, I Giaime, JA Giampanis, S Giardina, KD Goda, K Goetz, E Goggin, LM Gonzalez, G Gorodetsky, ML Gossler, S Gouaty, R Grant, A Gras, S Gray, C Gray, M Greenhalgh, RJS Gretarsson, AM Grimaldi, F Grosso, R Grote, H Grunewald, S Guenther, M Gustafson, EK Gustafson, R Hage, B Hallam, JM Hammer, D Hammond, GD Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Haughian, K Hayama, K Heefner, J Heng, IS Heptonstall, A Hewitson, M Hild, S Hirose, E Hoak, D Hodge, KA Holt, K Hosken, DJ Hough, J Hoyland, D Hughey, B Huttner, SH Ingram, DR Isogai, T Ito, M Ivanov, A Johnson, B Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kanner, J Kasprzyk, D Katsavounidis, E Kawabe, K Kawamura, S Kawazoe, F Kells, W Keppel, DG Khalaidovski, A Khalili, FY Khan, R Khazanov, E King, P Kissel, JS Klimenko, S Kokeyama, K Kondrashov, V Kopparapu, R Koranda, S Kozak, D Krishnan, B Kumar, R Kwee, P Lam, PK Landry, M Lantz, B Lazzarini, A Lei, H Lei, M Leindecker, N Leonor, I Li, C Lin, H Lindquist, PE Littenberg, TB Lockerbie, NA Lodhia, D Longo, M Lormand, M Lu, P Lubinski, M Lucianetti, A Luck, H Machenschalk, B MacInnis, M Mageswaran, M Mailand, K Mandel, I Mandic, V Marka, S Marka, Z Markosyan, A Markowitz, J Maros, E Martin, IW Martin, RM Marx, JN Mason, K Matichard, F Matone, L Matzner, RA Mavalvala, N McCarthy, R McClelland, DE McGuire, SC McHugh, M McIntyre, G McKechan, DJA McKenzie, K Mehmet, M Melatos, A Melissinos, AC Menendez, DF Mendell, G Mercer, RA Meshkov, S Messenger, C Meyer, MS Miller, J Minelli, J Mino, Y Mitrofanov, VP Mitselmakher, G Mittleman, R Miyakawa, O Moe, B Mohanty, SD Mohapatra, SRP Moreno, G Morioka, T Mors, K Mossavi, K MowLowry, C Mueller, G Muller-Ebhardt, H Muhammad, D Mukherjee, S Mukhopadhyay, H Mullavey, A Munch, J Murray, PG Myers, E Myers, J Nash, T Nelson, J Newton, G Nishizawa, A Numata, K O'Dell, J O'Reilly, B O'Shaughnessy, R Ochsner, E Ogin, GH Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Pan, Y Pankow, C Papa, MA Parameshwaraiah, V Patel, P Pedraza, M Penn, S Perraca, A Pierro, V Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Postiglione, F Principe, M Prix, R Prokhorov, L Punken, O Quetschke, V Raab, FJ Rabeling, DS Radkins, H Raffai, P Raics, Z Rainer, N Rakhmanov, M Raymond, V Reed, CM Reed, T Rehbein, H Reid, S Reitze, DH Riesen, R Riles, K Rivera, B Roberts, P Robertson, NA Robinson, C Robinson, EL Roddy, S Rover, C Rollins, J Romano, JD Romie, JH Rowan, S Ruediger, A Russell, P Ryan, K Sakata, S de la Jordana, LS Sandberg, V Sannibale, V Santamaria, L Saraf, S Sarin, P Sathyaprakash, BS Sato, S Satterthwaite, M Saulson, PR Savage, R Savov, P Scanlan, M Schilling, R Schnabel, R Schofield, R Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Searle, AC Sears, B Seifert, F Sellers, D Sengupta, AS Sergeev, A Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Sinha, S Sintes, AM Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, ND Somiya, K Sorazu, B Stein, A Stein, LC Steplewski, S Stochino, A Stone, R Strain, KA Strigin, S Stroeer, A Stuver, AL Summerscales, TZ Sun, KX Sung, M Sutton, PJ Szokoly, GP Talukder, D Tang, L Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Thacker, J Thorne, KA Thorne, KS Thuring, A Tokmakov, KV Torres, C Torrie, C Traylor, G Trias, M Ugolini, D Ulmen, J Urbanek, K Vahlbruch, H Vallisneri, M Van den Broeck, C van der Sluys, MV Veggel, AA Vass, S Vaulin, R Vecchio, A Veitch, J Veitch, P Veltkamp, C Villar, A Vorvick, C Vyachanin, SP Waldman, SJ Wallace, L Ward, RL Weidner, A Weinert, M Weinstein, AJ Weiss, R Wen, L Wen, S Wette, K Whelan, JT Whitcomb, SE Whiting, BF Wilkinson, C Willems, PA Williams, HR Williams, L Willke, B Wilmut, I Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Woan, G Wooley, R Worden, J Wu, W Yakushin, I Yamamoto, H Yan, Z Yoshida, S Zanolin, M Zhang, J Zhang, L Zhao, C Zotov, N Zucker, ME zur Muhlen, H Zweizig, J AF Abbott, B. P. Abbott, R. Adhikari, R. Ajith, P. Allen, B. Allen, G. Amin, R. S. Anderson, S. B. Anderson, W. G. Arain, M. A. Araya, M. Armandula, H. Armor, P. Aso, Y. Aston, S. Aufmuth, P. Aulbert, C. Babak, S. Baker, P. Ballmer, S. Barker, C. Barker, D. Barr, B. Barriga, P. Barsotti, L. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Behnke, B. Benacquista, M. Betzwieser, J. Beyersdorf, P. T. Bilenko, I. A. Billingsley, G. Biswas, R. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Bodiya, T. P. Bogue, L. Bork, R. Boschi, V. Bose, S. Brady, P. R. Braginsky, V. B. Brau, J. E. Bridges, D. O. Brinkmann, M. Brooks, A. F. Brown, D. A. Brummit, A. Brunet, G. Bullington, A. Buonanno, A. Burmeister, O. Byer, R. L. Cadonati, L. Camp, J. B. Cannizzo, J. Cannon, K. C. Cao, J. Cardenas, L. Cardoso, V. Caride, S. Castaldi, G. Caudill, S. Cavaglia, M. Cepeda, C. Chalermsongsak, T. Chalkley, E. Charlton, P. Chatterji, S. Chelkowski, S. Chen, Y. Christensen, N. Chung, C. T. Y. Clark, D. Clark, J. Clayton, J. H. Cokelaer, T. Colacino, C. N. Conte, R. Cook, D. Corbitt, T. R. C. Cornish, N. Coward, D. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Culter, R. M. Cumming, A. Cunningham, L. Danilishin, S. L. Danzmann, K. Daudert, B. Davies, G. Daw, E. J. DeBra, D. Degallaix, J. Dergachev, V. Desai, S. DeSalvo, R. Dhurandhar, S. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Doomes, E. E. Drever, R. W. P. Dueck, J. Duke, I. Dumas, J. -C. Dwyer, J. G. Echols, C. Edgar, M. Effler, A. Ehrens, P. Espinoza, E. Etzel, T. Evans, M. Evans, T. Fairhurst, S. Faltas, Y. Fan, Y. Fazi, D. Fehrmann, H. Finn, L. S. Flasch, K. Foley, S. Forrest, C. Fotopoulos, N. Franzen, A. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. Fritschel, P. Frolov, V. V. Fyffe, M. Galdi, V. Garofoli, J. A. Gholami, I. Giaime, J. A. Giampanis, S. Giardina, K. D. Goda, K. Goetz, E. Goggin, L. M. Gonzalez, G. Gorodetsky, M. L. Gossler, S. Gouaty, R. Grant, A. Gras, S. Gray, C. Gray, M. Greenhalgh, R. J. S. Gretarsson, A. M. Grimaldi, F. Grosso, R. Grote, H. Grunewald, S. Guenther, M. Gustafson, E. K. Gustafson, R. Hage, B. Hallam, J. M. Hammer, D. Hammond, G. D. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Haughian, K. Hayama, K. Heefner, J. Heng, I. S. Heptonstall, A. Hewitson, M. Hild, S. Hirose, E. Hoak, D. Hodge, K. A. Holt, K. Hosken, D. J. Hough, J. Hoyland, D. Hughey, B. Huttner, S. H. Ingram, D. R. Isogai, T. Ito, M. Ivanov, A. Johnson, B. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kanner, J. Kasprzyk, D. Katsavounidis, E. Kawabe, K. Kawamura, S. Kawazoe, F. Kells, W. Keppel, D. G. Khalaidovski, A. Khalili, F. Y. Khan, R. Khazanov, E. King, P. Kissel, J. S. Klimenko, S. Kokeyama, K. Kondrashov, V. Kopparapu, R. Koranda, S. Kozak, D. Krishnan, B. Kumar, R. Kwee, P. Lam, P. K. Landry, M. Lantz, B. Lazzarini, A. Lei, H. Lei, M. Leindecker, N. Leonor, I. Li, C. Lin, H. Lindquist, P. E. Littenberg, T. B. Lockerbie, N. A. Lodhia, D. Longo, M. Lormand, M. Lu, P. Lubinski, M. Lucianetti, A. Lueck, H. Machenschalk, B. MacInnis, M. Mageswaran, M. Mailand, K. Mandel, I. Mandic, V. Marka, S. Marka, Z. Markosyan, A. Markowitz, J. Maros, E. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. McCarthy, R. McClelland, D. E. McGuire, S. C. McHugh, M. McIntyre, G. McKechan, D. J. A. McKenzie, K. Mehmet, M. Melatos, A. Melissinos, A. C. Menendez, D. F. Mendell, G. Mercer, R. A. Meshkov, S. Messenger, C. Meyer, M. S. Miller, J. Minelli, J. Mino, Y. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Miyakawa, O. Moe, B. Mohanty, S. D. Mohapatra, S. R. P. Moreno, G. Morioka, T. Mors, K. Mossavi, K. MowLowry, C. Mueller, G. Mueller-Ebhardt, H. Muhammad, D. Mukherjee, S. Mukhopadhyay, H. Mullavey, A. Munch, J. Murray, P. G. Myers, E. Myers, J. Nash, T. Nelson, J. Newton, G. Nishizawa, A. Numata, K. O'Dell, J. O'Reilly, B. O'Shaughnessy, R. Ochsner, E. Ogin, G. H. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Pan, Y. Pankow, C. Papa, M. A. Parameshwaraiah, V. Patel, P. Pedraza, M. Penn, S. Perraca, A. Pierro, V. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Postiglione, F. Principe, M. Prix, R. Prokhorov, L. Punken, O. Quetschke, V. Raab, F. J. Rabeling, D. S. Radkins, H. Raffai, P. Raics, Z. Rainer, N. Rakhmanov, M. Raymond, V. Reed, C. M. Reed, T. Rehbein, H. Reid, S. Reitze, D. H. Riesen, R. Riles, K. Rivera, B. Roberts, P. Robertson, N. A. Robinson, C. Robinson, E. L. Roddy, S. Roever, C. Rollins, J. Romano, J. D. Romie, J. H. Rowan, S. Ruediger, A. Russell, P. Ryan, K. Sakata, S. de la Jordana, L. Sancho Sandberg, V. Sannibale, V. Santamaria, L. Saraf, S. Sarin, P. Sathyaprakash, B. S. Sato, S. Satterthwaite, M. Saulson, P. R. Savage, R. Savov, P. Scanlan, M. Schilling, R. Schnabel, R. Schofield, R. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Searle, A. C. Sears, B. Seifert, F. Sellers, D. Sengupta, A. S. Sergeev, A. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Sinha, S. Sintes, A. M. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, N. D. Somiya, K. Sorazu, B. Stein, A. Stein, L. C. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. Stroeer, A. Stuver, A. L. Summerscales, T. Z. Sun, K. -X. Sung, M. Sutton, P. J. Szokoly, G. P. Talukder, D. Tang, L. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Thacker, J. Thorne, K. A. Thorne, K. S. Thuering, A. Tokmakov, K. V. Torres, C. Torrie, C. Traylor, G. Trias, M. Ugolini, D. Ulmen, J. Urbanek, K. Vahlbruch, H. Vallisneri, M. Van den Broeck, C. van der Sluys, M. V. van Veggel, A. A. Vass, S. Vaulin, R. Vecchio, A. Veitch, J. Veitch, P. Veltkamp, C. Villar, A. Vorvick, C. Vyachanin, S. P. Waldman, S. J. Wallace, L. Ward, R. L. Weidner, A. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wen, S. Wette, K. Whelan, J. T. Whitcomb, S. E. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, H. R. Williams, L. Willke, B. Wilmut, I. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Woan, G. Wooley, R. Worden, J. Wu, W. Yakushin, I. Yamamoto, H. Yan, Z. Yoshida, S. Zanolin, M. Zhang, J. Zhang, L. Zhao, C. Zotov, N. Zucker, M. E. zur Muehlen, H. Zweizig, J. CA LIGO Scient Collaboration TI Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data SO PHYSICAL REVIEW D LA English DT Article ID MASS; COALESCENCES; EVENTS AB According to general relativity a perturbed black hole will settle to a stationary configuration by the emission of gravitational radiation. Such a perturbation will occur, for example, in the coalescence of a black hole binary, following their inspiral and subsequent merger. At late times the waveform is a superposition of quasinormal modes, which we refer to as the ringdown. The dominant mode is expected to be the fundamental mode, l = m = 2. Since this is a well-known waveform, matched filtering can be implemented to search for this signal using LIGO data. We present a search for gravitational waves from black hole ringdowns in the fourth LIGO science run S4, during which LIGO was sensitive to the dominant mode of perturbed black holes with masses in the range of 10M(circle dot) to 500M(circle dot), the regime of intermediate-mass black holes, to distances up to 300 Mpc. We present a search for gravitational waves from black hole ringdowns using data from S4. No gravitational wave candidates were found; we place a 90%-confidence upper limit on the rate of ringdowns from black holes with mass between 85M(circle dot) and 390M(circle dot) in the local universe, assuming a uniform distribution of sources, of 3.2 x 10(-5) yr(-1) Mpc(-3) = 1.6 x 10(-3) yr(-1) L-10(-1), where L-10 is 10(10) times the solar blue- light luminosity. C1 [Babak, S.; Behnke, B.; Chen, Y.; Gholami, I.; Krishnan, B.; Machenschalk, B.; Papa, M. A.; Santamaria, L.; Schutz, B. F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Ajith, P.; Allen, B.; Aulbert, C.; Brinkmann, M.; Burmeister, O.; Danzmann, K.; Degallaix, J.; Dueck, J.; Fehrmann, H.; Frede, M.; Giampanis, S.; Gossler, S.; Grote, H.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Lueck, H.; Mehmet, M.; Messenger, C.; Mors, K.; Mossavi, K.; Mueller-Ebhardt, H.; Pletsch, H. J.; Prix, R.; Punken, O.; Rainer, N.; Rehbein, H.; Roever, C.; Ruediger, A.; Schilling, R.; Schnabel, R.; Schulz, B.; Seifert, F.; Taylor, J. R.; Veltkamp, C.; Weidner, A.; Weinert, M.; Willke, B.; Winkelmann, L.; Winkler, W.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Roberts, P.; Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Gray, M.; Lam, P. K.; McClelland, D. E.; McKenzie, K.; MowLowry, C.; Mullavey, A.; Rabeling, D. S.; Satterthwaite, M.; Scott, S. M.; Slagmolen, B. J. J.; Wette, K.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Chen, Y.; Li, C.; Mino, Y.; Savov, P.; Somiya, K.; Thorne, K. S.; Vallisneri, M.; Wen, L.] Caltech CaRT, Pasadena, CA 91125 USA. [Clark, J.; Cokelaer, T.; Davies, G.; Dietz, A.; Fairhurst, S.; Harry, I. W.; Jones, G.; McKechan, D. J. A.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Van den Broeck, C.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Christensen, N.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Bartos, I.; Dwyer, J. G.; Khan, R.; Marka, S.; Marka, Z.; Matone, L.; Raics, Z.; Rollins, J.] Columbia Univ, New York, NY 10027 USA. [Gretarsson, A. M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Colacino, C. N.; Frei, Z.; Raffai, P.; Szokoly, G. P.] Eotvos Lorand Univ, ELTE, H-1053 Budapest, Hungary. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Khazanov, E.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Dhurandhar, S.; Mukhopadhyay, H.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Aufmuth, P.; Danzmann, K.; Franzen, A.; Hage, B.; Kwee, P.; Lueck, H.; Thuering, A.; Vahlbruch, H.; Willke, B.; zur Muehlen, H.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Barker, C.; Barker, D.; Bland, B.; Cook, D.; Effler, A.; Gray, C.; Guenther, M.; Ingram, D. R.; Johnson, B.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moreno, G.; Myers, E.; Myers, J.; Parameshwaraiah, V.; Raab, F. J.; Radkins, H.; Reed, C. M.; Rivera, B.; Ryan, K.; Sandberg, V.; Savage, R.; Schwinberg, P.; Sigg, D.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Bogue, L.; Bridges, D. O.; Evans, T.; Fricke, T.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Hoak, D.; Holt, K.; Lormand, M.; Meyer, M. S.; Muhammad, D.; O'Reilly, B.; Overmier, H.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thacker, J.; Thorne, K. A.; Torres, C.; Traylor, G.; Wooley, R.; Yakushin, I.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Barsotti, L.; Blackburn, L.; Bodiya, T. P.; Brunet, G.; Cao, J.; Corbitt, T. R. C.; Donovan, F.; Duke, I.; Evans, M.; Foley, S.; Fritschel, P.; Goda, K.; Grimaldi, F.; Harry, G. M.; Hughey, B.; Katsavounidis, E.; MacInnis, M.; Markowitz, J.; Mason, K.; Mavalvala, N.; Mittleman, R.; Sarin, P.; Shapiro, B.; Shoemaker, D. H.; Smith, N. D.; Stein, A.; Stein, L. C.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Amin, R. S.; Caudill, S.; Giaime, J. A.; Gonzalez, G.; Gouaty, R.; Johnson, W. W.; Kissel, J. S.; Matichard, F.; Slutsky, J.; Sung, M.; Wen, S.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Reed, T.; Scanlan, M.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [McHugh, M.] Loyola Univ, New Orleans, LA 70118 USA. [Baker, P.; Cornish, N.; Littenberg, T. B.] Montana State Univ, Bozeman, MT 59717 USA. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Tarabrin, S. P.; Vyachanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Camp, J. B.; Cannizzo, J.; Numata, K.; Stroeer, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kawamura, S.; Kokeyama, K.; Morioka, T.; Nishizawa, A.; Sakata, S.; Sato, S.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Kalogera, V.; Mandel, I.; Raymond, V.; van der Sluys, M. V.] Northwestern Univ, Evanston, IL 60208 USA. [Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Brummit, A.; Greenhalgh, R. J. S.; O'Dell, J.; Wilmut, I.] HSIC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Saraf, S.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Beyersdorf, P. T.] San Jose State Univ, San Jose, CA 95192 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. [Doomes, E. E.; McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [Doomes, E. E.; McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Allen, G.; Bullington, A.; Byer, R. L.; Clark, D.; DeBra, D.; Lantz, B.; Leindecker, N.; Lu, P.; Markosyan, A.; Sinha, S.; Sun, K. -X.; Ulmen, J.; Urbanek, K.] Stanford Univ, Stanford, CA 94305 USA. [Brown, D. A.; Garofoli, J. A.; Hirose, E.; Saulson, P. R.; Smith, J. R.] Syracuse Univ, Syracuse, NY 13244 USA. [Desai, S.; Finn, L. S.; Kopparapu, R.; Menendez, D. F.; Minelli, J.; O'Shaughnessy, R.; Owen, B. J.; Williams, H. R.] Penn State Univ, University Pk, PA 16802 USA. [Chung, C. T. Y.; Melatos, A.] Univ Melbourne, Parkville, Vic 3010, Australia. [Cardoso, V.; Cavaglia, M.] Univ Mississippi, University, MS 38677 USA. [Daw, E. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Frei, M.; Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA. [Benacquista, M.; Creighton, T. D.; Diaz, M.; Grosso, R.; Hayama, K.; Lei, H.; Mohanty, S. D.; Mukherjee, S.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Tang, L.] Univ Texas Brownsville, Brownsville, TX 78520 USA. [Benacquista, M.; Creighton, T. D.; Diaz, M.; Grosso, R.; Hayama, K.; Lei, H.; Mohanty, S. D.; Mukherjee, S.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Tang, L.] Texas Southmost Coll, Brownsville, TX 78520 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [de la Jordana, L. Sancho; Sintes, A. M.; Trias, M.] Univ Illes Balears, E-07122 Palma de Mallorca, Spain. [Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P.] Univ Adelaide, Adelaide, SA 5005, Australia. [Aston, S.; Chelkowski, S.; Cruise, A. M.; Culter, R. M.; Freise, A.; Hallam, J. M.; Hild, S.; Kasprzyk, D.; Lodhia, D.; Perraca, A.; Vecchio, A.; Veitch, J.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Arain, M. A.; Dooley, K. L.; Faltas, Y.; Klimenko, S.; Lin, H.; Lucianetti, A.; Martin, R. M.; Mitselmakher, G.; Mueller, G.; Ottens, R. S.; Pankow, C.; Quetschke, V.; Reitze, D. H.; Tanner, D. B.; Whiting, B. F.; Williams, L.; Wu, W.] Univ Florida, Gainesville, FL 32611 USA. [Barr, B.; Bassiri, R.; Bastarrika, M.; Chalkley, E.; Cumming, A.; Cunningham, L.; Edgar, M.; Grant, A.; Hammond, G. D.; Haughian, K.; Heng, I. S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Martin, I. W.; Miller, J.; Murray, P. G.; Nelson, J.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Scott, J.; Sorazu, B.; Strain, K. A.; Tokmakov, K. V.; van Veggel, A. A.; Woan, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Buonanno, A.; Kanner, J.; Ochsner, E.; Pan, Y.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Caride, S.; Dergachev, V.; Goetz, E.; Gustafson, R.; Riles, K.; Zhang, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Harms, J.; Kandhasamy, S.; Mandic, V.] Univ Minnesota, Minneapolis, MN 55455 USA. [Brau, J. E.; Frey, R.; Harstad, E. D.; Ito, M.; Leonor, I.; Schofield, R.] Univ Oregon, Eugene, OR 97403 USA. [Forrest, C.; Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Conte, R.; Postiglione, F.] Univ Salerno, I-84084 Salerno, Italy. [Castaldi, G.; Galdi, V.; Longo, M.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Lockerbie, N. A.] Univ Strathclyde, Glasgow, Lanark, Scotland. [Barriga, P.; Blair, D.; Coward, D.; Dumas, J. -C.; Fan, Y.; Gras, S.; Hoyland, D.; Ju, L.; Wen, L.; Yan, Z.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Allen, B.; Anderson, W. G.; Armor, P.; Biswas, R.; Brady, P. R.; Clayton, J. H.; Creighton, J. D. E.; Flasch, K.; Fotopoulos, N.; Goggin, L. M.; Hammer, D.; Koranda, S.; Mercer, R. A.; Moe, B.; Papa, M. A.; Siemens, X.; Vaulin, R.; Wiseman, A. G.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Bose, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. [Abbott, B. P.; Abbott, R.; Adhikari, R.; Anderson, S. B.; Araya, M.; Armandula, H.; Aso, Y.; Ballmer, S.; Barton, M. A.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Boschi, V.; Brooks, A. F.; Cannon, K. C.; Cardenas, L.; Cepeda, C.; Chalermsongsak, T.; Chatterji, S.; Coyne, D. C.; Daudert, B.; DeSalvo, R.; Echols, C.; Ehrens, P.; Espinoza, E.; Etzel, T.; Fazi, D.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A.; Hodge, K. A.; Ivanov, A.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P.; Kondrashov, V.; Kozak, D.; Lazzarini, A.; Lei, M.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Miyakawa, O.; Nash, T.; Ogin, G. H.; Patel, P.; Pedraza, M.; Robertson, N. A.; Russell, P.; Sannibale, V.; Searle, A. C.; Sears, B.; Sengupta, A. S.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C.; Vass, S.; Villar, A.; Wallace, L.; Ward, R. L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Yamamoto, H.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Cadonati, L.; Mohapatra, S. R. P.] Univ Massachusetts, Amherst, MA 01003 USA. RP Abbott, BP (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Harms, Jan/J-4359-2012; Bartos, Imre/A-2592-2017; Frey, Raymond/E-2830-2016; Sergeev, Alexander/F-3027-2017; Ward, Robert/I-8032-2014; Cardoso, Vitor/K-1877-2015; Vyatchanin, Sergey/J-2238-2012; Khazanov, Efim/B-6643-2014; Lucianetti, Antonio/G-7383-2014; Lam, Ping Koy/A-5276-2008; Danilishin, Stefan/K-7262-2012; Khalili, Farit/D-8113-2012; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Khan, Rubab/F-9455-2015; Ottaway, David/J-5908-2015; Postiglione, Fabio/O-4744-2015; Sigg, Daniel/I-4308-2015; Pinto, Innocenzo/L-3520-2016; Finn, Lee Samuel/A-3452-2009; Santamaria, Lucia/A-7269-2012; Prokhorov, Leonid/I-2953-2012; Gorodetsky, Michael/C-5938-2008; Strigin, Sergey/I-8337-2012; Mitrofanov, Valery/D-8501-2012; Bilenko, Igor/D-5172-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Barker, David/A-5671-2013; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Pitkin, Matthew/I-3802-2013; Lueck, Harald/F-7100-2011; Kawazoe, Fumiko/F-7700-2011; Freise, Andreas/F-8892-2011; Galdi, Vincenzo/B-1670-2008; Hammond, Giles/B-7861-2009; McClelland, David/E-6765-2010; Hild, Stefan/A-3864-2010; Schutz, Bernard/B-1504-2010; Kawabe, Keita/G-9840-2011; Rowan, Sheila/E-3032-2010; Strain, Kenneth/D-5236-2011; Raab, Frederick/E-2222-2011; Martin, Iain/A-2445-2010; Hammond, Giles/A-8168-2012 OI Frey, Raymond/0000-0003-0341-2636; Stein, Leo/0000-0001-7559-9597; Pierro, Vincenzo/0000-0002-6020-5521; Ward, Robert/0000-0001-5503-5241; Whelan, John/0000-0001-5710-6576; LONGO, Maurizio/0000-0001-8325-4003; Fairhurst, Stephen/0000-0001-8480-1961; Principe, Maria/0000-0002-6327-0628; Papa, M.Alessandra/0000-0002-1007-5298; Kanner, Jonah/0000-0001-8115-0577; O'Shaughnessy, Richard/0000-0001-5832-8517; Aulbert, Carsten/0000-0002-1481-8319; Freise, Andreas/0000-0001-6586-9901; Mandel, Ilya/0000-0002-6134-8946; Whiting, Bernard F/0000-0002-8501-8669; Veitch, John/0000-0002-6508-0713; Boschi, Valerio/0000-0001-8665-2293; Matichard, Fabrice/0000-0001-8982-8418; Pinto, Innocenzo M./0000-0002-2679-4457; Minelli, Jeff/0000-0002-5330-912X; Santamaria, Lucia/0000-0002-5986-0449; Hallam, Jonathan Mark/0000-0002-7087-0461; Cardoso, Vitor/0000-0003-0553-0433; Sorazu, Borja/0000-0002-6178-3198; Stuver, Amber/0000-0003-0324-5735; Nishizawa, Atsushi/0000-0003-3562-0990; Zweizig, John/0000-0002-1521-3397; Lam, Ping Koy/0000-0002-4421-601X; Danilishin, Stefan/0000-0001-7758-7493; Vecchio, Alberto/0000-0002-6254-1617; Khan, Rubab/0000-0001-5100-5168; Postiglione, Fabio/0000-0003-0628-3796; Sigg, Daniel/0000-0003-4606-6526; Finn, Lee Samuel/0000-0002-3937-0688; Gorodetsky, Michael/0000-0002-5159-2742; Allen, Bruce/0000-0003-4285-6256; Zhao, Chunnong/0000-0001-5825-2401; Pitkin, Matthew/0000-0003-4548-526X; Lueck, Harald/0000-0001-9350-4846; Galdi, Vincenzo/0000-0002-4796-3600; McClelland, David/0000-0001-6210-5842; Strain, Kenneth/0000-0002-2066-5355; FU LIGO Laboratory and the Science and Technology Facilities Council of the United Kingdom; Max-Planck-Society; State of Niedersachsen/Germany; Australian Research Council; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia; Hisenda i Innovacio of the Govern de les Illes Balears; Scottish Funding Council; Scottish Universities Physics Alliance; The National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation; LIGO [LIGO-P080093] FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory and the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia, Hisenda i Innovacio of the Govern de les Illes Balears, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. This paper was assigned LIGO document number LIGO-P080093. NR 27 TC 37 Z9 37 U1 2 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP PY 2009 VL 80 IS 6 AR 062001 DI 10.1103/PhysRevD.80.062001 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 501ME UT WOS:000270385200006 ER PT J AU Dantchev, D Rudnick, J Barmatz, M AF Dantchev, Daniel Rudnick, Joseph Barmatz, M. TI Finite-size effects in presence of gravity: The behavior of the susceptibility in He-3 and He-4 films near the liquid-vapor critical point SO PHYSICAL REVIEW E LA English DT Article ID PLANAR GEOMETRY; LAMBDA POINT; HEAT; HELIUM; SHIFTS AB We study critical-point finite-size effects on the behavior of susceptibility of a film placed in the Earth's gravitational field. The fluid-fluid and substrate-fluid interactions are characterized by van der Waals type power-law tails, and the boundary conditions are consistent with bounding surfaces that strongly prefer the liquid phase of the system. Specific predictions are made with respect to the behavior of He-3 and He-4 films in the vicinity of their respective liquid-gas critical points. We find that for all film thicknesses of current experimental interest the combination of van der Waals interactions and gravity leads to substantial deviations from the behavior predicted by models in which all interatomic forces are very short ranged and gravity is absent. In the case of a completely short-ranged system exact mean-field analytical expressions are derived, within the continuum approach, for the behavior of both the local and the total susceptibilities. C1 [Dantchev, Daniel] Acad Georgy Bonchev, Inst Mech, BAS, Sofia 1113, Bulgaria. [Dantchev, Daniel; Rudnick, Joseph] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Barmatz, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Dantchev, D (reprint author), Acad Georgy Bonchev, Inst Mech, BAS, St Bldg 4, Sofia 1113, Bulgaria. RI Dantchev, Daniel /F-1834-2011 OI Dantchev, Daniel /0000-0002-4762-617X FU NSF [TK171/08] FX A portion of this work was carried out at the Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration. D. D. acknowledges partial financial support under Grant No. TK171/08 of the Bulgarian NSF. J. R. acknowledges partial support from the National Science Foundation. NR 28 TC 3 Z9 3 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD SEP PY 2009 VL 80 IS 3 AR 031119 DI 10.1103/PhysRevE.80.031119 PN 1 PG 17 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 501LM UT WOS:000270383400034 PM 19905074 ER PT J AU Liu, YM Ecke, RE AF Liu, Yuanming Ecke, Robert E. TI Heat transport measurements in turbulent rotating Rayleigh-Beacutenard convection SO PHYSICAL REVIEW E LA English DT Article DE Benard convection; boundary layer turbulence; confined flow; vortices; water ID BENARD CONVECTION; THERMAL-CONVECTION; NUMBER CONVECTION; ASYMMETRIC MODES; DEEP CONVECTION; BOUNDARY-LAYER; PRANDTL NUMBER; FLUID LAYER; SCALE; WATER AB We present experimental heat transport measurements of turbulent Rayleigh-Beacutenard convection with rotation about a vertical axis. The fluid, water with a Prandtl number (sigma) of about 6, was confined in a cell with a square cross section of 7.3x7.3 cm(2) and a height of 9.4 cm. Heat transport was measured for Rayleigh numbers 2x10(5)< Ra < 5x10(8) and Taylor numbers 0 < Ta < 5x10(9). We show the variation in normalized heat transport, the Nusselt number, at fixed dimensional rotation rate Omega(D), at fixed Ra varying Ta, at fixed Ta varying Ra, and at fixed Rossby number Ro. The scaling of heat transport in the range of 10(7) to about 10(9) is roughly 0.29 with a Ro-dependent coefficient or equivalently is also well fit by a combination of power laws of the form a Ra(1/5)+b Ra(1/3). The range of Ra is not sufficient to differentiate single power law or combined power-law scaling. The data are roughly consistent with an assumption that the enhancement of heat transport owing to rotation is proportional to the number of vortical structures penetrating the boundary layer. We also compare indirect measures of thermal and Ekman boundary layer thicknesses to assess their potential role in controlling heat transport in different regimes of Ra and Ta. C1 [Liu, Yuanming; Ecke, Robert E.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Liu, Yuanming; Ecke, Robert E.] Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, Los Alamos, NM 87545 USA. RP Liu, YM (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 79-24, Pasadena, CA 91109 USA. FU U.S. Department of Energy FX We would like to thank Joe Werne, Keith Julien, Peter Vorobieff, and Phil Marcus for helpful discussions. This work was supported by the U.S. Department of Energy. NR 51 TC 31 Z9 32 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD SEP PY 2009 VL 80 IS 3 AR 036314 DI 10.1103/PhysRevE.80.036314 PN 2 PG 12 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 501LN UT WOS:000270383500056 PM 19905219 ER PT J AU West, L McGown, DJ Onstott, TC Morris, RV Suchecki, P Pratt, LM AF West, L. McGown, D. J. Onstott, T. C. Morris, R. V. Suchecki, P. Pratt, L. M. TI High Lake gossan deposit: An Arctic analogue for ancient Martian surficial processes? SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Mars analogue; Mineralogy; Gossan; Arctic; Mossbauer ID MERIDIANI-PLANUM; GROUP MINERALS; HEMATITE SPHERULES; OMEGA/MARS EXPRESS; BURNS FORMATION; RICHMOND MINE; IRON MOUNTAIN; RIO-TINTO; MARS; SULFATE AB Gossan samples collected during a reconnaissance expedition to High Lake in Nunavut, Canada, were analyzed to determine their mineral components and to define parameters for the geochemical environment in which they formed. The gossan represents a natural acid drainage site in an arctic environment that serves as an analogue to the conditions under which sulfate and Fe-oxide possibly formed on Mars. Rock and soil samples were taken from three different outcrops and analyzed using XRD, SEM/EDS and Mossbauer. Two main mineral assemblages were observed. The first assemblage, which was found primarily in samples from the first outcrop, contained chlorite, Fe-phosphates, Fe-oxide and quartz. The second assemblage, which was found at the second and third outcrops, was primarily quartz, mica and jarosite. One sample (G41), containing Fe-oxide, jarosite and gypsum, appears to be transitional between a Fe-oxide dominant assemblage to a jarosite dominant assemblage. Thermodynamic equilibria predicts that the gossan pore water should range from mildly acidic, relatively sulfate-poor (pH 3-6; SO(4) <1000 mg l(-1)) to highly acidic and relatively sulfate-rich (pH 0.5-3; SO(4) >3000 mg l(-1)) for the first and second mineral assemblages, respectively. Kinetic reaction models indicate that the second assemblage replaces the first during evaporation or freezing of water. Compared to acid mine drainage (AMD) sites located in temperate regions, the arctic High Lake gossan lacks diversity in sulfate species and has smaller diagenetic crystal sizes. The smaller crystal size may reflect the slower reaction rates at colder temperatures and the seasonal water saturation. These initial results indicate that the High Lake gossan deposit does record mechanisms for which minerals like hematite, goethite, gypsum and jarosite, which are found on Mars, can form in an environment that involves seasonal water occurrence in a cold climate. (C) 2009 Elsevier Ltd. All rights reserved. C1 [West, L.; McGown, D. J.; Onstott, T. C.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [Morris, R. V.] NASA, Lyndon B Johnson Space Ctr, ARES, Houston, TX 77058 USA. [Suchecki, P.; Pratt, L. M.] Indiana Univ, Dept Geol Sci, Bloomington, IN 47405 USA. RP Onstott, TC (reprint author), Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. EM tullis@princeton.edu FU NASA Astrobiology Institute [NNA04CC03A]; NASA Mars Exploration Rover Project; NASA Johnson Space Center FX This work was supported by the NASA Astrobiology Institute through award NNA04CC03A to the IPTAI Team co-directed by LMP and TCO. We are indebted to Wolfden Resources Ltd. and Zinfex Canada Inc., Ian Neill, Jason Rickard, Patricia Toole and the staff of High Lake mining camp for providing logistical and moral support. We thank Peggy Bisher of the Molecular Biology Department at Princeton University for assistance with coating the samples for SEM analyses. We thank Jane Woodruff of the Princeton Materials Institute for assistance with SEM/EDS analyses. RVM acknowledges support of the NASA Mars Exploration Rover Project and the NASA Johnson Space Center. NR 37 TC 8 Z9 9 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD SEP PY 2009 VL 57 IS 11 BP 1302 EP 1311 DI 10.1016/j.pss.2009.05.011 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 498FE UT WOS:000270121800007 ER PT J AU Schopf, JW Kudryavtsev, AB AF Schopf, J. William Kudryavtsev, Anatoliy B. TI Confocal laser scanning microscopy and Raman imagery of ancient microscopic fossils SO PRECAMBRIAN RESEARCH LA English DT Article DE CLSM; Organic geochemical maturity; Precambrian microfossils; Raman Index of Preservation; Raman spectroscopy; Three-dimensional imagery ID PRECAMBRIAN FOSSILS; METAMORPHIC ROCKS; ARCHEAN LIFE; SOVIET-UNION; SPECTROSCOPY; MICROFOSSILS; SPECTRA; CHERT; MICROORGANISMS; ACRITARCHS AB Among all problems confronting the study of ancient permineralized (petrified) microscopic fossils, two stand out, the need for (1) accurate documentation of their three-dimensional morphology, and (2) direct analysis of their chemical composition and that of their surrounding mineral matrices. To address these problems we demonstrate the use of two techniques that we have recently introduced to Precambrian paleobiology: confocal laser scanning microscopy and Raman imagery. These techniques, both of which are non-intrusive and non-destructive, can provide data by which to characterize, in situ and at micron-scale resolution, the cellular and organismal morphology of thin section-embedded organic-walled fossils. In addition, Raman imagery provides direct analyses of the molecular-structural composition of the kerogenous components of such fossils and of their surrounding matrices, and a means to assess quantitatively the geochemical maturity of the preserved organics. Use of these techniques for studies of ancient microscopic fossils can provide information in three dimensions at high spatial resolution about their morphology and cellular anatomy, taphonomy and fidelity of preservation, composition and mode of preservation, and their biogenicity and syngenetic origin with the rocks in which they occur. (C) 2009 Elsevier B.V. All rights reserved. C1 [Schopf, J. William] Univ Calif Los Angeles, Dept Earth & Space Sci, Inst Geophys & Planetary Phys, Ctr Study Evolut & Origin Life, Los Angeles, CA 90095 USA. [Schopf, J. William] Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90095 USA. [Schopf, J. William; Kudryavtsev, Anatoliy B.] Penn State Univ, NASA, Astrobiol Inst, University Pk, PA 16802 USA. RP Schopf, JW (reprint author), Univ Calif Los Angeles, Dept Earth & Space Sci, Inst Geophys & Planetary Phys, Ctr Study Evolut & Origin Life, Los Angeles, CA 90095 USA. EM schopf@ess.ucla.edu FU CSEOL; IGPP; UCLA; NASA Astrobiology Institute FX For helpful review of this manuscript, we thank J. Shen-Miller. This research was supported by CSEOL, the IGPP Center for the Study of Evolution and the Origin of Life at UCLA. The participation of A.B.K. was supported by CSEOL and by the UCLA administration in support of UCLA's membership in the NASA Astrobiology Institute. NR 54 TC 47 Z9 47 U1 1 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-9268 J9 PRECAMBRIAN RES JI Precambrian Res. PD SEP PY 2009 VL 173 IS 1-4 BP 39 EP 49 DI 10.1016/j.precamres.2009.02.007 PG 11 WC Geosciences, Multidisciplinary SC Geology GA 487SY UT WOS:000269297400006 ER PT J AU Oehler, DZ Robert, F Walter, MR Sugitani, K Allwood, A Meibom, A Mostefaoui, S Selo, M Thomen, A Gibson, EK AF Oehler, Dorothy Z. Robert, Francois Walter, Malcolm R. Sugitani, Kenichiro Allwood, Abigail Meibom, Anders Mostefaoui, Smail Selo, Madeleine Thomen, Aurelien Gibson, Everett K. TI NanoSIMS: Insights to biogenicity and syngeneity of Archaean carbonaceous structures SO PRECAMBRIAN RESEARCH LA English DT Article DE NanoSIMS; Archaean; Pilbara; Organic microfossil; Bitter Springs; Proterozoic ID BLUE-GREEN-ALGAE; MICROFOSSILS; NITROGEN; SILICA; CHERT; LIFE; AUSTRALIA; BACTERIA AB NanoSIMS is a relatively new technology that is being applied to ancient carbonaceous structures to gain insight into their biogenicity and syngeneity. NanoSIMS studies of well preserved organic microfossils from the Neoproterozoic (similar to 0.8Ga) Bitter Springs Formation have established elemental distributions in undisputedly biogenic structures. Results demonstrate that sub-micron scale maps of metabolically important elements (carbon [C], nitrogen [measured as CN ion], and sulfur [S]) can be correlated with kerogenous structures identified by optical microscopy. Spatial distributions of C, CN, and S in individual microfossils are nearly identical, and variations in concentrations of these elements parallel one another. In elemental maps, C, CN, and S appear as globules, aligned to form remnant walls or sheaths of fossiliferous structures. The aligned character and parallel variation of C and CN are the strongest indicators of biogenicity. Nitrogen/carbon atomic ratios (N/C) of spheroids, filaments, and remnants of a microbial mat suggest that N/C may reflect original biochemical differences, within samples of the same age and degree of alteration. Silicon (Si) and oxygen (0) maps illustrate that silica is intimately interspersed with organic carbon of the microfossils. This relationship is likely to reflect the process of silica permineralization of biological remains and thus may be an indicator of syngeneity of the fossilized material with the mineral matrix. The NanoSIMS characterization of Bitter Springs microfossils can be used as a baseline for interpreting less well preserved carbonaceous structures that might occur in older or even extraterrestrial materials. An example of such an application is provided by comparison of Bitter Springs results with NanoSIMS of Archaean carbonaceous structures from Western Australia, including a spheroid in the similar to 3 Ga Farrel Quartzite and material in a secondary vein in the 3.43 Ga Strelley Pool Chert. Results reinforce a biogenic, syngenetic interpretation for the Archaean spheroid. NanoSIMS has several advantages in the study of ancient organic materials: the technique allows characterization of extremely small structures that are present in low concentrations; organic matter does not have to be isolated by acid treatment but can be analyzed in polished thin section; preparation is simple; samples are minimally altered during analysis; results provide sub-micron scale spatial distribution coupled with concentration information for at least five elements; the biologically important elements of carbon and nitrogen can be assessed; and the ability to study organic remains in situ permits petrographic assessment of spatial relationships between organic matter and mineral constituents. These advantages could be of significant benefit for interpretation of poorly preserved and fragmentary carbonaceous remains that might occur in some of Earth's oldest samples as well as in meteorites or extraterrestrial material brought to Earth in future planetary missions. (C) 2009 Elsevier B.V. All rights reserved. C1 [Oehler, Dorothy Z.; Gibson, Everett K.] NASA, Lyndon B Johnson Space Ctr, Astromat Res & Explorat Sci Directorate, Houston, TX 77058 USA. [Robert, Francois; Meibom, Anders; Mostefaoui, Smail; Selo, Madeleine; Thomen, Aurelien] Museum Natl Hist Nat, USM LEME 0205, Lab Etud Mat Extraterr, F-75005 Paris, France. [Walter, Malcolm R.] Univ New S Wales, Australian Ctr Astrobiol, Kensington, NSW 2052, Australia. [Sugitani, Kenichiro] Nagoya Univ, Dept Environm Engn & Architecture, Grad Sch Environm Studies, Nagoya, Aichi 4648601, Japan. [Allwood, Abigail] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Oehler, DZ (reprint author), NASA, Lyndon B Johnson Space Ctr, Astromat Res & Explorat Sci Directorate, 2101 NASA Pkwy, Houston, TX 77058 USA. EM dorothy-oehler@comcast.net FU NASA-Johnson Space Center (JSC); Centre National de la Recherche Scientifique (CNRS) FX We thank the Astromaterials Research and Exploration Science Directorate at NASA-Johnson Space Center (JSC) and Centre National de la Recherche Scientifique (CNRS) for support. Discussions with Dr. Christopher House (Pennsylvania State University) were most helpful in assessing Si and O responses in NanoSIMS. The manuscript was reviewed by Drs. Carlton C. Allen (NASA-JSC), Laurent Remusat (California Institute of Technology and Laboratoire d'Etude de la Matiere Extraterrestre, CNRS), Wladyslaw Altermann (Ludwig Maximilians University of Munich) and Christopher House (Pennsylvania State University), all of whom provided insightful comments and excellent suggestions. Dr. Remusat additionally assisted with the image processing software. We also thank Professor J. William Schopf (University of California at Los Angeles) for inviting D.Z.O. to the World Summit on Ancient Microscopic Fossils, as discussions of this work with other participants in that meeting NR 28 TC 38 Z9 41 U1 2 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-9268 J9 PRECAMBRIAN RES JI Precambrian Res. PD SEP PY 2009 VL 173 IS 1-4 BP 70 EP 78 DI 10.1016/j.precamres.2009.01.001 PG 9 WC Geosciences, Multidisciplinary SC Geology GA 487SY UT WOS:000269297400009 ER PT J AU Deming, D Seager, S Winn, J Miller-Ricci, E Clampin, M Lindler, D Greene, T Charbonneau, D Laughlin, G Ricker, G Latham, D Ennico, K AF Deming, D. Seager, S. Winn, J. Miller-Ricci, E. Clampin, M. Lindler, D. Greene, T. Charbonneau, D. Laughlin, G. Ricker, G. Latham, D. Ennico, K. TI Discovery and Characterization of Transiting Super Earths Using an All-Sky Transit Survey and Follow-up by the James Webb Space Telescope SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID EXOPLANET HD 189733B; EXTRASOLAR PLANET; TRANSMISSION SPECTRUM; INFRARED-EMISSION; L-DWARFS; ATMOSPHERE; SEARCH; MODEL; PHOTOMETRY; JWST AB Doppler and transit surveys are finding extrasolar planets of ever smaller mass and radius, and are now sampling the domain of super Earths (1-3R(circle plus)). Recent results from the Doppler surveys suggest that discovery of a transiting super Earth in the habitable zone of a lower main sequence star may be possible. We evaluate the prospects for an all-sky transit survey targeted to the brightest stars, that would find the most favorable cases for photometric and spectroscopic characterization using the James Webb Space Telescope (JWST). We use the proposed Transiting Exoplanet Survey Satellite (TESS) as representative of an all-sky survey. We couple the simulated TESS yield to a sensitivity model for the MIRI and NIRSpec instruments on JWST. Our sensitivity model includes all currently known and anticipated sources of random and systematic error for these instruments. We focus on the TESS planets with radii between those of Earth and Neptune. Our simulations consider secondary eclipse filter photometry using JWST/MIRI, comparing the 11 and 15 mu m bands to measure CO(2) absorption in super Earths, as well as JWST/NIRSpec spectroscopy of water absorption from 1.7-3.0 mu m, and CO(2) absorption at 4.3 mu m. We find that JWST will be capable of characterizing dozens of TESS super Earths with temperatures above the habitable range, using both MIRI and NIRspec. We project that TESS will discover about eight nearby habitable transiting super Earths, all orbiting lower-main-sequence stars. The principal sources of uncertainty in the prospective JWST characterization of habitable super Earths are super-Earth frequency and the nature of super-Earth atmospheres. Based on our estimates of these uncertainties, we project that JWST will be able to measure the temperature and identify molecular absorptions (water, CO(2)) in one to four nearby habitable TESS super Earths orbiting lower-main-sequence stars. C1 [Deming, D.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Seager, S.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Seager, S.; Winn, J.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Winn, J.; Ricker, G.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Miller-Ricci, E.; Charbonneau, D.; Latham, D.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Clampin, M.] NASA, Goddard Space Flight Ctr, Exoplanet & Stellar Astrophys Lab, Greenbelt, MD 20771 USA. [Lindler, D.] NASA, Goddard Space Flight Ctr, Sigma Sci Corp, Greenbelt, MD 20771 USA. [Greene, T.; Ennico, K.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Laughlin, G.] Univ Calif Santa Cruz, Univ Calif Observ, Lick Observ, Santa Cruz, CA 95064 USA. RP Deming, D (reprint author), NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. RI Clampin, mark/D-2738-2012; Ennico, Kimberly/L-9606-2014 FU JWST FX T. Greene and M. Clampin gratefully acknowledge support from the JWST Project. We thank J. Valenti for sending us his exoPTF White Paper, and Lisa Kaltenegger for an advance copy of her ApJ paper. We are grateful to Tilak Hewagama for a clarifying discussion on simulation of JWST pointing jitter, and to the referee for helpful comments that significantly improved the manuscript. NR 60 TC 103 Z9 103 U1 2 U2 10 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD SEP PY 2009 VL 121 IS 883 BP 952 EP 967 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 486WV UT WOS:000269232300003 ER PT J AU Saunders, W Lawrence, JS Storey, JWV Ashley, MCB Kato, S Minnis, P Winker, DM Liu, GP Kulesa, C AF Saunders, Will Lawrence, Jon S. Storey, John W. V. Ashley, Michael C. B. Kato, Seiji Minnis, Patrick Winker, David M. Liu, Guiping Kulesa, Craig TI Where Is the Best Site on Earth? Domes A, B, C, and F, and Ridges A and B SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID HIGH-ANTARCTIC PLATEAU; OPTICAL TURBULENCE; STATISTICAL-MODEL; SOUTH-POLE; ATMOSPHERE; PRECIPITATION; TELESCOPE; ASTRONOMY; CONTINENT AB The Antarctic plateau contains the best sites on earth for many forms of astronomy, but none of the existing bases was selected with astronomy as the primary motivation. In this article, we try to systematically compare the merits of potential observatory sites. We include South Pole, Domes A, C, and F, and also Ridge B (running northeast from Dome A), and what we call "Ridge A" (running southwest from Dome A). Our analysis combines satellite data, published results, and atmospheric models, to compare the boundary layer, weather, aurorae, airglow, precipitable water vapor, thermal sky emission, surface temperature, and the free atmosphere, at each site. We find that all Antarctic sites are likely to be compromised for optical work by airglow and aurorae. Of the sites with existing bases, Dome A is easily the best overall; but we find that Ridge A offers an even better site. We also find that Dome F is a remarkably good site. Dome C is less good as a thermal infrared or terahertz site, but would be able to take advantage of a predicted "OH hole" over Antarctica during spring. C1 [Saunders, Will; Lawrence, Jon S.; Storey, John W. V.; Ashley, Michael C. B.] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. [Saunders, Will; Lawrence, Jon S.] Anglo Australian Observ, Sydney, NSW, Australia. [Lawrence, Jon S.] Macquarie Univ, N Ryde, NSW 2109, Australia. [Kato, Seiji; Minnis, Patrick; Winker, David M.] NASA, Langley Res Ctr, Washington, DC USA. [Liu, Guiping] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Kulesa, Craig] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA. [Kulesa, Craig] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. RP Saunders, W (reprint author), Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. EM will@aao.gov.au RI Minnis, Patrick/G-1902-2010 OI Minnis, Patrick/0000-0002-4733-6148 NR 33 TC 50 Z9 51 U1 0 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD SEP PY 2009 VL 121 IS 883 BP 976 EP 992 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 486WV UT WOS:000269232300005 ER PT J AU de Linage, C Hinderer, J Boy, JP AF de Linage, Caroline Hinderer, Jacques Boy, Jean-Paul TI Variability of the Gravity-to-Height Ratio Due to Surface Loads SO PURE AND APPLIED GEOPHYSICS LA English DT Article; Proceedings Paper CT 2nd Workshop on Deformation and Gravity Change - Indicators of Isostasy, Tectonics, Volcanism and Climate Change CY MAR 27-30, 2007 CL Lanzarote, SPAIN SP Int Assoc Geodesy DE Atmospheric pressure; gravity; continental water balance; loading; ocean tides; vertical displacement ID ABSOLUTE GRAVITY; CONTINUOUS GPS; GROUND DEFORMATION; CRUSTAL MOTIONS; EARTH; UPLIFT; GRAVIMETRY; OCEAN; TIDES; DISPLACEMENT AB We study the ratio between the gravity variation and vertical displacement on the surface of a self-gravitating earth model when a surface load is applied. We adopt a theoretical and numerical point of view, excluding any observations. First, we investigate the spectral behavior of the ratio of the harmonic components of the gravity variation and vertical displacement. Then, we model the gravity-to-height ratio for different surface loads (continental hydrology, atmospheric pressure, ocean tides) using outputs of global numerical models in order to relate the predicted spatial values to theoretical mean values deduced from the spectral domain. For locations inside loaded areas, the ratio is highly variable because of the Newtonian attraction of the local masses and depends on the size of the load. For the hydrological loading (soil moisture and snow), the mean ratio over the continents is -0.87 mu Gal mm(-1), but increases with decreasing size of the river basins. For the atmospheric loading, assuming an inverted-barometer response of the ocean, the ratio is positive, with larger values for high latitudes (0.49 mu Gal mm(-1))-particularly on the coasts-than for lower latitudes (0.30 mu Gal mm(-1)). The ratio, however, is much less variable outside the loaded areas: in desert areas such as the Sahara and Arabia, its mean value is -0.28 mu Gal mm(-1). For the ocean tidal loading, we find a mean ratio of -0.26 mu Gal mm(-1) over the continents for the diurnal tidal waves. Both results are close to the theoretical mean value of -0.26 mu Gal mm(-1) combining elastic and remote attraction contributions. C1 [Hinderer, Jacques] ULP, CNRS, UMR 7516, IPGS,EOST, F-67084 Strasbourg, France. [Boy, Jean-Paul] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. RP de Linage, C (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Croul Hall, Irvine, CA 92697 USA. EM caroline.delinage@uci.edu RI Boy, Jean-Paul/E-6677-2017 OI Boy, Jean-Paul/0000-0003-0259-209X NR 47 TC 7 Z9 7 U1 0 U2 2 PU SPRINGER BASEL AG PI BASEL PA PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND SN 0033-4553 EI 1420-9136 J9 PURE APPL GEOPHYS JI Pure Appl. Geophys. PD SEP PY 2009 VL 166 IS 8-9 BP 1217 EP 1245 DI 10.1007/s00024-004-0506-0 PG 29 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 485JW UT WOS:000269118200004 ER PT J AU Jones, MC Peteet, DM Kurdyla, D Guilderson, T AF Jones, Miriam C. Peteet, Dorothy M. Kurdyla, Dorothy Guilderson, Thomas TI Climate and vegetation history from a 14,000-year peatland record, Kenai Peninsula, Alaska SO QUATERNARY RESEARCH LA English DT Article DE Climate history; Alaska; pollen; macrofossils; Kenai Peninsula; Younger Dryas ID YOUNGER-DRYAS; SOUTHWESTERN ALASKA; NORTH PACIFIC; THERMAL MAXIMUM; LATE-QUATERNARY; EARLY-HOLOCENE; ARCTIC TUNDRA; YR BP; LAKE; BERINGIA AB Analysis of pollen, spores, macrofossils, and lithology of an AMS C-14-dated core from a subarctic fell on the Kenai Peninsula, Alaska reveals changes in vegetation and climate beginning 14,200 cal yr BP. Betula expansion and contraction of herb tundra vegetation characterize the Younger Dryas on the Kenai, suggesting increased winter snowfall concurrent with cool, sunny summers. Remarkable Polypodiaceae (fern) abundance between 11,500 and 8500 cal yr BP implies a significant change in climate. Enhanced peat preservation and the occurrence of wet meadow species suggest high moisture from 11,500 to 10,700 cal yr BP, in contrast to drier conditions in southeastern Alaska; this pattern may indicate an intensification and repositioning of the Aleutian Low (AL). Drier conditions oil the Kenai Peninsula from 10,700 to 8500 call yr BP may signify a weaker AL, but elevated fern abundance may have been sustained by high seasonality with substantial snowfall and enhanced glacial melt. Decreased insolation-induced seasonality resulted in climatic cooling after 8500 cal yr BP, with increased humidity from 8000 to 5000 cal yr BP. A dry interval punctuated by volcanic activity occurred between 5000 and 3500 call yr BP, followed by cool, moist climate, coincident with Neoglaciation. Tsuga mertensiana expanded after similar to 1500 cal yr BP in response to the shift to cooler conditions. (C) 2009 University of Washington. Published by Elsevier Inc. All rights reserved. C1 [Jones, Miriam C.; Peteet, Dorothy M.] Columbia Univ, Dept Earth & Environm Sci, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Peteet, Dorothy M.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Kurdyla, Dorothy; Guilderson, Thomas] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Jones, Miriam C.] Lehigh Univ, Dept Earth & Environm Sci, Bethlehem, PA 18015 USA. RP Jones, MC (reprint author), Columbia Univ, Dept Earth & Environm Sci, Lamont Doherty Earth Observ, 61 Route 9W, Palisades, NY 10964 USA. EM mcj208@lehigh.edu FU LDEO Climate Center; NASA/GISS; National Science Foundation [OCE06-475574] FX LDEO Climate Center and NASA/GISS provided financial support, and sample material used in this project was stored in the LDEO Sample Repository, supported by the National Science Foundation (Grant OCE06-475574). We thank Edward Berg at the Kenai National Wildlife Refuge and Dick Reger for help in the field and for useful advice and discussions, and Scott Anderson, Darrell Kaufman, and Feng Sheng Hu for valuable discussion of the YD interval on the Kenai Peninsula. Field assistance was generously donated by Robert Ruffner and members of the Kenai Watershed Forum, and Kirsten Sauer and Alex Kirnicki. Substantial improvements to the manuscript were made thanks to reviewer and editor comments (Tom Ager, Nancy Bigelow, and Wyatt Oswald). This is LDEO contribution number 7267. NR 50 TC 20 Z9 20 U1 1 U2 22 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0033-5894 EI 1096-0287 J9 QUATERNARY RES JI Quat. Res. PD SEP PY 2009 VL 72 IS 2 BP 207 EP 217 DI 10.1016/j.yqres.2009.04.002 PG 11 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 486UA UT WOS:000269223500006 ER PT J AU Liu, AK Hsu, MK AF Liu, Antony K. Hsu, Ming-Kuang TI Deriving Ocean Surface Drift Using Multiple SAR Sensors SO REMOTE SENSING LA English DT Article DE ocean surface drift; SAR; wavelet transform; feature tracking; ship wake AB Tracking and monitoring ocean features which have short coherent time periods from sequential satellite images requires that the images have both very high spatial resolutions and short temporal sampling intervals (i.e., repeated cycles). Satellite images from a single sensor in a polar-orbiting satellite usually cannot meet these requirements since high spatial resolution of the sensor may result in relatively long temporal sampling interval and vice versa, such as the case of Synthetic Aperture Radar (SAR). This paper presents a new multi-sensor approach to overcome the long temporal sampling interval associated with a single SAR sensor while taking advantage of high spatial resolution of SAR images for the application of ocean feature tracking. Currently, there are two SAR sensors on different satellites, the European Remote Sensing Satellite-2 (ERS-2) and the ENVIronment SATellite (ENVISAT), having acquisition time offset around 28 minutes with almost exactly the same path. That is, ERS-2 is following ENVISAT with a 28-minutes delay, which is a good time-scale for ocean mesoscale feature tracking. A pair of SAR images from ERS-2 and ENVISAT collected on April 27, 2005 has been chosen to track ocean surface features by using wavelet analysis. As demonstrated in the case studies, this technique is robust and capable to derive ocean surface drift near an oil slick and around a big eddy in the South China Sea (SCS). C1 [Liu, Antony K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hsu, Ming-Kuang] Technol & Sci Inst No Taiwan, Taipei, Taiwan. RP Liu, AK (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM antony.a.liu@nasa.gov; hsu.ming.kuang@gmail.com FU U.S. Office of Naval Research (ONR); Taiwan's National Science Council (NSC) FX The authors would like to thank Wolfgang Lengert of ESRIN in ESA for his encouragement of this research, and Yunhe Zhao for his numerical support. The Reviewers' comments are also highly appreciated. This work is supported by the U.S. Office of Naval Research (ONR) and Taiwan's National Science Council (NSC). Both authors are Principal Investigators on ESA projects and all ERS-2 SAR and ENVISAT ASAR data are copyrighted by ESA. NR 26 TC 10 Z9 10 U1 1 U2 5 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD SEP PY 2009 VL 1 IS 3 BP 266 EP 277 DI 10.3390/rs1030266 PG 12 WC Remote Sensing SC Remote Sensing GA V24HC UT WOS:000208400500008 ER PT J AU Elmahboub, W Scarpace, F Smith, B AF Elmahboub, Widad Scarpace, Frank Smith, Bill TI A Highly Accurate Classification of TM Data through Correction of Atmospheric Effects SO REMOTE SENSING LA English DT Article DE improvement of supervised classification accuracy; remote sensing interpretation; simulation; modeling AB Atmospheric correction impacts on the accuracy of satellite image-based land cover classification are a growing concern among scientists. In this study, the principle objective was to enhance classification accuracy by minimizing contamination effects from aerosol scattering in Landsat TM images due to the variation in solar zenith angle corresponding to cloud-free earth targets. We have derived a mathematical model for aerosols to compute and subtract the aerosol scattering noise per pixel of different vegetation classes from TM images of Nicolet in north-eastern Wisconsin. An algorithm in C++ has been developed with iterations to simulate, model, and correct for the solar zenith angle influences on scattering. Results from a supervised classification with corrected TM images showed increased class accuracy for land cover types over uncorrected images. The overall accuracy of the supervised classification was improved substantially (between 13% and 18%). The z-score shows significant difference between the corrected data and the raw data (between 4.0 and 12.0). Therefore, the atmospheric correction was essential for enhancing the image classification. C1 [Elmahboub, Widad] Hampton Univ, Dept Math, Hampton, VA 23668 USA. [Scarpace, Frank] Univ Wisconsin Madison, Madison, WI 53706 USA. [Smith, Bill] NASA, Langley Res Ctr Atmospher Sci Hampton, Hampton, VA 23681 USA. RP Elmahboub, W (reprint author), Hampton Univ, Dept Math, Hampton, VA 23668 USA. EM Widad.elmahboub@hamptonu.edu; scarpace@facstaff.wisc.edu; B.smith@nasa.larc.gov FU NASA for MUI (NASA) [SOS 2003] FX We acknowledge NASA for MUI (NASA grant #SOS 2003) grant award and support during the adaptation of this research investigation. Special thanks for Dr. Philip Sakimoto (former grant officer) and Dr. Larry Cooper (grant officer) at the Space Science Education and Public Outreach Program at NASA headquarter. NR 26 TC 6 Z9 6 U1 0 U2 4 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD SEP PY 2009 VL 1 IS 3 BP 278 EP 299 DI 10.3390/rs1030278 PG 22 WC Remote Sensing SC Remote Sensing GA V24HC UT WOS:000208400500009 ER PT J AU Huang, SL Crabtree, RL Potter, C Gross, P AF Huang, Shengli Crabtree, Robert L. Potter, Christopher Gross, Peggy TI Estimating the quantity and quality of coarse woody debris in Yellowstone post-fire forest ecosystem from fusion of SAR and optical data SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Coarse woody debris; Remote sensing; Forest fire; SAR; Data fusion; Yellowstone ID NET PRIMARY PRODUCTION; SIR-C/X-SAR; NATIONAL-PARK; SAMPLING METHODS; BOREAL FOREST; LEAF-AREA; BIOMASS; SCATTERING; FIRES; CLASSIFICATION AB The Coarse Woody Debris (CWD) quantity, defined as biomass per unit area (t/ha), and the quality, defined as the proportion of standing dead logs to the total CWD quantity, greatly contribute to many ecological processes such as forest nutrient cycling, tree regeneration, wildlife habitat, fire dynamics, and carbon dynamics. However, a cost-effective and time-saving method to determine CWD is not available. Very limited literature could be found that applies remote sensing technique to CWD inventory. In this paper, we fused the wall-to-wall multi-frequency and multi-polarization Airborne Synthetic Aperture Radar (AirSAR) and optical Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) to estimate the quantity and quality of CWD in Yellowstone post-fire forest ecosystem, where the severe 1988 fire event resulted in high spatial heterogeneity of dead logs. To relate backscatter values to CWD metrics, we first reduced the terrain effect to remove the interference of topography on AirSAR backscatter. Secondly, we removed the influence of regenerating sapling by quadratic polynomial fitting between AVIRIS Enhanced Vegetation Index (EVI) and different channels backscatters. The quantity of CWD was derived from P(hh) and P(hv), and the quality of CWD was derived from P(hh) aided by the ratio of L(hv) and P(hh). Two maps of Yellowstone post-fire CWD quantity and quality were produced. The calculated CWD quantity and quality were validated by extensive field surveys. Regarding CWD quantity, the correlation coefficient between measured and predicted CWD is only 0.54 with mean absolute error up to 29.1 t/ha. However, if the CWD quantity was discretely classified into three categories of "<= 60", "60-120", and ">= 120", the overall accuracy is 65.6%; if classified into two categories of "<= 90" and ">= 90", the overall accuracy is 73.1%; if classified into two categories of "<= 60" and ">= 60", the overall accuracy is 84.9%. This indicates our attempt to map CWD quantity spatially and continuously achieved partial success; however, the general and discrete categories are reasonable. Regarding CWD quality, the overall accuracy of 5 types (Type 1-standing CWD ratio >= 40%; Type 2-15% <= standing CWD ratio < 40%; Type 3-7% <= standing CWD ratio<15%; Type 4-3% <= standing CWD ratio <7%; Type 5-standing CWD ratio <3%) is only 40.32%. However, when type 1, 2, 3 are combined into one category and type 4 and 5 are combined into one category, the overall accuracy is 67.74%. This indicates the partial success of our initial results to map CWD quality into detailed categories, but the result is acceptable if solely very coarse CWD quality is considered. Bias can be attributed to the complex influence of many factors, such as field survey error, sapling compensation, terrain effect reduction, surface properties, and backscatter mechanism understanding. (C) 2009 Elsevier Inc. All rights reserved. C1 [Huang, Shengli; Potter, Christopher] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Huang, Shengli; Crabtree, Robert L.] Yellowstone Ecol Res Ctr, Bozeman, MT 59718 USA. [Crabtree, Robert L.] HyPerspectives Inc, Bozeman, MT 59718 USA. [Gross, Peggy] Calif State Univ, Seaside, CA 93955 USA. RP Huang, SL (reprint author), NASA, Ames Res Ctr, Mail Stop 242-4, Moffett Field, CA 94035 USA. EM huang@yellowstoneresearch.org FU Air Force Research Lab [F33615-03-C-1432]; NASA [NNA07CN19A, NNS06AA23G] FX This work was done with financial support from Air Force Research Lab (No. F33615-03-C-1432) and NASA (No. NNA07CN19A and No. NNS06AA23G). This research was also supported by an appointment to the NASA Postdoctoral Program at the NASA Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. The authors would like to thank NASA JPL for their AirSAR and AVIRIS data acquisition and preprocessing in 2003 and 2006. The authors give special thanks to Mr. Shawn Grey, Mr. Scott Pickling, Mrs. Mei Peng, Mr. Jamie Robertson, Mr. Nate Emery, Miss Amelia Hagen-Dillon, and Miss Jeanine Moy for their efforts in field data collection and image processing. NR 58 TC 18 Z9 22 U1 1 U2 30 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD SEP PY 2009 VL 113 IS 9 BP 1926 EP 1938 DI 10.1016/j.rse.2009.05.001 PG 13 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 478RG UT WOS:000268605200011 ER PT J AU Hulley, GC Hook, SJ AF Hulley, Glynn C. Hook, Simon J. TI The North American ASTER Land Surface Emissivity Database (NAALSED) Version 2.0 SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Emissivity; ASTER; Thermal infrared; Land surface temperature; Land-water map; Validation ID ATMOSPHERIC CORRECTION; TEMPERATURE; VALIDATION; AREAS; SEPARATION; MOROCCO; NEVADA; IMAGES; MODIS; NDVI AB Thermal Infrared (TIR) data are supplied by instruments on several satellite platforms including the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), which was launched on the Terra satellite in 1999. ASTER has five bands in the TIR and a spatial resolution of 90 m. A mean seasonal, gridded, Land Surface Temperature and Emissivity (LST&E) database has been produced at 100 m spatial resolution using all the ASTER scenes acquired for the months of Jan-Mar (winter) and Jul-Sep (summer) over North America. Version 2.0 of the North American ASTER Land Surface Database (NAALSED) (http://emissivity.jpl.nasa.gov) has now been released and includes two key refinements designed to improve the accuracy of emissivities over water bodies and account for the effects of fractional vegetation cover. The water adjustment replaces ASTER emissivity values over inland water bodies with a measured library emissivity spectrum of distilled water, and then re-calculates the surface temperatures using a split-window algorithm. The accuracy of ASTER emissivities over vegetated surfaces is improved by applying a fractional vegetation cover adjustment (TES_Pv) to the ASTER Temperature Emissivity Separation (TES) calibration curve. Comparisons of NAALSED emissivity spectra with in-situ data measured over a grassland in Northern Texas resulted in a combined absolute difference for all five ASTER bands of 1.0% for the summer emissivity data, and 0.1% for the winter data-a 33-50% improvement over the original TES results. (C) 2009 Elsevier Inc. All rights reserved. C1 [Hulley, Glynn C.; Hook, Simon J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Hulley, GC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM glynn.hulley@jpl.nasa.gov NR 30 TC 57 Z9 59 U1 2 U2 22 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD SEP PY 2009 VL 113 IS 9 BP 1967 EP 1975 DI 10.1016/j.rse.2009.05.005 PG 9 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 478RG UT WOS:000268605200014 ER PT J AU Lyapustin, A Tedesco, M Wang, YJ Aoki, T Hori, M Kokhanovsky, A AF Lyapustin, Alexei Tedesco, Marco Wang, Yujie Aoki, Teruo Hori, Masahiro Kokhanovsky, Alexander TI Retrieval of snow grain size over Greenland from MODIS SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Snow grain size; Retrieval algorithm; MODIS; Snow melting; Greenland ID RADIATIVE-TRANSFER; SPECTRAL ALBEDO; BIDIRECTIONAL REFLECTANCE; SURFACE; PRODUCTS; MODEL; WAVELENGTHS; AREA AB This paper presents a new automatic algorithm to derive optical snow grain size at 1 km resolution using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. The retrieval is conceptually based on an analytical asymptotic radiative transfer model which predicts spectral bidirectional snow reflectance as a function of the grain size and ice absorption. The snow grains are modeled as fractal rather than spherical particles in order to account for their irregular shape. The analytical form of solution leads to an explicit and fast retrieval algorithm. The time series analysis of derived grain size shows a good sensitivity to snow melting and snow precipitation events. Pre-processing is performed by a Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, which includes gridding MODIS data to 1 km resolution, water vapor retrieval, cloud masking and an atmospheric correction. MAIAC cloud mask is a new algorithm based on a time series of gridded MODIS measurements and an image-based rather than pixel-based processing. Extensive processing of MODIS TERRA data over Greenland shows a robust discrimination of clouds over bright snow and ice. Because in-situ grain size measurements over Greenland were not available at the time of this work, the validation was performed using data of Aoki et al. (Aoki, T., Hori, M., Motoyoshi, H.. Tanikawa, T., Hachikubo, A., Sugiura, K., et al. (2007). ADEOS-II/GLI snow/ice products - Part II: Validation results using GLI and MODIS data. Remote Sensing of Environment, 111, 274-290) collected at Barrow (Alaska, USA), and Saroma, Abashiri and Nakashibetsu (Japan) in 2001-2005. The retrievals correlate well with measurements in the range of radii similar to 0.1-1 mm, although retrieved optical diameter may be about a factor of 1.5 lower than the physical measured diameter. As part of validation analysis for Greenland, the derived grain size from MODIS over selected sites in 2004 was compared to the microwave brightness temperature measurements of SSM/I radiometer which is sensitive to the amount of liquid water in the snowpack. The comparison showed a good qualitative agreement, with both datasets detecting two main periods of snowmelt. Additionally, MODIS grain size was compared with predictions of the snow model CROCUS driven by measurements of the automatic weather stations of the Greenland Climate Network. We found that the MODIS value is on average a factor of two smaller than CROCUS grain size. This result agrees with the direct validation analysis indicating that the snow reflectance model may need a "calibration" factor of similar to 1.5 for the retrieved grain size to match the physical snow grain size. Overall, the agreement between CROCUS and MODIS results was satisfactory, in particular before and during the first melting period in mid June. Following detailed time series analysis of snow grain size for four permanent sites, the paper presents maps of this important parameter over the Greenland ice sheet for the March-September period of 2004. (C) 2009 Elsevier Inc. All rights reserved. C1 [Lyapustin, Alexei; Tedesco, Marco; Wang, Yujie] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lyapustin, Alexei; Wang, Yujie] Univ Maryland Baltimore Cty, GEST Ctr, Catonsville, MD 21228 USA. [Tedesco, Marco] CUNY City Coll, New York, NY 10031 USA. [Tedesco, Marco] Univ Maryland Baltimore Cty, JCET Ctr, Baltimore, MD 21228 USA. [Aoki, Teruo] Meteorol Res Inst, Tsukuba, Ibaraki 3050052, Japan. [Hori, Masahiro] Japan Aerosp Explorat Agcy, Earth Observat Res Ctr, Tsukuba, Ibaraki 3058505, Japan. [Kokhanovsky, Alexander] Univ Bremen, Inst Environm Phys, D-28334 Bremen, Germany. RP Lyapustin, A (reprint author), NASA, Goddard Space Flight Ctr, Mail Code 614-4, Greenbelt, MD 20771 USA. EM Alexei.I.Lyapustin@nasa.gov RI Lyapustin, Alexei/H-9924-2014; Tedesco, Marco/F-7986-2015; Kokhanovsky, Alexander/C-6234-2016 OI Lyapustin, Alexei/0000-0003-1105-5739; Kokhanovsky, Alexander/0000-0001-7370-1164 FU NASA EOS Science; NPP FX The work of Dr. Lyapustin and Dr. Wang was supported by the NASA EOS Science (Dr. D. Wickland) and NPP (Dr. J. Gleason) grants. The work of A. Kokhanovsky was supported by ESA Project "Snow Radiance". The authors would like to thank the reviewers for deep and insightful comments. NR 52 TC 39 Z9 45 U1 2 U2 24 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD SEP PY 2009 VL 113 IS 9 BP 1976 EP 1987 DI 10.1016/j.rse.2009.05.008 PG 12 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 478RG UT WOS:000268605200015 ER PT J AU Hilker, T Wulder, MA Coops, NC Seitz, N White, JC Gao, F Masek, JG Stenhouse, G AF Hilker, Thomas Wulder, Michael A. Coops, Nicholas C. Seitz, Nicole White, Joanne C. Gao, Feng Masek, Jeffrey G. Stenhouse, Gordon TI Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Landsat; MODIS; Synthetic imagery; STARFM; Data blending; EOSD ID LEAF-AREA INDEX; SATELLITE DATA; COVER; FOREST; IMAGES; VEGETATION; RADIATION; RED AB Landsat imagery with a 30 m spatial resolution is well suited for characterizing landscape-level forest structure and dynamics. While Landsat images have advantageous spatial and spectral characteristics for describing vegetation properties, the Landsat sensor's revisit rate, or the temporal resolution of the data, is 16 days. When considering that cloud cover may impact any given acquisition, this lengthy revisit rate often results in a dearth of imagery for a desired time interval (e.g., month, growing season, or year) especially for areas at higher latitudes with shorter growing seasons. In contrast, MODIS (MODerate-resolution Imaging Spectroradiometer) has a high temporal resolution, covering the Earth up to multiple times per day, and depending on the spectral characteristics of interest, MODIS data have spatial resolutions of 250 m, 500 m, and 1000 m. By combining Landsat and MODIS data, we are able to capitalize on the spatial detail of Landsat and the temporal regularity of MODIS acquisitions. In this research, we apply and demonstrate a data fusion approach (Spatial and Temporal Adaptive Reflectance Fusion Model, STARFM) at a mainly coniferous study area in central British Columbia, Canada. Reflectance data for selected MODIS channels, all of which were resampled to 500 m, and Undsat (at 30 m) were combined to produce 18 synthetic Landsat images encompassing the 2001 growing season (May to October). We compared, on a channel-by-channel basis, the surface reflectance values (stratified by broad land cover types) of four real Landsat images with the corresponding closest date of synthetic Landsat imagery, and found no significant difference between real (observed) and synthetic (predicted) reflectance values (mean difference in reflectance: mixed forest (chi) over bar = 0.086, rho = 0.088, broadleaf (chi) over bar = 0.019, sigma = 0.079, coniferous (chi) over bar = 0.039, sigma = 0.093). Similarly, a pixel based analysis shows that predicted and observed reflectance values for the four Landsat dates were closely related (mean r(2) = 0.76 for the NIR band: r(2) = 0.54 for the red band; p<0.01). Investigating the trend in NDVI values in synthetic Landsat values over a growing season revealed that phenological patterns were well captured; however, when seasonal differences lead to a change in land cover (i.e., disturbance, snow cover), the algorithm used to generate the synthetic Landsat images was, as expected, less effective at predicting reflectance. (C) 2009 Elsevier Inc. All rights reserved. C1 [Hilker, Thomas] Univ British Columbia, Dept Forest Resource Management, Forest Sci Ctr, Vancouver, BC V6T 1Z4, Canada. [Wulder, Michael A.; Seitz, Nicole; White, Joanne C.] Nat Resources Canada, Pacific Forestry Ctr, Canadian Forest Serv, Victoria, BC V8Z 1M5, Canada. [Gao, Feng; Masek, Jeffrey G.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [Stenhouse, Gordon] Foothills Res Inst, Hinton, AB T7V 1X6, Canada. RP Hilker, T (reprint author), Univ British Columbia, Dept Forest Resource Management, Forest Sci Ctr, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada. EM thilker@interchange.ubc.ca RI Masek, Jeffrey/D-7673-2012; Coops, Nicholas/J-1543-2012; Wulder, Michael/J-5597-2016; OI Coops, Nicholas/0000-0002-0151-9037; Wulder, Michael/0000-0002-6942-1896; White, Joanne/0000-0003-4674-0373 FU U.S. Geological Survey Landsat Data Continuity Mission FX Funding for this research was generously provided by the Grizzly Bear Program of the Foothills Research Institute located in Hinton, Alberta, Canada, with additional information available at: http://www.fmfab.ca/. Much of the Landsat data used in this study was contributed by the U.S. Geological Survey Landsat Data Continuity Mission Project through participation of Wulder on the Landsat Science Team. The anonymous reviewers are thanked for a thorough review of this manuscript. NR 46 TC 107 Z9 118 U1 4 U2 45 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD SEP PY 2009 VL 113 IS 9 BP 1988 EP 1999 DI 10.1016/j.rse.2009.05.011 PG 12 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 478RG UT WOS:000268605200016 ER PT J AU Li, R Min, QL Lin, B AF Li, Rui Min, Qilong Lin, Bing TI Estimation of evapotranspiration in a mid-latitude forest using the Microwave Emissivity Difference Vegetation Index (EDVI) SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Evapotranspiration; Forest; Microwave Emissivity Difference Vegetation Index (EDVI); Diurnal variations ID CLIMATE-CHANGE; HEAT-FLUX; SURFACE; DEFORESTATION; EVAPORATION; TRANSPIRATION; REFLECTANCE; PARAMETERS; RADIOMETER; RADIATION AB We developed an algorithm to estimate evapotranspiration (ET) from dense vegetation covered area from the first principle of surface energy balance model by using satellite retrieved Microwave Emissivity Difference Vegetation Index (EDVI). This algorithm can be used under both clear sky and cloudy sky conditions. Long term seasonal trend of EDVI is linked to variance of canopy resistance due to the interrelationship among leaf development, environmental condition and microwave radiation. Short term changes of EDVI caused by synoptic scale weather variations is used to parameterize the responds of vegetation resistance to the quick changes of environmental factors including water vapor deficit, water potential and others. The performance of this algorithm was test at the Harvard forest site by using satellite measurements from the SSM/I F13 and F14 sensors. Validation at the site with 169 samples shows that the correlation coefficient (R(2)) between estimated and observed ETs is 0.83 with a mean bias of 3.31 Wm(-2) and a standard deviation of 79.63 Wm(-2). The overall uncertainty of our ET retrieval is similar to 30%, which is within the uncertainty of current ground based ET measurements. Furthermore, the estimated Er in different local times (up to 4 times per day) successfully captured the diurnal cycle of ET It is the first time that the diurnal variations of vegetation-atmosphere interactions were directly monitored from space. This study demonstrates that the technique reported here extends the current satellite capability of vegetation property and ET flux remote sensing from daytime, clearsky conditions to day and night times and from intermediate leaf area index (LAI) to all range of vegetation states. Published by Elsevier Inc. C1 [Li, Rui; Min, Qilong] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12203 USA. [Lin, Bing] NASA, Langley Res Ctr, Sci Directorate, Hampton, VA 23681 USA. RP Min, QL (reprint author), SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12203 USA. EM min@asrc.cestm.albany.edu FU Office of Science; U.S. Department of Energy [DE-FG02-03ER63531]; NOAA [NA17AE1625, NA17AE1623] FX This research was supported by the Office of Science (BER), U.S. Department of Energy, Grant DE-FG02-03ER63531, and by the NOAA Educational Partnership Program with Minority Serving Institutions (EPP/MSI) under cooperative agreements NA17AE1625 and NA17AE1623. NR 33 TC 14 Z9 14 U1 0 U2 14 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD SEP PY 2009 VL 113 IS 9 BP 2011 EP 2018 DI 10.1016/j.rse.2009.05.007 PG 8 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 478RG UT WOS:000268605200018 ER PT J AU Dozier, J Green, RO Nolin, AW Painter, TH AF Dozier, Jeff Green, Robert O. Nolin, Anne W. Painter, Thomas H. TI Interpretation of snow properties from imaging spectrometry SO REMOTE SENSING OF ENVIRONMENT LA English DT Article; Proceedings Paper CT Session on the State of Science of Environmental Applications of Imaging Spectroscopy held in honor of Alexander FH Goetz CY 2006 CL Denver, CO SP IEEE DE Snow; Remote sensing; Imaging spectrometry ID SOLAR-REFLECTED SPECTRUM; ATMOSPHERIC WATER-VAPOR; GRAIN-SIZE; SPECTRORADIOMETER MISR; SURFACE-ROUGHNESS; CASSINI-VIMS; ALBEDO; MODELS; ICE; SPECTROSCOPY AB Snow is among the most "colorful" materials in nature, but most of the variability in snow reflectance occurs beyond 0.8 mu m rather than in the visible spectrum. In these wavelengths, reflectance decreases dramatically as the snow grains evolve and grow, whereas in the visible spectrum snow reflectance is degraded by contaminants such as dust, algae, and soot. From imaging spectrometer data, we can estimate the grain size of the snow in the surface layer, and thereby derive spectral and broadband albedo. We can also estimate the fraction of each pixel that is covered by snow, the liquid water content in the surface layer, and the amount of radiative forcing caused by absorbing impurities. Estimates of fractional snow-covered area and albedo dramatically improve the performance of spatially distributed snowmelt models that include net solar radiation as an input value, most significantly in locations and at times where incident solar radiation is high and temperatures low. Experience with imaging spectrometer data has allowed extension of the fractional snow-cover and albedo estimates to multispectral sensors, particularly MODIS, the Moderate-Resolution Imaging Spectroradiometer. (C) 2009 Elsevier Inc. All rights reserved. C1 [Dozier, Jeff] Univ Calif Santa Barbara, Donald Bren Sch Environm Sci & Management, Santa Barbara, CA 93106 USA. [Green, Robert O.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Nolin, Anne W.] Oregon State Univ, Dept Geosci, Corvallis, OR 97331 USA. [Painter, Thomas H.] Univ Utah, Dept Geog, Salt Lake City, UT 84112 USA. RP Dozier, J (reprint author), Univ Calif Santa Barbara, Donald Bren Sch Environm Sci & Management, Santa Barbara, CA 93106 USA. EM dozier@bren.ucsb.edu; Robert.O.Green@jpl.nasa.gov; nolina@science.oregonstate.edu; painter@geog.utah.edu RI Dozier, Jeff/B-7364-2009; Painter, Thomas/B-7806-2016 OI Dozier, Jeff/0000-0001-8542-431X; NR 47 TC 55 Z9 57 U1 4 U2 34 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD SEP PY 2009 VL 113 BP S25 EP S37 DI 10.1016/j.rse.2007.07.029 PG 13 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 478CG UT WOS:000268564800005 ER PT J AU Plaza, A Benediktsson, JA Boardman, JW Brazile, J Bruzzone, L Camps-Valls, G Chanussot, J Fauvel, M Gamba, P Gualtieri, A Marconcini, M Tilton, JC Trianni, G AF Plaza, Antonio Benediktsson, Jon Atli Boardman, Joseph W. Brazile, Jason Bruzzone, Lorenzo Camps-Valls, Gustavo Chanussot, Jocelyn Fauvel, Mathieu Gamba, Paolo Gualtieri, Anthony Marconcini, Mattia Tilton, James C. Trianni, Giovanna TI Recent advances in techniques for hyperspectral image processing SO REMOTE SENSING OF ENVIRONMENT LA English DT Article; Proceedings Paper CT Session on the State of Science of Environmental Applications of Imaging Spectroscopy held in honor of Alexander FH Goetz CY 2006 CL Denver, CO SP IEEE DE Classification; Hyperspectral imaging; Kernel methods; Support vector machines; Markov random fields; Mathematical morphology; Spatial/spectral processing; Spectral mixture analysis; Endmember extraction; Parallel processing ID REMOTE-SENSING IMAGES; SEMISUPERVISED CLASSIFICATION; ENDMEMBER EXTRACTION; SENSED DATA; SEGMENTATION; ALGORITHMS; VEGETATION; ABUNDANCE; ACCURACY; DESERTS AB Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the high-dimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas. and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms. (C) 2009 Elsevier Inc. All rights reserved. C1 [Plaza, Antonio] Univ Extremadura, Dept Technol Comp & Commun, Caceres, Spain. [Benediktsson, Jon Atli; Fauvel, Mathieu] Univ Iceland, Fac Elect & Comp Engn, Reykjavik, Iceland. [Boardman, Joseph W.] Analyt Imaging & Geophys LLC, Boulder, CO USA. [Brazile, Jason] Univ Zurich, Dept Geog, CH-8006 Zurich, Switzerland. [Bruzzone, Lorenzo; Marconcini, Mattia] Univ Trent, Dept Comp Sci & Informat Engn, I-38100 Trento, Italy. [Camps-Valls, Gustavo] Univ Valencia, Dept Elect Engn, E-46003 Valencia, Spain. [Chanussot, Jocelyn; Fauvel, Mathieu] Grenoble Inst Technol, GIPSA Lab, Grenoble, France. [Gamba, Paolo; Trianni, Giovanna] Univ Pavia, Dept Elect, I-27100 Pavia, Italy. [Gualtieri, Anthony; Tilton, James C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Gualtieri, Anthony] Global Sci & Technol, Greenbelt, MD USA. RP Plaza, A (reprint author), Univ Extremadura, Dept Technol Comp & Commun, Caceres, Spain. EM aplaza@unex.es RI Benediktsson, Jon/F-2861-2010; Bruzzone, Lorenzo/A-2076-2012; Gamba, Paolo/G-1959-2010; anzhi, yue/A-8609-2012; Plaza, Antonio/C-4455-2008 OI Benediktsson, Jon/0000-0003-0621-9647; Bruzzone, Lorenzo/0000-0002-6036-459X; Gamba, Paolo/0000-0002-9576-6337; Plaza, Antonio/0000-0002-9613-1659 NR 64 TC 438 Z9 453 U1 25 U2 181 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD SEP PY 2009 VL 113 BP S110 EP S122 DI 10.1016/j.rse.2007.07.028 PG 13 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 478CG UT WOS:000268564800011 ER PT J AU Pohorille, A Deamer, D AF Pohorille, Andrew Deamer, David TI Self-assembly and function of primitive cell membranes SO RESEARCH IN MICROBIOLOGY LA English DT Article DE Origins of cellular life; Amphiphile self-assembly; Membrane permeability; Origin of ion channels ID LIPID BILAYER-MEMBRANES; INFLUENZA-VIRUS; HYDROTHERMAL CONDITIONS; PHOSPHOLIPID-BILAYERS; AMPHIPATHIC PEPTIDES; TRANSMEMBRANE DOMAIN; PROTON CONDUCTION; ION-CHANNEL; M2 PROTEIN; RNA WORLD AB We describe possible pathways for separating amphiphilic molecules from organic material on the early earth to form membrane-bound structures required for the start of cellular life. We review properties of the first membranes and their function as permeability barriers. Finally, we discuss the emergence of protein-mediated ion transport across membranes, which facilitated many other cellular functions. (C) 2009 Elsevier Masson SAS. All rights reserved. C1 [Pohorille, Andrew] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA. [Pohorille, Andrew] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94158 USA. [Deamer, David] Univ Calif Santa Cruz, Dept Chem, Santa Cruz, CA 95064 USA. RP Pohorille, A (reprint author), NASA, Ames Res Ctr, Exobiol Branch, MS 239-4, Moffett Field, CA 94035 USA. EM pohorill@max.arc.nasa.gov; deamer@chemistry.ucsc.edu FU NASA Exobiology Program FX The authors thank the NASA Exobiology Program for supporting this work through their individual P.I. grants. NR 63 TC 28 Z9 29 U1 3 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0923-2508 J9 RES MICROBIOL JI Res. Microbiol. PD SEP PY 2009 VL 160 IS 7 BP 449 EP 456 DI 10.1016/j.resmic.2009.06.004 PG 8 WC Microbiology SC Microbiology GA 520LK UT WOS:000271845600003 PM 19580865 ER PT J AU Campbell, JF Bryant, RG AF Campbell, Joel F. Bryant, Robert G. TI A simple sensor model for THUNDER actuators SO SMART MATERIALS & STRUCTURES LA English DT Article ID STRAIN SOLID ELEMENT; DEFORMATION CHARACTERISTICS; PIEZOELECTRIC ACTUATORS; SHAPE AB A quasi-static (low frequency) model is developed for THUNDER actuators configured as displacement sensors based on a simple Raleigh-Ritz technique. This model is used to calculate charge as a function of displacement. Using this and the calculated capacitance, voltage versus displacement and voltage versus electrical load curves are generated and compared with measurements. It is shown that this model gives acceptable results and is useful for determining rough estimates of sensor output for various loads, laminate configurations and thicknesses. C1 [Campbell, Joel F.; Bryant, Robert G.] NASA Langley Res Ctr, Hampton, VA 23681 USA. RP Campbell, JF (reprint author), NASA Langley Res Ctr, MS 488, Hampton, VA 23681 USA. EM joel.f.campbell@nasa.gov NR 19 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0964-1726 J9 SMART MATER STRUCT JI Smart Mater. Struct. PD SEP PY 2009 VL 18 IS 9 AR 095011 DI 10.1088/0964-1726/18/9/095011 PG 6 WC Instruments & Instrumentation; Materials Science, Multidisciplinary SC Instruments & Instrumentation; Materials Science GA 485XJ UT WOS:000269158500011 ER PT J AU Ilonidis, S Zhao, J Hartlep, T AF Ilonidis, S. Zhao, J. Hartlep, T. TI Time -aEuro parts per thousand Distance Solar Far-Side Imaging Using Three-Skip Acoustic Signals SO SOLAR PHYSICS LA English DT Article DE Far-side imaging; Helioseismology; Active regions ID ACTIVE REGIONS; SUN; HOLOGRAPHY AB The purpose of this work is to image solar far-side active regions using acoustic signals with three skips and improve the quality of existing images. The mapping of far-side active regions was first made possible using the helioseismic holography technique by use of four-skip acoustic signals. The quality of far-side images was later improved with the combination of four- and five-skip signals using the time -aEuro parts per thousand distance helioseismology technique. In this work, we explore the possibility of making three-skip far-side images of active regions, and improving the image quality by combining the three-skip images with the images obtained from existing techniques. A new method of combining images is proposed that increases the signal-to-noise ratio and reduces the appearance of spurious features. C1 [Ilonidis, S.; Zhao, J.] Stanford Univ, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Hartlep, T.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Ilonidis, S (reprint author), Stanford Univ, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. EM ilonidis@sun.stanford.edu RI Zhao, Junwei/A-1177-2007; OI Hartlep, Thomas/0000-0002-5062-9507 FU NASA Living With a Star program; NASA Postdoctoral Program FX The numerical simulations used in this paper were performed at NASA Ames Research Center. T. H. was supported by the NASA Living With a Star program and the NASA Postdoctoral Program administered by Oak Ridge Associated Universities under contract with NASA. NR 13 TC 9 Z9 9 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 EI 1573-093X J9 SOL PHYS JI Sol. Phys. PD SEP PY 2009 VL 258 IS 2 BP 181 EP 189 DI 10.1007/s11207-009-9428-4 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 483YF UT WOS:000269008700001 ER PT J AU Zerefos, CS Eleftheratos, K Meleti, C Kazadzis, S Romanou, A Ichoku, C Tselioudis, G Bais, A AF Zerefos, C. S. Eleftheratos, K. Meleti, C. Kazadzis, S. Romanou, A. Ichoku, C. Tselioudis, G. Bais, A. TI Solar dimming and brightening over Thessaloniki, Greece, and Beijing, China SO TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY LA English DT Article ID AEROSOL OPTICAL DEPTH; AIR-POLLUTION; RADIATIVE-TRANSFER; GLOBAL RADIATION; NORTHERN GREECE; UV-B; VARIABILITY; IRRADIANCE; OZONE; INSTRUMENT AB This work presents evidence that ultraviolet (UV)-A solar irradiances show increasing trends at Thessaloniki, Greece, where air quality has been improving because of air pollution abatement strategies. In contrast, over Beijing, China, where air quality measures were taken later, solar brightening was delayed. It is shown that until the early 1990s, UV-A irradiances over Thessaloniki show a downward trend of -0.5% yr(-1), which reverses sign and becomes positive in the last decade (+0.8% yr(-1)). This brightening is related to a decreasing trend in local aerosol amounts. Both the negative rate of change (dimming) and the positive rate of change (brightening) are amplified in the UV-A solar irradiances, compared with the total solar irradiance, by a factor of 2.6. Satellite derived short-wave radiation over Beijing showed negative changes of -0.4% (1984-1991) and -0.1% yr(-1) during 1994-2006. The negative trend in solar radiation continued even during 2000-2006. Satellite-derived aerosol optical depth (AOD) increased by +1.0% yr(-1) during 2000-2006, in agreement with in situ measurements of increasing AOD. Therefore, a statistically significant change from dimming to brightening in Beijing could not be seen in the last decade, but it is expected to occur in the near future. C1 [Zerefos, C. S.; Eleftheratos, K.] Acad Athens, Biomed Res Fdn, Athens, Greece. [Zerefos, C. S.; Kazadzis, S.] Natl Observ Athens, Athens, Greece. [Zerefos, C. S.; Eleftheratos, K.] Univ Athens, Fac Geol & Geoenvironm, GR-10679 Athens, Greece. [Meleti, C.; Bais, A.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki, Greece. [Kazadzis, S.] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland. [Zerefos, C. S.; Romanou, A.; Tselioudis, G.] Acad Athens, Res Ctr Atmospher Phys & Climatol, Athens, Greece. [Ichoku, C.] NASA Goddard Space Flight Ctr, Climate & Radiat Branch, Greenbelt, MD USA. RP Zerefos, CS (reprint author), Acad Athens, Biomed Res Fdn, Athens, Greece. EM zerefos@geol.uoa.gr RI Kazadzis, Stelios/A-5628-2011; Kazadzis, Stelios/F-8667-2011; Bais, Alkiviadis/D-2230-2009; Ichoku, Charles/E-1857-2012; OI Bais, Alkiviadis/0000-0003-3899-2001; Ichoku, Charles/0000-0003-3244-4549; Kazadzis, Stelios/0000-0002-8624-8247 FU EU [SCOUT-O3 (505390-GOCE-CT-2004), QUANTIFY (003893-GOCE)]; 'Air Quality Monitoring and Forecasting in China' (AMFIC); Ozone Monitoring Instrument (VAP-OMI) [AOR A/119693-PIEF-GA-2008-219908] FX We thank the AERONET PIs Hongbin Chen and Philippe Goloub for their effort in establishing and maintaining the Beijing site. We would like to thank Dr. A. Kazantzidis for his assistance with the DISORT radiative transfer model SW calculations. This study was conducted within the EU-funded projects SCOUT-O3 (505390-GOCE-CT-2004), QUANTIFY (003893-GOCE) and 'Air Quality Monitoring and Forecasting in China' (AMFIC). S.K. would like to acknowledge the Marie Curie Intra European fellowship: 'Validation of Aerosol optical Properties and surface Irradiance measured from Ozone Monitoring Instrument (VAP-OMI) on board of AURA satellite', AOR A/119693-PIEF-GA-2008-219908. NR 54 TC 22 Z9 25 U1 0 U2 7 PU CO-ACTION PUBLISHING PI JARFALLA PA RIPVAGEN 7, JARFALLA, SE-175 64, SWEDEN SN 0280-6509 EI 1600-0889 J9 TELLUS B JI Tellus Ser. B-Chem. Phys. Meteorol. PD SEP PY 2009 VL 61 IS 4 BP 657 EP 665 DI 10.1111/j.1600-0889.2009.00425.x PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 484YP UT WOS:000269087100007 ER PT J AU Kaul, AB Khan, AR Bagge, L Megerian, KG LeDuc, HG Epp, L AF Kaul, Anupama B. Khan, Abdur R. Bagge, Leif Megerian, Krikor G. LeDuc, Henry G. Epp, Larry TI Interrogating vertically oriented carbon nanofibers with nanomanipulation for nanoelectromechanical switching applications SO APPLIED PHYSICS LETTERS LA English DT Article ID NANOTUBES; EMISSION AB We have demonstrated electrostatic switching in vertically oriented carbon nanofibers synthesized on refractory metallic nitride substrates, where pull-in voltages V(pi) ranged from 10 to 40 V. A nanoprobe was used as the actuating electrode inside a scanning-electron microscope and van der Waals interactions at these length scales appeared significant, suggesting such structures are promising for nonvolatile memory applications. A finite element model was also developed to determine a theoretical Vpi and results were compared to experiment. Nanomanipulation tests also revealed tubes synthesized directly on Si by dc plasma-enhanced chemical-vapor deposition with ammonia and acetylene were electrically unsuitable for dc nanoelectromechanical switching applications. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3211851] C1 [Kaul, Anupama B.; Khan, Abdur R.; Bagge, Leif; Megerian, Krikor G.; LeDuc, Henry G.; Epp, Larry] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Khan, Abdur R.] Univ So Calif, Keck Sch Med, Los Angeles, CA 90089 USA. [Bagge, Leif] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA. RP Kaul, AB (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. EM anupama.b.kaul@jpl.nasa.gov FU National Aeronautics and Space Administration [01STCR, R.08.023.060] FX We acknowledge assistance from R. Ruiz, and G. DeRose and B. Chim both of the California Institute of Technology (Caltech), with SEM setup, R. Kowalczyk for assistance with PECVD, and P. von Allmen and R. Baron for useful discussions. We gratefully acknowledge critical support and infrastructure provided for this work by the Kavli Nanoscience Institute at Caltech. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and was funded through the internal Research and Technology Development (R&TD) program (01STCR, R.08.023.060). NR 16 TC 10 Z9 10 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 31 PY 2009 VL 95 IS 9 AR 093103 DI 10.1063/1.3211851 PG 3 WC Physics, Applied SC Physics GA 492AK UT WOS:000269625800051 ER PT J AU Niles, PB Zolotov, MY Leshin, LA AF Niles, Paul B. Zolotov, Mikhail Yu. Leshin, Laurie A. TI Insights into the formation of Fe- and Mg-rich aqueous solutions on early Mars provided by the ALH 84001 carbonates SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE Mars; ALH 84001; carbonates; meteorite; aqueous solutions; carbon dioxide ID MARTIAN METEORITE ALH84001; ALLAN HILLS 84001; WESTERN UNITED-STATES; EVAPORATING BRINES; MERIDIANI-PLANUM; LOW-TEMPERATURE; THERMODYNAMIC PROPERTIES; STABLE-ISOTOPES; OXYGEN-ISOTOPE; WATER AB The chemical and isotopic pattern of the zoned carbonate globules in the ALH 84001 meteorite reveals a unique aqueous environment on early Mars. If the evolution of the fluid composition was dictated primarily by carbonate precipitation, the zoning pattern of the carbonates can constrain the fluid to have had an Mg/Ca mole ratio>similar to 5.3 and a Fe/Ca mole ratio>similar to 1 prior to the formation of the carbonates. Chemical equilibrium modeling of water-rock interactions indicates that low temperatures and low pH favor the formation of an aqueous solution with elevated Mg and Fe concentrations. The modeling shows that a sufficiently Fe- and Mg-rich fluid Could have formed through low-temperature (<100 degrees C) subsurface aqueous alteration of an ALH 84001-type rock at pH 5-7. This range of pH corresponds to an elevated CO(2) fugacity (similar to 0.1-1 bar). Formation of ALH 84001 carbonates could have been driven by clegassing of CO(2) and corresponding pH increase in near-surface environments during an upwelling of subsurface CO(2)-rich solutions. This scenario is consistent with the unaltered nature of the ALH 84001 rock and with chemical and isotopic composition of its carbonates. (C) 2009 Published by Elsevier B.V. C1 [Niles, Paul B.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Zolotov, Mikhail Yu.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Leshin, Laurie A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Niles, PB (reprint author), NASA, Lyndon B Johnson Space Ctr, Mail Code KR,2101 NASA Pkwy, Houston, TX 77058 USA. EM paul.b.niles@nasa.gov FU National Aeronautics and Space Administration, Mars Fundamental Research Program FX Critical reviews and recommendations made by Nick Tosca and an anonymous reviewer improved this manuscript and are greatly appreciated. This material is based upon the work supported by grants from the National Aeronautics and Space Administration issued through the Mars Fundamental Research Program to Dr. Niles and Dr. Zolotov. We thank Mikhail Mironenko for sharing the GEOCHEQ code which was used for these calculations. NR 69 TC 14 Z9 14 U1 1 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD AUG 30 PY 2009 VL 286 IS 1-2 BP 122 EP 130 DI 10.1016/j.epsl.2009.06.039 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 504WB UT WOS:000270647500013 ER PT J AU Hatamleh, O Hill, M Forth, S Garcia, D AF Hatamleh, Omar Hill, Michael Forth, Scott Garcia, Daniel TI Fatigue crack growth performance of peened friction stir welded 2195 aluminum alloy joints at elevated and cryogenic temperatures SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Friction stir welding; Laser peening; Shot peening; Fatigue crack growth; Aluminum-lithium; 2195 ID HIGH-CYCLE FATIGUE; MECHANICAL-PROPERTIES; 7075-T7351 ALUMINUM; RESIDUAL-STRESSES; FRACTURE-BEHAVIOR; LASER; SURFACE; MICROSTRUCTURE; LIFE AB The effects of various surface treatments on fatigue crack growth and residual stress distributions in friction stir welded 2195 aluminum alloy joints were investigated. The objective was to understand the degree to which residual stress treatments can reduce fatigue crack growth rates, and enhance fatigue life of friction stir welded components. Specimens were fabricated from 12.5 mm thick 2195-T8 aluminum plate, with a central friction stir weld along their length. Residual stresses were measured for three specimen conditions: as-welded (AW), welded then shot peened (SP), and welded then laser peened (LP). Crack growth rate tests were performed in middle-cracked tension specimens under constant amplitude load for each of the three conditions (AW, SP, LP) and at three temperatures (room, elevated, and cryogenic). At room and elevated temperature, crack growth rates were similar in the AW and SP conditions and were significantly lower for the LP condition. At cryogenic temperature, it was difficult to discern a trend between residual stress treatment and crack growth rate data. Laser peening over the friction stir welded material resulted in the fatigue crack growth rates being comparable to those for base material. Published by Elsevier B.V. C1 [Hatamleh, Omar] NASA, Lyndon B Johnson Space Ctr, Struct Branch, Houston, TX 77058 USA. [Hill, Michael] Univ Calif Davis, Davis, CA 95616 USA. [Forth, Scott] NASA, Lyndon B Johnson Space Ctr, Mat & Proc Branch, Houston, TX 77058 USA. [Garcia, Daniel] Sci Applicat Int Corp, Houston, TX 77058 USA. RP Hatamleh, O (reprint author), NASA, Lyndon B Johnson Space Ctr, Struct Branch, Houston, TX 77058 USA. EM omar.hatamleh-1@nasa.gov RI Hill, Michael/A-2525-2016 OI Hill, Michael/0000-0002-9168-211X NR 49 TC 14 Z9 15 U1 4 U2 34 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD AUG 30 PY 2009 VL 519 IS 1-2 BP 61 EP 69 DI 10.1016/j.msea.2009.04.049 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 483EC UT WOS:000268944100009 ER PT J AU Pechony, O Shindell, DT AF Pechony, O. Shindell, D. T. TI Fire parameterization on a global scale SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CLIMATE-CHANGE; BURNED AREA; 20TH-CENTURY; ECOSYSTEMS; EMISSIONS; DYNAMICS; PATTERNS; REGIMES; DANGER AB We present a convenient physically based global-scale fire parameterization algorithm for global climate models. We indicate environmental conditions favorable for fire occurrence based on calculation of the vapor pressure deficit as a function of location and time. Two ignition models are used. One assumes ubiquitous ignition, the other incorporates natural and anthropogenic sources, as well as anthropogenic fire suppression. Evaluation of the method using Global Precipitation Climatology Project precipitation, National Centers for Environmental Prediction/National Center for Atmospheric Research temperature and relative humidity, and Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index as a proxy for global vegetation density gives results in remarkable correspondence with global fire patterns observed from the MODIS and Visible and Infrared Scanner satellite instruments. The parameterized fires successfully reproduce the spatial distribution of global fires as well as the seasonal variability. The interannual variability of global fire activity derived from the 20-year advanced very high resolution radiometer record are well reproduced using Goddard Institute for Space Studies general circulation models climate simulations, as is the response to the climate changes following the eruptions of El Chichon and Mount Pinatubo. In conjunction with climate models and data sets on vegetation changes with time, the suggested fire parameterization offers the possibility to estimate relative variations of global fire activity for past and future climates. C1 [Pechony, O.; Shindell, D. T.] Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Pechony, O (reprint author), Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY 10025 USA. EM pechony@gmail.com RI Shindell, Drew/D-4636-2012 FU NASA FX Our sincere thanks are due to David Riano for kindly sharing with us the AVHRR burnt area estimates. We thank NASA's Atmospheric Chemistry Modeling and Analysis Program for supporting this work. NR 46 TC 40 Z9 40 U1 3 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 29 PY 2009 VL 114 AR D16115 DI 10.1029/2009JD011927 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 488LG UT WOS:000269350600004 ER PT J AU Wu, MLC Reale, O Schubert, SD Suarez, MJ Koster, RD Pegion, PJ AF Wu, Man-Li C. Reale, Oreste Schubert, Siegfried D. Suarez, Max J. Koster, Randy D. Pegion, Philip J. TI African Easterly Jet: Structure and Maintenance SO JOURNAL OF CLIMATE LA English DT Article ID SURFACE PARAMETERIZATION SCHEMES; LAND-SURFACE; PRECIPITATION VARIABILITY; 3-DIMENSIONAL STRUCTURE; PART I; EVAPORATION VARIABILITY; TEMPERATURE ANOMALIES; CLIMATE; WAVES; REANALYSIS AB This article investigates the African easterly jet (AEJ), its structure, and the forcings contributing to its maintenance, critically revisiting previous work that attributed the maintenance of the jet to soil moisture gradients over tropical Africa. A state-of-the-art global model in a high-end computer framework is used to produce a three-member 73-yr ensemble run forced by observed SST to represent the control run. The AEJ as produced by the control is compared with the representation of the AEJ in the 40-yr ECMWF Re-Analysis (ERA-40) and other observational datasets and found to be very realistic. Five experiments are then performed, each represented by sets of three-member 22-yr-long (1980-2001) ensemble runs. The goal of the experiments is to investigate the role of meridional soil moisture gradients, different land surface properties, and orography. Unlike previous studies, which have suppressed soil moisture gradients within a highly idealized framework (i.e., the so-called bucket model), terrestrial evaporation control is here achieved with a highly sophisticated land surface treatment and with an extensively tested and complex methodology. The results show that the AEJ is suppressed by a combination of absence of meridional evaporation gradients over Africa and constant vegetation, even if the individual forcings taken separately do not lead to the AEJ disappearance, but only its modification. Moreover, the suppression of orography also leads to a different circulation in which there is no AEJ. This work suggests that it is not just soil moisture gradients but a unique combination of geographical features present only in northern tropical Africa that causes and maintains the jet. C1 [Wu, Man-Li C.; Schubert, Siegfried D.; Suarez, Max J.; Koster, Randy D.; Pegion, Philip J.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Reale, Oreste] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Reale, Oreste] Univ Maryland, Baltimore, MD 21201 USA. RP Wu, MLC (reprint author), NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. EM man-li.c.wu@nasa.gov RI Pegion, Philip/E-5247-2012; Koster, Randal/F-5881-2012 OI Koster, Randal/0000-0001-6418-6383 FU NASA Earth Science Enterprise's Global Modeling and Analysis Program FX This work was supported by the NASA Earth Science Enterprise's Global Modeling and Analysis Program. NR 60 TC 17 Z9 17 U1 0 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD AUG 28 PY 2009 VL 22 IS 17 BP 4459 EP 4480 DI 10.1175/2009JCLI2584.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 488UL UT WOS:000269375600002 ER PT J AU Bell, JF Wolff, MJ Malin, MC Calvin, WM Cantor, BA Caplinger, MA Clancy, RT Edgett, KS Edwards, LJ Fahle, J Ghaemi, F Haberle, RM Hale, A James, PB Lee, SW McConnochie, T Dobrea, EN Ravine, MA Schaeffer, D Supulver, KD Thomas, PC AF Bell, J. F., III Wolff, M. J. Malin, M. C. Calvin, W. M. Cantor, B. A. Caplinger, M. A. Clancy, R. T. Edgett, K. S. Edwards, L. J. Fahle, J. Ghaemi, F. Haberle, R. M. Hale, A. James, P. B. Lee, S. W. McConnochie, T. Dobrea, E. Noe Ravine, M. A. Schaeffer, D. Supulver, K. D. Thomas, P. C. TI Mars Reconnaissance Orbiter Mars Color Imager (MARCI): Instrument description, calibration, and performance SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Review ID HUBBLE-SPACE-TELESCOPE; THERMAL EMISSION SPECTROMETER; GENERAL-CIRCULATION MODEL; MARTIAN DUST STORMS; WATER ICE CLOUDS; MODULATION TRANSFER-FUNCTION; NORTH POLAR-CAP; INTERANNUAL VARIABILITY; CAMERA OBSERVATIONS; MARINER 9 AB The Mars Color Imager (MARCI) instrument aboard the NASA Mars Reconnaissance Orbiter spacecraft is a wide-angle, multispectral Charge-Coupled Device (CCD) "push frame'' imaging camera designed to provide frequent, synoptic-scale color imaging of the Martian atmosphere and surface. MARCI uses a 1024 x 1024 pixel interline transfer CCD detector that has seven narrowband interference filters bonded directly to the CCD. Five of the filters are in the visible to short-wave near-infrared wavelength range (437, 546, 604, 653, and 718 nm) and two are in the ultraviolet range (258 and 320 nm). Here we describe the scientific objectives of the MARCI investigation and the basic characteristics, calibration, and in-flight performance of the MARCI instrument. We include several examples of early scientific results and investigations enabled by an extensive preflight and in-flight calibration program and by validation of the performance of the instrument in flight. C1 [Bell, J. F., III; McConnochie, T.; Dobrea, E. Noe; Schaeffer, D.; Thomas, P. C.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Wolff, M. J.; Clancy, R. T.] Space Sci Inst, Boulder, CO 80301 USA. [Malin, M. C.; Cantor, B. A.; Caplinger, M. A.; Edgett, K. S.; Fahle, J.; Ghaemi, F.; Ravine, M. A.; Supulver, K. D.] Malin Space Sci Syst Inc, San Diego, CA 92121 USA. [Calvin, W. M.] Univ Nevada, Dept Geol Sci & Engn, Reno, NV 89557 USA. [Edwards, L. J.; Haberle, R. M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Hale, A.] Jet Prop Lab, Pasadena, CA 91103 USA. [James, P. B.] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Lee, S. W.] Denver Museum Nat & Sci, Denver, CO 80205 USA. RP Bell, JF (reprint author), Cornell Univ, Dept Astron, 402 Space Sci Bldg, Ithaca, NY 14853 USA. EM jfb8@cornell.edu OI Edgett, Kenneth/0000-0001-7197-5751 FU NASA; Mars Reconnaissance Orbiter Project to Malin Space Science Systems, Inc.; Space Telescope Science Institute [11314] FX The MARCI development, operations, and science teams are privileged to have had an enormous amount of help with this investigation from the Mars Reconnaissance Orbiter spacecraft and operations teams at Lockheed Martin (Denver, CO) and the Jet Propulsion Laboratory (Pasadena, CA). The authors thank Jeff Johnson and an anonymous reviewer for comments and suggestions that substantially improved an earlier draft of this paper. We also thank Shireen Gonzaga of the Space Telescope Science Institute for helpful conversations regarding the absolute calibration of the HST data and Ryan Anderson and Karrie Kressler at Cornell University for assistance with MARCI calibration and mapping software. This work is funded by NASA contracts from the Mars Reconnaissance Orbiter Project to Malin Space Science Systems, Inc., and Cornell University and was also supported in part by Space Telescope Science Institute DD grant 11314. NR 159 TC 19 Z9 19 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD AUG 28 PY 2009 VL 114 AR E08S92 DI 10.1029/2008JE003315 PG 41 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 488MP UT WOS:000269354200001 ER PT J AU Pulkkinen, A Taktakishvili, A Odstrcil, D Jacobs, W AF Pulkkinen, A. Taktakishvili, A. Odstrcil, D. Jacobs, W. TI Novel approach to geomagnetically induced current forecasts based on remote solar observations SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID WIND; SYSTEMS; DISTURBANCES; SURFACE; FIELDS; EARTH; MODEL AB In this paper, a novel approach that uses remote solar observations to forecast geomagnetically induced currents (GIC) is introduced. The approach utilizes first-principles-based propagation of the observed coronal mass ejections in the heliosphere and uses the modeled transient properties at the Earth to make site-specific statistical estimates of GIC. The approach provides unprecedented forecast lead time of 1-2 days. The approach is validated for two nodes of the North American power transmission system by means of 14 coronal mass ejection events for which GIC observations are available. It is shown that the mean of the absolute value of the error in the GIC event start time prediction is about 5 h while the length of the events is underestimated on average by 17 h. The success rate, i.e., hits versus the total number of events, of the predictions are 12/14 and 7/14 for the two GIC stations, respectively. The implications of the new approach and the accuracy of the approach are discussed and possible avenues for future improvements are outlined. C1 [Pulkkinen, A.; Taktakishvili, A.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Odstrcil, D.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Jacobs, W.] Elect Res & Management, Cabot, PA 16023 USA. [Pulkkinen, A.; Taktakishvili, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. RP Pulkkinen, A (reprint author), Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. EM pulkkinen@nasa.gov NR 24 TC 5 Z9 5 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD AUG 27 PY 2009 VL 7 AR S08005 DI 10.1029/2008SW000447 PG 8 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 488OB UT WOS:000269358100001 ER PT J AU Jackson, DL Wick, GA Robertson, FR AF Jackson, Darren L. Wick, Gary A. Robertson, Franklin R. TI Improved multisensor approach to satellite-retrieved near-surface specific humidity observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID LATENT-HEAT FLUX; GLOBAL OCEANS; BOUNDARY-LAYER; SSM/I; ALGORITHM; WATER; VAPOR AB A multisensor microwave retrieval of near-surface 10 m specific humidity (Qa) using satellite observations from the advanced microwave sounding unit-A (AMSU-A), the Special Sensor Microwave Temperature Sounder-2, and the Special Sensor Microwave Imager is improved upon in this study. Refinements to the regression formula, training data set, collocation procedure, and height adjustment to 10 m were used to improve retrievals from two different sensor combinations. Independent validation with the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) indicates a lower overall bias of similar to 0.3 g/kg and a smaller root-mean-square difference of similar to 0.4 g/kg than with several previously published single-sensor Qa retrievals. A significant regional Qa wet bias of similar to 3 g/kg in the summer over the North Pacific was found for all satellite retrievals, and a correction was developed using an inversion index defined using sea surface temperature and AMSU-A lower tropospheric temperature observations. An assessment of ICOADS ship and buoy validation data indicated uncertainties related to height adjustments of these in situ observations to be 0.2-0.4 g/kg, while hygrometer differences and solar heating effects had smaller uncertainties of less than 0.05 g/kg. Validation of the updated multisensor retrievals with ICOADS over an 8-year period from 1999 to 2006 revealed a reduced magnitude of the regional biases when compared to previously published retrievals. Regional Qa differences, particularly in the subtropical high regions, are shown to play a significant role in determination of surface latent heat flux. C1 [Jackson, Darren L.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Jackson, Darren L.; Wick, Gary A.] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Robertson, Franklin R.] NASA, Marshall Space Flight Ctr, Huntsville, AL 35805 USA. RP Jackson, DL (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. EM darren.l.jackson@noaa.gov RI Jackson, Darren/D-5506-2015 OI Jackson, Darren/0000-0001-5211-7866 NR 25 TC 19 Z9 19 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 26 PY 2009 VL 114 AR D16303 DI 10.1029/2008JD011341 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 488KZ UT WOS:000269349900001 ER PT J AU Lyver, JW Blaisten-Barojas, E AF Lyver, John W., IV Blaisten-Barojas, Estela TI Effects of the interface between two Lennard-Jones crystals on the lattice vibrations: a molecular dynamics study SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID THERMAL-CONDUCTIVITY; KAPITZA CONDUCTANCE; HEAT-FLOW; COMPUTER EXPERIMENTS; GRAIN-BOUNDARIES; RESISTANCE; SIMULATION; SUPERLATTICES; TEMPERATURES; SOLIDS AB Effects on the density of vibrational states due to the interface created between two types of solid Lennard-Jones systems is investigated as a function of the atomic masses and model potential parameters. The interface is responsible for a depletion of modes at low frequency and an enhancement at higher frequencies when the potential parameters are increased relative to the reference solid. Opposite trends are observed when the atomic mass increases. When a heat current is established across the interface the density of vibrational states at low frequency is increased and the temperature profile across the binary sample displays a discontinuity at the interface, which is more pronounced as the material parameters become more dissimilar. The thermal boundary resistance (Kapitza resistance) increases as the difference between the two material properties increases and decreases with increasing temperature. It is predicted that, as temperature decreases, the Kapitza length increases as T(-2) at the nanoscale. Plots of the thermal conductivity as a function of temperature for solids with various parameters are provided, all of them showing the expected T(-1) behavior. C1 [Lyver, John W., IV; Blaisten-Barojas, Estela] George Mason Univ, Computat Mat Sci Ctr, Fairfax, VA 22030 USA. [Lyver, John W., IV; Blaisten-Barojas, Estela] George Mason Univ, Dept Computat & Data Sci, Fairfax, VA 22030 USA. [Lyver, John W., IV] NASA, Off Safety & Mission Assurance, Washington, DC 20546 USA. RP Lyver, JW (reprint author), George Mason Univ, Computat Mat Sci Ctr, Fairfax, VA 22030 USA. EM blaisten@gmu.edu RI Blaisten-Barojas, Estela/B-9520-2009 FU National Science Foundation [CHE-0626111]; Supercomputing Center of the College of Science of George Mason University FX This work was supported in part by the National Science Foundation, grant CHE-0626111. We acknowledge the Supercomputing Center of the College of Science of George Mason University for the computer time and facilities allocated to this project. NR 28 TC 9 Z9 9 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD AUG 26 PY 2009 VL 21 IS 34 AR 345402 DI 10.1088/0953-8984/21/34/345402 PG 8 WC Physics, Condensed Matter SC Physics GA 480PI UT WOS:000268747900013 ER PT J AU Xian, P Reid, JS Turk, JF Hyer, EJ Westphal, DL AF Xian, Peng Reid, Jeffrey S. Turk, Joseph F. Hyer, Edward J. Westphal, Douglas L. TI Impact of modeled versus satellite measured tropical precipitation on regional smoke optical thickness in an aerosol transport model SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CLIMATE MODELS; SCHEME; CONVECTION; PRODUCTS AB Aerosol and climate models are dependent on the parameterizations of the underlying meteorological model. Precipitation schemes in global meteorological models are designed to close the regional water budget, without concern for representative wet removal. By substituting numerical model precipitation for a multi-satellite precipitation dataset, we demonstrate the impact of modeled versus satellite-derived precipitation on aerosol optical depth (AOD) in the Navy Aerosol Analysis and Prediction System (NAAPS). The model and satellite-derived precipitation are shown to have similar precipitation amounts, but the precipitation area from the model is about twice that in the satellite data. The resulting difference in scavenging results in an increase in mid-visible AOD of about 20-200% in parts of Southeast Asia and South America during the burning seasons (or 0.1-0.2 in AOD). This suggests that care must be taken when combining free-running model and remote sensing data to evaluate smoke-cloud interactions or to estimate source magnitudes. Citation: Xian, P., J. S. Reid, J. F. Turk, E. J. Hyer, and D. L. Westphal (2009), Impact of modeled versus satellite measured tropical precipitation on regional smoke optical thickness in an aerosol transport model, Geophys. Res. Lett., 36, L16805, doi:10.1029/2009GL038823. C1 [Xian, Peng; Reid, Jeffrey S.; Hyer, Edward J.; Westphal, Douglas L.] USN, Res Lab, Monterey, CA 93943 USA. [Turk, Joseph F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Xian, P (reprint author), USN, Res Lab, Monterey, CA 93943 USA. EM peng.xian@nrlmry.navy.mil RI Reid, Jeffrey/B-7633-2014; Hyer, Edward/E-7734-2011 OI Reid, Jeffrey/0000-0002-5147-7955; Hyer, Edward/0000-0001-8636-2026 FU Office of Naval Research Code 32; NASA FX Funding for this project was provided by the Office of Naval Research Code 32 and the NASA interdisciplinary science program. We thank Timothy F. Hogan for providing the NOGAPS codes and helpful discussions on NOGAPS performance. J. F. Turk's contribution to this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 26 TC 20 Z9 20 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 25 PY 2009 VL 36 AR L16805 DI 10.1029/2009GL038823 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 488KJ UT WOS:000269348200001 ER PT J AU Ganguly, D Ginoux, P Ramaswamy, V Dubovik, O Welton, J Reid, EA Holben, BN AF Ganguly, Dilip Ginoux, P. Ramaswamy, V. Dubovik, O. Welton, J. Reid, E. A. Holben, B. N. TI Inferring the composition and concentration of aerosols by combining AERONET and MPLNET data: Comparison with other measurements and utilization to evaluate GCM output SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SKY RADIANCE MEASUREMENTS; OPTICAL-PROPERTIES; WAVELENGTH DEPENDENCE; TROPOSPHERIC AEROSOLS; NORTH-AMERICA; AIR-POLLUTION; UNITED-STATES; SATELLITE; NETWORK; AEROCOM AB In this work we demonstrate a method to derive the concentration of aerosol components from the spectral measurements of AOD (aerosol optical depth) and single scattering albedo along with their size distribution and extinction profile available from AERONET (Aerosol Robotic Network) and MPLNET (Micro-pulse Lidar Network) stations. The technique involves finding the best combination of aerosol concentration by minimizing differences between measured and calculated values of aerosol parameters such as AOD, single scattering albedo, and size distribution. We applied this technique over selected sites in three different regions of the United States (West coast, Great Plains, and North-East). Our results are then compared with the measured concentration of aerosol components available from IMPROVE (Interagency Monitoring of Protected Visual Environments) and EPA (Environmental Protection Agency) network, as well as two different versions of the GFDL (Geophysical Fluid Dynamics Laboratory) General Circulation Model AM2 with online and offline aerosols. In general, concentrations retrieved by our technique compare well with the ground-based measurements, but there are some discrepancies possibly due to the inherent differences in temporal and spatial scales of data averaging or some of the assumptions made in our study. Over continental North America, the online version of AM2 appears to overestimate sulfate concentration approximately by a factor of two and underestimate organic carbon by nearly the same amount. Results of our sensitivity study show that the errors in the retrieval of black carbon and sulfate concentrations could be as high as 100% when there is a large bias of similar to 0.05 in the reference values of single scattering albedo under high AOD (>= 0.5 0.44 mu m) conditions. Knowledge on the vertical distribution of aerosols is crucial for an accurate retrieval of surface concentration of aerosols. We also determine the composition and concentration of elevated aerosol layers using this technique. C1 [Ganguly, Dilip; Ginoux, P.; Ramaswamy, V.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA. [Ganguly, Dilip; Ramaswamy, V.] Princeton Univ, Atmospher & Ocean Sci Program, Princeton, NJ 08544 USA. [Dubovik, O.] Univ Lille, CNRS, Opt Atmospher Lab, F-59655 Villeneuve Dascq, France. [Welton, J.; Holben, B. N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Reid, E. A.] USN, Aerosol & Radiat Modeling Sect, Marine Meteorol Div, Res Lab, Monterey, CA 93943 USA. RP Ganguly, D (reprint author), NOAA, Geophys Fluid Dynam Lab, 201 Forrestal Rd, Princeton, NJ 08540 USA. EM dilip.ganguly@noaa.gov RI Ginoux, Paul/C-2326-2008; Welton, Ellsworth/A-8362-2012; Dubovik, Oleg/A-8235-2009 OI Ginoux, Paul/0000-0003-3642-2988; Dubovik, Oleg/0000-0003-3482-6460 FU Department of Energy, United States of America FX The Lidar data from Cart Site were obtained from the archive of the Atmospheric Radiation Measurement Climate Research Facility which is supported by the Department of Energy, United States of America. NR 63 TC 15 Z9 15 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD AUG 25 PY 2009 VL 114 AR D16203 DI 10.1029/2009JD011895 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 488KY UT WOS:000269349800005 ER PT J AU Anderson, BT Ruane, AC Roads, JO Kanamitsu, M AF Anderson, Bruce T. Ruane, Alex C. Roads, John O. Kanamitsu, Masao TI Estimating the Influence of Evaporation and Moisture-Flux Convergence upon Seasonal Precipitation Rates. Part II: An Analysis for North America Based upon the NCEP-DOE Reanalysis II Model SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID SOUTHWESTERN UNITED-STATES; ATMOSPHERIC HYDROLOGIC-CYCLE; WATER-VAPOR TRANSPORT; SOIL-MOISTURE; PRINCIPAL COMPONENTS; SUMMER PRECIPITATION; ENERGY BUDGET; LAND; MONSOON; OSCILLATION AB In this paper, a diagnostic metric-termed the local-convergence ratio-is used to analyze the contribution of evaporation and atmospheric moisture-flux convergence to model-based estimates of climatological precipitation over the North American continent. Generally, the fractional evaporative contribution is largest during spring and summer when evaporation is largest and decreases as evaporation decreases. However, there appears to be at least three regions with distinct spatiotemporal seasonal evolutions of this ratio. Over both the northern and western portions of the continent, the fractional evaporative contribution peaks in spring and early summer and decreases during fall and into winter. Over the northern portion, this fall decrease is related to an increase in atmospheric moisture-flux convergence associated with enhanced meridional moisture fluxes into the region; over the western coastal regions, the fall decrease in evaporative contribution is associated with a decrease in evaporation and an increase in total moisture-flux convergence, most likely associated with increased storm activity. In contrast, over the central portions of the continent, the fractional evaporative contribution to precipitation remains relatively low in spring-when enhanced low-level jet activity increases the low-level atmospheric moisture flux convergence into the region-and instead peaks in summer and fall-when the moisture-flux convergence associated with the low-level jet decreases and precipitation is balanced predominantly by local evaporation. Finally, over the southwestern United States and northwestern Mexico, the fractional evaporative contribution to precipitation is found to contain a wintertime minimum as well as a secondary minimum during summer. This latter feature is due to a substantial increase in low-level atmospheric moisture-flux convergence associated with the large-scale monsoon circulation that influences this region during this time. C1 [Anderson, Bruce T.] Boston Univ, Dept Geog & Environm, Boston, MA 02215 USA. [Ruane, Alex C.] Oak Ridge Associated Univ, NASA, Postdoctoral Program, Oak Ridge, TN USA. [Ruane, Alex C.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Roads, John O.; Kanamitsu, Masao] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. RP Anderson, BT (reprint author), Boston Univ, Dept Geog & Environm, 675 Commonwealth Ave,Rm 457, Boston, MA 02215 USA. EM brucea@bu.edu FU NOAA Cooperative Agreements [NA17RJ1231, NA16GP1622] FX This research was funded in part by NOAA Cooperative Agreements NA17RJ1231 and NA16GP1622. The views expressed herein are those of the authors and do not necessarily reflect the views of NOAA. Dr. Anderson's research was also supported by a Visiting Scientist appointment to the Grantham Institute for Climate Change, administered by Imperial College of Science, Technology, and Medicine. Dr. Ruane's research was supported by an appointment to the NASA Postdoctoral Program at the NASA Goddard Institute for Space Studies, administered by Oak Ridge Associated Universities through a contract with NASA. We also extend our appreciation to the three anonymous reviewers for all their insightful and constructive comments. NR 54 TC 9 Z9 9 U1 0 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD AUG 25 PY 2009 VL 10 IS 4 BP 893 EP 911 DI 10.1175/2009JHM1063.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 487HO UT WOS:000269262800004 ER PT J AU Bosilovich, MG Mocko, D Roads, JO Ruane, A AF Bosilovich, Michael G. Mocko, David Roads, John O. Ruane, Alex TI A Multimodel Analysis for the Coordinated Enhanced Observing Period (CEOP) SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID LAND-SURFACE; GLOBAL PRECIPITATION; MODEL; SYSTEM; ENERGY; REANALYSIS; WATER; FORECASTS; CLOUDS; BUDGET AB A collection of eight operational global analyses over a 27-month period have been processed to common data structures to facilitate comparisons among the analyses and global observational datasets. The present study evaluated the global precipitation, outgoing longwave radiation (OLR) at the top of the atmosphere, and basin-scale precipitation over the United States. In addition, a multimodel ensemble was created from a linear average of the available data, as close to the analysis time as each system permitted. The results show that the monthly global precipitation and OLR from the multimodel ensemble compares generally better to the observations than any single analysis. Likewise, the daily precipitation from the ensemble exhibits better statistical comparison ( in space and time) to gauge observations over the Mississippi River basin. However, the comparisons have seasonality, when the members of the ensemble exhibit generally more skill, during winter. There is notably higher skill of the summertime basin precipitation by the ensemble. Using the global precipitation and OLR, the sensitivity was tested to selectively choose the members with the best statistical comparisons to the reference data. Only small improvements in the statistics were found when comparing a selective ensemble to the full ensemble. Additionally, terms of the global energy budget were compared among the ensemble and to other estimates. The ensemble data and the variance of the ensemble should make a useful point of comparison for the development of model and assimilation components of global analyses. C1 [Bosilovich, Michael G.; Mocko, David] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Roads, John O.; Ruane, Alex] Univ Calif San Diego, Scripps Inst Oceanog, Expt Climate Predict Ctr, La Jolla, CA 92093 USA. RP Bosilovich, MG (reprint author), NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Code 610-1, Greenbelt, MD 20771 USA. EM michael.bosilovich@nasa.gov RI Bosilovich, Michael/F-8175-2012 NR 45 TC 16 Z9 16 U1 0 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X J9 J HYDROMETEOROL JI J. Hydrometeorol. PD AUG 25 PY 2009 VL 10 IS 4 BP 912 EP 934 DI 10.1175/2009JHM1090.1 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 487HO UT WOS:000269262800005 ER PT J AU Su, FG Lettenmaier, DP AF Su, Fengge Lettenmaier, Dennis P. TI Estimation of the Surface Water Budget of the La Plata Basin SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID SOUTHEASTERN SOUTH-AMERICA; MISSISSIPPI RIVER-BASIN; HYDROLOGIC-CYCLE; ENERGY BUDGETS; UNITED-STATES; ERA-40 REANALYSIS; PARANA RIVER; FLUX DATA; PART I; MODEL AB The Variable Infiltration Capacity (VIC) land surface hydrology model forced by gridded observed precipitation and temperature for the period 1979-99 is used to simulate the land surface water balance of the La Plata basin (LPB). The modeled water balance is evaluated with streamflow observations from the major tributaries of the LPB. The spatiotemporal variability of the water balance terms of the LPB are then evaluated using offline VIC model simulations, the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40), and inferences obtained from a combination of these two. The seasonality and interannual variability of the water balance terms vary across the basin. Over the Uruguay River basin and the entire LPB, precipitation (P) exceeds evapotranspiration (E) and the basins act as a moisture sink. However, the Paraguay River basin acts as a net source of moisture in dry seasons (strong negative P 2 E). The annual means and monthly time series of ERA-40 P are in good agreement with gauge observations over the entire LPB and its subbasins, except for the Uruguay basin. The E estimates from VIC and inferred from the ERA-40 atmospheric moisture budget are consistent in both seasonal and interannual variations over the entire LPB, but large discrepancies exist between the two E estimates over the subbasins. The long-term mean of atmospheric moisture convergence P 2 E agrees well with observed runoff R for the upper Parana River basin, whereas the imbalance is large (28%) for the Uruguay basin-possibly because of its small size. Major problems appear over the Paraguay basin with negative long-term mean of atmospheric moisture convergence P 2 E, which is not physically realistic. The computed precipitation recycling in the LPB (for L 5 500 km) exhibits strong seasonal and spatial variations with ratios of 0%-3% during the cold season and 5%-7% during the warm season. C1 [Su, Fengge] Univ Washington, Dept Civil & Environm Engn, Wilson Ceram Lab 112, Seattle, WA 98195 USA. [Su, Fengge] NASA, Univ Space Res Assoc, NSSTC, MSFC, Huntsville, AL USA. RP Su, FG (reprint author), Univ Washington, Dept Civil & Environm Engn, Wilson Ceram Lab 112, Box 352700, Seattle, WA 98195 USA. EM fgsu@hydro.washington.edu RI lettenmaier, dennis/F-8780-2011 OI lettenmaier, dennis/0000-0003-3317-1327 FU National Science Foundation [EAR-0450209]; National Aeronautics and Space Administration [NNG04GD12G] FX The authors thank Vicente R. Barros, Carlos E. M. Tucci, and ErnestoHugo Berbery for providing observed streamflow data in the La Plata basin and Joey Comeaux for help getting ERA-40 data. We also thank Kevin E. Trenberth for his advice in the recycling analysis, and William Crosson and two anonymous reviewers for their comments, all of which have improved the manuscript. This work was supported by National Science Foundation Grant EAR-0450209 and by the National Aeronautics and Space Administration Grant NNG04GD12G to the University of Washington. NR 64 TC 12 Z9 14 U1 0 U2 10 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X J9 J HYDROMETEOROL JI J. Hydrometeorol. PD AUG 25 PY 2009 VL 10 IS 4 BP 981 EP 998 DI 10.1175/2009JHM1100.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 487HO UT WOS:000269262800009 ER PT J AU de Goncalves, LGG Shuttleworth, WJ Vila, D Larroza, E Bottino, MJ Herdies, DL Aravequia, JA De Mattos, JGZ Toll, DL Rodell, M Houser, P AF de Goncalves, Luis Gustavo G. Shuttleworth, William J. Vila, Daniel Larroza, Eliane Bottino, Marcus J. Herdies, Dirceu L. Aravequia, Jose A. De Mattos, Joao G. Z. Toll, David L. Rodell, Matthew Houser, Paul TI The South American Land Data Assimilation System (SALDAS) 5-Yr Retrospective Atmospheric Forcing Datasets SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID GAUGE OBSERVATIONS; PRECIPITATION; FLUXES; STATES AB The definition and derivation of a 5-yr, 0.125 degrees, 3-hourly atmospheric forcing dataset that is appropriate for use in a Land Data Assimilation System operating across South America is described. Because surface observations are limited in this region, many of the variables were taken from the South American Regional Reanalysis; however, remotely sensed data were merged with surface observations to calculate the precipitation and downward shortwave radiation fields. The quality of this dataset was evaluated against the surface observations available. There are regional differences in the biases for all variables in the dataset, with volumetric biases in precipitation of the order 0-1 mm day(-1) and RMSE of 5-15 mm day(-1), biases in surface solar radiation of the order 10 W m(-2) and RMSE of 20 W m(-2), positive biases in temperature typically between 0 and 4 K depending on the region, and positive biases in specific humidity around 2-3 g kg(-1) in tropical regions and negative biases around 1-2 g kg(-1) farther south. C1 [de Goncalves, Luis Gustavo G.; Toll, David L.; Rodell, Matthew] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA. [de Goncalves, Luis Gustavo G.; Vila, Daniel] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Shuttleworth, William J.] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. [Vila, Daniel] Univ Maryland, Cooperat Inst Climate Studies, College Pk, MD 20742 USA. [Larroza, Eliane; Bottino, Marcus J.; Herdies, Dirceu L.; Aravequia, Jose A.; De Mattos, Joao G. Z.] Inst Nacl Pesquisas Espaciais, Ctr Previsao Tempo & Estudos Climat, Sao Paulo, Brazil. [Houser, Paul] Inst Global Environm & Soc, Ctr Res Environm & Water, Calverton, MD USA. RP de Goncalves, LGG (reprint author), NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Code 614-3,Greenbelt Rd, Greenbelt, MD 20771 USA. EM luis.g.degoncalves@nasa.gov RI Goncalves Larroza, Eliane/B-7960-2012; Rodell, Matthew/E-4946-2012; Vila, Daniel/G-8379-2012; Herdies, Dirceu/C-6675-2013; de Goncalves, Luis Gustavo/G-2522-2012; Houser, Paul/J-9515-2013; OI Rodell, Matthew/0000-0003-0106-7437; Vila, Daniel/0000-0002-1015-5650; Herdies, Dirceu/0000-0002-2872-8453; Houser, Paul/0000-0002-2991-0441; de Goncalves, Luis Gustavo/0000-0002-1571-0916 FU NASA-LBA Ecology (Group CD36) [NNX06AG91G]; NASA Postdoctoral Program under the Oak Ridge Associated Universities (ORAU); NASA Terresterial Hydrology Program [NNX08AE50G] FX This study was supported by the NASA-LBA Ecology (Group CD36) Project under Grant NNX06AG91G and the NASA Postdoctoral Program under the Oak Ridge Associated Universities (ORAU). Partial support was given by the NASA Terresterial Hydrology Program under Grant NNX08AE50G. The authors would also like to acknowledge James V. Geiger from the NASA Land Information System Team for his kind support. NR 27 TC 3 Z9 4 U1 1 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD AUG 25 PY 2009 VL 10 IS 4 BP 999 EP 1010 DI 10.1175/2009JHM1049.1 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 487HO UT WOS:000269262800010 ER PT J AU Sekiguchi, A Tsujimoto, M Kitamoto, S Ishida, M Hamaguchi, K Mori, H Tsuboi, Y AF Sekiguchi, Akiko Tsujimoto, Masahiro Kitamoto, Shunji Ishida, Manabu Hamaguchi, Kenji Mori, Hideyuki Tsuboi, Yohko TI Super-Hard X-Ray Emission from eta Carinae Observed with Suzaku SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE stars: binaries: general; stars: early-type; stars: individual (eta Carinae); X-rays: stars ID BOARD SUZAKU; CHANDRA OBSERVATIONS; ASCA OBSERVATIONS; COLLIDING WINDS; BINARY-SYSTEMS; SPECTRUM; BEPPOSAX; DETECTOR; MINIMUM; PLASMAS AB We present the Suzaku results of eta Carinae in the 5-50 keV range conducted twice around the apastron in 2005 August for 50 ks and in 2006 February for 20 ks. The X-ray Imaging Spectrometer (XIS) produced hard (5-12 keV) band spectra, resolving K shell lines from highly ionized Fe and Ni. The Hard X-ray Detector yielded a significant detection in the super-hard (15-50 keV) band, which was uncontaminated by near-by sources. We constrained the temperature of the optically thin thermal plasma emission dominant in the hard band to be 3-4 keV using the K-shell line features with the XIS. We found significant excess emission above the thermal emission in the super-hard band with the PIN, confirming the previous INTEGRAL ISGRI report. The entire 5-50 keV spectra were fitted by a combination of a thermal plasma model plus a flat power-law, or a very hot thermal bremsstrahlung model for the excess emission. No significant change of the excess emission was found at different epochs within the systematic and statistical uncertainties, and no flare-like flux amplification was seen in the hard band, indicating that the excess emission is a steady phenomenon. We argue that the super-hard emission is attributable to the inverse Compton of stellar UV photons by non-thermal electrons or to the thermal bremsstrahlung of very hot plasma, and not to the bremsstrahlung by non-thermal electrons colliding with cold ambient matter. C1 [Sekiguchi, Akiko; Ishida, Manabu; Mori, Hideyuki] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Sekiguchi, Akiko] Grad Univ Adv Studies, Sch Phys Sci Space & Aeronaut Sci, Hayama, Kanagawa 2400193, Japan. [Kitamoto, Shunji] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan. [Hamaguchi, Kenji] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Hamaguchi, Kenji] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Hamaguchi, Kenji] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Tsuboi, Yohko] Chuo Univ, Dept Sci & Engn, Bunkyo Ku, Tokyo 1128551, Japan. RP Sekiguchi, A (reprint author), Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2298510, Japan. EM tsujimot@astro.isas.jaxa.jp RI XRAY, SUZAKU/A-1808-2009 FU Rikkyo University; Ministry of Education, Culture, Sports, Science and Technology of Japan [19654032, 19340047]; Chuo University; National Aeronautics and Space Administration [PF6-70044, NAS8-03060]; [20540237] FX The authors acknowledge Y. Hyodo for his help in the XIS data reduction, J. Pittard for his comments on particle acceleration, and J. C. Leyder and R. Walter for providing the INTEGRAL spectrum. We thank the Suzaku science working group team for their effort in the initial phase of the operation, during which the present data set was obtained. Support for this work is provided by the Research Center of the Advanced Measurement at Rikkyo University (A. S.), the Grants-in-Aid for Scientific Research by the Ministry of Education, Culture, Sports, Science and Technology of Japan (grant numbers 19654032 and 19340047 for S. K. and 20540237 for Y. T.), a Chuo University Grant for Special Research (Y. T.), and the National Aeronautics and Space Administration through Chandra Postdoctoral Fellowship Award Number PF6-70044 (M. T.) issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. NR 41 TC 15 Z9 15 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD AUG 25 PY 2009 VL 61 IS 4 BP 629 EP 637 DI 10.1093/pasj/61.4.629 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 513ZX UT WOS:000271364000007 ER PT J AU Mahajan, AS Oetjen, H Saiz-Lopez, A Lee, JD McFiggans, GB Plane, JMC AF Mahajan, Anoop S. Oetjen, Hilke Saiz-Lopez, Alfonso Lee, James D. McFiggans, Gordon B. Plane, John M. C. TI Reactive iodine species in a semi-polluted environment SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MARINE BOUNDARY-LAYER; ABSORPTION CROSS-SECTIONS; OXIDE; PHOTOCHEMISTRY; ATMOSPHERE; PARTICLES; CHEMISTRY; EMISSIONS; HALOGENS; MONOXIDE AB Iodine chemistry in the marine boundary layer has attracted increasing attention over the last few years because iodine oxides cause ozone destruction, change the atmospheric oxidising capacity, and can form ultrafine particles. However, the chemistry of iodine in polluted environments is not well understood: its effects are assumed to be inhibited by reactions involving NO(x) (NO(2) & NO). This paper describes Differential Optical Absorption Spectroscopy (DOAS) observations of iodine species (I(2), OIO and IO) and the nitrate radical (NO(3)) at a semi-polluted coastal site in Roscoff, France. Significant concentrations of IO and I(2) were measured during daytime, indicating efficient recycling of iodine from iodine nitrate (IONO(2)). I(2), IO, OIO and NO(3) were observed at night. These observations are interpreted using a one dimensional model to demonstrate that iodine plays an important role even in polluted environments due to recycling mechanisms not considered previously. Citation: Mahajan, A. S., H. Oetjen, A. Saiz-Lopez, J. D. Lee, G. B. McFiggans, and J. M. C. Plane (2009), Reactive iodine species in a semi-polluted environment, Geophys. Res. Lett., 36, L16803, doi: 10.1029/2009GL038018. C1 [Mahajan, Anoop S.; Oetjen, Hilke; Plane, John M. C.] Univ Leeds, Sch Chem, Leeds LS2 9JT, W Yorkshire, England. [Saiz-Lopez, Alfonso] CALTECH, Jet Prop Lab, NASA, Pasadena, CA 91109 USA. [McFiggans, Gordon B.] Univ Manchester, Ctr Atmospher Sci, Manchester M60 1QD, Lancs, England. [Lee, James D.] Univ York, Natl Ctr Atmospher Sci, Dept Chem, York YO10 3JD, N Yorkshire, England. RP Mahajan, AS (reprint author), Univ Leeds, Sch Chem, Leeds LS2 9JT, W Yorkshire, England. EM j.m.c.plane@leeds.ac.uk RI McFiggans, Gordon/B-8689-2011; Mahajan, Anoop/D-2714-2012; Saiz-Lopez, Alfonso/B-3759-2015; Plane, John/C-7444-2015; Oetjen, Hilke/H-3708-2016 OI McFiggans, Gordon/0000-0002-3423-7896; Mahajan, Anoop/0000-0002-2909-5432; Saiz-Lopez, Alfonso/0000-0002-0060-1581; Plane, John/0000-0003-3648-6893; Oetjen, Hilke/0000-0002-3542-1337 FU UK NERC Surface Ocean Lower Atmosphere Study [NE/D006554/1] FX We thank Philippe Potin, Catherine Leblanc, and Station Biologique, CNRS, Roscoff for logistical support and acknowledge the UK NERC Surface Ocean Lower Atmosphere Study for financial support (RHaMBLe project NE/D006554/1). ASM thanks the School of Chemistry, University of Leeds, for a PhD studentship. NR 29 TC 36 Z9 36 U1 4 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 22 PY 2009 VL 36 AR L16803 DI 10.1029/2009GL038018 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 487BC UT WOS:000269244400001 ER PT J AU Aylott, B Baker, JG Boggs, WD Boyle, M Brady, PR Brown, DA Brugmann, B Buchman, LT Buonanno, A Cadonati, L Camp, J Campanelli, M Centrella, J Chatterji, S Christensen, N Chu, T Diener, P Dorband, N Etienne, ZB Faber, J Fairhurst, S Farr, B Fischetti, S Guidi, G Goggin, LM Hannam, M Herrmann, F Hinder, I Husa, S Kalogera, V Keppel, D Kidder, LE Kelly, BJ Krishnan, B Laguna, P Lousto, CO Mandel, I Marronetti, P Matzner, R McWilliams, ST Matthews, KD Mercer, RA Mohapatra, SRP Mroue, AH Nakano, H Ochsner, E Pan, Y Pekowsky, L Pfeiffer, HAP Pollney, D Pretorius, F Raymond, V Reisswig, C Rezzolla, L Rinne, O Robinson, C Rover, C Santamaria, L Sathyaprakash, B Scheel, MA Schnetter, E Seiler, J Shapiro, SL Shoemaker, D Sperhake, U Stroeer, A Sturani, R Tichy, W Liu, YT van der Sluys, M van Meter, JR Vaulin, R Vecchio, A Veitch, J Vicere, A Whelan, JT Zlochower, Y AF Aylott, Benjamin Baker, John G. Boggs, William D. Boyle, Michael Brady, Patrick R. Brown, Duncan A. Bruegmann, Bernd Buchman, Luisa T. Buonanno, Alessandra Cadonati, Laura Camp, Jordan Campanelli, Manuela Centrella, Joan Chatterji, Shourov Christensen, Nelson Chu, Tony Diener, Peter Dorband, Nils Etienne, Zachariah B. Faber, Joshua Fairhurst, Stephen Farr, Benjamin Fischetti, Sebastian Guidi, Gianluca Goggin, Lisa M. Hannam, Mark Herrmann, Frank Hinder, Ian Husa, Sascha Kalogera, Vicky Keppel, Drew Kidder, Lawrence E. Kelly, Bernard J. Krishnan, Badri Laguna, Pablo Lousto, Carlos O. Mandel, Ilya Marronetti, Pedro Matzner, Richard McWilliams, Sean T. Matthews, Keith D. Mercer, R. Adam Mohapatra, Satyanarayan R. P. Mroue, Abdul H. Nakano, Hiroyuki Ochsner, Evan Pan, Yi Pekowsky, Larne Pfeiffer, H. Arald P. Pollney, Denis Pretorius, Frans Raymond, Vivien Reisswig, Christian Rezzolla, Luciano Rinne, Oliver Robinson, Craig Roever, Christian Santamaria, Lucia Sathyaprakash, Bangalore Scheel, Mark A. Schnetter, Erik Seiler, Jennifer Shapiro, Stuart L. Shoemaker, Deirdre Sperhake, Ulrich Stroeer, Alexander Sturani, Riccardo Tichy, Wolfgang Liu, Yuk Tung van der Sluys, Marc van Meter, James R. Vaulin, Ruslan Vecchio, Alberto Veitch, John Vicere, Andrea Whelan, John T. Zlochower, Yosef TI Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project SO CLASSICAL AND QUANTUM GRAVITY LA English DT Review ID BLACK-HOLE BINARIES; INSPIRALLING COMPACT BINARIES; ADAPTIVE MESH REFINEMENT; INITIAL DATA; MODELING KICKS; SCIENCE RUN; SPIN; SPACETIMES; EVOLUTION; RADIATION AB The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses. C1 [Aylott, Benjamin; Vecchio, Alberto; Veitch, John] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Baker, John G.; Camp, Jordan; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.; Stroeer, Alexander; van Meter, James R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Boggs, William D.; Buonanno, Alessandra; Ochsner, Evan; Pan, Yi] Univ Maryland, Dept Phys, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. [Chatterji, Shourov; Keppel, Drew] CALTECH, LIGO, Pasadena, CA 91125 USA. [Brady, Patrick R.; Goggin, Lisa M.; Mercer, R. Adam; Vaulin, Ruslan] Univ Wisconsin, Milwaukee, WI 53201 USA. [Brown, Duncan A.; Pekowsky, Larne] Syracuse Univ, Dept Phys, Syracuse, NY 13254 USA. [Bruegmann, Bernd; Sperhake, Ulrich] Univ Jena, Inst Theoret Phys, D-07743 Jena, Germany. [Cadonati, Laura; Fischetti, Sebastian; Mohapatra, Satyanarayan R. P.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Campanelli, Manuela; Faber, Joshua; Farr, Benjamin; Lousto, Carlos O.; Nakano, Hiroyuki; Whelan, John T.; Zlochower, Yosef] Rochester Inst Technol, Ctr Computat Relat & Gravitat, Rochester, NY 14623 USA. [Campanelli, Manuela; Faber, Joshua; Farr, Benjamin; Lousto, Carlos O.; Nakano, Hiroyuki; Whelan, John T.; Zlochower, Yosef] Rochester Inst Technol, Sch Math Sci, Rochester, NY 14623 USA. [Chatterji, Shourov; Guidi, Gianluca; Sturani, Riccardo; Vicere, Andrea] Ist Nazl Fis Nucl, Sez Firenze Urbino, I-50019 Sesto Fiorentino, Italy. [Christensen, Nelson; Robinson, Craig] Carleton Coll, Northfield, MN 55057 USA. [Diener, Peter; Schnetter, Erik] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA. [Diener, Peter; Schnetter, Erik] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Dorband, Nils; Husa, Sascha; Krishnan, Badri; Pollney, Denis; Reisswig, Christian; Rezzolla, Luciano; Santamaria, Lucia; Seiler, Jennifer; Whelan, John T.] Max Planck Inst Gravitat Phys, D-14476 Potsdam, Germany. [Etienne, Zachariah B.; Shapiro, Stuart L.; Liu, Yuk Tung] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Fairhurst, Stephen; Farr, Benjamin; Sathyaprakash, Bangalore] Cardiff Univ, Sch Phys & Astron, Cardiff, S Glam, Wales. [Guidi, Gianluca; Sturani, Riccardo; Vicere, Andrea] Univ Urbino, Ist Fis, I-61029 Urbino, Italy. [Hannam, Mark] Natl Univ Ireland Univ Coll Cork, Dept Phys, Cork, Ireland. [Herrmann, Frank; Hinder, Ian] Penn State Univ, Ctr Gravitat Wave Phys, University Pk, PA 16802 USA. [Herrmann, Frank] Univ Maryland, Ctr Sci Computat & Math Modeling, College Pk, MD 20742 USA. [Husa, Sascha] Univ Illes Balears, Dept Fis, E-07071 Palma de Mallorca, Spain. [Kalogera, Vicky; Mandel, Ilya; Raymond, Vivien; van der Sluys, Marc] Northwestern Univ, Dept Phys & Astron, Evanston, IL USA. [Kidder, Lawrence E.; Mroue, Abdul H.] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA. [Laguna, Pablo; Shoemaker, Deirdre] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Laguna, Pablo; Shoemaker, Deirdre] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Marronetti, Pedro; Tichy, Wolfgang] Florida Atlantic Univ, Dept Phys, Boca Raton, FL 33431 USA. [Matzner, Richard] Univ Texas Austin, Austin, TX 78712 USA. [Pretorius, Frans] Princeton Univ, Dept Phys, Princeton, NJ 08540 USA. [Rinne, Oliver] Ctr Math Sci, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England. [Rinne, Oliver] Kings Coll London, Cambridge CB2 1ST, England. [Roever, Christian] Max Planck Inst Gavitat Phys, Hannover, Germany. [Stroeer, Alexander] Univ Maryland, CRESST, College Pk, MD 20742 USA. RP Aylott, B (reprint author), Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. RI van meter, james/E-7893-2011; Kelly, Bernard/G-7371-2011; Santamaria, Lucia/A-7269-2012; Vicere, Andrea/J-1742-2012; Vecchio, Alberto/F-8310-2015; Hinder, Ian/J-5002-2014; OI Lousto, Carlos/0000-0002-6400-9640; Seiler, Jennifer/0000-0003-2855-3945; Schnetter, Erik/0000-0002-4518-9017; Kelly, Bernard/0000-0002-3326-4454; Reisswig, Christian/0000-0001-6855-9351; Mandel, Ilya/0000-0002-6134-8946; Veitch, John/0000-0002-6508-0713; Nakano, Hiroyuki/0000-0001-7665-0796; Vicere, Andrea/0000-0003-0624-6231; Vecchio, Alberto/0000-0002-6254-1617; Rover, Christian/0000-0002-6911-698X; Hinder, Ian/0000-0003-3548-9101; Whelan, John/0000-0001-5710-6576; Fairhurst, Stephen/0000-0001-8480-1961; Husa, Sascha/0000-0002-0445-1971; Farr, Ben/0000-0002-2916-9200; Guidi, Gianluca/0000-0002-3061-9870; Santamaria, Lucia/0000-0002-5986-0449 NR 204 TC 95 Z9 95 U1 0 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD AUG 21 PY 2009 VL 26 IS 16 AR 165008 DI 10.1088/0264-9381/26/16/165008 PG 51 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 479AH UT WOS:000268630400009 ER PT J AU Bera, PP Lee, TJ Schaefer, HF AF Bera, Partha P. Lee, Timothy J. Schaefer, Henry F., III TI Are isomers of the vinyl cyanide ion missing links for interstellar pyrimidine formation? SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE coupled cluster calculations; density functional theory; ground states; interstellar matter; ion-molecule reactions; isomerisation; organic compounds; positive ions; potential energy surfaces; reaction kinetics theory; rotational states ID COUPLED-CLUSTER THEORY; VIBRATIONAL FREQUENCIES; CUMULENE CARBENES; CHEMISTRY; SPACE; TMC-1; POTENTIALS; MOLECULES; RADICALS; ANIONS AB In the interstellar medium (ISM) there are many regions where the formation of molecules is kinetically driven rather than thermochemically, which can lead to the formation of many isomers even though some may be fairly higher in energy relative to the molecular global minimum. Recent laboratory experiments where noble gas cations are reacted with pyrimidine favored the formation of C(3)H(3)N(+), but the molecular structure(s) of this fragment was not determined. Microscopic reversibility means that pyrimidine could form under interstellar conditions should the required C(3)H(3)N(+) reactant be detected in the ISM. Hence C(3)H(3)N(+) could be a strong candidate for involvement in the formation of heterocyclic biomolecules such as pyrimidine in the ISM. In this study, we have investigated the low energy isomers of the acrylonitrile ion (C(3)H(3)N(+)) using density functional theory as well as high levels of ab initio theory, namely, the singles and doubles coupled-cluster theory that includes a perturbational correction for connected triple excitations, denoted as CCSD(T). An automated stochastic search procedure, Kick, has been employed to find isomers on the ground state doublet potential energy surface. Several new structures, along with all the previously reported minima, have been found. The global minimum H(2)CCCNH(+) is energetically much lower than either H(2)CC(H)CN(+), the acrylonitrile ion, or HCC(H)NCH(+), the most likely intermediate of the reaction between HCCH(+) and HCN. These isomers are connected to the global minimum via several transition states and intermediates. The results indicate that not only the global minimum but also several higher energy isomers of the C(3)H(3)N(+) ion could be important in interstellar pyrimidine formation. The isomeric molecules have the necessary CCNC backbone needed for the reaction with HCN to form the cyclic pyrimidine framework. The structural and rotational parameters of all the isomers studied in this work have been predicted at the CCSD(T) level of theory with the anticipation that it will expedite their laboratory as well as astronomical identification. C1 [Bera, Partha P.; Schaefer, Henry F., III] Univ Georgia, Ctr Computat Chem, Athens, GA 30602 USA. [Bera, Partha P.; Lee, Timothy J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Bera, PP (reprint author), Univ Georgia, Ctr Computat Chem, Athens, GA 30602 USA. EM partha.p.bera@nasa.gov RI Lee, Timothy/K-2838-2012; Bera, Partha /K-8677-2012 FU National Science Foundation of USA [CHE04-51445]; NASA FX Funding for this research came from the National Science Foundation of USA under Grant No. CHE04-51445 to Professor H.F. S. P.P.B. thanks the NASA Postdoctoral Program for a fellowship award starting from July 2008 and Dr. Xinchuan Huang for thoughtful comments. Suggestions made by an anonymous referee are also greatly appreciated. NR 32 TC 12 Z9 12 U1 0 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD AUG 21 PY 2009 VL 131 IS 7 AR 074303 DI 10.1063/1.3206298 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 487PN UT WOS:000269287200018 PM 19708743 ER PT J AU Boisson, J Heggy, E Clifford, SM Frigeri, A Plaut, JJ Farrell, WM Putzig, NE Picardi, G Orosei, R Lognonne, P Gurnett, DA AF Boisson, Josephine Heggy, Essam Clifford, Stephen M. Frigeri, Alessandro Plaut, Jeffrey J. Farrell, William M. Putzig, Nathaniel E. Picardi, Giovanni Orosei, Roberto Lognonne, Philippe Gurnett, Donald A. TI Sounding the subsurface of Athabasca Valles using MARSIS radar data: Exploring the volcanic and fluvial hypotheses for the origin of the rafted plate terrain SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID CENTRAL ELYSIUM PLANITIA; ORBITER LASER ALTIMETER; NORTHERN-HEMISPHERE; CERBERUS FOSSAE; KILOMETER-SCALE; SURFACE; MODELS; WATER; GROUNDWATER; IONOSPHERE AB To test the volcanic and fluvial hypotheses for the origin of the rafted plate terrain observed in the vicinity of Athabasca Valles (5 degrees N, 150 degrees E, Central Elysium Planitia), we investigated the subsurface radar echo from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) 5-MHz band data over this area. The backscattered signal losses were compared to finite difference time domain (FDTD) simulations of those arising from three hypothetical geoelectrical subsurface models, which differed in their assumed composition (percentage basalt versus ice) and assumed mode of origin (fluvial discharge/"frozen sea,'' mudflow, and low-viscosity lavas). The dielectric values used in these models are derived from laboratory measurements of Mars analog materials under Mars-like conditions. FDTD simulations suggest that if the near-surface environment is ice-rich, it will result in an average loss rate of 0.053 dB/m for massive ice (having less than 1% of suspended particulates) and 0.065 dB/m for a mudflow (consisting of a 50/50 mixture of ice and basaltic dust). Whereas the losses associated with a lava flow model increase to 0.19 dB/m. In comparison, the actual signal losses experienced by MARSIS within this region were on the order of 0.18 dB/m within the first 160 m beneath the surface. This suggests that propagation characteristics of Athabasca's near-subsurface are more consistent with a volcanic rather than a fluvial or mudflow origin of the rafted plate terrain, although limitations on radar sounding depth in this region cannot rule out the possibility of more deeply buried massive ice deposits. C1 [Boisson, Josephine; Heggy, Essam; Lognonne, Philippe] Univ Paris Diderot, Equipe Geophys Spatiale & Planetaire, Inst Phys Globe Paris, CNRS,UMR 7154, F-94107 Paris, France. [Clifford, Stephen M.] Lunar & Planetary Inst, Houston, TX 77058 USA. [Farrell, William M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Frigeri, Alessandro] Univ Perugia, Dipartimento Sci Terra, I-06123 Perugia, Italy. [Gurnett, Donald A.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Orosei, Roberto] Ist Nazl Astrofis, Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy. [Picardi, Giovanni] Univ Roma La Sapienza, Infocom Dept, I-00184 Rome, Italy. [Plaut, Jeffrey J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Putzig, Nathaniel E.] SW Res Inst, Dept Space Studies, Boulder, CO 80302 USA. RP Boisson, J (reprint author), Univ Paris Diderot, Equipe Geophys Spatiale & Planetaire, Inst Phys Globe Paris, CNRS,UMR 7154, 4 Ave Neptune, F-94107 Paris, France. EM boisson@ipgp.jussieu.fr; heggy@ipgp.jussieu.fr; plaut@mail.jpl.nasa.gov RI Frigeri, Alessandro/F-2151-2010; Boisson, Josephine/F-8503-2010; Heggy, Essam/E-8250-2013; Lognonne, Philippe/F-8846-2010; Farrell, William/I-4865-2013 OI Frigeri, Alessandro/0000-0002-9140-3977; Heggy, Essam/0000-0001-7476-2735; FU NASA [NRA-02-OSS-01-MARSIS, NNG05GL11G]; Lunar and Planetary Institute [CAN-08]; CNES; MRT; IPGP [2389]; LPI [1428] FX We express our gratitude to Vincianne Debaille, Ellen Stoffan, and Bruce Campbell for the helpful discussions and comments. We are grateful to David Baratoux and an anonymous reviewer whose comments and suggestions were of great assistance in the revision of the manuscript. This work was supported in part by NASA grant NRA-02-OSS-01-MARSIS, by the NASA Planetary Geology and Geophysics Program grant NNG05GL11G, and by the Lunar and Planetary Institute CAN-08. Additional French support was provided by CNES and by a MRT Ph.D. grant for J. Boisson. MARSIS is managed by the Agenzia Spaziale Italiana (ASI) and the National Aeronautics and Space Administration (NASA). The Mars Express mission is managed and operated by the European Space Agency (ESA). This is IPGP contribution number 2389 and LPI contribution number 1428. NR 45 TC 10 Z9 10 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD AUG 21 PY 2009 VL 114 AR E08003 DI 10.1029/2008JE003299 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 487BY UT WOS:000269246700001 ER PT J AU Price, J Phillipps, S Huxor, A Trentham, N Ferguson, HC Marzke, RO Hornschemeier, A Goudfrooij, P Hammer, D Tully, RB Chiboucas, K Smith, RJ Carter, D Merritt, D Balcells, M Erwin, P Puzia, TH AF Price, J. Phillipps, S. Huxor, A. Trentham, N. Ferguson, H. C. Marzke, R. O. Hornschemeier, A. Goudfrooij, P. Hammer, D. Tully, R. B. Chiboucas, K. Smith, R. J. Carter, D. Merritt, D. Balcells, M. Erwin, P. Puzia, T. H. TI The HST/ACS Coma Cluster Survey - V. Compact stellar systems in the Coma Cluster SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Review DE surveys; galaxies: clusters: individual: Coma; galaxies: dwarf; galaxies: structure ID EARLY-TYPE GALAXIES; ULTRACOMPACT DWARF GALAXIES; TO-LIGHT RATIO; DISK-DOMINATED GALAXIES; MASSIVE STAR-CLUSTERS; ELLIPTIC GALAXIES; VIRGO-CLUSTER; FORNAX CLUSTER; FUNDAMENTAL PLANE; GLOBULAR-CLUSTERS AB The Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) Coma Cluster Treasury Survey is a deep two-passband imaging survey of the nearest very rich cluster of galaxies, covering a range of galaxy density environments. The imaging is complemented by a recent wide field redshift survey of the cluster conducted with Hectospec on the 6.5-m Monolithic Mirror Telescope (MMT). Among the many scientific applications for these data is the search for compact galaxies. In this paper, we present the discovery of seven compact (but quite luminous) stellar systems, ranging from M32-like galaxies down to ultra-compact dwarfs (UCDs)/dwarf to globular transition objects (DGTOs). We find that all seven compact galaxies require a two-component fit to their light profile and have measured velocity dispersions that exceed those expected for typical early-type galaxies at their luminosity. From our structural parameter analysis, we conclude that three of the samples should be classified as compact ellipticals or M32-like galaxies, and the remaining four being less extreme systems. The three compact ellipticals are all found to have old luminosity weighted ages (greater than or similar to 12 Gyr), intermediate metallicities (-0.6 < [Fe/H] < -0.1) and high [Mg/Fe] (greater than or similar to 0.25). Our findings support a tidal stripping scenario as the formation mode of compact galaxies covering the luminosity range studied here. We speculate that at least two early-type morphologies may serve as the progenitor of compact galaxies in clusters. C1 [Ferguson, H. C.; Goudfrooij, P.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Marzke, R. O.] San Francisco State Univ, Dept Phys & Astron, San Francisco, CA 94132 USA. [Hornschemeier, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hammer, D.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Tully, R. B.; Chiboucas, K.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Carter, D.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Merritt, D.] Rochester Inst Technol, Dept Phys, Rochester, NY 14623 USA. [Balcells, M.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Erwin, P.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Erwin, P.] Univ Sternwarte, D-81679 Munich, Germany. [Puzia, T. H.] Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Price, J.; Phillipps, S.; Huxor, A.] Univ Bristol, HH Wills Phys Lab, Astrophys Grp, Bristol BS8 1TL, Avon, England. [Trentham, N.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Smith, R. J.] Univ Durham, Dept Phys, Durham DH1 3LE, England. RP Price, J (reprint author), Univ Bristol, HH Wills Phys Lab, Astrophys Grp, Tyndall Ave, Bristol BS8 1TL, Avon, England. EM james.price@bristol.ac.uk RI Puzia, Thomas/E-6108-2010; OI Erwin, Peter/0000-0003-4588-9555; Phillipps, Steven/0000-0001-5991-3486 FU UK Science and Technology Facilities Council; Leverhulme Trust; NSF [AST-0607866, AST-0821141, AST-0807810]; NASA [NNX07AH15G, NAS 5-26555]; STFC [PP/C501568/1, PP/E001149/1]; DFG [1177]; HST [GO-10861] FX Based on observations with the NASA/ESA Hubble Space Telescope obtained at the STScI, which is operated by the association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO10861. Observations reported here were obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona NR 102 TC 47 Z9 47 U1 0 U2 0 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG 21 PY 2009 VL 397 IS 4 BP 1816 EP 1835 DI 10.1111/j.1365-2966.2009.15122.x PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 483IU UT WOS:000268958400009 ER PT J AU Castro, PG Ade, P Bock, J Bowden, M Brown, ML Cahill, G Church, S Culverhouse, T Friedman, RB Ganga, K Gear, WK Gupta, S Hinderks, J Kovac, J Lange, AE Leitch, E Melhuish, SJ Memari, Y Murphy, JA Orlando, A Pryke, C Schwarz, R O'Sullivan, C Piccirillo, L Rajguru, N Rusholme, B Taylor, AN Thompson, KL Turner, AH Wu, EYS Zemcov, M AF Castro, P. G. Ade, P. Bock, J. Bowden, M. Brown, M. L. Cahill, G. Church, S. Culverhouse, T. Friedman, R. B. Ganga, K. Gear, W. K. Gupta, S. Hinderks, J. Kovac, J. Lange, A. E. Leitch, E. Melhuish, S. J. Memari, Y. Murphy, J. A. Orlando, A. Pryke, C. Schwarz, R. O'Sullivan, C. Piccirillo, L. Rajguru, N. Rusholme, B. Taylor, A. N. Thompson, K. L. Turner, A. H. Wu, E. Y. S. Zemcov, M. CA QUaD Collaboration TI COSMOLOGICAL PARAMETERS FROM THE QUAD CMB POLARIZATION EXPERIMENT SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic microwave background; cosmological parameters; methods: statistical; polarization ID PROBE WMAP OBSERVATIONS; MICROWAVE BACKGROUND TEMPERATURE; POWER SPECTRA; ANISOTROPIES; MODELS; IMAGER; CAPMAP AB In this paper, we present a parameter estimation analysis of the polarization and temperature power spectra from the second and third season of observations with the QUaD experiment. QUaD has for the first time detected multiple acoustic peaks in the E-mode polarization spectrum with high significance. Although QUaD-only parameter constraints are not competitive with previous results for the standard six-parameter Lambda CDM cosmology, they do allow meaningful polarization-only parameter analyses for the first time. In a standard six-parameter Lambda CDM analysis, we find the QUaD TT power spectrum to be in good agreement with previous results. However, the QUaD polarization data show some tension with Lambda CDM. The origin of this 1 sigma-2 sigma tension remains unclear, and may point to new physics, residual systematics, or simple random chance. We also combine QUaD with the five-year WMAP data set and the SDSS luminous red galaxies 4th data release power spectrum, and extend our analysis to constrain individual isocurvature mode fractions, constraining cold dark matter density, alpha(cdmi) < 0.11 ( 95% confidence limit (CL)), neutrino density, alpha(ndi) < 0.26 ( 95% CL), and neutrino velocity, alpha(nvi) < 0.23 ( 95% CL), modes. Our analysis sets a benchmark for future polarization experiments. C1 [Castro, P. G.; Brown, M. L.; Memari, Y.; Taylor, A. N.] Univ Edinburgh, Royal Observ, Inst Astron, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ade, P.; Bowden, M.; Gear, W. K.; Gupta, S.; Orlando, A.; Rajguru, N.; Turner, A. H.; Zemcov, M.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bock, J.; Leitch, E.; Zemcov, M.] Jet Prop Lab, Pasadena, CA 91109 USA. [Bock, J.; Kovac, J.; Lange, A. E.; Leitch, E.; Orlando, A.; Zemcov, M.] CALTECH, Pasadena, CA 91125 USA. [Bowden, M.; Church, S.; Hinderks, J.; Rusholme, B.; Thompson, K. L.; Wu, E. Y. S.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Bowden, M.; Church, S.; Hinderks, J.; Rusholme, B.; Thompson, K. L.; Wu, E. Y. S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Cahill, G.; Murphy, J. A.; O'Sullivan, C.] Natl Univ Ireland Maynooth, Dept Expt Phys, Maynooth, Kildare, Ireland. [Culverhouse, T.; Friedman, R. B.; Pryke, C.; Schwarz, R.] Univ Chicago, Kavli Inst Cosmol Phys, Dept Astron & Astrophys, Enrico Fermi Inst, Chicago, IL 60637 USA. [Ganga, K.] Univ Paris 07, CNRS, CEA, APC UMR 7164,Obs Paris, F-75205 Paris 13, France. [Melhuish, S. J.; Piccirillo, L.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. RP Castro, PG (reprint author), Inst Super Tecn, Dept Fis, CENTRA, Edificio Ciencia,Av Rovisco Pais 1, P-1049001 Lisbon, Portugal. RI Melhuish, Simon/B-1299-2016; OI Melhuish, Simon/0000-0001-8725-4991; Orlando, Angiola/0000-0001-8004-5054 FU National Science Foundation in the USA [AST-0096778, ANT-0338138, ANT-0338335, ANT-0338238]; UK Science and Technology Facilities Council (STFC); Particle Physics and Astronomy Research Council (PPARC); Science Foundation Ireland; NSF [PHY-0114422]; Stanford Graduate Fellowship; NASA Postdoctoral Fellowship; Kavli Institute for Cosmological Physics; Fundacao para a Ciencia e a Tecnologia; eDIKT FX QUaD is funded by the National Science Foundation in the USA, through grants AST-0096778, ANT-0338138, ANT-0338335, and ANT-0338238, by the UK Science and Technology Facilities Council ( STFC) and its predecessor the Particle Physics and Astronomy Research Council ( PPARC), and by the Science Foundation Ireland. J.R.H. acknowledges the support of an NSF Graduate Research Fellowship, a Stanford Graduate Fellowship and a NASA Postdoctoral Fellowship. C. P. and J.E.C. acknowledge partial support from the Kavli Institute for Cosmological Physics through the grant NSF PHY-0114422. E.Y.W. acknowledges receipt of an NDSEG fellowship. Y.M. acknowledges support from a SUPA Prize studentship. P. G. C. acknowledges funding from the Fundacao para a Ciencia e a Tecnologia. M. Z. acknowledges support from a NASA Postdoctoral Fellowship. This work has made use of the resources provided by the Edinburgh Compute and Data Facility ( ECDF) that is partially supported by the eDIKT initiative. We also thank Licia Verde and Joanna Dunkley for useful discussion. NR 37 TC 14 Z9 14 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2009 VL 701 IS 2 BP 857 EP 864 DI 10.1088/0004-637X/701/2/857 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 480UE UT WOS:000268761500001 ER PT J AU Kallman, TR Bautista, MA Goriely, S Mendoza, C Miller, JM Palmeri, P Quinet, P Raymond, J AF Kallman, T. R. Bautista, M. A. Goriely, Stephane Mendoza, Claudio Miller, Jon M. Palmeri, Patrick Quinet, Pascal Raymond, John TI SPECTRUM SYNTHESIS MODELING OF THE X-RAY SPECTRUM OF GRO J1655-40 TAKEN DURING THE 2005 OUTBURST SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; binaries: spectroscopic; black hole physics; relativity ID ACCRETION DISKS; BLACK-HOLE; IONIZATION EQUILIBRIUM; ABSORPTION-LINE; MASS; WINDS; PHOTOIONIZATION; SPECTROSCOPY; QUIESCENCE; EVOLUTION AB The spectrum from the black hole X-ray transient GRO J1655-40 obtained using the Chandra High Energy Transmission Grating in 2005 is notable as a laboratory for the study of warm absorbers, and for the presence of many lines from odd-Z elements between Na and Co ( and Ti and Cr) not previously observed in X-rays. We present synthetic spectral models which can be used to constrain these element abundances and other parameters describing the outflow from the warm absorber in this object. We present results of fitting to the spectrum using various tools and techniques, including automated line fitting, phenomenological models, and photoionization modeling. We show that the behavior of the curves of growth of lines from H-like and Li-like ions indicate that the lines are either saturated or affected by filling-in from scattered or a partially covered continuum source. We confirm the conclusion of previous work by Miller et al., which shows that the ionization conditions are not consistent with wind driving due to thermal expansion. The spectrum provides the opportunity to measure abundances for several elements not typically observable in the X-ray band. These show a pattern of enhancement for iron peak elements, and solar or subsolar values for elements lighter than calcium. Models show that this is consistent with enrichment by a core-collapse supernova. We discuss the implications of these values for the evolutionary history of this system. C1 [Kallman, T. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bautista, M. A.] Virginia Polytech Inst & State Univ, Dept Phys, Blacksburg, VA 24061 USA. [Goriely, Stephane] Univ Libre Bruxelles, Inst Astron & Astrophys, B-1050 Brussels, Belgium. [Mendoza, Claudio] Inst Venezolano Invest Cient, Ctr Fis, Caracas 1020A, Venezuela. [Miller, Jon M.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Palmeri, Patrick; Quinet, Pascal] Univ Mons, B-7000 Mons, Belgium. [Raymond, John] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Kallman, TR (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. FU Chandra theory program FX This work was funded in part by a grant from the Chandra theory program. We thank the referee, Frits Paerels, for many constructive comments. NR 42 TC 39 Z9 39 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2009 VL 701 IS 2 BP 865 EP 884 DI 10.1088/0004-637X/701/2/865 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 480UE UT WOS:000268761500002 ER PT J AU Brosius, JW AF Brosius, Jeffrey W. TI CONVERSION FROM EXPLOSIVE TO GENTLE CHROMOSPHERIC EVAPORATION DURING A SOLAR FLARE SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: activity; Sun: corona; Sun: flares; Sun: transition region; Sun: UV radiation ID CORONAL DIAGNOSTIC SPECTROMETER; LOOP RADIATIVE HYDRODYNAMICS; HIGH TIME RESOLUTION; BRAGG CRYSTAL SPECTROMETER; X-RAY SPECTROSCOPY; EXTREME-ULTRAVIOLET; ATOMIC DATABASE; IMPULSIVE PHASE; EMISSION-LINES; CA-XIX AB A GOES M1.5 solar flare was observed in NOAA AR 10652 on 2004 July 27 around 20: 00 UT with the Coronal Diagnostic Spectrometer (CDS) aboard the Solar and Heliospheric Observatory (SOHO) spacecraft. Images obtained with SOHO's Extreme-ultraviolet Imaging Telescope and with the Transition Region And Coronal Explorer satellite show that the CDS slit was positioned within the flare, whose emission extended 1 arcmin along the slit. Rapid cadence (9.8 s) stare spectra obtained with CDS include emission from the upper chromosphere (He I at 584.3 angstrom), transition region (O v at 629.7 angstrom), corona (Si XII at 520.7 angstrom), and hot flare plasma (Fe xix at 592.2 angstrom), and reveal that (1) the flare brightened in its southern parts before it did so in the north; (2) chromospheric evaporation was "explosive" during the first rapid intensity increase observed in Fe XIX, but converted to "gentle" during the second; (3) chromospheric evaporation did not occur in the northern portion of the flare observed by CDS: the brightening observed there was due to flare material moving into that location from elsewhere. We speculate that the initial slow, steady increase of Fe xix intensity that was observed to start several minutes before its rapid increase was due to direct coronal heating. The change from explosive to gentle evaporation was likely due to either an increased absorption of beam energy during the gentle event because the beam passed through an atmosphere modified by the earlier explosive event, or to a weakening of the coronal magnetic field's ability to accelerate nonthermal particle beams (via reconnection) as the flare progressed, or both. C1 Catholic Univ Amer, NASA, Goddard Space Flight Ctr, Solar Phys Lab, Greenbelt, MD 20771 USA. RP Brosius, JW (reprint author), Catholic Univ Amer, NASA, Goddard Space Flight Ctr, Solar Phys Lab, Code 671, Greenbelt, MD 20771 USA. EM Jeffrey.W.Brosius@nasa.gov NR 51 TC 23 Z9 24 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2009 VL 701 IS 2 BP 1209 EP 1218 DI 10.1088/0004-637X/701/2/1209 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 480UE UT WOS:000268761500026 ER PT J AU Mastrapa, RM Sandford, SA Roush, TL Cruikshank, DP Ore, CMD AF Mastrapa, R. M. Sandford, S. A. Roush, T. L. Cruikshank, D. P. Ore, C. M. Dalle TI OPTICAL CONSTANTS OF AMORPHOUS AND CRYSTALLINE H2O-ICE: 2.5-22 mu m (4000-455 cm(-1)) OPTICAL CONSTANTS OF H2O-ICE SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; infrared: solar system; interplanetary medium; methods: laboratory; planets and satellites: general ID SOLID WATER; INFRARED-SPECTRA; H2O ICE; DENSITY; REGION; RANGE; FILMS; IH AB Using new laboratory spectra, we have calculated the real and imaginary parts of the index of refraction of amorphous and crystalline H2O-ice from 20-150 K in the wavelength range 2.5-22 mu m (4000-455 cm(-1)) and joined these results with previous measurement from 1.25 to 2.5 mu m. These optical constants improve on previous measurements by having better temperature and spectral resolution and can be used to create model spectra for comparison to spectra of solar system objects and interstellar materials. In this wavelength range, the infrared band shapes and positions of amorphous H2O-ice are strongly dependent on deposition temperature. Amorphous and crystalline H2O- ice have distinctive spectral bands at all wavelengths in this region with bands weakening and shifting to shorter wavelength in amorphous H2O- ice compared to crystalline H2O-ice. Some notable exceptions are the band near 6 mu m, which is stronger in amorphous H2O-ice, and the bands near 4.5 mu m and 12.5 mu m, which shift to longer wavelength in amorphous H2O-ice. C1 [Mastrapa, R. M.; Sandford, S. A.; Roush, T. L.; Cruikshank, D. P.; Ore, C. M. Dalle] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Mastrapa, R. M.; Ore, C. M. Dalle] SETI Inst, Mountain View, CA 94043 USA. RP Mastrapa, RM (reprint author), NASA, Ames Res Ctr, Mail Stop 245-6, Moffett Field, CA 94035 USA. EM Rachel.M.Mastrapa@nasa.gov FU viaNASA's Planetary Geology and Geophysics Program [05-PGG05-41] FX R.M.M., S.A.S., and T. L. R. acknowledge support viaNASA's Planetary Geology and Geophysics Program, Proposal 05-PGG05-41. NR 28 TC 57 Z9 57 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2009 VL 701 IS 2 BP 1347 EP 1356 DI 10.1088/0004-637X/701/2/1347 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 480UE UT WOS:000268761500035 ER PT J AU Flagey, N Noriega-Crespo, A Boulanger, F Carey, SJ Brooke, TY Falgarone, E Huard, TL McCabe, CE Miville-Deschenes, MA Padgett, DL Paladini, R Rebull, LM AF Flagey, N. Noriega-Crespo, A. Boulanger, F. Carey, S. J. Brooke, T. Y. Falgarone, E. Huard, T. L. McCabe, C. E. Miville-Deschenes, M. A. Padgett, D. L. Paladini, R. Rebull, L. M. TI EVIDENCE FOR DUST EVOLUTION WITHIN THE TAURUS COMPLEX FROM SPITZER IMAGES SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; infrared: ISM; ISM: clouds; ISM: evolution; ISM: individual (Taurus Molecular Complex) ID MULTIBAND IMAGING PHOTOMETER; INFRARED ARRAY CAMERA; ABSOLUTE CALIBRATION; INTERSTELLAR DUST; MOLECULAR CLOUD; STAR-FORMATION; MU-M; PHOTODISSOCIATION REGIONS; ULTRAVIOLET EXTINCTION; OPTICAL-PROPERTIES AB We present Spitzer images of the Taurus Complex (TC). We take advantage of the sensitivity and the spatial resolution of the observations to characterize the diffuse infrared ( IR) emission across the cloud. This work highlights evidence of dust evolution within the translucent sections of the archetype reference for studies of quiescent molecular clouds. We combine the Spitzer 160 mu m and IRAS 100 mu m observations to produce a dust temperature map and a far-IR (FIR) dust opacity map at 5 ' resolution. The average dust temperature is about 14.5 K with a dispersion of +/- 1 K across the cloud. The FIR dust opacity is tightly correlated with the extinction derived from Two Micron All Sky Survey stellar colors and is a factor of 2 larger than the average value for the diffuse interstellar medium. This opacity increase and the attenuation of the radiation field both contribute to account for the lower emission temperature of the large grains. The structure of the TC significantly changes in the mid-IR (MIR) images that trace emission from polycyclic aromatic hydrocarbons (PAHs) and very small grains (VSGs). We focus our analysis of the MIR emission to a range of ecliptic latitudes away from the zodiacal bands and where the zodiacal light residuals are small. Within this cloud area, there are no 8 and 24 mu m counterparts to the brightest 160 mu m emission features. Conversely, the 8 and 24 mu m images reveal filamentary structure that is strikingly inconspicuous in the 160 mu m and extinction maps. The IR colors vary over subparsec distances across this filamentary structure. We compare the observed colors with model calculations quantifying the impact of the radiation field intensity and the abundance of stochastically heated particles on the dust spectral energy distribution. To match the range of observed colors, we have to invoke variations by a factor of a few of both the interstellar radiation field and the abundance of PAHs and VSGs. We conclude that within this filamentary structure a significant fraction of the dust mass cycles in and out the small-size end of the dust size distribution. C1 [Flagey, N.; Noriega-Crespo, A.; Carey, S. J.; Brooke, T. Y.; McCabe, C. E.; Padgett, D. L.; Paladini, R.; Rebull, L. M.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Flagey, N.; Boulanger, F.; Miville-Deschenes, M. A.] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. [Falgarone, E.] Ecole Normale Super, LERMA LRA, CNRS UMR 8112, F-75231 Paris, France. [Falgarone, E.] Observ Paris, F-75231 Paris 05, France. [Huard, T. L.] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA. [McCabe, C. E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Flagey, N (reprint author), CALTECH, Spitzer Sci Ctr, 1200 E Calif Blvd,MC 220-6, Pasadena, CA 91125 USA. EM nflagey@ipac.caltech.edu OI Rebull, Luisa/0000-0001-6381-515X FU Jet Propulsion Laboratory; California Institute of Technology FX This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. NR 69 TC 31 Z9 31 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2009 VL 701 IS 2 BP 1450 EP 1463 DI 10.1088/0004-637X/701/2/1450 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 480UE UT WOS:000268761500044 ER PT J AU Winter, LM Mushotzky, RF Terashima, Y Ueda, Y AF Winter, Lisa M. Mushotzky, Richard F. Terashima, Yuichi Ueda, Yoshihiro TI THE SUZAKU VIEW OF THE SWIFT/BAT ACTIVE GALACTIC NUCLEI. II. TIME VARIABILITY AND SPECTRA OF FIVE "HIDDEN" ACTIVE GALACTIC NUCLEI SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; X-rays: galaxies ID X-RAY SPECTROSCOPY; XMM-NEWTON; CIRCINUS GALAXY; COMPTON-THICK; RATE INDICATOR; PG QUASARS; BAT SURVEY; FEK LINES; AGN; REFLECTION AB The fraction of Compton-thick sources is one of the main uncertainties left in understanding the active galactic nucleus (AGN) population. The Swift Burst Alert Telescope (BAT) all-sky survey for the first time gives us an unbiased sample of AGNs for all but the most heavily absorbed sources N-H > 10(25) cm(-2)). Still, the BAT spectra (14-195 keV) are time averaged over months of observations and therefore hard to compare with softer spectra from the Swift XRT or other missions. This makes it difficult to distinguish between Compton-thin and Compton-thick models. With Suzaku, we have obtained simultaneous hard (> 15 keV) and soft (0.3-10 keV) Xray spectra for five Compton-thick candidate sources. We report on the spectra and a comparison with the BAT and earlier XMM observations. Based on both flux variability and spectral shape, we conclude that these hidden sources are not Compton thick. We also report on a possible correlation between excess variance and Swift BAT luminosity from the 16 day binned light curves, which holds true for a sample of both absorbed (four sources), unabsorbed (eight sources), and Compton-thick (Circinus) AGNs, but is weak in the 64 day binned BAT light curves. C1 [Winter, Lisa M.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Mushotzky, Richard F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Terashima, Yuichi] Ehime Univ, Dept Phys, Matsuyama, Ehime 7908577, Japan. [Ueda, Yoshihiro] Kyoto Univ, Dept Astron, Kyoto 6068502, Japan. RP Winter, LM (reprint author), Univ Colorado, Ctr Astrophys & Space Astron, Campus Box 391, Boulder, CO 80309 USA. RI XRAY, SUZAKU/A-1808-2009; OI Winter, Lisa/0000-0002-3983-020X NR 49 TC 22 Z9 22 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2009 VL 701 IS 2 BP 1644 EP 1664 DI 10.1088/0004-637X/701/2/1644 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 480UE UT WOS:000268761500060 ER PT J AU Band, DL Axelsson, M Baldini, L Barbiellini, G Baring, MG Bastieri, D Battelino, M Bellazzini, R Bissaldi, E Bogaert, G Bonnell, J Chiang, J Cohen-Tanugi, J Connaughton, V Cutini, S de Palma, F Dingus, BL Silva, EDE Fishman, G Galli, A Gehrels, N Giglietto, N Granot, J Guiriec, S Hughes, RE Kamae, T Komin, N Kuehn, F Kuss, M Longo, F Lubrano, P Kippen, RM Mazziotta, MN McEnery, JE McGlynn, S Moretti, E Nakamori, T Norris, JP Ohno, M Olivo, M Omodei, N Pelassa, V Piron, F Preece, R Razzano, M Russell, JJ Ryde, F Parkinson, PMS Scargle, JD Sgro, C Shimokawabe, T Smith, PD Spandre, G Spinelli, P Stamatikos, M Winer, BL Yamazaki, R AF Band, D. L. Axelsson, M. Baldini, L. Barbiellini, G. Baring, M. G. Bastieri, D. Battelino, M. Bellazzini, R. Bissaldi, E. Bogaert, G. Bonnell, J. Chiang, J. Cohen-Tanugi, J. Connaughton, V. Cutini, S. de Palma, F. Dingus, B. L. do Couto e Silva, E. Fishman, G. Galli, A. Gehrels, N. Giglietto, N. Granot, J. Guiriec, S. Hughes, R. E. Kamae, T. Komin, N. Kuehn, F. Kuss, M. Longo, F. Lubrano, P. Kippen, R. M. Mazziotta, M. N. McEnery, J. E. McGlynn, S. Moretti, E. Nakamori, T. Norris, J. P. Ohno, M. Olivo, M. Omodei, N. Pelassa, V. Piron, F. Preece, R. Razzano, M. Russell, J. J. Ryde, F. Parkinson, P. M. Saz Scargle, J. D. Sgro, C. Shimokawabe, T. Smith, P. D. Spandre, G. Spinelli, P. Stamatikos, M. Winer, B. L. Yamazaki, R. TI PROSPECTS FOR GRB SCIENCE WITH THE FERMI LARGE AREA TELESCOPE SO ASTROPHYSICAL JOURNAL LA English DT Review DE gamma rays: bursts ID GAMMA-RAY-BURSTS; SYNCHROTRON SHOCK MODEL; ENERGY SPECTRAL COMPONENT; LAG-LUMINOSITY RELATION; VERY-HIGH-ENERGY; PROMPT EMISSION; BATSE OBSERVATIONS; SWIFT ERA; PHOTOSPHERIC COMPONENT; NEUTRINO EMISSION AB The Large Area Telescope (LAT) instrument on the Fermi mission will reveal the rich spectral and temporal gamma-ray burst (GRB) phenomena in the > 100 MeV band. The synergy with Fermi's Gamma-ray Burst Monitor detectors will link these observations to those in the well explored 10-1000 keV range; the addition of the > 100 MeV band observations will resolve theoretical uncertainties about burst emission in both the prompt and afterglow phases. Trigger algorithms will be applied to the LAT data both onboard the spacecraft and on the ground. The sensitivity of these triggers will differ because of the available computing resources onboard and on the ground. Here we present the LAT's burst detection methodologies and the instrument's GRB capabilities. C1 [Band, D. L.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Band, D. L.; Bonnell, J.; Gehrels, N.; McEnery, J. E.; Stamatikos, M.] Stockholm Observ, SE-10691 Stockholm, Sweden. [Axelsson, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Baldini, L.; Bellazzini, R.; Kuss, M.; Omodei, N.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.; Moretti, E.; Olivo, M.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.; Moretti, E.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Baring, M. G.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Battelino, M.; McGlynn, S.; Ryde, F.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Bissaldi, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Bogaert, G.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Chiang, J.; do Couto e Silva, E.; Kamae, T.; Russell, J. J.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Cohen-Tanugi, J.; do Couto e Silva, E.; Kamae, T.; Russell, J. J.] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94305 USA. [Cohen-Tanugi, J.; Guiriec, S.; Komin, N.; Pelassa, V.; Piron, F.; Razzano, M.] Univ Montpellier 2, Lab Phys Theor & Astroparticules, CNRS, IN2P3, Montpellier, France. [Connaughton, V.; Guiriec, S.; Preece, R.] Univ Alabama, Huntsville, AL 35899 USA. [Cutini, S.] ASI Sci Data Ctr, I-00044 Frascati, Roma, Italy. [de Palma, F.; Giglietto, N.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [de Palma, F.; Giglietto, N.; Mazziotta, M. N.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Dingus, B. L.; Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fishman, G.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35805 USA. [Galli, A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy. [Gehrels, N.] Univ Maryland, College Pk, MD 20742 USA. [Granot, J.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Hughes, R. E.; Kuehn, F.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Komin, N.] Univ Paris Diderot, Laboratoire AIM, CEA IRFU, CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Lubrano, P.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Nakamori, T.; Shimokawabe, T.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Norris, J. P.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.] JAXA, Inst Space & Astronaut Sci, Kanagawa 2298510, Japan. [Parkinson, P. M. Saz] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Parkinson, P. M. Saz] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Scargle, J. D.] NASA, Div Space Sci, Ames Res Ctr, Moffett Field, CA 94035 USA. [Yamazaki, R.] Hiroshima Univ, Dept Phys Sci, Higashihiroshima 7398526, Japan. [Yamazaki, R.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Higashihiroshima 7398526, Japan. RP Band, DL (reprint author), NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. EM jchiang@slac.stanford.edu; francesco.longo@trieste.infn.it; nicola.omodei@pi.infn.it RI Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Bissaldi, Elisabetta/K-7911-2016; Komin, Nukri/J-6781-2015; OI Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Axelsson, Magnus/0000-0003-4378-8785; Moretti, Elena/0000-0001-5477-9097; Cutini, Sara/0000-0002-1271-2924; Baldini, Luca/0000-0002-9785-7726; lubrano, pasquale/0000-0003-0221-4806; giglietto, nicola/0000-0002-9021-2888; Mazziotta, Mario /0000-0001-9325-4672; Bissaldi, Elisabetta/0000-0001-9935-8106; Sgro', Carmelo/0000-0001-5676-6214; Dingus, Brenda/0000-0001-8451-7450; SPINELLI, Paolo/0000-0001-6688-8864; Komin, Nukri/0000-0003-3280-0582; Preece, Robert/0000-0003-1626-7335 FU National Aeronautics and Space Administration; Department of Energy; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization; Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden FX These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support from the Istituto Nazionale di Astrofisica in Italy for science analysis during the operations phase is also gratefully acknowledged. NR 126 TC 41 Z9 42 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2009 VL 701 IS 2 BP 1673 EP 1694 DI 10.1088/0004-637X/701/2/1673 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 480UE UT WOS:000268761500062 ER PT J AU Crawford, JP Kazanas, D AF Crawford, James P. Kazanas, Demosthenes TI NEUTRON STAR STRUCTURE IN THE PRESENCE OF SCALAR FIELDS SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitation; stars: neutron ID RELATIVITY; VIOLATION; PULSAR; ENERGY AB Motivated by the possible presence of scalar fields on cosmological scales, suggested by the recent measurement of the deceleration parameter by supernovae surveys, we present models of neutron star structure under the assumption that a scalar field makes a significant contribution to the stress energy momentum tensor, in addition to that made by the normal matter. To that end we solve the coupled Einstein-scalar field hydrostatic balance equations to compute the effect of the presence of the scalar field on the neutron star structure. We find that the presence of the scalar field does change the structure of the neutron star, especially in cases of strong coupling between the scalar field and the matter density. We present the neutron star radius as a function of the matter-scalar field coupling constant for different values of the neutron star central density. The presence of the scalar field does affect both the maximum neutron star mass and its radius, the latter increasing with the value of the above coupling constant. Our results can provide limits to the scalar field-matter coupling through spectro-temporal observations of accreting or isolated neutron stars. C1 [Crawford, James P.] Penn State Univ, Dept Phys, Uniontown, PA 15401 USA. [Kazanas, Demosthenes] NASA, Goddard Space Flight Ctr, ASD, Greenbelt, MD 20771 USA. RP Crawford, JP (reprint author), Penn State Univ, Dept Phys, Uniontown, PA 15401 USA. FU Eberly Family Science Endowment, Fayette; NASA/ASEE Summer Faculty Fellowship; INTEGRAL; Chandra GO FX We thank the referee for his many, detailed, and useful comments which have greatly added to the completeness of this paper and in particular for the reference of Bhat et al. (2008); we also thank Zaven Arzoumanian for useful discussions and references. J. P. C. acknowledge support from the Eberly Family Science Endowment, Fayette and a NASA/ASEE Summer Faculty Fellowship. D. K. acknowledge support by INTEGRAL and Chandra GO grants. NR 18 TC 10 Z9 11 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2009 VL 701 IS 2 BP 1701 EP 1709 DI 10.1088/0004-637X/701/2/1701 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 480UE UT WOS:000268761500064 ER PT J AU Tan, LC Reames, DV Ng, CK Saloniemi, O Wang, LH AF Tan, Lun C. Reames, Donald V. Ng, Chee K. Saloniemi, Oskari Wang, Linghua TI OBSERVATIONAL EVIDENCE ON THE PRESENCE OF AN OUTER REFLECTING BOUNDARY IN SOLAR ENERGETIC PARTICLE EVENTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; interplanetary medium; shock waves; Sun: coronal mass ejections (CMEs); Sun: particle emission ID CORONAL MASS EJECTION; WIND SPACECRAFT; INTERPLANETARY SHOCKS; MAGNETIC CLOUDS; HIGH-ENERGIES; NEAR-EARTH; 1 AU; TRANSPORT; ONSET; ACCELERATION AB We have focused primarily on the 2001 September 24 solar energetic particle (SEP) event to verify previous indications of the presence of an outer reflecting boundary of SEPs. By using energetic electron and ion data obtained from multi-spacecraft observations, we have identified a collimated particle beam consisting of reflected particles returning from an outer boundary. The peak of reflected particles appears before the arrival of particles at 90 degrees. pitch angle. In addition, an onset time analysis is carried out in order to determine parameters characterizing the boundary. Our analysis suggests that the presence of a counter-streaming particle beam with a deep depression at similar to 90 degrees. pitch angle during the onset phase is evidence for a nearby reflecting boundary. We have compared this property in the SEP events of 2002 April 21 and August 24. A reflecting boundary that blocks a flux tube is important in space weather forecasting since it can cause the "reservoir" effect that may enhance the intensity and duration of high-energy particles. C1 [Tan, Lun C.; Reames, Donald V.; Ng, Chee K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Saloniemi, Oskari] Univ Turku, Dept Phys, SF-20500 Turku, Finland. [Saloniemi, Oskari] Univ Turku, Vaisala Inst Space Phys & Astron, SF-20500 Turku, Finland. [Wang, Linghua] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Tan, Lun C.; Ng, Chee K.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Reames, Donald V.] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA. [Wang, Linghua] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Tan, LC (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM ltan@mail.umd.edu RI Wang, Linghua/C-4938-2014 OI Wang, Linghua/0000-0001-7309-4325 FU NASA [NNX09AF28G, NNX08AQ02G, LWS04-0000-0076, SHP04-0016-0024, NNX08AE34G] FX We gratefully acknowledge data provided by the NASA/Space Physics Data Facility (SPDF) CDAWeb, Wind/3DP Data Center, and SOHO LASCO CME catalog, which is generated and maintained at the CDAW Data Center by NASA and the Catholic University of America in cooperation with the Naval Research Laboratory. We thank K. Ogilvie, R. Lin, A. Zambo, and X. Shao for their support of this work. We also thank the anonymous reviewer for his/her valuable comments. L. C. T. is supported in part by NASA grant NNX09AF28G, D. V. R. is supported in part by NASA grant NNX08AQ02G. C. K. N. is supported under NASA grants LWS04-0000-0076 and SHP04-0016-0024. L. W. is supported in part by NASA grant NNX08AE34G. NR 35 TC 26 Z9 26 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2009 VL 701 IS 2 BP 1753 EP 1764 DI 10.1088/0004-637X/701/2/1753 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 480UE UT WOS:000268761500069 ER PT J AU Dunkley, J Spergel, DN Komatsu, E Hinshaw, G Larson, D Nolta, MR Odegard, N Page, L Bennett, CL Gold, B Hill, RS Jarosik, N Weiland, JL Halpern, M Kogut, A Limon, M Meyer, SS Tucker, GS Wollack, E Wright, EL AF Dunkley, J. Spergel, D. N. Komatsu, E. Hinshaw, G. Larson, D. Nolta, M. R. Odegard, N. Page, L. Bennett, C. L. Gold, B. Hill, R. S. Jarosik, N. Weiland, J. L. Halpern, M. Kogut, A. Limon, M. Meyer, S. S. Tucker, G. S. Wollack, E. Wright, E. L. TI FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP*) OBSERVATIONS: BAYESIAN ESTIMATION OF COSMIC MICROWAVE BACKGROUND POLARIZATION MAPS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic microwave background; cosmology: observations; methods: statistical; polarization; radio continuum: ISM ID RADIO-CONTINUUM EMISSION; INTERSTELLAR DUST GRAINS; HIGH GALACTIC LATITUDES; MAGNETIC-FIELDS; PARAMETER-ESTIMATION; FOREGROUND EMISSION; DISTANT STARS; NORTHERN SKY; 1.4 GHZ; GALAXY AB We describe a sampling method to estimate the polarized cosmic microwave background (CMB) signal from observed maps of the sky. We use a Metropolis-within-Gibbs algorithm to estimate the polarized CMB map, containing Q and U Stokes parameters at each pixel, and its covariance matrix. These can be used as inputs for cosmological analyses. The polarized sky signal is parameterized as the sum of three components: CMB, synchrotron emission, and thermal dust emission. The polarized Galactic components are modeled with spatially varying power-law spectral indices for the synchrotron, and a fixed power law for the dust, and their component maps are estimated as by-products. We apply the method to simulated low-resolution maps with pixels of side 7.2 deg, using diagonal and full noise realizations drawn from the WMAP noise matrices. The CMB maps are recovered with goodness of fit consistent with errors. Computing the likelihood of the E-mode power in the maps as a function of optical depth to reionization, tau, for fixed temperature anisotropy power, we recover tau = 0.091 +/- 0.019 for a simulation with input tau = 0.1, and mean tau = 0.098 averaged over 10 simulations. A "null" simulation with no polarized CMB signal has maximum likelihood consistent with tau = 0. The method is applied to the five-year WMAP data, using the K, Ka, Q, and V channels. We find tau = 0.090 +/- 0.019, compared to tau = 0.086 +/- 0.016 from the template-cleaned maps used in the primary WMAP analysis. The synchrotron spectral index, beta, averaged over high signal-to-noise pixels with standard deviation sigma(beta) < 0.25, but excluding similar to 6% of the sky masked in the Galactic plane, is - 3.03 +/- 0.04. This estimate does not vary significantly with Galactic latitude, although includes an informative prior. C1 [Dunkley, J.; Page, L.; Jarosik, N.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Dunkley, J.; Spergel, D. N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Dunkley, J.] Univ Oxford, Oxford OX1 3RH, England. [Spergel, D. N.] Princeton Univ, Princeton Ctr Theoret Phys, Princeton, NJ 08544 USA. [Komatsu, E.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Hinshaw, G.; Kogut, A.; Wollack, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Larson, D.; Bennett, C. L.; Gold, B.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Nolta, M. R.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Odegard, N.; Hill, R. S.; Weiland, J. L.] Adnet Syst Inc, Lanham, MD 20706 USA. [Halpern, M.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Limon, M.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Meyer, S. S.] Univ Chicago, Dept Phys & Astrophys, KICP, Chicago, IL 60637 USA. [Meyer, S. S.] Univ Chicago, EFI, Chicago, IL 60637 USA. [Tucker, G. S.] Brown Univ, Dept Phys, Providence, RI 02912 USA. [Wright, E. L.] UCLA Phys & Astron, PAB 3 909, Los Angeles, CA 90095 USA. RP Dunkley, J (reprint author), Princeton Univ, Dept Phys, Jadwin Hall, Princeton, NJ 08544 USA. EM j.dunkley@physics.ox.ac.uk RI Kogut, Alan/D-6293-2012; Komatsu, Eiichiro/A-4361-2011; Spergel, David/A-4410-2011; Wollack, Edward/D-4467-2012; OI Wollack, Edward/0000-0002-7567-4451; Limon, Michele/0000-0002-5900-2698 FU NASA [NNG05GE76G, NNX07AL75G S01, LTSA03-0000090, ATPNNG04GK55G, ADP03-0000-092]; Alfred P. Sloan Research Fellowship FX The WMAP mission is made possible by the support of the Science Mission Directorate Office at NASA Headquarters. This research was additionally supported by NASA grants NNG05GE76G, NNX07AL75G S01, LTSA03-0000090, ATPNNG04GK55G, and ADP03-0000-092. We thank the referee for helpful comments. E. K. acknowledges support from an Alfred P. Sloan Research Fellowship. This research has made use of NASA's Astrophysics Data System Bibliographic Services. We acknowledge use of the HEALPix, CAMB, and CMBFAST packages. NR 48 TC 71 Z9 71 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2009 VL 701 IS 2 BP 1804 EP 1813 DI 10.1088/0004-637X/701/2/1804 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 480UE UT WOS:000268761500072 ER PT J AU Cotton, WD Mason, BS Dicker, SR Korngut, PM Devlin, MJ Aquirre, J Benford, DJ Moseley, SH Staguhn, JG Irwin, KD Ade, P AF Cotton, W. D. Mason, B. S. Dicker, S. R. Korngut, P. M. Devlin, M. J. Aquirre, J. Benford, D. J. Moseley, S. H. Staguhn, J. G. Irwin, K. D. Ade, P. TI 90 GHz OBSERVATIONS OF M87 AND HYDRA A SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: jets; galaxies: individual (M87, Hydra A); radio continuum: galaxies ID RADIO GALAXIES; VLA OBSERVATIONS; MULTIFREQUENCY; SPECTRUM; JET; CENTIMETERS; LOBES; AGES AB This paper presents new observations of the active galactic nuclei M87 and Hydra A at 90 GHz made with the MUSTANG array on the Green Bank Telescope at 8 ''.5 resolution. A spectral analysis is performed combining this new data and archival VLA(7) data on these objects at longer wavelengths. This analysis can detect variations in spectral index and curvature expected from energy losses in the radiating particles. M87 shows only weak evidence for steepening of the spectrum along the jet suggesting either re-acceleration of the relativistic particles in the jet or insufficient losses to affect the spectrum at 90 GHz. The jets in Hydra A show strong steepening as they move from the nucleus suggesting unbalanced losses of the higher energy relativistic particles. The difference between these two sources may be accounted for by the lengths over which the jets are observable, 2 kpc for M87 and 45 kpc for Hydra A. C1 [Cotton, W. D.; Mason, B. S.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Dicker, S. R.; Korngut, P. M.; Devlin, M. J.; Aquirre, J.] Univ Penn, Philadelphia, PA 19104 USA. [Benford, D. J.; Moseley, S. H.; Staguhn, J. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Staguhn, J. G.] Univ Maryland, College Pk, MD 20742 USA. [Irwin, K. D.] Natl Inst Stand & Technol, Boulder, CO 80303 USA. [Ade, P.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. RP Cotton, WD (reprint author), Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA. EM bcotton@nrao.edu RI Benford, Dominic/D-4760-2012; Moseley, Harvey/D-5069-2012 OI Benford, Dominic/0000-0002-9884-4206; NR 25 TC 15 Z9 15 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2009 VL 701 IS 2 BP 1872 EP 1879 DI 10.1088/0004-637X/701/2/1872 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 480UE UT WOS:000268761500076 ER PT J AU Jones, SI Davila, JM AF Jones, Shaela I. Davila, Joseph M. TI LOCALIZED PLASMA DENSITY ENHANCEMENTS OBSERVED IN STEREO COR1 SO ASTROPHYSICAL JOURNAL LA English DT Article DE solar wind; Sun: corona; techniques: image processing ID CORONAL MASS EJECTIONS; SOLAR-WIND; INFLOWS; SPEEDS AB Measurements of solar wind speed in the solar corona, where it is primarily accelerated, have proven elusive. One of the more successful attempts has been the tracking of outward-moving density inhomogeneities in white-light coronagraph images. These inhomogeneities, or "blobs," have been treated as passive tracers of the ambient solar wind. Here we report on the extension of these observations to lower altitudes using the STEREO COR1 coronagraph, and discuss the implications of these measurements for theories about the origin of these features. C1 [Jones, Shaela I.] Univ Maryland, Dept Phys, College Pk, MD 20740 USA. [Jones, Shaela I.; Davila, Joseph M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Jones, SI (reprint author), Univ Maryland, Dept Phys, College Pk, MD 20740 USA. EM shaela@umd.edu NR 16 TC 8 Z9 8 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2009 VL 701 IS 2 BP 1906 EP 1910 DI 10.1088/0004-637X/701/2/1906 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 480UE UT WOS:000268761500079 ER PT J AU Pariat, E Masson, S Aulanier, G AF Pariat, E. Masson, S. Aulanier, G. TI CURRENT BUILDUP IN EMERGING SERPENTINE FLUX TUBES SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: numerical; MHD; Sun: magnetic fields; Sun: photosphere; Sun: UV radiation ID QUASI-SEPARATRIX LAYERS; CURRENT-SHEET FORMATION; IONIZED SOLAR ATMOSPHERE; BALD-PATCH FLARE; ELLERMAN BOMBS; MAGNETIC-FLUX; ACTIVE-REGION; FORCE-FREE; CONVECTION ZONE; OPTICAL TELESCOPE AB The increase of magnetic flux in the solar atmosphere during active-region formation involves the transport of the magnetic field from the solar convection zone through the lowest layers of the solar atmosphere, through which the plasma beta changes from > 1 to < 1 with altitude. The crossing of this magnetic transition zone requires the magnetic field to adopt a serpentine shape also known as the sea-serpent topology. In the frame of the resistive flux-emergence model, the rising of the magnetic flux is believed to be dynamically driven by a succession of magnetic reconnections which are commonly observed in emerging flux regions as Ellerman bombs. Using a data-driven, three-dimensional (3D) magnetohydrodynamic numerical simulation of flux emergence occurring in active region 10191 on 2002 November 16-17, we study the development of 3D electric current sheets. We show that these currents buildup along the 3D serpentine magnetic-field structure as a result of photospheric diverging horizontal line-tied motions that emulate the observed photospheric evolution. We observe that reconnection can not only develop following a pinching evolution of the serpentine field line, as usually assumed in two-dimensional geometry, but can also result from 3D shearing deformation of the magnetic structure. In addition, we report for the first time on the observation in the UV domain with the Transition Region and Coronal Explorer (TRACE) of extremely transient loop-like features, appearing within the emerging flux domain, which link several Ellermam bombs with one another. We argue that these loop transients can be explained as a consequence of the currents that build up along the serpentine magnetic field. C1 [Pariat, E.] NASA, Goddard Space Flight Ctr, Space Weather Lab, Greenbelt, MD 20771 USA. [Masson, S.; Aulanier, G.] Univ Paris Diderot, UPMC, CNRS, Observ Paris,LESIA, F-92190 Meudon, France. RP Pariat, E (reprint author), George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. EM epariat@helio.gsfc.nasa.gov FU NASA HTP; LWS TRT; SRT; Delegation Generale pour l'Armement (DGA); European Commission [MTRN-CT-2006-035484] FX E. P. is indebted to J. Karpen for her thorough reading of this manuscript and pertinent comments that improved the discussion. E. P. also thanks V. Archontis, the organizers, and the fellow participants of the Flux Emergence Workshop 2008 in Kyoto for stimulating discussions. Our MHD calculations were done on the dual-core quadri-Opteron computers of the Service Informatique de l'Observatoire de Paris (SIO). The work of E. P. was supported, in part, by the NASA HTP, LWS TR&T, and SR&T programs. The work of S. M. is funded by a fellowship of Delegation Generale pour l'Armement (DGA). Financial support by the European Commission through the SOLAIRE Network (MTRN-CT-2006-035484) is gratefully acknowledged. NR 67 TC 30 Z9 30 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2009 VL 701 IS 2 BP 1911 EP 1921 DI 10.1088/0004-637X/701/2/1911 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 480UE UT WOS:000268761500080 ER PT J AU Kennea, JA Mukai, K Sokoloski, JL Luna, GJM Tueller, J Markwardt, CB Burrows, DN AF Kennea, J. A. Mukai, K. Sokoloski, J. L. Luna, G. J. M. Tueller, J. Markwardt, C. B. Burrows, D. N. TI SWIFT OBSERVATIONS OF HARD X-RAY EMITTING WHITE DWARFS IN SYMBIOTIC STARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE white dwarfs; X-rays: binaries; X-rays: stars ID T-CORONAE-BOREALIS; CH-CYGNI; CATACLYSMIC VARIABLES; BINARY-SYSTEM; R-AQUARII; SS-CYGNI; EMISSION; JET; TELESCOPE; VARIABILITY AB The X-ray emission from most accreting white dwarfs (WDs) in symbiotic binary stars is quite soft. Several symbiotic WDs, however, produce strong X-ray emission at energies greater than similar to 20 keV. The Swift Burst Alert Telescope (BAT) instrument has detected hard X-ray emission from four such accreting WDs in symbiotic stars: RT Cru, T CrB, CD -57 3057, and CH Cyg. In one case (RT Cru), Swift detected X-rays out to greater than 50 keV at > 5 sigma confidence level. Combining data from the X-Ray Telescope (XRT) and BAT detectors, we find that the 0.3-150 keV spectra of RT Cru, T CrB, and CD -57 3057 are well described by emission from a single-temperature, optically thin thermal plasma, plus an unresolved 6.4-6.9 keV Fe line complex. The X-ray spectrum of CH Cyg contains an additional bright soft component. For all four systems, the spectra suffer high levels of absorption from material that both fully and partially covers the source of hard X-rays. The XRT data did not show any of the rapid, periodic variations that one would expect if the X-ray emission were due to accretion onto a rotating, highly magnetized WD. The X-rays were thus more likely from the accretion-disk boundary layer around a massive, non-magnetic WD in each binary. The X-ray emission from RT Cru varied on timescales of a few days. This variability is consistent with being due to changes in the absorber that partially covers the source, suggesting localized absorption from a clumpy medium moving into the line of sight. The X-ray emission from CD -57 3057 and T CrB also varied during the nine months of Swift observations, in a manner that was also consistent with variable absorption. C1 [Kennea, J. A.; Burrows, D. N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Mukai, K.; Markwardt, C. B.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Mukai, K.; Markwardt, C. B.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Mukai, K.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Sokoloski, J. L.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Luna, G. J. M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Markwardt, C. B.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. RP Kennea, JA (reprint author), Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. RI Tueller, Jack/D-5334-2012 FU NASA [NAS5-00136, NNX06AI16G, NNX08AG28G] FX We thank the anonymous referee for their helpful comments and very careful reading of the manuscript. This work is supported at Penn State by NASA contract NAS5-00136 and at Columbia by NASA grants NNX06AI16G and NNX08AG28G. NR 53 TC 21 Z9 21 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2009 VL 701 IS 2 BP 1992 EP 2001 DI 10.1088/0004-637X/701/2/1992 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 480UE UT WOS:000268761500085 ER PT J AU Lisse, CM Chen, CH Wyatt, MC Morlok, A Song, I Bryden, G Sheehan, P AF Lisse, C. M. Chen, C. H. Wyatt, M. C. Morlok, A. Song, I. Bryden, G. Sheehan, P. TI ABUNDANT CIRCUMSTELLAR SILICA DUST AND SiO GAS CREATED BY A GIANT HYPERVELOCITY COLLISION IN THE similar to 12 MYR HD172555 SYSTEM SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; infrared: stars; planetary systems: formation; planetary systems: protoplanetary disks; radiation mechanisms: thermal; techniques: spectroscopic ID TERRESTRIAL PLANET FORMATION; POLLUTED WHITE-DWARFS; DEEP IMPACT EJECTA; X-RAY-EMISSION; T-TAURI STARS; BETA-PICTORIS; DEBRIS DISK; DAWN MISSION; SOLAR-SYSTEM; WARM DUST AB The. ne dust detected by infrared (IR) emission around the nearby beta Pic analog star HD172555 is very peculiar. The dust mineralogy is composed primarily of highly refractory, nonequilibrium materials, with approximately three quarters of the Si atoms in silica (SiO(2)) species. Tektite and obsidian lab thermal emission spectra (nonequilibrium glassy silicas found in impact and magmatic systems) are required to fit the data. The best-fit model size distribution for the observed. ne dust is dn/da = a(-3.95 +/- 0.10). While IR photometry of the system has stayed stable since the 1983 IRAS mission, this steep a size distribution, with abundant micron-sized particles, argues for a fresh source of material within the last 0.1 Myr. The location of the dust with respect to the star is at 5.8 +/- 0.6 AU (equivalent to 1.9 +/- 0.2 AU from the Sun), within the terrestrial planet formation region but at the outer edge of any possible terrestrial habitability zone. The mass of. ne dust is 4 x 10(19)-2 x 10(20) kg, equivalent to a 150-200 km radius asteroid. Significant emission features centered at 4 and 8 mu m due to fluorescing SiO gas are also found. Roughly 10(22) kg of SiO gas, formed by vaporizing silicate rock, is also present in the system, and a separate population of very large, cool grains, massing 10(21)-10(22) kg and equivalent to the largest sized asteroid currently found in the solar system's main asteroid belt, dominates the solid circumstellar material by mass. The makeup of the observed dust and gas, and the noted lack of a dense circumstellar gas disk, strong stellar X-ray activity, and an extended disk of beta meteoroids argues that the source of the observed circumstellar materials is a giant hypervelocity (> 10 km s(-1)) impact between large rocky planetesimals, similar to the ones which formed the Moon and which stripped the surface crustal material off of Mercury's surface. C1 [Lisse, C. M.] Johns Hopkins Univ, Appl Phys Lab, Dept Space, Planetary Explorat Grp, Laurel, MD 20723 USA. [Chen, C. H.] STScI, Baltimore, MD 21218 USA. [Wyatt, M. C.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Morlok, A.] Open Univ, Milton Keynes MK7 6AA, Bucks, England. [Song, I.] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. [Morlok, A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Sheehan, P.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. RP Lisse, CM (reprint author), Johns Hopkins Univ, Appl Phys Lab, Dept Space, Planetary Explorat Grp, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. EM carey.lisse@jhuapl.edu; cchen@stsci.edu; wyatt@ast.cam.ac.uk; A.Morlok@open.ac.uk; song@uga.edu; Geoffrey.Bryden@jpl.nasa.gov; psheeha2@mail.rochester.edu RI Lisse, Carey/B-7772-2016 OI Lisse, Carey/0000-0002-9548-1526 FU JPL [1274485]; APL Janney Fellowship FX This paper was based on observations taken with the NASA Spitzer Space Telescope, operated by JPL/CalTech. C. M. Lisse gratefully acknowledges support for performing the modeling described herein from JPL contract 1274485 and the APL Janney Fellowship program. The authors would also like to thank W. Bottke, D. Ebel, H. Levinson, D. Nesvorny, A. Roberge, B. Sargent, G. Sloan, D. Stevenson, and D. Watson for many valuable discussions concerning this work, and M. Grady and C. Smith of the Natural History Museum, London for the FTIR analysis of the Bediasite tektite sample. NR 80 TC 80 Z9 80 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD AUG 20 PY 2009 VL 701 IS 2 BP 2019 EP 2032 DI 10.1088/0004-637X/701/2/2019 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 480UE UT WOS:000268761500087 ER PT J AU Abbott, BP Abbott, R Adhikari, R Ajith, P Allen, B Allen, G Amin, RS Anderson, SB Anderson, WG Arain, MA Araya, M Armandula, H Armor, P Aso, Y Aston, S Aufmuth, P Aulbert, C Babak, S Baker, P Ballmer, S Barker, C Barker, D Barr, B Barriga, P Barsotti, L Barton, MA Bartos, I Bassiri, R Bastarrika, M Behnke, B Benacquista, M Betzwieser, J Beyersdorf, PT Bilenko, IA Billingsley, G Biswas, R Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Bodiya, TP Bogue, L Bork, R Boschi, V Bose, S Brady, PR Braginsky, VB Brau, JE Bridges, DO Brinkmann, M Brooks, AF Brown, DA Brummit, A Brunet, G Bullington, A Buonanno, A Burmeister, O Byer, RL Cadonati, L Camp, JB Cannizzo, J Cannon, KC Cao, J Cardenas, L Caride, S Castaldi, G Caudill, S Cavaglia, M Cepeda, C Chalermsongsak, T Chalkley, E Charlton, P Chatterji, S Chelkowski, S Chen, Y Christensen, N Chung, CTY Clark, D Clark, J Clayton, JH Cokelaer, T Colacino, CN Conte, R Cook, D Corbitt, TRC Cornish, N Coward, D Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Culter, RM Cumming, A Cunningham, L Danilishin, SL Danzmann, K Daudert, B Davies, G Daw, EJ DeBra, D Degallaix, J Dergachev, V Desai, S DeSalvo, R Dhurandhar, S Diaz, M Dietz, A Donovan, F Dooley, KL Doomes, EE Drever, RWP Dueck, J Duke, I Dumas, JC Dwyer, JG Echols, C Edgar, M Effler, A Ehrens, P Espinoza, E Etzel, T Evans, M Evans, T Fairhurst, S Faltas, Y Fan, Y Fazi, D Fehrmann, H Finn, LS Flasch, K Foley, S Forrest, C Fotopoulos, N Franzen, A Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, T Fritschel, P Frolov, VV Fyffe, M Galdi, V Garofoli, JA Gholami, I Giaime, JA Giampanis, S Giardina, KD Goda, K Goetz, E Goggin, LM Gonzalez, G Gorodetsky, ML Gossler, S Gouaty, R Grant, A Gras, S Gray, C Gray, M Greenhalgh, RJS Gretarsson, AM Grimaldi, F Grosso, R Grote, H Grunewald, S Guenther, M Gustafson, EK Gustafson, R Hage, B Hallam, JM Hammer, D Hammond, GD Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Haughian, K Hayama, K Heefner, J Heng, IS Heptonstall, A Hewitson, M Hild, S Hirose, E Hoak, D Hodge, KA Holt, K Hosken, DJ Hough, J Hoyland, D Hughey, B Huttner, SH Ingram, DR Isogai, T Ito, M Ivanov, A Johnson, B Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kanner, J Kasprzyk, D Katsavounidis, E Kawabe, K Kawamura, S Kawazoe, F Kells, W Keppel, DG Khalaidovski, A Khalili, FY Khan, R Khazanov, E King, P Kissel, JS Klimenko, S Kokeyama, K Kondrashov, V Kopparapu, R Koranda, S Kozak, D Krishnan, B Kumar, R Kwee, P Lam, PK Landry, M Lantz, B Lazzarini, A Lei, H Lei, M Leindecker, N Leonor, I Li, C Lin, H Lindquist, PE Littenberg, TB Lockerbie, NA Lodhia, D Longo, M Lormand, M Lu, P Lubinski, M Lucianetti, A Luck, H Machenschalk, B MacInnis, M Mageswaran, M Mailand, K Mandel, I Mandic, V Marka, S Marka, Z Markosyan, A Markowitz, J Maros, E Martin, IW Martin, RM Marx, JN Mason, K Matichard, F Matone, L Matzner, RA Mavalvala, N McCarthy, R McClelland, DE McGuire, SC McHugh, M McIntyre, G McKechan, DJA McKenzie, K Mehmet, M Melatos, A Melissinos, AC Menendez, DF Mendell, G Mercer, RA Meshkov, S Messenger, C Meyer, MS Miller, J Minelli, J Mino, Y Mitrofanov, VP Mitselmakher, G Mittleman, R Miyakawa, O Moe, B Mohanty, SD Mohapatra, SRP Moreno, G Morioka, T Mors, K Mossavi, K MowLowry, C Mueller, G Muller-Ebhardt, H Muhammad, D Mukherjee, S Mukhopadhyay, H Mullavey, A Munch, J Murray, PG Myers, E Myers, J Nash, T Nelson, J Newton, G Nishizawa, A Numata, K O'Dell, J O'Reilly, B O'Shaughnessy, R Ochsner, E Ogin, GH Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Pan, Y Pankow, C Papa, MA Parameshwaraiah, V Patel, P Pedraza, M Penn, S Perreca, A Pierro, V Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Postiglione, F Principe, M Prix, R Prokhorov, L Punken, O Quetschke, V Raab, FJ Rabeling, DS Radkins, H Raffai, P Raics, Z Rainer, N Rakhmanov, M Raymond, V Reed, CM Reed, T Rehbein, H Reid, S Reitze, DH Riesen, R Riles, K Rivera, B Roberts, P Robertson, NA Robinson, C Robinson, EL Roddy, S Rover, C Rollins, J Romano, JD Romie, JH Rowan, S Rudiger, AR Russell, P Ryan, K Sakata, S de la Jordana, LS Sandberg, V Sannibale, V Santamaria, L Saraf, S Sarin, P Sathyaprakash, BS Sato, S Satterthwaite, M Saulson, PR Savage, R Savov, P Scanlan, M Schilling, R Schnabel, R Schofield, R Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Searle, AC Sears, B Seifert, F Sellers, D Sengupta, AS Sergeev, A Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Sinha, S Sintes, AM Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, ND Somiya, K Sorazu, B Stein, A Stein, LC Steplewski, S Stochino, A Stone, R Strain, KA Strigin, S Stroeer, A Stuver, AL Summerscales, TZ Sun, KX Sung, M Sutton, PJ Szokoly, GP Talukder, D Tang, L Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Thacker, J Thorne, KA Thorne, KS Thuring, A Tokmakov, KV Torres, C Torrie, C Traylor, G Trias, M Ugolini, D Ulmen, J Urbanek, K Vahlbruch, H Vallisneri, M van den Broeck, C van der Sluys, MV van Veggel, AA Vass, S Vaulin, R Vecchio, A Veitch, J Veitch, P Veltkamp, C Villar, A Vorvick, C Vyachanin, SP Waldman, SJ Wallace, L Ward, RL Weidner, A Weinert, M Weinstein, AJ Weiss, R Wen, L Wen, S Wette, K Whelan, JT Whitcomb, SE Whiting, BF Wilkinson, C Willems, PA Williams, HR Williams, L Willke, B Wilmut, I Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Woan, G Wooley, R Worden, J Wu, W Yakushin, I Yamamoto, H Yan, Z Yoshida, S Zanolin, M Zhang, J Zhang, L Zhao, C Zotov, N Zucker, ME zur Muhlen, H Zweizig, J AF Abbott, B. P. Abbott, R. Adhikari, R. Ajith, P. Allen, B. Allen, G. Amin, R. S. Anderson, S. B. Anderson, W. G. Arain, M. A. Araya, M. Armandula, H. Armor, P. Aso, Y. Aston, S. Aufmuth, P. Aulbert, C. Babak, S. Baker, P. Ballmer, S. Barker, C. Barker, D. Barr, B. Barriga, P. Barsotti, L. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Behnke, B. Benacquista, M. Betzwieser, J. Beyersdorf, P. T. Bilenko, I. A. Billingsley, G. Biswas, R. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Bodiya, T. P. Bogue, L. Bork, R. Boschi, V. Bose, S. Brady, P. R. Braginsky, V. B. Brau, J. E. Bridges, D. O. Brinkmann, M. Brooks, A. F. Brown, D. A. Brummit, A. Brunet, G. Bullington, A. Buonanno, A. Burmeister, O. Byer, R. L. Cadonati, L. Camp, J. B. Cannizzo, J. Cannon, K. C. Cao, J. Cardenas, L. Caride, S. Castaldi, G. Caudill, S. Cavaglia, M. Cepeda, C. Chalermsongsak, T. Chalkley, E. Charlton, P. Chatterji, S. Chelkowski, S. Chen, Y. Christensen, N. Chung, C. T. Y. Clark, D. Clark, J. Clayton, J. H. Cokelaer, T. Colacino, C. N. Conte, R. Cook, D. Corbitt, T. R. C. Cornish, N. Coward, D. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Culter, R. M. Cumming, A. Cunningham, L. Danilishin, S. L. Danzmann, K. Daudert, B. Davies, G. Daw, E. J. DeBra, D. Degallaix, J. Dergachev, V. Desai, S. DeSalvo, R. Dhurandhar, S. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Doomes, E. E. Drever, R. W. P. Dueck, J. Duke, I. Dumas, J. -C. Dwyer, J. G. Echols, C. Edgar, M. Effler, A. Ehrens, P. Espinoza, E. Etzel, T. Evans, M. Evans, T. Fairhurst, S. Faltas, Y. Fan, Y. Fazi, D. Fehrmann, H. Finn, L. S. Flasch, K. Foley, S. Forrest, C. Fotopoulos, N. Franzen, A. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. Fritschel, P. Frolov, V. V. Fyffe, M. Galdi, V. Garofoli, J. A. Gholami, I. Giaime, J. A. Giampanis, S. Giardina, K. D. Goda, K. Goetz, E. Goggin, L. M. Gonzalez, G. Gorodetsky, M. L. Gossler, S. Gouaty, R. Grant, A. Gras, S. Gray, C. Gray, M. Greenhalgh, R. J. S. Gretarsson, A. M. Grimaldi, F. Grosso, R. Grote, H. Grunewald, S. Guenther, M. Gustafson, E. K. Gustafson, R. Hage, B. Hallam, J. M. Hammer, D. Hammond, G. D. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Haughian, K. Hayama, K. Heefner, J. Heng, I. S. Heptonstall, A. Hewitson, M. Hild, S. Hirose, E. Hoak, D. Hodge, K. A. Holt, K. Hosken, D. J. Hough, J. Hoyland, D. Hughey, B. Huttner, S. H. Ingram, D. R. Isogai, T. Ito, M. Ivanov, A. Johnson, B. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kanner, J. Kasprzyk, D. Katsavounidis, E. Kawabe, K. Kawamura, S. Kawazoe, F. Kells, W. Keppel, D. G. Khalaidovski, A. Khalili, F. Y. Khan, R. Khazanov, E. King, P. Kissel, J. S. Klimenko, S. Kokeyama, K. Kondrashov, V. Kopparapu, R. Koranda, S. Kozak, D. Krishnan, B. Kumar, R. Kwee, P. Lam, P. K. Landry, M. Lantz, B. Lazzarini, A. Lei, H. Lei, M. Leindecker, N. Leonor, I. Li, C. Lin, H. Lindquist, P. E. Littenberg, T. B. Lockerbie, N. A. Lodhia, D. Longo, M. Lormand, M. Lu, P. Lubinski, M. Lucianetti, A. Lueck, H. Machenschalk, B. MacInnis, M. Mageswaran, M. Mailand, K. Mandel, I. Mandic, V. Marka, S. Marka, Z. Markosyan, A. Markowitz, J. Maros, E. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. McCarthy, R. McClelland, D. E. McGuire, S. C. McHugh, M. McIntyre, G. McKechan, D. J. A. McKenzie, K. Mehmet, M. Melatos, A. Melissinos, A. C. Menendez, D. F. Mendell, G. Mercer, R. A. Meshkov, S. Messenger, C. Meyer, M. S. Miller, J. Minelli, J. Mino, Y. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Miyakawa, O. Moe, B. Mohanty, S. D. Mohapatra, S. R. P. Moreno, G. Morioka, T. Mors, K. Mossavi, K. MowLowry, C. Mueller, G. Mueller-Ebhardt, H. Muhammad, D. Mukherjee, S. Mukhopadhyay, H. Mullavey, A. Munch, J. Murray, P. G. Myers, E. Myers, J. Nash, T. Nelson, J. Newton, G. Nishizawa, A. Numata, K. O'Dell, J. O'Reilly, B. O'Shaughnessy, R. Ochsner, E. Ogin, G. H. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Pan, Y. Pankow, C. Papa, M. A. Parameshwaraiah, V. Patel, P. Pedraza, M. Penn, S. Perreca, A. Pierro, V. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Postiglione, F. Principe, M. Prix, R. Prokhorov, L. Punken, O. Quetschke, V. Raab, F. J. Rabeling, D. S. Radkins, H. Raffai, P. Raics, Z. Rainer, N. Rakhmanov, M. Raymond, V. Reed, C. M. Reed, T. Rehbein, H. Reid, S. Reitze, D. H. Riesen, R. Riles, K. Rivera, B. Roberts, P. Robertson, N. A. Robinson, C. Robinson, E. L. Roddy, S. Roever, C. Rollins, J. Romano, J. D. Romie, J. H. Rowan, S. Ruediger, A. R. Russell, P. Ryan, K. Sakata, S. Sancho de la Jordana, L. Sandberg, V. Sannibale, V. Santamaria, L. Saraf, S. Sarin, P. Sathyaprakash, B. S. Sato, S. Satterthwaite, M. Saulson, P. R. Savage, R. Savov, P. Scanlan, M. Schilling, R. Schnabel, R. Schofield, R. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Searle, A. C. Sears, B. Seifert, F. Sellers, D. Sengupta, A. S. Sergeev, A. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Sinha, S. Sintes, A. M. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, N. D. Somiya, K. Sorazu, B. Stein, A. Stein, L. C. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. Stroeer, A. Stuver, A. L. Summerscales, T. Z. Sun, K. -X. Sung, M. Sutton, P. J. Szokoly, G. P. Talukder, D. Tang, L. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Thacker, J. Thorne, K. A. Thorne, K. S. Thuering, A. Tokmakov, K. V. Torres, C. Torrie, C. Traylor, G. Trias, M. Ugolini, D. Ulmen, J. Urbanek, K. Vahlbruch, H. Vallisneri, M. van den Broeck, C. van der Sluys, M. V. van Veggel, A. A. Vass, S. Vaulin, R. Vecchio, A. Veitch, J. Veitch, P. Veltkamp, C. Villar, A. Vorvick, C. Vyachanin, S. P. Waldman, S. J. Wallace, L. Ward, R. L. Weidner, A. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wen, S. Wette, K. Whelan, J. T. Whitcomb, S. E. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, H. R. Williams, L. Willke, B. Wilmut, I. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Woan, G. Wooley, R. Worden, J. Wu, W. Yakushin, I. Yamamoto, H. Yan, Z. Yoshida, S. Zanolin, M. Zhang, J. Zhang, L. Zhao, C. Zotov, N. Zucker, M. E. zur Muehlen, H. Zweizig, J. CA LIGO Sci Collaboration TI STACKED SEARCH FOR GRAVITATIONAL WAVES FROM THE 2006 SGR 1900+14 STORM SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma rays: bursts; gravitational waves; pulsars: individual (SGR 1900+14); stars: neutron ID MAGNETIZED NEUTRON-STARS; SOFT GAMMA-REPEATERS; RAY REPEATERS; BURST; SGR-1900+14; FLARES AB We present the results of a LIGO search for short-duration gravitational waves (GWs) associated with the 2006 March 29 SGR 1900+14 storm. A new search method is used, "stacking" the GW data around the times of individual soft-gamma bursts in the storm to enhance sensitivity for models in which multiple bursts are accompanied by GW emission. We assume that variation in the time difference between burst electromagnetic emission and potential burst GW emission is small relative to the GW signal duration, and we time-align GW excess power time-frequency tilings containing individual burst triggers to their corresponding electromagnetic emissions. We use two GW emission models in our search: a fluence-weighted model and a flat (unweighted) model for the most electromagnetically energetic bursts. We find no evidence of GWs associated with either model. Model-dependent GW strain, isotropic GW emission energy E(GW), and gamma = E(GW)/E(EM) upper limits are estimated using a variety of assumed waveforms. The stacking method allows us to set the most stringent model-dependent limits on transient GW strain published to date. We find E(GW) upper limit estimates (at a nominal distance of 10 kpc) of between 2 x 10(45) erg and 6 x 10(50) erg depending on the waveform type. These limits are an order of magnitude lower than upper limits published previously for this storm and overlap with the range of electromagnetic energies emitted in soft gamma repeater (SGR) giant flares. C1 [Abbott, B. P.; Abbott, R.; Adhikari, R.; Anderson, S. B.; Araya, M.; Armandula, H.; Aso, Y.; Ballmer, S.; Barton, M. A.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Boschi, V.; Brooks, A. F.; Cannon, K. C.; Cardenas, L.; Cepeda, C.; Chalermsongsak, T.; Chatterji, S.; Coyne, D. C.; Daudert, B.; DeSalvo, R.; Echols, C.; Ehrens, P.; Espinoza, E.; Etzel, T.; Fazi, D.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A.; Hodge, K. A.; Ivanov, A.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P.; Kondrashov, V.; Kozak, D.; Lazzarini, A.; Lei, M.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Miyakawa, O.; Nash, T.; Ogin, G. H.; Patel, P.; Pedraza, M.; Robertson, N. A.; Russell, P.; Sannibale, V.; Searle, A. C.; Sears, B.; Sengupta, A. S.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C.; Vass, S.; Villar, A.; Wallace, L.; Ward, R. L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Yamamoto, H.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Ajith, P.; Allen, B.; Aulbert, C.; Brinkmann, M.; Burmeister, O.; Danzmann, K.; Degallaix, J.; Dueck, J.; Fehrmann, H.; Frede, M.; Giampanis, S.; Gossler, S.; Grote, H.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Lueck, H.; Mehmet, M.; Messenger, C.; Mors, K.; Mossavi, K.; Mueller-Ebhardt, H.; Pletsch, H. J.; Prix, R.; Punken, O.; Rainer, N.; Rehbein, H.; Roever, C.; Ruediger, A. R.; Schilling, R.; Schnabel, R.; Schulz, B.; Seifert, F.; Taylor, J. R.; Veltkamp, C.; Weidner, A.; Weinert, M.; Willke, B.; Winkelmann, L.; Winkler, W.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Allen, B.; Anderson, W. G.; Armor, P.; Biswas, R.; Brady, P. R.; Clayton, J. H.; Creighton, J. D. E.; Flasch, K.; Fotopoulos, N.; Goggin, L. M.; Hammer, D.; Koranda, S.; Mercer, R. A.; Moe, B.; Papa, M. A.; Siemens, X.; Vaulin, R.; Williams, H. R.; Wiseman, A. G.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, G.; Bullington, A.; Byer, R. L.; Clark, D.; DeBra, D.; Lantz, B.; Leindecker, N.; Lu, P.; Markosyan, A.; Sinha, S.; Sun, K. -X.; Ulmen, J.; Urbanek, K.] Stanford Univ, Stanford, CA 94305 USA. [Amin, R. S.; Caudill, S.; Giaime, J. A.; Gonzalez, G.; Gouaty, R.; Johnson, W. W.; Kissel, J. S.; Matichard, F.; Slutsky, J.; Sung, M.; Wen, S.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Arain, M. A.; Dooley, K. L.; Faltas, Y.; Klimenko, S.; Lin, H.; Lucianetti, A.; Martin, R. M.; Mitselmakher, G.; Mueller, G.; Ottens, R. S.; Pankow, C.; Quetschke, V.; Reitze, D. H.; Tanner, D. B.; Whiting, B. F.; Williams, L.; Wu, W.] Univ Florida, Gainesville, FL 32611 USA. [Aston, S.; Chelkowski, S.; Cruise, A. M.; Culter, R. M.; Freise, A.; Hallam, J. M.; Hild, S.; Kasprzyk, D.; Lodhia, D.; Perreca, A.; Vecchio, A.; Veitch, J.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Aufmuth, P.; Danzmann, K.; Franzen, A.; Hage, B.; Kwee, P.; Lueck, H.; Thuering, A.; Vahlbruch, H.; Willke, B.; zur Muehlen, H.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Babak, S.; Behnke, B.; Chen, Y.; Gholami, I.; Grunewald, S.; Krishnan, B.; Machenschalk, B.; Papa, M. A.; Robinson, E. L.; Santamaria, L.; Schutz, B. F.; Whelan, J. T.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P.; Cornish, N.; Littenberg, T. B.] Montana State Univ, Bozeman, MT 59717 USA. [Barker, C.; Barker, D.; Bland, B.; Cook, D.; Effler, A.; Gray, C.; Guenther, M.; Ingram, D. R.; Johnson, B.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moreno, G.; Myers, E.; Myers, J.; Parameshwaraiah, V.; Raab, F. J.; Radkins, H.; Reed, C. M.; Rivera, B.; Ryan, K.; Sandberg, V.; Savage, R.; Schwinberg, P.; Sigg, D.; Vorvick, C.; Wilkinson, C.; Worden, J.] Hanford Observ, LIGO, Richland, WA 99352 USA. [Barr, B.; Bassiri, R.; Bastarrika, M.; Chalkley, E.; Cumming, A.; Cunningham, L.; Edgar, M.; Grant, A.; Hammond, G. D.; Haughian, K.; Heng, I. S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Martin, I. W.; Miller, J.; Murray, P. G.; Nelson, J.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Scott, J.; Sorazu, B.; Strain, K. A.; Tokmakov, K. V.; van Veggel, A. A.; Woan, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Barriga, P.; Blair, D.; Coward, D.; Dumas, J. -C.; Fan, Y.; Gras, S.; Hoyland, D.; Ju, L.; Wen, L.; Yan, Z.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Barsotti, L.; Blackburn, L.; Bodiya, T. P.; Brunet, G.; Cao, J.; Corbitt, T. R. C.; Donovan, F.; Duke, I.; Evans, M.; Foley, S.; Fritschel, P.; Goda, K.; Grimaldi, F.; Harry, G. M.; Hughey, B.; Katsavounidis, E.; MacInnis, M.; Markowitz, J.; Mason, K.; Mavalvala, N.; Mittleman, R.; Sarin, P.; Shapiro, B.; Shoemaker, D. H.; Smith, N. D.; Stein, A.; Stein, L. C.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Bartos, I.; Dwyer, J. G.; Khan, R.; Marka, S.; Marka, Z.; Matone, L.; Raics, Z.; Rollins, J.] Columbia Univ, New York, NY 10027 USA. [Benacquista, M.; Creighton, T. D.; Diaz, M.; Grosso, R.; Hayama, K.; Lei, H.; Mohanty, S. D.; Mukherjee, S.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Tang, L.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Beyersdorf, P. T.] San Jose State Univ, San Jose, CA 95192 USA. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Tarabrin, S. P.; Vyachanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Bogue, L.; Bridges, D. O.; Evans, T.; Forrest, C.; Fricke, T.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Hoak, D.; Holt, K.; Lormand, M.; Meyer, M. S.; Muhammad, D.; O'Reilly, B.; Overmier, H.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thacker, J.; Thorne, K. A.; Torres, C.; Traylor, G.; Wooley, R.; Yakushin, I.] Livingston Observ, LIGO, Livingston, LA 70754 USA. [Bose, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. [Brau, J. E.; Frey, R.; Harstad, E. D.; Ito, M.; Leonor, I.; Schofield, R.] Univ Oregon, Eugene, OR 97403 USA. [Brown, D. A.; Garofoli, J. A.; Hirose, E.; Saulson, P. R.; Smith, J. R.] Syracuse Univ, Syracuse, NY 13244 USA. [Brummit, A.; Greenhalgh, R. J. S.; O'Dell, J.; Wilmut, I.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Buonanno, A.; Kanner, J.; Ochsner, E.; Pan, Y.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.; Mohapatra, S. R. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Camp, J. B.; Cannizzo, J.; Numata, K.; Stroeer, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Caride, S.; Dergachev, V.; Goetz, E.; Gustafson, R.; Riles, K.; Zhang, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Castaldi, G.; Galdi, V.; Longo, M.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Cavaglia, M.] Univ Mississippi, University, MS 38677 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, Y.; Li, C.; Mino, Y.; Savov, P.; Somiya, K.; Thorne, K. S.; Vallisneri, M.; Wen, L.] CALTECH, CaRT, Pasadena, CA 91125 USA. [Christensen, N.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Chung, C. T. Y.; Melatos, A.] Univ Melbourne, Parkville, Vic 3010, Australia. [Clark, J.; Cokelaer, T.; Davies, G.; Dietz, A.; Fairhurst, S.; Harry, I. W.; Jones, G.; McKechan, D. J. A.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; van den Broeck, C.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Colacino, C. N.; Frei, Z.; Raffai, P.; Szokoly, G. P.] Eotvos Lorand Univ, ELTE, H-1053 Budapest, Hungary. [Conte, R.; Postiglione, F.] Univ Salerno, I-84084 Salerno, Italy. [Daw, E. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Desai, S.; Finn, L. S.; Kopparapu, R.; Menendez, D. F.; Minelli, J.; O'Shaughnessy, R.; Owen, B. J.; Williams, H. R.] Penn State Univ, University Pk, PA 16802 USA. [Dhurandhar, S.; Mukhopadhyay, H.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Doomes, E. E.; McGuire, S. C.] So Univ & A&M Coll, Baton Rouge, LA 70813 USA. [Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Frei, M.; Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA. [Gray, M.; Lam, P. K.; McClelland, D. E.; McKenzie, K.; MowLowry, C.; Mullavey, A.; Rabeling, D. S.; Satterthwaite, M.; Scott, S. M.; Slagmolen, B. J. J.; Wette, K.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Gretarsson, A. M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Harms, J.; Kandhasamy, S.; Mandic, V.] Univ Minnesota, Minneapolis, MN 55455 USA. [Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P.] Univ Adelaide, Adelaide, SA 5005, Australia. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Kalogera, V.; Mandel, I.; Raymond, V.; van der Sluys, M. V.] Northwestern Univ, Evanston, IL 60208 USA. [Kawamura, S.; Kokeyama, K.; Morioka, T.; Nishizawa, A.; Sakata, S.; Sato, S.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Khazanov, E.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Lockerbie, N. A.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [McHugh, M.] Loyola Univ, New Orleans, LA 70118 USA. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Reed, T.; Scanlan, M.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Roberts, P.; Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Sancho de la Jordana, L.; Sintes, A. M.; Trias, M.] Univ Illes Balears, E-07122 Palma de Mallorca, Spain. [Saraf, S.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. RP Abbott, BP (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Lam, Ping Koy/A-5276-2008; Galdi, Vincenzo/B-1670-2008; Hammond, Giles/B-7861-2009; McClelland, David/E-6765-2010; Lueck, Harald/F-7100-2011; Kawazoe, Fumiko/F-7700-2011; Freise, Andreas/F-8892-2011; Hild, Stefan/A-3864-2010; Schutz, Bernard/B-1504-2010; Rowan, Sheila/E-3032-2010; Strain, Kenneth/D-5236-2011; Raab, Frederick/E-2222-2011; Martin, Iain/A-2445-2010; Kawabe, Keita/G-9840-2011; Hammond, Giles/A-8168-2012; Finn, Lee Samuel/A-3452-2009; Santamaria, Lucia/A-7269-2012; Prokhorov, Leonid/I-2953-2012; Gorodetsky, Michael/C-5938-2008; Strigin, Sergey/I-8337-2012; Mitrofanov, Valery/D-8501-2012; Bilenko, Igor/D-5172-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Barker, David/A-5671-2013; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Pitkin, Matthew/I-3802-2013; Vyatchanin, Sergey/J-2238-2012; Khazanov, Efim/B-6643-2014; Lucianetti, Antonio/G-7383-2014; Danilishin, Stefan/K-7262-2012; Khalili, Farit/D-8113-2012; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Khan, Rubab/F-9455-2015; Ottaway, David/J-5908-2015; Postiglione, Fabio/O-4744-2015; Sigg, Daniel/I-4308-2015; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Bartos, Imre/A-2592-2017; Frey, Raymond/E-2830-2016; Sergeev, Alexander/F-3027-2017; Ward, Robert/I-8032-2014; OI Lam, Ping Koy/0000-0002-4421-601X; Galdi, Vincenzo/0000-0002-4796-3600; McClelland, David/0000-0001-6210-5842; Lueck, Harald/0000-0001-9350-4846; Strain, Kenneth/0000-0002-2066-5355; Finn, Lee Samuel/0000-0002-3937-0688; Gorodetsky, Michael/0000-0002-5159-2742; Allen, Bruce/0000-0003-4285-6256; Zhao, Chunnong/0000-0001-5825-2401; Pitkin, Matthew/0000-0003-4548-526X; Danilishin, Stefan/0000-0001-7758-7493; Vecchio, Alberto/0000-0002-6254-1617; Khan, Rubab/0000-0001-5100-5168; Postiglione, Fabio/0000-0003-0628-3796; Sigg, Daniel/0000-0003-4606-6526; Frey, Raymond/0000-0003-0341-2636; Stein, Leo/0000-0001-7559-9597; Ward, Robert/0000-0001-5503-5241; Whelan, John/0000-0001-5710-6576; LONGO, Maurizio/0000-0001-8325-4003; Fairhurst, Stephen/0000-0001-8480-1961; Boschi, Valerio/0000-0001-8665-2293; Matichard, Fabrice/0000-0001-8982-8418; Pinto, Innocenzo M./0000-0002-2679-4457; Minelli, Jeff/0000-0002-5330-912X; Santamaria, Lucia/0000-0002-5986-0449; Pierro, Vincenzo/0000-0002-6020-5521; Hallam, Jonathan Mark/0000-0002-7087-0461; Sorazu, Borja/0000-0002-6178-3198; Nishizawa, Atsushi/0000-0003-3562-0990; O'Shaughnessy, Richard/0000-0001-5832-8517; Aulbert, Carsten/0000-0002-1481-8319; Veitch, John/0000-0002-6508-0713; Principe, Maria/0000-0002-6327-0628; Papa, M.Alessandra/0000-0002-1007-5298 FU United States National Science Foundation; Science and Technology Facilities Council of the United Kingdom; Max-Planck-Society; State of Niedersachsen/Germany; Australian Research Council; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation FX The authors are grateful to the Swift team for the SGR 1900+14 storm data. The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory and the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. This Letter is LIGO-P0900024. NR 37 TC 35 Z9 35 U1 3 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 20 PY 2009 VL 701 IS 2 BP L68 EP L74 DI 10.1088/0004-637X/701/2/L68 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 482ET UT WOS:000268867900002 ER PT J AU Abdo, AA Ackermann, M Ajello, M Atwood, WB Axelsson, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Baughman, BM Bechtol, K Bellazzini, R Berenji, B Blandford, R Bloom, ED Bonamente, E Borgland, AW Bregeon, J Brez, A Brigida, M Bruel, P Burnett, TH Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cavazzuti, E Cecchi, C Celik, O Charles, E Chaty, S Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Cominsky, LR Conrad, J Corbel, S Corbet, R Cutini, S Dermer, CD de Angelis, A de Luca, A de Palma, F Digel, SW Dormody, M Silva, EDE Drell, PS Dubois, R Dubus, G Dumora, D Farnier, C Favuzzi, C Fegan, SJ Focke, WB Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giebels, B Giglietto, N Giordano, F Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Hanabata, Y Harding, AK Hayashida, M Hays, E Hill, AB Hughes, RE Johannesson, G Johnson, AS Johnson, RP Johnson, TJ Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Knodlseder, J Kocian, ML Kuehn, F Kuss, M Lande, J Larsson, S Latronico, L Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Marelli, M Mazziotta, MN McEnery, JE Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nolan, PL Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Ray, PS Razzano, M Rea, N Reimer, A Reimer, O Reposeur, T Ritz, S Rochester, LS Rodriguez, AY Romani, RW Ryde, F Sadrozinski, HFW Sanchez, D Sander, A Parkinson, PMS Scargle, JD Sgro, C Shaw, MS Sierpowska-Bartosik, A Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Striani, E Strickman, MS Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vasileiou, V Vilchez, N Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Atwood, W. B. Axelsson, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Baughman, B. M. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. Bloom, E. D. Bonamente, E. Borgland, A. W. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Burnett, T. H. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Celik, Oe. Charles, E. Chaty, S. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cominsky, L. R. Conrad, J. Corbel, S. Corbet, R. Cutini, S. Dermer, C. D. de Angelis, A. de Luca, A. de Palma, F. Digel, S. W. Dormody, M. do Couto e Silva, E. Drell, P. S. Dubois, R. Dubus, G. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Focke, W. B. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giebels, B. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Hanabata, Y. Harding, A. K. Hayashida, M. Hays, E. Hill, A. B. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, T. J. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Knoedlseder, J. Kocian, M. L. Kuehn, F. Kuss, M. Lande, J. Larsson, S. Latronico, L. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Marelli, M. Mazziotta, M. N. McEnery, J. E. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nolan, P. L. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Ray, P. S. Razzano, M. Rea, N. Reimer, A. Reimer, O. Reposeur, T. Ritz, S. Rochester, L. S. Rodriguez, A. Y. Romani, R. W. Ryde, F. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Sgro, C. Shaw, M. S. Sierpowska-Bartosik, A. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Striani, E. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Ylinen, T. Ziegler, M. TI FERMI LAT OBSERVATIONS OF LS I+61 degrees 303: FIRST DETECTION OF AN ORBITAL MODULATION IN GeV GAMMA RAYS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE binaries: close; gamma rays: observations; stars: variables: other; X-rays: binaries; X-rays: individual (LS I+61 degrees 303) ID SOURCE 2CG 135+01; I+61 303; MICROQUASAR LS-I+61-303; BINARIES LS-5039; AREA TELESCOPE; PULSAR WIND; SPACED DATA; EGRET DATA; H-ALPHA; COS-B AB This Letter presents the first results from the observations of LS I + 61 degrees 303 using Large Area Telescope data from the Fermi Gamma-Ray Space Telescope between 2008 August and 2009 March. Our results indicate variability that is consistent with the binary period, with the emission being modulated at 26.6 +/- 0.5 days. This constitutes the first detection of orbital periodicity in high-energy gamma rays (20 MeV-100 GeV, HE). The light curve is characterized by a broad peak after periastron, as well as a smaller peak just before apastron. The spectrum is best represented by a power law with an exponential cutoff, yielding an overall flux above 100 MeV of 0.82 +/- 0.03(stat) +/- 0.07(syst) 10(-6) ph cm(-2) s(-1), with a cutoff at 6.3 +/- 1.1(stat) +/- 0.4(syst) GeV and photon index Gamma = 2.21 +/- 0.04(stat) +/- 0.06(syst). There is no significant spectral change with orbital phase. The phase of maximum emission, close to periastron, hints at inverse Compton scattering as the main radiation mechanism. However, previous very high-energy gamma ray (>100 GeV, VHE) observations by MAGIC and VERITAS show peak emission close to apastron. This and the energy cutoff seen with Fermi suggest that the link between HE and VHE gamma rays is nontrivial. C1 [Abdo, A. A.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Abdo, A. A.; Chekhtman, A.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Ray, P. S.; Strickman, M. S.; Wood, K. S.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Shaw, M. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Shaw, M. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, W. B.; Dormody, M.; Johnson, R. P.; Porter, T. A.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Dormody, M.; Johnson, R. P.; Porter, T. A.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Axelsson, M.; Conrad, J.; Larsson, S.; Meurer, C.; Ryde, F.; Ylinen, T.] Oskar Klein Ctr Cosmo Particle Phys, SE-10691 Stockholm, Sweden. [Axelsson, M.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Chaty, S.; Corbel, S.; Grenier, I. A.] Univ Paris Diderot, Serv Astrophys, CEA Saclay, CNRS,Lab AIM,CEA IRFU, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Sez Trieste, Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Sez Padova, Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Hughes, R. E.; Kuehn, F.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Sez Perugia, Ist Nazl Fis Nucl, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Sez Bari, Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Giebels, B.; Sanchez, D.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caraveo, P. A.; Marelli, M.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy. [Cavazzuti, E.; Cutini, S.; Gasparrini, D.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00044 Rome, Italy. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Conrad, J.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Larsson, S.; Meurer, C.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Corbet, R.; Vasileiou, V.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Grp Coll Udine, Sez Trieste, Ist Nazl Fis Nucl, I-33100 Udine, Italy. [de Luca, A.] IUSS, I-27100 Pavia, Italy. [Dubus, G.; Hill, A. B.] Univ Grenoble 1, Observ Sci Univers, F-38041 Grenoble 9, France. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CNRS, Ctr Etud Nucl Bordeaux Gradignan, IN2P3, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.; Johnson, T. J.] Univ Maryland, College Pk, MD 20742 USA. [Guiriec, S.] Univ Alabama, Huntsville, AL 35899 USA. [Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan. [Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Kawai, N.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Morselli, A.; Striani, E.; Vitale, V.] Sez Roma Tor Vergata, Ist Nazl Fis Nucl, I-00133 Rome, Italy. [Okumura, A.] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Rea, N.] Sterrenkundig Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. [Rea, N.; Rodriguez, A. Y.; Sierpowska-Bartosik, A.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Striani, E.; Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Torres, D. F.] ICREA, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Vasileiou, V.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. EM richard@slac.stanford.edu; adam.hill@obs.ujf-grenoble.fr; dtorres@ieec.uab.es RI Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Rea, Nanda/I-2853-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; OI Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Hill, Adam/0000-0003-3470-4834; Tramacere, Andrea/0000-0002-8186-3793; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Rea, Nanda/0000-0003-2177-6388; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Rando, Riccardo/0000-0001-6992-818X; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864 FU National Aeronautics and Space Administration; Department of Energy in the United States; Commissariatal'EnergieAtomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT),; High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K.A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; Spanish CSIC and MICINN; Istituto Nazionale di Astrofisica in Italy FX The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariatal'EnergieAtomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K.A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden.; Additional support for science analysis during the operations phase from the following agencies is also gratefully acknowledged: the Spanish CSIC and MICINN and the Istituto Nazionale di Astrofisica in Italy.; We thank the anonymous referee for useful and constructive comments. NR 48 TC 87 Z9 87 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 20 PY 2009 VL 701 IS 2 BP L123 EP L128 DI 10.1088/0004-637X/701/2/L123 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 482ET UT WOS:000268867900014 ER PT J AU Marrone, DP Smith, GP Richard, J Joy, M Bonamente, M Hasler, N Hamilton-Morris, V Kneib, JP Culverhouse, T Carlstrom, JE Greer, C Hawkins, D Hennessy, R Lamb, JW Leitch, EM Loh, M Miller, A Mroczkowski, T Muchovej, S Pryke, C Sharp, MK Woody, D AF Marrone, Daniel P. Smith, Graham P. Richard, Johan Joy, Marshall Bonamente, Massimiliano Hasler, Nicole Hamilton-Morris, Victoria Kneib, Jean-Paul Culverhouse, Thomas Carlstrom, John E. Greer, Christopher Hawkins, David Hennessy, Ryan Lamb, James W. Leitch, Erik M. Loh, Michael Miller, Amber Mroczkowski, Tony Muchovej, Stephen Pryke, Clem Sharp, Matthew K. Woody, David TI LoCuSS: A COMPARISON OF SUNYAEV-ZEL'DOVICH EFFECT AND GRAVITATIONAL-LENSING MEASUREMENTS OF GALAXY CLUSTERS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmology: observations; galaxies: clusters: general; gravitational lensing ID X-RAY MEASUREMENTS; SCALING RELATIONS; MASS; SIMULATIONS; EVOLUTION; THERMODYNAMICS; LUMINOSITY; COSMOLOGY; IMPACT; ROBUST AB We present the first measurement of the relationship between the Sunyaev-Zel'dovich effect (SZE) signal and the mass of galaxy clusters that uses gravitational lensing to measure cluster mass, based on 14 X-ray luminous clusters at z similar or equal to 0.2 from the Local Cluster Substructure Survey. We measure the integrated Compton y-parameter, Y, and total projected mass of the clusters (M(GL)) within a projected clustercentric radius of 350 kpc, corresponding to mean overdensities of 4000-8000 relative to the critical density. We find self-similar scaling between M(GL) and Y, with a scatter in mass at fixed Y of 32%. This scatter exceeds that predicted from numerical cluster simulations, however, it is smaller than comparable measurements of the scatter in mass at fixed T(X). We also find no evidence of segregation in Y between disturbed and undisturbed clusters, as had been seen with T(X) on the same physical scales. We compare our scaling relation to the Bonamente et al. relation based on mass measurements that assume hydrostatic equilibrium, finding no evidence for a hydrostatic mass bias in cluster cores (M(GL) = 0.98 +/- 0.13 M(HSE)), consistent with both predictions from numerical simulations and lensing/X-ray-based measurements of mass-observable scaling relations at larger radii. Overall our results suggest that the SZE may be less sensitive than X-ray observations to the details of cluster physics in cluster cores. C1 [Marrone, Daniel P.; Culverhouse, Thomas; Carlstrom, John E.; Greer, Christopher; Hennessy, Ryan; Leitch, Erik M.; Loh, Michael; Pryke, Clem; Sharp, Matthew K.] Univ Chicago, Dept Astron & Astrophys, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Smith, Graham P.; Hamilton-Morris, Victoria] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Richard, Johan] CALTECH, Pasadena, CA 91125 USA. [Richard, Johan] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Joy, Marshall] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. [Bonamente, Massimiliano; Hasler, Nicole] Univ Alabama, Dept Phys, Huntsville, AL 35812 USA. [Kneib, Jean-Paul] Univ Aix Marseilles, CNRS, OAMP, Lab Astrophys Marseilles, F-13388 Marseilles 13, France. [Carlstrom, John E.; Sharp, Matthew K.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Carlstrom, John E.; Pryke, Clem] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Hawkins, David; Lamb, James W.; Muchovej, Stephen; Woody, David] CALTECH, Owens Valley Radio Observ, Big Pine, CA 93513 USA. [Miller, Amber; Mroczkowski, Tony] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Miller, Amber] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Mroczkowski, Tony; Muchovej, Stephen] Columbia Univ, Dept Astron, New York, NY 10027 USA. RP Marrone, DP (reprint author), Univ Chicago, Dept Astron & Astrophys, Kavli Inst Cosmol Phys, 5640 S Ellis Ave, Chicago, IL 60637 USA. RI Kneib, Jean-Paul/A-7919-2015; OI Kneib, Jean-Paul/0000-0002-4616-4989; Marrone, Daniel/0000-0002-2367-1080; Mroczkowski, Tony/0000-0003-3816-5372 FU Royal Society; STFC; James S. McDonnell Foundation; National Science Foundation; University of Chicago; NSF Division of Astronomical Sciences [AST-0604982]; NSF Physics Frontier Center [PHY-0114422]; NSF [AST-0507545, AST-05-07161] FX We thank our colleagues in the LoCuSS collaborations for much support, encouragement and help. G. P. S. acknowledges support from the Royal Society and STFC, and thanks the Kavli Institute of Cosmological Physics at the University of Chicago for their hospitality whilstworking on this Letter. G. P. S. thanks Alain Blanchard for helpful comments. We gratefully acknowledge the James S. McDonnell Foundation, the National Science Foundation, and the University of Chicago for funding to construct the SZA. The operation of the SZA is supported by NSF Division of Astronomical Sciences through grant AST-0604982. Partial support is provided by NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, and by NSF grants AST-0507545 and AST-05-07161 to Columbia University. NR 43 TC 39 Z9 39 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD AUG 20 PY 2009 VL 701 IS 2 BP L114 EP L118 DI 10.1088/0004-637X/701/2/L114 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 482ET UT WOS:000268867900012 ER PT J AU Mitsuzawa, S Kagawa, H Li, YF Chan, SL Paavola, CD Trent, JD AF Mitsuzawa, Shigenobu Kagawa, Hiromi Li, Yifen Chan, Suzanne L. Paavola, Chad D. Trent, Jonathan D. TI The rosettazyme: A synthetic cellulosome SO JOURNAL OF BIOTECHNOLOGY LA English DT Article DE Biofuels; Cellulose; Cellulosome; Rosettasome; Chaperonin ID CLOSTRIDIUM-THERMOCELLUM; CHAPERONIN; MINICELLULOSOMES; CELLULOVORANS; COMPONENT; COMPLEX; ENZYMES; PROTEIN; DEGRADATION; CELLULASES AB Cellulose is an attractive feedstock for biofuel production because of its abundance, but the cellulose polymer is extremely stable and its constituent sugars are difficult to access. In nature, extracellular multienzyme complexes known as cellulosomes are among the most effective ways to transform cellulose to useable sugars. Cellulosomes consist of a diversity of secreted cellulases and other plant cell-wall degrading enzymes bound to a protein scaffold. These scaffold proteins have cohesin modules that bind conserved dockerin modules on the enzymes. It is thought that the localization of these diverse enzymes on the scaffold allows them to function synergistically. In order to understand and harness this synergy smaller, simplified cellulosomes have been constructed, expressed, and reconstituted using truncated cohesin-containing scaffolds. Here we show that an 18-subunit protein complex called a rosettasome can be genetically engineered to bind dockerin-containing enzymes and function like a cellulosome. Rosettasomes are thermostable, group II chaperonins from the hyperthermo-acidophilic archaeon Sulfolobus shibatae, which in the presence of ATP/Mg2+ assemble into 18-subunit, double-ring structures. We fused a cohesin module from Clostridium thermocellum to a circular permutant of a rosettasome subunit, and we demonstrate that the cohesin-rosettasomes: (1) bind dockerin-containing endo- and exo-gluconases, (2) the bound enzymes have increased cellulose-degrading activity compared to their activity free in solution, and (3) this increased activity depends on the number and ratio of the bound glucanases. We call these engineered multi-enzyme structures rosettazymes. Published by Elsevier B.V. C1 [Mitsuzawa, Shigenobu; Trent, Jonathan D.] Univ Calif Santa Cruz, Dept Biomol Engn, Santa Cruz, CA 95064 USA. [Mitsuzawa, Shigenobu] Japan Agcy Marine Earth Sci & Technol, Extremobiosphere Res Ctr, Yokosuka, Kanagawa 2370061, Japan. [Kagawa, Hiromi; Li, Yifen; Chan, Suzanne L.] SETI Inst, Mountain View, CA 94043 USA. [Paavola, Chad D.; Trent, Jonathan D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Trent, JD (reprint author), Univ Calif Santa Cruz, Dept Biomol Engn, Santa Cruz, CA 95064 USA. EM jonathan.D.Trent@nasa.gov FU NASA Ames Research Center FX The authors thank S. Reinsch, S. Bhattacharya, M. Sanchez and O. Marcu for critical reading of the manuscript, as well as C. McGann and K. Phillips for assistance in preparing the manuscript and figures. We also thank R. Boyle and J. Varelas of the NASA BioVis Center for access to the LEOTEM. This work was supported by funding from NASA Ames Research Center. NR 27 TC 36 Z9 37 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1656 J9 J BIOTECHNOL JI J. Biotechnol. PD AUG 20 PY 2009 VL 143 IS 2 BP 139 EP 144 DI 10.1016/j.jbiotec.2009.06.019 PG 6 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 494WR UT WOS:000269850700009 PM 19559062 ER PT J AU Lin, Y Watson, KA Ghose, S Smith, JG Williams, TV Crooks, RE Cao, W Connell, JW AF Lin, Yi Watson, Kent A. Ghose, Sayata Smith, Joseph G., Jr. Williams, Tiffany V. Crooks, Roy E. Cao, Wei Connell, John W. TI Direct Mechanochemical Formation of Metal Nanoparticles on Carbon Nanotubes SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID THERMAL-DECOMPOSITION; FUEL-CELLS; PLATINUM; NANOWIRES; ACETATE; SILVER AB Silver nanoparticles of small average diameter (<5 nm) and rather narrow size distribution rapidly formed oil the surfaces of carbon nanotubes in a simple mechanochemical process in which silver acetate was ball-milled with the nanotubes for only a few Minutes. The outcome was achieved in the absence of any solvent, any additional reducing agents, or applied electrical Current. This simple method was found to be readily applicable to not only carbon nanotubes of various diameters, but also other carbon and noncarbon Substrates that are thermally conductive. Different organic metal salts (e.g.. gold and palladium acetates and platinum acetylacetonate) were also successfully applied in similar procedures to obtain the corresponding metal-nanotube nanohybrids. The reported mechanochemical process for the preparation of metal nanoparticle-decorated carbon nanotubes is rapid, versatile, and potentially scalable, making it Useful for further exploitation in a variety of applications. C1 [Lin, Yi; Watson, Kent A.; Ghose, Sayata; Crooks, Roy E.] Natl Inst Aerosp, Hampton, VA 23666 USA. [Smith, Joseph G., Jr.; Connell, John W.] NASA, Langley Res Ctr, Adv Mat & Proc Branch, Hampton, VA 23681 USA. [Williams, Tiffany V.] NASA, Langley Res Ctr, LARSS, Hampton, VA 23681 USA. [Cao, Wei] Old Dominion Univ, Appl Res Ctr, Newport News, VA 23606 USA. RP Lin, Y (reprint author), Natl Inst Aerosp, 100 Explorat Way, Hampton, VA 23666 USA. EM yi.lin-l@nasa.gov; john.w.connell@nasa.gov RI Cao, Wei/E-8950-2011; OI Williams, Tiffany/0000-0003-3463-9200 FU NASA [NNH06CC03B] FX Y.L. was partially Supported by an appointment to the NASA Postdoctoral Program at the Langley Research Center, administered by ORAU through NASA contract NNH06CC03B. The authors thank D. Hartman at NASA Langley Research Center for XRD measurements. NR 27 TC 21 Z9 21 U1 2 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD AUG 20 PY 2009 VL 113 IS 33 BP 14858 EP 14862 DI 10.1021/jp905076u PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 482RX UT WOS:000268907500046 ER PT J AU Abbott, BP Abbott, R Acernese, F Adhikari, R Ajith, P Allen, B Allen, G Alshourbagy, M Amin, RS Anderson, SB Anderson, WG Antonucci, F Aoudia, S Arain, MA Araya, M Armandula, H Armor, P Arun, KG Aso, Y Aston, S Astone, P Aufmuth, P Aulbert, C Babak, S Baker, P Ballardin, G Ballmer, S Barker, C Barker, D Barone, F Barr, B Barriga, P Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Bauer, TS Behnke, B Beker, M Benacquista, M Betzwieser, J Beyersdorf, PT Bigotta, S Bilenko, IA Billingsley, G Birindelli, S Biswas, R Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Boccara, C Bodiya, TP Bogue, L Bondu, F Bonelli, L Bork, R Boschi, V Bose, S Bosi, L Braccini, S Bradaschia, C Brady, PR Braginsky, VB van den Brand, JFJ Brau, JE Bridges, DO Brillet, A Brinkmann, M Brisson, V Van Den Broeck, C Brooks, AF Brown, DA Brummit, A Brunet, G Bullington, A Bulten, HJ Buonanno, A Burmeister, O Buskulic, D Byer, RL Cadonati, L Cagnoli, G Calloni, E Camp, JB Campagna, E Cannizzo, J Cannon, KC Canuel, B Cao, J Carbognani, F Cardenas, L Caride, S Castaldi, G Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chalermsongsak, T Chalkley, E Charlton, P Chassande-Mottin, E Chatterji, S Chelkowski, S Chen, Y Christensen, N Chung, CTY Clark, D Clark, J Clayton, JH Cleva, F Coccia, E Cokelaer, T Colacino, CN Colas, J Colla, A Colombini, M Conte, R Cook, D Corbitt, TRC Corda, C Cornish, N Corsi, A Coulon, JP Coward, D Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Culter, RM Cumming, A Cunningham, L Cuoco, E Danilishin, SL D'Antonio, S Danzmann, K Dari, A Dattilo, V Daudert, B Davier, M Davies, G Daw, EJ Day, R De Rosa, R Debra, D Degallaix, J del Prete, M Dergachev, V Desai, S DeSalvo, R Dhurandhar, S Di Fiore, L Di Lieto, A Emilio, MD Di Virgilio, A Diaz, M Dietz, A Donovan, F Dooley, KL Doomes, EE Drago, M Drever, RWP Dueck, J Duke, I Dumas, JC Dwyer, JG Echols, C Edgar, M Effler, A Ehrens, P Ely, G Espinoza, E Etzel, T Evans, T Fafone, V Fairhurst, S Faltas, Y Fan, Y Fazi, D Fehrmann, H Ferrante, I Fidecaro, F Finn, LS Fiori, I Flaminio, R Flasch, K Foley, S Forrest, C Fotopoulos, N Fournier, JD Franc, J Franzen, A Frasca, S Frasconi, F Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, T Fritschel, P Frolov, VV Fyffe, M Galdi, V Gammaitoni, L Garofoli, JA Garufi, F Genin, E Gennai, A Gholami, I Giaime, JA Giampanis, S Giardina, KD Giazotto, A Goda, K Goetz, E Goggin, LM Gonzalez, G Gorodetsky, ML Gosser, S Gouaty, R Granata, M Granata, V Grant, A Gras, S Gray, C Gray, M Greenhalgh, RJS Gretarsson, AM Greverie, C Grimaldi, F Grosso, R Grote, H Grunewald, S Guenther, M Guidi, G Gustafson, EK Gustafson, R Hage, B Hallam, JM Hammer, D Hammond, GD Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Haughian, K Hayama, K Heefner, J Heitmann, H Hello, P Heng, IS Heptonstall, A Hewitson, M Hild, S Hirose, E Hoak, D Hodge, KA Holt, K Hosken, DJ Hough, J Hoyland, D Huet, D Hughey, B Huttner, SH Ingram, DR Isogai, T Ito, M Ivanov, A Johnson, B Johnson, WW Jones, DI Jones, G Jones, R de la Jordana, LS Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kanner, J Kasprzyk, D Katsavounidis, E Kawabe, K Kawamura, S Kawazoe, F Kells, W Keppel, DG Khalaidovski, A Khalili, FY Khan, R Khazanov, E King, P Kissel, JS Klimenko, S Kokeyama, K Kondrashov, V Kopparapu, R Koranda, S Kozak, D Krishnan, B Kumar, R Kwee, P La Penna, P Lam, PK Landry, M Lantz, B Laval, M Lazzarini, A Lei, H Lei, M Leindecker, N Leonor, I Leroy, N Letendre, N Li, C Lin, H Lindquist, PE Littenberg, B Lockerbie, NA Lodhia, D Longo, M Lorenzini, M Loriette, V Lormand, M Losurdo, G Lu, P Lubinski, M Lucianetti, A Luck, H Machenschalk, B MacInnis, M Mackowski, JM Mageswaran, M Mailand, K Majorana, E Man, N Mandel, I Mandic, V Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, A Markowitz, J Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N McCarthy, R McClelland, DE McGuire, SC McHugh, M McIntyre, G McKechan, DJA McKenzie, K Mehmet, M Melatos, A Melissinos, AC Mendell, G Menendez, DF Menzinger, F Mercer, RA Meshkov, S Messenger, C Meyer, MS Michel, C Milano, L Miller, J Minelli, J Minenkov, Y Mino, Y Mitrofanov, VP Mitselmakher, G Mittleman, R Miyakawa, O Moe, B Mohan, M Mohanty, SD Mohapatra, SRP Moreau, J Moreno, G Morgado, N Morgia, A Morioka, T Mors, K Mosca, S Mossavi, K Mours, B MowLowry, C Mueller, G Muhammad, D zur Muhlen, H Mukherjee, S Mukhopadhyay, H Mullavey, A Muller-Ebhardt, H Munch, J Murray, PG Myers, E Myers, J Nash, T Nelson, J Neri, I Newton, G Nishizawa, A Nocera, F Numata, K Ochsner, E O'Dell, J Ogin, GH O'Reilly, B O'Shaughnessy, R Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Pagliaroli, G Palomba, C Pan, Y Pankow, C Paoletti, F Papa, MA Parameshwaraiah, V Pardi, S Pasqualetti, A Passaquieti, R Passuello, D Patel, P Pedraza, M Penn, S Perreca, A Persichetti, G Pichot, M Piergiovanni, F Pierro, V Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Poggiani, R Postiglione, F Principe, M Prix, R Prodi, GA Prokhorov, L Punken, O Punturo, M Puppo, P Van der Putten, S Quetschke, V Raab, FJ Rabaste, O Rabeling, DS Radkins, H Raffai, P Raics, Z Rainer, N Rakhmanov, M Rapagnani, P Raymond, V Re, V Reed, CM Reed, T Regimbau, T Rehbein, H Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Rivera, B Roberts, P Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rolland, L Rollins, J Romano, JD Romano, R Romie, JH Rover, C Rowan, S Rudiger, A Ruggi, P Russell, P Ryan, K Sakata, S Salemi, F Sandberg, V Sannibale, V Santamaria, L Saraf, S Sarin, P Sassolas, B Sathyaprakash, BS Sato, S Satterthwaite, M Saulson, PR Savage, R Savov, P Scanlan, M Schilling, R Schnabel, R Schofield, R Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Searle, AC Sears, B Seifert, F Sellers, D Sengupta, AS Sentenac, D Sergeev, A Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Sinha, S Sintes, AM Slagmolen, BJJ Slutsky, J van der Sluys, MV Smith, JR Smith, MR Smith, ND Somiya, K Sorazu, B Stein, A Stein, LC Steplewski, S Stochino, A Stone, R Strain, KA Strigin, S Stroeer, A Sturani, R Stuver, AL Summerscales, TZ Sun, KX Sung, M Sutton, PJ Swinkels, BL Szokoly, GP Talukder, D Tang, L Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Terenzi, R Thacker, J Thorne, KA Thorne, KS Thuring, A Tokmakov, KV Toncelli, A Tonelli, M Torres, C Torrie, C Tournefier, E Travasso, F Traylor, G Trias, M Trummer, J Ugolini, D Ulmen, J Urbanek, K Vahlbruch, H Vajente, G Vallisneri, M Vass, S Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G van Veggel, AA Veitch, J Veitch, P Veltkamp, C Verkindt, D Vetrano, F Vicere, A Villar, A Vinet, JY Vocca, H Vorvick, C Vyachanin, SP Waldman, SJ Wallace, L Ward, H Ward, RL Was, M Weidner, A Weinert, M Weinstein, AJ Weiss, R Wen, L Wen, S Wette, K Whelan, JT Whitcomb, SE Whiting, BF Wilkinson, C Willems, PA Williams, HR Williams, L Willke, B Wilmut, I Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Woan, G Wooley, R Worden, J Wu, W Yakushin, I Yamamoto, H Yan, Z Yoshida, S Yvert, M Zanolin, M Zhang, J Zhang, L Zhao, C Zotov, N Zucker, ME Zweizig, J AF Abbott, B. P. Abbott, R. Acernese, F. Adhikari, R. Ajith, P. Allen, B. Allen, G. Alshourbagy, M. Amin, R. S. Anderson, S. B. Anderson, W. G. Antonucci, F. Aoudia, S. Arain, M. A. Araya, M. Armandula, H. Armor, P. Arun, K. G. Aso, Y. Aston, S. Astone, P. Aufmuth, P. Aulbert, C. Babak, S. Baker, P. Ballardin, G. Ballmer, S. Barker, C. Barker, D. Barone, F. Barr, B. Barriga, P. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Bauer, Th. S. Behnke, B. Beker, M. Benacquista, M. Betzwieser, J. Beyersdorf, P. T. Bigotta, S. Bilenko, I. A. Billingsley, G. Birindelli, S. Biswas, R. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Boccara, C. Bodiya, T. P. Bogue, L. Bondu, F. Bonelli, L. Bork, R. Boschi, V. Bose, S. Bosi, L. Braccini, S. Bradaschia, C. Brady, P. R. Braginsky, V. B. van den Brand, J. F. J. Brau, J. E. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Van Den Broeck, C. Brooks, A. F. Brown, D. A. Brummit, A. Brunet, G. Bullington, A. Bulten, H. J. Buonanno, A. Burmeister, O. Buskulic, D. Byer, R. L. Cadonati, L. Cagnoli, G. Calloni, E. Camp, J. B. Campagna, E. Cannizzo, J. Cannon, K. C. Canuel, B. Cao, J. Carbognani, F. Cardenas, L. Caride, S. Castaldi, G. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chalermsongsak, T. Chalkley, E. Charlton, P. Chassande-Mottin, E. Chatterji, S. Chelkowski, S. Chen, Y. Christensen, N. Chung, C. T. Y. Clark, D. Clark, J. Clayton, J. H. Cleva, F. Coccia, E. Cokelaer, T. Colacino, C. N. Colas, J. Colla, A. Colombini, M. Conte, R. Cook, D. Corbitt, T. R. C. Corda, C. Cornish, N. Corsi, A. Coulon, J. -P. Coward, D. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Culter, R. M. Cumming, A. Cunningham, L. Cuoco, E. Danilishin, S. L. D'Antonio, S. Danzmann, K. Dari, A. Dattilo, V. Daudert, B. Davier, M. Davies, G. Daw, E. J. Day, R. De Rosa, R. Debra, D. Degallaix, J. del Prete, M. Dergachev, V. Desai, S. DeSalvo, R. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Doomes, E. E. Drago, M. Drever, R. W. P. Dueck, J. Duke, I. Dumas, J. -C. Dwyer, J. G. Echols, C. Edgar, M. Effler, A. Ehrens, P. Ely, G. Espinoza, E. Etzel, T. Evans, T. Fafone, V. Fairhurst, S. Faltas, Y. Fan, Y. Fazi, D. Fehrmann, H. Ferrante, I. Fidecaro, F. Finn, L. S. Fiori, I. Flaminio, R. Flasch, K. Foley, S. Forrest, C. Fotopoulos, N. Fournier, J. -D. Franc, J. Franzen, A. Frasca, S. Frasconi, F. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. Fritschel, P. Frolov, V. V. Fyffe, M. Galdi, V. Gammaitoni, L. Garofoli, J. A. Garufi, F. Genin, E. Gennai, A. Gholami, I. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Goda, K. Goetz, E. Goggin, L. M. Gonzalez, G. Gorodetsky, M. L. Gosser, S. Gouaty, R. Granata, M. Granata, V. Grant, A. Gras, S. Gray, C. Gray, M. Greenhalgh, R. J. S. Gretarsson, A. M. Greverie, C. Grimaldi, F. Grosso, R. Grote, H. Grunewald, S. Guenther, M. Guidi, G. Gustafson, E. K. Gustafson, R. Hage, B. Hallam, J. M. Hammer, D. Hammond, G. D. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Haughian, K. Hayama, K. Heefner, J. Heitmann, H. Hello, P. Heng, I. S. Heptonstall, A. Hewitson, M. Hild, S. Hirose, E. Hoak, D. Hodge, K. A. Holt, K. Hosken, D. J. Hough, J. Hoyland, D. Huet, D. Hughey, B. Huttner, S. H. Ingram, D. R. Isogai, T. Ito, M. Ivanov, A. Johnson, B. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Sancho de la Jordana, L. Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kanner, J. Kasprzyk, D. Katsavounidis, E. Kawabe, K. Kawamura, S. Kawazoe, F. Kells, W. Keppel, D. G. Khalaidovski, A. Khalili, F. Y. Khan, R. Khazanov, E. King, P. Kissel, J. S. Klimenko, S. Kokeyama, K. Kondrashov, V. Kopparapu, R. Koranda, S. Kozak, D. Krishnan, B. Kumar, R. Kwee, P. La Penna, P. Lam, P. K. Landry, M. Lantz, B. Laval, M. Lazzarini, A. Lei, H. Lei, M. Leindecker, N. Leonor, I. Leroy, N. Letendre, N. Li, C. Lin, H. Lindquist, P. E. Littenberg, B. Lockerbie, N. A. Lodhia, D. Longo, M. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lu, P. Lubinski, M. Lucianetti, A. Lueck, H. Machenschalk, B. MacInnis, M. Mackowski, J. -M. Mageswaran, M. Mailand, K. Majorana, E. Man, N. Mandel, I. Mandic, V. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. Markowitz, J. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. McCarthy, R. McClelland, D. E. McGuire, S. C. McHugh, M. McIntyre, G. McKechan, D. J. A. McKenzie, K. Mehmet, M. Melatos, A. Melissinos, A. C. Mendell, G. Menendez, D. F. Menzinger, F. Mercer, R. A. Meshkov, S. Messenger, C. Meyer, M. S. Michel, C. Milano, L. Miller, J. Minelli, J. Minenkov, Y. Mino, Y. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Miyakawa, O. Moe, B. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moreau, J. Moreno, G. Morgado, N. Morgia, A. Morioka, T. Mors, K. Mosca, S. Mossavi, K. Mours, B. MowLowry, C. Mueller, G. Muhammad, D. zur Muehlen, H. Mukherjee, S. Mukhopadhyay, H. Mullavey, A. Mueller-Ebhardt, H. Munch, J. Murray, P. G. Myers, E. Myers, J. Nash, T. Nelson, J. Neri, I. Newton, G. Nishizawa, A. Nocera, F. Numata, K. Ochsner, E. O'Dell, J. Ogin, G. H. O'Reilly, B. O'Shaughnessy, R. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Pagliaroli, G. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Papa, M. A. Parameshwaraiah, V. Pardi, S. Pasqualetti, A. Passaquieti, R. Passuello, D. Patel, P. Pedraza, M. Penn, S. Perreca, A. Persichetti, G. Pichot, M. Piergiovanni, F. Pierro, V. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Poggiani, R. Postiglione, F. Principe, M. Prix, R. Prodi, G. A. Prokhorov, L. Punken, O. Punturo, M. Puppo, P. van der Putten, S. Quetschke, V. Raab, F. J. Rabaste, O. Rabeling, D. S. Radkins, H. Raffai, P. Raics, Z. Rainer, N. Rakhmanov, M. Rapagnani, P. Raymond, V. Re, V. Reed, C. M. Reed, T. Regimbau, T. Rehbein, H. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Rivera, B. Roberts, P. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Rolland, L. Rollins, J. Romano, J. D. Romano, R. Romie, J. H. Roever, C. Rowan, S. Ruediger, A. Ruggi, P. Russell, P. Ryan, K. Sakata, S. Salemi, F. Sandberg, V. Sannibale, V. Santamaria, L. Saraf, S. Sarin, P. Sassolas, B. Sathyaprakash, B. S. Sato, S. Satterthwaite, M. Saulson, P. R. Savage, R. Savov, P. Scanlan, M. Schilling, R. Schnabel, R. Schofield, R. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Searle, A. C. Sears, B. Seifert, F. Sellers, D. Sengupta, A. S. Sentenac, D. Sergeev, A. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Sinha, S. Sintes, A. M. Slagmolen, B. J. J. Slutsky, J. van der Sluys, M. V. Smith, J. R. Smith, M. R. Smith, N. D. Somiya, K. Sorazu, B. Stein, A. Stein, L. C. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. Stroeer, A. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, K. -X. Sung, M. Sutton, P. J. Swinkels, B. L. Szokoly, G. P. Talukder, D. Tang, L. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Terenzi, R. Thacker, J. Thorne, K. A. Thorne, K. S. Thuering, A. Tokmakov, K. V. Toncelli, A. Tonelli, M. Torres, C. Torrie, C. Tournefier, E. Travasso, F. Traylor, G. Trias, M. Trummer, J. Ugolini, D. Ulmen, J. Urbanek, K. Vahlbruch, H. Vajente, G. Vallisneri, M. Vass, S. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. van Veggel, A. A. Veitch, J. Veitch, P. Veltkamp, C. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. Vinet, J. -Y. Vocca, H. Vorvick, C. Vyachanin, S. P. Waldman, S. J. Wallace, L. Ward, H. Ward, R. L. Was, M. Weidner, A. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wen, S. Wette, K. Whelan, J. T. Whitcomb, S. E. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, H. R. Williams, L. Willke, B. Wilmut, I. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Woan, G. Wooley, R. Worden, J. Wu, W. Yakushin, I. Yamamoto, H. Yan, Z. Yoshida, S. Yvert, M. Zanolin, M. Zhang, J. Zhang, L. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. CA LIGO Sci Collaboration Virgo Collaboration TI An upper limit on the stochastic gravitational-wave background of cosmological origin SO NATURE LA English DT Article ID STRING COSMOLOGY; SPECTRUM; GEO AB A stochastic background of gravitational waves is expected to arise from a superposition of a large number of unresolved gravitational-wave sources of astrophysical and cosmological origin. It should carry unique signatures from the earliest epochs in the evolution of the Universe, inaccessible to standard astrophysical observations(1). Direct measurements of the amplitude of this background are therefore of fundamental importance for understanding the evolution of the Universe when it was younger than one minute. Here we report limits on the amplitude of the stochastic gravitational-wave background using the data from a two-year science run of the Laser Interferometer Gravitational-wave Observatory(2) (LIGO). Our result constrains the energy density of the stochastic gravitational-wave background normalized by the critical energy density of the Universe, in the frequency band around 100 Hz, to be <6.9 X 10(-6) at 95% confidence. The data rule out models of early Universe evolution with relatively large equation-of-state parameter(3), as well as cosmic (super) string models with relatively small string tension(4) that are favoured in some string theory models(5). This search for the stochastic background improves on the indirect limits from Big Bang nucleosynthesis(1,6) and cosmic microwave background(7) at 100Hz. C1 [Harms, J.; Kandhasamy, S.; Mandic, V.] Univ Minnesota, Minneapolis, MN 55455 USA. [Abbott, B. P.; Abbott, R.; Adhikari, R.; Anderson, S. B.; Araya, M.; Armandula, H.; Aso, Y.; Ballmer, S.; Barton, M. A.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Boschi, V.; Brooks, A. F.; Cannon, K. C.; Cardenas, L.; Cepeda, C.; Chalermsongsak, T.; Coyne, D. C.; Daudert, B.; DeSalvo, R.; Echols, C.; Ehrens, P.; Espinoza, E.; Etzel, T.; Fazi, D.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A.; Hodge, K. A.; Ivanov, A.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P.; Kondrashov, V.; Kozak, D.; Lazzarini, A.; Lei, M.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Miyakawa, O.; Nash, T.; Ogin, G. H.; Patel, P.; Pedraza, M.; Robertson, N. A.; Russell, P.; Sannibale, V.; Searle, A. C.; Sears, B.; Sengupta, A. S.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C.; Vass, S.; Villar, A.; Wallace, L.; Ward, R. L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Yamamoto, H.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Calloni, E.; De Rosa, R.; Di Fiore, L.; Garufi, F.; Milano, L.; Mosca, S.; Pardi, S.; Persichetti, G.; Romano, R.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Barone, F.; Calloni, E.; De Rosa, R.; Garufi, F.; Milano, L.; Mosca, S.; Pardi, S.; Persichetti, G.] Univ Napoli Federico II Complesso Univ Monte S An, I-80126 Naples, Italy. [Barone, F.; Romano, R.] Univ Salerno, I-84084 Salerno, Italy. [Acernese, F.; Ajith, P.; Allen, B.; Aulbert, C.; Brinkmann, M.; Burmeister, O.; Danzmann, K.; Degallaix, J.; Dueck, J.; Fehrmann, H.; Frede, M.; Giampanis, S.; Grote, H.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Lueck, H.; Mehmet, M.; Messenger, C.; Mors, K.; Mossavi, K.; Mueller-Ebhardt, H.; Pletsch, H. J.; Prix, R.; Punken, O.; Rainer, N.; Rehbein, H.; Roever, C.; Ruediger, A.; Schilling, R.; Schnabel, R.; Schulz, B.; Seifert, F.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Allen, B.; Anderson, W. G.; Armor, P.; Biswas, R.; Brady, P. R.; Clayton, J. H.; Creighton, J. D. E.; Fotopoulos, N.; Goggin, L. M.; Hammer, D.; Koranda, S.; Mercer, R. A.; Moe, B.; Papa, M. A.; Siemens, X.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, G.; Bullington, A.; Byer, R. L.; Clark, D.; Debra, D.; Lantz, B.; Leindecker, N.; Lu, P.; Markosyan, A.; Sinha, S.; Sun, K. -X.; Ulmen, J.; Urbanek, K.] Stanford Univ, Stanford, CA 94305 USA. [Amin, R. S.; Caudill, S.; Giaime, J. A.; Gonzalez, G.; Gouaty, R.; Johnson, W. W.; Kissel, J. S.; Matichard, F.; Slutsky, J.; Sung, M.; Wen, S.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Arain, M. A.; Dooley, K. L.; Faltas, Y.; Klimenko, S.; Lin, H.; Lucianetti, A.; Martin, R. M.; Mitselmakher, G.; Mueller, G.; Ottens, R. S.; Pankow, C.; Quetschke, V.; Reitze, D. H.; Tanner, D. B.; Whiting, B. F.; Williams, L.; Wu, W.] Univ Florida, Gainesville, FL 32611 USA. [Aoudia, S.; Birindelli, S.; Bondu, F.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Greverie, C.; Heitmann, H.; Laval, M.; Man, N.; Pichot, M.; Regimbau, T.; Vinet, J. -Y.] Observ Cote Azur, CNRS, Dept Artemis, F-06304 Nice, France. [Arun, K. G.; Bizouard, M. A.; Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91899 Orsay, France. [Aston, S.; Cruise, A. M.; Culter, R. M.; Freise, A.; Hallam, J. M.; Hild, S.; Kasprzyk, D.; Lodhia, D.; Perreca, A.; Vecchio, A.; Veitch, J.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Aufmuth, P.; Danzmann, K.; Franzen, A.; Hage, B.; Kwee, P.; Lueck, H.; zur Muehlen, H.; Thuering, A.; Vahlbruch, H.; Willke, B.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Babak, S.; Behnke, B.; Chelkowski, S.; Chen, Y.; Gholami, I.; Grunewald, S.; Krishnan, B.; Machenschalk, B.; Papa, M. A.; Robinson, E. L.; Santamaria, L.; Schutz, B. F.; Whelan, J. T.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P.; Cornish, N.; Littenberg, B.] Montana State Univ, Bozeman, MT 59717 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Huet, D.; La Penna, P.; Marque, J.; Menzinger, F.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B. L.] European Gravitat Observ, I-56021 Cascina, Pi, Italy. [Barker, C.; Barker, D.; Bland, B.; Cook, D.; Effler, A.; Gray, C.; Guenther, M.; Ingram, D. R.; Johnson, B.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moreno, G.; Myers, E.; Myers, J.; Parameshwaraiah, V.; Raab, F. J.; Radkins, H.; Reed, C. M.; Rivera, B.; Ryan, K.; Sandberg, V.; Savage, R.; Schwinberg, P.; Sigg, D.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barr, B.; Bassiri, R.; Bastarrika, M.; Chalkley, E.; Chatterji, S.; Cumming, A.; Cunningham, L.; Edgar, M.; Grant, A.; Hammond, G. D.; Haughian, K.; Heng, I. S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Martin, I. W.; Miller, J.; Murray, P. G.; Nelson, J.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Scott, J.; Sorazu, B.; Strain, K. A.; Tokmakov, K. V.; van Veggel, A. A.; Ward, H.; Woan, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Barriga, P.; Blair, D.; Coward, D.; Dumas, J. -C.; Fan, Y.; Gras, S.; Hoyland, D.; Ju, L.; Wen, L.; Yan, Z.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Barsotti, L.; Blackburn, L.; Bodiya, T. P.; Brunet, G.; Cao, J.; Corbitt, T. R. C.; Donovan, F.; Duke, I.; Evans, T.; Foley, S.; Fritschel, P.; Goda, K.; Grimaldi, F.; Harry, G. M.; Hughey, B.; Katsavounidis, E.; MacInnis, M.; Markowitz, J.; Mason, K.; Mavalvala, N.; Mittleman, R.; Sarin, P.; Shapiro, B.; Shoemaker, D. H.; Smith, N. D.; Stein, A.; Stein, L. C.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Barsuglia, M.; Chassande-Mottin, E.; Granata, M.; Rabaste, O.] Univ Paris 07, CNRS, IN2P3, Observ Paris,APC,UMR 7164, F-75205 Paris, France. [Alshourbagy, M.; Bigotta, S.; Bonelli, L.; Braccini, S.; Bradaschia, C.; Cella, G.; Corda, C.; del Prete, M.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Mantovani, M.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Alshourbagy, M.; Bigotta, S.; Bonelli, L.; Corda, C.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [del Prete, M.; Mantovani, M.] Univ Siena, I-53100 Siena, Italy. [Antonucci, F.; Astone, P.; Colla, A.; Colombini, M.; Corsi, A.; Frasca, S.; Majorana, E.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Colla, A.; Colombini, M.; Frasca, S.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Barsuglia, M.; Chassande-Mottin, E.; Granata, M.; Rabaste, O.] DSM IRSU, F-91191 Gif Sur Yvette, France. [Bartos, I.; Dwyer, J. G.; Khan, R.; Marka, S.; Marka, Z.; Matone, L.; Raics, Z.; Rollins, J.] Columbia Univ, New York, NY 10027 USA. [Bauer, Th. S.; Beker, M.; van den Brand, J. F. J.; Bulten, H. J.; van der Putten, S.; Rabeling, D. S.] NIKHEF H, Natl Inst Subatom Phys, NL-1009 DB Amsterdam, Netherlands. [Beker, M.; van den Brand, J. F. J.; Bulten, H. J.; Rabeling, D. S.] Netherlands VU Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Benacquista, M.; Creighton, T. D.; Diaz, M.; Grosso, R.; Hayama, K.; Lei, H.; Mohanty, S. D.; Mukherjee, S.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Tang, L.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Beyersdorf, P. T.] San Jose State Univ, San Jose, CA 95192 USA. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Tarabrin, S. P.; Vyachanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Boccara, C.; Loriette, V.; Moreau, J.] CNRS, ESPCI, F-75005 Paris, France. [Bogue, L.; Bridges, D. O.; Fafone, V.; Fricke, T.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Hoak, D.; Holt, K.; Lormand, M.; Meyer, M. S.; Muhammad, D.; O'Reilly, B.; Overmier, H.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thacker, J.; Thorne, K. A.; Torres, C.; Traylor, G.; Wooley, R.; Yakushin, I.] Livingston Observ, LIGO, Livingston, LA 70754 USA. [Bose, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. [Bosi, L.; Dari, A.; Marchesoni, F.; Neri, I.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-6123 Perugia, Italy. [Dari, A.; Gammaitoni, L.; Neri, I.; Travasso, F.] Univ Perugia, I-6123 Perugia, Italy. [Marchesoni, F.] Univ Camerino, I-62032 Camerino, Italy. [Brau, J. E.; Frey, R.; Harstad, E. D.; Ito, M.; Leonor, I.; Schofield, R.] Univ Oregon, Eugene, OR 97403 USA. [Van Den Broeck, C.; Clark, J.; Cokelaer, T.; Davies, G.; Dietz, A.; Fairhurst, S.; Harry, I. W.; Jones, G.; McKechan, D. J. A.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Brown, D. A.; Garofoli, J. A.; Gosser, S.; Hirose, E.; Saulson, P. R.; Smith, J. R.] Syracuse Univ, Syracuse, NY 13244 USA. [Brummit, A.; Greenhalgh, R. J. S.; O'Dell, J.; Wilmut, I.] HSIC, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Buonanno, A.; Kanner, J.; Ochsner, E.; Pan, Y.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Buskulic, D.; Granata, V.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Tournefier, E.; Trummer, J.; Verkindt, D.; Yvert, M.] Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. [Cadonati, L.; Mohapatra, S. R. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Cagnoli, G.; Campagna, E.; Cesarini, E.; Guidi, G.; Lorenzini, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Terenzi, R.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy. Univ Florence, I-50121 Florence, Italy. [Campagna, E.; Cesarini, E.; Guidi, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Terenzi, R.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Camp, J. B.; Cannizzo, J.; Numata, K.; Stroeer, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Caride, S.; Dergachev, V.; Goetz, E.; Gustafson, R.; Riles, K.; Zhang, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Castaldi, G.; Galdi, V.; Longo, M.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Cavaglia, M.] Univ Mississippi, University, MS 38677 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, Y.; Li, C.; Mino, Y.; Savov, P.; Somiya, K.; Thorne, K. S.; Vallisneri, M.; Wen, L.] CALTECH CaRT, Pasadena, CA 91125 USA. [Christensen, N.; Ely, G.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Chung, C. T. Y.; Melatos, A.] Univ Melbourne, Parkville, Vic 3010, Australia. [Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Minenkov, Y.; Morgia, A.; Pagliaroli, G.; Rocchi, A.; Terenzi, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Coccia, E.; Morgia, A.; Pagliaroli, G.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Terenzi, R.] IFSI, I-00133 Rome, Italy. [Emilio, M. Di Paolo] Univ Aquila, I-67100 Laquila, Italy. [Colacino, C. N.; Frei, Z.; Raffai, P.; Szokoly, G. P.] Eotvos Lorand Univ, ELTE, H-1053 Budapest, Hungary. [Conte, R.; Postiglione, F.] Univ Salerno, I-84084 Salerno, Italy. [Daw, E. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Desai, S.; Finn, L. S.; Kopparapu, R.; Menendez, D. F.; Minelli, J.; O'Shaughnessy, R.; Owen, B. J.; Williams, H. R.] Penn State Univ, University Pk, PA 16802 USA. [Dhurandhar, S.; Mukhopadhyay, H.] Inter Univ Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Doomes, E. E.; McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [Doomes, E. E.; McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Prodi, G. A.; Re, V.; Salemi, F.] Ist Nazl Fis Nucl, Grp Coll Trento, I-38050 Trento, Italy. [Prodi, G. A.; Re, V.; Salemi, F.] Univ Trent, I-38050 Trento, Italy. [Drago, M.; Vedovato, G.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Drago, M.] Univ Padua, I-35131 Padua, Italy. [Flaminio, R.; Franc, J.; Mackowski, J. -M.; Michel, C.; Morgado, N.; Pinard, L.; Sassolas, B.] CNRS, IN2P3, LMA, F-69622 Villeurbanne, France. [Forrest, C.; Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Frei, M.; Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA. [Gray, M.; Lam, P. K.; McClelland, D. E.; McKenzie, K.; MowLowry, C.; Mullavey, A.; Satterthwaite, M.; Scott, S. M.; Slagmolen, B. J. J.; Wette, K.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Gretarsson, A. M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P.] Univ Adelaide, Adelaide, SA 5005, Australia. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Sancho de la Jordana, L.; Sintes, A. M.; Trias, M.] Univ Illes Balears, Dept Fis, E-07122 Palma de Mallorca, Spain. [Kalogera, V.; Mandel, I.; Raymond, V.; van der Sluys, M. V.] Northwestern Univ, Evanston, IL 60208 USA. [Kawamura, S.; Kokeyama, K.; Morioka, T.; Nishizawa, A.; Sakata, S.; Sato, S.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Khazanov, E.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Lockerbie, N. A.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [McHugh, M.] Tulane Univ, New Orleans, LA 70118 USA. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Reed, T.; Scanlan, M.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Roberts, P.; Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Saraf, S.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78712 USA. [Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. RP Mandic, V (reprint author), Univ Minnesota, Minneapolis, MN 55455 USA. EM mandic@physics.umn.edu RI Lueck, Harald/F-7100-2011; Kawazoe, Fumiko/F-7700-2011; Bigotta, Stefano/F-8652-2011; Freise, Andreas/F-8892-2011; Marchesoni, Fabio/A-1920-2008; Bondu, Francois/A-2071-2012; Toncelli, Alessandra/A-5352-2012; Hammond, Giles/A-8168-2012; Vocca, Helios/F-1444-2010; Finn, Lee Samuel/A-3452-2009; Santamaria, Lucia/A-7269-2012; Prokhorov, Leonid/I-2953-2012; Gorodetsky, Michael/C-5938-2008; Schutz, Bernard/B-1504-2010; Allen, Bruce/K-2327-2012; Colla, Alberto/J-4694-2012; Drago, Marco/E-7134-2013; Re, Virginia /F-6403-2013; Vicere, Andrea/J-1742-2012; Pitkin, Matthew/I-3802-2013; Vyatchanin, Sergey/J-2238-2012; Khazanov, Efim/B-6643-2014; Salemi, Francesco/F-6988-2014; Lucianetti, Antonio/G-7383-2014; Losurdo, Giovanni/K-1241-2014; Danilishin, Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; Khalili, Farit/D-8113-2012; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Khan, Rubab/F-9455-2015; Ottaway, David/J-5908-2015; Garufi, Fabio/K-3263-2015; Postiglione, Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; Biswas, Rahul/H-7474-2016; McClelland, David/E-6765-2010; Martin, Iain/A-2445-2010; Hild, Stefan/A-3864-2010; prodi, giovanni/B-4398-2010; Rowan, Sheila/E-3032-2010; Strain, Kenneth/D-5236-2011; Acernese, Fausto/E-4989-2010; Raab, Frederick/E-2222-2011; Lam, Ping Koy/A-5276-2008; Galdi, Vincenzo/B-1670-2008; Neri, Igor/F-1482-2010; Hammond, Giles/B-7861-2009; Gammaitoni, Luca/B-5375-2009; Punturo, Michele/I-3995-2012; Strigin, Sergey/I-8337-2012; Cuoco, Elena/I-8789-2012; Mitrofanov, Valery/D-8501-2012; Puppo, Paola/J-4250-2012; Rapagnani, Piero/J-4783-2012; Bilenko, Igor/D-5172-2012; Chen, Yanbei/A-2604-2013; Barker, David/A-5671-2013; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; mosca, simona/I-7116-2012; Roberts, Peter/J-8535-2016; Frasconi, Franco/K-1068-2016; Sigg, Daniel/I-4308-2015; Pinto, Innocenzo/L-3520-2016; Ferrante, Isidoro/F-1017-2012; Travasso, Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Cesarini, Elisabetta/C-4507-2017; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Harms, Jan/J-4359-2012; Ward, Robert/I-8032-2014; OI Lueck, Harald/0000-0001-9350-4846; Marchesoni, Fabio/0000-0001-9240-6793; Bondu, Francois/0000-0001-6487-5197; Toncelli, Alessandra/0000-0003-4400-8808; Vocca, Helios/0000-0002-1200-3917; Finn, Lee Samuel/0000-0002-3937-0688; Gorodetsky, Michael/0000-0002-5159-2742; Allen, Bruce/0000-0003-4285-6256; Vicere, Andrea/0000-0003-0624-6231; Pitkin, Matthew/0000-0003-4548-526X; Losurdo, Giovanni/0000-0003-0452-746X; Danilishin, Stefan/0000-0001-7758-7493; Vecchio, Alberto/0000-0002-6254-1617; Khan, Rubab/0000-0001-5100-5168; Garufi, Fabio/0000-0003-1391-6168; Postiglione, Fabio/0000-0003-0628-3796; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; Biswas, Rahul/0000-0002-0774-8906; McClelland, David/0000-0001-6210-5842; prodi, giovanni/0000-0001-5256-915X; Strain, Kenneth/0000-0002-2066-5355; Acernese, Fausto/0000-0003-3103-3473; Lam, Ping Koy/0000-0002-4421-601X; Galdi, Vincenzo/0000-0002-4796-3600; Neri, Igor/0000-0002-9047-9822; Gammaitoni, Luca/0000-0002-4972-7062; Punturo, Michele/0000-0001-8722-4485; Puppo, Paola/0000-0003-4677-5015; Zhao, Chunnong/0000-0001-5825-2401; mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587; Sigg, Daniel/0000-0003-4606-6526; Ferrante, Isidoro/0000-0002-0083-7228; Travasso, Flavio/0000-0002-4653-6156; Cesarini, Elisabetta/0000-0001-9127-3167; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Stein, Leo/0000-0001-7559-9597; Milano, Leopoldo/0000-0001-9487-5876; Vedovato, Gabriele/0000-0001-7226-1320; Cokelaer, Thomas/0000-0001-6286-1138; Swinkels, Bas/0000-0002-3066-3601; Drago, Marco/0000-0002-3738-2431; Ward, Robert/0000-0001-5503-5241; Ricci, Fulvio/0000-0001-5475-4447; Whelan, John/0000-0001-5710-6576; LONGO, Maurizio/0000-0001-8325-4003; Fairhurst, Stephen/0000-0001-8480-1961; Boschi, Valerio/0000-0001-8665-2293; Matichard, Fabrice/0000-0001-8982-8418; Pinto, Innocenzo M./0000-0002-2679-4457; Guidi, Gianluca/0000-0002-3061-9870; Minelli, Jeff/0000-0002-5330-912X; Santamaria, Lucia/0000-0002-5986-0449; Pierro, Vincenzo/0000-0002-6020-5521; Coccia, Eugenio/0000-0002-6669-5787; Hallam, Jonathan Mark/0000-0002-7087-0461; Vetrano, Flavio/0000-0002-7523-4296; Nishizawa, Atsushi/0000-0003-3562-0990; calloni, enrico/0000-0003-4819-3297; Sorazu, Borja/0000-0002-6178-3198; Zweizig, John/0000-0002-1521-3397; O'Shaughnessy, Richard/0000-0001-5832-8517; Granata, Massimo/0000-0003-3275-1186; Aulbert, Carsten/0000-0002-1481-8319; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Veitch, John/0000-0002-6508-0713; Principe, Maria/0000-0002-6327-0628; Papa, M.Alessandra/0000-0002-1007-5298; Kanner, Jonah/0000-0001-8115-0577 FU United States National Science Foundation; Science and Technology Facilities Council of the United Kingdom; Max Planck Society; State of Niedersachsen/Germany [GEO600]; Italian Istituto Nazionale di Fisica Nucleare; French Centre National de la Recherche Scientifique; Australian Research Council; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Royal Society; Scottish Funding Council; Scottish Universities Physics Alliance; The National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation FX We acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max Planck Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. We also acknowledge the support of the research by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. NR 30 TC 224 Z9 227 U1 11 U2 78 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD AUG 20 PY 2009 VL 460 IS 7258 BP 990 EP 994 DI 10.1038/nature08278 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 484YC UT WOS:000269085500029 ER PT J AU Rodell, M Velicogna, I Famiglietti, JS AF Rodell, Matthew Velicogna, Isabella Famiglietti, James S. TI Satellite-based estimates of groundwater depletion in India SO NATURE LA English DT Article ID WATER-RESOURCES; GRACE; PRECIPITATION; SYSTEM AB Groundwater is a primary source of fresh water in many parts of the world. Some regions are becoming overly dependent on it, consuming groundwater faster than it is naturally replenished and causing water tables to decline unremittingly(1). Indirect evidence suggests that this is the case in northwest India(2), but there has been no regional assessment of the rate of groundwater depletion. Here we use terrestrial water storage-change observations from the NASA Gravity Recovery and Climate Experiment satellites(3) and simulated soil-water variations from a data-integrating hydrological modelling system(4) to show that groundwater is being depleted at a mean rate of 4.0 +/- 1.0 cm yr(-1) equivalent height of water (17.7 +/- 4.5 km(3) yr(-1)) over the Indian states of Rajasthan, Punjab and Haryana (including Delhi). During our study period of August 2002 to October 2008, groundwater depletion was equivalent to a net loss of 109 km(3) of water, which is double the capacity of India's largest surface-water reservoir. Annual rainfall was close to normal throughout the period and we demonstrate that the other terrestrial water storage components (soil moisture, surface waters, snow, glaciers and biomass) did not contribute significantly to the observed decline in total water levels. Although our observational record is brief, the available evidence suggests that unsustainable consumption of groundwater for irrigation and other anthropogenic uses is likely to be the cause. If measures are not taken soon to ensure sustainable groundwater usage, the consequences for the 114,000,000 residents of the region may include a reduction of agricultural output and shortages of potable water, leading to extensive socioeconomic stresses. C1 [Rodell, Matthew] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA. [Velicogna, Isabella; Famiglietti, James S.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Velicogna, Isabella] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Velicogna, Isabella] Univ Udine, Dept Phys, I-33100 Udine, Italy. RP Rodell, M (reprint author), NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Code 614-3, Greenbelt, MD 20771 USA. EM matthew.rodell@nasa.gov RI Rodell, Matthew/E-4946-2012 OI Rodell, Matthew/0000-0003-0106-7437 FU NASA's Solid Earth; Natural Hazards Program; Terrestrial Hydrology Program; Cryospheric Science Program FX We thank H. K. Beaudoing for assistance in preparing the GLDAS time series. This research was funded by grants from NASA's Solid Earth and Natural Hazards Program, Terrestrial Hydrology Program and Cryospheric Science Program. NR 30 TC 581 Z9 602 U1 43 U2 329 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD AUG 20 PY 2009 VL 460 IS 7258 BP 999 EP U80 DI 10.1038/nature08238 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 484YC UT WOS:000269085500031 PM 19675570 ER PT J AU Marshak, A Knyazikhin, Y Chiu, JC Wiscombe, WJ AF Marshak, A. Knyazikhin, Y. Chiu, J. C. Wiscombe, W. J. TI Spectral invariant behavior of zenith radiance around cloud edges observed by ARM SWS SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CUMULUS CLOUDS; CANOPY; MODIS; RADIATION; PRODUCTS; HUMIDITY; OCEAN; CERES; LEAF AB The ARM Shortwave Spectrometer (SWS) measures zenith radiance at 418 wavelengths between 350 and 2170 nm. Because of its 1-sec sampling resolution, the SWS provides a unique capability to study the transition zone between cloudy and clear sky areas. A spectral invariant behavior is found between ratios of zenith radiance spectra during the transition from cloudy to cloud-free. This behavior suggests that the spectral signature of the transition zone is a linear mixture between the two extremes (definitely cloudy and definitely clear). The weighting function of the linear mixture is a wavelength-independent characteristic of the transition zone. It is shown that the transition zone spectrum is fully determined by this function and zenith radiance spectra of clear and cloudy regions. An important result of these discoveries is that high temporal resolution radiance measurements in the clear-to-cloud transition zone can be well approximated by lower temporal resolution measurements plus linear interpolation. Citation: Marshak, A., Y. Knyazikhin, J. C. Chiu, and W. J. Wiscombe (2009), Spectral invariant behavior of zenith radiance around cloud edges observed by ARM SWS, Geophys. Res. Lett., 36, L16802, doi: 10.1029/2009GL039366. C1 [Marshak, A.; Wiscombe, W. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Knyazikhin, Y.] Boston Univ, Dept Geog & Environm, Boston, MA 02215 USA. [Chiu, J. C.] UMBC, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. RP Marshak, A (reprint author), NASA, Goddard Space Flight Ctr, Mail Code 613-2, Greenbelt, MD 20771 USA. EM alexander.marshak-1@nasa.gov RI Marshak, Alexander/D-5671-2012; Wiscombe, Warren/D-4665-2012; Chiu, Christine/E-5649-2013 OI Wiscombe, Warren/0000-0001-6844-9849; Chiu, Christine/0000-0002-8951-6913 FU Office of Science [DE-AI02-08ER64562, DE-FG02-08ER64563, DE-FG02-08ER54564] FX This research is supported by the Office of Science (BER, U. S. Department of Energy, Interagency Agreements DE-AI02-08ER64562, DE-FG02-08ER64563, and DE-FG02-08ER54564) as part of the ARM program. We also thank H. Barker, G. Feingold, P. Kiedron, I. Koren, A. Kostinski, Q. Min, P. Pilewskie, J. Redemann, and T. Varnai for fruitful discussions. We are very grateful to Connor Flynn of the ARM Program for help in understanding and correcting the SWS data. NR 30 TC 7 Z9 7 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 19 PY 2009 VL 36 AR L16802 DI 10.1029/2009GL039366 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 487AW UT WOS:000269243800001 ER PT J AU Jacobsen, KS Phan, TD Eastwood, JP Sibeck, DG Moen, JI Angelopoulos, V McFadden, JP Engebretson, MJ Provan, G Larson, D Fornacon, KH AF Jacobsen, K. S. Phan, T. D. Eastwood, J. P. Sibeck, D. G. Moen, J. I. Angelopoulos, V. McFadden, J. P. Engebretson, M. J. Provan, G. Larson, D. Fornacon, K. -H. TI THEMIS observations of extreme magnetopause motion caused by a hot flow anomaly SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID EARTHS BOW SHOCK; DAYSIDE MAGNETOPAUSE; SOLAR-WIND; UNUSUAL LOCATIONS; MAGNETIC SHEAR; CURRENT LAYER; CURRENT SHEET; CONVECTION; THICKNESS; MAGNETOSPHERE AB On 30 October 2007, the five THEMIS spacecraft observed the cause and consequence of extreme motion of the dawn flank magnetopause, displacing the magnetopause outward by at least 4.8 RE in 59 s, with flow speeds in the direction normal to the model magnetopause reaching 800 km/s. While the THEMIS A, C, D, and E observations allowed the determination of the velocity, size, and shape of a large bulge moving tailward along the magnetopause at a speed of 355 km/s, THEMIS B observed the signatures of a hot flow anomaly (HFA) upstream of the bow shock at the same time, indicating that the pressure perturbation generated by the HFA may be the source of the fast compression and expansion of the magnetosphere. The transient deformation of the magnetopause generated field-aligned currents and created traveling convection vortices which were detected by ground magnetometers. This event demonstrates that kinetic (non-MHD) effects at the bow shock can have global consequences on the magnetosphere. C1 [Jacobsen, K. S.; Moen, J. I.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Phan, T. D.; Eastwood, J. P.; McFadden, J. P.; Larson, D.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Sibeck, D. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Angelopoulos, V.] Univ Calif Los Angeles, ESS, IGPP, Los Angeles, CA 90095 USA. [Provan, G.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Engebretson, M. J.] Augsburg Coll, Dept Phys, Minneapolis, MN USA. [Fornacon, K. -H.] Tech Univ Carolo Wilhelmina Braunschweig, IGEP, D-38106 Braunschweig, Germany. RP Jacobsen, KS (reprint author), Univ Oslo, Dept Phys, Postbox 1048, N-0316 Oslo, Norway. EM knutsj@fys.uio.no RI Sibeck, David/D-4424-2012 FU Research Council of Norway; NASA at UC Berkeley [NAS5-02099]; U. S. National Science Foundation [ATM-0827903] FX We acknowledge the use of data from the Advanced Composition Explorer (ACE). This research was funded by the Research Council of Norway. Most of this work was performed while K. S. Jacobsen was visiting UC Berkeley. This work was supported by NASA grant NAS5-02099 at UC Berkeley. The MACCS array is supported by U. S. National Science Foundation grant ATM-0827903 to Augsburg College. We thank Masaki Fujimoto for his helpful suggestions. The authors thank the referees for their helpful comments.; Zuyin Pu thanks the reviewers for their assistance in evaluating this paper. NR 37 TC 27 Z9 27 U1 2 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD AUG 18 PY 2009 VL 114 AR A08210 DI 10.1029/2008JA013873 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 487CB UT WOS:000269247000001 ER PT J AU Tsurutani, BT Guarnieri, FL Echer, E Lakhina, GS Verkhoglyadova, OP AF Tsurutani, Bruce T. Guarnieri, Fernando L. Echer, Ezequiel Lakhina, Gurbax S. Verkhoglyadova, Olga P. TI Magnetic decrease formation from < 1 AU to similar to 5 AU: Corotating interaction region reverse shocks SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID NONLINEAR ALFVEN WAVES; MIRROR-MODE STRUCTURES; SOLAR-WIND; ULYSSES OBSERVATIONS; INTERPLANETARY DISCONTINUITIES; HELIOGRAPHIC LATITUDES; PONDEROMOTIVE FORCE; SECTOR STRUCTURE; HOLES; MAGNETOSHEATH AB Magnetic decreases (MDs) have been identified and studied throughout a Ulysses fast latitude scan that lasted from 29 February 1992 to 14 September 1993. Ulysses' distance was similar to 5 AU from the Sun. MDs were unbiasedly selected by application of the Interplanetary Magnetic Decrease Automatic Detection code. MDs were found to occur in high-occurrence-frequency "clusters'' with the top 10 peak events varying in magnitude from 116 MDs per day to 36 MDs per day. For comparative purposes, quiet, nonpeak intervals had an occurrence rate of 4.3 MDs per day. Each of the 10 MD clusters was analyzed in detail to determine their solar wind dependences. MD clusters were often found to occur within corotating interaction regions (CIRs), mainly localized in the trailing portions of CIRs between the interface ( IF) and the reverse shock (RS). The MD clusters were divided into smaller subclusters. Within the limits of this study, MD subclusters were always found to occur in high-beta (1