FN Thomson Reuters Web of Science™ VR 1.0 PT S AU Reed, BB Townsend, JA Thronson, HA Ahmed, M Whipple, AO Oegerle, WR AF Reed, Benjamin B. Townsend, Jacqueline A. Thronson, Harley A., Jr. Ahmed, Mansoor Whipple, Arthur O. Oegerle, William R. BE Oschmann, JM Clampin, MC MacEwen, HA TI EARLY RESULTS FROM NASA'S ASSESSMENT OF SATELLITE SERVICING SO SPACE TELESCOPES AND INSTRUMENTATION 2010: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation 2010 - Optical, Infrared, and Millimeter Wave CY JUN 27-JUL 02, 2010 CL San Diego, CA SP SPIE AB Following recommendations by the NRC, NASA's FY 2008 Authorization Act and the FY 2009 and 2010 Appropriations bills directed NASA to assess the use of the human spaceflight architecture to service existing/future observatory-class scientific spacecraft. This interest in satellite servicing, with astronauts and/or with robots, reflects the success that NASA achieved with the Shuttle program and HST on behalf of the astronomical community as well as the successful construction of ISS. This study, led by NASA GSFC, will last about a year, leading to a final report to NASA and Congress in autumn 2010. We will report on its status, results from our March satellite servicing workshop, and recent concepts for serviceable scientific missions. C1 [Reed, Benjamin B.; Townsend, Jacqueline A.; Thronson, Harley A., Jr.; Ahmed, Mansoor; Whipple, Arthur O.; Oegerle, William R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Reed, BB (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI Oegerle, William/C-9070-2012; Thronson, Harley/E-3382-2012 NR 0 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-221-1 J9 PROC SPIE PY 2010 VL 7731 AR 773103 DI 10.1117/12.857406 PG 7 WC Engineering, Aerospace; Instruments & Instrumentation; Optics; Physics, Applied SC Engineering; Instruments & Instrumentation; Optics; Physics GA BSU78 UT WOS:000285835600003 ER PT S AU Serabyn, E Mawet, D Burruss, R AF Serabyn, E. Mawet, D. Burruss, R. BE Oschmann, JM Clampin, MC MacEwen, HA TI The Potential of Small Space Telescopes for Exoplanet Observations SO SPACE TELESCOPES AND INSTRUMENTATION 2010: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation 2010 - Optical, Infrared, and Millimeter Wave CY JUN 27-JUL 02, 2010 CL San Diego, CA SP SPIE DE coronagraphy; exoplanets; vortex coronagraph ID PHASE-MASK CORONAGRAPH AB The imaging of faint exoplanets near bright stars requires the development of very high contrast detection techniques, including both precise wavefront control and deep starlight rejection. A system-level proof-of-principle experiment carried out at at the Palomar Observatory has recently demonstrated that exoplanets can be detected very near stars even with a fairly small (1.5 m diameter) telescope aperture, such as someday might be used by a first space-based exoplanet imaging mission. Using fine-scale wavefront correction across this small aperture, together with fine pointing and focus control, pre- and post-detection speckle reduction, and a vector vortex coronagraph, it has been possible to achieve extremely good starlight rejection within a small number of diffractions beams of the stellar position. This performance has recently allowed the imaging of the three HR8799 planets and the HD32297 disk, thus providing a first system-level validation of the steps needed to achieve high-contrast observations at very small angles. These results thus serve to highlight the potential of small space telescopes aiming at high-contrast exoplanet observations. Specifically, a small-angle coronagraph enables the use of smaller telescopes, thus potentially reducing mission cost significantly. C1 [Serabyn, E.; Mawet, D.; Burruss, R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Serabyn, E (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM gene.serabyn@jpl.nasa.gov NR 11 TC 1 Z9 1 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-221-1 J9 PROC SPIE PY 2010 VL 7731 AR 77312O DI 10.1117/12.869683 PG 7 WC Engineering, Aerospace; Instruments & Instrumentation; Optics; Physics, Applied SC Engineering; Instruments & Instrumentation; Optics; Physics GA BSU78 UT WOS:000285835600084 ER PT S AU Shaklan, SB Noecker, MC Glassman, T Lo, AS Dumont, PJ Kasdin, NJ Cady, EJ Vanderbei, R Lawson, PR AF Shaklan, Stuart B. Noecker, M. Charley Glassman, Tiffany Lo, Amy S. Dumont, Philip J. Kasdin, N. Jeremy Cady, Eric J. Vanderbei, Robert Lawson, Peter R. BE Oschmann, JM Clampin, MC MacEwen, HA TI Error budgeting and tolerancing of starshades for exoplanet detection SO SPACE TELESCOPES AND INSTRUMENTATION 2010: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation 2010 - Optical, Infrared, and Millimeter Wave CY JUN 27-JUL 02, 2010 CL San Diego, CA SP SPIE DE Exoplanets; starshades; error budgets; tolerancing ID OCCULTER; PLANETS AB A flower-like starshade positioned between a star and a space telescope is an attractive option for blocking the starlight to reveal the faint reflected light of an orbiting Earth-like planet. Planet light passes around the petals and directly enters the telescope where it is seen along with a background of scattered light due to starshade imperfections. We list the major perturbations that are expected to impact the performance of a starshade system and show that independent models at NGAS and JPL yield nearly identical optical sensitivities. We give the major sensitivities in the image plane for a design consisting of a 34-m diameter starshade, and a 2-m diameter telescope separated by 39,000 km, operating between 0.25 and 0.55 um. These sensitivities include individual petal and global shape terms evaluated at the inner working angle. Following a discussion of the combination of individual perturbation terms, we then present an error budget that is consistent with detection of an Earth-like planet 26 magnitudes fainter than its host star. C1 [Shaklan, Stuart B.; Dumont, Philip J.; Lawson, Peter R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Shaklan, SB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Stuart.B.Shaklan@jpl.nasa.gov NR 27 TC 6 Z9 6 U1 1 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-221-1 J9 PROC SPIE PY 2010 VL 7731 AR 77312G DI 10.1117/12.857591 PG 16 WC Engineering, Aerospace; Instruments & Instrumentation; Optics; Physics, Applied SC Engineering; Instruments & Instrumentation; Optics; Physics GA BSU78 UT WOS:000285835600076 ER PT S AU Sidick, E Shaklan, S Kern, B Give'on, A AF Sidick, Erkin Shaklan, Stuart Kern, Brian Give'on, Amir BE Oschmann, JM Clampin, MC MacEwen, HA TI Studies of the Effects of Actuator Errors on the HCIT/PIAA Contrast Performance SO SPACE TELESCOPES AND INSTRUMENTATION 2010: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation 2010 - Optical, Infrared, and Millimeter Wave CY JUN 27-JUL 02, 2010 CL San Diego, CA SP SPIE DE Coronagraph; high-contrast imaging; PIAA; pupil mapping; exoplanets AB The High Contrast Imaging Testbed Phase Induced Amplitude Apodization (HCIT/PIAA) coronagraph system at JPL relies on an Electric-Field Conjugation (EFC) wavefront correction algorithm to create a high contrast point-spread function (PSF). This algorithm works with one deformable mirror (DM) to estimate the electric-field to be controlled, and with one or multiple DM's to create a "dark-hole" in the image plane. We have investigated the effects of DM actuator errors on the efficiency of the EFC algorithm. The structural design of the optical system as well as the parameters of various optical elements used in the analysis are drawn from those of the HCIT/PIAA system that have been and will be implemented with one or two DM's. The simulation takes into account the surface errors of various optical elements. In this paper, we report our findings in the case of narrowband wavelength light. C1 [Sidick, Erkin; Shaklan, Stuart; Kern, Brian; Give'on, Amir] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Sidick, E (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Erkin.Sidick@jpl.nasa.gov NR 5 TC 1 Z9 1 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-221-1 J9 PROC SPIE PY 2010 VL 7731 AR 77314T DI 10.1117/12.858050 PG 12 WC Engineering, Aerospace; Instruments & Instrumentation; Optics; Physics, Applied SC Engineering; Instruments & Instrumentation; Optics; Physics GA BSU78 UT WOS:000285835600155 ER PT S AU Smith, JS Aronstein, DL Davila, PS Dean, BH Dorner, B Gnata, X Melf, M Pittet, JF Plate, MBT AF Smith, Jeffrey S. Aronstein, David L. Davila, Pamela S. Dean, Bruce H. Dorner, Bernhard Gnata, Xavier Melf, Markus Pittet, Jean-Francois Plate, Maurice B. Te BE Oschmann, JM Clampin, MC MacEwen, HA TI Optical wavefront characterization using phase retrieval for the NIRSpec demonstration model for the James Webb Space Telescope SO SPACE TELESCOPES AND INSTRUMENTATION 2010: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation 2010 - Optical, Infrared, and Millimeter Wave CY JUN 27-JUL 02, 2010 CL San Diego, CA SP SPIE DE phase retrieval; James Webb Space Telescope (JWST); wavefront sensing; broadband imaging; Variable Sample Mapping (VSM) ID DIFFRACTION PLANE PICTURES; IMAGE-RECONSTRUCTION; ERROR AB Phase retrieval results are presented for the James Webb Space Telescope (JWST) Near InfraRed Spectrograph (NIRSpec) demonstration model (DM). NIRSpec is one of five science instruments (SIs) comprising the Integrated Science Instrument Module (ISIM); the NIRSpec is being built for the European Space Agency by a consortium led by EADS Astrium GmbH. During this initial DM test campaign, focal-sweep images were collected over the science field of view (FOV) for determining best focus at both ambient and cryogenic (cryo) temperature environments, and these images were then used as input to the Hybrid Diversity Algorithm (HDA) for phase retrieval, using Variable Sampling Mapping (VSM). Wavefront estimates from phase retrieval, an error budget, and diagnostics used to assess phase retrieval stability and convergence are discussed. The ambient phase retrieval results were compared against wavefront measurements taken with a Shack-Hartmann wavefront sensor. C1 [Smith, Jeffrey S.; Aronstein, David L.; Davila, Pamela S.; Dean, Bruce H.] NASA, Goddard Space Flight Ctr, Opt Branch, Greenbelt, MD 20771 USA. RP Smith, JS (reprint author), NASA, Goddard Space Flight Ctr, Opt Branch, Code 551, Greenbelt, MD 20771 USA. NR 16 TC 2 Z9 2 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-221-1 J9 PROC SPIE PY 2010 VL 7731 AR 77313P DI 10.1117/12.857755 PG 13 WC Engineering, Aerospace; Instruments & Instrumentation; Optics; Physics, Applied SC Engineering; Instruments & Instrumentation; Optics; Physics GA BSU78 UT WOS:000285835600120 ER PT S AU Spechler, JA Hoppe, DJ Sigrist, N Shi, F Seo, BJ Bikkannavar, S AF Spechler, Joshua A. Hoppe, Daniel J. Sigrist, Norbert Shi, Fang Seo, Byoung-Joon Bikkannavar, Siddarayappa BE Oschmann, JM Clampin, MC MacEwen, HA TI Advanced DFS: A Dispersed Fringe Sensing Algorithm Insensitive to Small Calibration Errors SO SPACE TELESCOPES AND INSTRUMENTATION 2010: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation 2010 - Optical, Infrared, and Millimeter Wave CY JUN 27-JUL 02, 2010 CL San Diego, CA SP SPIE DE Dispersed Fringe Sensing; DFS; JWST WFSC; GRISM AB Dispersed Fringe Sensing (DFS) is an elegant method of coarse phasing segmented mirrors. DFS performance accuracy is dependent upon careful calibration of the system as well as other factors such as internal optical alignment, system wavefront errors, and detector quality. Novel improvements to the algorithm have led to substantial enhancements in DFS performance. In this paper, we present Advanced DFS, an advancement of the DFS algorithm, which allows the overall method to be less sensitive to calibration errors. This is achieved by correcting for calibration errors, which appear in the fitting equations as a signal phase term. This paper will outline a brief analytical explanation of the improvements, results of advanced DFS processed simulations and experimental advanced DFS results. C1 [Spechler, Joshua A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Spechler, JA (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM spechler@jpl.nasa.gov NR 8 TC 2 Z9 2 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-221-1 J9 PROC SPIE PY 2010 VL 7731 AR 773155 DI 10.1117/12.856510 PG 10 WC Engineering, Aerospace; Instruments & Instrumentation; Optics; Physics, Applied SC Engineering; Instruments & Instrumentation; Optics; Physics GA BSU78 UT WOS:000285835600167 ER PT S AU Stahl, HP Henrichs, T AF Stahl, H. Philip Henrichs, Todd BE Oschmann, JM Clampin, MC MacEwen, HA TI Preliminary Multi-Variable Cost Model for Space Telescopes SO SPACE TELESCOPES AND INSTRUMENTATION 2010: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation 2010 - Optical, Infrared, and Millimeter Wave CY JUN 27-JUL 02, 2010 CL San Diego, CA SP SPIE DE Space Telescope Cost Model; Parametric Cost Model AB Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. This paper reviews the methodology used to develop space telescope cost models; summarizes recently published single variable models; and presents preliminary results for two and three variable cost models. Some of the findings are that increasing mass reduces cost; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and technology development as a function of time reduces cost at the rate of 50% per 17 years. C1 [Stahl, H. Philip] NASA, MSFC, Huntsville, AL 35821 USA. RP Stahl, HP (reprint author), NASA, MSFC, Huntsville, AL 35821 USA. NR 1 TC 1 Z9 1 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-221-1 J9 PROC SPIE PY 2010 VL 7731 AR 773104 DI 10.1117/12.856214 PG 11 WC Engineering, Aerospace; Instruments & Instrumentation; Optics; Physics, Applied SC Engineering; Instruments & Instrumentation; Optics; Physics GA BSU78 UT WOS:000285835600004 ER PT S AU Stahl, HP Postman, M Arnold, WR Hopkins, RC Hornsby, L Mosier, GE Pasquale, BA AF Stahl, H. Philip Postman, Marc Arnold, William R., Sr. Hopkins, Randall C. Hornsby, Linda Mosier, Gary E. Pasquale, Bert A. BE Oschmann, JM Clampin, MC MacEwen, HA TI ATLAST-8 Mission concept study for 8-meter Monolithic UV/Optical Space Telescope SO SPACE TELESCOPES AND INSTRUMENTATION 2010: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation 2010 - Optical, Infrared, and Millimeter Wave CY JUN 27-JUL 02, 2010 CL San Diego, CA SP SPIE DE Large Space Telescopes; UV/Optical Space Telescopes; Astronomy; Heavy Lift Launch Vehicle AB ATLAST-8m is an 8-meter monolithic UV/optical/NIR space observatory which could be placed in orbit at Sun-Earth L2 by a heavily lift launch vehicle. Two development study cycles have resulted in a detailed concept including a dual foci optical design; several primary mirror launch support and secondary mirror support structural designs; spacecraft propulsion, power and pointing control design; and thermal design. ATLAST-8m is designed to yield never before achieved performance to obtain fundamental astronomical breakthroughs. C1 [Stahl, H. Philip; Hopkins, Randall C.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Stahl, HP (reprint author), NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. NR 16 TC 5 Z9 5 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-221-1 J9 PROC SPIE PY 2010 VL 7731 AR 77312N DI 10.1117/12.856256 PG 10 WC Engineering, Aerospace; Instruments & Instrumentation; Optics; Physics, Applied SC Engineering; Instruments & Instrumentation; Optics; Physics GA BSU78 UT WOS:000285835600083 ER PT S AU Swain, MR Vasisht, G Henning, T Tinetti, G Beaulieu, JP AF Swain, Mark R. Vasisht, Gautam Henning, Thomas Tinetti, Giovanna Beaulieu, Jean-Philippe BE Oschmann, JM Clampin, MC MacEwen, HA TI THESIS - the Terrestrial Habitable-zone Exoplanet Spectroscopy Infrared Spacecraft SO SPACE TELESCOPES AND INSTRUMENTATION 2010: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation 2010 - Optical, Infrared, and Millimeter Wave CY JUN 27-JUL 02, 2010 CL San Diego, CA SP SPIE DE infrared; spectroscopy; molecules; exoplanets ID EMISSION-SPECTRUM; HD 209458B; 189733B AB THESIS, the Transiting Habitable-zone Exoplanet Spectroscopy Infrared Spacecraft, is a concept for a medium/Probe class exoplanet mission. Building on the recent Spitzer successes in exoplanet characterization, THESIS would extend these types of measurements to super-Earth-like planets. A strength of the THESIS concept is simplicity, low technical risk, and modest cost. The mission concept has the potential to dramatically advance our understanding of conditions on extrasolar worlds and could serve as a stepping stone to more ambitious future missions. We envision this mission as a joint US-European effort with science objectives that resonate with both the traditional astronomy and planetary science communities. C1 [Swain, Mark R.; Vasisht, Gautam] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Swain, MR (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. OI Tinetti, Giovanna/0000-0001-6058-6654 NR 16 TC 2 Z9 2 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-221-1 J9 PROC SPIE PY 2010 VL 7731 AR 773125 DI 10.1117/12.857664 PG 7 WC Engineering, Aerospace; Instruments & Instrumentation; Optics; Physics, Applied SC Engineering; Instruments & Instrumentation; Optics; Physics GA BSU78 UT WOS:000285835600065 ER PT S AU Thomson, MW Lisman, PD Helms, R Walkemeyer, P Kissil, A Polanco, O Lee, SC AF Thomson, Mark W. Lisman, P. Douglas Helms, Richard Walkemeyer, Phil Kissil, Andrew Polanco, Otto Lee, Siu-Chun BE Oschmann, JM Clampin, MC MacEwen, HA TI Starshade Design for Occulter Based Exoplanet Missions SO SPACE TELESCOPES AND INSTRUMENTATION 2010: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation 2010 - Optical, Infrared, and Millimeter Wave CY JUN 27-JUL 02, 2010 CL San Diego, CA SP SPIE DE Exoplanet; occulter; starshade AB We present a lightweight starshade design that delivers the requisite profile figure accuracy with a compact stowed volume that permits launching both the occulter system (starshade and spacecraft) and a 1 to 2m-class telescope system on a single existing launch vehicle. Optimal figure stability is achieved with a very stiff and mass-efficient deployable structure design that has a novel configuration. The reference design is matched to a 1.1m telescope and consists of a 15m diameter inner disc and 24 flower-like petals with 7.5m length. The total tip-to-tip diameter of 30m provides an inner working angle of 75 mas. The design is scalable to accommodate larger telescopes and several options have been assessed. A proof of concept petal is now in production at JPL for deployment demonstrations and as a testbed for developing additional elements of the design. Future plans include developing breadboard and prototype hardware of increasing fidelity for use in demonstrating critical performance capabilities such as deployed optical edge profile figure tolerances and stability thereof. C1 [Thomson, Mark W.; Lisman, P. Douglas; Helms, Richard; Walkemeyer, Phil; Kissil, Andrew; Polanco, Otto] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Thomson, MW (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 4 TC 1 Z9 1 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-221-1 J9 PROC SPIE PY 2010 VL 7731 AR 773153 DI 10.1117/12.858313 PG 13 WC Engineering, Aerospace; Instruments & Instrumentation; Optics; Physics, Applied SC Engineering; Instruments & Instrumentation; Optics; Physics GA BSU78 UT WOS:000285835600165 ER PT S AU Trauger, J Stapelfeldt, K Traub, W Krist, J Moody, D Mawet, D Serabyn, E Henry, C Brugarolas, P Alexander, J Gappinger, R Dawson, O Mireles, V Park, P Pueyo, L Shaklan, S Guyon, O Kasdin, J Vanderbei, R Spergel, D Belikov, R Marcy, G Brown, RA Schneider, J Woodgate, B Egerman, R Matthews, G Elias, J Conturie, Y Vallone, P Voyer, P Polidan, R Lillie, C Spittler, C Lee, D Hejal, R Bronowicki, A Saldivar, N Ealey, M Price, T AF Trauger, John Stapelfeldt, Karl Traub, Wesley Krist, John Moody, Dwight Mawet, Dimitri Serabyn, Eugene Henry, Curt Brugarolas, Paul Alexander, James Gappinger, Robert Dawson, Olivia Mireles, Virgil Park, Peggy Pueyo, Laurent Shaklan, Stuart Guyon, Olivier Kasdin, Jeremy Vanderbei, Robert Spergel, David Belikov, Ruslan Marcy, Geoff Brown, Robert A. Schneider, Jean Woodgate, Bruce Egerman, Robert Matthews, Gary Elias, Jason Conturie, Yves Vallone, Phillip Voyer, Perry Polidan, Ronald Lillie, Chuck Spittler, Constance Lee, David Hejal, Reem Bronowicki, Allen Saldivar, Nick Ealey, Mark Price, Thomas BE Oschmann, JM Clampin, MC MacEwen, HA TI ACCESS - A Concept Study for the Direct Imaging and Spectroscopy of Exoplanetary Systems SO SPACE TELESCOPES AND INSTRUMENTATION 2010: OPTICAL, INFRARED, AND MILLIMETER WAVE SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation 2010 - Optical, Infrared, and Millimeter Wave CY JUN 27-JUL 02, 2010 CL San Diego, CA SP SPIE DE coronagraphs; exoplanets; space astronomy; active optics ID PLANET; CORONAGRAPH; LIGHT; EARTH; STAR AB ACCESS is one of four medium-class mission concepts selected for study in 2008-9 by NASA's Astrophysics Strategic Mission Concepts Study program. ACCESS evaluates a space observatory designed for extreme high-contrast imaging and spectroscopy of exoplanetary systems. An actively-corrected coronagraph is used to suppress the glare of diffracted and scattered starlight to contrast levels required for exoplanet imaging. The ACCESS study considered the relative merits and readiness of four major coronagraph types, and modeled their performance with a NASA medium-class space telescope. The ACCESS study asks: What is the most capable medium-class coronagraphic mission that is possible with telescope, instrument, and spacecraft technologies available today? Using demonstrated high-TRL technologies, the ACCESS science program surveys the nearest 120+ AFGK stars for exoplanet systems, and surveys the majority of those for exozodiacal dust to the level of 1 zodi at 3 AU. Coronagraph technology developments in the coming year are expected to further enhance the science reach of the ACCESS mission concept. C1 [Trauger, John; Stapelfeldt, Karl; Traub, Wesley; Krist, John; Moody, Dwight; Mawet, Dimitri; Serabyn, Eugene; Henry, Curt; Brugarolas, Paul; Alexander, James; Gappinger, Robert; Dawson, Olivia; Mireles, Virgil; Park, Peggy; Pueyo, Laurent; Shaklan, Stuart] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Trauger, J (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Woodgate, Bruce/D-2970-2012; Stapelfeldt, Karl/D-2721-2012 NR 24 TC 13 Z9 13 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-221-1 J9 PROC SPIE PY 2010 VL 7731 AR 773128 DI 10.1117/12.858301 PG 13 WC Engineering, Aerospace; Instruments & Instrumentation; Optics; Physics, Applied SC Engineering; Instruments & Instrumentation; Optics; Physics GA BSU78 UT WOS:000285835600068 ER PT S AU Bandler, SR Bailey, CN Bookbinder, JA DeLuca, EE Chervenak, JA Eckart, ME Finkbeiner, FM Kelley, DP Kelley, RL Kilbourne, CA Porter, FS Sadleir, JE Smith, SJ Smith, RK AF Bandler, Simon. R. Bailey, Catherine N. Bookbinder, Jay A. DeLuca, Edward E. Chervenak, Jay A. Eckart, Megan E. Finkbeiner, Fred M. Kelley, Daniel P. Kelley, Richard L. Kilbourne, Caroline A. Porter, Frederick S. Sadleir, Jack E. Smith, Stephen J. Smith, Randall K. BE Arnaud, M Murray, SS Takahashi, T TI High Spectral Resolution, High Cadence, Imaging X-ray Microcalorimeters for Solar Physics SO SPACE TELESCOPES AND INSTRUMENTATION 2010: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation 2010 - Ultraviolet to Gamma Ray CY JUN 28-JUL 02, 2010 CL San Diego, CA SP SPIE DE Microcalorimeter; Solar; Transition-Edge Sensor ID TRANSITION-EDGE SENSORS; COUNT-RATE; DESIGN AB High spectral resolution, high cadence, imaging x-ray spectroscopy has the potential to revolutionize the study of the solar corona. To that end we have been developing transition-edge-sensor (TES) based x-ray microcalorimeter arrays for future solar physics missions where imaging and high energy resolution spectroscopy will enable previously impossible studies of the dynamics and energetics of the solar corona. The characteristics of these x-ray microcalorimeters are significantly different from conventional microcalorimeters developed for astrophysics because they need to accommodate much higher count rates (300-1000 cps) while maintaining high energy resolution of less than 4 eV FWHM in the X-ray energy band of 0.2-10 keV. The other main difference is a smaller pixel size (less than 75 x 75 square microns) than is typical for x-ray microcalorimeters in order to provide angular resolution less than 1 arcsecond. We have achieved at energy resolution of 2.15 eV at 6 keV in a pixel with a 12 x 12 square micron TES sensor and 34 x 34 x 9.1 micron gold absorber, and a resolution of 2.30 eV at 6 keV in a pixel with a 35 x 35 micron TES and a 57 x 57 x 9.1 micron gold absorber. This performance has been achieved in pixels that are fabricated directly onto solid substrates, ie. they are not supported by silicon nitride membranes. We present the results from these detectors, the expected performance at high count-rates, and prospects for the use of this technology for future Solar missions. C1 [Bandler, Simon. R.; Bailey, Catherine N.; Chervenak, Jay A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Daniel P.; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; Sadleir, Jack E.; Smith, Stephen J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Bandler, SR (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Simon.R.Bandler@nasa.gov RI Bailey, Catherine/C-6107-2009; Smith, Stephen/B-1256-2008; Bandler, Simon/A-6258-2010; Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012; DeLuca, Edward/L-7534-2013 OI Smith, Stephen/0000-0003-4096-4675; Bandler, Simon/0000-0002-5112-8106; Porter, Frederick/0000-0002-6374-1119; DeLuca, Edward/0000-0001-7416-2895 NR 23 TC 6 Z9 6 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8222-8 J9 P SOC PHOTO-OPT INS PY 2010 VL 7732 AR 773238 DI 10.1117/12.857783 PG 11 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BSQ88 UT WOS:000285506200101 ER PT S AU Elsner, RF O'Dell, SL Ramsey, BD Weisskopf, MC AF Elsner, Ronald F. O'Dell, Stephen L. Ramsey, Brian D. Weisskopf, Martin C. BE Arnaud, M Murray, SS Takahashi, T TI Methods of optimizing X-ray optical prescriptions for wide-field applications SO SPACE TELESCOPES AND INSTRUMENTATION 2010: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation 2010 - Ultraviolet to Gamma Ray CY JUN 28-JUL 02, 2010 CL San Diego, CA SP SPIE DE X-ray astronomy; X-ray optics; ray trace; wide field-of-view optimization ID GRAZING-INCIDENCE OPTICS AB We are working on the development of a method for optimizing wide-field X-ray telescope mirror prescriptions, including polynomial coefficients, mirror shell relative displacements, and (assuming 4 focal plane detectors) detector placement along the optical axis and detector tilt. With our methods, we hope to reduce number of Monte-Carlo ray traces required to search the multi-dimensional design parameter space, and to lessen the complexity of finding the optimum design parameters in that space. Regarding higher order polynomial terms as small perturbations of an underlying Wolter I optic design, we begin by using the results of Monte-Carlo ray traces to devise trial analytic functions, for an individual Wolter I mirror shell, that can be used to represent the spatial resolution on an arbitrary focal surface. We then introduce a notation and tools for Monte-Carlo ray tracing of a polynomial mirror shell prescription which permits the polynomial coefficients to remain symbolic. In principle, given a set of parameters defining the underlying Wolter I optics, a single set of Monte-Carlo ray traces are then sufficient to determine the polymonial coefficients through the solution of a large set of linear equations in the symbolic coefficients. We describe the present status of this development effort. C1 [Elsner, Ronald F.; O'Dell, Stephen L.; Ramsey, Brian D.; Weisskopf, Martin C.] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. RP Elsner, RF (reprint author), NASA, George C Marshall Space Flight Ctr, Space Sci Off, VP62, Huntsville, AL 35812 USA. EM ron.elsner@nasa.gov; steve.o'dell@nasa.gov; brian.ramsey@nasa.gov; martin@smoker.msfc.nasa.gov OI O'Dell, Stephen/0000-0002-1868-8056 NR 10 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8222-8 J9 PROC SPIE PY 2010 VL 7732 AR 77322L DI 10.1117/12.856420 PG 14 WC Astronomy & Astrophysics; Instruments & Instrumentation; Optics SC Astronomy & Astrophysics; Instruments & Instrumentation; Optics GA BSQ88 UT WOS:000285506200083 ER PT S AU Hunter, SD Bloser, PF Dion, MP McConnell, ML de Nolfo, GA Son, S Ryan, JM Stecker, FW AF Hunter, Stanley D. Bloser, Peter F. Dion, Michael P. McConnell, Mark L. de Nolfo, Georgia A. Son, Seunghee Ryan, James M. Stecker, Floyd W. BE Arnaud, M Murray, SS Takahashi, T TI Development of the Advanced Energetic Pair Telescope (AdEPT) for Medium-Energy Gamma-Ray Astronomy SO SPACE TELESCOPES AND INSTRUMENTATION 2010: ULTRAVIOLET TO GAMMA RAY SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Space Telescopes and Instrumentation 2010 - Ultraviolet to Gamma Ray CY JUN 28-JUL 02, 2010 CL San Diego, CA SP SPIE DE Gamma-ray; telescope; imaging; medium-energy; pair production; time projection chamber; micro-well readout ID DARK-MATTER ANNIHILATION; NEGATIVE-ION DRIFT; EMISSION; ACCELERATION; DIFFUSION; PARTICLES AB Progress in high-energy gamma-ray science has been dramatic since the launch of INTEGRAL, AGILE and FERMI. These instruments, however, are not optimized for observations in the medium-energy (similar to 0.3= 2 solar radii. Although there are no CME images from this event, it is shown that CME-shock-accelerated protons can, in principle, produce a time-history consistent with the observations. C1 [Mewaldt, R. A.; Leske, R. A.; Stone, E. C.; Cohen, C. M. S.; Cummings, A. C.; Labrador, A. W.] CALTECH, Pasadena, CA 91125 USA. [Shih, A. Y.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Barghouty, A. F.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [von Rosenvinge, T. T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wiedenbeck, M. E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Mewaldt, RA (reprint author), CALTECH, Pasadena, CA 91125 USA. EM RMewaldt@srl.caltech.edu; ral@srl.caltech.edu; ecs@srl.caltech.edu; ace@srl.caltech.edu; mark.e.wiedenbeck@jpl.nasa.gov RI Shih, Albert/D-4714-2012 FU NASA at Caltech; JPL [SA2715-26309]; UC Berkeley under NASA [NAS5-03131]; TEI Program of NASA's Office of Chief Engineer FX This work was supported by NASA at Caltech and JPL under sub-contract SA2715-26309 from UC Berkeley under NASA contract NAS5-03131. The work at MSFC was supported by the TEI Program of NASAs Office of Chief Engineer. We thank NOAA for GOES X-ray data and appreciate discussions with Hugh Hudson, Sam Krucker, Gang Li, Bob Lin, Ron Murphy and Gerry Share. NR 15 TC 2 Z9 2 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0759-6 J9 AIP CONF PROC PY 2010 VL 1216 BP 592 EP + DI 10.1063/1.3395935 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQO19 UT WOS:000281438100138 ER PT S AU Richardson, IG Cane, HV AF Richardson, Ian G. Cane, Hilary V. BE Maksimovic, M Issautier, K MeyerVernet, N Moncuquet, M Pantellini, F TI The Interplanetary Conditions Associated With Quasi-Perpendicular Shocks SO TWELFTH INTERNATIONAL SOLAR WIND CONFERENCE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 12th International Solar Wind Conference CY JUN 21-26, 2009 CL St Milo, FRANCE SP LESIA, Paris Observ, CNRS, CNES, French Natl Sun Earth Connect Program, European Space Agcy, NASA DE Interplanetary magnetic fields; interplanetary shocks; particle acceleration; energetic particles ID SOLAR-WIND; EVENTS; WAVES; 1-AU AB The angle between the normal to an interplanetary shock front and the upstream magnetic field (theta(Bn)), though often considered to be a property "of the shock", also depends on the direction of the interplanetary magnetic field through which the shock is traveling. We examine the solar wind context of 105 near-Earth quasi-perpendicular fast forward shocks in 1996-2005 identified by theta(Bn) > 80 degrees and/or by evidence of shock drift particle acceleration. These shocks (87% driven by interplanetary coronal mass ejections; ICMEs) were propagating through a variety of solar wind structures including unrelated ICMEs, slow solar wind, high-speed streams, the heliospheric plasma sheet, and shock sheaths. Magnetic field orientations upstream of the shocks were more likely to be highly inclined to the radial direction than in the solar wind as a whole. We also compare the Fe/O ratio in solar wind and energetic particles (similar to 1 MeV/n) in the vicinity of these shocks. Average values are similar (similar to 0.14), but occasionally both are enhanced at shocks propagating through ICMEs. C1 [Richardson, Ian G.; Cane, Hilary V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Richardson, IG (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. EM ian.g.richardson@nasa.gov OI Richardson, Ian/0000-0002-3855-3634 NR 8 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0759-6 J9 AIP CONF PROC PY 2010 VL 1216 BP 617 EP 620 DI 10.1063/1.3395942 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQO19 UT WOS:000281438100144 ER PT S AU Wiedenbeck, ME Mason, GM Gomez-Herrero, R Haggerty, D Nitta, NV Cohen, CMS Chollet, EE Cummings, AC Leske, RA Mewaldt, RA Stone, EC von Rosenvinge, TT Muller-Mellin, R Desai, M Mall, U AF Wiedenbeck, M. E. Mason, G. M. Gomez-Herrero, R. Haggerty, D. Nitta, N. V. Cohen, C. M. S. Chollet, E. E. Cummings, A. C. Leske, R. A. Mewaldt, R. A. Stone, E. C. von Rosenvinge, T. T. Mueller-Mellin, R. Desai, M. Mall, U. BE Maksimovic, M Issautier, K MeyerVernet, N Moncuquet, M Pantellini, F TI Observations of a He-3-rich SEP Event over a Broad Range of Heliographic Longitudes: Results from STEREO and ACE SO TWELFTH INTERNATIONAL SOLAR WIND CONFERENCE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 12th International Solar Wind Conference CY JUN 21-26, 2009 CL St Milo, FRANCE SP LESIA, Paris Observ, CNRS, CNES, French Natl Sun Earth Connect Program, European Space Agcy, NASA DE solar energetic particles; solar flares; He-3-rich SEP events; particle transport ID PARTICLE-ACCELERATION; SOLAR-FLARES; HELIOSPHERE; SUN AB Observations of energetic ions and electrons from STEREO and ACE have been used to investigate the longitudinal extent of particle emissions from He-3-rich solar energetic particle (SEP) events. In the event of 3-4 Nov 2008, ions and electrons were detected 20 degrees ahead and behind the nominal connection from the source region to 1 AU, and electrons were also detected 60 degrees ahead. The results are consistent with those of earlier studies that correlated data from near-Earth spacecraft with Helios data or with observations of source regions on the Sun. C1 [Wiedenbeck, M. E.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Mason, G. M.; Haggerty, D.] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. [Gomez-Herrero, R.] Univ Kiel, Olshaussenstr 40, D-24118 Kiel, Germany. [Nitta, N. V.] Lockheed Martin Solar & Astrophys Lab, Palo Alto, CA 94304 USA. [Cohen, C. M. S.; Chollet, E. E.; Cummings, A. C.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.] CALTECH, Pasadena, CA 91125 USA. [von Rosenvinge, T. T.] NASA, Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA. [Desai, M.] Southwest Res Inst, San Antonio, TX 78238 USA. [Mall, U.] Max Planck Inst Sonnensystemforschung, Lindau, Germany. RP Wiedenbeck, ME (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM mark.e.wiedenbeck@jpl.nasa.gov; gomez@physik.uni-kiel.de; echollet@srl.caltech.edu; ace@srl.caltech.edu; ral@srl.caltech.edu; RMewaldt@srl.caltech.edu; ecs@srl.caltech.edu; mdesai@swri.edu RI Gomez-Herrero, Raul/B-7346-2011 OI Gomez-Herrero, Raul/0000-0002-5705-9236 FU NASA at Caltech through UC Berkeley [NNX08AI11G, NAS5-03131]; JPL; GSFC; APL FX This work was supported by NASA at Caltech (under grant NNX08AI11G and through UC Berkeley under contract NAS5-03131), JPL, GSFC, and APL. NR 11 TC 9 Z9 9 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0759-6 J9 AIP CONF PROC PY 2010 VL 1216 BP 621 EP + DI 10.1063/1.3395943 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQO19 UT WOS:000281438100145 ER PT S AU Smith, EJ Zhou, XY AF Smith, Edward J. Zhou, Xiaoyan BE Maksimovic, M Issautier, K MeyerVernet, N Moncuquet, M Pantellini, F TI Energetic Particles and Upstream Waves at Co-rotating Shocks SO TWELFTH INTERNATIONAL SOLAR WIND CONFERENCE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 12th International Solar Wind Conference CY JUN 21-26, 2009 CL St Milo, FRANCE SP LESIA, Paris Observ, CNRS, CNES, French Natl Sun Earth Connect Program, European Space Agcy, NASA DE Particle Acceleration; Co-rotating Shocks; Magnetic field fluctuations ID INTERPLANETARY TRAVELING SHOCKS; ION-ACCELERATION; EXCITATION AB We report a study of energetic ion acceleration at shocks bounding co-rotating interaction regions (CIRs). Archived data obtained by Ulysses magnetic field, solar wind and energetic particle investigations at low latitude CIRs have been assembled and analyzed. The statistical relations between various properties of 22 Forward shocks, energetic particles and upstream heliospheric magnetic field fluctuations are presented. No statistically significant correlations are found between the shock compression ratio, r, or the particle intensity, j(p), or the energetic particle spectral index, s, and the shock normal-upstream field angle, theta(Bn). Furthermore, a theoretical relation between the particle spectral index and shock compression is not consistent with the observed values of s and r. The particle intensities are poorly correlated with the power in upstream heliospheric magnetic field fluctuations contrary to our preliminary study of fewer shocks. We conclude that many of the expectations of Diffusive Shock Theory are not supported by this data set but it is too early to decide whether some key measurement is missing or the theory needs reconsideration. C1 [Smith, Edward J.; Zhou, Xiaoyan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Smith, EJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM edward.j.smith@jpl.nasa.gov NR 14 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0759-6 J9 AIP CONF PROC PY 2010 VL 1216 BP 629 EP 632 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQO19 UT WOS:000281438100147 ER PT S AU Richardson, IG Cane, HV AF Richardson, Ian G. Cane, Hilary V. BE Maksimovic, M Issautier, K MeyerVernet, N Moncuquet, M Pantellini, F TI Interplanetary Coronal Mass Ejections During Solar Cycle 23 SO TWELFTH INTERNATIONAL SOLAR WIND CONFERENCE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 12th International Solar Wind Conference CY JUN 21-26, 2009 CL St Milo, FRANCE SP LESIA, Paris Observ, CNRS, CNES, French Natl Sun Earth Connect Program, European Space Agcy, NASA DE Ejecta; driver gases; magnetic clouds; Solar wind plasma; sources of solar wind; Solar cycle variations; Coronal mass ejection ID WIND AB We summarize the properties of the similar to 320 interplanetary coronal mass ejections (ICMEs) identified in the near Earth solar wind during solar cycle 23 up to mid-2009 and note a recent increase in the ICME rate that may be associated with the new solar cycle. We also discuss how recent revisions in the ACE/SWICS solar wind composition data require the ICME identification methods described in [1] based on these data to be modified. C1 [Richardson, Ian G.; Cane, Hilary V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Richardson, IG (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. EM ian.g.richardson@nasa.gov OI Richardson, Ian/0000-0002-3855-3634 NR 9 TC 4 Z9 4 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0759-6 J9 AIP CONF PROC PY 2010 VL 1216 BP 683 EP 686 DI 10.1063/1.3395959 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQO19 UT WOS:000281438100160 ER PT S AU Cane, HV Richardson, IG von Rosenvinge, TT AF Cane, Hilary V. Richardson, Ian G. von Rosenvinge, Tycho T. BE Maksimovic, M Issautier, K MeyerVernet, N Moncuquet, M Pantellini, F TI The Properties of Cycle 23 Solar Energetic Proton Events SO TWELFTH INTERNATIONAL SOLAR WIND CONFERENCE SE AIP Conference Proceedings LA English DT Proceedings Paper CT 12th International Solar Wind Conference CY JUN 21-26, 2009 CL St Milo, FRANCE SP LESIA, Paris Observ, CNRS, CNES, French Natl Sun Earth Connect Program, European Space Agcy, NASA DE Energetic particles; particle acceleration; interplanetary shocks; coronal mass ejections; flares ID PARTICLE EVENTS; ACCELERATION AB Around 350 solar energetic proton events with energies > 20 MeV were detected by near-Earth spacecraft during solar cycle 23. Focusing on the 280 events with similar to 25 MeV intensity > 2 x 10(-4) particles/(cm(2) Sr s MeV), we examine the early stages (similar to first 12 hours) of these events including their intensity and composition and the properties of the related solar phenomena such as CMEs, flares and radio bursts. Although we divide the events into 5 representative groups based on particle profiles and relative abundances, we find no single, or set of variables that divides the particle events into clear cut "classes" for example associated with shock and flare acceleration. In particular, there is a continuum of event properties from the smallest, flare-accelerated events, to the largest events dominated by shock acceleration. This suggests that both flare and shock acceleration can contribute in individual events. C1 [Cane, Hilary V.; Richardson, Ian G.; von Rosenvinge, Tycho T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. RP Cane, HV (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. EM ian.g.richardson@nasa.gov OI Richardson, Ian/0000-0002-3855-3634 NR 8 TC 2 Z9 2 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0759-6 J9 AIP CONF PROC PY 2010 VL 1216 BP 687 EP 690 DI 10.1063/1.3395960 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BQO19 UT WOS:000281438100161 ER PT S AU Flaherty, SR Shively, RJ AF Flaherty, Susan R. Shively, Robert J. BE Gerhart, GR Gage, DW Shoemaker, CM TI Delegation Control of Multiple Unmanned Systems SO UNMANNED SYSTEMS TECHNOLOGY XII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Unmanned Systems Technology XII CY APR 06-09, 2010 CL Orlando, FL SP SPIE DE unmanned systems; delegation control; human-machine interface; voice recognition; flight demonstration ID AUTOMATION; HUMANS AB Maturing technologies and complex payloads coupled with a future objective to reduce the logistics burden of current unmanned aerial systems (UAS) operations require a change to the 2-crew employment paradigm. Increased automation and operator supervisory control of unmanned systems have been advocated to meet the objective of reducing the crew requirements, while managing future technologies. Specifically, a delegation control employment strategy has resulted in reduced workload and higher situation awareness for single operators controlling multiple unmanned systems in empirical studies(1,2). Delegation control is characterized by the ability for an operator to call a single "play" that initiates prescribed default actions for each vehicle and associated sensor related to a common mission goal. Based upon the effectiveness of delegation control in simulation, the U.S. Army Aeroflightdynamics Directorate (AFDD) developed a Delegation Control (DelCon) operator interface with voice recognition implementation for play selection, real-time play modification, and play status with automation transparency to enable single operator control of multiple unmanned systems in flight. AFDD successfully demonstrated delegation control in a Troops-in-Contact mission scenario at Ft. Ord in 2009. This summary showcases the effort as a beneficial advance in single operator control of multiple UAS. C1 [Flaherty, Susan R.; Shively, Robert J.] US Army Aeroflightdynam Directorate AMRDEC, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Flaherty, SR (reprint author), US Army Aeroflightdynam Directorate AMRDEC, Ames Res Ctr, Moffett Field, CA 94035 USA. NR 14 TC 0 Z9 0 U1 1 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8156-6 J9 PROC SPIE PY 2010 VL 7692 AR 76920B DI 10.1117/12.849540 PG 12 WC Engineering, Electrical & Electronic; Robotics; Optics SC Engineering; Robotics; Optics GA BSM43 UT WOS:000284932200010 ER PT S AU Rankin, A Bajracharya, M Huertas, A Howard, A Moghaddam, B Brennan, S Ansar, A Tang, BY Turmon, M Matthies, L AF Rankin, Arturo Bajracharya, Max Huertas, Andres Howard, Andrew Moghaddam, Baback Brennan, Shane Ansar, Adnan Tang, Benyang Turmon, Michael Matthies, Larry BE Gerhart, GR Gage, DW Shoemaker, CM TI Stereo-vision based perception capabilities developed during the Robotics Collaborative Technology Alliances program SO UNMANNED SYSTEMS TECHNOLOGY XII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Unmanned Systems Technology XII CY APR 06-09, 2010 CL Orlando, FL SP SPIE DE Stereo vision; passive perception; terrain classification; learning; obstacle detection; pedestrian detection; water detection; mud detection; vehicle detection ID SYSTEM AB The Robotics Collaborative Technology Alliances (RCTA) program, which ran from 2001 to 2009, was funded by the U.S. Army Research Laboratory and managed by General Dynamics Robotic Systems. The alliance brought together a team of government, industrial, and academic institutions to address research and development required to enable the deployment of future military unmanned ground vehicle systems ranging in size from man-portables to ground combat vehicles. Under RCTA, three technology areas critical to the development of future autonomous unmanned systems were addressed: advanced perception, intelligent control architectures and tactical behaviors, and human-robot interaction. The Jet Propulsion Laboratory (JPL) participated as a member for the entire program, working four tasks in the advanced perception technology area: stereo improvements, terrain classification, pedestrian detection in dynamic environments, and long range terrain classification. Under the stereo task, significant improvements were made to the quality of stereo range data used as a front end to the other three tasks. Under the terrain classification task, a multi-cue water detector was developed that fuses cues from color, texture, and stereo range data, and three standalone water detectors were developed based on sky reflections, object reflections (such as trees), and color variation. In addition, a multi-sensor mud detector was developed that fuses cues from color stereo and polarization sensors. Under the long range terrain classification task, a classifier was implemented that uses unsupervised and self-supervised learning of traversability to extend the classification of terrain over which the vehicle drives to the far-field. Under the pedestrian detection task, stereo vision was used to identify regions-of-interest in an image, classify those regions based on shape, and track detected pedestrians in three-dimensional world coordinates. To improve the detectability of partially occluded pedestrians and reduce pedestrian false alarms, a vehicle detection algorithm was developed. This paper summarizes JPL's stereo-vision based perception contributions to the RCTA program. C1 [Rankin, Arturo; Bajracharya, Max; Huertas, Andres; Howard, Andrew; Moghaddam, Baback; Brennan, Shane; Ansar, Adnan; Tang, Benyang; Turmon, Michael; Matthies, Larry] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Rankin, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. NR 21 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8156-6 J9 PROC SPIE PY 2010 VL 7692 AR 76920C DI 10.1117/12.852644 PG 15 WC Engineering, Electrical & Electronic; Robotics; Optics SC Engineering; Robotics; Optics GA BSM43 UT WOS:000284932200011 ER PT B AU Herman, J AF Herman, Jay BA Gao, W Schmoldt, DL Slusser, JR BF Gao, W Schmoldt, DL Slusser, JR TI Changes in Ultraviolet and Visible Solar Irradiance 1979 to 2008 SO UV RADIATION IN GLOBAL CLIMATE CHANGE: MEASUREMENTS, MODELING AND EFFECTS ON ECOSYSTEMS LA English DT Article; Book Chapter DE ultraviolet; trends; RAF; erythemal; spectrometer; pyranometer ID AEROSOL OPTICAL DEPTH; SURFACE UV IRRADIANCE; OZONE DEPLETION; EARTHS SURFACE; SATELLITE ESTIMATION; SKIN-CANCER; RADIATION; TOMS; AERONET; CLOUDS AB A description is presented of instruments and requirements for measuring ultraviolet (UV) and visible irradiance and estimating long-term changes in irradiance from the ground-based and satellite data The 30-year changes in zonal average UV irradiances are estimated from changes that have occurred in ozone amount and cloud cover as a function of latitude and season. Ozone changes have been obtained from a multiple satellite time series starting with Nimbus-7/Total Ozone Mapping Spectrometer (TOMS) in 1979 and continuing to the end of 2008 with the Solar Backscatter Ultraviolet (SBUV-2) series, Earth-Probe TOMS, and Ozone Monitoring Instrument (OMI). The changes in cloud cover have been obtained using the 340 nm reflectivity data from the same series of satellite instruments, except for Earth-Probe TOMS. The results show large increases in UV-B (280 nm 315 nm) irradiance in both hemispheres, mostly caused by changes in ozone amounts. The largest increases have occurred in the Southern Hemisphere for clear-sky conditions when compared to the same latitudes in the Northern Hemisphere. Since 1979, an increase of 5%-8% has occurred in clear-sky DNA damage action spectra weighted irradiance P-DNA during most of the spring and summer, with increases ranging from 12% to 15% between 30 degrees S and 40 degrees S and 18% to 22% between 40 degrees S and 50 degrees S. Increases in erythemal irradiance are about half that of P-DNA. There were only small changes in the equatorial zone (+/- 23 degrees), where sea level UV irradiances are largest because of naturally low ozone amounts and the nearly overhead sun. C1 NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Herman, J (reprint author), NASA, Goddard Space Flight Ctr, Code 613-3, Greenbelt, MD 20771 USA. EM jay.r.herman@nasa.gov OI Herman, Jay/0000-0002-9146-1632 NR 60 TC 0 Z9 0 U1 0 U2 0 PU TSINGHUA UNIVERSITY PRESS PI BEIJING PA TSINGHUA UNIVERSITY HAIDIANQU, BEIJING 100084, PEOPLES R CHINA BN 978-7-302-20360-5 PY 2010 BP 106 EP 159 DI 10.1007/978-3-642-03313-1_5 D2 10.1007/978-3-642-03313-1 PG 54 WC Ecology; Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA BOX64 UT WOS:000277962100005 ER PT B AU Blumberg, BS AF Blumberg, Baruch S. BE Artenstein, AW TI Hepatitis B SO VACCINES: A BIOGRAPHY LA English DT Article; Book Chapter ID CHRONIC-HEMODIALYSIS UNIT; SERUM IRON LEVELS; AUSTRALIA-ANTIGEN; UNIVERSAL VACCINATION; CONTROLLED-TRIAL; DOWNS SYNDROME; SEX-RATIO; VIRUS; EFFICACY; TRANSFUSION C1 [Blumberg, Baruch S.] Fox Chase Canc Ctr, Philadelphia, PA 19111 USA. [Blumberg, Baruch S.] Univ Penn, Philadelphia, PA 19104 USA. [Blumberg, Baruch S.] NASA, Astrobiol Inst, Washington, DC 20546 USA. RP Blumberg, BS (reprint author), Fox Chase Canc Ctr, 7701 Burholme Ave, Philadelphia, PA 19111 USA. EM baruch.blumberg@fccc.edu NR 72 TC 3 Z9 3 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES BN 978-1-4419-1107-0 PY 2010 BP 301 EP 315 DI 10.1007/978-1-4419-1108-7_17 D2 10.1007/978-1-4419-1108-7 PG 15 WC History & Philosophy Of Science; Immunology; Microbiology SC History & Philosophy of Science; Immunology; Microbiology GA BNC81 UT WOS:000274169300017 ER PT B AU Linthicum, KJ Anyamba, A Chretien, JP Small, J Tucker, CJ Britch, SC AF Linthicum, Kenneth J. Anyamba, Assaf Chretien, Jean-Paul Small, Jennifer Tucker, Compton J. Britch, Seth C. BE Atkinson, PW TI The Role of Global Climate Patterns in the Spatial and Temporal Distribution of Vector-Borne Disease SO VECTOR BIOLOGY, ECOLOGY AND CONTROL LA English DT Article; Book Chapter DE Climate change; ENSO; Disease; Vectors ID RIFT-VALLEY FEVER; NINO-SOUTHERN OSCILLATION; EL-NINO; MALARIA; VIRUS; KENYA; PRECIPITATION; TEMPERATURE; EPIDEMICS; WEATHER AB Global climate variability patterns, such as those associated with the El Nino/Southern Oscillation (ENSO) phenomena, have been shown to have an impact on vector-borne infectious disease outbreaks. Evidence of the links between ENSO driven climate anomalies and infectious diseases, particularly those transmitted by insects, can allow us to provide improved long range forecasts of an epidemic or epizootic. Using satellite generated data developing climate anomalies suggested potential disease risks for 2006 and 2007. Sea surface temperatures in the equatorial east Pacific Ocean anomalously increased significantly during July-October 2006 indicating the typical development of El Nino conditions. The persistence of these conditions led to extremes in global-scale climate anomalies comparable to what has been observed during similar conditions in the past. The 2006 development of El Nino conditions had significant implications for global public health. Extremes in climate events with above normal rainfall and flooding in some regions and extended drought periods in other regions occurred. Forecasting disease is critical for timely and effective planning of operational control programs. Here we describe global climate anomalies that led to forecasts of elevated disease risks that gave decision makers additional tools to make rational judgments concerning implementation of disease prevention and mitigation strategies. C1 [Linthicum, Kenneth J.; Britch, Seth C.] USDA, Ctr Med Agr & Vet Entomol, Gainesville, FL 32608 USA. [Anyamba, Assaf; Small, Jennifer; Tucker, Compton J.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [Chretien, Jean-Paul] Walter Reed Army Inst Res, Div Prevent Med, Dept Def Global Emerging Infect Surveillance & Re, Silver Spring, MD 20910 USA. RP Linthicum, KJ (reprint author), USDA, Ctr Med Agr & Vet Entomol, Gainesville, FL 32608 USA. EM Kenneth.Linthicum@ars.usda.gov; Assaf@ltpmail.gsfc.nasa.gov; Jean-Paul.Chretien@na.amedd.army.mil; jsmall@pop900.gsfc.nasa.gov; compton@ltpmailx.gsfc.nasa.gov; Seth.Britch@ars.usda.gov OI Chretien, Jean-Paul/0000-0001-8143-6823 NR 33 TC 1 Z9 1 U1 0 U2 9 PU SPRINGER PI DORDRECHT PA PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS BN 978-90-481-2457-2 PY 2010 BP 3 EP 13 DI 10.1007/978-90-481-2458-9_1 D2 10.1007/978-90-481-2458-9 PG 11 WC Entomology; Infectious Diseases SC Entomology; Infectious Diseases GA BNH47 UT WOS:000274565700001 ER PT B AU Kaiser, MK AF Kaiser, Mary K. BE Niall, KK TI Creating Day and Night: Past, Present, and Future SO VISION AND DISPLAYS FOR MILITARY AND SECURITY APPLICATIONS: THE ADVANCED DEPLOYABLE DAY/NIGHT SIMULATION PROJECT LA English DT Article; Book Chapter ID SPATIAL KNOWLEDGE ACQUISITION; HIGH-RESOLUTION PROJECTION; TIME-TO-CONTACT; VISION GOGGLES; PERTURBATION ANALYSIS; VISUAL PERFORMANCE; DEPTH-PERCEPTION; MOTION; NAVIGATION; FLIGHT AB The capability to produce compelling renderings of daylight and nocturnal environments has been a challenge both for flight simulation and for film and related entertainment venues. In this chapter, I compare and contrast the technologies and techniques that these communities have employed during the last half-century. In particular, I will examine the varying criteria (aesthetics-based, performance-based, information-based) employed to evaluate the "goodness" of the rendering. I will also discuss the future challenges awaiting the simulation community, as humans migrate to space environments whose lighting characteristics are decidedly non-terrestrial, and where the transition between "day" and "night" occurs, not at dusk, but at the edge of a boulder or crevasse. C1 NASA, Ames Res Ctr, Human Factors Res & Technol Div, Moffett Fed Airfield, CA 94035 USA. RP Kaiser, MK (reprint author), NASA, Ames Res Ctr, Human Factors Res & Technol Div, Mail Stop 262-2, Moffett Fed Airfield, CA 94035 USA. EM mkaiser@mail.arc.nasa.gov NR 128 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES BN 978-1-4419-1722-5 PY 2010 BP 1 EP + DI 10.1007/978-1-4419-1723-2_1 D2 10.1007/978-1-4419-1723-2 PG 17 WC Engineering, Electrical & Electronic; Optics SC Engineering; Optics GA BNU72 UT WOS:000275612800001 ER PT S AU Lopes, RMC Mitchell, KL Williams, D Mitri, G AF Lopes, Rosaly M. C. Mitchell, Karl L. Williams, David Mitri, Giuseppe BE CanonTapia, E Szakacs, A TI Beyond Earth: How extra-terrestrial volcanism has changed our definition of a volcano SO WHAT IS A VOLCANO SE Geological Society of America Special Papers LA English DT Article; Book Chapter ID INFRARED MAPPING SPECTROMETER; GEYSER-LIKE PLUMES; EUROPAS ICE SHELL; STEEP-SIDED DOMES; JUPITERS MOON IO; COLOR VARIATIONS; MAGELLAN DATA; SOUTH-POLE; PLANETOLOGICAL APPLICATIONS; GEOLOGICAL EVIDENCE AB The discovery of numerous extra-terrestrial volcanoes, including active ones, has stretched our traditional definition of what a volcano is. We now know that the nature of volcanism is highly variable over the solar system, and the traditional definition of a volcano as defined for Earth needs to be modified and expanded to include processes such as cryovolcanism, in which aqueous mixtures are erupted from the interior to the surface. In this chapter, we review past volcanism on the Moon, Mercury, and Mars, active volcanism on Io, and cryovolcanism in the moons of the outer solar system. We suggest the following definition that encompasses the different forms of volcanic activity seen in other worlds: A volcano is an opening on a planet or moon's surface from which magma, as defined for that planetary body, and/or magmatic gas is erupted. C1 [Lopes, Rosaly M. C.; Mitchell, Karl L.; Mitri, Giuseppe] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Williams, David] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. RP Lopes, RMC (reprint author), CALTECH, Jet Prop Lab, Mail Stop 183-601,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM rosaly.m.lopes@jpl.nasa.gov RI Lopes, Rosaly/D-1608-2016 OI Lopes, Rosaly/0000-0002-7928-3167 NR 160 TC 5 Z9 5 U1 0 U2 4 PU GEOLOGICAL SOC AMER INC PI BOULDER PA 3300 PENROSE PL, PO BOX 9140, BOULDER, CO 80301 USA SN 0072-1077 BN 978-0-8137-2470-6 J9 GEOL SOC AM SPEC PAP PY 2010 VL 470 BP 11 EP 30 DI 10.1130/2010.2470(02) PG 20 WC Geology; Geosciences, Multidisciplinary SC Geology GA BTB30 UT WOS:000286334900003 ER PT B AU Curreri, PA AF Curreri, Peter A. BE Baralt, J Callaos, N Chu, HW Jastroch, N Lesso, W TI A Heuristic Model of Consciousness with Applications to the Development of Science and Society SO WMSCI 2010: 14TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL III LA English DT Proceedings Paper CT 14th World Multi-Conference on Systemics, Cybernetics and Informatics CY JUN 29-JUL 02, 2010 CL Orlando, FL SP Int Inst Informat & Syst DE Consciousness; Scientific Method; Free Will; Attention; Human Self-Extinction; Space Habitats AB A working model of consciousness is fundamental to understanding of the interactions of the observer in science. This paper examines contemporary understanding of consciousness. A heuristic model of consciousness is suggested that is consistent with psycophysics measurements of bandwidth of consciousness relative to unconscious perception. While the self reference nature of consciousness confers a survival benefit by assuring the all points of view regarding a problem are experienced in sufficiently large population, conscious bandwidth is constrained by design to avoid chaotic behavior. The multiple hypotheses provided by conscious reflection enable the rapid progression of science and technology. The questions of free will and the problem of attention are discussed in relation to the model. Finally the combination of rapid technology growth with the assurance of many unpredictable points of view is considered in respect to contemporary constraints to the development of society. C1 [Curreri, Peter A.] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Curreri, PA (reprint author), NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. NR 23 TC 0 Z9 0 U1 0 U2 0 PU INT INST INFORMATICS & SYSTEMICS PI ORLANDO PA 14269 LORD BARCLAY DR, ORLANDO, FL 32837 USA BN 978-1-936338-00-9 PY 2010 BP 238 EP 243 PG 6 WC Computer Science, Cybernetics; Computer Science, Theory & Methods SC Computer Science GA BG7LA UT WOS:000391417500044 ER PT S AU Sugawara, Y Maeda, Y Tsuboi, Y Hamaguchi, K AF Sugawara, Yasuharu Maeda, Yoshitomo Tsuboi, Yohko Hamaguchi, Kenji BE Comastri, A Cappi, M Angelini, L TI Suzaku monitoring of the Wolf-Rayet binary WR140 SO X-RAY ASTRONOMY-2009: PRESENT STATUS, MULTI-WAVELENGTH APPROACH AND FUTURE PERSPECTIVES, PROCEEDINGS SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on X-Ray Astronomy-2009: Present Status, Multi-Wavelength Approach and Future Perspectives CY SEP 07-11, 2009 CL Bologna, ITALY SP NASA, European Space Agcy, Italian Natl Inst Astrophys, Univ Bologna, Astron Dept DE Wolf-Rayet star ID WR-140 AB We report the preliminary results of the Suzalcu observations of the W-R binary WR 140 (WC7+O5I). We executed the observations at four different epochs around periastron passage in Jan. 2009 to understand the W-R stellar wind as well as the wind-wind collision shocks. The total exposure was 210 ksec. We detected hard X-ray excess in the HXD band (> 10 keV) for the first time from a W-R binary. Another notable discovery was a soft component which is not absorbed even by the dense wind. The spectra can be fitted by three different components; one is for the stationary cool component with kT similar to 0.1 key, one for a dominant high temperature component with kT similar to 3 keV and one for the hardest power-low component with Gamma similar to 2. The column density at periastron is 30 times higher than that at pre-periastron, which can be explained as self-absorption by the W-R wind. The emission measure of the dominant, high temperature component is not inversely proportional to the distance between the two stars. C1 [Sugawara, Yasuharu; Tsuboi, Yohko] Chuo Univ, Dept Phys, Fac Sci & Engn, Bunkyo Ku, 1-13-27 Kasuga, Tokyo 1128551, Japan. [Maeda, Yoshitomo] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Dept High Energy AstroPhys, Sagamihara, Kanagawa 2298510, Japan. [Hamaguchi, Kenji] NASA, Goddard Space Flight Ctr, CRESST, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Hamaguchi, Kenji] Univ Maryland, Dept Phys, Baltimore, MD 21250 USA. RP Sugawara, Y (reprint author), Chuo Univ, Dept Phys, Fac Sci & Engn, Bunkyo Ku, 1-13-27 Kasuga, Tokyo 1128551, Japan. NR 4 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0795-4 J9 AIP CONF PROC PY 2010 VL 1248 BP 9 EP + DI 10.1063/1.3475366 PG 2 WC Astronomy & Astrophysics; Physics, Applied SC Astronomy & Astrophysics; Physics GA BSA02 UT WOS:000284017700002 ER PT S AU Drake, SA Osten, RA Nordon, R Behar, E Simon, T AF Drake, S. A. Osten, R. A. Nordon, R. Behar, E. Simon, T. BE Comastri, A Cappi, M Angelini, L TI The Coronal Properties of the High-Metallicity Late-G Dwarf 11 LMi SO X-RAY ASTRONOMY-2009: PRESENT STATUS, MULTI-WAVELENGTH APPROACH AND FUTURE PERSPECTIVES, PROCEEDINGS SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on X-Ray Astronomy-2009: Present Status, Multi-Wavelength Approach and Future Perspectives CY SEP 07-11, 2009 CL Bologna, ITALY SP NASA, European Space Agcy, Italian Natl Inst Astrophys, Univ Bologna, Astron Dept DE Stellar Coronae AB The influence of stellar metallicity on stellar coronal properties is still unclear, since most of the stars with well-studied coronal spectra have photospheric abundances similar to (or assumed to be) the solar photospheric values. We have used XMM-Newton to observe 11 LMi, a known Xray source, which has supersolar (2.0 -25 times solar) photospheric abundances, in order to study the effect of the high underlying intrinsic metallicity on the temperature structure and abundances of its coronal plasma. We present and discuss the EPIC spectra of 11 LMi that we have obtained, and compare the properties of its coronal emission with those of similar stars of solar metallicity. C1 [Drake, S. A.] NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. [Osten, R. A.] STScl, Baltimore, MD 21218 USA. [Nordon, R.] MPE, D-85748 Garching, Germany. [Behar, E.] Technion Israel Inst Technol, IL-32000 Haifa, Israel. [Simon, T.] Eureka Sci, Oakland, CA 94602 USA. RP Drake, SA (reprint author), NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. NR 0 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0795-4 J9 AIP CONF PROC PY 2010 VL 1248 BP 13 EP + DI 10.1063/1.3475168 PG 2 WC Astronomy & Astrophysics; Physics, Applied SC Astronomy & Astrophysics; Physics GA BSA02 UT WOS:000284017700003 ER PT S AU Hamaguchi, K Corcoran, MF Ezoe, Y Townsley, L Broos, P Gruendl, RA Vaidya, K White, SM Strohmayer, T Petre, R Chu, YH AF Hamaguchi, Kenji Corcoran, Michael F. Ezoe, Yuichiro Townsley, Leisa Broos, Patrick Gruendl, Robert A. Vaidya, Kaushar White, Stephen M. Strohmayer, Tod Petre, Rob Chu, You-Hua BE Comastri, A Cappi, M Angelini, L TI A Smoking Gun in the Carina Nebula SO X-RAY ASTRONOMY-2009: PRESENT STATUS, MULTI-WAVELENGTH APPROACH AND FUTURE PERSPECTIVES, PROCEEDINGS SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on X-Ray Astronomy-2009: Present Status, Multi-Wavelength Approach and Future Perspectives CY SEP 07-11, 2009 CL Bologna, ITALY SP NASA, European Space Agcy, Italian Natl Inst Astrophys, Univ Bologna, Astron Dept DE supernova remnants; stars: evolution; stars: formation; stars: neutron; ISM: bubbles; X-rays: stars AB Massive stars are born from giant molecular clouds along with many lower mass stars, forming a stellar cluster or association. They dominate the pressure of the interstellar gas through their strong UV radiation, stellar winds and, ultimately, supernova explosions at the end of their life. These processes help the formation of the next generation of stars, but this trigger of star formation is not yet well understood. The Carina Nebula is one of the youngest, most active sites of massive star formation in our Galaxy. In this nebula, we have discovered a bright X-ray source that has persisted for similar to 30 years. The soft X-ray spectrum, consistent with a kT similar to 128 eV blackbody with mild extinction, and no counterpart in the optical and infrared wavelengths indicate that it is a 10(6) year-old neutron star. Current star formation theory does not allow the progenitor of the neutron star and the other massive stars in the Carina Nebula (in particular eta Carinae) to be coeval. This result suggests that the Carina Nebula experienced at least two episodes of massive star formation. The neutron star may be responsible for part or all of the diffuse X-ray emission which permeates the Nebula. C1 [Hamaguchi, Kenji; Corcoran, Michael F.] CRESST, X ray Astrophys Lab NASA, GSFC, Greenbelt, MD 20771 USA. [Hamaguchi, Kenji] Univ Maryland, Dept Phys, Baltimore, MD 21250 USA. [Corcoran, Michael F.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Ezoe, Yuichiro] Tokyo Metropolitan Univ, Tokyo 1920397, Japan. [Townsley, Leisa; Broos, Patrick] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Gruendl, Robert A.; Vaidya, Kaushar; Chu, You-Hua] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [White, Stephen M.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [White, Stephen M.; Strohmayer, Tod; Petre, Rob] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Hamaguchi, K (reprint author), CRESST, X ray Astrophys Lab NASA, GSFC, Greenbelt, MD 20771 USA. FU NASA's Astrobiology Institute [RTOP 344-53-51]; Goddard Center for Astrobiology; High Energy Astrophysics Science Archive Research Center (HEASARC); NASA's Goddard Space Flight Center; Chandra X-ray Center (CXC) FX KH was supported by NASAs Astrobiology Institute (RTOP 344-53-51) to the Goddard Center for Astrobiology. This research hasmade use of data and softwares obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASAs Goddard Space Flight Center and Chandra X-ray Center (CXC). NR 1 TC 0 Z9 0 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0795-4 J9 AIP CONF PROC PY 2010 VL 1248 BP 17 EP + DI 10.1063/1.3475192 PG 2 WC Astronomy & Astrophysics; Physics, Applied SC Astronomy & Astrophysics; Physics GA BSA02 UT WOS:000284017700005 ER PT S AU Sidoli, L Romano, P Ducci, L Paizis, A Vercellone, S Cusumano, G La Parola, V Mangano, V Burrows, DN Kennea, JA Krimm, HA Gehrels, N AF Sidoli, L. Romano, P. Ducci, L. Paizis, A. Vercellone, S. Cusumano, G. La Parola, V. Mangano, V. Burrows, D. N. Kennea, J. A. Krimm, H. A. Gehrels, N. BE Comastri, A Cappi, M Angelini, L TI The Swift view of Supergiant Fast X-ray Transients SO X-RAY ASTRONOMY-2009: PRESENT STATUS, MULTI-WAVELENGTH APPROACH AND FUTURE PERSPECTIVES, PROCEEDINGS SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on X-Ray Astronomy-2009: Present Status, Multi-Wavelength Approach and Future Perspectives CY SEP 07-11, 2009 CL Bologna, ITALY SP NASA, European Space Agcy, Italian Natl Inst Astrophys, Univ Bologna, Astron Dept DE X ray binaries; accretion and accretion disks ID IGR J11215-5952; XTE J1739-302; OUTBURST; J17544-2619; PULSAR AB We report here on the recent results of a monitoring campaign we have been carrying out with Swift/XRT on a sample of four Supergiant Fast X ray Transients. The main goal of this large programme (with a net Swift/XRT exposure of similar to 540 ks, updated to 2009, August, 31) is to address several main open issues related to this new class of High Mass X ray Binaries (HMXBs) hosting OB supergiant stars as companions. Here we summarize the most important results obtained between October 2007 and August 2009. C1 [Sidoli, L.; Ducci, L.; Paizis, A.] INAF, Ist Astrofis Spaziale & Fis Cosm, Via E Bassini 15, I-20133 Milan, Italy. [Romano, P.; Cusumano, G.; La Parola, V.; Mangano, V.] INAF, Ist Astrofis Spaziale & Fis Cosm, I-90146 Palermo, Italy. [Ducci, L.] Univ Insubria, I-22100 Como, Italy. [Burrows, D. N.; Kennea, J. A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Krimm, H. A.] CRESST, Goddard Space Ctr, Greenbelt, MD USA. [Krimm, H. A.] Univ Space Res Assoc, Columbia, MD USA. [Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Sidoli, L (reprint author), INAF, Ist Astrofis Spaziale & Fis Cosm, Via E Bassini 15, I-20133 Milan, Italy. RI Gehrels, Neil/D-2971-2012; OI Cusumano, Giancarlo/0000-0002-8151-1990; Vercellone, Stefano/0000-0003-1163-1396; Sidoli, Lara/0000-0001-9705-2883; Paizis, Adamantia/0000-0001-5067-0377; La Parola, Valentina/0000-0002-8087-6488 FU ASI [I/023/05/0, I/088/06/0, I/008/07/0] FX This work was supported in Italy by ASI contracts I/023/05/0, I/088/06/0 and I/008/07/0. NR 24 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0795-4 J9 AIP CONF PROC PY 2010 VL 1248 BP 89 EP + DI 10.1063/1.3475363 PG 3 WC Astronomy & Astrophysics; Physics, Applied SC Astronomy & Astrophysics; Physics GA BSA02 UT WOS:000284017700022 ER PT S AU Barragan, L Wilms, J Pottschmidt, K Nowak, MA Kreykenbohm, I Walter, R AF Barragan, Laura Wilms, Joern Pottschmidt, Katja Nowak, Michael A. Kreykenbohm, Ingo Walter, Roland BE Comastri, A Cappi, M Angelini, L TI Suzaku and INTEGRAL Observations of IGR J16318-4848 SO X-RAY ASTRONOMY-2009: PRESENT STATUS, MULTI-WAVELENGTH APPROACH AND FUTURE PERSPECTIVES, PROCEEDINGS SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on X-Ray Astronomy-2009: Present Status, Multi-Wavelength Approach and Future Perspectives CY SEP 07-11, 2009 CL Bologna, ITALY SP NASA, European Space Agcy, Italian Natl Inst Astrophys, Univ Bologna, Astron Dept DE stars: individual (IGR J16318-4848); binaries: close; X-rays: stars AB IGR J16318-4848 is the first example, and probably the most extreme case, of a new class of highly absorbed X-ray binaries that has been discovered by the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) in the last years. We report on the analysis of the first joint SuzakulINTEGRAL observation of this source, and also on the detection of 1RXS J163120.0-484325 during our observation. C1 [Barragan, Laura; Wilms, Joern; Kreykenbohm, Ingo] Dr Karl Remeis Sternwarte & ECAP, Sternwartstr 7, D-96049 Bamberg, Germany. [Pottschmidt, Katja] Univ Maryland, Baltimore, MD 21201 USA. [Pottschmidt, Katja] NASA, Goddard Space Flight Ctr, CRESST, ASD, Greenbelt, MD 20771 USA. [Nowak, Michael A.] MIT, Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Walter, Roland] INTEGRAL, Sci data Ctr, CH-1290 Versoix, Switzerland. [Walter, Roland] Observ Geneva, CH-1290 Sauverny, Switzerland. RP Barragan, L (reprint author), Dr Karl Remeis Sternwarte & ECAP, Sternwartstr 7, D-96049 Bamberg, Germany. RI Wilms, Joern/C-8116-2013 OI Wilms, Joern/0000-0003-2065-5410 FU DLR [50OR0701] FX We acknowledge support from DLR grant 50OR0701. NR 5 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0795-4 J9 AIP CONF PROC PY 2010 VL 1248 BP 139 EP + PG 2 WC Astronomy & Astrophysics; Physics, Applied SC Astronomy & Astrophysics; Physics GA BSA02 UT WOS:000284017700036 ER PT S AU Bock, M Wilms, J Grinberg, V Pottschmidt, K Hanke, M Markoff, S Nowak, MA Pirner, S Duro, R Pooley, G AF Boeck, Moritz Wilms, Joern Grinberg, Victoria Pottschmidt, Katja Hanke, Manfred Markoff, Sera Nowak, Michael A. Pirner, Stefan Duro, Refiz Pooley, Guy BE Comastri, A Cappi, M Angelini, L TI Properties of a fast state transition in Cygnus X-1 SO X-RAY ASTRONOMY-2009: PRESENT STATUS, MULTI-WAVELENGTH APPROACH AND FUTURE PERSPECTIVES, PROCEEDINGS SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on X-Ray Astronomy-2009: Present Status, Multi-Wavelength Approach and Future Perspectives CY SEP 07-11, 2009 CL Bologna, ITALY SP NASA, European Space Agcy, Italian Natl Inst Astrophys, Univ Bologna, Astron Dept DE X-rays: individual: Cyg X-1; X-rays: binaries ID LONG-TERM VARIABILITY; EVOLUTION; SPECTRUM AB In 2005 February we observed the microquasar Cygnus X-1 for a total of 10 days quasi-continuously with the Rossi X-ray Timing Explorer and the Ryle telescope. During that period of time Cyg X-1 was very variable and covered a large fraction of its total variability found during our years long monitoring. A full transition from the hard to the soft state occured within less than 2.5 hours. We present results of the spectral and timing analysis, compare them with the long-term behavior and discuss the discovered energy dependence of the power spectra. C1 [Boeck, Moritz; Wilms, Joern; Grinberg, Victoria; Hanke, Manfred; Pirner, Stefan; Duro, Refiz] Remeis Observ, Bamberg, Germany. [Pottschmidt, Katja] UMBC, CRESST, Baltimore, MD USA. [Pottschmidt, Katja] NASA, GSFC, Greenbelt, MD USA. [Markoff, Sera] Univ Amsterdam, NL-1012 WX Amsterdam, Netherlands. [Nowak, Michael A.] MIT, CXC, Cambridge, MA USA. [Pooley, Guy] Cavendish Lab, Cambridge, England. RP Bock, M (reprint author), Remeis Observ, Bamberg, Germany. RI Wilms, Joern/C-8116-2013 OI Wilms, Joern/0000-0003-2065-5410 NR 10 TC 1 Z9 1 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0795-4 J9 AIP CONF PROC PY 2010 VL 1248 BP 143 EP + PG 2 WC Astronomy & Astrophysics; Physics, Applied SC Astronomy & Astrophysics; Physics GA BSA02 UT WOS:000284017700038 ER PT S AU Byckling, K Mukai, K Thorstensen, J Osborne, J AF Byckling, Kristiina Mukai, Koji Thorstensen, John Osborne, Julian BE Comastri, A Cappi, M Angelini, L TI Deriving an X-ray luminosity function of dwarf novae SO X-RAY ASTRONOMY-2009: PRESENT STATUS, MULTI-WAVELENGTH APPROACH AND FUTURE PERSPECTIVES, PROCEEDINGS SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on X-Ray Astronomy-2009: Present Status, Multi-Wavelength Approach and Future Perspectives CY SEP 07-11, 2009 CL Bologna, ITALY SP NASA, European Space Agcy, Italian Natl Inst Astrophys, Univ Bologna, Astron Dept DE cataclysmic variables: dwarf novae; distances; parallaxes ID NONMAGNETIC CATACLYSMIC VARIABLES; PARALLAXES; STARS AB Current measurements of X-ray luminosity functions of dwarf novae contain biases due to high X-ray flux sources. We have obtained Suzaku, XMM-Newton and ASCA observations of nearby DNe which have parallax-based distance measurements, and carried out X-ray spectral analysis for these sources. Our primary goal is to derive a reliable X-ray luminosity function for this sample, and to compare it with existing X-ray luminosity functions. We briefly introduce the source sample and preliminary results. C1 [Byckling, Kristiina; Osborne, Julian] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Mukai, Koji] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Thorstensen, John] Dartmouth Coll, Dept Phys & Astron, Wilder Lab, Hanover, NH 03755 USA. RP Byckling, K (reprint author), Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. FU SPARTAN - (Centre of Excellence for Space, Planetary; Astrophysics Research Training and Networking; European Commission; University of Leicester; STFC; [MEST-CT-2004-007512] FX KB acknowledges funding from SPARTAN - (Centre of Excellence for Space, Planetary and Astrophysics Research Training and Networking, European Commission, Marie Curie Actions, contract number MEST-CT-2004-007512), University of Leicester, UK. JO acknowledges support from STFC. NR 5 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0795-4 J9 AIP CONF PROC PY 2010 VL 1248 BP 145 EP + DI 10.1063/1.3475171 PG 2 WC Astronomy & Astrophysics; Physics, Applied SC Astronomy & Astrophysics; Physics GA BSA02 UT WOS:000284017700039 ER PT S AU de Martino, D Bonnet-Bidaud, JM Falanga, M Masetti, N Matt, G Mouchet, M Mukai, K AF de Martino, D. Bonnet-Bidaud, J. -M. Falanga, M. Masetti, N. Matt, G. Mouchet, M. Mukai, K. BE Comastri, A Cappi, M Angelini, L TI Magnetic Accreting White Dwarfs in the XMM-Newton Era SO X-RAY ASTRONOMY-2009: PRESENT STATUS, MULTI-WAVELENGTH APPROACH AND FUTURE PERSPECTIVES, PROCEEDINGS SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on X-Ray Astronomy-2009: Present Status, Multi-Wavelength Approach and Future Perspectives CY SEP 07-11, 2009 CL Bologna, ITALY SP NASA, European Space Agcy, Italian Natl Inst Astrophys, Univ Bologna, Astron Dept DE X-rays; Accretion and Accretion Disks; Cataclysmic Binaries ID INTERMEDIATE POLARS; AM AB Magnetic Cataclysmic Variables (MCVs) are the brightest X-ray sources among accreting white dwarf binaries. They were recently found to constitute a non-negligible fraction of galactic hard (> 20keV) X-ray sources suggesting a still hidden but potentially important population. XMM-Newton allowed to identify the true nature of many new CV candidates, to infer unexpected X-ray properties and their link with fundamental parameters of the accreting primaries. C1 [de Martino, D.] Osserv Astron Capodimonte, INAF, Via Moiariello 16, I-80131 Naples, Italy. [Bonnet-Bidaud, J. -M.] SAp Saclay, Gif-Sur Yvette, France. [Falanga, M.] ISSI, Bern, Switzerland. [Masetti, N.] INAF IASF, Bologna, Italy. [Matt, G.] Univ Roma 1, Dipartimento Fis, Rome, Italy. [Mouchet, M.] Univ Paris, Lab APC, Paris, France. [Mukai, K.] Univ Maryland, Baltimore & NASA, GSFC, Greenbelt, MD USA. RP de Martino, D (reprint author), Osserv Astron Capodimonte, INAF, Via Moiariello 16, I-80131 Naples, Italy. OI de Martino, Domitilla/0000-0002-5069-4202; Masetti, Nicola/0000-0001-9487-7740 FU [ASI-I/023/05/06]; [I/088/06/0]; [INAF-PRIN/2007/17] FX We acknowledge support from ASI-I/023/05/06, I/088/06/0 and INAF-PRIN/2007/17 NR 18 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0795-4 J9 AIP CONF PROC PY 2010 VL 1248 BP 151 EP + DI 10.1063/1.3475176 PG 2 WC Astronomy & Astrophysics; Physics, Applied SC Astronomy & Astrophysics; Physics GA BSA02 UT WOS:000284017700042 ER PT S AU La Parola, V Ducci, L Romano, P Sidoli, L Cusumano, G Vercellone, S Mangano, V Kennea, JA Krimm, HA Burrows, DN Gehrels, N AF La Parola, V. Ducci, L. Romano, P. Sidoli, L. Cusumano, G. Vercellone, S. Mangano, V. Kennea, J. A. Krimm, H. A. Burrows, D. N. Gehrels, N. BE Comastri, A Cappi, M Angelini, L TI The Swift SFXT monitoring campaign: the IGR J16479-4514 outburst in 2009 SO X-RAY ASTRONOMY-2009: PRESENT STATUS, MULTI-WAVELENGTH APPROACH AND FUTURE PERSPECTIVES, PROCEEDINGS SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on X-Ray Astronomy-2009: Present Status, Multi-Wavelength Approach and Future Perspectives CY SEP 07-11, 2009 CL Bologna, ITALY SP NASA, European Space Agcy, Italian Natl Inst Astrophys, Univ Bologna, Astron Dept DE X-rays: binaries; X-rays: individual: IGR J16479-4514 ID X-RAY TRANSIENT AB IGR J16479-4514 is a member of the Supergiant Fast X-ray transient (SFXT) class. We present the light curves of its latest outburst, which occurred on January 29, 2009. During this outburst, IGR J16479-4514 showed prolonged activity lasting several days. The presence of eclipses was successfully tested. C1 [La Parola, V.; Romano, P.; Cusumano, G.; Vercellone, S.; Mangano, V.] INAF IASF, Via U La Malfa 153, I-90146 Palermo, Italy. [Ducci, L.; Sidoli, L.] INAF IASF, I-20133 Milan, Italy. [Ducci, L.] Univ Insubria, I-22100 Como, Italy. [Kennea, J. A.; Burrows, D. N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Krimm, H. A.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Krimm, H. A.] Univ Space Res Assoc, Columbia, MD USA. RP La Parola, V (reprint author), INAF IASF, Via U La Malfa 153, I-90146 Palermo, Italy. RI Gehrels, Neil/D-2971-2012; OI Cusumano, Giancarlo/0000-0002-8151-1990; Vercellone, Stefano/0000-0003-1163-1396; Sidoli, Lara/0000-0001-9705-2883; La Parola, Valentina/0000-0002-8087-6488 FU ASI/INAF in Italy [I/088/06/0, I/023/05/0]; NASA at PSU [NAS5-00136] FX This work was supported by contract ASI/INAF I/088/06/0 and I/023/05/0 in Italy, by NASA contract NAS5-00136 at PSU. NR 6 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0795-4 J9 AIP CONF PROC PY 2010 VL 1248 BP 177 EP + DI 10.1063/1.3475190 PG 2 WC Astronomy & Astrophysics; Physics, Applied SC Astronomy & Astrophysics; Physics GA BSA02 UT WOS:000284017700055 ER PT S AU Romano, P Sidoli, L Esposito, P La Parola, V Kennea, JA Krimm, HA Chester, MM Bazzano, A Burrows, DN Gehrels, N AF Romano, P. Sidoli, L. Esposito, P. La Parola, V. Kennea, J. A. Krimm, H. A. Chester, M. M. Bazzano, A. Burrows, D. N. Gehrels, N. BE Comastri, A Cappi, M Angelini, L TI Swift observations of the SFXT SAX J1818.6-1703 in outburst SO X-RAY ASTRONOMY-2009: PRESENT STATUS, MULTI-WAVELENGTH APPROACH AND FUTURE PERSPECTIVES, PROCEEDINGS SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on X-Ray Astronomy-2009: Present Status, Multi-Wavelength Approach and Future Perspectives CY SEP 07-11, 2009 CL Bologna, ITALY SP NASA, European Space Agcy, Italian Natl Inst Astrophys, Univ Bologna, Astron Dept DE X-rays: binaries; X-rays: individual: SAX J1818.6-1703 ID X-RAY TRANSIENTS; IGR J17544-2619; XTE J1739-302; J08408-4503 AB We present the Swift observations of the supergiant fast X-ray transient (SFXT) SAX J1818.6-1703 collected during the most recent outburst, which occurred on May 6 2009. In particular, we present broad-band spectroscopic and timing analysis as well as a Swift/XRT light curve that spans more than two weeks of observations. The broad-band spectral models and length of the outburst resemble those of the prototype of the SFXT class, XTE J1739-302, further confirming SAX J1818.6-1703 as a member of this class. C1 [Romano, P.; La Parola, V.] INAF IASF Palermo, Via U La Malfa 153, I-90146 Palermo, Italy. [Sidoli, L.; Esposito, P.] INAF IASF Milano, I-20133 Milan, Italy. [Kennea, J. A.; Chester, M. M.; Burrows, D. N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Krimm, H. A.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Krimm, H. A.] Univ Space Res Assoc, Columbia, MD USA. [Bazzano, A.] INAF IASF Roma, I-00133 Rome, Italy. RP Romano, P (reprint author), INAF IASF Palermo, Via U La Malfa 153, I-90146 Palermo, Italy. RI Gehrels, Neil/D-2971-2012; OI Sidoli, Lara/0000-0001-9705-2883; La Parola, Valentina/0000-0002-8087-6488; Esposito, Paolo/0000-0003-4849-5092 FU ASI/INAF in Italy [I/088/06/0, I/023/05/0]; NASA [NAS5-00136]; PSU FX This work was supported by contract ASI/INAF I/088/06/0 and I/023/05/0 in Italy, by NASA contract NAS5-00136 at PSU. NR 6 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0795-4 J9 AIP CONF PROC PY 2010 VL 1248 BP 193 EP + DI 10.1063/1.3475200 PG 2 WC Astronomy & Astrophysics; Physics, Applied SC Astronomy & Astrophysics; Physics GA BSA02 UT WOS:000284017700063 ER PT S AU Terada, Y Harayama, A Morigami, K Ishida, M Bamba, A Dotani, T Hayashi, T Okada, S Nakamura, R Makishima, K Mukai, K Naik, S AF Terada, Yukikatsu Harayama, Atsushi Morigami, Kouichi Ishida, Manabu Bamba, Aya Dotani, Tadayasu Hayashi, Takayuki Okada, Shunsaku Nakamura, Ryoko Makishima, Kazuo Mukai, Koji Naik, Sachindra BE Comastri, A Cappi, M Angelini, L TI Systematic surveys of the non thermal emission from white dwarfs with Suzaku and INTEGRAL SO X-RAY ASTRONOMY-2009: PRESENT STATUS, MULTI-WAVELENGTH APPROACH AND FUTURE PERSPECTIVES, PROCEEDINGS SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on X-Ray Astronomy-2009: Present Status, Multi-Wavelength Approach and Future Perspectives CY SEP 07-11, 2009 CL Bologna, ITALY SP NASA, European Space Agcy, Italian Natl Inst Astrophys, Univ Bologna, Astron Dept DE Particle acceleration; White Dwarfs ID TEV GAMMA-RAYS; AM HERCULIS; AE AQUARII; RADIO-EMISSION AB Continuous searches for other possible white dwarf (WD) pulsars like AE Aquarii[l 2] with Suzaku and INTEGRAL have been performed. After picking up WDs with known magnetic field strengths and spin periods from catalogs of CVs and isolated WDs, objects whose induced electric potentials exceed 10(12) volts and dipole radiations over 10(29) erg s(-1) are selected; AM Her, EUVE J0317-85, P01031+234, LHS1734, PG1015+014 etc. Their X-rays were studied with INTEGRAL archive data and/or Suzaku follow-up observations. A promising non-thermal emission from an object, AM Her in a very low state, has been found with Suzaku at the X-ray luminosity of 6.6 x 10(29) erg s(-1). C1 [Terada, Yukikatsu; Harayama, Atsushi; Morigami, Kouichi] Saitama Univ, Dept Phys, Sakura Ku, Saitama 3388570, Japan. [Nakamura, Ryoko] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Dept High Energy Astrophys, Sagamihara, Kanagawa 2298510, Japan. [Makishima, Kazuo] Univ Tokyo, Grad Sch Sci, Tokyo 1130033, Japan. [Makishima, Kazuo] RIKEN, Makishima Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Mukai, Koji] NASA, Goddard Space Flight Ctr, Explorat Univ Div, Greenbelt, MD 20771 USA. [Naik, Sachindra] Phys Res Lab, Ahmadabad 380009, Gujarat, India. RP Terada, Y (reprint author), Saitama Univ, Dept Phys, Sakura Ku, Saitama 3388570, Japan. RI Terada, Yukikatsu/A-5879-2013 OI Terada, Yukikatsu/0000-0002-2359-1857 NR 9 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0795-4 J9 AIP CONF PROC PY 2010 VL 1248 BP 215 EP + DI 10.1063/1.3475212 PG 2 WC Astronomy & Astrophysics; Physics, Applied SC Astronomy & Astrophysics; Physics GA BSA02 UT WOS:000284017700074 ER PT S AU Castangia, P Tilak, A Kadler, M Henkel, C Greenhill, L Tueller, J AF Castangia, Paola Tilak, Avanti Kadler, Matthias Henkel, Christian Greenhill, Lincoln Tueller, Jack BE Comastri, A Cappi, M Angelini, L TI X-ray vs. H2O maser emission in AGN SO X-RAY ASTRONOMY-2009: PRESENT STATUS, MULTI-WAVELENGTH APPROACH AND FUTURE PERSPECTIVES, PROCEEDINGS SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on X-Ray Astronomy-2009: Present Status, Multi-Wavelength Approach and Future Perspectives CY SEP 07-11, 2009 CL Bologna, ITALY SP NASA, European Space Agcy, Italian Natl Inst Astrophys, Univ Bologna, Astron Dept ID TELESCOPE; MISSION; REGION; GALAXY; PARSEC AB Correlations between X-ray and water maser emission in AGN have been recently reported. However, the lack of systematic studies affects the confidence level of these results. In the following, we introduce a project aimed at studying all the water maser sources believed to be associated with AGN activity through X-ray data obtained with the XRT and BAT instruments on-board the Swift satellite. Preliminary results of this work indicate a promising rate of XRT detections allowing us to refine follow-up observing strategies focused on investigating the nuclei of individual galaxies and deriving, on statistical basis, the main characteristics of water maser hosts. In addition, a cross-correlation between our sample and the BAT 22-months all-sky survey provides an exceptionally high detection rate at hard X-ray energies when compared to other AGN-related catalogs. C1 [Castangia, Paola] INAF Osservatorio Astron Cagliari, Loc Poggio dei Pini Str 54, I-09012 Capoterra, CA, Italy. [Tilak, Avanti; Greenhill, Lincoln] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Kadler, Matthias] Remeis-Sternwarte & ECAP, D-96049 Bamberg, Germany. [Kadler, Matthias] NASA, Goddard Space Flight Ctr, CRESST, USRA, Greenbelt, MD 20771 USA. [Henkel, Christian] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. [Tueller, Jack] NASA, Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA. RP Castangia, P (reprint author), INAF Osservatorio Astron Cagliari, Loc Poggio dei Pini Str 54, I-09012 Capoterra, CA, Italy. RI Tueller, Jack/D-5334-2012 NR 17 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0795-4 J9 AIP CONF PROC PY 2010 VL 1248 BP 347 EP + DI 10.1063/1.3475255 PG 2 WC Astronomy & Astrophysics; Physics, Applied SC Astronomy & Astrophysics; Physics GA BSA02 UT WOS:000284017700111 ER PT S AU Beckmann, V Soldi, S Ricci, C Courvoisier, TJL Alfonso-Garzon, J Domingo, A Mas-Hesse, JM Lubinski, P Zdziarski, AA Gehrels, N AF Beckmann, Volker Soldi, S. Ricci, C. Courvoisier, T. J. -L. Alfonso-Garzon, J. Domingo, A. Mas-Hesse, J. M. Lubinski, P. Zdziarski, A. A. Gehrels, N. BE Comastri, A Cappi, M Angelini, L TI The unified scheme seen with INTEGRAL detected AGN SO X-RAY ASTRONOMY-2009: PRESENT STATUS, MULTI-WAVELENGTH APPROACH AND FUTURE PERSPECTIVES, PROCEEDINGS SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on X-Ray Astronomy-2009: Present Status, Multi-Wavelength Approach and Future Perspectives CY SEP 07-11, 2009 CL Bologna, ITALY SP NASA, European Space Agcy, Italian Natl Inst Astrophys, Univ Bologna, Astron Dept DE galaxies: active; galaxies: Seyfert; surveys; catalogs ID SEYFERT-GALAXIES; RAY-SPECTRA; BEPPOSAX; UNIVERSE AB The INTEGRAL mission provides a large data set for studying the hard X-ray properties of AGN and allows to test the unified scheme for AGN. We present results based on the analysis of 199 AGN. A difference between the Seyfert types is detected in slightly flatter spectra with higher cut-off energies and lower luminosities for the type 2 AGN. When applying a Compton reflection model, the underlying continua (Gamma similar or equal to 1.95) appear the same in Seyfert 1 and 2, and the reflection strength is R similar or equal to 1 in both cases, with differences in the inclination angle only. More luminous objects appear to be more massive and there is also a general trend for the absorbed sources and type 2 AGN to have lower Eddington ratios. The number counts are consistent with no evolution of the observed AGN. The unified model for Seyfert galaxies seems to hold, showing in hard X-rays that the central engine is the same in Seyfert 1 and 2 galaxies, seen under different inclination angle and absorption. C1 [Beckmann, Volker] Univ Paris 07, APC, Ctr Francois Arago, 10 Rue A Domon & L Duquet, F-75013 Paris, France. [Soldi, S.] Univ Paris 06 UMR 7158, CEA Saclay, CNRS, Lab AIM,DSM IRFU SAp, F-91191 Gif Sur Yvette, France. [Courvoisier, T. J. -L.] ISDC, Data Ctr Astrophys, CH-1290 Versoix, Switzerland. [Mas-Hesse, J. M.] Ctr Astrobiologi LAEX CSIC INTA, Madrid 28691, Spain. [Zdziarski, A. A.] Centrum Astronomiczne, PL-00716 Warsaw, Poland. [Gehrels, N.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Beckmann, V (reprint author), Univ Paris 07, APC, Ctr Francois Arago, 10 Rue A Domon & L Duquet, F-75013 Paris, France. RI Gehrels, Neil/D-2971-2012; Mas-Hesse, J. Miguel /K-6805-2014; Domingo, Albert/L-9071-2014; Alfonso-Garzon, Julia/H-6446-2015 OI Mas-Hesse, J. Miguel /0000-0002-8823-9723; Domingo, Albert/0000-0001-9764-6411; Alfonso-Garzon, Julia/0000-0003-0852-3474 NR 12 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0795-4 J9 AIP CONF PROC PY 2010 VL 1248 BP 365 EP + DI 10.1063/1.3475259 PG 2 WC Astronomy & Astrophysics; Physics, Applied SC Astronomy & Astrophysics; Physics GA BSA02 UT WOS:000284017700115 ER PT S AU D'Ammando, F Vercellone, S Donnarumma, I Bulgarelli, A Chen, A Giuliani, A Longo, F Pacciani, L Pucella, G Vittorini, V Raiteri, CM Villata, M Romano, P Krimm, HA Covino, S AF D'Ammando, F. Vercellone, S. Donnarumma, I. Bulgarelli, A. Chen, A. Giuliani, A. Longo, F. Pacciani, L. Pucella, G. Vittorini, V. Raiteri, C. M. Villata, M. Romano, P. Krimm, H. A. Covino, S. BE Comastri, A Cappi, M Angelini, L TI Multi-wavelength observations of the powerful gamma-ray blazar PKS 1510-089 SO X-RAY ASTRONOMY-2009: PRESENT STATUS, MULTI-WAVELENGTH APPROACH AND FUTURE PERSPECTIVES, PROCEEDINGS SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on X-Ray Astronomy-2009: Present Status, Multi-Wavelength Approach and Future Perspectives CY SEP 07-11, 2009 CL Bologna, ITALY SP NASA, European Space Agcy, Italian Natl Inst Astrophys, Univ Bologna, Astron Dept DE Active Galactic Nuclei; Blazars; Emission Mechanisms AB PKS 1510-089 is a Flat Spectrum Radio Quasar at z = 0.361 with radiative output dominated by the gamma-ray component and high variability over the whole electromagnetic spectrum. In particular, in the last two years very high gamma-ray activity was detected by AGILE with flaring episodes in August 2007 and March 2008 and an extraordinary activity during March 2009. Observations in optical/UV seems to indicate the presence of Seyfert-like features in the broad band spectrum of PKS 1510-089, such as the little and big blue bumps. Moreover, X-ray observations in March 2008 show a harder-when-brighter behaviour quite rare in FSRQs. We present the multiwavelength data of PKS 1510-089 collected by GASP-WEBT, REM, Swift and AGILE during these gamma-ray flares. C1 [D'Ammando, F.; Donnarumma, I.; Pacciani, L.; Pucella, G.; Vittorini, V.] INAF IASF Roma, Via Fosso del Cavaliere 100, I-00133 Rome, Italy. [Vercellone, S.; Romano, P.] INAF IASF Palermo, I-90146 Palermo, Italy. [Bulgarelli, A.] INAF IASF Bologna, I-40129 Bologna, Italy. [Giuliani, A.] INAF IASF Milano, I-20133 Milan, Italy. [Longo, F.] Univ Trieste, Dept Fis, I-34127 Trieste, Italy. [Raiteri, C. M.; Villata, M.] Oss Astron Torino, I-00025 Turin, Italy. [Krimm, H. A.] NASA, Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA. [Covino, S.] INAF, Oss Astron Brera, I-23807 Merate, LC, Italy. RP D'Ammando, F (reprint author), INAF IASF Roma, Via Fosso del Cavaliere 100, I-00133 Rome, Italy. OI Bulgarelli, Andrea/0000-0001-6347-0649; Pacciani, Luigi/0000-0001-6897-5996; Villata, Massimo/0000-0003-1743-6946; Raiteri, Claudia Maria/0000-0003-1784-2784; Covino, Stefano/0000-0001-9078-5507; Vercellone, Stefano/0000-0003-1163-1396 NR 4 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0795-4 J9 AIP CONF PROC PY 2010 VL 1248 BP 415 EP + PG 2 WC Astronomy & Astrophysics; Physics, Applied SC Astronomy & Astrophysics; Physics GA BSA02 UT WOS:000284017700129 ER PT S AU Weisskopf, MC AF Weisskopf, Martin C. BE Comastri, A Cappi, M Angelini, L TI Chandra: Ten Years of Amazing Science with a Great Observatory SO X-RAY ASTRONOMY-2009: PRESENT STATUS, MULTI-WAVELENGTH APPROACH AND FUTURE PERSPECTIVES, PROCEEDINGS SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on X-Ray Astronomy-2009: Present Status, Multi-Wavelength Approach and Future Perspectives CY SEP 07-11, 2009 CL Bologna, ITALY SP NASA, European Space Agcy, Italian Natl Inst Astrophys, Univ Bologna, Astron Dept DE X-ray Astronomy ID ACTIVE GALACTIC NUCLEI; GALAXY CLUSTERS; HIGH-REDSHIFT; BLACK-HOLES; XMM-NEWTON; CONSTRAINTS; EVOLUTION; REFLECTION AB We review brief y review the history of the development of the Chandra X-Ray Observatory, highlighting certain details that many attendees of this Conference might not be aware of. We then present a selection of scientif c highlights of the f rst 10 years of this remarkable and unique mission. C1 NASA, MSFC, Dept Space Sci, Huntsville, AL 35812 USA. RP Weisskopf, MC (reprint author), NASA, MSFC, Dept Space Sci, VP62, Huntsville, AL 35812 USA. NR 20 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0795-4 J9 AIP CONF PROC PY 2010 VL 1248 BP 525 EP 530 DI 10.1063/1.3475333 PG 6 WC Astronomy & Astrophysics; Physics, Applied SC Astronomy & Astrophysics; Physics GA BSA02 UT WOS:000284017700182 ER PT S AU Takahashi, T Mitsuda, K Kelley, R AF Takahashi, Tadayuki Mitsuda, Kazuhisa Kelley, Richard BE Comastri, A Cappi, M Angelini, L TI The ASTRO-H Mission SO X-RAY ASTRONOMY-2009: PRESENT STATUS, MULTI-WAVELENGTH APPROACH AND FUTURE PERSPECTIVES, PROCEEDINGS SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on X-Ray Astronomy-2009: Present Status, Multi-Wavelength Approach and Future Perspectives CY SEP 07-11, 2009 CL Bologna, ITALY SP NASA, European Space Agcy, Italian Natl Inst Astrophys, Univ Bologna, Astron Dept DE X-ray; Hard X-ray; gamma-ray; X-ray Astronomy; Gamma-ray Astronomy AB The joint JAXA/NASA Astro-H mission is the sixth in a series of X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). The planned launch date is 2014. Astro-H will investigate the physics of the high-energy universe by performing high-resolution, high-throughput spectroscopy with moderate spatial resolution over the 0.3-600 keV energy range. ASTRO-H is a combination of wide band X-ray spectroscopy (3-80 keV) provided by focusing hard X-ray mirrors and hard X-ray imaging detectors, and high energy-resolution soft X-ray spectroscopy (0.3-10 key) provided by thin-foil X-ray optics and a micro-calorimeter array. The mission will also carry an X-ray CCD camera as a focal plane detector for a soft X-ray telescope and a non-focusing soft gamma-ray detector. The simultaneous broad bandpass, coupled with high spectral resolution of Delta E similar to 7 eV by the micro-calorimeter will enable a wide variety of important science themes to be pursued. C1 [Takahashi, Tadayuki; Mitsuda, Kazuhisa] ISAS, JAXA, Kanagawa 2298510, Japan. [Kelley, Richard] NASA, Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA. RP Takahashi, T (reprint author), ISAS, JAXA, Kanagawa 2298510, Japan. RI Kelley, Richard/K-4474-2012 NR 2 TC 3 Z9 3 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0795-4 J9 AIP CONF PROC PY 2010 VL 1248 BP 537 EP + DI 10.1063/1.3475335 PG 2 WC Astronomy & Astrophysics; Physics, Applied SC Astronomy & Astrophysics; Physics GA BSA02 UT WOS:000284017700184 ER PT S AU White, NE Parmar, A Kunieda, H Nandra, K Ohashi, T Bookbinder, J AF White, Nicholas E. Parmar, Arvind Kunieda, Hideyo Nandra, Kirpal Ohashi, Takaya Bookbinder, Jay BE Comastri, A Cappi, M Angelini, L TI The International X-ray Observatory SO X-RAY ASTRONOMY-2009: PRESENT STATUS, MULTI-WAVELENGTH APPROACH AND FUTURE PERSPECTIVES, PROCEEDINGS SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on X-Ray Astronomy-2009: Present Status, Multi-Wavelength Approach and Future Perspectives CY SEP 07-11, 2009 CL Bologna, ITALY SP NASA, European Space Agcy, Italian Natl Inst Astrophys, Univ Bologna, Astron Dept DE Astronomical and space-research instrumentation; X-ray telescopes AB The International X-ray Observatory (IXO) is a joint ESA-JAXA-NASA effort to address fundamental and timely questions in astrophysics: What happens close to a black hole? How did supermassive black holes grow? How does large scale structure form? What is the connection between these processes? To address these questions IXO will employ optics with 3 sq m collecting area and 5 arc sec angular resolution - 20 times more collecting area at 1 keV than any previous Xray observatory. Focal plane instruments will deliver a 100-fold increase in effective area for high-resolution spectroscopy, deep spectral imaging over a wide field of view, unprecedented polarimetric sensitivity, microsecond spectroscopic timing, and high count rate capability. The mission is being planned for launch in 2021 to an L2 orbit, with a five-year lifetime and consumables for 10 years. C1 [White, Nicholas E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Parmar, Arvind] ESAC, E-28691 Madrid, Spain. [Kunieda, Hideyo] Nagoya Univ, X ray Astron Grp, Nagoya, Aichi 4648601, Japan. [Nandra, Kirpal] Imperial Coll London, Astrophys Grp, London, England. [Ohashi, Takaya] Tokyo Metropolitan Univ, Dept Phys, Tokyo, Japan. [Bookbinder, Jay] Smithsonian Astrophys Observat, Cambridge, MA USA. RP White, NE (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RI White, Nicholas/B-6428-2012 OI White, Nicholas/0000-0003-3853-3462 NR 13 TC 11 Z9 11 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0795-4 J9 AIP CONF PROC PY 2010 VL 1248 BP 561 EP + DI 10.1063/1.3475340 PG 2 WC Astronomy & Astrophysics; Physics, Applied SC Astronomy & Astrophysics; Physics GA BSA02 UT WOS:000284017700188 ER PT S AU Johnson, PV Young, JA Malone, CP Khakoo, MA Liu, X Kanik, I AF Johnson, P. V. Young, J. A. Malone, C. P. Khakoo, M. A. Liu, X. Kanik, I. BE Zetner, PW Bass, A McConkey, JW TI Electron impact processes in nitrogen rich atmospheres of the outer solar system SO XVI INTERNATIONAL SYMPOSIUM ON ELECTRON MOLECULE COLLISIONS AND SWARMS SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 16th International Symposium on Electron Molecule Collisions and Swarms CY JUL 29-AUG 01, 2009 CL York Univ, Toronto, CANADA HO York Univ ID CROSS-SECTIONS; BAND SYSTEM; EXCITATION; N-2; STATES; EMISSION; MOLECULE; LYMAN; N2 AB Electron collisions with N-2 are predominant components of the interaction between outer solar-system atmospheres and solar photons, solar wind, and magnetospheric electrons. Our collaboration between the Jet Propulsion Laboratory (JPL) and the California State University, Fullerton (CSUF), has devoted a significant effort over the last few years to improving the knowledge base of electron-N-2 excitation phenomena. Here, we highlight the lack of Franck-Condon behaviour in excitation of the Rydberg-valence states, using excitation of the C (3)Pi(u) state as a case in point. Further, we briefly introduce ongoing work measuring vibrationally-resolved emission cross sections for the Lyman-Birge-Hopfield (LBH) band system of the a (1)Pi(g) (nu') -> X-1 Sigma(+)(g) (nu '') transitions. Specifically, we present preliminary results for the relative (3,0) emission cross section, which calls the currently accepted LBH shape function of Ajello and Shemansky (1985 J. Geophys. Res.-Space 90 9845) into question. C1 [Johnson, P. V.; Young, J. A.; Malone, C. P.; Liu, X.; Kanik, I.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Malone, C. P.; Khakoo, M. A.] Calif State Univ, Dept Phys, Fullerton, CA 92834 USA. RP Johnson, PV (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Paul.V.Johnson@jpl.nasa.gov FU NASA's Planetary Atmospheres program; NASA's Outer Planets Research program; National Science Foundation [NSF-PHY-RUI-0653452] FX The work was performed at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA) and at the California State University, Fullerton (CSUF). Financial support through NASAs Planetary Atmospheres program, NASAs Outer Planets Research program, and the National Science Foundation (Grant No. NSF-PHY-RUI-0653452) is gratefully acknowledged. NR 23 TC 4 Z9 4 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2010 VL 204 AR UNSP 012003 DI 10.1088/1742-6596/204/1/012003 PG 5 WC Physics, Atomic, Molecular & Chemical SC Physics GA BTQ53 UT WOS:000287785900003 ER PT J AU Raju, IS Knight, NF Song, KC Phillips, DR AF Raju, Ivatury S. Knight, Norman F., Jr. Song, Kyongchan Phillips, Dawn R. GP Gruppo Italiano Frattura TI Fracture mechanics analyses of the slip-side joggle regions of wing-leading edge panels SO YOUTH SYMPOSIUM ON EXPERIMENTAL SOLID MECHANICS (YSESM 2010) LA English DT Proceedings Paper CT 9th Youth Symposium on Experimental Solid Mechanics (YSESM) CY JUL 07-09, 2010 CL Trieste, ITALY C1 [Raju, Ivatury S.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Knight, Norman F., Jr.] Gen Dynam Informat Technol, Chantilly, VA USA. [Song, Kyongchan] ATK Space Div, Hampton, VA USA. [Phillips, Dawn R.] NASA, Marshall Space Flight Ctr, Huntsville, AL USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU GRUPPO ITALIANO FRATTURA PI CASSINO PA VIA G DI BIASIO, CASSINO, 03043, ITALY BN 978-88-95940-30-4 PY 2010 BP 13 EP 15 PG 3 WC Engineering, Mechanical SC Engineering GA BG8QD UT WOS:000392625300003 ER PT J AU Stoner, AW AF Stoner, Allan W. TI Habitat-mediated survival of newly settled red king crab in the presence of a predatory fish: Role of habitat complexity and heterogeneity SO JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY LA English DT Article DE Habitat complexity; Pacific halibut; Paralithodes camtschaticus; Predation ID PARALITHODES-CAMTSCHATICUS TILESIUS; STOCK ENHANCEMENT; BLUE-CRAB; CALLINECTES-SAPIDUS; PACIFIC HALIBUT; QUEEN CONCH; RELEASE STRATEGIES; TEMPORAL VARIATION; SEAGRASS MEADOWS; CANCER-MAGISTER AB Red king crab (RKC) (Paralithodes camtschaticus) are generally associated with structurally complex habitats during the first 2 years of benthic life. In this first experimental laboratory study with a fish predator. survival of newly settled juvenile RKC was tested in eight different habitat treatments with varying amounts and types of physical structure, open sand, gravel bottom, and habitat islands. Video observations provided insights on habitat-mediated interactions between Pacific halibut predators (Hippoglossus stenolepis) and crab prey. Survival of RKC increased with amount of physical structure and was highest in the most heterogeneous habitat and in habitats characterized by high density patches. Predator activity decreased with increasing amount of structure, and attacks on RKC were correlated with predator activity. Low survival in open sand habitat was associated with both high attack rate and high capture success (captures per attack). Lower levels of capture success did not vary among the habitats containing algae and other complex physical structures, but attack rates declined with increasing amount of structure, and encounter rate (i.e., prey detection and attack) was the primary determinant of mortality. RKC were capable of detecting predators and adjusted their behavior to avoid predation by sheltering in dense microhabitat patches. Successful stock enhancement for greatly reduced populations of RKC in the Gulf of Alaska will depend upon placing seed stock in habitats with abundant protective habitat, and high quality microhabitats may serve as well as continuous cover. Published by Elsevier B.V. C1 NOAA, Fisheries Behav Ecol Program, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Newport, OR 97365 USA. RP Stoner, AW (reprint author), NOAA, Fisheries Behav Ecol Program, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2030S Marine Sci Dr, Newport, OR 97365 USA. EM al.stoner@noaa.gov FU NOAA Aquaculture; Alaska Sea Grant FX This study was conducted as part of the AKCRRAB Program (Alaska King Crab Research, Rehabilitation, and Biology) funded by the NOAA Aquaculture Program and the Alaska Sea Grant Program. Crabs were provided by the Alutiiq Pride Shellfish Hatchery, Seward, AK, with special thanks to B. Daly and J. Swingle who cared for, shipped and offered advice on crab husbandry. S. Haines and J. Unrein cared for the crabs in Newport, assisted with all of the laboratory trials, and conducted most of the video analysis. R. Titgen assisted with video systems, M. Ottmar assisted with providing the fish predators and other seawater systems, and J. Pirtle and C. Ryer provided helpful criticisms of the manuscript. [SS] NR 59 TC 31 Z9 31 U1 3 U2 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0981 J9 J EXP MAR BIOL ECOL JI J. Exp. Mar. Biol. Ecol. PD DEC 31 PY 2009 VL 382 IS 1 BP 54 EP 60 DI 10.1016/j.jembe.2009.10.003 PG 7 WC Ecology; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA 533YL UT WOS:000272862100008 ER PT J AU Pittman, JV Pan, LL Wei, JC Irion, FW Liu, X Maddy, ES Barnet, CD Chance, K Gao, RS AF Pittman, Jasna V. Pan, Laura L. Wei, Jennifer C. Irion, Fredrick W. Liu, Xiong Maddy, Eric S. Barnet, Christopher D. Chance, Kelly Gao, Ru-Shan TI Evaluation of AIRS, IASI, and OMI ozone profile retrievals in the extratropical tropopause region using in situ aircraft measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID POTENTIAL VORTICITY; STRATOSPHERE; EXCHANGE; AEROSOL; TRENDS AB We evaluate ozone profile retrievals from the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Ozone Monitoring Instrument (OMI) using in situ measurements collected on board the NSF/NCAR Gulfstream-V aircraft during the Stratosphere-Troposphere Analyses of Regional Transport 2008 (START08) experiment. The focus of this study is to examine how well the satellite retrieval products capture the ozone gradients and variability in the extratropical upper troposphere lower stratosphere (UTLS). The AIRS retrieval examined is version 5, while IASI and OMI retrievals are research products. All satellite instruments show excellent ability in capturing synoptic-scale ozone gradients associated with strong potential vorticity (PV) gradients. The positive ozone-PV correlation near the tropopause is also well represented in the satellite data in comparison to collocated aircraft measurements. During aircraft cruise legs, more than 90% of collocated satellite retrievals agree with aircraft measurements within +/- 50% for ozone mixing ratios greater than 200 ppbv. Below 200 ppbv, AIRS and IASI retrievals show significant positive biases, while OMI shows both positive and negative biases. Ozone gradients across the tropopause are well-captured, with median values within 30% (positive for AIRS and IASI, negative for OMI) and variances within +/- 50%. Ozone variability in the UTLS is captured by the satellite retrievals at the 80% level. In the presence of high clouds, however, the infrared retrievals show the largest positive biases. Despite the limited vertical information content, the high horizontal coverage and long-term data availability make these satellite data sets a valuable asset for UTLS research. C1 [Pittman, Jasna V.; Pan, Laura L.] Natl Ctr Atmospher Res, Boulder, CO 80301 USA. [Wei, Jennifer C.; Maddy, Eric S.] Perot Syst Govt Serv, Fairfax, VA 22031 USA. [Liu, Xiong] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Greenbelt, MD 20771 USA. [Irion, Fredrick W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gao, Ru-Shan] NOAA, Boulder, CO 80305 USA. [Liu, Xiong; Chance, Kelly] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Barnet, Christopher D.] NOAA, Ctr Satellite Applicat & Res, Natl Environm Satellite Data & Informat Serv, Camp Springs, MD 20746 USA. RP Pittman, JV (reprint author), Natl Ctr Atmospher Res, Boulder, CO 80301 USA. EM pittman@ucar.edu RI Barnet, Christopher/F-5573-2010; Maddy, Eric/G-3683-2010; Gao, Ru-Shan/H-7455-2013; Pan, Laura/A-9296-2008; Liu, Xiong/P-7186-2014; Manager, CSD Publications/B-2789-2015; OI Maddy, Eric/0000-0003-1151-339X; Pan, Laura/0000-0001-7377-2114; Liu, Xiong/0000-0003-2939-574X; Chance, Kelly/0000-0002-7339-7577 FU National Science Foundation; AIRS FX The National Center for Atmospheric Research is sponsored by the National Science Foundation. This work is partially supported by the AIRS project. The authors would like to thank the reviewers for very helpful comments that contributed to the improvement of this manuscript. In addition, gratitude is also extended to START08 team for the aircraft data. NR 41 TC 19 Z9 20 U1 1 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD DEC 31 PY 2009 VL 114 AR D24109 DI 10.1029/2009JD012493 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 539LM UT WOS:000273255900004 ER PT J AU Carlson, AE Anslow, FS Obbink, EA LeGrande, AN Ullman, DJ Licciardi, JM AF Carlson, A. E. Anslow, F. S. Obbink, E. A. LeGrande, A. N. Ullman, D. J. Licciardi, J. M. TI Surface-melt driven Laurentide Ice Sheet retreat during the early Holocene SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ENERGY-BALANCE; COLD EVENT; GREENLAND; GLACIER; CLIMATE; ACCELERATION; DEGLACIATION; SIMULATIONS; CYCLE; FLOW AB To better understand mechanisms of ice-sheet decay, we investigate the surface mass balance of the Laurentide Ice Sheet (LIS) during the early Holocene, a period of known rapid LIS retreat. We use a surface energy-mass balance model (EMBM) driven with conditions derived from an equilibrium atmosphere-ocean general circulation model 9 kilo-years ago simulation. Our EMBM indicates a net LIS surface mass balance of -0.67 +/- 0.13 m yr(-1), with losses primarily due to enhanced boreal summer insolation and warmer summers. This rate of loss compared to LIS volume reconstructions suggests that surface ablation accounted for 74 +/- 22% of the LIS mass loss with the remaining loss likely driven by dynamics resulting in basal sliding and calving. Thus surface melting likely played a governing role in the retreat and disappearance of this ice sheet. Citation: Carlson, A. E., F. S. Anslow, E. A. Obbink, A. N. LeGrande, D. J. Ullman, and J. M. Licciardi (2009), Surface-melt driven Laurentide Ice Sheet retreat during the early Holocene, Geophys. Res. Lett., 36, L24502, doi:10.1029/2009GL040948. C1 [Carlson, A. E.; Obbink, E. A.; Ullman, D. J.] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Anslow, F. S.] Univ British Columbia, Vancouver, BC V6T 1Z4, Canada. [LeGrande, A. N.] Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [LeGrande, A. N.] Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA. [Licciardi, J. M.] Univ New Hampshire, Dept Earth Sci, Durham, NH 03824 USA. RP Carlson, AE (reprint author), Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. EM acarlson@geology.wisc.edu RI LeGrande, Allegra/D-8920-2012 OI LeGrande, Allegra/0000-0002-5295-0062 FU National Science Foundation Paleoclimate [ATM- 0753660, ATM- 0753868]; UW- Madison Start- Up; NASA GISS institutional FX The authors would like to thank G. Schmidt and D. Oppo for discussions of early Holocene climate, and D. Miller, P. Guest and K. Steffen for discussions. Comments and suggestions by two anonymous reviewers and the editor improved this manuscript. This research was supported by National Science Foundation Paleoclimate grants ATM- 0753660 ( AEC) and ATM- 0753868 ( ANL), UW- Madison Start- Up funds ( AEC), and NASA GISS institutional support. NR 37 TC 13 Z9 13 U1 1 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 30 PY 2009 VL 36 AR L24502 DI 10.1029/2009GL040948 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 539LB UT WOS:000273254700001 ER PT J AU Huang, D Johnson, K Liu, Y Wiscombe, W AF Huang, Dong Johnson, Karen Liu, Yangang Wiscombe, Warren TI High resolution retrieval of liquid water vertical distributions using collocated Ka-band and W-band cloud radars SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID DUAL-WAVELENGTH RADAR; MICROWAVE RADIOMETER; STRATUS CLOUD AB The retrieval of cloud water content using dualfrequency radar attenuation is very sensitive to error in radar reflectivity. Either a long radar dwell time or an average over many range gates is needed to reduce random noise in radar data and thus to obtain accurate retrievals but at the cost of poorer temporal and spatial resolution. In this letter we have shown that, by using advanced mathematical inversion techniques like total variation regularization, vertically resolved liquid water content can be retrieved at an accuracy of about 0.15 gm(-3) at 40 m resolution. This is demonstrated using the co-located Ka-band and W-band cloud radars operated by the Atmospheric Radiation Measurement program. The liquid water path calculated from the radars agrees closely with that from a microwave radiometer, with a mean difference of 70 gm(-2). Comparison with lidar observations reveals that the dual-frequency retrieval also reasonably captures the cloud base height of drizzling clouds-something that is very difficult to determine from radar reflectivity alone. Citation: Huang, D., K. Johnson, Y. Liu, and W. Wiscombe (2009), High resolution retrieval of liquid water vertical distributions using collocated Ka-band and W-band cloud radars, Geophys. Res. Lett., 36, L24807, doi:10.1029/2009GL041364. C1 [Huang, Dong; Johnson, Karen; Liu, Yangang; Wiscombe, Warren] Brookhaven Natl Lab, Upton, NY 11973 USA. [Wiscombe, Warren] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Huang, D (reprint author), Brookhaven Natl Lab, 75 Rutherford Dr, Upton, NY 11973 USA. EM dhuang@bnl.gov RI Liu, Yangang/H-6154-2011; Wiscombe, Warren/D-4665-2012; Huang, Dong/H-7318-2014 OI Wiscombe, Warren/0000-0001-6844-9849; Huang, Dong/0000-0001-9715-6922 FU DOE [DE- AC0298CH10886] FX This work is supported by the DOE Atmosphere Radiation Measurement program under contract DE- AC0298CH10886. We thank Robin Hogan, Pavlos Kollias, and Michael Jensen for insightful discussions. We are grateful to Virendra Ghate for providing the non- precipitating cloud cases. NR 25 TC 4 Z9 4 U1 3 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 30 PY 2009 VL 36 AR L24807 DI 10.1029/2009GL041364 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 539LB UT WOS:000273254700002 ER PT J AU Shi, QQ Zong, QG Zhang, H Pu, ZY Fu, SY Xie, L Wang, YF Chen, Y Li, L Xia, LD Liu, ZX Fazakerley, AN Reme, H Lucek, E AF Shi, Q. Q. Zong, Q. -G. Zhang, H. Pu, Z. Y. Fu, S. Y. Xie, L. Wang, Y. F. Chen, Y. Li, L. Xia, L. D. Liu, Z. X. Fazakerley, A. N. Reme, H. Lucek, E. TI Cluster observations of the entry layer equatorward of the cusp under northward interplanetary magnetic field SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID HIGH-LATITUDE MAGNETOPAUSE; KELVIN-HELMHOLTZ VORTICES; KINETIC ALFVEN WAVES; BOUNDARY-LAYER; SOLAR-WIND; MAGNETOSPHERIC BOUNDARY; SUBSOLAR MAGNETOPAUSE; EARTHS MAGNETOSPHERE; DAYSIDE MAGNETOPAUSE; GEOTAIL OBSERVATIONS AB [1] Various boundary crossings in the vicinity of the high-altitude cusp region were experienced by the Cluster spacecraft when the interplanetary magnetic field (IMF) was northward. In contrast to the southward IMF cases, in which a turbulent and diffusive entry layer is present equatorward of the cusp, a transition layer (without significant turbulence and diffusive properties) that shows clear differences in plasma parameters (sometimes step-like profile) compared to the adjacent regions was observed. We suggest that this transition layer, which contains both magnetosheath and magnetospheric populations, is the entry layer during northward IMF conditions. This transition layer is possibly formed by dual-lobe reconnection when the IMF is northward. The plasma property and the closed field line geometry of this layer indicate that it is possibly linked to the low-latitude boundary layer. The width of this layer varies from 480 to 2200 km. The results support the notion that high-latitude dual-lobe reconnection is a potential mechanism of the transport of solar wind into the magnetosphere during northward IMF through the formation of a high-altitude entry layer. The observations of different sublayers with evident density and temperature differences are consistent with the view that the reconnection process at the magnetopause is not steady. C1 [Shi, Q. Q.; Chen, Y.; Li, L.; Xia, L. D.] Shandong Univ Weihai, Sch Space Sci & Phys, Weihai 264209, Shandong, Peoples R China. [Fazakerley, A. N.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Shi, Q. Q.; Zong, Q. -G.; Pu, Z. Y.; Fu, S. Y.; Xie, L.; Wang, Y. F.] Peking Univ, Inst Space Phys & Appl Technol, Beijing 100871, Peoples R China. [Liu, Z. X.] Chinese Acad Sci, Ctr Space Sci & Appl Res, Key Lab Space Weather, Beijing 100080, Peoples R China. [Lucek, E.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Space & Atmospher Phys Grp, London SW7 2AZ, England. [Reme, H.] Univ Toulouse, UPS, CESR, F-31028 Toulouse, France. [Reme, H.] CNRS, UMR 5187, Toulouse, France. [Zhang, H.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Shi, QQ (reprint author), Shandong Univ Weihai, Sch Space Sci & Phys, Weihai 264209, Shandong, Peoples R China. EM sqq@pku.edu.cn; qgzong@pku.edu.cn RI Chen, Yao/B-7255-2011; Xia, Lidong/B-8836-2011; Fu, Suiyan/E-9178-2013 OI Xia, Lidong/0000-0001-8938-1038; FU NNSFC [40604022, 40731056, 40874086, 40831061, 40890162] FX This work is supported by NNSFC grants 40604022, 40731056, 40874086, 40831061, and 40890162. We are grateful to FGM, CIS, PEACE team, and ESA CAA Web for providing the Cluster data, and we are grateful to CDAWeb for providing the ACE data. We thank E. Penou from CESR-Toulouse University/CNRS, who developed the cl software for the data display.; [31] Wolfgang Baumjohann thanks Gerhard Haerendel and another reviewer for their assistance in evaluating this paper. NR 74 TC 17 Z9 23 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD DEC 30 PY 2009 VL 114 AR A12219 DI 10.1029/2009JA014475 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 539MM UT WOS:000273258800002 ER PT J AU Smith, ZK Steenburgh, R Fry, CD Dryer, M AF Smith, Z. K. Steenburgh, R. Fry, C. D. Dryer, M. TI Predictions of interplanetary shock arrivals at Earth: Dependence of forecast outcome on the input parameters SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID SOLAR; MODELS AB Predictions of interplanetary shock arrivals at Earth are important to space weather because they are often followed by geomagnetic disturbances that disrupt human technologies. The success of numerical simulation predictions depends on the codes and on the inputs obtained from solar observations. The inputs are usually divided into the more slowly varying background solar wind, onto which short-duration solar transient events are superposed. This paper examines the dependence of the prediction success on the range of values of the solar transient inputs. These input parameters are common to many 3-D MHD codes. The predictions of the Hakamada-Akasofu-Fry version 2 (HAFv2) model were used because its predictions of shock arrivals were tested, informally in the operational environment, from 1997 to 2006. The events list and HAFv2's performance were published in a series of three papers. The third event set is used to investigate the success and accuracy of the predictions in terms of the input parameter ranges ( considered individually). By defining three thresholds for the input speed, duration, and X-ray class, it is possible to categorize the prediction outcomes by these input ranges. The X-ray class gives the most successful classification. Above the highest threshold, 89% of the predictions were successful while below the lowest threshold, only 40% were successful. The accuracy, measured in terms of the time differences between the observed and predicted shock arrivals, also shows largest improvement for the X-ray class. Guidelines are presented for space weather forecasters using the HAFv2 or other interplanetary simulation models. C1 [Smith, Z. K.; Steenburgh, R.; Dryer, M.] NOAA, Space Weather Predict Ctr, Boulder, CO 80305 USA. [Steenburgh, R.] NASA, Space Radiat Anal Grp, Houston, TX 77058 USA. [Fry, C. D.; Dryer, M.] Explorat Phys Int Inc, Huntsville, AL 35806 USA. RP Smith, ZK (reprint author), NOAA, Space Weather Predict Ctr, 325 Broadway, Boulder, CO 80305 USA. EM zdenka.smith@gmail.com RI xue, yansheng/A-9712-2012 NR 14 TC 9 Z9 9 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD DEC 30 PY 2009 VL 7 AR S12005 DI 10.1029/2009SW000500 PG 16 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 539MV UT WOS:000273259700001 ER PT J AU Markus, T Stroeve, JC Miller, J AF Markus, Thorsten Stroeve, Julienne C. Miller, Jeffrey TI Recent changes in Arctic sea ice melt onset, freezeup, and melt season length SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID SYNTHETIC-APERTURE-RADAR; PASSIVE MICROWAVE DATA; INTERANNUAL VARIABILITY; SNOWMELT; OCEAN; F11 AB In order to explore changes and trends in the timing of Arctic sea ice melt onset and freezeup, and therefore melt season length, we developed a method that obtains this information directly from satellite passive microwave data, creating a consistent data set from 1979 through present. We furthermore distinguish between early melt (the first day of the year when melt is detected) and the first day of continuous melt. A similar distinction is made for the freezeup. Using this method we analyze trends in melt onset and freezeup for 10 different Arctic regions. In all regions except for the Sea of Okhotsk, which shows a very slight and statistically insignificant positive trend (0.4 d decade(-1)), trends in melt onset are negative, i.e., toward earlier melt. The trends range from -1.0 d decade(-1) for the Bering Sea to -7.3 d decade(-1) for the East Greenland Sea. Except for the Sea of Okhotsk all areas also show a trend toward later autumn freeze onset. The Chukchi/Beaufort seas and Laptev/East Siberian seas observe the strongest trends with 7 d decade(-1). For the entire Arctic, the melt season length has increased by about 20 days over the last 30 years. Largest trends of over 10 d decade(-1) are seen for Hudson Bay, the East Greenland Sea, the Laptev/East Siberian seas, and the Chukchi/Beaufort seas. Those trends are statistically significant at the 99% level. C1 [Markus, Thorsten] NASA, Goddard Space Flight Ctr, Cryospher Sci Branch, Greenbelt, MD 20771 USA. [Stroeve, Julienne C.] Univ Colorado, Natl Snow & Ice Data Ctr, Boulder, CO 80309 USA. RP Markus, T (reprint author), NASA, Goddard Space Flight Ctr, Cryospher Sci Branch, Code 614-1, Greenbelt, MD 20771 USA. EM thorsten.markus@nasa.gov RI Markus, Thorsten/D-5365-2012 NR 27 TC 214 Z9 223 U1 5 U2 52 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD DEC 29 PY 2009 VL 114 AR C12024 DI 10.1029/2009JC005436 PG 14 WC Oceanography SC Oceanography GA 539LZ UT WOS:000273257400001 ER PT J AU Xu, BQ Cao, JJ Hansen, J Yao, TD Joswia, DR Wang, NL Wu, GJ Wang, M Zhao, HB Yang, W Liu, XQ He, JQ AF Xu, Baiqing Cao, Junji Hansen, James Yao, Tandong Joswia, Daniel R. Wang, Ninglian Wu, Guangjian Wang, Mo Zhao, Huabiao Yang, Wei Liu, Xianqin He, Jianqiao TI Black soot and the survival of Tibetan glaciers SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE aerosols; climate change; fresh water; glacier retreat; Tibetan Plateau ID SNOW; CLIMATE; CARBON; AEROSOLS; IMPACT; CHINA; ASIA AB We find evidence that black soot aerosols deposited on Tibetan glaciers have been a significant contributing factor to observed rapid glacier retreat. Reduced black soot emissions, in addition to reduced greenhouse gases, may be required to avoid demise of Himalayan glaciers and retain the benefits of glaciers for seasonal fresh water supplies. C1 [Hansen, James] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Xu, Baiqing; Yao, Tandong; Joswia, Daniel R.; Wu, Guangjian; Wang, Mo; Zhao, Huabiao; Yang, Wei] Chinese Acad Sci, Inst Tibetan Plateau Res, Key Lab Tibetan Environm Changes & Land Surface, Beijing 100085, Peoples R China. [Xu, Baiqing; Cao, Junji] Chinese Acad Sci, Inst Earth Environm, State Key Lab Loess & Quaternary Geol, Xian 710075, Peoples R China. [Wang, Ninglian; He, Jianqiao] Chinese Acad Sci, State Key Lab Cryosphere Sci, Lanzhou 730000, Peoples R China. [Liu, Xianqin] Chinese Acad Sci, Inst Atmospher Phys, Beijing 100029, Peoples R China. RP Hansen, J (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM James.E.Hansen@nasa.gov RI wei, yang/A-3635-2010; Loess, IEECAS/I-8075-2014; Cao, Junji/D-3259-2014 OI Cao, Junji/0000-0003-1000-7241 FU National Basic Research Program of China; National Natural Science Foundation of China [2005CB422004, 2009CB723901, 40671044, 40930526]; Hewlett and Lenfest Foundations FX This work was supported by the National Basic Research Program of China and the National Natural Science Foundation of China, including Grants 2005CB422004, 2009CB723901, 40671044, and 40930526. J. Hansen's research on black soot is supported by the Hewlett and Lenfest Foundations. NR 28 TC 216 Z9 249 U1 22 U2 120 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD DEC 29 PY 2009 VL 106 IS 52 BP 22114 EP 22118 DI 10.1073/pnas.0910444106 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 538IV UT WOS:000273178700016 PM 19996173 ER PT J AU Zambrano, HA Walther, JH Jaffe, RL AF Zambrano, H. A. Walther, J. H. Jaffe, R. L. TI Thermally driven molecular linear motors: A molecular dynamics study SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE carbon nanotubes; linear motors; molecular dynamics method ID NANOSTRUCTURED CARBON MATERIALS; MASS-TRANSPORT; NANOTUBES; ELECTRON; MOTION; IRRADIATION; PARTICLES; BEHAVIOR; WATER; HEAT AB We conduct molecular dynamics simulations of a molecular linear motor consisting of coaxial carbon nanotubes with a long outer carbon nanotube confining and guiding the motion of an inner short, capsulelike nanotube. The simulations indicate that the motion of the capsule can be controlled by thermophoretic forces induced by thermal gradients. The simulations find large terminal velocities of 100-400 nm/ns for imposed thermal gradients in the range of 1-3 K/nm. Moreover, the results indicate that the thermophoretic force is velocity dependent and its magnitude decreases for increasing velocity. C1 [Zambrano, H. A.; Walther, J. H.] Tech Univ Denmark, Dept Mech Engn, DK-2800 Lyngby, Denmark. [Walther, J. H.] ETH, Computat Sci & Engn Lab, CH-8092 Zurich, Switzerland. [Jaffe, R. L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Zambrano, HA (reprint author), Tech Univ Denmark, Dept Mech Engn, DK-2800 Lyngby, Denmark. EM jhw@mek.dtu.dk RI Walther, Jens/D-9549-2015; OI Walther, Jens/0000-0001-8100-9178; Zambrano, Harvey/0000-0003-1049-8482 FU Danish Research Council [274-06-0465]; Myhrwold Foundations; Otto Monsted Foundations; Danish Center for Scientific Computing (DCSC) FX Support for this work is provided in part by the Danish Research Council (Grant no. 274-06-0465), and the Myhrwold, and Otto Monsted Foundations. The authors wish to acknowledge discussion with Petros Koumoutsakos and Dimos Poulikakos and computational support from the Danish Center for Scientific Computing (DCSC). NR 28 TC 24 Z9 25 U1 2 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 28 PY 2009 VL 131 IS 24 AR 241104 DI 10.1063/1.3281642 PG 3 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 538XG UT WOS:000273217000004 PM 20059046 ER PT J AU Hayashi, K Fukazawa, Y Tozuka, M Nishino, S Matsushita, K Takei, Y Arnaud, KA AF Hayashi, Katsuhiro Fukazawa, Yasushi Tozuka, Miyako Nishino, Sho Matsushita, Kyoko Takei, Yoh Arnaud, Keith A. TI Suzaku Observation of the Metallicity Distribution in the Elliptical Galaxy NGC 4636 SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE galaxies: eliptical and lenticular, cD; X-rays: galaxies; X-rays: ISM ID REFLECTION GRATING SPECTROMETER; GAS IMAGING SPECTROMETER; INTRA-CLUSTER MEDIUM; BOARD XMM-NEWTON; X-RAY; INTRACLUSTER MEDIUM; HOT GAS; INTERSTELLAR-MEDIUM; ASCA; TEMPERATURE AB NGC 4636, an X-ray bright elliptical galaxy, was observed for 70ks with Suzaku. Thanks to low background and good energy resolution of the XIS, we succeeded to estimate the foreground Galactic emission accurately, and, for the first time, measure the metal abundance distributions out to similar to 28' (similar or equal to 140 kpc) for O, Mg, Si, and Fe. The metal abundances are as high as > 1 solar within 4', and decreases by similar to 50% from the center toward the outer region. In addition, the 0 to Fe abundance ratio is about 0.6 similar to 1.0 solar in all analyzed regions, indicating that metal products by SNe II and SNe la have mixed and diffused to the outer region of the galaxy. Furthermore, comparing the 0 and Fe mass distributions with those of NGC 1399, we found the metal mass-to-light ratio (MLR) of NGC 4636 to be 2-3 times larger. Therefore, the metal distributions in NGC 4636 are less extended than those in NGC 1399, possibly due to environmental factors, such as frequency of galaxy interaction. We also found that MLRs of NGC 4636 at 0.1r(180) are similar to 5-times smaller than those of clusters of galaxies, possibly consistent with the correlation between temperature and MLR of other spherically symmetric groups of galaxies. We also confirmed a signature of the resonance scattering of the Fe XVII line in the central region, as reported based on the XMM-Newton RGS observation. C1 [Hayashi, Katsuhiro; Fukazawa, Yasushi; Tozuka, Miyako; Nishino, Sho] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Matsushita, Kyoko] Tokyo Univ Sci, Dept Phys, Shinjuku Ku, Tokyo 1628601, Japan. [Takei, Yoh] Japan Aerosp Explorat Agcy JAXA, ISAS, Kanagawa 2298510, Japan. [Arnaud, Keith A.] NASA, Gravitat Astrophys Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Hayashi, K (reprint author), Hiroshima Univ, Dept Phys Sci, 1-3-1 Kagamiyama, Hiroshima 7398526, Japan. RI XRAY, SUZAKU/A-1808-2009 NR 44 TC 10 Z9 10 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD DEC 25 PY 2009 VL 61 IS 6 BP 1185 EP 1196 DI 10.1093/pasj/61.6.1185 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 540BT UT WOS:000273306300001 ER PT J AU Maeda, Y Uchiyama, Y Bamba, A Kosugi, H Tsunemi, H Helder, EA Vink, J Kodaka, N Terada, Y Fukazawa, Y Hiraga, J Hughes, JP Kokubun, M Kouzu, T Matsumoto, H Miyata, E Nakamura, R Okada, S Someya, K Tamagawa, T Tamura, K Totsuka, K Tsuboi, Y Ezoe, Y Holt, SS Ishida, M Kamae, T Petre, R Takahashi, T AF Maeda, Yoshitomo Uchiyama, Yasunobu Bamba, Aya Kosugi, Hiroko Tsunemi, Hiroshi Helder, Eveline A. Vink, Jacco Kodaka, Natsuki Terada, Yukikatsu Fukazawa, Yasushi Hiraga, Junko Hughes, John P. Kokubun, Motohide Kouzu, Tomomi Matsumoto, Hironori Miyata, Emi Nakamura, Ryoko Okada, Shunsaku Someya, Kentaro Tamagawa, Toru Tamura, Keisuke Totsuka, Kohta Tsuboi, Yohko Ezoe, Yuichiro Holt, Stephen S. Ishida, Manabu Kamae, Tsuneyoshi Petre, Robert Takahashi, Tadayuki TI Suzaku X-Ray Imaging and Spectroscopy of Cassiopeia A SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE ISM: cosmic rays; ISM: individual (Cassiopeia A); ISM: supernova remnants ID SUPERNOVA REMNANT W49B; BOARD SUZAKU; PARTICLE-ACCELERATION; MAGNETIC-FIELD; LINE EMISSION; ENERGY; SPECTRUM; CHANDRA; ELECTRONS; SHELL AB Suzaku X-ray observations of a young supernova remnant, Cassiopeia A, were carried out. K-shell transition lines from highly ionized ions of various elements were detected, including Chromium (Cr-K alpha at 5.61 keV). The X-ray continuum spectra were modeled in the 3.4-40keV band, summed over the entire remnant, and were fitted with a simplest combination of the thermal bremsstrahlung and the non-thermal cut-off power-law models. The spectral fits with this assumption indicate that the continuum emission is likely to be dominated by non-thermal emission with a cut-off energy at > 1 keV. The thermal-to-non thermal fraction of the continuum flux in the 4-10 keV band is best estimated as similar to 0.1. Non-thermal-dominated continuum images in the 4-14 keV band were made. The peak of the non-thermal X-rays appears at the western part. The peak position of the TeV gamma-rays measured with HEGRA and MAGIC is also shifted at the western part with the I-sigma confidence. Since the location of the X-ray continuum emission was known to be presumably identified with the reverse shock region, the possible keV-TeV correlations give a hint that the accelerated multi-TeV hadrons in Cassiopeia A are dominated by heavy elements in the reverse shock region. C1 [Maeda, Yoshitomo; Uchiyama, Yasunobu; Bamba, Aya; Kokubun, Motohide; Nakamura, Ryoko; Okada, Shunsaku; Someya, Kentaro; Tamura, Keisuke; Ishida, Manabu; Takahashi, Tadayuki] Japan Aerosp Explorat Agcy JAXA, Dept High Energy Astrophys, ISAS, Kanagawa 2298510, Japan. [Uchiyama, Yasunobu; Kamae, Tsuneyoshi] Stanford Linear Accelerator Ctr, Kavli Inst Cosmol & Particle Astrophys, Menlo Pk, CA 94025 USA. [Kosugi, Hiroko; Tsunemi, Hiroshi; Miyata, Emi] Osaka Univ, Dept Earth & Space Sci, Grad Sch Sci, Osaka 5600043, Japan. [Helder, Eveline A.; Vink, Jacco] Univ Utrecht, Astron Inst Utrecht, NL-3508 TA Utrecht, Netherlands. [Kodaka, Natsuki; Terada, Yukikatsu; Kouzu, Tomomi] Saitama Univ, Dept Phys, Sakura, Ibaraki 3388570, Japan. [Fukazawa, Yasushi] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Hiraga, Junko; Tamagawa, Toru] RIKEN, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Hughes, John P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Matsumoto, Hironori] Kyoto Univ, Dept Phys, Grad Sch Sci, Sakyo Ku, Kyoto 6068502, Japan. [Totsuka, Kohta; Tsuboi, Yohko] Chuo Univ, Dept Phys, Bunkyo Ku, Tokyo 1128551, Japan. [Ezoe, Yuichiro] Tokyo Metropolitan Univ, Dept Phys, Tokyo 1920397, Japan. [Holt, Stephen S.] FW Olin Coll Engn Needham, Needham, MA 02492 USA. [Petre, Robert] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Maeda, Y (reprint author), Japan Aerosp Explorat Agcy JAXA, Dept High Energy Astrophys, ISAS, 3-1-1 Yoshinodai, Kanagawa 2298510, Japan. EM ymaeda@astro.isas.jaxa.jp RI Terada, Yukikatsu/A-5879-2013; XRAY, SUZAKU/A-1808-2009 OI Terada, Yukikatsu/0000-0002-2359-1857; FU Netherlands Organization for Scientific Research (NWO); Ministry of Education, Culture, Sports, Science and Technology [21018009, 16002004] FX We would like to express our sincere thanks to Prof. Gerd Puhlhofer for his insightful comments. We thank Dr. Javier Rico and his MAGIC Collaborators, who kindly provided TeV data, and technically guided us concerning how to handle it. Prof. Katsuji Koyama provided very useful comments on line analysis. We also thank all members of the Suzaku team. EH and JV are supported by the Vidi grant of JV from the Netherlands Organization for Scientific Research (NWO). This work is partly supported by a Grant-in-Aid for Scientific Research by the Ministry of Education, Culture, Sports, Science and Technology (21018009 & 16002004). NR 49 TC 24 Z9 24 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD DEC 25 PY 2009 VL 61 IS 6 BP 1217 EP 1228 DI 10.1093/pasj/61.6.1217 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 540BT UT WOS:000273306300004 ER PT J AU Stott, AC Abel, PB Bozzolo, GH Dixon, DA AF Stott, Amanda C. Abel, Phillip B. Bozzolo, Guillermo H. Dixon, David A. TI Interfacial Phase Stability in TiV Multilaminate Thin Films SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID HYDROGEN STORAGE ALLOYS; ELECTROCHEMICAL PROPERTIES; MICROSTRUCTURE; MULTILAYERS; SURFACES; CU AB The influence of the interfacial energy on the material phase stability is investigated for a series of TiV multilaminate thin films. Experiments reveal that at a higher layer thickness, the alpha (hcp) phase is the most stable. As the layer thickness is reduced, a transformation from the alpha (hcp) phase to the beta (bcc) phase occurs. Atomic-scale characterization of the transformed specimen by atom probe tomography reveals V interfacial diffusion between the layers, Equivalent crystal theory based calculations confirm the V interfacial diffusion mechanism. The predicted segregation profiles match those obtained experimentally. C1 [Stott, Amanda C.; Dixon, David A.] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA. [Abel, Phillip B.] NASA, Glenn Res Ctr, Tribol & Mech Components Branch, Cleveland, OH 44135 USA. [Bozzolo, Guillermo H.] Loyola Coll, Baltimore, MD 21210 USA. RP Dixon, DA (reprint author), Univ Alabama, Dept Chem, Shelby Hall,Box 870336, Tuscaloosa, AL 35487 USA. EM dadixon@bama.ua.edu FU NASA [NNX08AY65H]; U.S. Department of Energy; Office of Basic Energy Sciences; National Science Foundation FX A.C.S. was supported by NASA training grant NNX08AY65H. We thank The University of Alabama Central Analytical Facility for use of analytical equipment, the NASA Glenn Research Center for use of the Alloy Design Workbench software for the BFS calculations, and Robb Morris of The University of Alabama for providing the flat-top posts for use in the experiments. D.A.D. thanks the U.S. Department of Energy, Office of Basic Energy Sciences, the National Science Foundation, and the Robert Ramsay Fund of The University of Alabama for support of this work, NR 36 TC 1 Z9 1 U1 1 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 24 PY 2009 VL 113 IS 51 BP 21383 EP 21388 DI 10.1021/jp907807k PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 531ZO UT WOS:000272712700017 ER PT J AU Santos-Lleo, M Schartel, N Tananbaum, H Tucker, W Weisskopf, MC AF Santos-Lleo, Maria Schartel, Norbert Tananbaum, Harvey Tucker, Wallace Weisskopf, Martin C. TI The first decade of science with Chandra and XMM-Newton SO NATURE LA English DT Review ID X-RAY-EMISSION; ACTIVE GALACTIC NUCLEI; CHARGE-EXCHANGE EMISSION; RELAXED GALAXY CLUSTERS; DARK-MATTER PROFILE; BLACK-HOLE; SUPERNOVA-REMNANT; GASEOUS ATMOSPHERE; HIGH-RESOLUTION; LINE EMISSION AB NASA's Chandra X-ray Observatory and the ESA's X-ray Multi-Mirror Mission (XMM-Newton) made their first observations ten years ago. The complementary capabilities of these observatories allow us to make high-resolution images and precisely measure the energy of cosmic X-rays. Less than 50 years after the first detection of an extrasolar X-ray source, these observatories have achieved an increase in sensitivity comparable to going from naked-eye observations to the most powerful optical telescopes over the past 400 years. We highlight some of the many discoveries made by Chandra and XMM-Newton that have transformed twenty-first century astronomy. C1 [Weisskopf, Martin C.] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. [Santos-Lleo, Maria; Schartel, Norbert] European Space Agcy, XMM Newton Sci Operat Ctr, Madrid 28691, Spain. [Tananbaum, Harvey; Tucker, Wallace] Smithsonian Astrophys Observ, Chandra Xray Ctr, Cambridge, MA 02138 USA. RP Weisskopf, MC (reprint author), NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. EM martin.c.weisskopf@nasa.gov NR 90 TC 12 Z9 12 U1 0 U2 3 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD DEC 24 PY 2009 VL 462 IS 7276 BP 997 EP 1004 DI 10.1038/nature08690 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 535UB UT WOS:000272996000035 PM 20033037 ER PT J AU Bergen, KM Goetz, SJ Dubayah, RO Henebry, GM Hunsaker, CT Imhoff, ML Nelson, RF Parker, GG Radeloff, VC AF Bergen, K. M. Goetz, S. J. Dubayah, R. O. Henebry, G. M. Hunsaker, C. T. Imhoff, M. L. Nelson, R. F. Parker, G. G. Radeloff, V. C. TI Remote sensing of vegetation 3-D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Review ID SYNTHETIC-APERTURE RADAR; SIR-C/X-SAR; FOREST STRUCTURE; TROPICAL FORESTS; SPECIES-DIVERSITY; TEMPERATE FOREST; BIRD COMMUNITIES; AIRBORNE LIDAR; INTERFEROMETRIC RADAR; STAND STRUCTURE AB Biodiversity and habitat face increasing pressures due to human and natural influences that alter vegetation structure. Because of the inherent difficulty of measuring forested vegetation three-dimensional (3-D) structure on the ground, this important component of biodiversity and habitat has been, until recently, largely restricted to local measurements, or at larger scales to generalizations. New lidar and radar remote sensing instruments such as those proposed for spaceborne missions will provide the capability to fill this gap. This paper reviews the state of the art for incorporatinginformation on vegetation 3-D structure into biodiversity and habitat science and management approaches, with emphasis on use of lidar and radar data. First we review relationships between vegetation 3-D structure, biodiversity and habitat, and metrics commonly used to describe those relationships. Next, we review the technical capabilities of new lidar and radar sensors and their application to biodiversity and habitat studies to date. We then define variables that have been identified as both useful and feasible to retrieve from spaceborne lidar and radar observations and provide their accuracy and precision requirements. We conclude with a brief discussion of implications for spaceborne missions and research programs. The possibility to derive vegetation 3-D measurements from spaceborne active sensors and to integrate them into science and management comes at a critical juncture for global biodiversity conservation and opens new possibilities for advanced scientific analysis of habitat and biodiversity. C1 [Bergen, K. M.] Univ Michigan, Sch Nat Resources & Environm, Ann Arbor, MI 48109 USA. [Goetz, S. J.] Woods Hole Res Ctr, Falmouth, MA 02540 USA. [Dubayah, R. O.] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [Henebry, G. M.] S Dakota State Univ, Geog Informat Sci Ctr Excellence, Brookings, SD 57007 USA. [Hunsaker, C. T.] US Forest Serv, Pacific SW Res Stn, USDA, Fresno, CA 93729 USA. [Imhoff, M. L.; Nelson, R. F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Parker, G. G.] Smithsonian Environm Res Ctr, Edgewater, MD 21037 USA. [Radeloff, V. C.] Univ Wisconsin, Dept Forest Ecol & Management, Madison, WI 53706 USA. RP Bergen, KM (reprint author), Univ Michigan, Sch Nat Resources & Environm, Dana Bldg,440 Church St, Ann Arbor, MI 48109 USA. EM kbergen@umich.edu RI Goetz, Scott/A-3393-2015; Beckley, Matthew/D-4547-2013; Radeloff, Volker/B-6124-2016; OI Goetz, Scott/0000-0002-6326-4308; Radeloff, Volker/0000-0001-9004-221X; Parker, Geoffrey/0000-0001-7055-6491; Henebry, Geoffrey/0000-0002-8999-2709 FU Diane Wickland; NASA Terrestrial Ecology Program FX Colead authors are K. M. Bergen and S. J. Goetz; all additional coauthors contributed equally to this paper and are listed alphabetically. The authors extend appreciation to the many organizers and participants in several NASA workshops on vegetation structure and on DESDynI/ICESAT-II; to Diane Wickland, NASA Terrestrial Ecology Program for continued support of such workshops; and to the anonymous reviewers of this paper for their constructive comments and suggestions. NR 115 TC 57 Z9 57 U1 8 U2 86 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD DEC 23 PY 2009 VL 114 AR G00E06 DI 10.1029/2008JG000883 PG 13 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 536LX UT WOS:000273047000001 ER PT J AU Zhou, XY Fukui, K Carlson, HC Moen, JI Strangeway, RJ AF Zhou, X. -Y. Fukui, K. Carlson, H. C. Moen, J. I. Strangeway, R. J. TI Shock aurora: Ground-based imager observations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID INTERPLANETARY MAGNETIC-FIELD; KINETIC ALFVEN WAVES; SOLAR-WIND; MAGNETOPAUSE BOUNDARY; ENERGETIC ELECTRONS; DAYSIDE AURORA; PROTON; PRECIPITATION; PRESSURE; DYNAMICS AB This paper studies dayside shock aurora forms and their variations observed by the ground-based all-sky imager (ASI) in Svalbard on 30 November 1997. The interplanetary shock arrived at Earth when Svalbard was at similar to 1120 magnetic local time. The ASI detected an auroral intensification by a factor of 2 or more in both green and red line emissions within 5 min after the shock arrival. The intensified green emissions were mainly diffuse aurora on closed field lines. They were latitudinally below and adjacent to the red aurora, which was mainly in the form of arcs and beams along the magnetic east-west direction. The diffuse aurora expanded equatorward and eastward, and its intensity exceeded the red arcs that were at similar to 5 kR. We confirmed that the eastward propagating diffuse aurora was actually moved antisunward along the oval, which suggests that the antisunward propagating shock aurora seen in space is mainly diffuse aurora. The intense diffuse aurora could be caused by wave instabilities led by a temperature anisotropy and/or caused by an enlarged loss cone. After the shock arrival, the detected low-latitude boundary of the cusp moved equatorward at a speed of similar to 18 km min(-1). As a result, the cusp meridional width was doubled from similar to 0.8 degrees to 1.6 degrees in latitude in 10 min. This finding implies that a low-latitude reconnection occurred during the compression. In this study the auroral signatures and speculated mechanisms are consistent with those revealed by in situ particle and wave observations from FAST and DMSP. C1 [Zhou, X. -Y.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Fukui, K.] USAF, Res Lab, Hanscom AFB, MA 01731 USA. [Carlson, H. C.] AF Off Sci Res, Arlington, VA 22203 USA. [Moen, J. I.] Univ Oslo, Dept Phys, N-0313 Oslo, Norway. [Strangeway, R. J.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. RP Zhou, XY (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM xiaoyan.zhou@jpl.nasa.gov FU Norwegian Research Council; Air Force Office of Scientific Research, Air Force Material Command, USAF [FA8655-06-1-3060] FX The results reported here represent one aspect of research carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Xiaoyan Zhou thanks Adolfo F. Vinas for his helpful discussion about the interplanetary shock. Joran Moen thanks the Norwegian Polar Institute for hosting the University of Oslo's optical instrumentation at Ny-Alesund, Svalbard, and thanks Espen Trondsen and Bjorn Lybekk at the University of Oslo for processing the optical data used in this paper. Financial support has been provided by the Norwegian Research Council and the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant FA8655-06-1-3060. NR 38 TC 8 Z9 9 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD DEC 23 PY 2009 VL 114 AR A12216 DI 10.1029/2009JA014186 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 536OQ UT WOS:000273054100001 ER PT J AU Vernier, JP Pommereau, JP Garnier, A Pelon, J Larsen, N Nielsen, J Christensen, T Cairo, F Thomason, LW Leblanc, T McDermid, IS AF Vernier, J. P. Pommereau, J. P. Garnier, A. Pelon, J. Larsen, N. Nielsen, J. Christensen, T. Cairo, F. Thomason, L. W. Leblanc, T. McDermid, I. S. TI Tropical stratospheric aerosol layer from CALIPSO lidar observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TRANSPORT; CLOUD; CLIMATOLOGY; DEHYDRATION; VARIABILITY; CIRCULATION; EXCHANGE; SYSTEMS AB The evolution of the aerosols in the tropical stratosphere since the beginning of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission in June 2006 is investigated using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar data. It is shown that the current operational calibration requires adjustment in the tropics. Indeed, on the basis of the assumption of pure Rayleigh scattering between 30 and 34 km the current calibration leads to an average underestimation of the scattering ratio by 6% because of the significant amount of aerosols up to 35 km altitude in the tropics, in contrast to midlatitudes. A better result is obtained by adjusting the calibration to higher altitudes, 36-39 km, where past Stratospheric Aerosol and Gas Experiment (SAGE) II extinction measurements showed an almost complete absence of aerosols. After recalibration the tropical stratospheric aerosol picture provided by CALIOP during the first 2 years of the mission reveals significant changes in the aerosol concentration associated with different transport processes. In the stratosphere the slow ascent of several volcanic layers and their meridional transport toward the subtropics are very consistent with the Brewer-Dobson circulation. The near-zero vertical velocity observed around 20 km during the Northern Hemisphere (NH) summer is in good agreement with radiative heating calculation. In the Tropical Tropopause Layer (TTL), weak depolarizing particles are observed during land convective periods, particularly intense over South Asia during the monsoon season. Finally, seasonal fast occurrence of apparent clean air in the TTL during the NH winter requires more investigations to understand its origin. C1 [Vernier, J. P.; Pommereau, J. P.; Garnier, A.; Pelon, J.] Univ Versailles St Quentin, CNRS, LATMOS, F-91371 Verrieres Le Buisson, France. [Larsen, N.; Nielsen, J.; Christensen, T.] Danish Meteorol Inst, DK-2100 Copenhagen, Denmark. [Cairo, F.] ISAC CNR, I-00133 Rome, Italy. [Thomason, L. W.] NASA, Langley Res Ctr, Hampton, VA 23666 USA. [Leblanc, T.; McDermid, I. S.] CALTECH, Jet Prop Lab, Wrightwood, CA 92397 USA. RP Vernier, JP (reprint author), Univ Versailles St Quentin, CNRS, LATMOS, F-91371 Verrieres Le Buisson, France. EM jean-paul.vernier@latmos.ipsl.fr RI Larsen, Niels/G-3145-2014; cairo, francesco/C-7460-2015 OI cairo, francesco/0000-0002-2886-2601 NR 48 TC 50 Z9 50 U1 6 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD DEC 22 PY 2009 VL 114 AR D00H10 DI 10.1029/2009JD011946 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 536LL UT WOS:000273045800002 ER PT J AU Haider, SA Abdu, MA Batista, IS Sobral, JHA Sheel, V Molina-Cuberos, GJ Maguire, WC Verigin, MI AF Haider, S. A. Abdu, M. A. Batista, I. S. Sobral, J. H. A. Sheel, Varun Molina-Cuberos, G. J. Maguire, W. C. Verigin, M. I. TI Zonal wave structures in the nighttime tropospheric density and temperature and in the D region ionosphere over Mars: Modeling and observations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID GLOBAL SURVEYOR; MARTIAN ATMOSPHERE AB We report the first model results of zonal wind perturbations in the nighttime D region ionosphere of Mars during winter and summer seasons at latitude ranges 60 degrees S-64 degrees S and 64.7 degrees N-67.3 degrees N, respectively. The production rate, ion density, and electron density are calculated between longitudes 0 degrees and 360 degrees E due to impact of galactic cosmic rays on the nighttime troposphere of Mars at these latitudes. In this calculation, temperature and air density are used from the measurements made by the radio occultation experiment on board Mars Global Surveyor at low solar activity period. In these seasons the zonal distribution of temperature, air density, and electron density are fitted by a least squares method at altitudes near the surface, 15 km and 30 km. The modes of seasonal winds are also calculated from Fourier analysis at these heights. These measurements suggest mode of wave number 2 in northern high latitudes and wave numbers 3 and 8 in southern high latitudes, respectively. It is found that the nighttime ionosphere of Mars consists of a permanent D peak, which varies with east longitudes in both hemispheres. The modes 2 and 3 of semidiurnal tides dominate the D peak oscillation during the summer and winter seasons, respectively. The water cluster ions H(3)O+(H(2)O)(n), NO(2)(-)(H(2)O)(n) and CO(3)(-)(H(2)O)(n) are the major species in the D region ionosphere of Mars. C1 [Haider, S. A.; Sheel, Varun] Phys Res Lab, Ahmadabad 380009, Gujarat, India. [Haider, S. A.; Abdu, M. A.; Batista, I. S.; Sobral, J. H. A.] Inst Nacl Pesquisas Espaciais, BR-12201970 Sao Paulo, Brazil. [Maguire, W. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Molina-Cuberos, G. J.] Univ Murcia, E-30100 Murcia, Spain. [Verigin, M. I.] Space Res Inst, Moscow 117997, Russia. RP Haider, SA (reprint author), Phys Res Lab, Ahmadabad 380009, Gujarat, India. EM haider@prl.res.in RI Batista, Inez/F-2899-2012; Molina-Cuberos, Gregorio /K-7522-2014 OI Molina-Cuberos, Gregorio /0000-0002-5664-7028 FU FAPESP [2007/06736-8] FX The authors are thankful to the MGS science team at NASA's Planetary Data System for providing us data through the Web site http://pds-geosciences.wustl.edu/missions/mgs/radioscience.html. One of the authors, S. A. Haider, also thanks FAPESP for support through a visiting scientist fellowship by process 2007/06736-8 to work at INPE, Brazil. NR 31 TC 2 Z9 2 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD DEC 22 PY 2009 VL 114 AR A12315 DI 10.1029/2009JA014231 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 536OO UT WOS:000273053900003 ER PT J AU Hanson, D Rocha, G Gorski, K AF Hanson, Duncan Rocha, Graca Gorski, Krzysztof TI Lensing reconstruction from Planck sky maps: inhomogeneous noise SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational lensing; methods: numerical; cosmic microwave background; cosmology: observations AB We discuss the effects of inhomogeneous sky coverage on cosmic microwave background lens reconstruction, focusing on application to the recently launched Planck satellite. We discuss the 'mean field' which is induced by noise inhomogeneities, as well as three approaches to lens reconstruction in this context: an optimal maximum-likelihood approach which is computationally expensive to evaluate and two suboptimal approaches which are less intensive. The first of these is only suboptimal at the 5 per cent level for Planck, and the second prevents biasing due to uncertainties in the noise model. C1 [Hanson, Duncan] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Hanson, Duncan] Univ Cambridge, Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Rocha, Graca; Gorski, Krzysztof] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rocha, Graca] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Gorski, Krzysztof] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Hanson, D (reprint author), Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. EM dhanson@ast.cam.ac.uk FU National Aeronautics and Space Administration (NASA) FX Some of the results in this paper have been derived using the HEALPix (Gorski et al. 2005) package. DH is grateful for the support of a Gates scholarship and to Anthony Challinor for useful discussion. We gratefully acknowledge support by the National Aeronautics and Space Administration (NASA) Science Mission Directorate via the US Planck Project. The research described in this paper was partially carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 17 TC 26 Z9 26 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC 21 PY 2009 VL 400 IS 4 BP 2169 EP 2173 DI 10.1111/j.1365-2966.2009.15614.x PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 529QK UT WOS:000272532100048 ER PT J AU Harris, R Brito, F Berkley, AJ Johansson, J Johnson, MW Lanting, T Bunyk, P Ladizinsky, E Bumble, B Fung, A Kaul, A Kleinsasser, A Han, S AF Harris, R. Brito, F. Berkley, A. J. Johansson, J. Johnson, M. W. Lanting, T. Bunyk, P. Ladizinsky, E. Bumble, B. Fung, A. Kaul, A. Kleinsasser, A. Han, S. TI Synchronization of multiple coupled rf-SQUID flux qubits SO NEW JOURNAL OF PHYSICS LA English DT Article AB A practical strategy for synchronizing the properties of compound Josephson junction (CJJ) radio frequency monitored superconducting quantum interference device (rf-SQUID) qubits on a multi-qubit chip has been demonstrated. The impact of small (similar to 1%) fabrication variations in qubit inductance and critical current can be minimized by the application of a custom-tuned flux offset to the CJJ structure of each qubit. This strategy allows for a simultaneous synchronization of the qubit persistent current and tunnel splitting over a range of external bias parameters that is relevant for the implementation of an adiabatic quantum processor. C1 [Harris, R.; Brito, F.; Berkley, A. J.; Johansson, J.; Johnson, M. W.; Lanting, T.; Bunyk, P.; Ladizinsky, E.] D Wave Syst Inc, Burnaby, BC V5C 6G9, Canada. [Bumble, B.; Fung, A.; Kaul, A.; Kleinsasser, A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Han, S.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. RP Harris, R (reprint author), D Wave Syst Inc, 100-4401 Still Creek Dr, Burnaby, BC V5C 6G9, Canada. EM rharris@dwavesys.com RI Johansson, Jan/G-9005-2012; 1, INCT/G-5846-2013; Informacao quantica, Inct/H-9493-2013; Brito, Frederico/N-7806-2013 OI Brito, Frederico/0000-0003-0193-676X FU NSF [DMR-0325551] FX We thank J Hilton, G Rose, P Spear, A Tcaciuc, F Cioata, E Chapple, C Rich, C Enderud, B Wilson, M Thom, S Uchaikin and M H S Amin. Samples were fabricated by the Microelectronics Laboratory of the Jet Propulsion Laboratory, operated by the California Institute of Technology under a contract with NASA. SH was supported in part by NSF grant no. DMR-0325551. NR 25 TC 4 Z9 4 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD DEC 21 PY 2009 VL 11 AR 123022 DI 10.1088/1367-2630/11/12/123022 PG 10 WC Physics, Multidisciplinary SC Physics GA 537AW UT WOS:000273086200002 ER PT J AU Temi, P Brighenti, F Mathews, WG AF Temi, Pasquale Brighenti, Fabrizio Mathews, William G. TI SPITZER OBSERVATIONS OF PASSIVE AND STAR-FORMING EARLY-TYPE GALAXIES: AN INFRARED COLOR-COLOR SEQUENCE SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: elliptical and lenticular, cD; galaxies: ISM; infrared: galaxies; infrared: ISM ID MULTIBAND IMAGING PHOTOMETER; NEUTRAL HYDROGEN OBSERVATIONS; ELLIPTIC GALAXIES; MOLECULAR GAS; S0 GALAXIES; ABSOLUTE CALIBRATION; MU-M; NEARBY GALAXIES; STELLAR MASS; COOL ISM AB We describe the infrared properties of a large sample of early-type galaxies, comparing data from the Spitzer archive with Ks-band emission from the Two Micron All Sky Survey. While most representations of this data result in correlations with large scatter, we find a remarkably tight relation among colors formed by ratios of luminosities in Spitzer-Multiband Imaging Photometer bands (24, 70, and 160 mu m) and the Ks band. Remarkably, this correlation among E and S0 galaxies follows that of nearby normal galaxies of all morphological types. In particular, the tight infrared color-color correlation for S0 galaxies alone follows that of the entire Hubble sequence of normal galaxies, roughly in order of galaxy type from ellipticals to spirals to irregulars. The specific star formation rate (SFR) of S0 galaxies estimated from the 24 mu m luminosity increases with decreasing K-band luminosity (or stellar mass) from essentially zero, as with most massive ellipticals, to rates typical of irregular galaxies. Moreover, the luminosities of the many infrared-luminous S0 galaxies can significantly exceed those of the most luminous (presumably post-merger) E galaxies. SFRs in the most infrared-luminous S0 galaxies approach 1-10 solar masses per year. Consistently, with this picture we find that while most early-type galaxies populate an infrared red sequence, about 24% of the objects (mostly S0s) are in an infrared blue cloud together with late-type galaxies. For those early-type galaxies also observed at radio frequencies, we find that the far-infrared luminosities correlate with the mass of neutral and molecular hydrogen, but the scatter is large. This scatter suggests that the star formation may be intermittent or that similar S0 galaxies with cold gaseous disks of nearly equal mass can have varying radial column density distributions that alter the local and global SFRs. C1 [Temi, Pasquale] NASA, Ames Res Ctr, Astrophys Branch, Moffett Field, CA 94035 USA. [Temi, Pasquale] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Brighenti, Fabrizio; Mathews, William G.] Univ Calif Santa Cruz, Univ Calif Observ, Lick Observ, Board Studies Astron & Astrophys, Santa Cruz, CA 95064 USA. [Brighenti, Fabrizio] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. RP Temi, P (reprint author), NASA, Ames Res Ctr, Astrophys Branch, MS 245-6, Moffett Field, CA 94035 USA. EM pasquale.temi@nasa.gov; fabrizio.brighenti@unibo.it; mathews@ucolick.org FU NSF; NASA [RSA 1276023] FX This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. This publicationmakes use of data products from the Two Micron All Sky Survey- which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology- and data from the Sloan Digital Sky Survey (SDSS). We acknowledge the usage of the HyperLeda database (http://leda. univ- lyon1. fr) and the NASA/IPAC Extragalactic Database (NED). Support for this work was provided by NASA through Spitzer Guest Observer grant RSA 1276023. Studies of the evolution of hot gas in elliptical galaxies at UC Santa Cruz are supported by NSF and NASA grants for which we are very grateful. NR 43 TC 42 Z9 42 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 20 PY 2009 VL 707 IS 2 BP 890 EP 902 DI 10.1088/0004-637X/707/2/890 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 528RW UT WOS:000272465400005 ER PT J AU Fixsen, DJ AF Fixsen, D. J. TI THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic microwave background; cosmology: observations ID RADIATION TEMPERATURE; PRECISE MEASUREMENT; FIRAS; GHZ; ANISOTROPY; SPECTRUM; CN AB The Far InfraRed Absolute Spectrophotometer data are independently recalibrated using the Wilkinson Microwave Anisotropy Probe data to obtain a cosmic microwave background (CMB) temperature of 2.7260 +/- 0.0013. Measurements of the temperature of the CMB are reviewed. The determination from the measurements from the literature is CMB temperature of 2.72548 +/- 0.00057 K. C1 Univ Maryland, Goddard Space Flight Ctr, College Pk, MD 20742 USA. RP Fixsen, DJ (reprint author), Univ Maryland, Goddard Space Flight Ctr, College Pk, MD 20742 USA. NR 23 TC 204 Z9 204 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 20 PY 2009 VL 707 IS 2 BP 916 EP 920 DI 10.1088/0004-637X/707/2/916 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 528RW UT WOS:000272465400007 ER PT J AU Luna, GJM Montez, R Sokoloski, JL Mukai, K Kastner, JH AF Luna, G. J. M. Montez, R. Sokoloski, J. L. Mukai, K. Kastner, J. H. TI CHANDRA DETECTION OF EXTENDED X-RAY EMISSION FROM THE RECURRENT NOVA RS OPHIUCHI SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: symbiotic; novae, cataclysmic variables; stars: individual (RS Ophiuchi); X-rays: binaries ID GROUND-BASED SPECTROSCOPY; 2006 OUTBURST; INTERFEROMETRIC OBSERVATIONS; BLAST WAVE; SPACE; SHELLS; REMNANT; JET AB Radio, infrared, and optical observations of the 2006 eruption of the symbiotic recurrent nova RS Ophiuchi showed that the explosion produced non-spherical ejecta. Some of this ejected material was in the form of bipolar jets to the east and west of the central source. Here we describe X-ray observations taken with the Chandra X-ray Observatory one and a half years after the beginning of the outburst that reveal narrow, extended structure with a position angle of approximately 300 degrees (east of north). Although the orientation of the extended feature in the X-ray image is consistent with the readout direction of the CCD detector, extensive testing suggests that the feature is not an artifact. Assuming it is not an instrumental effect, the extended X-ray structure shows hot plasma stretching more than 1900 AU from the central binary (taking a distance of 1.6 kpc). The X-ray emission is elongated in the northwest direction-in line with the extended infrared emission and some minor features in the published radio image. It is less consistent with the orientation of the radio jets and the main bipolar optical structure. Most of the photons in the extended X-ray structure have energies of less than 0.8 keV. If the extended X-ray feature was produced when the nova explosion occurred, then its 1 ''.2 length as of 2007 August implies that it expanded at an average rate of more than 2 mas day(-1), which corresponds to a flow speed of greater than 6000 km s(-1) (days/1.6 kpc) in the plane of the sky. This expansion rate is similar to the earliest measured expansion rates for the radio jets. C1 [Luna, G. J. M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Montez, R.; Kastner, J. H.] Rochester Inst Technol, Carlson Ctr Imaging Sci 2100, Rochester, NY 14623 USA. [Sokoloski, J. L.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Mukai, K.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Mukai, K.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. RP Luna, GJM (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St MS 15, Cambridge, MA 02138 USA. EM gluna@cfa.harvard.edu FU NASA [GO7-8030X, GO6-7022A, NAS8-03060] FX We thank L. Townsley, F. Bauer, E. Gotthelf, R. Edgars, and M. McCollough for discussions about the ACIS CCDs, T. Nelson for discussion about spectral results, and O. Chesneau for providing us a good quality version of Figure 4 (left panel). Support for this work was provided by NASA through Chandra awards GO7-8030X and GO6-7022A issued by the Chandra X-ray Observatory Center, which is operated by the SAO for and on behalf of NASA under contract NAS8-03060. NR 28 TC 14 Z9 14 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 20 PY 2009 VL 707 IS 2 BP 1168 EP 1172 DI 10.1088/0004-637X/707/2/1168 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 528RW UT WOS:000272465400029 ER PT J AU Abdo, AA Ackermann, M Ajello, M Atwood, WB Axelsson, M Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Bechtol, K Bellazzini, R Berenji, B Bloom, ED Bonamente, E Borgland, AW Bregeon, J Brez, A Brigida, M Bruel, P Burnett, TH Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cavazzuti, E Cecchi, C Celik, O Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Cominsky, LR Conrad, J Cutini, S de Angelis, A de Palma, F di Bernardo, G Silva, EDE Drell, PS Drlica-Wagner, A Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Finke, J Focke, WB Fortin, P Foschini, L Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giavitto, G Giebels, B Giglietto, N Giommi, P Giordano, F Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Hanabata, Y Hayashida, M Hays, E Horan, D Hughes, RE Jackson, MS Johannesson, G Johnson, AS Johnson, RP Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Knodlseder, J Kocian, ML Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Mazziotta, MN McConville, W McEnery, JE Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nolan, PL Norris, JP Nuss, E Ohsugi, T Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Reposeur, T Reyes, LC Ritz, S Rochester, LS Rodriguez, AY Roth, M Ryde, F Sadrozinski, HFW Sanchez, D Sander, A Parkinson, PMS Scargle, JD Schalk, TL Sellerholm, A Sgro, C Shaw, MS Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Strickman, MS Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Tanaka, Y Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vasileiou, V Vilchez, N Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Atwood, W. B. Axelsson, M. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Bloom, E. D. Bonamente, E. Borgland, A. W. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Burnett, T. H. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Celik, Oe. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cominsky, L. R. Conrad, J. Cutini, S. de Angelis, A. de Palma, F. di Bernardo, G. do Couto e Silva, E. Drell, P. S. Drlica-Wagner, A. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Finke, J. Focke, W. B. Fortin, P. Foschini, L. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giavitto, G. Giebels, B. Giglietto, N. Giommi, P. Giordano, F. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Hanabata, Y. Hayashida, M. Hays, E. Horan, D. Hughes, R. E. Jackson, M. S. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Knoedlseder, J. Kocian, M. L. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Mazziotta, M. N. McConville, W. McEnery, J. E. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Reyes, L. C. Ritz, S. Rochester, L. S. Rodriguez, A. Y. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Schalk, T. L. Sellerholm, A. Sgro, C. Shaw, M. S. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Tanaka, Y. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Ylinen, T. Ziegler, M. TI FERMI OBSERVATIONS OF TeV-SELECTED ACTIVE GALACTIC NUCLEI SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays: observations ID GAMMA-RAY EMISSION; BL LACERTAE OBJECTS; SIMULTANEOUS MULTIWAVELENGTH OBSERVATIONS; EXTRAGALACTIC BACKGROUND LIGHT; RADIO GALAXY M87; BLAZAR 3C 66A; PKS 2155-304; LAC OBJECTS; CHERENKOV TELESCOPES; VERITAS OBSERVATIONS AB We report on observations of TeV-selected active galactic nuclei (AGNs) made during the first 5.5 months of observations with the Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope (Fermi). In total, 96 AGNs were selected for study, each being either (1) a source detected at TeV energies (28 sources) or (2) an object that has been studied with TeV instruments and for which an upper limit has been reported (68 objects). The Fermi observations show clear detections of 38 of these TeV-selected objects, of which 21 are joint GeV-TeV sources, and 29 were not in the third EGRET catalog. For each of the 38 Fermi-detected sources, spectra and light curves are presented. Most can be described with a power law of spectral index harder than 2.0, with a spectral break generally required to accommodate the TeV measurements. Based on an extrapolation of the Fermi spectrum, we identify sources, not previously detected at TeV energies, which are promising targets for TeV instruments. Evidence for systematic evolution of the gamma-ray spectrum with redshift is presented and discussed in the context of interaction with the extragalactic background light. C1 [Abdo, A. A.; Chekhtman, A.; Makeev, A.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Finke, J.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Shaw, M. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Shaw, M. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, W. B.; Johnson, R. P.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Johnson, R. P.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Axelsson, M.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Axelsson, M.; Conrad, J.; Meurer, C.; Ryde, F.; Sellerholm, A.; Ylinen, T.] Oskar Klein Ctr Cosmo Particle Phys, SE-10691 Stockholm, Sweden. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; di Bernardo, G.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Tibaldo, L.] Univ Paris Diderot, Lab AIM, CEA IRFU CNRS, Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Giavitto, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Horan, D.; Sanchez, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caraveo, P. A.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy. [Cavazzuti, E.; Cutini, S.; Gasparrini, D.; Giommi, P.] Sci Data Ctr, ASI, I-00044 Frascati, Roma, Italy. [Celik, Oe.; Moiseev, A. A.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, Lab Phys Theor & Astroparticules, CNRS, IN2P3, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Conrad, J.; Jackson, M. S.; Meurer, C.; Sellerholm, A.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Ctr Etud Nucl Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Foschini, L.] Osserv Astron Brera, INAF, I-23807 Merate, Italy. [Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.; McConville, W.; Moiseev, A. A.] Univ Maryland, College Pk, MD 20742 USA. [Guiriec, S.] Univ Alabama, Huntsville, AL 35899 USA. [Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Kataoka, J.; Kawai, N.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan. [Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Ozaki, M.; Takahashi, T.; Tanaka, Y.; Uchiyama, Y.] JAXA, Inst Space & Astronaut Sci, Kanagawa 2298510, Japan. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Rodriguez, A. Y.; Torres, D. F.] IEEC CSIC, Inst Ciencies Espai, Barcelona 08193, Spain. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. [Torres, D. F.] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM sfegan@llr.in2p3.fr; dsanchez@llr.in2p3.fr RI giglietto, nicola/I-8951-2012; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Thompson, David/D-2939-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Foschini, Luigi/H-3833-2012; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Johannesson, Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; OI giglietto, nicola/0000-0002-9021-2888; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; Foschini, Luigi/0000-0001-8678-0324; Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Axelsson, Magnus/0000-0003-4378-8785; Cutini, Sara/0000-0002-1271-2924; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Johannesson, Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Rando, Riccardo/0000-0001-6992-818X; Sgro', Carmelo/0000-0001-5676-6214; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517 FU Fermi-LAT Collaboration; National Aeronautics and Space Administration; Department of Energy in the United States; Commissariata l'Energie Atomique and the Centre National de la Recherche Scientifique / Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K.A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; NASA/IPAC Extragalactic Database; JPL; Caltech; SIMBAD; CDS, Strasbourg, France FX The Fermi-LAT Collaboration acknowledges the generous support of a number of agencies and institutes that have supported the Fermi-LAT Collaboration. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariata l'Energie Atomique and the Centre National de la Recherche Scientifique / Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K.A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy. This research has made use of NASA's Astrophysics Data System Bibliographic Services, the NASA/IPAC Extragalactic Database, operated by JPL, Caltech, under contract from NASA, and the SIMBAD database, operated at CDS, Strasbourg, France. NR 93 TC 90 Z9 90 U1 4 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 20 PY 2009 VL 707 IS 2 BP 1310 EP 1333 DI 10.1088/0004-637X/707/2/1310 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 528RW UT WOS:000272465400039 ER PT J AU Tullmann, R Long, KS Pannuti, TG Winkler, PF Plucinsky, PP Gaetz, TJ Williams, B Kuntz, KD Pietsch, W Blair, WP Haberl, F Smith, RK AF Tuellmann, Ralph Long, Knox S. Pannuti, Thomas G. Winkler, P. Frank Plucinsky, Paul P. Gaetz, Terrance J. Williams, Ben Kuntz, Kip D. Pietsch, Wolfgang Blair, William P. Haberl, Frank Smith, Randall K. TI CHANDRA ACIS SURVEY OF M33 (ChASeM33): THE ENIGMATIC X-RAY EMISSION FROM IC131 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: individual (M33); H II regions; ISM: bubbles; X-rays: individual (IC131); X-rays: ISM ID RADIO-CONTINUUM SURVEY; LARGE-MAGELLANIC-CLOUD; XMM-NEWTON SURVEY; H-II REGIONS; STAR-FORMATION; NONTHERMAL EMISSION; SUPERNOVA-REMNANTS; ENERGY-CRISIS; COSMIC-RAYS; GALAXY M33 AB We present the first X-ray analysis of the diffuse hot ionized gas and the point sources in IC131, after NGC604 the second most X-ray luminous giant H II region (GHR) in M33. The X-ray emission is detected only in the south eastern part of IC131 (named IC131-se) and is limited to an elliptical region of similar to 200 pc in extent. This region appears to be confined toward the west by a hemispherical shell of warm ionized gas and only fills about half that volume. Although the corresponding X-ray spectrum has 1215 counts, it cannot conclusively be told whether the extended X-ray emission is thermal, non-thermal, or a combination of both. A thermal plasma model of kT(e) = 4.3 keV or a single power law of Gamma similar or equal to 2.1 fit the spectrum equally well. If the spectrum is purely thermal (non-thermal), the total unabsorbed X-ray luminosity in the 0.35-8 keV energy band amounts to L-X = 6.8 (8.7) x 10(35) erg s(-1). Among other known H II regions IC131-se seems to be extreme regarding the combination of its large extent of the X-ray plasma, the lack of massive O stars, its unusually high electron temperature (if thermal), and the large fraction of L-X emitted above 2 keV (similar to 40%-53%). A thermal plasma of similar to 4 keV poses serious challenges to theoretical models, as it is not clear how high electron temperatures can be produced in H II regions in view of mass-proportional and collisionless heating. If the gas is non-thermal or has non-thermal contributions, synchrotron emission would clearly dominate over inverse Compton emission. It is not clear if the same mechanisms which create non-thermal X-rays or accelerate cosmic rays in supernova remnants can be applied to much larger scales of 200 pc. In both cases the existing theoretical models for GHRs and superbubbles do not explain the hardness and extent of the X-ray emission in IC131-se. We also detect a variable source candidate in IC131. It seems that this object (CXO J013315.10+304453.0) is a high mass X-ray binary whose optical counterpart is a B2-type star with a mass of similar to 9 M-circle dot. C1 [Tuellmann, Ralph; Plucinsky, Paul P.; Gaetz, Terrance J.; Smith, Randall K.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Long, Knox S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Pannuti, Thomas G.] Morehead State Univ, Ctr Space Sci, Dept Earth & Space Sci, Morehead, KY 40351 USA. [Winkler, P. Frank] Middlebury Coll, Dept Phys, Middlebury, VT 05753 USA. [Williams, Ben] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Kuntz, Kip D.; Blair, William P.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Kuntz, Kip D.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Pietsch, Wolfgang; Haberl, Frank] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. RP Tullmann, R (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. OI Haberl, Frank/0000-0002-0107-5237 FU NASA [GO6-7073, G06-7073C, NAS8-03060] FX This work has made use of SAOImage DS9 (Joye & Mandel 2003), developed by the SAO, the FUNTOOLS utilities, and the HEASARCF TOOLS package. We thank the anonymous referee for useful comments which helped to improve the paper. R. T. acknowledges support under NASA Chandra award no. GO6-7073. A. P. F. W. acknowledges support through G06-7073C. T.J.G. and P. P. P. acknowledge support under NASA contract NAS8-03060. NR 68 TC 11 Z9 11 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 20 PY 2009 VL 707 IS 2 BP 1361 EP 1371 DI 10.1088/0004-637X/707/2/1361 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 528RW UT WOS:000272465400041 ER PT J AU Edmondson, JK Lynch, BJ Antiochos, SK DeVore, CR Zurbuchen, TH AF Edmondson, J. K. Lynch, B. J. Antiochos, S. K. DeVore, C. R. Zurbuchen, T. H. TI RECONNECTION-DRIVEN DYNAMICS OF CORONAL-HOLE BOUNDARIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE MHD; solar wind; Sun: corona; Sun: magnetic fields ID OPEN MAGNETIC-FIELD; SOLAR-WIND; SUN; BREAKOUT; MODELS; NULLS; FLUX AB We investigate the effect of magnetic reconnection on the boundary between open and closed magnetic field in the solar corona. The magnetic topology for our numerical study consists of a global dipole that gives rise to polar coronal holes and an equatorial streamer belt, and a smaller active-region bipole embedded inside the closed-field streamer belt. The initially potential magnetic field is energized by a rotational motion at the photosphere that slowly twists the embedded-bipole flux. Due to the applied stress, the bipole field expands outward and reconnects with the surrounding closed flux, eventually tunneling through the streamer boundary and encountering the open flux of the coronal hole. The resulting interchange reconnection between closed and open field releases the magnetic twist and free energy trapped inside the bipole onto open field lines, where they freely escape into the heliosphere along with the entrained closed-field plasma. Thereafter, the bipole field relaxes and reconnects back down into the interior of the streamer belt. Our simulation shows that the detailed properties of magnetic reconnection can be crucial to the coronal magnetic topology, which implies that both potential-field source-surface and quasi-steady magnetohydrodynamic models may often be an inadequate description of the corona and solar wind. We discuss the implications of our results for understanding the dynamics of the boundary between open and closed field on the Sun and the origins of the slow wind. C1 [Edmondson, J. K.; Antiochos, S. K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Edmondson, J. K.; Zurbuchen, T. H.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Lynch, B. J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [DeVore, C. R.] USN, Res Lab, Washington, DC 20375 USA. RP Edmondson, JK (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM jkedmond@umich.edu RI Antiochos, Spiro/D-4668-2012; Lynch, Benjamin/B-1300-2013; DeVore, C/A-6067-2015; OI Antiochos, Spiro/0000-0003-0176-4312; DeVore, C/0000-0002-4668-591X; Lynch, Benjamin/0000-0001-6886-855X FU NASA HTP and SRT; NASA GSRP; NSF SHINE [ATM-0621725]; NASA HGI [NNX08AJ04G]; DoD High Performance Computing Modernization Program FX This work was supported in part by the NASA HTP and SR&T programs. J.K.E. acknowledges support from the NASA GSRP Program. B.J.L. acknowledges support from the NSF SHINE ATM-0621725 and NASA HGI NNX08AJ04G. The numerical simulation was performed under a grant of time from the DoD High Performance Computing Modernization Program. NR 35 TC 26 Z9 26 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 20 PY 2009 VL 707 IS 2 BP 1427 EP 1437 DI 10.1088/0004-637X/707/2/1427 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 528RW UT WOS:000272465400046 ER PT J AU Neill, JD Sullivan, M Howell, DA Conley, A Seibert, M Martin, DC Barlow, TA Foster, K Friedman, PG Morrissey, P Neff, SG Schiminovich, D Wyder, TK Bianchi, L Donas, J Heckman, TM Lee, YW Madore, BF Milliard, B Rich, RM Szalay, AS AF Neill, James D. Sullivan, Mark Howell, D. Andrew Conley, Alex Seibert, Mark Martin, D. Christopher Barlow, Tom A. Foster, Karl Friedman, Peter G. Morrissey, Patrick Neff, Susan G. Schiminovich, David Wyder, Ted K. Bianchi, Luciana Donas, Jose Heckman, Timothy M. Lee, Young-Wook Madore, Barry F. Milliard, Bruno Rich, R. Michael Szalay, Alex S. TI THE LOCAL HOSTS OF TYPE Ia SUPERNOVAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; supernovae: general ID DIGITAL SKY SURVEY; 2-PARAMETER LUMINOSITY CORRECTION; MASS-METALLICITY RELATION; HIGH-REDSHIFT SUPERNOVAE; LIGHT-CURVE SHAPES; EVOLUTIONARY SYNTHESIS; STAR-FORMATION; LEGACY SURVEY; GALAXIES; AGE AB We use multi-wavelength, matched aperture, integrated photometry from the Galaxy Evolution Explorer (GALEX), the Sloan Digital Sky Survey, and the RC3 to estimate the physical properties of 166 nearby galaxies hosting 168 well-observed Type Ia supernovae (SNe Ia). The ultraviolet (UV) imaging of local SN Ia hosts from GALEX allows a direct comparison with higher-redshift hosts measured at optical wavelengths that correspond to the rest-frame UV. Our data corroborate well-known features that have been seen in other SN Ia samples. Specifically, hosts with active star formation produce brighter and slower SNe Ia on average, and hosts with luminosity-weighted ages older than 1 Gyr produce on average more faint, fast, and fewer bright, slow SNe Ia than younger hosts. New results include that in our sample, the faintest and fastest SNe Ia occur only in galaxies exceeding a stellar mass threshold of similar to 10(10) M(circle dot), leading us to conclude that their progenitors must arise in populations that are older and/or more metal rich than the general SN Ia population. A low host extinction subsample hints at a residual trend in peak luminosity with host age, after correcting for light-curve shape, giving the appearance that older hosts produce less-extincted SNe Ia on average. This has implications for cosmological fitting of SNe Ia, and suggests that host age could be useful as a parameter in the fitting. Converting host mass to metallicity and computing (56)Ni mass from the supernova light curves, we find that our local sample is consistent with a model that predicts a shallow trend between stellar metallicity and the (56)Ni mass that powers the explosion, but we cannot rule out the absence of a trend. We measure a correlation between (56)Ni mass and host age in the local universe that is shallower and not as significant as that seen at higher redshifts. The details of the age-(56)Ni mass correlations at low and higher redshift imply a luminosity-weighted age threshold of similar to 3 Gyr for SN Ia hosts, above which they are less likely to produce SNe Ia with (56)Ni masses above similar to 0.5 M(circle dot). C1 [Neill, James D.; Martin, D. Christopher; Barlow, Tom A.; Foster, Karl; Friedman, Peter G.; Morrissey, Patrick; Wyder, Ted K.] CALTECH, Pasadena, CA 91125 USA. [Sullivan, Mark] Univ Oxford, Oxford OX1 3RH, England. [Howell, D. Andrew] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Howell, D. Andrew] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Conley, Alex] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H8, Canada. [Conley, Alex] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Seibert, Mark; Madore, Barry F.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Neff, Susan G.] NASA, Goddard Space Flight Ctr, Lab Astron & Solar Phys, Greenbelt, MD 20771 USA. [Schiminovich, David] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Bianchi, Luciana] Johns Hopkins Univ, Ctr Astrophys Sci, Baltimore, MD 21218 USA. [Donas, Jose; Milliard, Bruno] Lab Astrophys Marseille, F-13376 Marseille 12, France. [Heckman, Timothy M.; Szalay, Alex S.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Lee, Young-Wook] Yonsei Univ, Ctr Space Astrophys, Seoul 120749, South Korea. [Rich, R. Michael] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RP Neill, JD (reprint author), CALTECH, 1200 E Calif Blvd, Pasadena, CA 91125 USA. OI Sullivan, Mark/0000-0001-9053-4820 FU Centre National d'Etudes Spatiales of France; Korean Ministry of Science and Technology; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University, Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck Institute for Astronomy (MPIA); Max-Planck Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington FX The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck Institute for Astronomy (MPIA), the Max-Planck Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. NR 54 TC 62 Z9 62 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 20 PY 2009 VL 707 IS 2 BP 1449 EP 1465 DI 10.1088/0004-637X/707/2/1449 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 528RW UT WOS:000272465400048 ER PT J AU Truch, MDP Ade, PAR Bock, JJ Chapin, EL Devlin, MJ Dicker, SR Griffin, M Gundersen, JO Halpern, M Hargrave, PC Hughes, DH Klein, J Marsden, G Martin, PG Mauskopf, P Moncelsi, L Netterfield, CB Olmi, L Pascale, E Patanchon, G Rex, M Scott, D Semisch, C Thomas, NE Tucker, C Tucker, GS Viero, MP Wiebe, DV AF Truch, Matthew D. P. Ade, Peter A. R. Bock, James J. Chapin, Edward L. Devlin, Mark J. Dicker, Simon R. Griffin, Matthew Gundersen, Joshua O. Halpern, Mark Hargrave, Peter C. Hughes, David H. Klein, Jeff Marsden, Gaelen Martin, Peter G. Mauskopf, Philip Moncelsi, Lorenzo Netterfield, C. Barth Olmi, Luca Pascale, Enzo Patanchon, Guillaume Rex, Marie Scott, Douglas Semisch, Christopher Thomas, Nicholas E. Tucker, Carole Tucker, Gregory S. Viero, Marco P. Wiebe, Donald V. TI THE BALLOON-BORNE LARGE APERTURE SUBMILLIMETER TELESCOPE (BLAST) 2006: CALIBRATION AND FLIGHT PERFORMANCE SO ASTROPHYSICAL JOURNAL LA English DT Article DE balloons; submillimeter; telescopes ID COUPLED BOLOMETER ARRAYS; VY-CANIS-MAJORIS; SPIRE; GALAXIES; DESIGN; MAPS; HALF AB The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) operated successfully during a 250 hr flight over Antarctica in 2006 December (BLAST06). As part of the calibration and pointing procedures, the red hypergiant star VY CMa was observed and used as the primary calibrator. Details of the overall BLAST06 calibration procedure are discussed. The 1 sigma uncertainty on the absolute calibration is accurate to 9.5%, 8.7%, and 9.2% at the 250, 350, and 500 mu m bands, respectively. The errors are highly correlated between bands resulting in much lower errors for the derived shape of the 250-500 mu m continuum. The overall pointing error is <5 '' rms for the 36 '', 42 '', and 60 '' beams. The performance of optics and pointing systems is discussed. C1 [Truch, Matthew D. P.; Devlin, Mark J.; Dicker, Simon R.; Klein, Jeff; Rex, Marie; Semisch, Christopher] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Moncelsi, Lorenzo; Pascale, Enzo; Tucker, Carole] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bock, James J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bock, James J.] CALTECH, MS 59 33, Pasadena, CA 91125 USA. [Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Scott, Douglas; Wiebe, Donald V.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Gundersen, Joshua O.; Thomas, Nicholas E.] Univ Miami, Dept Phys, Coral Gables, FL 33146 USA. [Hughes, David H.] INAOE, Puebla, Mexico. [Martin, Peter G.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Martin, Peter G.; Netterfield, C. Barth; Viero, Marco P.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Netterfield, C. Barth; Wiebe, Donald V.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Olmi, Luca] Univ Puerto Rico, Dept Phys, San Juan, PR 00936 USA. [Olmi, Luca] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. [Patanchon, Guillaume] Univ Paris Diderot, Lab APC, F-75205 Paris, France. [Tucker, Gregory S.] Brown Univ, Dept Phys, Providence, RI 02912 USA. RP Truch, MDP (reprint author), Univ Penn, Dept Phys & Astron, 209 S 33rd St, Philadelphia, PA 19104 USA. EM matthew@truch.net RI Klein, Jeffrey/E-3295-2013; OI Olmi, Luca/0000-0002-1162-7947; Scott, Douglas/0000-0002-6878-9840 FU NASA [NAG5-12785, NAG5-13301, NNGO-6GI11G]; NSF Office of Polar Programs; Canadian Space Agency; Natural Sciences and Engineering Research Council (NSERC) of Canada; UK Science and Technology Facilities Council (STFC) FX We acknowledge the support of NASA through grant Nos. NAG5-12785, NAG5-13301, and NNGO-6GI11G, the NSF Office of Polar Programs, the Canadian Space Agency, the Natural Sciences and Engineering Research Council (NSERC) of Canada, and the UK Science and Technology Facilities Council (STFC). We thank D. Dowell, T. Jenness, and J. Aguirre for their data. This research has been enabled by the use of WestGrid computing resources. This research also made use of the SIMBAD database, operated at the CDS, France, and the NASA/ IPAC Extragalactic Database (NED), operated by the Jet Propulsion Laboratory, under contract with NASA. NR 24 TC 24 Z9 24 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 20 PY 2009 VL 707 IS 2 BP 1723 EP 1728 DI 10.1088/0004-637X/707/2/1723 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 528RW UT WOS:000272465400073 ER PT J AU Marsden, G Ade, PAR Bock, JJ Chapin, EL Devlin, MJ Dicker, SR Griffin, M Gundersen, JO Halpern, M Hargrave, PC Hughes, DH Klein, J Mauskopf, P Magnelli, B Moncelsi, L Netterfield, CB Ngo, H Olmi, L Pascale, E Patanchon, G Rex, M Scott, D Semisch, C Thomas, N Truch, MDP Tucker, C Tucker, GS Viero, MP Wiebe, DV AF Marsden, Gaelen Ade, Peter A. R. Bock, James J. Chapin, Edward L. Devlin, Mark J. Dicker, Simon R. Griffin, Matthew Gundersen, Joshua O. Halpern, Mark Hargrave, Peter C. Hughes, David H. Klein, Jeff Mauskopf, Philip Magnelli, Benjamin Moncelsi, Lorenzo Netterfield, Calvin B. Ngo, Henry Olmi, Luca Pascale, Enzo Patanchon, Guillaume Rex, Marie Scott, Douglas Semisch, Christopher Thomas, Nicholas Truch, Matthew D. P. Tucker, Carole Tucker, Gregory S. Viero, Marco P. Wiebe, Donald V. TI BLAST: RESOLVING THE COSMIC SUBMILLIMETER BACKGROUND SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; diffuse radiation; galaxies: evolution; galaxies: starburst; submillimeter ID DEGREE EXTRAGALACTIC SURVEY; STAR-FORMATION HISTORY; DEEP FIELD-SOUTH; SCUBA SUPER-MAP; NUMBER COUNTS; PASSIVE GALAXIES; HIGH-REDSHIFT; SURVEY SHADES; SPITZER; HALF AB The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) has made 1 deg(2), deep, confusion-limited maps at three different bands, centered on the Great Observatories Origins Deep Survey South Field. By calculating the covariance of these maps with catalogs of 24 mu m sources from the Far-Infrared Deep Extragalactic Legacy Survey, we have determined that the total submillimeter intensities are 8.60 +/- 0.59, 4.93 +/- 0.34, and 2.27 +/- 0.20 nW m(-2) sr(-1) at 250, 350, and 500 mu m, respectively. These numbers are more precise than previous estimates of the cosmic infrared background (CIB) and are consistent with 24 mu m-selected galaxies generating the full intensity of the CIB. We find that the fraction of the CIB that originates from sources at z >= 1.2 increases with wavelength, with 60% from high-redshift sources at 500 mu m. At all BLAST wavelengths, the relative intensity of high-z sources is higher for 24 mu m-faint sources than that for 24 mu m-bright sources. Galaxies identified as active galactic nuclei (AGNs) by their Infrared Array Camera colors are 1.6-2.6 times brighter than the average population at 250-500 mu m, consistent with what is found for X-ray-selected AGNs. BzK-selected galaxies are found to be moderately brighter than typical 24 mu m-selected galaxies in the BLAST bands. These data provide high-precision constraints for models of the evolution of the number density and intensity of star-forming galaxies at high redshift. C1 [Marsden, Gaelen; Chapin, Edward L.; Halpern, Mark; Ngo, Henry; Scott, Douglas; Wiebe, Donald V.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Moncelsi, Lorenzo; Pascale, Enzo; Tucker, Carole] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bock, James J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Devlin, Mark J.; Dicker, Simon R.; Klein, Jeff; Rex, Marie; Semisch, Christopher; Truch, Matthew D. P.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Gundersen, Joshua O.; Thomas, Nicholas] Univ Miami, Dept Phys, Coral Gables, FL 33146 USA. [Hughes, David H.] INAOE, Puebla, Mexico. [Magnelli, Benjamin] Univ Paris Diderot, Lab AIM, CEA DSM CNRS, IRFU Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Netterfield, Calvin B.; Viero, Marco P.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Netterfield, Calvin B.; Wiebe, Donald V.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Olmi, Luca] Univ Puerto Rico, Dept Phys, Rio Piedras, PR 00931 USA. [Olmi, Luca] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. [Patanchon, Guillaume] Univ Paris Diderot, Lab APC, F-75205 Paris, France. [Tucker, Gregory S.] Brown Univ, Dept Phys, Providence, RI 02912 USA. RP Marsden, G (reprint author), Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada. EM gmarsden@phas.ubc.ca RI Klein, Jeffrey/E-3295-2013; OI Scott, Douglas/0000-0002-6878-9840; Olmi, Luca/0000-0002-1162-7947; Ngo, Henry/0000-0001-5172-4859 FU NASA [NAG5-12785, NAG5-13301, NNGO-6GI11G]; NSF Office of Polar Programs; Canadian Space Agency; Natural Sciences and Engineering Research Council (NSERC) of Canada; UK Science and Technology Facilities Council (STFC) FX Thanks to Alex Pope for providing the SCUBA GOODS-N map, and to J. E. G. Devriendt for providing model galaxy spectra. We acknowledge the support of NASA through grant numbers NAG5-12785, NAG5-13301, and NNGO-6GI11G, the NSF Office of Polar Programs, the Canadian Space Agency, the Natural Sciences and Engineering Research Council (NSERC) of Canada, and the UK Science and Technology Facilities Council (STFC). This research has been enabled by the use ofWestGrid computing resources. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. NR 48 TC 108 Z9 108 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 20 PY 2009 VL 707 IS 2 BP 1729 EP 1739 DI 10.1088/0004-637X/707/2/1729 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 528RW UT WOS:000272465400074 ER PT J AU Pascale, E Ade, PAR Bock, JJ Chapin, EL Devlin, MJ Dye, S Eales, SA Griffin, M Gundersen, JO Halpern, M Hargrave, PC Hughes, DH Klein, J Marsden, G Mauskopf, P Moncelsi, L Ngo, H Netterfield, CB Olmi, L Patanchon, G Rex, M Scott, D Semisch, C Thomas, N Truch, MDP Tucker, C Tucker, GS Viero, MP Wiebe, DV AF Pascale, Enzo Ade, Peter A. R. Bock, James J. Chapin, Edward L. Devlin, Mark J. Dye, Simon Eales, Steve A. Griffin, Matthew Gundersen, Joshua O. Halpern, Mark Hargrave, Peter C. Hughes, David H. Klein, Jeff Marsden, Gaelen Mauskopf, Philip Moncelsi, Lorenzo Ngo, Henry Netterfield, Calvin B. Olmi, Luca Patanchon, Guillaume Rex, Marie Scott, Douglas Semisch, Christopher Thomas, Nicholas Truch, Matthew D. P. Tucker, Carole Tucker, Gregory S. Viero, Marco P. Wiebe, Donald V. TI BLAST: A FAR-INFRARED MEASUREMENT OF THE HISTORY OF STAR FORMATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; diffuse radiation; galaxies: evolution; galaxies: starburst; submillimeter ID DEEP-FIELD-SOUTH; BACKGROUND EXPERIMENT SEARCH; DEGREE EXTRAGALACTIC SURVEY; SUBMILLIMETER GALAXIES; PHOTOMETRIC REDSHIFTS; LUMINOSITY FUNCTIONS; THERMAL EMISSION; EVOLUTION; SPITZER; UNIVERSE AB We directly measure redshift evolution in the mean physical properties (far-infrared luminosity, temperature, and mass) of the galaxies that produce the cosmic infrared background (CIB), using measurements from the Balloon-borne Large Aperture Submillimeter Telescope (BLAST), and Spitzer which constrain the CIB emission peak. This sample is known to produce a surface brightness in the BLAST bands consistent with the full CIB, and photometric redshifts are identified for all of the objects. We find that most of the 70 mu m background is generated at z less than or similar to 1 and the 500 mu m background generated at z greater than or similar to 1. A significant growth is observed in the mean luminosity from similar to 10(9)-10(12) L-circle dot, and in the mean temperature by 10 K, from redshifts 0 < z < 3. However, there is only weak positive evolution in the comoving dust mass in these galaxies across the same redshift range. We also measure the evolution of the far-infrared luminosity density, and the star formation rate history for these objects, finding good agreement with other infrared studies up to z similar to 1, exceeding the contribution attributed to optically selected galaxies. C1 [Pascale, Enzo; Ade, Peter A. R.; Dye, Simon; Eales, Steve A.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Moncelsi, Lorenzo; Tucker, Carole] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bock, James J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Ngo, Henry; Scott, Douglas; Wiebe, Donald V.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Devlin, Mark J.; Klein, Jeff; Rex, Marie; Semisch, Christopher; Truch, Matthew D. P.] Univ Penn, Dept Phys & Astron, Philadelphia, PA USA. [Gundersen, Joshua O.; Thomas, Nicholas] Univ Miami, Dept Phys, Coral Gables, FL 33146 USA. [Hughes, David H.] INAOE, Puebla, Mexico. [Netterfield, Calvin B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Netterfield, Calvin B.; Viero, Marco P.; Wiebe, Donald V.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Olmi, Luca] Univ Puerto Rico, Dept Phys, Rio Piedras, PR 00931 USA. [Olmi, Luca] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. [Patanchon, Guillaume] Univ Paris Diderot, Lab APC, F-75205 Paris, France. [Tucker, Gregory S.] Brown Univ, Dept Phys, Providence, RI 02912 USA. RP Pascale, E (reprint author), Cardiff Univ, Sch Phys & Astron, 5 Parade, Cardiff CF24 3AA, S Glam, Wales. EM enzo.pascale@astro.cf.ac.uk RI Klein, Jeffrey/E-3295-2013; OI Olmi, Luca/0000-0002-1162-7947; Scott, Douglas/0000-0002-6878-9840; Dye, Simon/0000-0002-1318-8343; Ngo, Henry/0000-0001-5172-4859 FU NASA [NAG5-12785, NAG5-13301, NNGO-6GI11G]; NSF; Canadian Space Agency; Natural Sciences and Engineering Research Council (NSERC) of Canada; UK Science and Technology Facilities Council (STFC) FX We acknowledge the support of NASA through grant numbers NAG5-12785, NAG5-13301, and NNGO-6GI11G, the NSF Office of Polar Programs, the Canadian Space Agency, the Natural Sciences and Engineering Research Council (NSERC) of Canada, and the UK Science and Technology Facilities Council (STFC). This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. NR 50 TC 55 Z9 55 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 20 PY 2009 VL 707 IS 2 BP 1740 EP 1749 DI 10.1088/0004-637X/707/2/1740 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 528RW UT WOS:000272465400075 ER PT J AU Patanchon, G Ade, PAR Bock, JJ Chapin, EL Devlin, MJ Dicker, SR Griffin, M Gundersen, JO Halpern, M Hargrave, PC Hughes, DH Klein, J Marsden, G Mauskopf, P Moncelsi, L Netterfield, CB Olmi, L Pascale, E Rex, M Scott, D Semisch, C Thomas, N Truch, MDP Tucker, C Tucker, GS Viero, MP Wiebe, DV AF Patanchon, Guillaume Ade, Peter A. R. Bock, James J. Chapin, Edward L. Devlin, Mark J. Dicker, Simon R. Griffin, Matthew Gundersen, Joshua O. Halpern, Mark Hargrave, Peter C. Hughes, David H. Klein, Jeff Marsden, Gaelen Mauskopf, Philip Moncelsi, Lorenzo Netterfield, Calvin B. Olmi, Luca Pascale, Enzo Rex, Marie Scott, Douglas Semisch, Christopher Thomas, Nicholas Truch, Matthew D. P. Tucker, Carole Tucker, Gregory S. Viero, Marco P. Wiebe, Donald V. TI SUBMILLIMETER NUMBER COUNTS FROM STATISTICAL ANALYSIS OF BLAST MAPS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: statistics; methods: data analysis; submillimeter ID EXTRAGALACTIC SOURCE COUNTS; HUBBLE-DEEP-FIELD; FLUCTUATION ANALYSIS; MU-M; SOURCE EXTRACTION; RADIO-SOURCES; COSMOS FIELD; CONFUSION; GALAXIES; TELESCOPE AB We describe the application of a statistical method to estimate submillimeter galaxy number counts from confusion-limited observations by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). Our method is based on a maximum likelihood fit to the pixel histogram, sometimes called "P(D)," an approach which has been used before to probe faint counts, the difference being that here we advocate its use even for sources with relatively high signal-to-noise ratios. This method has an advantage over standard techniques of source extraction in providing an unbiased estimate of the counts from the bright end down to flux densities well below the confusion limit. We specifically analyze BLAST observations of a roughly 10 deg(2) map centered on the Great Observatories Origins Deep Survey South field. We provide estimates of number counts at the three BLAST wavelengths 250, 350, and 500 mu m; instead of counting sources in flux bins we estimate the counts at several flux density nodes connected with power laws. We observe a generally very steep slope for the counts of about -3.7 at 250 mu m, and -4.5 at 350 and 500 mu m, over the range similar to 0.02-0.5 Jy, breaking to a shallower slope below about 0.015 Jy at all three wavelengths. We also describe how to estimate the uncertainties and correlations in this method so that the results can be used for model-fitting. This method should be well suited for analysis of data from the Herschel satellite. C1 [Patanchon, Guillaume] Univ Paris Diderot, Lab APC, F-75205 Paris, France. [Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Moncelsi, Lorenzo; Pascale, Enzo; Tucker, Carole] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Bock, James J.] Univ Cardiff, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Scott, Douglas; Wiebe, Donald V.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Devlin, Mark J.; Dicker, Simon R.; Klein, Jeff; Rex, Marie; Semisch, Christopher; Truch, Matthew D. P.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Gundersen, Joshua O.; Thomas, Nicholas] Univ Miami, Dept Phys, Coral Gables, FL 33146 USA. [Hughes, David H.] INAOE, Puebla, Mexico. [Netterfield, Calvin B.; Viero, Marco P.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Netterfield, Calvin B.; Wiebe, Donald V.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Olmi, Luca] Univ Puerto Rico, Dept Phys, UPR Stn, San Juan, PR 00936 USA. [Olmi, Luca] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. [Tucker, Gregory S.] Brown Univ, Dept Phys, Providence, RI 02912 USA. RP Patanchon, G (reprint author), Univ Paris Diderot, Lab APC, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris, France. EM patanchon@apc.univ-paris-diderot.fr RI Klein, Jeffrey/E-3295-2013; OI Olmi, Luca/0000-0002-1162-7947; Scott, Douglas/0000-0002-6878-9840 FU NASA [NAG5-12785, NAG5- 13301, NNGO-6GI11G]; NSF Office of Polar Programs; Canadian Space Agency; Natural Sciences and Engineering Research Council (NSERC) of Canada; UK Science and Technology Facilities Council (STFC) FX We acknowledge the support of NASA through grant numbers NAG5-12785, NAG5- 13301, and NNGO-6GI11G, the NSF Office of Polar Programs, the Canadian Space Agency, the Natural Sciences and Engineering Research Council (NSERC) of Canada, and the UK Science and Technology Facilities Council (STFC). This research has been enabled by the use of WestGrid computing resources. NR 54 TC 69 Z9 69 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 20 PY 2009 VL 707 IS 2 BP 1750 EP 1765 DI 10.1088/0004-637X/707/2/1750 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 528RW UT WOS:000272465400076 ER PT J AU Viero, MP Ade, PAR Bock, JJ Chapin, EL Devlin, MJ Griffin, M Gundersen, JO Halpern, M Hargrave, PC Hughes, DH Klein, J MacTavish, CJ Marsden, G Martin, PG Mauskopf, P Moncelsi, L Negrello, M Netterfield, CB Olmi, L Pascale, E Patanchon, G Rex, M Scott, D Semisch, C Thomas, N Truch, MDP Tucker, C Tucker, GS Wiebe, DV AF Viero, Marco P. Ade, Peter A. R. Bock, James J. Chapin, Edward L. Devlin, Mark J. Griffin, Matthew Gundersen, Joshua O. Halpern, Mark Hargrave, Peter C. Hughes, David H. Klein, Jeff MacTavish, Carrie J. Marsden, Gaelen Martin, Peter G. Mauskopf, Philip Moncelsi, Lorenzo Negrello, Mattia Netterfield, Calvin B. Olmi, Luca Pascale, Enzo Patanchon, Guillaume Rex, Marie Scott, Douglas Semisch, Christopher Thomas, Nicholas Truch, Matthew D. P. Tucker, Carole Tucker, Gregory S. Wiebe, Donald V. TI BLAST: CORRELATIONS IN THE COSMIC FAR-INFRARED BACKGROUND AT 250, 350, AND 500 mu m REVEAL CLUSTERING OF STAR-FORMING GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: high-redshift; infrared: galaxies; large-scale structure of universe; submillimeter ID HUBBLE-DEEP-FIELD; MULTIBAND IMAGING PHOTOMETER; HALO OCCUPATION DISTRIBUTION; DISTANT RED GALAXIES; DARK-MATTER HALOES; SCUBA SUPER-MAP; SIMILAR-TO 2; NUMBER COUNTS; STATISTICAL PROPERTIES; LUMINOSITY FUNCTIONS AB We detect correlations in the cosmic far-infrared background due to the clustering of star-forming galaxies in observations made with the Balloon-borne Large Aperture Submillimeter Telescope, at 250, 350, and 500 mu m. We perform jackknife and other tests to confirm the reality of the signal. The measured correlations are well fitted by a power law over scales of 5'-25', with Delta I/I = 15.1% +/- 1.7%. We adopt a specific model for submillimeter sources in which the contribution to clustering comes from sources in the redshift ranges 1.3 <= z <= 2.2, 1.5 <= z <= 2.7, and 1.7 <= z <= 3.2, at 250, 350, and 500 mu m, respectively. With these distributions, our measurement of the power spectrum, P(k(theta)), corresponds to linear bias parameters, b = 3.8 +/- 0.6, 3.9 +/- 0.6, and 4.4 +/- 0.7, respectively. We further interpret the results in terms of the halo model, and find that at the smaller scales, the simplest halo model fails to fit our results. One way to improve the fit is to increase the radius at which dark matter halos are artificially truncated in the model, which is equivalent to having some star-forming galaxies at z >= 1 located in the outskirts of groups and clusters. In the context of this model, we find a minimum halo mass required to host a galaxy is log(M-min/M-circle dot) = 11.5(-0.1)(+0.4), and we derive effective biases b(eff) = 2.2 +/- 0.2, 2.4 +/- 0.2, and 2.6 +/- 0.2, and effective masses log(M-eff/M-circle dot) = 12.9 +/- 0.3, 12.8 +/- 0.2, and 12.7 +/- 0.2, at 250, 350 and 500 mu m, corresponding to spatial correlation lengths of r(0) = 4.9, 5.0, and 5.2 +/- 0.7h(-1)Mpc, respectively. Finally, we discuss implications for clustering measurement strategies with Herschel and Planck. C1 [Viero, Marco P.; Martin, Peter G.; Netterfield, Calvin B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Moncelsi, Lorenzo; Pascale, Enzo; Tucker, Carole] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bock, James J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Scott, Douglas; Wiebe, Donald V.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Devlin, Mark J.; Klein, Jeff; Rex, Marie; Semisch, Christopher; Truch, Matthew D. P.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Gundersen, Joshua O.; Thomas, Nicholas] Univ Miami, Dept Phys, Coral Gables, FL 33146 USA. [Hughes, David H.] INAOE, Puebla, Mexico. [MacTavish, Carrie J.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Martin, Peter G.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Negrello, Mattia] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Netterfield, Calvin B.; Wiebe, Donald V.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Olmi, Luca] Univ Puerto Rico, Dept Phys, UPR Stn, San Juan, PR 00936 USA. [Olmi, Luca] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. [Patanchon, Guillaume] Univ Paris Diderot, Lab APC, F-75205 Paris, France. [Tucker, Gregory S.] Brown Univ, Dept Phys, Providence, RI 02912 USA. RP Viero, MP (reprint author), Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. EM viero@astro.utoronto.ca RI Klein, Jeffrey/E-3295-2013; OI Olmi, Luca/0000-0002-1162-7947; Scott, Douglas/0000-0002-6878-9840 FU NASA [NAG5-12785, NAG5-13301, NNGO-6GI11G]; NSF Office of Polar Programs; Canadian Space Agency; Natural Sciences and Engineering Research Council (NSERC) of Canada; UK Science and Technology Facilities Council (STFC) FX We acknowledge the support of NASA through grant numbers NAG5-12785, NAG5-13301, and NNGO-6GI11G, the NSF Office of Polar Programs, the Canadian Space Agency, the Natural Sciences and Engineering Research Council (NSERC) of Canada, and the UK Science and Technology Facilities Council (STFC). C.B.N. acknowledges support from the Canadian Institute for Advanced Research. We thank the anonymous referee for her/his excellent comments, which improved this paper greatly, and Guilaine Lagache, Ravi Sheth, and Adam Muzzin for useful discussions and helpful advice. M.P.V. extends his warm thanks to Olivier Dore for his help and infinite patience, and Silvia Bonoli for kindly providing simulated clustering lengths of dark matter halos. NR 93 TC 90 Z9 90 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 20 PY 2009 VL 707 IS 2 BP 1766 EP 1778 DI 10.1088/0004-637X/707/2/1766 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 528RW UT WOS:000272465400077 ER PT J AU Wiebe, DV Ade, PAR Bock, JJ Chapin, EL Devlin, MJ Dicker, S Griffin, M Gundersen, JO Halpern, M Hargrave, PC Hughes, DH Klein, J Marsden, G Martin, PG Mauskopf, P Netterfield, CB Olmi, L Pascale, E Patanchon, G Rex, M Scott, D Semisch, C Thomas, N Truch, MDP Tucker, C Tucker, GS Viero, MP AF Wiebe, Donald V. Ade, Peter A. R. Bock, James J. Chapin, Edward L. Devlin, Mark J. Dicker, Simon Griffin, Matthew Gundersen, Joshua O. Halpern, Mark Hargrave, Peter C. Hughes, David H. Klein, Jeff Marsden, Gaelen Martin, Peter G. Mauskopf, Philip Netterfield, Calvin B. Olmi, Luca Pascale, Enzo Patanchon, Guillaume Rex, Marie Scott, Douglas Semisch, Christopher Thomas, Nicholas Truch, Matthew D. P. Tucker, Carole Tucker, Gregory S. Viero, Marco P. TI BLAST OBSERVATIONS OF RESOLVED GALAXIES: TEMPERATURE PROFILES AND THE EFFECT OF ACTIVE GALACTIC NUCLEI ON FIR TO SUBMILLIMETER EMISSION SO ASTROPHYSICAL JOURNAL LA English DT Article DE balloons; galaxies: photometry; submillimeter; telescopes ID CLERK MAXWELL TELESCOPE; X-RAY-EMISSION; NEARBY GALAXIES; SPIRAL GALAXIES; LOCAL UNIVERSE; COLD DUST; ENERGY-DISTRIBUTIONS; STARBURST GALAXIES; SPACE-TELESCOPE; STAR-FORMATION AB Over the course of two flights, the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) made resolved maps of seven nearby (< 25 Mpc) galaxies at 250, 350, and 500 mu m. During its 2005 June flight from Sweden, BLAST observed a single nearby galaxy, NGC 4565. During the 2006 December flight from Antarctica, BLAST observed the nearby galaxies NGC 1097, NGC 1291, NGC 1365, NGC 1512, NGC 1566, and NGC 1808. We fit physical dust models to a combination of BLAST observations and other available data for the galaxies observed by Spitzer. We fit a modified blackbody to the remaining galaxies to obtain total dust mass and mean dust temperature. For the four galaxies with Spitzer data, we also produce maps and radial profiles of dust column density and temperature. We measure the fraction of BLAST detected flux originating from the central cores of these galaxies and use this to calculate a "core fraction," an upper limit on the "active galactic nucleus fraction" of these galaxies. We also find our resolved observations of these galaxies give a dust mass estimate 5-19 times larger than an unresolved observation would predict. Finally, we are able to use these data to derive a value for the dust mass absorption coefficient of kappa = 0.29 +/- 0.03 m(2) kg(-1) at 250 mu m. This study is an introduction to future higher-resolution and higher-sensitivity studies to be conducted by Herschel and SCUBA-2. C1 [Wiebe, Donald V.; Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Scott, Douglas] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Wiebe, Donald V.; Netterfield, Calvin B.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Pascale, Enzo; Tucker, Carole] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bock, James J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bock, James J.] CALTECH, Pasadena, CA 91125 USA. [Devlin, Mark J.; Dicker, Simon; Klein, Jeff; Rex, Marie; Semisch, Christopher; Truch, Matthew D. P.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Gundersen, Joshua O.; Thomas, Nicholas] Univ Miami, Dept Phys, Coral Gables, FL 33146 USA. [Hughes, David H.] Inst Nacl Astrofis Opt & Electr, Puebla, Mexico. [Martin, Peter G.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Martin, Peter G.; Netterfield, Calvin B.; Viero, Marco P.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Olmi, Luca] Ist Radioastron, I-50125 Florence, Italy. [Olmi, Luca] Univ Puerto Rico, Dept Phys, UPR Stn, San Juan, PR 00936 USA. [Patanchon, Guillaume] Lab APC, F-75205 Paris, France. [Tucker, Gregory S.] Brown Univ, Dept Phys, Providence, RI 02912 USA. RP Wiebe, DV (reprint author), Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. RI Klein, Jeffrey/E-3295-2013; OI Olmi, Luca/0000-0002-1162-7947; Scott, Douglas/0000-0002-6878-9840 FU NASA [NAG5-12785, NAG5-13301, NNGO-6GI11G]; Canadian Space Agency (CSA); Canada's Natural Sciences and Engineering Research Council (NSERC); UK Particle Physics & Astronomy Research Council (PPARC) FX The BLAST collaboration acknowledges the support of NASA through grant numbers NAG5-12785, NAG5-13301, and NNGO-6GI11G, the Canadian Space Agency (CSA), Canada's Natural Sciences and Engineering Research Council (NSERC), and the UK Particle Physics & Astronomy Research Council (PPARC). We thank the Columbia Scientific Balloon Facility (CSBF) staff for their outstanding work. L.O. acknowledges partial support by the Puerto Rico Space Grant Consortium and by the Fondo Istitucional para la Investigacion of the University of Puerto Rico. C.B.N. acknowledges support from the Canadian Institute for Advanced Research. This research has been enabled by the use of WestGrid computing resources.; This work is based in part on observations made with the Spitzer Space Telescope, and has also made use of the NASA/IPAC Extragalactic Database (NED), both of which are operated by the Jet Propulsion Laboratory, California Institute of Technology, under contracts with the National Aeronautics and Space Administration. This research also made use of the SIMBAD database, operated at the Centre de Donees astronomiques de Strasbourg (CDS), Strasbourg, France. NR 76 TC 20 Z9 20 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 20 PY 2009 VL 707 IS 2 BP 1809 EP 1823 DI 10.1088/0004-637X/707/2/1809 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 528RW UT WOS:000272465400079 ER PT J AU Netterfield, CB Ade, PAR Bock, JJ Chapin, EL Devlin, MJ Griffin, M Gundersen, JO Halpern, M Hargrave, PC Hughes, DH Klein, J Marsden, G Martin, PG Mauskopf, P Olmi, L Pascale, E Patanchon, G Rex, M Roy, A Scott, D Semisch, C Thomas, N Truch, MDP Tucker, C Tucker, GS Viero, MP Wiebe, DV AF Netterfield, Calvin B. Ade, Peter A. R. Bock, James J. Chapin, Edward L. Devlin, Mark J. Griffin, Matthew Gundersen, Joshua O. Halpern, Mark Hargrave, Peter C. Hughes, David H. Klein, Jeff Marsden, Gaelen Martin, Peter G. Mauskopf, Phillip Olmi, Luca Pascale, Enzo Patanchon, Guillaume Rex, Marie Roy, Arabindo Scott, Douglas Semisch, Christopher Thomas, Nicholas Truch, Matthew D. P. Tucker, Carole Tucker, Gregory S. Viero, Marco P. Wiebe, Donald V. TI BLAST: THE MASS FUNCTION, LIFETIMES, AND PROPERTIES OF INTERMEDIATE MASS CORES FROM A 50 deg(2) SUBMILLIMETER GALACTIC SURVEY IN VELA (l approximate to 265 degrees) SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: clouds; stars: formation; submillimeter ID DUST CONTINUUM EMISSION; C2D LEGACY CLOUDS; MOLECULAR RIDGE-C; STAR-FORMATION; INITIAL CONDITIONS; INFRARED-EMISSION; INTERSTELLAR DUST; BOLOCAM SURVEY; OPHIUCHUS; PROTOSTARS AB We present first results from an unbiased 50 deg(2) submillimeter Galactic survey at 250, 350, and 500 mu m from the 2006 flight of the Balloon-borne Large Aperture Submillimeter Telescope. The map has resolution ranging from 36 '' to 60 '' in the three submillimeter bands spanning the thermal emission peak of cold starless cores. We determine the temperature, luminosity, and mass of more than 1000 compact sources in a range of evolutionary stages and an unbiased statistical characterization of the population. From comparison with (CO)-O-18 data, we find the dust opacity per gas mass,kappa r = 0.16 cm(2) g(-1) at 250 mu m, for cold clumps. We find that 2% of the mass of the molecular gas over this diverse region is in cores colder than 14 K, and that the mass function for these cold cores is consistent with a power law with index alpha = -3.22 +/- 0.14 over the mass range 14M(circle dot) < M < 80 M-circle dot. Additionally, we infer a mass-dependent cold core lifetime of t(c)(M) = 4 x 10(6)(M/20M(circle dot))(-0.9) yr-longer than what has been found in previous surveys of either low or high-mass cores, and significantly longer than free fall or likely turbulent decay times. This implies some form of non-thermal support for cold cores during this early stage of star formation. C1 [Netterfield, Calvin B.; Martin, Peter G.; Roy, Arabindo; Viero, Marco P.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Netterfield, Calvin B.; Wiebe, Donald V.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Phillip; Pascale, Enzo; Tucker, Carole] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bock, James J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Scott, Douglas; Wiebe, Donald V.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Devlin, Mark J.; Klein, Jeff; Rex, Marie; Semisch, Christopher; Truch, Matthew D. P.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Gundersen, Joshua O.; Thomas, Nicholas] Univ Miami, Dept Phys, Coral Gables, FL 33146 USA. [Hughes, David H.] INAOE, Puebla, Mexico. [Martin, Peter G.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Olmi, Luca] Univ Puerto Rico, Dept Phys, UPR Stn, San Juan, PR 00936 USA. [Olmi, Luca] INAF, IRA, I-50125 Florence, Italy. [Patanchon, Guillaume] Lab APC, F-75205 Paris, France. [Tucker, Gregory S.] Brown Univ, Dept Phys, Providence, RI 02912 USA. RP Netterfield, CB (reprint author), Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. RI Klein, Jeffrey/E-3295-2013 FU NASA [NAG5-12785, NAG5-13301, NNGO-6GI11G]; NSF Office of Polar Programs; Canadian Space Agency; Natural Sciences and Engineering Research Council (NSERC) of Canada; UK Science and Technology Facilities Council (STFC) FX We acknowledge the support of NASA through grant numbers NAG5-12785, NAG5-13301, and NNGO-6GI11G, the NSF Office of Polar Programs, the Canadian Space Agency, the Natural Sciences and Engineering Research Council (NSERC) of Canada, and the UK Science and Technology Facilities Council (STFC). C.B.N. acknowledges support from the Canadian Institute for Advanced Research. This research made use of WestGrid computing resources. NR 52 TC 52 Z9 52 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 20 PY 2009 VL 707 IS 2 BP 1824 EP 1835 DI 10.1088/0004-637X/707/2/1824 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 528RW UT WOS:000272465400080 ER PT J AU Olmi, L Ade, PAR Angles-Alcazar, D Bock, JJ Chapin, EL De Luca, M Devlin, MJ Dicker, S Elia, D Fazio, GG Giannini, T Griffin, M Gundersen, JO Halpern, M Hargrave, PC Hughes, DH Klein, J Lorenzetti, D Marengo, M Marsden, G Martin, PG Massi, F Mauskopf, P Netterfield, CB Patanchon, G Rex, M Salama, A Scott, D Semisch, C Smith, HA Strafella, F Thomas, N Truch, MDP Tucker, C Tucker, GS Viero, MP Wiebe, DV AF Olmi, Luca Ade, Peter A. R. Angles-Alcazar, Daniel Bock, James J. Chapin, Edward L. De Luca, Massimo Devlin, Mark J. Dicker, Simon Elia, Davide Fazio, Giovanni G. Giannini, Teresa Griffin, Matthew Gundersen, Joshua O. Halpern, Mark Hargrave, Peter C. Hughes, David H. Klein, Jeff Lorenzetti, Dario Marengo, Massimo Marsden, Gaelen Martin, Peter G. Massi, Fabrizio Mauskopf, Philip Netterfield, Calvin B. Patanchon, Guillaume Rex, Marie Salama, Alberto Scott, Douglas Semisch, Christopher Smith, Howard A. Strafella, Francesco Thomas, Nicholas Truch, Matthew D. P. Tucker, Carole Tucker, Gregory S. Viero, Marco P. Wiebe, Donald V. TI THE BLAST SURVEY OF THE VELA MOLECULAR CLOUD: PHYSICAL PROPERTIES OF THE DENSE CORES IN VELA-D SO ASTROPHYSICAL JOURNAL LA English DT Article DE balloons; ISM: clouds; stars: formation; submillimeter ID APERTURE-SUBMILLIMETER-TELESCOPE; CLASS-I SOURCES; 2-DIMENSIONAL RADIATIVE-TRANSFER; ISOLATED STAR-FORMATION; PRE-STELLAR CORES; INITIAL CONDITIONS; PROTOSTELLAR ENVELOPES; GALACTIC PLANE; LINE EMISSION; MASS FUNCTION AB The Balloon-borne Large-Aperture Submillimeter Telescope (BLAST) carried out a 250, 350, and 500 mu m survey of the galactic plane encompassing the Vela Molecular Ridge, with the primary goal of identifying the coldest dense cores possibly associated with the earliest stages of star formation. Here, we present the results from observations of the Vela-D region, covering about 4 deg(2), in which we find 141 BLAST cores. We exploit existing data taken with the Spitzer MIPS, IRAC, and SEST-SIMBA instruments to constrain their (single-temperature) spectral energy distributions, assuming a dust emissivity index beta = 2.0. This combination of data allows us to determine the temperature, luminosity, and mass of each BLAST core, and also enables us to separate starless from protostellar sources. We also analyze the effects that the uncertainties on the derived physical parameters of the individual sources have on the overall physical properties of starless and protostellar cores, and we find that there appear to be a smooth transition from the pre- to the protostellar phase. In particular, for protostellar cores we find a correlation between the MIPS24 flux, associated with the central protostar, and the temperature of the dust envelope. We also find that the core mass function of the Vela-D cores has a slope consistent with other similar (sub)millimeter surveys. C1 [Olmi, Luca; Angles-Alcazar, Daniel] Univ Puerto Rico, Dept Phys, UPR Stn, San Juan, PR 00936 USA. [Olmi, Luca; Massi, Fabrizio] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. [Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Tucker, Carole] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Angles-Alcazar, Daniel] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Bock, James J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bock, James J.] CALTECH, Pasadena, CA 91125 USA. [Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Scott, Douglas] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [De Luca, Massimo] Observ Paris, LERMA LRA, CNRS, UMR8112, F-75231 Paris 05, France. [De Luca, Massimo] Ecole Normale Super, F-75231 Paris 05, France. [Devlin, Mark J.; Dicker, Simon; Klein, Jeff; Rex, Marie; Semisch, Christopher; Truch, Matthew D. P.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Elia, Davide] Univ Lisbon, Fac Ciencias, Ctr Astron & Astrofis, Observ Astron Lisboa, P-1349018 Lisbon, Portugal. [Fazio, Giovanni G.; Marengo, Massimo; Smith, Howard A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Giannini, Teresa; Lorenzetti, Dario] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Gundersen, Joshua O.; Thomas, Nicholas] Univ Miami, Dept Phys, Coral Gables, FL 33146 USA. [Hughes, David H.] INAOE, Puebla, Mexico. [Martin, Peter G.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Martin, Peter G.; Netterfield, Calvin B.; Viero, Marco P.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Netterfield, Calvin B.; Wiebe, Donald V.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Patanchon, Guillaume] Lab APC, F-75205 Paris, France. [Salama, Alberto] European Space Astron Ctr, Madrid 28691, Spain. [Strafella, Francesco] Univ Salento, Dipartimento Fis, I-73100 Lecce, Italy. [Tucker, Gregory S.] Brown Univ, Dept Phys, Providence, RI 02912 USA. RP Olmi, L (reprint author), Univ Puerto Rico, Dept Phys, UPR Stn, Rio Piedras Campus,Box 23343, San Juan, PR 00936 USA. EM olmi.luca@gmail.com RI Klein, Jeffrey/E-3295-2013; OI Lorenzetti, Dario/0000-0001-6415-4162; Massi, Fabrizio/0000-0001-6407-8032; Olmi, Luca/0000-0002-1162-7947; Scott, Douglas/0000-0002-6878-9840; Elia, Davide/0000-0002-9120-5890; Giannini, Teresa/0000-0002-0224-096X FU NASA [NAG5-12785, NAG5-13301, NNGO-6GI11G]; NSF Office of Polar Programs; Canadian Space Agency; Natural Sciences and Engineering Research Council (NSERC) of Canada; UK Science and Technology Facilities Council (STFC) FX We acknowledge the support of NASA through grant numbers NAG5-12785, NAG5-13301, and NNGO-6GI11G, the NSF Office of Polar Programs, the Canadian Space Agency, the Natural Sciences and Engineering Research Council (NSERC) of Canada, and the UK Science and Technology Facilities Council (STFC). This work is also based, in part, on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. L.O. acknowledges partial support by the Puerto Rico Space Grant Consortium and by the Decanato de Estudios Graduados e Investigacion of the University of Puerto Rico. NR 59 TC 21 Z9 21 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 20 PY 2009 VL 707 IS 2 BP 1836 EP 1851 DI 10.1088/0004-637X/707/2/1836 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 528RW UT WOS:000272465400081 ER PT J AU Abdo, AA Ackermann, M Ajello, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Bloom, ED Bonamente, E Borgland, AW Bregeon, J Brez, A Brigida, M Bruel, P Burnett, TH Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cecchi, C Celik, O Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Cutini, S Dermer, CD de Palma, F Silva, EDE Drell, PS Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Focke, WB Foschini, L Frailis, M Fukazawa, Y Fusco, P Gargano, F Gehrels, N Germani, S Giebels, B Giglietto, N Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Grove, JE Guillemot, L Guiriec, S Hayashida, M Hays, E Horan, D Hughes, RE Johannesson, G Johnson, AS Johnson, WN Kadler, M Kamae, T Katagiri, H Kataoka, J Kerr, M Knodlseder, J Kuss, M Lande, J Latronico, L Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Makeev, A Mazziotta, MN McConville, W McEnery, JE Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nolan, PL Norris, JP Nuss, E Ohsugi, T Omodei, N Orlando, E Ormes, JF Pelassa, V Pepe, M Persic, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Rochester, LS Rodriguez, AY Ryde, F Sadrozinski, HFW Sambruna, R Sander, A Parkinson, PMS Scargle, JD Sgro, C Smith, PD Spandre, G Spinelli, P Strickman, MS Suson, DJ Tagliaferri, G Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Tibolla, O Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vasileiou, V Vilchez, N Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Ylinen, T Ziegler, M Ghisellini, G Maraschi, L Tavecchio, F AF Abdo, A. A. Ackermann, M. Ajello, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Bloom, E. D. Bonamente, E. Borgland, A. W. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Burnett, T. H. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Celik, O. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Cutini, S. Dermer, C. D. de Palma, F. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Focke, W. B. Foschini, L. Frailis, M. Fukazawa, Y. Fusco, P. Gargano, F. Gehrels, N. Germani, S. Giebels, B. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Grove, J. E. Guillemot, L. Guiriec, S. Hayashida, M. Hays, E. Horan, D. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, W. N. Kadler, M. Kamae, T. Katagiri, H. Kataoka, J. Kerr, M. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Makeev, A. Mazziotta, M. N. McConville, W. McEnery, J. E. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Pelassa, V. Pepe, M. Persic, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Rochester, L. S. Rodriguez, A. Y. Ryde, F. Sadrozinski, H. F. -W. Sambruna, R. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Sgro, C. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Suson, D. J. Tagliaferri, G. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Tibolla, O. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Ylinen, T. Ziegler, M. Ghisellini, G. Maraschi, L. Tavecchio, F. CA Fermi LAT Collaboration TI RADIO-LOUD NARROW-LINE SEYFERT 1 AS A NEW CLASS OF GAMMA-RAY ACTIVE GALACTIC NUCLEI SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: active; galaxies: Seyfert; gamma rays: observations; quasars: general ID LARGE-AREA TELESCOPE; ALL-SKY SURVEY; RELATIVISTIC JETS; PMN J0948+0022; GALAXIES; EMISSION; BLAZARS; QUASARS; RADIATION; SAMPLE AB We report the discovery with Fermi/LAT of gamma-ray emission from three radio-loud narrow-line Seyfert 1 galaxies: PKS 1502+036 (z = 0.409), 1H 0323+342 (z = 0.061), and PKS 2004-447 (z = 0.24). In addition to PMN J0948+0022 (z = 0.585), the first source of this type to be detected in gamma rays, they may form an emerging new class of gamma-ray active galactic nuclei (AGNs). These findings can have strong implications on our knowledge about relativistic jets and the unified model of the AGN. C1 [Foschini, L.; Tagliaferri, G.; Ghisellini, G.; Maraschi, L.; Tavecchio, F.] INAF, Osservatorio Astron Brera, I-23807 Merate, Italy. [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Rochester, L. S.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Rochester, L. S.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Tibaldo, L.] Univ Paris Diderot, CNRS, CEA IRFU, Lab AIM,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.; Persic, M.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Giebels, B.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Rodriguez, A. Y.; Torres, D. F.] CSIC, IEEC, Inst Ciencias Espai, Barcelona 08193, Spain. [Caraveo, P. A.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy. [Celik, O.; Gehrels, N.; Hays, E.; Kadler, M.; McConville, W.; McEnery, J. E.; Sambruna, R.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, O.; Kadler, M.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, O.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, O.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Meurer, C.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Meurer, C.; Ryde, F.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Cutini, S.] Agenzia Spaziale Italiana Sci Data Ctr, I-00044 Frascati, Roma, Italy. [Dumora, D.; Lott, B.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Lott, B.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Gehrels, N.; McConville, W.; McEnery, J. E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Gehrels, N.; McConville, W.; McEnery, J. E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Giroletti, M.] Ist Radioastron, INAF, I-40129 Bologna, Italy. [Guillemot, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Kadler, M.] Dr Remeis Sternwarte Bamberg, D-96049 Bemberg, Germany. [Kadler, M.] Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Kadler, M.] USRA, Columbia, MD 21044 USA. [Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan. [Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Persic, M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Porter, T. A.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Porter, T. A.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Tibolla, O.] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany. [Torres, D. F.] ICREA, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Foschini, L (reprint author), INAF, Osservatorio Astron Brera, I-23807 Merate, Italy. EM luigi.foschini@brera.inaf.it RI Johannesson, Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; giglietto, nicola/I-8951-2012; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Thompson, David/D-2939-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Foschini, Luigi/H-3833-2012; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012 OI Tagliaferri, Gianpiero/0000-0003-0121-0723; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Kadler, Matthias/0000-0001-5606-6154; Cutini, Sara/0000-0002-1271-2924; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Johannesson, Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Rando, Riccardo/0000-0001-6992-818X; Sgro', Carmelo/0000-0001-5676-6214; Giordano, Francesco/0000-0002-8651-2394; Ghisellini, Gabriele/0000-0002-0037-1974; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; giglietto, nicola/0000-0002-9021-2888; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; Foschini, Luigi/0000-0001-8678-0324; FU National Aeronautics and Space Administration FX This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration and of data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA's Goddard Space Flight Center. NR 42 TC 114 Z9 115 U1 7 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD DEC 20 PY 2009 VL 707 IS 2 BP L142 EP L147 DI 10.1088/0004-637X/707/2/L142 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 528RZ UT WOS:000272465800008 ER PT J AU Perrin, MD Schneider, G Duchene, G Pinte, C Grady, CA Wisniewski, JP Hines, DC AF Perrin, Marshall D. Schneider, Glenn Duchene, Gaspard Pinte, Christophe Grady, Carol A. Wisniewski, John P. Hines, Dean C. TI THE CASE OF AB AURIGAE'S DISK IN POLARIZED LIGHT: IS THERE TRULY A GAP? SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE circumstellar matter; planetary systems: protoplanetary disks; polarization; stars: individual (AB Aur); stars: pre-main sequence ID CIRCUMSTELLAR DISK; SPIRAL STRUCTURE; DUST; SIGNATURES; PLANETS; SYSTEM; GRAINS; SCATTERING; GEOMETRY; STARS AB Using the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) coronagraph, we have obtained high-contrast 2.0 mu m imaging polarimetry and 1.1 mu m imaging of the circumstellar disk around AB Aurigae on angular scales of 0 ''.3-3 '' (40-550 AU). Unlike previous observations, these data resolve the disk in both total and polarized intensity, allowing accurate measurement of the spatial variation of polarization fraction across the disk. Using these observations, we investigate the apparent "gap" in the disk reported by Oppenheimer et al.. In polarized intensity, the NICMOS data closely reproduce the morphology seen by Oppenheimer et al., yet in total intensity we find no evidence for a gap in either our 1.1 or 2.0 mu m images. We find instead that region has lower polarization fraction, without a significant decrease in total scattered light, consistent with expectations for backscattered light on the far side of an inclined disk. Radiative transfer models demonstrate this explanation fits the observations. Geometrical scattering effects are entirely sufficient to explain the observed morphology without any need to invoke a gap or a protoplanet at that location. C1 [Perrin, Marshall D.] Univ Calif Los Angeles, Div Astron, Los Angeles, CA 90095 USA. [Perrin, Marshall D.] Univ Calif Santa Cruz, Ctr Adapt Opt, Santa Cruz, CA 95064 USA. [Schneider, Glenn] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Duchene, Gaspard] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Duchene, Gaspard; Pinte, Christophe] Univ Grenoble 1, CNRS, LAOG, UMR 5571, F-38041 Grenoble 09, France. [Grady, Carol A.] Eureka Sci, Oakland, CA 96002 USA. [Grady, Carol A.] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA. [Wisniewski, John P.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Hines, Dean C.] Space Sci Inst, Boulder, CO 80301 USA. RP Perrin, MD (reprint author), Univ Calif Los Angeles, Div Astron, Los Angeles, CA 90095 USA. EM mperrin@ucla.edu FU NASA [GO-11155, NAS 5-26555]; Space Telescope Science Institute; NSF; HST/GO [10847, 10852]; European Commission [PIEF-GA-2008-220891] FX Based on observations made with the NASA/ESA Hubble Space Telescope. Support for program GO-11155 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. M. D. P. is supported by an NSF Astronomy & Astrophysics Postdoctoral Fellowship. G. S. and D. H. were also supported by programs HST/GO 10847 and 10852. C. Pinte acknowledges the funding from the European Commission Seventh Framework Program as a Marie Curie Intra-European Fellow (PIEF-GA-2008-220891). M. D. P. thanks Ben Oppenheimer and Misato Fukagawa for discussions, and for sharing their data in FITS format. NR 36 TC 38 Z9 38 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD DEC 20 PY 2009 VL 707 IS 2 BP L132 EP L136 DI 10.1088/0004-637X/707/2/L132 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 528RZ UT WOS:000272465800006 ER PT J AU Smith, GP Ebeling, H Limousin, M Kneib, JP Swinbank, AM Ma, CJ Jauzac, M Richard, J Jullo, E Sand, DJ Edge, AC Smail, I AF Smith, Graham P. Ebeling, Harald Limousin, Marceau Kneib, Jean-Paul Swinbank, A. M. Ma, Cheng-Jiun Jauzac, Mathilde Richard, Johan Jullo, Eric Sand, David J. Edge, Alastair C. Smail, Ian TI HUBBLE SPACE TELESCOPE OBSERVATIONS OF A SPECTACULAR NEW STRONG-LENSING GALAXY CLUSTER: MACS J1149.5+2223 AT z=0.544 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmology: observations; galaxies: clusters: individual (MACSJ1149.5+2233); galaxies: evolution; gravitational lensing ID LYMAN-BREAK GALAXY; RESOLVED SPECTROSCOPY; LUMINOSITY FUNCTION; LENSED QUASAR; DISCOVERY; BRIGHT; IMAGES; CORES; MASS; DISTRIBUTIONS AB We present Advanced Camera for Surveys observations of MACS J1149.5+2223, an X-ray luminous galaxy cluster at z = 0.544 discovered by the Massive Cluster Survey. The data reveal at least seven multiply imaged galaxies, three of which we have confirmed spectroscopically. One of these is a spectacular face-on spiral galaxy at z = 1.491, the four images of which are gravitationally magnified by 8 less than or similar to mu less than or similar to 23. We identify this as an L* (M(B) similar or equal to -20.7), disk-dominated (B/T less than or similar to 0.5) galaxy, forming stars at similar to 6 M(circle dot) yr(-1). We use a robust sample of multiply imaged galaxies to constrain a parameterized model of the cluster mass distribution. In addition to the main cluster dark matter halo and the bright cluster galaxies, our best model includes three galaxy-group-sized halos. The relative probability of this model is P(N(halo) = 4)/P (N(halo) < 4) >= 10(12) where N(halo) is the number of cluster/group-scale halos. In terms of sheer number of merging cluster/group-scale components, this is the most complex strong-lensing cluster core studied to date. The total cluster mass and fraction of that mass associated with substructures within R <= 500 kpc, are measured to be M(tot) = (6.7 +/- 0.4) x 10(14) M(circle dot) and f(sub) = 0.25 +/- 0.12, respectively. Our model also rules out recent claims of a flat density profile at greater than or similar to 7 sigma confidence, thus highlighting the critical importance of spectroscopic redshifts of multiply imaged galaxies when modeling strong-lensing clusters. Overall our results attest to the efficiency of X-ray selection in finding the most powerful cluster lenses, including complicated merging systems. C1 [Smith, Graham P.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Ebeling, Harald; Ma, Cheng-Jiun] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Limousin, Marceau; Kneib, Jean-Paul; Jauzac, Mathilde] Univ Aix Marseille, CNRS, Lab Astrophys Marseille, F-13388 Marseille, France. [Limousin, Marceau] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Swinbank, A. M.; Richard, Johan; Edge, Alastair C.; Smail, Ian] Univ Durham, Inst Computat Cosmol, Durham DH1 3LE, England. [Jullo, Eric] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Sand, David J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Smith, GP (reprint author), Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. EM gps@star.sr.bham.ac.uk RI Smail, Ian/M-5161-2013; Jauzac, Mathilde/B-1966-2015; Kneib, Jean-Paul/A-7919-2015; OI Smail, Ian/0000-0003-3037-257X; Kneib, Jean-Paul/0000-0002-4616-4989; Edge, Alastair/0000-0002-3398-6916 FU Royal Society; STFC; RAS; STScI [GO-09722]; Centre National d'Etudes Spatiales (CNES); Danish National Research Foundation; CNRS FX G. P. S. thanks Keren Sharon and Phil Marshall for assistance with the Keck/LRIS observations, Phil Marshall for many discussions on Bayesian inference, and Paul May and Chris Berry for helpful discussions. G. P. S. and I. R. S. acknowledge support from the Royal Society and STFC. A. M. S. acknowledges a RAS Fellowship. H. E., J. P. K., and G. P. S. acknowledge support from STScI under grant GO-09722. M. L. acknowledges the Centre National d'Etudes Spatiales (CNES) and the Danish National Research Foundation for their support. J. P. K. acknowledges support from CNRS. NR 35 TC 52 Z9 52 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD DEC 20 PY 2009 VL 707 IS 2 BP L163 EP L168 DI 10.1088/0004-637X/707/2/L163 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 528RZ UT WOS:000272465800012 ER PT J AU Scarnato, B Staehelin, J Peter, T Grobner, J Stuebi, R AF Scarnato, B. Staehelin, J. Peter, T. Groebner, J. Stuebi, R. TI Temperature and slant path effects in Dobson and Brewer total ozone measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ABSORPTION CROSS-SECTIONS; STRATOSPHERIC OZONE; ATMOSPHERIC OZONE; NITROGEN OXIDES; SPECTROPHOTOMETERS; O-3; ULTRAVIOLET; REDUCTION; TRENDS; NO2 AB There is a worldwide tendency to replace Dobson spectrophotometers in ground-based total ozone (TOZ) measurements by more advanced Brewer spectrophotometers. Ensuring the homogeneity of these data sets is of utmost importance if changes in TOZ of a few percent over long time periods are to be diagnosed accurately. Previous studies have identified a seasonal bias of a few percent between midlatitude Brewer and Dobson measurements. At Arosa (Switzerland), two Dobson and three Brewer instruments have been colocated since 1998, providing a unique data set of quasi-simultaneous observations, invaluable to study systematic differences between these measurements. The differences are partially attributed to the seasonal variability in atmospheric temperatures and ozone slant paths (OSP). The sensitivity to the temperature dependence of the ozone absorption cross section is calculated for each operational Brewer spectrophotometers at Arosa by using different high-and low-resolution reference spectra appropriately weighted with the instruments' slit functions, whereas the information on the primary standard instruments is used for all the Dobson instruments. The Brewer retrieval algorithm reveals a higher sensitivity to the reference spectra applied than the Dobson. When adopting the Bass and Paur (1985) or Malicet et al. (1995) ozone absorption spectra with their specific temperature dependence, and correcting for the OSP effect, the seasonal bias between Dobson and Brewer TOZ measurements is reduced to 0.6%. Conversely, these differences increase when using the spectral data of Burrows et al. (1999). This finding illustrates that the accuracy of ground-based spectrophotometric TOZ measurements is limited by the uncertainty in the ozone cross sections measured by different internationally leading laboratories. C1 [Groebner, J.] Phys Meteorol Observ Davos, World Radiat Ctr, CH-7260 Davos, Switzerland. [Scarnato, B.; Staehelin, J.; Peter, T.] ETH, Inst Atmospher & Climate Sci, CH-8092 Zurich, Switzerland. [Stuebi, R.] MeteoSwiss, Fed Off Meteorol & Climatol, CH-1530 Payerne, Switzerland. RP Scarnato, B (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. EM bscarnato@gmail.com; johannes.staehelin@env.ethz.ch; tom.peter@env.ethz.ch; julian.groebner@pmodwrc.ch; rene.stuebi@meteoswiss.ch FU MeteoSwiss FX We wish to thank Susan Solomon, Irina Petropavlovskikh, and Peter Kriedron for valuable discussions. The work of B.S. was supported by a research grant from MeteoSwiss as part of the MeteoSwiss Global Atmospheric Watch (GAW) program. NR 38 TC 17 Z9 17 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD DEC 19 PY 2009 VL 114 AR D24303 DI 10.1029/2009JD012349 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 535CQ UT WOS:000272944600002 ER PT J AU Abdo, AA Ackermann, M Ajello, M Anderson, B Atwood, WB Axelsson, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Baughman, BM Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bregeon, J Brez, A Brigida, M Bruel, P Burnett, TH Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cecchi, C Charles, E Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Dereli, H Dermer, CD de Angelis, A de Palma, F Digel, SW Di Bernardo, G Dormody, M Silva, EDE Drell, PS Dubois, R Dumora, D Edmonds, Y Farnier, C Favuzzi, C Fegan, SJ Focke, WB Frailis, M Fukazawa, Y Funk, S Fusco, P Gaggero, D Gargano, F Gehrels, N Germani, S Giebels, B Giglietto, N Giordano, F Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Hanabata, Y Harding, AK Hayashida, M Hays, E Hughes, RE Johannesson, G Johnson, AS Johnson, RP Johnson, TJ Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Knodlseder, J Kocian, ML Kuehn, F Kuss, M Lande, J Latronico, L Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Mazziotta, MN McConville, W McEnery, JE Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nolan, PL Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Reposeur, T Ritz, S Rodriguez, AY Roth, M Ryde, F Sadrozinski, HFW Sanchez, D Sander, A Parkinson, PMS Scargle, JD Sellerholm, A Sgro, C Smith, DA Smith, PD Spandre, G Spinelli, P Starck, JL Stecker, FW Striani, E Strickman, MS Strong, AW Suson, DJ Tajima, H Takahashi, H Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vasileiou, V Vilchez, N Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Anderson, B. Atwood, W. B. Axelsson, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Baughman, B. M. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Burnett, T. H. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Dereli, H. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. Di Bernardo, G. Dormody, M. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Edmonds, Y. Farnier, C. Favuzzi, C. Fegan, S. J. Focke, W. B. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gaggero, D. Gargano, F. Gehrels, N. Germani, S. Giebels, B. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Hanabata, Y. Harding, A. K. Hayashida, M. Hays, E. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, T. J. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Knoedlseder, J. Kocian, M. L. Kuehn, F. Kuss, M. Lande, J. Latronico, L. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Mazziotta, M. N. McConville, W. McEnery, J. E. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nolan, P. L. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Ritz, S. Rodriguez, A. Y. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Sellerholm, A. Sgro, C. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Starck, J. -L. Stecker, F. W. Striani, E. Strickman, M. S. Strong, A. W. Suson, D. J. Tajima, H. Takahashi, H. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Ylinen, T. Ziegler, M. CA Fermi LAT Collaboration TI Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes SO PHYSICAL REVIEW LETTERS LA English DT Article ID EGRET OBSERVATIONS; SPECTRA; GALAXY AB The diffuse galactic gamma-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess gamma-ray emission greater than or similar to 1 GeV relative to diffuse galactic gamma-ray emission models consistent with directly measured CR spectra (the so-called "EGRET GeV excess"). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse gamma-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10 degrees <|b|< 20 degrees. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic gamma-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess. C1 [Abdo, A. A.; Chekhtman, A.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Edmonds, Y.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Edmonds, Y.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Anderson, B.; Atwood, W. B.; Dormody, M.; Johnson, R. P.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Anderson, B.; Atwood, W. B.; Dormody, M.; Johnson, R. P.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Axelsson, M.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Axelsson, M.; Conrad, J.; Meurer, C.; Ryde, F.; Sellerholm, A.; Ylinen, T.] Oskar Klein Ctr Cosmo Particle Phys, SE-10691 Stockholm, Sweden. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Di Bernardo, G.; Gaggero, D.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Starck, J. -L.; Tibaldo, L.] Univ Paris Diderot, Lab AIM, CEA, IRFU,CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Dereli, H.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Chekhtman, A.; Hughes, R. E.; Kuehn, F.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Giebels, B.; Sanchez, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caraveo, P. A.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Moiseev, A. A.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, Lab Phys Theor & Astroparticules, CNRS, IN2P3, Montpellier, France. [Conrad, J.; Meurer, C.; Sellerholm, A.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, CEN Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.; Johnson, T. J.; McConville, W.; Moiseev, A. A.] Univ Maryland, College Pk, MD 20742 USA. [Guiriec, S.] Univ Alabama, Huntsville, AL 35899 USA. [Kataoka, J.; Kawai, N.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan. [Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Morselli, A.; Striani, E.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Okumura, A.] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Orlando, E.; Strong, A. W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Rodriguez, A. Y.; Torres, D. F.] CSIC, IEEC, Inst Ciencies Espai, Barcelona 08193, Spain. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Striani, E.; Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Uchiyama, Y.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Vasileiou, V.] Univ Maryland, Baltimore, MD 21250 USA. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. RI Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Saz Parkinson, Pablo Miguel/I-7980-2013; Kuss, Michael/H-8959-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Starck, Jean-Luc/D-9467-2011; Thompson, David/D-2939-2012; Nolan, Patrick/A-5582-2009; giglietto, nicola/I-8951-2012; Stecker, Floyd/D-3169-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; Tosti, Gino/E-9976-2013; OI Torres, Diego/0000-0002-1522-9065; Rando, Riccardo/0000-0001-6992-818X; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Starck, Jean-Luc/0000-0003-2177-7794; Thompson, David/0000-0001-5217-9135; giglietto, nicola/0000-0002-9021-2888; Berenji, Bijan/0000-0002-4551-772X; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726 FU NASA [NNX09AC15G]; DOE in the United States; CEA/Irfu and IN2P3/CNRS in France; ASI and INFN in Italy; MEXT; KEK; JAXA in Japan; K.A. Wallenberg Foundation; Swedish Research Council; National Space Board in Sweden; INAF in Italy FX The Fermi LAT Collaboration acknowledges support from a number of agencies and institutes for both development and the operation of the LATas well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K.A. Wallenberg Foundation, the Swedish Research Council and the National Space Board in Sweden. Additional support from INAF in Italy for science analysis during the operations phase is also gratefully acknowledged. GALPROP development is partially funded via NASA Grant No. NNX09AC15G. Some of the results in this Letter have been derived using the HEALPix[17] package. NR 26 TC 111 Z9 114 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 18 PY 2009 VL 103 IS 25 AR 251101 DI 10.1103/PhysRevLett.103.251101 PG 6 WC Physics, Multidisciplinary SC Physics GA 535HP UT WOS:000272958300005 PM 20366246 ER PT J AU Mellon, MT Arvidson, RE Sizemore, HG Searls, ML Blaney, DL Cull, S Hecht, MH Heet, TL Keller, HU Lemmon, MT Markiewicz, WJ Ming, DW Morris, RV Pike, WT Zent, AP AF Mellon, Michael T. Arvidson, Raymond E. Sizemore, Hanna G. Searls, Mindi L. Blaney, Diana L. Cull, Selby Hecht, Michael H. Heet, Tabatha L. Keller, H. Uwe Lemmon, Mark T. Markiewicz, Wojciech J. Ming, Douglas W. Morris, Richard V. Pike, W. Thomas Zent, Aaron P. TI Ground ice at the Phoenix Landing Site: Stability state and origin SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID MARTIAN REGOLITH; MARS; WATER; REDISTRIBUTION; HETEROGENEITY; BEHAVIOR; SOIL; H2O AB A primary objective of the Phoenix mission was to examine the characteristics of high latitude ground ice on Mars. We report observations of ground ice, its depth distribution and stability characteristics, and examine its origins and history. High latitude ground ice was explored through a dozen trench complexes and landing thruster pits, over a range of polygon morphological provinces. Shallow ground ice was found to be abundant under a layer of relatively loose ice-free soil with a mean depth of 4.6 cm, which varied by more than 10x from trench to trench. These variations can be attributed mainly to slope effects and thermal inertia variations in the overburden soil affecting ground temperatures. The presence of ice at this depth is consistent with vapor-diffusive equilibrium with respect to a mean atmospheric water content of 3.4 x 10(19) m(-3), consistent with the present-day climate. Significant ice heterogeneity was observed, with two major forms: ice-cemented soil and relatively pure light toned ice. Ice-cemented soils, which comprised about 90% of the icy material exposed by trenching, are best explained as vapor deposited pore ice in a matrix supported porous soil. Light toned ice deposits represent a minority of the subsurface and are thought to consist of relatively thin near surface deposits. The origin of these relatively pure ice deposits appears most consistent with the formation of excess ice by soil ice segregation, such as would occur by thin film migration and the formation of ice lenses, needle ice, or similar ice structures. C1 [Mellon, Michael T.; Sizemore, Hanna G.; Searls, Mindi L.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Arvidson, Raymond E.; Cull, Selby; Heet, Tabatha L.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Blaney, Diana L.; Hecht, Michael H.] Jet Prop Lab, Pasadena, CA 91109 USA. [Keller, H. Uwe; Markiewicz, Wojciech J.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Lemmon, Mark T.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Ming, Douglas W.; Morris, Richard V.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Pike, W. Thomas] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Zent, Aaron P.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. RP Mellon, MT (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Duane Phys Bldg,Campus Box 392, Boulder, CO 80309 USA. EM mellon@lasp.colorado.edu RI Lemmon, Mark/E-9983-2010; Mellon, Michael/C-3456-2016 OI Lemmon, Mark/0000-0002-4504-5136; FU NASA [NNX08AE33G] FX We wish to thank Phoenix team for their dedicated hard work that resulted in a safe landing and remarkably successful mission. Numerical modeling was supported in part by NASA grant NNX08AE33G. We would also like to thank Norbert Schorghofer and an anonymous reviewer for constructive reviews.f NR 51 TC 76 Z9 76 U1 1 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD DEC 17 PY 2009 VL 114 AR E00E07 DI 10.1029/2009JE003417 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 535CX UT WOS:000272945300001 ER PT J AU Schlichting, HE Ofek, EO Wenz, M Sari, R Gal-Yam, A Livio, M Nelan, E Zucker, S AF Schlichting, H. E. Ofek, E. O. Wenz, M. Sari, R. Gal-Yam, A. Livio, M. Nelan, E. Zucker, S. TI A single sub-kilometre Kuiper belt object from a stellar occultation in archival data SO NATURE LA English DT Article ID TRANS-NEPTUNIAN OBJECTS; SIZE DISTRIBUTION; MILLISECOND DIPS; SCORPIUS X-1; SCO X-1; SEARCH; BODIES; STARS AB The Kuiper belt is a remnant of the primordial Solar System. Measurements of its size distribution constrain its accretion and collisional history, and the importance of material strength of Kuiper belt objects(1-4). Small, sub-kilometre-sized, Kuiper belt objects elude direct detection, but the signature of their occultations of background stars should be detectable(5-9). Observations at both optical(10) and X-ray(11) wavelengths claim to have detected such occultations, but their implied abundances are inconsistent with each other and far exceed theoretical expectations. Here we report an analysis of archival data that reveals an occultation by a body with an approximately 500-metre radius at a distance of 45 astronomical units. The probability of this event arising from random statistical fluctuations within our data set is about two per cent. Our survey yields a surface density of Kuiper belt objects with radii exceeding 250 metres of 2.1(-1.7)(+4.8) x 10(7) deg(-2), ruling out inferred surface densities from previous claimed detections by more than 5 sigma. The detection of only one event reveals a deficit of sub-kilometre-sized Kuiper belt objects compared to a population extrapolated from objects with radii exceeding 50 kilometres. This implies that sub-kilometre-sized objects are undergoing collisional erosion, just like debris disks observed around other stars. C1 [Schlichting, H. E.; Ofek, E. O.; Sari, R.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Schlichting, H. E.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Wenz, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sari, R.] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Gal-Yam, A.] Weizmann Inst Sci, Fac Phys, IL-76100 Rehovot, Israel. [Livio, M.; Nelan, E.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Zucker, S.] Tel Aviv Univ, Dept Geophys & Planetary Sci, IL-69978 Tel Aviv, Israel. RP Schlichting, HE (reprint author), CALTECH, Dept Astron, Pasadena, CA 91125 USA. EM hes@astro.caltech.edu; eran@astro.caltech.edu FU NASA through a grant from the Space Telescope Science Institute; ERC; Packard Foundation; Israeli Science Foundation; EU Seventh Framework Programme Marie Curie IRG fellowship; Benoziyo Center for Astrophysics; Peter and Patricia Gruber Awards; William Z. and Eda Bess Novick New Scientists Fund; Israel Science Foundation-Adler Foundation FX We thank H. K. Chang for comments that helped to improve this manuscript. Some of the numerical calculations presented here were performed on Caltech's Division of Geological and Planetary Sciences Dell cluster. Partial support for this research was provided by NASA through a grant from the Space Telescope Science Institute. R. S. acknowledges support from the ERC and the Packard Foundation. A. G.-Y. is supported by the Israeli Science Foundation, an EU Seventh Framework Programme Marie Curie IRG fellowship and the Benoziyo Center for Astrophysics, a research grant from the Peter and Patricia Gruber Awards, and the William Z. and Eda Bess Novick New Scientists Fund at the Weizmann Institute. S. Z. acknowledges support from the Israel Science Foundation-Adler Foundation for Space Research. E.O.O. is an Einstein Fellow. NR 28 TC 46 Z9 46 U1 0 U2 4 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD DEC 17 PY 2009 VL 462 IS 7275 BP 895 EP 897 DI 10.1038/nature08608 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 533AX UT WOS:000272795400037 PM 20016596 ER PT J AU Richie-Halford, AC Iess, L Tortora, P Armstrong, JW Asmar, SW Woo, R Habbal, SR Morgan, H AF Richie-Halford, Adam C. Iess, L. Tortora, P. Armstrong, J. W. Asmar, S. W. Woo, Richard Habbal, Shadia Rifai Morgan, Huw TI Space-time localization of inner heliospheric plasma turbulence using multiple spacecraft radio links SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID MAGNETIC FIELDS; CURRENT SHEET; SOLAR CORONA; SCIENCE; MODEL AB Radio remote sensing of the heliosphere using spacecraft radio signals has been used to study the near-Sun plasma in and out of the ecliptic, close to the Sun, and on spatial and temporal scales not accessible with other techniques. Studies of space-time variations in the inner solar wind are particularly timely because of the desire to understand and predict space weather, which can disturb satellites and systems at 1 AU and affect human space exploration. Here we demonstrate proof of concept of a new radio science application for spacecraft radio science links. The differing transfer functions of plasma irregularities to spacecraft radio uplinks and downlinks can be exploited to localize plasma scattering along the line of sight. We demonstrate the utility of this idea using Cassini radio data taken in 2001-2002. Under favorable circumstances we demonstrate how this technique, unlike other remote sensing methods, can determine center-of-scattering position to within a few thousandths of an AU and thickness of scattering region to less than about 0.02 AU. This method, applied to large data sets and used in conjunction with other solar remote sensing data such as white light data, has space weather application in studies of inhomogeneity and nonstationarity in the near-Sun solar wind. C1 [Richie-Halford, Adam C.] Los Angeles AFB, El Segundo, CA 90245 USA. [Iess, L.] Univ Roma La Sapienza, Dipartimento Ingn Aerosp & Astronaut, I-00184 Rome, Italy. [Tortora, P.] Univ Bologna, Fac Ingn 2, DIEM, I-47110 Forli, Italy. [Armstrong, J. W.; Asmar, S. W.; Woo, Richard] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Habbal, Shadia Rifai; Morgan, Huw] Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA. RP Richie-Halford, AC (reprint author), Los Angeles AFB, El Segundo, CA 90245 USA. EM john.w.armstrong@jpl.nasa.gov RI IESS, Luciano/F-4902-2011; Tortora, Paolo/J-6191-2012; OI IESS, Luciano/0000-0002-6230-5825; Tortora, Paolo/0000-0001-9259-7673; Richie-Halford, Adam/0000-0001-9276-9084; Morgan, Huw/0000-0002-6547-5838 FU Italian Space Agency; NASA [NNX07AH90G]; NSF; ONR FX We have greatly benefited from discussions with Frank B. Estabrook about the method. We thank W.A. Coles, B.J. Rickett, S.R. Spangler, and an anonymous referee for comments on the paper. A.R.-H.'s work was performed at the Jet Propulsion Laboratory while on a U.S. Air Force-JPL employee exchange program. L.I. and P.T. were supported in part by the Italian Space Agency. S.H.'s and H.M.'s research was supported by NASA grant NNX07AH90G to the University of Hawaii. For J.W.A., S.W.A., and R.W. the research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We also thank the personnel of the Cassini Project, the JPL Radio Science Systems Group, and the NASA/JPL Deep Space Network. The SOHO/LASCO data used here are produced by a consortium of the Naval Research Laboratory (United States), Max-Planck-Institut fur Aeronomie (Germany), Laboratoire d'Astronomie (France), and University of Birmingham (United Kingdom). SOHO is a project of international cooperation between ESA and NASA. The Wilcox Solar Observatory's photospheric field data and extrapolations were obtained from the WSO section of Stanford University's website courtesy of J.T. Hoeksema. WSO is supported by NASA, the NSF, and ONR. NR 26 TC 0 Z9 0 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD DEC 17 PY 2009 VL 7 AR S12003 DI 10.1029/2009SW000499 PG 10 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 535DX UT WOS:000272948100001 ER PT J AU Tian, YD Peters-Lidard, CD Eylander, JB Joyce, RJ Huffman, GJ Adler, RF Hsu, KL Turk, FJ Garcia, M Zeng, J AF Tian, Yudong Peters-Lidard, Christa D. Eylander, John B. Joyce, Robert J. Huffman, George J. Adler, Robert F. Hsu, Kuo-lin Turk, F. Joseph Garcia, Matthew Zeng, Jing TI Component analysis of errors in satellite-based precipitation estimates SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID RAINFALL ESTIMATION; PASSIVE MICROWAVE; INTERCOMPARISON PROJECT; CLIMATOLOGY PROJECT; LAND; ALGORITHMS; PRODUCTS; SCALES; VARIABILITY; RESOLUTION AB Satellite-based precipitation estimates have great potential for a wide range of critical applications, but their error characteristics need to be examined and understood. In this study, six (6) high-resolution, satellite-based precipitation data sets are evaluated over the contiguous United States against a gauge-based product. An error decomposition scheme is devised to separate the errors into three independent components, hit bias, missed precipitation, and false precipitation, to better track the error sources associated with the satellite retrieval processes. Our analysis reveals the following. (1) The three components for each product are all substantial, with large spatial and temporal variations. (2) The amplitude of individual components sometimes is larger than that of the total errors. In such cases, the smaller total errors are resulting from the three components canceling one another. (3) All the products detected strong precipitation (>40 mm/d) well, but with various biases. They tend to overestimate in summer and underestimate in winter, by as much as 50% in either season, and they all miss a significant amount of light precipitation (<10 mm/d), up to 40%. (4) Hit bias and missed precipitation are the two leading error sources. In summer, positive hit bias, up to 50%, dominates the total errors for most products. (5) In winter, missed precipitation over mountainous regions and the northeast, presumably snowfall, poses a common challenge to all the data sets. On the basis of the findings, we recommend that future efforts focus on reducing hit bias, adding snowfall retrievals, and improving methods for combining gauge and satellite data. Strategies for future studies to establish better links between the errors in the end products and the upstream data sources are also proposed. C1 [Tian, Yudong; Huffman, George J.; Adler, Robert F.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Tian, Yudong] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Eylander, John B.] USAF, Weather Agcy, Air & Space Models Integrat Branch, Offutt AFB, NE 68113 USA. [Joyce, Robert J.] NOAA, Climate Predict Ctr, NCEP, NWS, Camp Springs, MD 20746 USA. [Huffman, George J.] Sci Syst & Applicat Inc, Lanham, MD USA. [Adler, Robert F.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Hsu, Kuo-lin] Univ Calif Irvine, Dept Civil & Environm Engn, Ctr Hydrometeorol & Remote Sensing, Irvine, CA 92697 USA. [Turk, F. Joseph] USN, Res Lab, Marine Meteorol Div, Monterey, CA 93943 USA. [Zeng, Jing] Sci Applicat Int Corp, Beltsville, MD USA. RP Tian, YD (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Mail Code 614-3, Greenbelt, MD 20771 USA. EM yudong.tian@nasa.gov RI Garcia, Matthew/K-9286-2013; Huffman, George/F-4494-2014; Measurement, Global/C-4698-2015; Peters-Lidard, Christa/E-1429-2012 OI Garcia, Matthew/0000-0002-9637-4204; Huffman, George/0000-0003-3858-8308; Peters-Lidard, Christa/0000-0003-1255-2876 FU NASA; Terrestrial Hydrology Program [NRA-02-OES-05]; Air Force Weather Agency [MIPR F2BBAJ6033GB01] FX This research was supported in part by the NASA Precipitation Measurement Missions Program and the Terrestrial Hydrology Program under solicitation NRA-02-OES-05 (PI: Peters-Lidard) and the Air Force Weather Agency MIPR F2BBAJ6033GB01 (PI: Peters-Lidard). The authors wish to thank Mathew Sapiano, Dan Braithwaite, Ying Lin, Pingping Xie, and Yelena Yarosh for assistance with data access and questions and three anonymous reviewers for their in-depth comments and suggestions. NR 44 TC 96 Z9 97 U1 1 U2 25 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD DEC 16 PY 2009 VL 114 AR D24101 DI 10.1029/2009JD011949 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 535CN UT WOS:000272944300001 ER PT J AU Smith, MW Jordan, KC Park, C Kim, JW Lillehei, PT Crooks, R Harrison, JS AF Smith, Michael W. Jordan, Kevin C. Park, Cheol Kim, Jae-Woo Lillehei, Peter T. Crooks, Roy Harrison, Joycelyn S. TI Very long single- and few-walled boron nitride nanotubes via the pressurized vapor/condenser method SO NANOTECHNOLOGY LA English DT Article ID PURE BN NANOTUBES; CARBON NANOTUBES; GROWTH; YARNS AB A new method for producing long, small-diameter, single- and few-walled, boron nitride nanotubes (BNNTs) in macroscopic quantities is reported. The pressurized vapor/condenser (PVC) method produces, without catalysts, highly crystalline, very long, small-diameter, BNNTs. Palm-sized, cotton-like masses of BNNT raw material were grown by this technique and spun directly into centimeters-long yarn. Nanotube lengths were observed to be 100 times that of those grown by the most closely related method. Self-assembly and growth models for these long BNNTs are discussed. C1 [Smith, Michael W.; Lillehei, Peter T.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Jordan, Kevin C.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Park, Cheol; Kim, Jae-Woo; Crooks, Roy] Natl Inst Aerosp, Hampton, VA 23666 USA. [Harrison, Joycelyn S.] AF Off Sci Res, Arlington, VA 22230 USA. RP Smith, MW (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM Michael.W.Smith@NASA.gov; Cheol.Park-1@NASA.gov RI Kim, Jae-Woo/A-8314-2008; Lillehei, Peter/C-9196-2009 OI Lillehei, Peter/0000-0001-8183-9980 FU NASA Langley Creativity and Innovation Program; NASA Subsonic Fixed Wing program; Thomas Jefferson National Accelerator Facility [DE-AC05-06OR23177] FX This work was supported in part by the NASA Langley Creativity and Innovation Program, the NASA Subsonic Fixed Wing program, the Thomas Jefferson National Accelerator Facility (DOE contract no. DE-AC05-06OR23177) and The Commonwealth of Virginia. Special thanks are due to the FEL Division of JLab for hosting the experiments. NR 23 TC 61 Z9 61 U1 4 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD DEC 16 PY 2009 VL 20 IS 50 AR 505604 DI 10.1088/0957-4484/20/50/505604 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 524TN UT WOS:000272166200016 PM 19907071 ER PT J AU Bamsey, M Berinstain, A Graham, T Neron, P Giroux, R Braham, S Ferl, R Paul, AL Dixon, M AF Bamsey, M. Berinstain, A. Graham, T. Neron, P. Giroux, R. Braham, S. Ferl, R. Paul, A. -L. Dixon, M. TI Developing strategies for automated remote plant production systems: Environmental control and monitoring of the Arthur Clarke Mars Greenhouse in the Canadian High Arctic SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Advanced life support; Biological life support; Greenhouse; Plant production; Autonomous operation; Space analogue AB The Arthur Clarke Mars Greenhouse is a unique research facility dedicated to the study of greenhouse engineering and autonomous functionality under extreme operational conditions, in preparation for extraterrestrial biologically-based life support systems. The Arthur Clarke Mars Greenhouse is located at the Haughton Mars Project Research Station on Devon Island in the Canadian High Arctic. The greenhouse has been operational since 2002. Over recent years the greenhouse has served as a controlled environment facility for conducting scientific and operationally relevant plant growth investigations in an extreme environment. Since 2005 the greenhouse has seen the deployment of a refined nutrient control system, an improved imaging system capable of remote assessment of basic plant health parameters, more robust communication and power systems as well as the implementation of a distributed data acquisition system. Though several other Arctic greenhouses exist, the Arthur Clarke Mars Greenhouse is distinct in that the focus is on autonomous operation as opposed to strictly plant production. Remote control and autonomous operational experience has applications both terrestrially in production greenhouses and extraterrestrially where future long duration Moon/Mars missions will utilize biological life support systems to close the air, food and water loops. Minimizing crew time is an important goal for any space-based system. The experience gained through the remote operation of the Arthur Clarke Mars Greenhouse is providing the experience necessary to optimize future plant production systems and minimize crew time requirements. Internal greenhouse environmental data shows that the fall growth season (July-September) provides an average photosynthetic photon flux of 161.09 mu mol m(-2) s(-1) (August) and 76.76 mu mol m(-2) s(-1) (September) with approximately a 24 h photoperiod. The spring growth season provides an average of 327.51 mu mol, m(-2) s(-1) (May) and 339.32 mu mol m(-2) s(-1) (June) demonstrating that even at high latitudes adequate light is available for crop growth during 4-5 months of the year. The Canadian Space Agency Development Greenhouse [now operational] serves as a test-bed for evaluating new systems prior to deployment in the Arthur Clarke Mars Greenhouse. This greenhouse is also used as a venue for public outreach relating to biological life support research and its corresponding terrestrial spin-offs. Crown copyright (C) 2009 Published by Elsevier Ltd. on behalf of COSPAR. All rights reserved. C1 [Bamsey, M.; Berinstain, A.; Neron, P.; Giroux, R.] Canadian Space Agcy, Space Sci, St Hubert, PQ J3Y 8Y9, Canada. [Bamsey, M.; Berinstain, A.; Graham, T.; Dixon, M.] Univ Guelph, Dept Environm Biol, Guelph, ON N1G 2W1, Canada. [Braham, S.] Simon Fraser Univ, PolyLAB, Vancouver, BC V6B 5K3, Canada. [Braham, S.] NASA, Mars Inst, Moffett Field, CA 94035 USA. [Ferl, R.; Paul, A. -L.] Univ Florida, Gainesville, FL 32601 USA. RP Bamsey, M (reprint author), Canadian Space Agcy, Space Sci, 6767 Route Aeroport, St Hubert, PQ J3Y 8Y9, Canada. EM matthew.bamsey@asc-csa.gc.ca FU SpaceRef Interactive, Inc.; Ontario Centres of Excellence (OCE); NASA; Canadian Space Agency; University of Guelph; Simon Fraser University; SETI Institute FX The Haughton Mars Project Arthur Clarke Mars Greenhouse shell was donated by SpaceRef Interactive, Inc. and established at the project's Base Camp (now Haughton Mars Project Research Station) with initial sponsorship support from the Ontario Centres of Excellence (OCE) and NASA. The greenhouse facility is currently managed and operated by the Mars Institute, in partnership with the SETI Institute and Simon Fraser University. Alain Berinstain of the Canadian Space Agency and the University of Guelph is the current Principal Investigator in the Arthur Clarke Mars Greenhouse. The ongoing research program and outfitting of the greenhouse is supported by the Canadian Space Agency, the University of Guelph, Simon Fraser University and the SETI Institute. NR 24 TC 2 Z9 4 U1 6 U2 18 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD DEC 15 PY 2009 VL 44 IS 12 BP 1367 EP 1381 DI 10.1016/j.asr.2009.08.012 PG 15 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 530BL UT WOS:000272563800001 ER PT J AU Kim, MHY Hayat, MJ Feiveson, AH Cucinotta, FA AF Kim, Myung-Hee Y. Hayat, Matthew J. Feiveson, Alan H. Cucinotta, Francis A. TI Using high-energy proton fluence to improve risk prediction for consequences of solar particle events SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Space radiation risk; BFO dose risk; Risk assessment; Solar particle events; Radiation protection ID SPACE; UNCERTAINTIES; EXPLORATION; MISSIONS; EXPOSURE AB The potential for exposure to large solar particle events (SPEs) with high energy levels is a major concern during interplanetary transfer and extra-vehicular activities (EVAs) on the lunar and Mars surface. Previously, we have used data from the last 5 solar cycles to estimate percentiles of dose to a typical blood-forming organ (BFO) for a hypothetical astronaut in a nominally shielded spacecraft during a 120-d lunar mission. As part of this process, we made use of complete energy spectra for 34 large historical SPEs to calculate what the BFO mGy-Eq dose would have been in the above lunar scenario for each SPE. From these calculated doses, we then developed a prediction model for BFO dose based solely on an assumed value of integrated fluence above 30 MeV (Phi(30)) for an otherwise unspecified future SPE. In this study, we reasoned that since BFO dose is determined more by protons with higher energies than by those with lower energies, more accurate BFO dose prediction models could be developed using integrated fluence above 60 (Phi(60)) and above 100 MeV (Phi(100)) as predictors instead Of Phi(30). However to calculate the unconditional probability of a BFO dose exceeding a pre-specified limit ("BFO dose risk"), one must also take into account the distribution of the predictor (Phi(30), Phi(60), or Phi(100)), as estimated from historical SPEs. But Phi(60) and Phi(100) have more variability, and less available historical information on which to estimate their distributions over many SPE occurrences, than does Phi(30). Therefore, when estimating BFO dose risk there is a tradeoff between increased BFO dose prediction at a given energy threshold and decreased accuracy of models for describing the distribution of that threshold over future SPEs as the threshold increases. Even when taking the second of these two factors into account, we still arrived at the conclusion that overall prediction improves as the energy level threshold increases from 30 to 60 to 100 MeV. These results can be applied to the development of approaches to improve radiation protection of astronauts and the optimization of mission planning for future space missions. (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Kim, Myung-Hee Y.; Hayat, Matthew J.] Univ Space Res Assoc, Div Space Life Sci, Houston, TX 77058 USA. [Feiveson, Alan H.; Cucinotta, Francis A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Kim, MHY (reprint author), Univ Space Res Assoc, Div Space Life Sci, 2101 NASA Pkwy,SK-SRPE-B37, Houston, TX 77058 USA. EM myung-hee.y.kim@nasa.gov OI Kim, Myung-Hee/0000-0001-5575-6858 FU NASA Space Radiation Risk Assessment Project; Earth-Moon-Mars Radiation Exposure Module (EMMREM) FX This work was supported in part by the NASA Space Radiation Risk Assessment Project and the Living with Star Program's Earth-Moon-Mars Radiation Exposure Module (EMMREM) support at NASA Johnson Space Center. NR 22 TC 9 Z9 9 U1 0 U2 1 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD DEC 15 PY 2009 VL 44 IS 12 BP 1428 EP 1432 DI 10.1016/j.asr.2009.07.028 PG 5 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 530BL UT WOS:000272563800006 ER PT J AU Zhang, Y Clement, JQ Gridley, DS Rodhe, LH Wu, HL AF Zhang, Ye Clement, Jade Q. Gridley, Daila S. Rodhe, Larry H. Wu, Honglu TI Protein expression profile changes in human fibroblasts induced by low dose energetic protons SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Proton irradiation; Low dose; Protein expression; Antibody microarray ID HUMAN LUNG FIBROBLASTS; GENE-EXPRESSION; IONIZING-RADIATION; DNA-DAMAGE; GAMMA-IRRADIATION; CELLS; PROLIFERATION; MICROARRAYS; ACTIVATION; CHECKPOINT AB Extrapolation of known radiation risks to the risks from low dose and low dose-rate exposures of human population, especially prolonged exposures of astronauts in the space radiation environment, relies in part on the mechanistic understanding of radiation induced biological consequences at the molecular level. While some genomic data at the mRNA level are available for cells or animals exposed to radiation, the data at the protein level are still lacking. Here, we studied protein expression profile changes using Panorama antibody microarray chips that contain antibodies to 224 proteins (or their phosphorylated forms) involved in cell signaling that included mostly apoptosis, cytoskeleton, cell cycle and signal transduction. Normal human fibroblasts were cultured until fully confluent and then exposed to 2 cGy of 150 MeV protons at high-dose rate. The proteins were isolated at 2 or 6 h after exposure and labeled with Cy3 for the irradiated cells and with Cy5 for the control samples before loading onto the protein microarray chips. The intensities of the protein spots were analyzed using ScanAlyze software and normalized by the summed fluorescence intensities and the housekeeping proteins. The results showed that low dose protons altered the expression of more than 10% of the proteins listed in the microarray analysis in various protein functional groups. Cell cycle (24%) related proteins were induced by protons and most of them were regulators of G1/S-transition phase. Comparison of the overall protein expression profiles, cell cycle related proteins, cytoskeleton and signal transduction protein groups showed significantly more changes induced by protons compared with other protein functional groups. (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Zhang, Ye] NASA, Lyndon B Johnson Space Ctr, Human Adaptat & Countermeasures Div, Radiat Biophys Lab, Houston, TX 77058 USA. [Zhang, Ye; Rodhe, Larry H.] Univ Houston Clear Lake City, Sch Sci & Comp Engn, Houston, TX 77058 USA. [Clement, Jade Q.] Texas So Univ, Dept Chem, Houston, TX 77004 USA. [Gridley, Daila S.] Loma Linda Univ, Med Ctr, Dept Radiat Med, Loma Linda, CA 92354 USA. RP Zhang, Y (reprint author), NASA, Lyndon B Johnson Space Ctr, Human Adaptat & Countermeasures Div, Radiat Biophys Lab, Mail Code SK,2101 NASA Pkwy, Houston, TX 77058 USA. EM Ye.Zhang-1@nasa.gov RI Gridley, Daila/P-7711-2015 FU NASA Space Radiation Health Program FX We thank Dr. Dianne Hammond and Dr. Megumi Hada for useful discussions and NASA core facilities for technical support. This work was supported by the NASA Space Radiation Health Program. NR 31 TC 2 Z9 2 U1 0 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD DEC 15 PY 2009 VL 44 IS 12 BP 1450 EP 1456 DI 10.1016/j.asr.2009.07.022 PG 7 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 530BL UT WOS:000272563800009 ER PT J AU Treuhaft, RN Chapman, BD dos Santos, JR Goncalves, FG Dutra, LV Graca, PMLA Drake, JB AF Treuhaft, R. N. Chapman, B. D. dos Santos, J. R. Goncalves, F. G. Dutra, L. V. Graca, P. M. L. A. Drake, J. B. TI Vegetation profiles in tropical forests from multibaseline interferometric synthetic aperture radar, field, and lidar measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID LARGE-FOOTPRINT LIDAR; LASER ALTIMETER; MAPPING VEGETATION; CANOPY STRUCTURE; RAIN-FOREST; BAND DATA; BIOMASS; SAR; BACKSCATTER; FUSION AB This paper addresses the estimation of vertical vegetation density profiles from multibaseline interferometric synthetic aperture radar (InSAR) data from the AirSAR aircraft at C band over primary, secondary, and abandoned-pasture stands at La Selva Biological Station, Costa Rica in 2004. Profiles were also estimated from field data taken in 2006 and lidar data taken with the LVIS, 25 m spot instrument in 2005. After motivating the study of tropical forest profiles based on their role in the global carbon cycle, ecosystem state, and biodiversity, this paper describes the InSAR, field, and lidar data acquisitions and analyses. Beyond qualitative agreement between profiles from the 3 measurement techniques, results show that InSAR and lidar profile-averaged mean height have RMS scatters about field-measured means of 3.4 m and 3.2 m, 16% and 15% of the average mean height, respectively. InSAR and lidar standard deviations of the vegetation distribution have RMS scatters about the field standard deviations of 1.9 m and 1.5 m, or 27% and 21%, respectively. Dominant errors in the profile-averaged mean height for each measurement technique were modeled. InSAR inaccuracies, dominated by ambiguities in finding the ground altitude and coherence calibration, together account for about 3 m of InSAR error in the mean height. The dominant, modeled error for the field measurements was the inaccuracy in modeling the trees as uniformly filled volumes of leaf area, inducing field errors in mean height of about 3 m. The dominant, modeled lidar error, also due to finding the ground, was 2 m. C1 [Treuhaft, R. N.; Chapman, B. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [dos Santos, J. R.] Inst Nacl Pesquisas Espaciais, Div Sensoriamento Remoto, BR-12201 Sao Jose Dos Campos, Brazil. [Drake, J. B.] US Forest Serv, USDA, Tallahassee, FL 32303 USA. [Dutra, L. V.] Inst Nacl Pesquisas Espaciais, Div Proc Imagens, BR-12201 Sao Jose Dos Campos, Brazil. [Goncalves, F. G.] Oregon State Univ, Dept Forest Ecosyst & Soc, Corvallis, OR 97331 USA. [Graca, P. M. L. A.] Inst Nacl de Pesquisas da Amazonia, Dept Ecol, Manaus, Amazonas, Brazil. RP Treuhaft, RN (reprint author), CALTECH, Jet Prop Lab, MS 138-212, Pasadena, CA 91109 USA. EM robert.treuhaft@jpl.nasa.gov; bruce.chapman@jpl.nasa.gov; jroberto@dsr.inpe.br; Fabio.Goncalves@oregonstate.edu; dutra@dpi.inpe.br; pmlag@inpa.gov.br; jasondrake@fs.fed.us RI de Alencastro Graca, Paulo Mauricio/B-3375-2013; Dutra, Luciano/C-6582-2009 OI Dutra, Luciano/0000-0002-7757-039X FU National Aeronautics and Space Administration; Brazilian Research Council [308253/2008-6] FX The research described in this paper was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We gratefully acknowledge the support of the Terrestrial Ecology Program, managed by Diane Wickland for the National Aeronautics and Space Administration's Science Mission Directorate. We also acknowledge cooperation with the Brazilian Research Council under grant 308253/2008-6. We thank Danilo Vargas Ramirez and Walter Cruz Cambronero of La Selva Biological Station for invaluable assistance with field measurements. Thanks also go to Marcia Snyder and the La Selva Biological Station GIS laboratory for assistance with the coordination of the InSAR and field measurements, and for providing the QuickBird image in Figure 1. We thank David Clark of La Selva for suggesting flight lines for the AirSAR acquisition. We also thank Ralph Dubaya for suggestions on analysis strategies for the lidar data and J. Bryan Blair for the delivery and explanation of the 2005 LVIS data. We are grateful to Lawrence Young of Jet Propulsion Laboratory for a careful reading of the manuscript and numerous helpful suggestions. NR 67 TC 24 Z9 25 U1 0 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD DEC 15 PY 2009 VL 114 AR D23110 DI 10.1029/2008JD011674 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 535CL UT WOS:000272944100001 ER PT J AU Conger, CL Fletcher, CH Hochberg, EH Frazer, N Rooney, JJB AF Conger, C. L. Fletcher, C. H. Hochberg, E. H. Frazer, N. Rooney, J. J. B. TI Remote sensing of sand distribution patterns across an insular shelf: Oahu, Hawaii SO MARINE GEOLOGY LA English DT Article DE shelf sand; reef; spatial statistics; Hawaii; remote sensing; classification ID HOLOCENE REEF DEVELOPMENT; CORAL-REEFS; KAILUA BAY; SOUTHERN MOLOKAI; WINDWARD OAHU; ISLANDS; BATHYMETRY; MORPHOLOGY; HISTORY; MARINE AB Sandy substrate is important as a resource, habitat, and dynamic region of the bathymetry. We find that sand storage across the insular shelf of Oahu, Hawaii is controlled most strongly by general insular shelf morphology and to a lesser degree by hydrodynamic energy. Shelf sand is predominantly found in water depths less than or crossing the 10 m contour. We use remote sensing to identify and classify 14,037 individual sand deposits in nine study regions. A supervised classification algorithm aggregates these into five classes with 14 subclasses. Almost 63% of all sandy surface area falls into two subclasses of the Channels and Connected Fields class, 1) Major Channels and 2) Unchannelized Drainage. These subclasses connect regions of sediment production to regions of sediment storage on the insular shelf surface. This study is the first to quantitatively analyze and classify shelf sand deposits, in a high volcanic island coral reef setting. (C) 2009 Elsevier B.V. All rights reserved. C1 [Conger, C. L.] Univ Hawaii Manoa, Sch Ocean & Earth Sci, Sea Grant Coll Program, Honolulu, HI 96822 USA. [Fletcher, C. H.; Frazer, N.] Univ Hawaii Manoa, Sch Ocean & Earth Sci, Dept Geol & Geophys, Honolulu, HI 96822 USA. [Hochberg, E. H.] Nova SE Univ, Oceanog Ctr, Dania, FL 33004 USA. [Rooney, J. J. B.] Univ Hawaii, Joint Inst Marine & Atmospher Res, Pacific Isl Fisheries Sci Ctr, Natl Marine Fisheries Serv,Kewalo Res Facil, Honolulu, HI 96814 USA. RP Conger, CL (reprint author), Univ Hawaii Manoa, Sch Ocean & Earth Sci, Sea Grant Coll Program, 2525 Correa Rd, Honolulu, HI 96822 USA. EM conger@hawaii.edu; fletcher@soest.hawaii.edu; eric.hochberg@nova.edu; neil@soest.hawaii.edu; John.Rooney@noaa.gov FU Office of Naval Research [N00014-02-0799]; National Oceanic and Atmospheric Administration [R/TR-6]; University of Hawaii Sea Grant College; SOEST; NOAA Office of Sea Grant, Department of Commerce [NA05OAR4171048] FX This paper is funded in part by a grant/cooperative agreement from the National Oceanic and Atmospheric Administration, Project # R/TR-6, which is sponsored by the University of Hawaii Sea Grant College Program, SOEST, under the Institutional Grant No. NA05OAR4171048 from the NOAA Office of Sea Grant, Department of Commerce. The views expressed herein are those of the author(s) and do not necessarily reflect the views of NOAA or any of its subagencies. UNIHI-SEAGRANT-JC-10-01. NR 37 TC 5 Z9 5 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0025-3227 J9 MAR GEOL JI Mar. Geol. PD DEC 15 PY 2009 VL 267 IS 3-4 BP 175 EP 190 DI 10.1016/j.margeo.2009.10.005 PG 16 WC Geosciences, Multidisciplinary; Oceanography SC Geology; Oceanography GA 534DN UT WOS:000272875800006 ER PT J AU Sen, SK Shaykhian, GA AF Sen, S. K. Shaykhian, Gholam Ali TI MatLab tutorial for scientific and engineering computations International Federation of Nonlinear Analysts (IFNA); 2008 World Congress of Nonlinear Analysts (WCNA) SO NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS LA English DT Article DE MatLab; Symbolic calculations; Matrix manipulations; Graphical functions AB The computing scenario over centuries/millenniums has been changing based on the tools/power of tools - often innovative - available to mankind. We discuss here in tutorial form various features of MatLab and their usage to solve problems. MatLab is one of the most widely used, very high level programming languages for scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. Also, stated are the current limitations of the MatLab, which possibly can be taken care of by Mathworks Inc. in a future version to make MatLab more versatile. Published by Elsevier Ltd C1 [Shaykhian, Gholam Ali] NASA, Kennedy Space Ctr, FL 32899 USA. [Sen, S. K.] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA. RP Shaykhian, GA (reprint author), NASA, Kennedy Space Ctr, FL 32899 USA. EM sksen@fit.edu; ali.shaykhian@nasa.gov NR 11 TC 3 Z9 4 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0362-546X J9 NONLINEAR ANAL-THEOR JI Nonlinear Anal.-Theory Methods Appl. PD DEC 15 PY 2009 VL 71 IS 12 BP E1005 EP E1020 DI 10.1016/j.na.2009.01.069 PG 16 WC Mathematics, Applied; Mathematics SC Mathematics GA 599ZJ UT WOS:000277952800001 ER PT J AU Savoie, MH Armstrong, RL Brodzik, MJ Wang, JR AF Savoie, Matthew H. Armstrong, Richard L. Brodzik, Mary J. Wang, James R. TI Atmospheric corrections for improved satellite passive microwave snow cover retrievals over the Tibet Plateau SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Snow cover; Tibet Plateau; Passive microwave; Atmospheric correction; Radiative transfer; MODIS; IMS; Passive microwave snow ID WATER EQUIVALENT; IDENTIFICATION; ALGORITHM; EXTENT; VAPOR AB Since 1978, satellite passive microwave data have been used to derive hemispheric-scale snow cover maps. The seasonal and inter-annual variability of the microwave snow maps compares reasonably well with simultaneous maps of snow cover derived from satellite-based, visible-wavelength sensors. In general, the microwave-derived maps tend to underestimate snow extent during fall and early winter, due to a weak signal from shallow and intermittent snow cover. During the early snow season the microwave may underestimate by as much as 20%, decreasing to a few percent during mid-winter and spring. The Tibet Plateau is the only large geographic region where microwave retrievals tend to consistently overestimate snow-covered area compared to the visible data. This has been noted in limited case studies comparing visible and microwave snow data. The persistence of the microwave overestimate is also demonstrated in multi-year climatologies. Current microwave algorithms used to derive snow cover are based on ground or aircraft measurements that are later fine-tuned to match satellite retrievals. In this way, the algorithms have implicitly accounted for the presence of an atmosphere, because the surface or scene brightness values applied in the algorithms have actually passed through the atmosphere along their path to reach the satellite sensor. These methods are reasonably accurate when applied as a global algorithm to most snow-covered regions. However, a thinner atmosphere between the surface and satellite is likely the source of the consistent snow extent overestimate on the Tibet Plateau, where elevations range from 3200 to 5000 m. Wang and Manning (2003) have suggested that adjustments to ground or aircraft microwave measurements are needed to compare with satellite-based measurements. Based on their work, we propose a methodology to adjust satellite-based microwave brightness temperatures as a function of the observed surface elevation, thereby reducing the microwave snow cover overestimate on the Tibet Plateau. We include comparisons to snow maps derived from selected visible-wavelength products. We estimate that the adjusted microwave algorithm reduces the Tibet Plateau area of disagreement with the visible products by approximately 17% (468,000 km(2)) over the snow season. (C) 2009 Elsevier Inc. All rights reserved. C1 [Savoie, Matthew H.; Armstrong, Richard L.; Brodzik, Mary J.] Univ Colorado, Natl Snow & Ice Data Ctr, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Wang, James R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Savoie, MH (reprint author), Univ Colorado, Natl Snow & Ice Data Ctr, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. EM savoie@nsidc.org NR 29 TC 22 Z9 28 U1 0 U2 14 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD DEC 15 PY 2009 VL 113 IS 12 BP 2661 EP 2669 DI 10.1016/j.rse.2009.08.006 PG 9 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 519MS UT WOS:000271771300011 ER PT J AU Voulgarakis, A Yang, X Pyle, JA AF Voulgarakis, A. Yang, X. Pyle, J. A. TI How different would tropospheric oxidation be over an ice-free Arctic? SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID POLLUTION TRANSPORT; AIR-POLLUTION; PHOTOLYSIS; CLOUDS; OZONE; MODEL; POLLUTANTS; IMPACTS; SURFACE AB Climate projections suggest that a complete Arctic scaice retreat is likely in the future during summer. Less ice will cause less light reflection and slower tropospheric photolysis. We use a tropospheric chemistry model to examine how oxidation may differ over an ice-free Arctic. We find that late-summer OH concentrations can decrease by 30-60% at polar latitudes, while effects on local ozone and global oxidant abundances are small. Ozone changes become larger in the more extreme case where sea-ice is also removed in spring and early summer. In this case, we find large spring ozone increases (up to 50-60%) over the Arctic, and even over inhabited high latitude regions (up to 20%), due mainly to a reduction in the impact of bromine chemistry, caused by the sea-ice retreat. Annual mean ozone also increases in the run with the summer/spring sea-ice removal, but not in the simulation including only late-summer sea-ice removal. Citation: Voulgarakis, A., X. Yang, and J.A. Pyle (2009), How different would tropospheric oxidation be over an ice-free Arctic?, Geophys. Res. Lett., 36, L23807, doi: 10.1029/2009GL040541. C1 [Voulgarakis, A.; Yang, X.; Pyle, J. A.] Univ Cambridge, Dept Chem, Ctr Atmospher Sci, Cambridge CB2 1EW, England. RP Voulgarakis, A (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM avoulgarakis@giss.nasa.gov FU NERC and NCAS (UK) FX The authors wish to thank NERC and NCAS (UK) for funding the research presented here. We also thank P. Berrisford for providing the ECMWF data and R. Kwok for providing Arctic multi-year sea-ice data. We acknowledge the National Snow and Ice Data Center for the dataset of Monthly Polar Gridded Sea Ice Concentrations. NR 28 TC 10 Z9 10 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 12 PY 2009 VL 36 AR L23807 DI 10.1029/2009GL040541 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 532AB UT WOS:000272714100001 ER PT J AU Dolan, K Masek, JG Huang, CQ Sun, GQ AF Dolan, Katelyn Masek, Jeffrey G. Huang, Chengquan Sun, Guoqing TI Regional forest growth rates measured by combining ICESat GLAS and Landsat data SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID ABOVEGROUND BIOMASS; LIDAR; AIRBORNE AB Forest canopy heights derived from ICESat Geoscience Laser Altimeter System (GLAS) lidar data were combined with Landsat-based disturbance history maps to assess forest regeneration rates in three regions of the eastern United States (Maine, Virginia, and Mississippi). GLAS observations were screened for topographic relief and waveform quality, and canopy heights were obtained by visual inspection of each waveform. Regressing the GLAS heights against the age of last disturbance yielded vertical growth rates of 0.6 m/yr (Maine), 1.0 m/yr (Virginia), and 1.2 m/yr (Mississippi). Growth rates, when combined with height-biomass allometric relations, can be converted to estimates of aboveground wood productivity. The study demonstrates that large-footprint lidar data can be used to measure vertical growth rates when averaged spatially, thus providing unique information on forest regeneration for carbon cycle studies. C1 [Dolan, Katelyn] Univ New Hampshire, Dept Nat Resources, Durham, NH 03824 USA. [Masek, Jeffrey G.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [Huang, Chengquan; Sun, Guoqing] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. RP Dolan, K (reprint author), Univ New Hampshire, Dept Nat Resources, Durham, NH 03824 USA. EM kdolan@unh.edu RI Masek, Jeffrey/D-7673-2012; OI Huang, Chengquan/0000-0003-0055-9798 FU NASA FX Special thanks to the undergraduate Research and Discover internship funded by NASA Goddard Space Flight Center and the University of New Hampshire. This work was also supported through the NASA Terrestrial Ecosystems Program. We thank Ross Nelson for use of the Quebec PALS and biomass measurements. Two anonymous reviewers are also thanked for their comments on the original manuscript. NR 23 TC 13 Z9 13 U1 0 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD DEC 12 PY 2009 VL 114 AR G00E05 DI 10.1029/2008JG000893 PG 7 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 532AK UT WOS:000272715200001 ER PT J AU Peelukhana, SV Back, LH Banerjee, RK AF Peelukhana, Srikara Viswanath Back, Lloyd H. Banerjee, Rupak K. TI Influence of coronary collateral flow on coronary diagnostic parameters: An in vitro study SO JOURNAL OF BIOMECHANICS LA English DT Article DE Coronary collateral flow; Functional diagnostic parameters; Fractional flow reserve; Lesion flow coefficient; Pressure recovery coefficient ID MYOCARDIAL CONTRAST ECHOCARDIOGRAPHY; RATE-PRESSURE-DROP; ARTERY-DISEASE; BLOOD-FLOW; ISCHEMIC EVENTS; RECENT INSIGHTS; ANGIOPLASTY; RESERVE; MECHANISMS; VELOCITY AB Functional severity of coronary stenosis is often assessed using diagnostic parameters. These parameters are evaluated from the combined pressure and/or flow measurements taken at the site of the stenosis. However, when there are functional collaterals operating downstream to the stenosis, the coronary flow-rate increases, and the pressure in the stenosed artery is altered. This effect of downstream collaterals on different diagnostic parameters is studied using a physiological representative in vitro coronary flow-loop. The three diagnostic parameters tested are fractional flow reserve (FFR), lesion flow coefficient (LFC), and pressure drop coefficient (CDP). The latter two were discussed in recent publications by our group (Banerjee et al., 2007, 2008, 2009). They are evaluated for three different severities of stenosis and tested for possible misinterpretation in the presence of variable collateral flows. Pressure and flow are measured with and without downstream collaterals. The diagnostic parameters are then calculated from these readings. In the case of intermediate stenosis (80% area blockage), FFR and LFC increased from 0.74 to 0.77 and 0.58 to 0.62, respectively, for no collateral to fully developed collateral flow. Also, CDP decreased from 47 to 42 for no collateral to fully developed collateral flow. These changes in diagnostic parameters might lead to erroneous postponement of coronary intervention. Thus, variability in diagnostic parameters for the same stenosis might lead to misinterpretation of stenosis severity in the presence of operating downstream collaterals. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Peelukhana, Srikara Viswanath; Banerjee, Rupak K.] Univ Cincinnati, Dept Mech Engn, Cincinnati, OH 45221 USA. [Back, Lloyd H.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Banerjee, Rupak K.] Univ Cincinnati, Dept Biomed Engn, Cincinnati, OH 45221 USA. RP Banerjee, RK (reprint author), Univ Cincinnati, Dept Mech Engn, 593 Rhodes Hall,ML 0072, Cincinnati, OH 45221 USA. EM Rupak.banerjee@uc.edu FU American Heart Association [0335270N, 0755236B] FX This study has been partially funded by the American Heart Association (AHA), Grant numbers 0335270N and 0755236B. NR 39 TC 23 Z9 23 U1 0 U2 1 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-9290 J9 J BIOMECH JI J. Biomech. PD DEC 11 PY 2009 VL 42 IS 16 BP 2753 EP 2759 DI 10.1016/j.jbiomech.2009.08.013 PG 7 WC Biophysics; Engineering, Biomedical SC Biophysics; Engineering GA 537SV UT WOS:000273135200020 PM 19775695 ER PT J AU Abdo, AA Ackermann, M Ajello, M Axelsson, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Baughman, BM Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Brez, A Brigida, M Bruel, P Burnett, TH Buson, S Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cecchi, C Celik, O Chaty, S Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Cominsky, LR Conrad, J Corbel, S Corbet, R Dermer, CD de Palma, F Digel, SW Silva, EDE Drell, PS Dubois, R Dubus, G Dumora, D Farnier, C Favuzzi, C Fegan, SJ Focke, WB Fortin, P Frailis, M Fusco, P Gargano, F Gehrels, N Germani, S Giavitto, G Giebels, B Giglietto, N Giordano, F Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Hanabata, Y Harding, AK Hayashida, M Hays, E Hill, AB Hjalmarsdotter, L Horan, D Hughes, RE Jackson, MS Johannesson, G Johnson, AS Johnson, TJ Johnson, WN Kamae, T Katagiri, H Kawai, N Kerr, M Knodlseder, J Kocian, ML Koerding, E Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Marchand, L Marelli, M Max-Moerbeck, W Mazziotta, MN McColl, N McEnery, JE Meurer, C Michelson, PF Migliari, S Mitthumsiri, W Mizuno, T Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nolan, PL Norris, JP Nuss, E Ohsugi, T Omodei, N Ong, RA Ormes, JF Paneque, D Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Pooley, G Porter, TA Pottschmidt, K Raino, S Rando, R Ray, PS Razzano, M Rea, N Readhead, A Reimer, A Reimer, O Richards, JL Rochester, LS Rodriguez, J Rodriguez, AY Romani, RW Ryde, F Sadrozinski, HFW Sander, A Parkinson, PMS Sgro, C Siskind, EJ Smith, DA Smith, PD Spinelli, P Starck, JL Stevenson, M Strickman, MS Suson, DJ Takahashi, H Tanaka, T Thayer, JB Thompson, DJ Tibaldo, L Tomsick, JA Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vasileiou, V Vilchez, N Vitale, V Waite, AP Wang, P Wilms, J Winer, BL Wood, KS Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Axelsson, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Baughman, B. M. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Brez, A. Brigida, M. Bruel, P. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Celik, Oe Chaty, S. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cominsky, L. R. Conrad, J. Corbel, S. Corbet, R. Dermer, C. D. de Palma, F. Digel, S. W. do Couto e Silva, E. Drell, P. S. Dubois, R. Dubus, G. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Focke, W. B. Fortin, P. Frailis, M. Fusco, P. Gargano, F. Gehrels, N. Germani, S. Giavitto, G. Giebels, B. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Hanabata, Y. Harding, A. K. Hayashida, M. Hays, E. Hill, A. B. Hjalmarsdotter, L. Horan, D. Hughes, R. E. Jackson, M. S. Johannesson, G. Johnson, A. S. Johnson, T. J. Johnson, W. N. Kamae, T. Katagiri, H. Kawai, N. Kerr, M. Knoedlseder, J. Kocian, M. L. Koerding, E. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Marchand, L. Marelli, M. Max-Moerbeck, W. Mazziotta, M. N. McColl, N. McEnery, J. E. Meurer, C. Michelson, P. F. Migliari, S. Mitthumsiri, W. Mizuno, T. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Omodei, N. Ong, R. A. Ormes, J. F. Paneque, D. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Pooley, G. Porter, T. A. Pottschmidt, K. Raino, S. Rando, R. Ray, P. S. Razzano, M. Rea, N. Readhead, A. Reimer, A. Reimer, O. Richards, J. L. Rochester, L. S. Rodriguez, J. Rodriguez, A. Y. Romani, R. W. Ryde, F. Sadrozinski, H. F. -W. Sander, A. Parkinson, P. M. Saz Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spinelli, P. Starck, J. -L. Stevenson, M. Strickman, M. S. Suson, D. J. Takahashi, H. Tanaka, T. Thayer, J. B. Thompson, D. J. Tibaldo, L. Tomsick, J. A. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Wilms, J. Winer, B. L. Wood, K. S. Ylinen, T. Ziegler, M. CA Fermi LAT Collaboration TI Modulated High-Energy Gamma-Ray Emission from the Microquasar Cygnus X-3 SO SCIENCE LA English DT Article ID X-RAY; CYG X-3; BINARIES; PULSARS; SEARCH AB Microquasars are accreting black holes or neutron stars in binary systems with associated relativistic jets. Despite their frequent outburst activity, they have never been unambiguously detected emitting high-energy gamma rays. The Fermi Large Area Telescope (LAT) has detected a variable high-energy source coinciding with the position of the x-ray binary and microquasar Cygnus X-3. Its identification with Cygnus X-3 is secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. The gamma-ray emission probably originates from within the binary system, opening new areas in which to study the formation of relativistic jets. C1 [Abdo, A. A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Ray, P. S.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Axelsson, M.; Hjalmarsdotter, L.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Axelsson, M.; Conrad, J.; Hjalmarsdotter, L.; Jackson, M. S.; Meurer, C.; Ryde, F.; Ylinen, T.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Baldini, L.; Bellazzini, R.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Chaty, S.; Corbel, S.; Grenier, I. A.; Koerding, E.; Rodriguez, J.; Starck, J. -L.; Tibaldo, L.] Univ Paris Diderot, CNRS, CEA Saclay, Lab AIM,CEA IRFU,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Giavitto, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Giavitto, G.; Longo, F.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Takahashi, H.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Rea, N.; Rodriguez, A. Y.; Torres, D. F.] CSIC, IEEC, Inst Ciencies Espai, Barcelona 08193, Spain. [Caraveo, P. A.; Marelli, M.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy. [Celik, Oe; Corbet, R.; Gehrels, N.; Harding, A. K.; Hays, E.; Johnson, T. J.; McEnery, J. E.; Pottschmidt, K.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Corbet, R.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe; Corbet, R.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Conrad, J.; Meurer, C.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Corbel, S.] Inst Univ France, F-75005 Paris, France. [Dubus, G.; Hill, A. B.] Univ Grenoble 1, CNRS, UMR 5571, Lab Astrophys Grenoble LAOG, F-38041 Grenoble 09, France. [Dumora, D.; Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Smith, D. A.] Univ Bordeaux, CEN Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Smith, D. A.] CEN Bordeaux Gradignan, CNRS, UMR 5797, IN2P3, F-33175 Gradignan, France. [Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Gehrels, N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Gehrels, N.; Johnson, T. J.; McEnery, J. E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Gehrels, N.; Johnson, T. J.; McEnery, J. E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Guillemot, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Guiriec, S.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Hanabata, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Jackson, M. S.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Kawai, N.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Knoedlseder, J.; Marchand, L.; McColl, N.; Ong, R. A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Max-Moerbeck, W.; Readhead, A.; Richards, J. L.; Stevenson, M.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Migliari, S.] ESAC, Madrid 28691, Spain. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Pooley, G.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Porter, T. A.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Porter, T. A.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Rea, N.] Sterrenkundig Inst Anton Pannekoek, NL-1095 SJ Amsterdam, Netherlands. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tomsick, J. A.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Torres, D. F.] ICREA, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Wilms, J.] Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM stephane.corbel@cea.fr; Robin.Corbet@nasa.gov; Guillaume.Dubus@obs.ujf-grenoble.fr RI Starck, Jean-Luc/D-9467-2011; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Wilms, Joern/C-8116-2013; Tosti, Gino/E-9976-2013; Saz Parkinson, Pablo Miguel/I-7980-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Rea, Nanda/I-2853-2015; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; OI Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Ray, Paul/0000-0002-5297-5278; Starck, Jean-Luc/0000-0003-2177-7794; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Wilms, Joern/0000-0003-2065-5410; SPINELLI, Paolo/0000-0001-6688-8864; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Hill, Adam/0000-0003-3470-4834; Bastieri, Denis/0000-0002-6954-8862; Rodriguez, Jerome/0000-0002-4151-4468; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Reimer, Olaf/0000-0001-6953-1385; Rea, Nanda/0000-0003-2177-6388; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Sgro', Carmelo/0000-0001-5676-6214; Chaty, Sylvain/0000-0002-5769-8601 FU NASA; Department of Energy in the United States; CEA/Institut de Recherches sur les lois Fondamentales de l'Univers and l'Institut National de Physique Nucleaire et de Physique des Particules/CNRS in France; Agenzia Spaziale Italiana and Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology; National Laboratory for High Energy Physics; Japan Aerospace Exploration Agency in Japan; Wallenberg Foundation; Swedish Research Council; National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France; K. A. Wallenberg Foundation; European Community [ERC-StG-200911] FX The Fermi LAT Collaboration acknowledges support from a number of agencies and institutes for both development and the operation of the LAT as well as scientific data analysis. These include NASA and the Department of Energy in the United States; CEA/Institut de Recherches sur les lois Fondamentales de l'Univers and l'Institut National de Physique Nucleaire et de Physique des Particules/CNRS in France; the Agenzia Spaziale Italiana and Istituto Nazionale di Fisica Nucleare in Italy; the Ministry of Education, Culture, Sports, Science and Technology, National Laboratory for High Energy Physics (KEK), and Japan Aerospace Exploration Agency in Japan; and the K. A. Wallenberg Foundation, Swedish Research Council and National Space Board in Sweden. Additional support from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France for science analysis during the operations phase is also gratefully acknowledged. J. C. is a Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K. A. Wallenberg Foundation. G. D. and A. B. H. are funded by contract ERC-StG-200911 from the European Community. NR 27 TC 115 Z9 116 U1 0 U2 8 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD DEC 11 PY 2009 VL 326 IS 5959 BP 1512 EP 1516 DI 10.1126/science.1182174 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 530WS UT WOS:000272623600051 ER PT J AU Abdo, AA Ackermann, M Ajello, M Atwood, WB Axelsson, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bregeon, J Brez, A Brigida, M Bruel, P Burnett, TH Caliandro, GA Cameron, RA Cannon, A Caraveo, PA Casandjian, JM Cavazzuti, E Cecchi, C Celik, O Charles, E Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Colafrancesco, S Conrad, J Costamante, L Cutini, S Davis, DS Dermer, CD de Angelis, A de Palma, F Digel, SW Donato, D Silva, EDE Drell, PS Dubois, R Dumora, D Edmonds, Y Farnier, C Favuzzi, C Fegan, SJ Finke, J Focke, WB Fortin, P Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Georganopoulos, M Germani, S Giebels, B Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Hanabata, Y Harding, AK Hayashida, M Hays, E Horan, D Johannesson, G Johnson, AS Johnson, RP Johnson, TJ Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Knodlseder, J Kocian, ML Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Mazziotta, MN McConville, W McEnery, JE Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nolan, PL Norris, JP Nuss, E Ohsugi, T Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Reposeur, T Ritz, S Rochester, LS Rodriguez, AY Romani, RW Roth, M Ryde, F Sadrozinski, HFW Sambruna, R Sanchez, D Sander, A Parkinson, PMS Scargle, JD Sgro, C Shaw, MS Smith, DA Smith, PD Spandre, G Spinelli, P Strickman, MS Suson, DJ Tajima, H Takahashi, H Tanaka, T Taylor, GB Thayer, JB Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vasileiou, V Vilchez, N Waite, AP Wang, P Winer, BL Wood, KS Ylinen, T Ziegler, M Harris, DE Massaro, F Stawarz, L AF Abdo, A. A. Ackermann, M. Ajello, M. Atwood, W. B. Axelsson, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Burnett, T. H. Caliandro, G. A. Cameron, R. A. Cannon, A. Caraveo, P. A. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Celik, Oe Charles, E. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Colafrancesco, S. Conrad, J. Costamante, L. Cutini, S. Davis, D. S. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. Donato, D. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Edmonds, Y. Farnier, C. Favuzzi, C. Fegan, S. J. Finke, J. Focke, W. B. Fortin, P. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Georganopoulos, M. Germani, S. Giebels, B. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Hanabata, Y. Harding, A. K. Hayashida, M. Hays, E. Horan, D. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, T. J. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Knoedlseder, J. Kocian, M. L. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Mazziotta, M. N. McConville, W. McEnery, J. E. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Ritz, S. Rochester, L. S. Rodriguez, A. Y. Romani, R. W. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sambruna, R. Sanchez, D. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Sgro, C. Shaw, M. S. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Tanaka, T. Taylor, G. B. Thayer, J. B. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vasileiou, V. Vilchez, N. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Ylinen, T. Ziegler, M. Harris, D. E. Massaro, F. Stawarz, L. TI FERMI LARGE AREA TELESCOPE GAMMA-RAY DETECTION OF THE RADIO GALAXY M87 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: individual (M87); galaxies: jets; gamma rays: observations; radiation mechanisms: non-thermal ID ACTIVE GALACTIC NUCLEI; SYNCHROTRON-PROTON BLAZAR; SUPERMASSIVE BLACK-HOLE; TEV EMISSION; UNIFIED SCHEMES; LAC OBJECTS; SOURCE LIST; EGRET DATA; JET; VARIABILITY AB We report the Fermi Large Area Telescope (LAT) discovery of high-energy (MeV/GeV) gamma-ray emission positionally consistent with the center of the radio galaxy M87, at a source significance of over 10 sigma in 10 months of all-sky survey data. Following the detections of Cen A and Per A, this makes M87 the third radio galaxy seen with the LAT. The faint point-like gamma-ray source has a >100 MeV flux of 2.45 (+/-0.63) x 10(-8) photons cm(-2) s(-1) (photon index = 2.26 +/- 0.13) with no significant variability detected within the LAT observation. This flux is comparable with the previous EGRET upper limit (<2.18 x 10-8 photons cm(-2) s(-1), 2 sigma), thus there is no evidence for a significant MeV/GeV flare on decade timescales. Contemporaneous Chandra and Very Long Baseline Array data indicate low activity in the unresolved X-ray and radio core relative to previous observations, suggesting M87 is in a quiescent overall level over the first year of Fermi-LAT observations. The LAT gamma-ray spectrum is modeled as synchrotron self-Compton (SSC) emission from the electron population producing the radio-to-X-ray emission in the core. The resultant SSC spectrum extrapolates smoothly from the LAT band to the historical-minimum TeV emission. Alternative models for the core and possible contributions from the kiloparsec-scale jet in M87 are considered, and cannot be excluded. C1 [Abdo, A. A.; Cheung, C. C.; Dermer, C. D.; Finke, J.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Strickman, M. S.; Wood, K. S.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Costamante, L.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Edmonds, Y.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Shaw, M. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Costamante, L.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Edmonds, Y.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Shaw, M. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, W. B.; Johnson, R. P.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Johnson, R. P.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Axelsson, M.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Axelsson, M.; Conrad, J.; Meurer, C.; Ryde, F.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Tibaldo, L.] Univ Paris Diderot, CEA Saclay, Serv Astrophys, Lab AIM,CEA IRFU,CNRS, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ & Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Horan, D.; Sanchez, D.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Celik, Oe; Moiseev, A. A.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Cannon, A.] Univ Coll Dublin, Dublin 4, Ireland. [Caraveo, P. A.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy. [Cavazzuti, E.; Colafrancesco, S.; Cutini, S.; Gasparrini, D.; Giommi, P.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00044 Frascati, Roma, Italy. [Celik, Oe; Davis, D. S.; Georganopoulos, M.; Vasileiou, V.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Meurer, C.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.; Johnson, T. J.; McConville, W.; Moiseev, A. A.] Univ Maryland, College Pk, MD 20742 USA. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Guiriec, S.] Univ Alabama, Huntsville, AL 35899 USA. [Kataoka, J.; Kawai, N.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan. [Kawai, N.] RIKEN, Cosm Radiat Lab, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] UPS, Ctr Etud Spatiale Rayonnements, CNRS, F-31028 Toulouse 4, France. [Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Morselli, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astrophys, Denver, CO 80208 USA. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Ozaki, M.; Uchiyama, Y.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Rodriguez, A. Y.; Torres, D. F.] CSIC, IEEC, Inst Ciencies Espai, Barcelona 08193, Spain. [Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Taylor, G. B.] Univ New Mexico, Albuquerque, NM 87131 USA. [Torres, D. F.] ICREA, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. [Harris, D. E.; Massaro, F.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Stawarz, L.] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland. RP Abdo, AA (reprint author), USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. EM Teddy.Cheung.ctr@nrl.navy.mil; wmcconvi@umd.edu RI Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Massaro, Francesco/L-9102-2016; Torres, Diego/O-9422-2016; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012 OI Cutini, Sara/0000-0002-1271-2924; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; SPINELLI, Paolo/0000-0001-6688-8864; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Axelsson, Magnus/0000-0003-4378-8785; Giroletti, Marcello/0000-0002-8657-8852; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Massaro, Francesco/0000-0002-1704-9850; Torres, Diego/0000-0002-1522-9065; Rando, Riccardo/0000-0001-6992-818X; Sgro', Carmelo/0000-0001-5676-6214; Giordano, Francesco/0000-0002-8651-2394; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; FU NASA [GO8-9116X, GO9-0108X]; Foundation BLANCEFLOR Boncompagni-Ludovisi, n'ee Bildt FX C. C. C. was supported by an appointment to the NASA Post-doctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. Support from NASA grants GO8-9116X and GO9-0108X (D. E. H. and F. M.) and the Foundation BLANCEFLOR Boncompagni-Ludovisi, n'ee Bildt (F. M.) are acknowledged. This research has made use of data from the MOJAVE database that is maintained by theMOJAVE team (Lister et al. 2009). We thank F. Owen for providing the VLA 90 cm image. NR 61 TC 92 Z9 92 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 10 PY 2009 VL 707 IS 1 BP 55 EP 60 DI 10.1088/0004-637X/707/1/55 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 524SJ UT WOS:000272162900004 ER PT J AU Dodson-Robinson, SE Veras, D Ford, EB Beichman, CA AF Dodson-Robinson, Sarah E. Veras, Dimitri Ford, Eric B. Beichman, C. A. TI THE FORMATION MECHANISM OF GAS GIANTS ON WIDE ORBITS SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; instabilities; planetary systems; planetary systems: formation; stars: formation ID PLANET-PLANET SCATTERING; SPECTRAL ENERGY-DISTRIBUTIONS; GRAVITATIONAL INSTABILITIES; PROTOPLANETARY DISKS; HR 8799; EXTRASOLAR PLANETS; THERMAL REGULATION; CORE ACCRETION; SOLAR NEBULA; PROTOSTELLAR DISKS AB The recent discoveries of massive planets on ultra-wide orbits of HR 8799 and Fomalhaut present a new challenge for planet formation theorists. Our goal is to figure out which of three giant planet formation mechanisms core accretion (with or without migration), scattering from the inner disk, or gravitational instability-could be responsible for Fomalhaut b, HR 8799 b, c and d, and similar planets discovered in the future. This paper presents the results of numerical experiments comparing the long-period planet formation efficiency of each possible mechanism in model A star, G star, and M star disks. First, a simple core accretion simulation shows that planet cores forming beyond 35 AU cannot reach critical mass, even under the most favorable conditions one can construct. Second, a set of N-body simulations demonstrates that planet-planet scattering does not create stable, wide-orbit systems such as HR 8799. Finally, a linear stability analysis verifies previous work showing that global spiral instabilities naturally arise in high-mass disks. We conclude that massive gas giants on stable orbits with semimajor axes a greater than or similar to 35 AU form by gravitational instability in the disk. We recommend that observers examine the planet detection rate as a function of stellar age, controlling for the planets' dimming with time. Any age trend would indicate that planets on wide orbits are transient relics of scattering from the inner disk. If planet detection rate is found to be independent of stellar age, it would confirm our prediction that gravitational instability is the dominant mode of producing detectable planets on wide orbits. We also predict that the occurrence ratio of long-period to short-period gas giants should be highest for M dwarfs due to the inefficiency of core accretion and the expected small fragment mass (similar to 10 M(Jup)) in their disks. C1 [Dodson-Robinson, Sarah E.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Veras, Dimitri; Ford, Eric B.] Univ Florida, Dept Astron, Gainesville, FL 32111 USA. [Beichman, C. A.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. RP Dodson-Robinson, SE (reprint author), Univ Texas Austin, Dept Astron, 1 Univ Stn C1400, Austin, TX 78712 USA. EM sdr@astro.as.utexas.edu OI /0000-0001-6545-639X FU NASA; National Science Foundation [0707203]; University of Florida FX Funding for S. D. R.' s work was provided by NASA through the Spitzer Space Telescope Fellowship Program. E. B. F. and D. V. received support from the National Science Foundation under the NSF grant listed below and the University of Florida under the auspices of U. F.' s High-Performance Computing Center. This project was the outgrowth of discussions at the 2009 Florida AstrophysicsWinter Workshop which was supported by the University of Florida and the NSF grant listed below. The authors acknowledge valuable discussion among the workshop participants, particularly Ruth Murray-Clay, Kaitlin Kratter, Althea Moorhead, and Andrew Youdin. The authors also thank Aaron Boley, John Johnson, Christian Marois, Greg Laughlin, and Peter Bodenheimer for input on this work. The referee, Richard Durisen, provided particularly valuable insight into the current state of the gravitational instability subfield. This material is based upon work supported by the National Science Foundation under grant No. 0707203. NR 91 TC 113 Z9 113 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 10 PY 2009 VL 707 IS 1 BP 79 EP 88 DI 10.1088/0004-637X/707/1/79 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 524SJ UT WOS:000272162900008 ER PT J AU Stutz, AM Rieke, GH Bieging, JH Balog, Z Heitsch, F Kang, M Peters, WL Shirley, YL Werner, MW AF Stutz, Amelia M. Rieke, George H. Bieging, John H. Balog, Zoltan Heitsch, Fabian Kang, Miju Peters, William L. Shirley, Yancy L. Werner, Michael W. TI SPITZER AND HEINRICH HERTZ TELESCOPE OBSERVATIONS OF STARLESS CORES: MASSES AND ENVIRONMENTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; ISM: clouds; ISM: globules; ISM: molecules; stars: formation ID PRE-PROTOSTELLAR CORES; MOLECULAR CLOUD CORES; INFRARED DARK CLOUDS; NIR SCATTERED-LIGHT; IRAS 16293-2422; INFALL MOTIONS; BOK GLOBULES; CO DEPLETION; INITIAL CONDITIONS; MAGNETIC-FIELD AB We present Spitzer observations of a sample of 12 starless cores selected to have prominent 24 mu m shadows. The Spitzer images show 8 mu m and 24 mu m shadows and in some cases 70 mu m shadows; these spatially resolved absorption features trace the densest regions of the cores. We have carried out a (12)CO (2-1) and (13)CO (2-1) mapping survey of these cores with the Heinrich Hertz Telescope (HHT). We use the shadow features to derive optical depth maps. We derive molecular masses for the cores and the surrounding environment; we find that the 24 mu m shadow masses are always greater than or equal to the molecular masses derived in the same region, a discrepancy likely caused by CO freezeout onto dust grains. We combine this sample with two additional cores that we studied previously to bring the total sample to 14 cores. Using a simple Jeans mass criterion, we find that similar to 2/3 of the cores selected to have prominent 24 mu m shadows are collapsing or near collapse, a result that is supported by millimeter line observations. Of this subset at least half have indications of 70 mu m shadows. All cores observed to produce absorption features at 70 mu m are close to collapse. We conclude that 24 mu m shadows, and even more so the 70 mu m ones, are useful markers of cloud cores that are approaching collapse. C1 [Stutz, Amelia M.; Balog, Zoltan] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Stutz, Amelia M.; Rieke, George H.; Bieging, John H.; Balog, Zoltan; Kang, Miju; Peters, William L.; Shirley, Yancy L.] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA. [Stutz, Amelia M.; Rieke, George H.; Bieging, John H.; Balog, Zoltan; Kang, Miju; Peters, William L.; Shirley, Yancy L.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Heitsch, Fabian] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. [Kang, Miju] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Kang, Miju] Chungnam Natl Univ, Dept Astron & Space Sci, Taejon 305348, South Korea. [Werner, Michael W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Stutz, AM (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. EM stutz@mpia.de OI Stutz, Amelia/0000-0003-2300-8200 FU NASA [1255094]; National Science Foundation [AST-0708131]; [KRF-2007-612-C00050] FX A. M. S. thanks Juna Kollmeier for her early input and stimulating discussions throughout the course of this work. The authors thank Craig A. Kulesa for assistance with the molecular mass models and Chris Walker for helpful comments. We also thank the anonymous referee for their helpful comments. Support for this work was provided through NASA contracts issued by Caltech/JPL to the University of Arizona (1255094). This work was also supported by the National Science Foundation grant AST-0708131 to The University of Arizona. M. K. was supported by the KRF-2007-612-C00050 grant. NR 90 TC 28 Z9 28 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 10 PY 2009 VL 707 IS 1 BP 137 EP 166 DI 10.1088/0004-637X/707/1/137 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 524SJ UT WOS:000272162900013 ER PT J AU Southworth, J Hinse, TC Dominik, M Glitrup, M Jorgensen, UG Liebig, C Mathiasen, M Anderson, DR Bozza, V Browne, P Burgdorf, M Novati, SC Dreizler, S Finet, F Harpsoe, K Hessman, F Hundertmark, M Maier, G Mancini, L Maxted, PFL Rahvar, S Ricci, D Scarpetta, G Skottfelt, J Snodgrass, C Surdej, J Zimmer, F AF Southworth, John Hinse, T. C. Dominik, M. Glitrup, M. Jorgensen, U. G. Liebig, C. Mathiasen, M. Anderson, D. R. Bozza, V. Browne, P. Burgdorf, M. Novati, S. Calchi Dreizler, S. Finet, F. Harpsoe, K. Hessman, F. Hundertmark, M. Maier, G. Mancini, L. Maxted, P. F. L. Rahvar, S. Ricci, D. Scarpetta, G. Skottfelt, J. Snodgrass, C. Surdej, J. Zimmer, F. TI PHYSICAL PROPERTIES OF THE 0.94-DAY PERIOD TRANSITING PLANETARY SYSTEM WASP-18 SO ASTROPHYSICAL JOURNAL LA English DT Article DE planetary systems; stars: individual (WASP-18) ID TIDAL-EVOLUTION CONSTANTS; M-CIRCLE-DOT; STELLAR ATMOSPHERE MODELS; HIGH-PRECISION PHOTOMETRY; LIMB-DARKENING LAW; ECLIPSING BINARIES; ECCENTRIC ORBIT; OPEN CLUSTERS; EXTRASOLAR PLANETS; SURFACE GRAVITIES AB We present high-precision photometry of five consecutive transits of WASP-18, an extrasolar planetary system with one of the shortest orbital periods known. Through the use of telescope defocusing we achieve a photometric precision of 0.47-0.83 mmag per observation over complete transit events. The data are analyzed using the JKTEBOP code and three different sets of stellar evolutionary models. We find the mass and radius of the planet to be M(b) = 10.43 +/- 0.30 +/- 0.24 M(Jup) and R(b) = 1.165 +/- 0.055 +/- 0.014 R(Jup) (statistical and systematic errors), respectively. The systematic errors in the orbital separation and the stellar and planetary masses, arising from the use of theoretical predictions, are of a similar size to the statistical errors and set a limit on our understanding of the WASP-18 system. We point out that seven of the nine known massive transiting planets (M(b) > 3M(Jup)) have eccentric orbits, whereas significant orbital eccentricity has been detected for only four of the 46 less-massive planets. This may indicate that there are two different populations of transiting planets, but could also be explained by observational biases. Further radial velocity observations of low-mass planets will make it possible to choose between these two scenarios. C1 [Southworth, John; Anderson, D. R.; Maxted, P. F. L.] Univ Keele, Astrophys Grp, Newcastle Under Lyme ST5 5BG, England. [Hinse, T. C.] Armagh Observ, Armagh BT61 9DG, North Ireland. [Hinse, T. C.; Jorgensen, U. G.; Harpsoe, K.; Skottfelt, J.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Hinse, T. C.; Jorgensen, U. G.; Harpsoe, K.; Skottfelt, J.] Univ Copenhagen, Ctr Star & Planet Format, DK-2100 Copenhagen O, Denmark. [Dominik, M.; Mathiasen, M.; Browne, P.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Glitrup, M.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Liebig, C.; Maier, G.; Zimmer, F.] Univ Heidelberg, Astron Rechen Inst, Zentrum Astron, D-69120 Heidelberg, Germany. [Bozza, V.; Novati, S. Calchi; Mancini, L.; Scarpetta, G.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84081 Baronissi, Italy. [Bozza, V.; Novati, S. Calchi; Mancini, L.; Scarpetta, G.] Inst Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Burgdorf, M.] NASA, Ames Res Ctr, Deutsch SOFIA Inst, Moffett Field, CA 94035 USA. [Dreizler, S.; Hessman, F.; Hundertmark, M.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Finet, F.; Ricci, D.; Surdej, J.] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Rahvar, S.] Sharif Univ Technol, Dept Phys, Tehran, Iran. [Snodgrass, C.] European So Observ, Santiago 19, Chile. RP Southworth, J (reprint author), Univ Keele, Astrophys Grp, Newcastle Under Lyme ST5 5BG, England. EM jkt@astro.keele.ac.uk RI Hundertmark, Markus/C-6190-2015; Rahvar, Sohrab/A-9350-2008; OI Hundertmark, Markus/0000-0003-0961-5231; Rahvar, Sohrab/0000-0002-7084-5725; Dominik, Martin/0000-0002-3202-0343; Ricci, Davide/0000-0002-9790-0552; Snodgrass, Colin/0000-0001-9328-2905 FU STFC; Northern Ireland Department of Culture, Arts and Leisure; Communaute francaise de Belgique-Actions de recherche concertees-Academie Wallonie-Europe FX The observations presented in this work will be made available at the CDS (http://cdsweb.u-strasbg.fr/) and at http://www.astro.keele.ac.uk/similar to jkt/. The operation of the Danish 1.54 m telescope was financed by the Danish Natural Science Research Council (FNU). We thank Dr. J. Eldridge for calculating the Cambridge set of stellar models used in this work. J. Southworth and D. R. A. acknowledge financial support from STFC in the form of postdoctoral research assistant positions. Astronomical research at the Armagh Observatory is funded by the Northern Ireland Department of Culture, Arts and Leisure (DCAL). D. R. (boursier FRIA), F. F., and J. Surdej acknowledge support from the Communaute francaise de Belgique-Actions de recherche concertees-Academie Wallonie-Europe. The following internet-based resources were used in research for this paper: the ESO Digitized Sky Survey; the NASA Astrophysics Data System; the SIMBAD database operated at CDS, Strasbourg, France; and the arXiv scientific paper preprint service operated by Cornell University. NR 39 TC 43 Z9 43 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 10 PY 2009 VL 707 IS 1 BP 167 EP 172 DI 10.1088/0004-637X/707/1/167 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 524SJ UT WOS:000272162900014 ER PT J AU Fryer, CL Brown, PJ Bufano, F Dahl, JA Fontes, CJ Frey, LH Holland, ST Hungerford, AL Immler, S Mazzali, P Milne, PA Scannapieco, E Weinberg, N Young, PA AF Fryer, Chris L. Brown, Peter J. Bufano, Filomena Dahl, Jon A. Fontes, Christopher J. Frey, Lucille H. Holland, Stephen T. Hungerford, Aimee L. Immler, Stefan Mazzali, Paolo Milne, Peter A. Scannapieco, Evan Weinberg, Nevin Young, Patrick A. TI SPECTRA AND LIGHT CURVES OF FAILED SUPERNOVAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational waves; neutrinos; supernovae: general; white dwarfs ID ACCRETION-INDUCED COLLAPSE; GAMMA-RAY BURST; NE-MG CORES; WHITE-DWARFS; R-PROCESS; SN 1987A; EXPLOSIONS; FALLBACK; SIMULATIONS; PROGENITORS AB Astronomers have proposed a number of mechanisms to produce supernova explosions. Although many of these mechanisms are now not considered primary engines behind supernovae (SNe), they do produce transients that will be observed by upcoming ground-based surveys and NASA satellites. Here, we present the first radiation-hydrodynamics calculations of the spectra and light curves from three of these "failed" SNe: SNe with considerable fallback, accretion-induced collapse of white dwarfs, and energetic helium flashes (also known as type Ia SNe). C1 [Fryer, Chris L.; Dahl, Jon A.; Fontes, Christopher J.; Frey, Lucille H.; Hungerford, Aimee L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fryer, Chris L.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brown, Peter J.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Bufano, Filomena] Univ Padua, Dipartimento Astron, Osservatorio Astron Padova, INAF, I-35100 Padua, Italy. [Holland, Stephen T.; Immler, Stefan] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Mazzali, Paolo] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Mazzali, Paolo] Scuola Normale Super Pisa, I-56126 Pisa, Italy. [Milne, Peter A.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Scannapieco, Evan; Young, Patrick A.] Arizona State Univ, SESE, Tempe, AZ 85287 USA. [Weinberg, Nevin] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Weinberg, Nevin] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA. RP Fryer, CL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM fryer@lanl.gov; grbpeter@yahoo.com; filomena.bufano@oapd.inaf.it; dahl@lanl.gov; cjf@lanl.gov; sholland@milkyway.gsfc.nasa.gov; aimee@lanl.gov; stefan.m.immler@nasa.gov; mazzali@MPA-Garching.MPG.DE; pmilne511@cox.net; evan.scannapieco@asu.edu; nweinberg@astro.berkeley.edu; patrick.young.1@asu.edu OI Frey, Lucille/0000-0002-5478-2293 FU U. S. Department of Energy [DE-AC52-06NA25396] FX This work was carried out in part under the auspices of the National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory and supported by Contract No. DE-AC52-06NA25396. NR 50 TC 36 Z9 37 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 10 PY 2009 VL 707 IS 1 BP 193 EP 207 DI 10.1088/0004-637X/707/1/193 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 524SJ UT WOS:000272162900016 ER PT J AU Stark, CC Kuchner, MJ AF Stark, Christopher C. Kuchner, Marc J. TI A NEW ALGORITHM FOR SELF-CONSISTENT THREE-DIMENSIONAL MODELING OF COLLISIONS IN DUSTY DEBRIS DISKS SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; interplanetary medium; methods: N-body simulations; methods: numerical; planetary systems ID EDGEWORTH-KUIPER BELT; PLANETESIMAL BELTS; CIRCUMSTELLAR DISK; COMET 81P/WILD-2; SPACE-TELESCOPE; BETA-PICTORIS; HR 4796A; EVOLUTION; SIGNATURES; PARTICLES AB We present a new "collisional grooming" algorithm that enables us to model images of debris disks where the collision time is less than the Poynting-Robertson (PR) time for the dominant grain size. Our algorithm uses the output of a collisionless disk simulation to iteratively solve the mass flux equation for the density distribution of a collisional disk containing planets in three dimensions. The algorithm can be run on a single processor in similar to 1 hr. Our preliminary models of disks with resonant ring structures caused by terrestrial mass planets show that the collision rate for background particles in a ring structure is enhanced by a factor of a few compared to the rest of the disk, and that dust grains in or near resonance have even higher collision rates. We show how collisions can alter the morphology of a resonant ring structure by reducing the sharpness of a resonant ring's inner edge and by smearing out azimuthal structure. We implement a simple prescription for particle fragmentation and show how PR drag and fragmentation sort particles by size, producing smaller dust grains at smaller circumstellar distances. This mechanism could cause a disk to look different at different wavelengths, and may explain the warm component of dust interior to Fomalhaut's outer dust ring seen in the resolved 24 mu m Spitzer image of this system. C1 [Stark, Christopher C.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Kuchner, Marc J.] NASA, Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA. RP Stark, CC (reprint author), Univ Maryland, Dept Phys, Box 197,082 Regents Dr, College Pk, MD 20742 USA. EM starkc@umd.edu RI Kuchner, Marc/E-2288-2012 FU National Aeronautics and Space Administration (NASA); International Space Science Institute in Bern, Switzerland FX We thank the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center's Graduate Student Researchers Program for funding this research and the NASA High-End Computing Program for granting us time on the Discover cluster. We thank the International Space Science Institute in Bern, Switzerland, for support of this research. M. K. also thanks the NASA Astrobiology program for support. NR 37 TC 38 Z9 38 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 10 PY 2009 VL 707 IS 1 BP 543 EP 553 DI 10.1088/0004-637X/707/1/543 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 524SJ UT WOS:000272162900042 ER PT J AU Abdo, AA Ackermann, M Asano, K Atwood, WB Axelsson, M Baldini, L Ballet, J Band, DL Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Bhat, PN Bissaldi, E Bloom, ED Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Briggs, MS Brigida, M Bruel, P Burnett, TH Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cecchi, C Chaplin, V Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Cominsky, LR Connaughton, V Conrad, J Cutini, S Dermer, CD de Angelis, A de Palma, F Digel, SW Silva, EDE Drell, PS Dubois, R Dumora, D Farnier, C Favuzzi, C Focke, WB Frailis, M Fukazawa, Y Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Gibby, L Giebels, B Giglietto, N Giordano, F Glanzman, T Godfrey, G Goldstein, A Granot, J Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Hanabata, Y Harding, AK Hayashida, M Hays, E Hughes, RE Johannesson, G Johnson, AS Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Knodlseder, J Kocevski, D Komin, N Kouveliotou, C Kuehn, F Kuss, M Latronico, L Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Makeev, A Mazziotta, MN McBreen, S McEnery, JE McGlynn, S Meegan, C Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Monte, C Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Nakamori, T Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Omodei, N Orlando, E Ormes, JF Ozaki, M Paciesas, WS Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Preece, R Raino, S Rando, R Razzano, M Razzaque, S Reimer, O Reposeur, T Ritz, S Rochester, LS Rodriguez, AY Roth, M Ryde, F Sadrozinski, HFW Sanchez, D Sander, A Parkinson, PMS Scargle, JD Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Stamatikos, M Strickman, MS Suson, DJ Tajima, H Takahashi, H Tanaka, T Thayer, JB Thayer, JG Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL van der Horst, AJ Vasileiou, V Vilchez, N Vitale, V von Kienlin, A Waite, AP Wang, P Wilson-Hodge, C Winer, BL Wood, KS Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Asano, K. Atwood, W. B. Axelsson, M. Baldini, L. Ballet, J. Band, D. L. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Bhat, P. N. Bissaldi, E. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Briggs, M. S. Brigida, M. Bruel, P. Burnett, T. H. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Chaplin, V. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cominsky, L. R. Connaughton, V. Conrad, J. Cutini, S. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Focke, W. B. Frailis, M. Fukazawa, Y. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Gibby, L. Giebels, B. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Goldstein, A. Granot, J. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Hanabata, Y. Harding, A. K. Hayashida, M. Hays, E. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Knoedlseder, J. Kocevski, D. Komin, N. Kouveliotou, C. Kuehn, F. Kuss, M. Latronico, L. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Makeev, A. Mazziotta, M. N. McBreen, S. McEnery, J. E. McGlynn, S. Meegan, C. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Monte, C. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paciesas, W. S. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Preece, R. Raino, S. Rando, R. Razzano, M. Razzaque, S. Reimer, O. Reposeur, T. Ritz, S. Rochester, L. S. Rodriguez, A. Y. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Stamatikos, M. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Tanaka, T. Thayer, J. B. Thayer, J. G. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. van der Horst, A. J. Vasileiou, V. Vilchez, N. Vitale, V. von Kienlin, A. Waite, A. P. Wang, P. Wilson-Hodge, C. Winer, B. L. Wood, K. S. Ylinen, T. Ziegler, M. TI FERMI OBSERVATIONS OF HIGH-ENERGY GAMMA-RAY EMISSION FROM GRB 080825C SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays: bursts ID LARGE-AREA TELESCOPE; SPECTRAL COMPONENT; COMPTON EMISSION; BURST SPECTRA; GRB-941017; AFTERGLOWS; LIMITS; BATSE AB The Fermi Gamma-ray Space Telescope has opened a new high-energy window in the study of gamma-ray bursts (GRBs). Here we present a thorough analysis of GRB 080825C, which triggered the Fermi Gamma-ray Burst Monitor (GBM), and was the first firm detection of a GRB by the Fermi Large Area Telescope (LAT). We discuss the LAT event selections, background estimation, significance calculations, and localization for Fermi GRBs in general and GRB 080825C in particular. We show the results of temporal and time-resolved spectral analysis of the GBM and LAT data. We also present some theoretical interpretation of GRB 080825C observations as well as some common features observed in other LAT GRBs. C1 [Abdo, A. A.; Chekhtman, A.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Razzaque, S.; Strickman, M. S.; Wood, K. S.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Abdo, A. A.; Razzaque, S.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, O.; Rochester, L. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, O.; Rochester, L. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC, Natl Accelerator Lab, Stanford, CA 94305 USA. [Asano, K.; Kataoka, J.; Kawai, N.; Nakamori, T.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Asano, K.] Tokyo Inst Technol, Interact Res Ctr Sci, Meguro, Tokyo 1528551, Japan. [Atwood, W. B.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Axelsson, M.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Axelsson, M.; Conrad, J.; McGlynn, S.; Meurer, C.; Ryde, F.; Ylinen, T.] Oskar Klein Ctr Cosmo Particle Phys, SE-10691 Stockholm, Sweden. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Komin, N.] Univ Paris Diderot, CNRS, CEA Saclay, Lab AIM,CEA IRFU,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Band, D. L.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Barbiellini, G.; Longo, F.; Moretti, E.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.; Moretti, E.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bhat, P. N.; Briggs, M. S.; Chaplin, V.; Connaughton, V.; Goldstein, A.; Guiriec, S.; Paciesas, W. S.; Preece, R.] Univ Alabama, Huntsville, AL 35899 USA. [Bissaldi, E.; McBreen, S.; Orlando, E.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ & Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Giebels, B.; Sanchez, D.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caraveo, P. A.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Komin, N.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Conrad, J.; Meurer, C.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; McGlynn, S.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Cutini, S.; Gasparrini, D.] Agenzia Spaziale Italiana Sci Data Ctr, I-00044 Frascati, Roma, Italy. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, IN2P3, CNRS, UMR 5797, F-33175 Gradignan, France. [Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.] Univ Maryland, College Pk, MD 20742 USA. [Gibby, L.] Sci Applicat Int Corp, Huntsville, AL 35899 USA. [Granot, J.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Hughes, R. E.; Kuehn, F.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan. [Kawai, N.] RIKEN, Cosm Radiat Lab, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Kouveliotou, C.; van der Horst, A. J.; Wilson-Hodge, C.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [McBreen, S.] Natl Univ Ireland Univ Coll Dublin, Dublin 4, Ireland. [Meegan, C.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Moretti, E.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Moretti, E.] Univ Trieste, I-34127 Trieste, Italy. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.; Ozaki, M.; Uchiyama, Y.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Rodriguez, A. Y.; Torres, D. F.] CSIC, IEEC, Inst Ciencies Espai, Barcelona 08193, Spain. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Vasileiou, V.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. EM bouvier@stanford.edu; j.granot@herts.ac.uk; Alexander.J.VanDerHorst@nasa.gov RI Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Morselli, Aldo/G-6769-2011; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Komin, Nukri/J-6781-2015; Reimer, Olaf/A-3117-2013; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Bissaldi, Elisabetta/K-7911-2016; Torres, Diego/O-9422-2016; OI Cutini, Sara/0000-0002-1271-2924; Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; lubrano, pasquale/0000-0003-0221-4806; giglietto, nicola/0000-0002-9021-2888; Morselli, Aldo/0000-0002-7704-9553; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Komin, Nukri/0000-0003-3280-0582; Preece, Robert/0000-0003-1626-7335; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Axelsson, Magnus/0000-0003-4378-8785; McBreen, Sheila/0000-0002-1477-618X; Moretti, Elena/0000-0001-5477-9097; Reimer, Olaf/0000-0001-6953-1385; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Bissaldi, Elisabetta/0000-0001-9935-8106; Torres, Diego/0000-0002-1522-9065; Rando, Riccardo/0000-0001-6992-818X; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; De Angelis, Alessandro/0000-0002-3288-2517 FU K. A. Wallenberg Foundation; Royal Society Wolfson Research Merit Award; NASA FX Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K. A. Wallenberg Foundation.; NASA Postdoctoral Program Fellow; J.G. gratefully acknowledges a Royal Society Wolfson Research Merit Award. A. J. v. d. H. was supported by an appointment to the NASA Postdoctoral Program at the MSFC, administered by Oak Ridge Associated Universities through a contract with NASA. NR 40 TC 50 Z9 51 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 10 PY 2009 VL 707 IS 1 BP 580 EP 592 DI 10.1088/0004-637X/707/1/580 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 524SJ UT WOS:000272162900045 ER PT J AU Ahn, HS Allison, P Bagliesi, MG Barbier, L Beatty, JJ Bigongiari, G Brandt, TJ Childers, JT Conklin, NB Coutu, S DuVernois, MA Ganel, O Han, JH Jeon, JA Kim, KC Lee, MH Maestro, P Malinine, A Marrocchesi, PS Minnick, S Mognet, SI Nam, SW Nutter, S Park, IH Park, NH Seo, ES Sina, R Walpole, P Wu, J Yang, J Yoon, YS Zei, R Zinn, SY AF Ahn, H. S. Allison, P. Bagliesi, M. G. Barbier, L. Beatty, J. J. Bigongiari, G. Brandt, T. J. Childers, J. T. Conklin, N. B. Coutu, S. DuVernois, M. A. Ganel, O. Han, J. H. Jeon, J. A. Kim, K. C. Lee, M. H. Maestro, P. Malinine, A. Marrocchesi, P. S. Minnick, S. Mognet, S. I. Nam, S. W. Nutter, S. Park, I. H. Park, N. H. Seo, E. S. Sina, R. Walpole, P. Wu, J. Yang, J. Yoon, Y. S. Zei, R. Zinn, S. Y. TI ENERGY SPECTRA OF COSMIC-RAY NUCLEI AT HIGH ENERGIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE balloons; cosmic rays; instrumentation: detectors; ISM: abundances; methods: data analysis ID SILICON CHARGE DETECTOR; PARTICLE-ACCELERATION; CREAM EXPERIMENT; MAXIMUM ENERGY; CROSS-SECTIONS; SECONDARY; CALORIMETER; PERFORMANCE; ENERGETICS; ELEMENTS AB We present new measurements of the energy spectra of cosmic-ray (CR) nuclei from the second flight of the balloon-borne experiment Cosmic-Ray Energetics And Mass (CREAM). The instrument included different particle detectors to provide redundant charge identification and measure the energy of CRs up to several hundred TeV. The measured individual energy spectra of C, O, Ne, Mg, Si, and Fe are presented up to similar to 10(14) eV. The spectral shape looks nearly the same for these primary elements and it can be fitted to an E(-2.66 +/- 0.04)power law in energy. Moreover, a new measurement of the absolute intensity of nitrogen in the 100-800 GeV/n energy range with smaller errors than previous observations, clearly indicates a hardening of the spectrum at high energy. The relative abundance of N/O at the top of the atmosphere is measured to be 0.080 +/- 0.025 (stat.) +/- 0.025 (sys.) at similar to 800 GeV/n, in good agreement with a recent result from the first CREAM flight. C1 [Bagliesi, M. G.; Bigongiari, G.; Maestro, P.; Marrocchesi, P. S.; Zei, R.] Univ Siena, Dept Phys, I-53100 Siena, Italy. [Bagliesi, M. G.; Bigongiari, G.; Maestro, P.; Marrocchesi, P. S.; Zei, R.] Ist Nazl Fis Nucl, I-53100 Siena, Italy. [Ahn, H. S.; Ganel, O.; Han, J. H.; Kim, K. C.; Lee, M. H.; Malinine, A.; Seo, E. S.; Sina, R.; Walpole, P.; Wu, J.; Yoon, Y. S.; Zinn, S. Y.] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA. [Allison, P.; Beatty, J. J.; Brandt, T. J.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Barbier, L.] NASA, Goddard Space Flight Ctr, Astroparticle Phys Lab, Greenbelt, MD 20771 USA. [Childers, J. T.; DuVernois, M. A.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Conklin, N. B.; Coutu, S.; Mognet, S. I.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Jeon, J. A.; Nam, S. W.; Park, I. H.; Park, N. H.; Yang, J.] Ewha Womans Univ, Dept Phys, Seoul 120750, South Korea. [Minnick, S.] Kent State Univ, Dept Phys, New Philadelphia, OH 44663 USA. [Nutter, S.] No Kentucky Univ, Dept Phys & Geol, Highland Hts, KY 41099 USA. [Seo, E. S.; Yoon, Y. S.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. RP Maestro, P (reprint author), Univ Siena, Dept Phys, Via Roma 56, I-53100 Siena, Italy. EM paolo.maestro@pi.infn.it RI maestro, paolo/E-3280-2010; Marrocchesi, Pier Simone/N-9068-2015; Yoon, Young Soo/O-8580-2014; Beatty, James/D-9310-2011 OI maestro, paolo/0000-0002-4193-1288; Bigongiari, Gabriele/0000-0003-3691-0826; Seo, Eun-Suk/0000-0001-8682-805X; Marrocchesi, Pier Simone/0000-0003-1966-140X; Yoon, Young Soo/0000-0001-7023-699X; Beatty, James/0000-0003-0481-4952 FU NASA; MEST/NRF in Korea; INFN; PNRA in Italy; NASA/WFF; NASA/GSFC; Columbia Scientific Balloon Facility; National Science Foundation; Raytheon Polar Services Company FX This work is supported by NASA research grants to the University of Maryland, Penn State University, and Ohio State University, by the Creative Research Initiatives program (RCMST) of MEST/NRF in Korea, and INFN and PNRA in Italy. The authors greatly appreciated the support of NASA/WFF and NASA/GSFC, Columbia Scientific Balloon Facility, National Science Foundation's Office of Polar Programs and Raytheon Polar Services Company for the successful balloon launch, flight operation and payload recovery in Antarctica. NR 34 TC 67 Z9 67 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 10 PY 2009 VL 707 IS 1 BP 593 EP 603 DI 10.1088/0004-637X/707/1/593 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 524SJ UT WOS:000272162900046 ER PT J AU Lacour, S Thiebaut, E Perrin, G Meimon, S Haubois, X Pedretti, E Ridgway, ST Monnier, JD Berger, JP Schuller, PA Woodruff, H Poncelet, A Le Coroller, H Millan-Gabet, R Lacasse, M Traub, W AF Lacour, S. Thiebaut, E. Perrin, G. Meimon, S. Haubois, X. Pedretti, E. Ridgway, S. T. Monnier, J. D. Berger, J. P. Schuller, P. A. Woodruff, H. Poncelet, A. Le Coroller, H. Millan-Gabet, R. Lacasse, M. Traub, W. TI THE PULSATION OF chi CYGNI IMAGED BY OPTICAL INTERFEROMETRY: A NOVEL TECHNIQUE TO DERIVE DISTANCE AND MASS OF MIRA STARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE infrared: stars; stars: AGB and post-AGB; stars: fundamental parameters; stars: individual (chi Cyg); techniques: interferometric ID LONG-PERIOD VARIABLES; NEAR-INFRARED INTERFEROMETRY; ASYMPTOTIC GIANT BRANCH; STELLAR INTERFEROMETRY; GALACTIC CEPHEIDS; HIPPARCOS CATALOG; MODEL ATMOSPHERES; EVOLVED STARS; R LEONIS; SPECTROSCOPY AB We present infrared interferometric imaging of the S-type Mira star chi Cygni. The object was observed at four different epochs in 2005-2006 with the Infrared-Optical Telescope Array optical interferometer ( H band). Images show up to 40% variation in the stellar diameter, as well as significant changes in the limb darkening and stellar inhomogeneities. Model fitting gave precise time-dependent values of the stellar diameter, and reveals presence and displacement of a warm molecular layer. The star radius, corrected for limb darkening, has a mean value of 12.1 mas and shows a 5.1 mas amplitude pulsation. Minimum diameter was observed at phase 0.94 +/- 0.01. Maximum temperature was observed several days later at phase 1.02 +/- 0.02. We also show that combining the angular acceleration of the molecular layer with CO (Delta v = 3) radial velocity measurements yields a 5.9 +/- 1.5 mas parallax. The constant acceleration of the CO molecules-during 80% of the pulsation cycle-lead us to argument for a free-falling layer. The acceleration is compatible with a gravitational field produced by a 2.1(-0.7)(+1.5) solar mass star. This last value is in agreement with fundamental mode pulsator models. We foresee increased development of techniques consisting in combining radial velocity with interferometric angular measurements, ultimately allowing total mapping of the speed, density, and position of the diverse species in pulsation-driven atmospheres. C1 [Lacour, S.; Perrin, G.; Haubois, X.; Poncelet, A.] Observ Paris, CNRS, LESIA, UMR 8109, F-92190 Meudon, France. [Thiebaut, E.] CNRS, Ctr Rech Astrophys Lyon, UMR 5574, F-69561 St Genis Laval, France. [Meimon, S.] Off Natl Etud & Rech Aeronaut, DOTA, F-92322 Chatillon, France. [Pedretti, E.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Ridgway, S. T.] Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Monnier, J. D.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Berger, J. P.] CNRS, LAOG UMR 5571, F-38041 Grenoble, France. [Berger, J. P.] Univ Grenoble 1, F-38041 Grenoble, France. [Schuller, P. A.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, F-91405 Orsay, France. [Woodruff, H.] Univ Sydney, Sch Phys, SIfA, Sydney, NSW 2006, Australia. [Le Coroller, H.] Observ Haute Provence, CNRS, OHP, F-04870 St Michel lObservatoire, France. [Millan-Gabet, R.] CALTECH, Michelson Sci Ctr, Pasadena, CA 91125 USA. [Lacasse, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Traub, W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Lacour, S (reprint author), Observ Paris, CNRS, LESIA, UMR 8109, F-92190 Meudon, France. RI Haubois, Xavier/I-7026-2012 FU NASA [NNH09AK731] FX We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research. S. T. R. acknowledges partial support from NASA grant NNH09AK731. NR 74 TC 20 Z9 20 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 10 PY 2009 VL 707 IS 1 BP 632 EP 643 DI 10.1088/0004-637X/707/1/632 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 524SJ UT WOS:000272162900050 ER PT J AU Gupta, A Galeazzi, M Koutroumpa, D Smith, R Lallement, R AF Gupta, A. Galeazzi, M. Koutroumpa, D. Smith, R. Lallement, R. TI PROPERTIES OF THE DIFFUSE X-RAY BACKGROUND TOWARD MBM20 WITH SUZAKU SO ASTROPHYSICAL JOURNAL LA English DT Article DE X-rays: diffuse background ID LOCAL BUBBLE; EMISSION; SPECTRA; MODELS AB We used Suzaku observations of the molecular cloud MBM20 and a low neutral hydrogen column density region nearby to separate and characterize the foreground and background diffuse X-ray emission. A comparison with a previous observation of the same regions with XMM-Newton indicates a significant change in the foreground flux which is attributed to Solar Wind Charge eXchange (SWCX). The data have also been compared with previous results from similar "shadow" experiments and with a SWCX model to characterize its OVII and OVIII emission. C1 [Gupta, A.; Galeazzi, M.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [Koutroumpa, D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Smith, R.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Lallement, R.] CNRS, Serv Aeron, FR-91371 Verrieres Le Buisson, France. RP Gupta, A (reprint author), Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. EM galeazzi@physiscs.miami.edu RI XRAY, SUZAKU/A-1808-2009 NR 27 TC 29 Z9 29 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 10 PY 2009 VL 707 IS 1 BP 644 EP 651 DI 10.1088/0004-637X/707/1/644 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 524SJ UT WOS:000272162900051 ER PT J AU Mukai, K Zietsman, E Still, M AF Mukai, K. Zietsman, E. Still, M. TI SUZAKU OBSERVATIONS OF THE DWARF NOVA V893 SCORPII: THE DISCOVERY OF A PARTIAL X-RAY ECLIPSE SO ASTROPHYSICAL JOURNAL LA English DT Article DE novae, cataclysmic variables; stars: individual (V893 Sco); X-rays: binaries ID NONMAGNETIC CATACLYSMIC VARIABLES; QUASI-PERIODIC OSCILLATIONS; WHITE-DWARF; INTERMEDIATE POLARS; HT CASSIOPEIAE; BOUNDARY-LAYER; EMISSION; SPECTRA; QUIESCENCE; BINARIES AB V893 Sco is an eclipsing dwarf nova that had attracted little attention from X-ray astronomers until it was proposed as the identification of an Rossi X-Ray Timing Explorer all-sky slew survey (XSS) source. Here, we report on the pointed X-ray observations of this object using Suzaku. V893 Sco was in quiescence at the time, as indicated by the coordinated optical photometry we obtained at the South African Astronomical Observatory. Our Suzaku data show V893 Sco to be X-ray bright, with a highly absorbed spectrum. Most importantly, we have discovered a partial X-ray eclipse in V893 Sco. This is the first time that a partial eclipse is seen in X-ray light curves of a dwarf nova. Our preliminary simulations demonstrate that the partial X-ray eclipse can be in principle reproduced if the white dwarf in V893 Sco is partially eclipsed. Higher quality observations of this object have the potential to place significant constraints on the latitudinal extent of the X-ray emission region and thereby discriminating between an equatorial boundary layer and a spherical corona. The partial X-ray eclipse therefore makes V893 Sco a key object in understanding the physics of accretion in quiescent dwarf nova. C1 [Mukai, K.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Mukai, K.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. [Mukai, K.] Univ Maryland, Dept Phys, Baltimore, MD 21250 USA. [Zietsman, E.] Univ Cape Town, Dept Astron, ZA-7701 Rondebosch, South Africa. [Still, M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Mukai, K (reprint author), NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. EM Koji.Mukai@nasa.gov RI XRAY, SUZAKU/A-1808-2009 NR 54 TC 12 Z9 12 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 10 PY 2009 VL 707 IS 1 BP 652 EP 661 DI 10.1088/0004-637X/707/1/652 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 524SJ UT WOS:000272162900052 ER PT J AU Moffat, AFJ Corcoran, MF AF Moffat, A. F. J. Corcoran, M. F. TI UNDERSTANDING THE X-RAY FLARING FROM eta CARINAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: early-type; stars: individual (eta Car, LBV); X-rays: stars ID HOT-STAR WINDS; COROTATING INTERACTION REGIONS; LINE-PROFILE VARIATIONS; COLLIDING WINDS; ABSORPTION COMPONENTS; STELLAR WINDS; TIME-SERIES; LIGHT-CURVE; MASS-LOSS; EMISSION AB We quantify the rapid variations in X-ray brightness ("flares") from the extremely massive colliding wind binary. Carinae seen during the past three orbital cycles by the Rossi X-ray Timing Explorer. The observed flares tend to be shorter in duration and more frequent as periastron is approached, although the largest ones tend to be roughly constant in strength at all phases. Plausible scenarios include (1) the largest of multi-scale stochastic wind clumps from the Luminous Blue Variable (LBV) component entering and compressing the hard X-ray-emitting wind-wind collision (WWC) zone, (2) large-scale corotating interacting regions in the LBV wind sweeping across the WWC zone, or (3) instabilities intrinsic to the WWC zone. The first one appears to be the most consistent with the observations, requiring homologously expanding clumps as they propagate outward in the LBV wind and a turbulence-like power-law distribution of clumps, decreasing in number toward larger sizes, as seen in Wolf-Rayet winds. C1 [Moffat, A. F. J.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. [Moffat, A. F. J.] Ctr Rech Astrophys Quebec, Quebec City, PQ, Canada. [Corcoran, M. F.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Corcoran, M. F.] NASA, Goddard Space Flight Ctr, Xray Astrophys Lab, Greenbelt, MD 20771 USA. RP Moffat, AFJ (reprint author), Univ Montreal, Dept Phys, Succursale Ctr Ville, Montreal, PQ H3C 3J7, Canada. EM moffat@astro.umontreal.ca; michael.f.corcoran@nasa.gov FU NSERC (Canada); FQRNT (Quebec); NASA; CHANDRA [GO7-8076A] FX A. F. J. M. is grateful to NSERC (Canada) and FQRNT (Quebec) for financial support. M. F. C. gratefully acknowledges NASA for the support of the ongoing RXTE observing campaign, and from CHANDRA grant GO7-8076A. This research has made use of data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA's Goddard Space Flight Center. This research has made use of NASA's Astrophysics Data System. We also acknowledge the efforts of the RXTE Science Operations Facility for help in scheduling these observations. We thank the anonymous referee for helpful suggestions. NR 41 TC 22 Z9 22 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 10 PY 2009 VL 707 IS 1 BP 693 EP 704 DI 10.1088/0004-637X/707/1/693 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 524SJ UT WOS:000272162900056 ER PT J AU Sengupta, S Marley, MS AF Sengupta, Sujan Marley, Mark S. TI MULTIPLE SCATTERING POLARIZATION OF SUBSTELLAR-MASS OBJECTS: T DWARFS SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; polarization; scattering; stars: atmospheres; stars: low-mass, brown dwarfs ID EXTRASOLAR GIANT PLANETS; DISCRETE SPACE THEORY; BROWN DWARFS; EFFECTIVE TEMPERATURE; RADIATIVE TRANSFER; INFRARED-SPECTRA; DUST SCATTERING; ATMOSPHERES; ROTATION; EVOLUTION AB While there have been multiple observational programs aimed at detecting linear polarization of optical radiation emitted by ultracool dwarfs, there has been comparatively less rigorous theoretical analysis of the problem. The general expectation has been that the atmospheres of those substellar-mass objects with condensate clouds would give rise to linear polarization due to scattering. Because of rotation-induced non-sphericity, there is expected to be incomplete cancellation of disk-integrated net polarization and thus a finite polarization. For cloudless objects, however, only molecular Rayleigh scattering will contribute to any net polarization and this limit has not been well studied. Hence in this paper we present a detailed multiple scattering analysis of the polarization expected from those T-dwarfs whose spectra show absence of condensates. For this, we develop and solve the full radiative transfer equations for linearly polarized radiation. Only atomic and molecular Rayleigh scattering are considered to be the sources of polarization. We compute the local polarization at different angular directions in a plane-parallel atmosphere calculated for the range of effective temperatures of T dwarfs and then average over the whole surface of the object. The effects of gravity and limb darkening as well as rotation induced non-sphericity are included. It is found that the amount of polarization decreases with the increase in effective temperature. It is also found that significant polarization at any local point in the atmosphere arises only in the optical (B band). However, the disk integrated polarization-even in the B band-is negligible. Hence we conclude that, unlike the case for cloudy L dwarfs, polarization of cloudless T dwarfs by atomic and molecular scattering may not be detectable. In the future we will extend this work to cloudy L and T dwarf atmospheres. C1 [Sengupta, Sujan] Indian Inst Astrophys, Bangalore 560034, Karnataka, India. [Marley, Mark S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Sengupta, S (reprint author), Indian Inst Astrophys, Koramangala 2nd Block, Bangalore 560034, Karnataka, India. EM sujan@iiap.res.in; Mark.S.Marley@NASA.gov RI Marley, Mark/I-4704-2013 FU NASA Planetary Atmospheres Program FX S. S. is thankful to A. Peraiah for useful discussions. S. S. also acknowledges support by TIARA/ASIAA-National Tsing-Hua University, Taiwan where a part of this work was done. M. M. acknowledges support from the NASA Planetary Atmospheres Program. Thanks are due to the referee for constructive comments. NR 45 TC 10 Z9 10 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 10 PY 2009 VL 707 IS 1 BP 716 EP 726 DI 10.1088/0004-637X/707/1/716 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 524SJ UT WOS:000272162900058 ER PT J AU Abdo, AA Ackermann, M Ajello, M Axelsson, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Baughman, BM Bechtol, K Bellazzini, R Berenji, B Bloom, ED Bonamente, E Borgland, AW Bregeon, J Brez, A Brigida, M Bruel, P Burnett, TH Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cavazzuti, E Cecchi, C Celik, O Celotti, A Chekhtman, A Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Collmar, W Conrad, J Costamante, L Cutini, S de Angelis, A de Palma, F Silva, EDE Drell, PS Dumora, D Farnier, C Favuzzi, C Fegan, SJ Focke, WB Fortin, P Foschini, L Frailis, M Fuhrmann, L Fukazawa, Y Funk, S Fusco, P Gargano, F Gehrels, N Germani, S Giglietto, N Giordano, F Giroletti, M Glanzman, T Godfrey, G Grenier, IA Grove, JE Guillemot, L Guiriec, S Hanabata, Y Hays, E Hughes, RE Jackson, MS Johannesson, G Johnson, AS Johnson, WN Kadler, M Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Knodlseder, J Kocian, ML Kuss, M Lande, J Latronico, L Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Max-Moerbeck, W Mazziotta, MN McConville, W McEnery, JE McGlynn, S Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Nestoras, I Nolan, PL Norris, JP Nuss, E Ohsugi, T Omodei, N Orlando, E Ormes, JF Paneque, D Parent, D Pavlidou, V Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Readhead, A Reimer, O Reposeur, T Richards, JL Rodriguez, AY Roth, M Ryde, F Sadrozinski, HFW Sanchez, D Sander, A Parkinson, PMS Scargle, JD Sgro, C Shaw, MS Smith, PD Spandre, G Spinelli, P Strickman, MS Suson, DJ Tagliaferri, G Tajima, H Takahashi, H Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Tibolla, O Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vasileiou, V Vilchez, N Vitale, V Waite, AP Wang, P Wehrle, AE Winer, BL Wood, KS Ylinen, T Zensus, JA Ziegler, M Angelakis, E Bailyn, C Bignall, H Blanchard, J Bonning, EW Buxton, M Canterna, R Carraminana, A Carrasco, L Colomer, F Doi, A Ghisellini, G Hauser, M Hong, X Isler, J Kino, M Kovalev, YY Kovalev, YA Krichbaum, TP Kutyrev, A Lahteenmaki, A van Langevelde, HJ Lister, ML Macomb, D Maraschi, L Marchili, N Nagai, H Paragi, Z Phillips, C Pushkarev, AB Recillas, E Roming, P Sekido, M Stark, MA Szomoru, A Tammi, J Tavecchio, F Tornikoski, M Tzioumis, AK Urry, CM Wagner, S AF Abdo, A. A. Ackermann, M. Ajello, M. Axelsson, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Baughman, B. M. Bechtol, K. Bellazzini, R. Berenji, B. Bloom, E. D. Bonamente, E. Borgland, A. W. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Burnett, T. H. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Celik, Oe. Celotti, A. Chekhtman, A. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Collmar, W. Conrad, J. Costamante, L. Cutini, S. de Angelis, A. de Palma, F. Do Couto e Silva, E. Drell, P. S. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Focke, W. B. Fortin, P. Foschini, L. Frailis, M. Fuhrmann, L. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gehrels, N. Germani, S. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Grenier, I. A. Grove, J. E. Guillemot, L. Guiriec, S. Hanabata, Y. Hays, E. Hughes, R. E. Jackson, M. S. Johannesson, G. Johnson, A. S. Johnson, W. N. Kadler, M. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Knoedlseder, J. Kocian, M. L. Kuss, M. Lande, J. Latronico, L. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Max-Moerbeck, W. Mazziotta, M. N. McConville, W. McEnery, J. E. McGlynn, S. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Nestoras, I. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Paneque, D. Parent, D. Pavlidou, V. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Readhead, A. Reimer, O. Reposeur, T. Richards, J. L. Rodriguez, A. Y. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Sgro, C. Shaw, M. S. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Suson, D. J. Tagliaferri, G. Tajima, H. Takahashi, H. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Tibolla, O. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Wehrle, A. E. Winer, B. L. Wood, K. S. Ylinen, T. Zensus, J. A. Ziegler, M. Angelakis, E. Bailyn, C. Bignall, H. Blanchard, J. Bonning, E. W. Buxton, M. Canterna, R. Carraminana, A. Carrasco, L. Colomer, F. Doi, A. Ghisellini, G. Hauser, M. Hong, X. Isler, J. Kino, M. Kovalev, Y. Y. Kovalev, Yu. A. Krichbaum, T. P. Kutyrev, A. Lahteenmaki, A. van Langevelde, H. J. Lister, M. L. Macomb, D. Maraschi, L. Marchili, N. Nagai, H. Paragi, Z. Phillips, C. Pushkarev, A. B. Recillas, E. Roming, P. Sekido, M. Stark, M. A. Szomoru, A. Tammi, J. Tavecchio, F. Tornikoski, M. Tzioumis, A. K. Urry, C. M. Wagner, S. CA Fermi LAT Collaboration TI MULTIWAVELENGTH MONITORING OF THE ENIGMATIC NARROW-LINE SEYFERT 1 PMN J0948+0022 IN 2009 MARCH-JULY SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; gamma rays: observations; infrared: galaxies; quasars: individual (PMN J0948+0022); radio continuum: galaxies; ultraviolet: galaxies; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; LARGE-AREA TELESCOPE; GAMMA-RAY EMISSION; RADIO; GALAXIES; JETS; VARIABILITY; CALIBRATION; RADIATION; MISSION AB Following the recent discovery of gamma rays from the radio-loud narrow-line Seyfert 1 galaxy PMN J0948+0022 (z = 0.5846), we started a multiwavelength campaign from radio to gamma rays, which was carried out between the end of 2009 March and the beginning of July. The source displayed activity at all the observed wavelengths: a general decreasing trend from optical to gamma-ray frequencies was followed by an increase of radio emission after less than two months from the peak of the gamma-ray emission. The largest flux change, about a factor of about 4, occurred in the X-ray band. The smallest was at ultraviolet and near-infrared frequencies, where the rate of the detected photons dropped by a factor 1.6-1.9. At optical wavelengths, where the sampling rate was the highest, it was possible to observe day scale variability, with flux variations up to a factor of about 3. The behavior of PMN J0948+0022 observed in this campaign and the calculated power carried out by its jet in the form of protons, electrons, radiation, and magnetic field are quite similar to that of blazars, specifically of flat-spectrum radio quasars. These results confirm the idea that radio-loud narrow-line Seyfert 1 galaxies host relativistic jets with power similar to that of average blazars. C1 [Foschini, L.; Tagliaferri, G.; Ghisellini, G.; Maraschi, L.; Tavecchio, F.] Osserv Astron Brera, INAF, I-23807 Merate, Italy. [Abdo, A. A.] Natl Acad Sci, Natl Res Council, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Chiang, J.; Claus, R.; Costamante, L.; Do Couto e Silva, E.; Drell, P. S.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Nolan, P. L.; Paneque, D.; Reimer, O.; Shaw, M. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Chiang, J.; Claus, R.; Costamante, L.; Do Couto e Silva, E.; Drell, P. S.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Nolan, P. L.; Paneque, D.; Reimer, O.; Shaw, M. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Axelsson, M.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Axelsson, M.; Conrad, J.; Jackson, M. S.; McGlynn, S.; Meurer, C.; Ryde, F.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Tibaldo, L.] Univ Paris Diderot, Lab AIM, CEA IRFU CNRS, Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Sanchez, D.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caraveo, P. A.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy. [Cavazzuti, E.; Cutini, S.] ASI, Sci Data Ctr, I-00044 Frascati, Roma, Italy. [Celik, Oe.; Kadler, M.; Moiseev, A. A.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Vasileiou, V.; Kutyrev, A.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Celotti, A.] SISSA, I-34014 Trieste, Italy. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, Lab Phys Theor & Astroparticules, CNRS, IN2P3, Montpellier, France. [Collmar, W.; Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Conrad, J.; Jackson, M. S.; Meurer, C.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Dumora, D.; Guillemot, L.; Lott, B.; Parent, D.; Reposeur, T.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Guillemot, L.; Lott, B.; Parent, D.; Reposeur, T.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Fuhrmann, L.; Nestoras, I.; Zensus, J. A.; Angelakis, E.; Kovalev, Y. Y.; Krichbaum, T. P.; Marchili, N.; Pushkarev, A. B.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.; McConville, W.; Moiseev, A. A.] Univ Maryland, College Pk, MD 20742 USA. [Giroletti, M.] Ist Radioastron, INAF, I-40129 Bologna, Italy. [Guiriec, S.] Univ Alabama, Huntsville, AL 35899 USA. [Jackson, M. S.; McGlynn, S.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Kadler, M.] Dr Remeis Sternwarte Bamberg, D-96049 Bamberg, Germany. [Kadler, M.] Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Kadler, M.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Kataoka, J.; Kawai, N.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan. [Kawai, N.] RIKEN, Cosm Radiat Lab, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] UPS, Ctr Etud Spatiale Rayonnements, CNRS, F-31028 Toulouse 4, France. [Max-Moerbeck, W.; Pavlidou, V.; Readhead, A.; Richards, J. L.] CALTECH, Pasadena, CA 91125 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Porter, T. A.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Porter, T. A.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Rodriguez, A. Y.; Torres, D. F.] CSIC, Inst Ciencies Espai, IEEC, Barcelona 08193, Spain. [Scargle, J. D.] NASA, Div Space Sci, Ames Res Ctr, Moffett Field, CA 94035 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tibolla, O.] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany. [Torres, D. F.] ICREA, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Uchiyama, Y.; Doi, A.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, JAXA, Sagamihara, Kanagawa 2298510, Japan. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Wehrle, A. E.] Space Sci Inst, Boulder, CO 80301 USA. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. [Bailyn, C.; Bonning, E. W.; Buxton, M.; Isler, J.; Urry, C. M.] Yale Univ, Dept Astron, Dept Phys, New Haven, CT 06520 USA. [Bailyn, C.; Bonning, E. W.; Buxton, M.; Isler, J.; Urry, C. M.] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. [Bignall, H.] Curtin Univ Technol, Curtin Inst Radio Astron, Perth, WA 6845, Australia. [Blanchard, J.] Univ Tasmania, Dept Phys, Hobart, Tas 7001, Australia. [Canterna, R.] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Carraminana, A.; Carrasco, L.; Recillas, E.] Inst Nacl Astrofis Opt & Electr, Puebla 72840, Mexico. [Colomer, F.] Observ Astron Nacl, E-28803 Alcala De Henares, Spain. [Hauser, M.; Wagner, S.] Heidelberg Univ, D-69117 Heidelberg, Germany. [Hong, X.] Shanghai Astron Observ, Shanghai 200030, Peoples R China. [Kino, M.; Nagai, H.] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Kovalev, Y. Y.; Kovalev, Yu. A.] PN Lebedev Phys Inst, Ctr Astro Space, Moscow 117810, Russia. [Lahteenmaki, A.; Tammi, J.; Tornikoski, M.] Aalto Univ, Metsahovi Radio Observ, FIN-02540 Kylmala, Finland. [van Langevelde, H. J.; Paragi, Z.; Szomoru, A.] Joint Inst VLBI Europe, NL-7990 AA Dwingeloo, Netherlands. [van Langevelde, H. J.] Leiden Observ, NL-2300 RA Leiden, Netherlands. [Lister, M. L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Macomb, D.] Boise State Univ, Dept Phys, Boise, ID 83725 USA. [Paragi, Z.] MPA Res Grp Phys Geodesy & Geodynam, H-1585 Budapest, Hungary. [Phillips, C.; Tzioumis, A. K.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Pushkarev, A. B.] Crimean Astrophys Observ, UA-98409 Nauchnyi, Crimea, Ukraine. [Pushkarev, A. B.] Pulkovo Observ, St Petersburg 196140, Russia. [Roming, P.; Stark, M. A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Sekido, M.] Kashima Space Res Ctr, Natl Inst Informat & Communicat Technol, Kashima, Ibaraki 314, Japan. [Abdo, A. A.; Chekhtman, A.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. RP Foschini, L (reprint author), Osserv Astron Brera, INAF, I-23807 Merate, Italy. EM luigi.foschini@brera.inaf.it RI Thompson, David/D-2939-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Foschini, Luigi/H-3833-2012; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Bignall, Hayley/B-2867-2013; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Urry, Claudia/G-7381-2011; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Lahteenmaki, Anne/L-5987-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Kovalev, Yuri/J-5671-2013; Funk, Stefan/B-7629-2015; Pavlidou, Vasiliki/C-2944-2011; Tammi, Joni/G-2959-2012; Kovalev, Yuri/N-1053-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Pushkarev, Alexander/M-9997-2015 OI Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; Foschini, Luigi/0000-0001-8678-0324; giglietto, nicola/0000-0002-9021-2888; Bignall, Hayley/0000-0001-6247-3071; Urry, Claudia/0000-0002-0745-9792; Berenji, Bijan/0000-0002-4551-772X; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Tagliaferri, Gianpiero/0000-0003-0121-0723; van Langevelde, Huib Jan/0000-0002-0230-5946; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Axelsson, Magnus/0000-0003-4378-8785; Giroletti, Marcello/0000-0002-8657-8852; Angelakis, Emmanouil/0000-0001-7327-5441; Cutini, Sara/0000-0002-1271-2924; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Rando, Riccardo/0000-0001-6992-818X; Sgro', Carmelo/0000-0001-5676-6214; Giordano, Francesco/0000-0002-8651-2394; Ghisellini, Gabriele/0000-0002-0037-1974; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Reimer, Olaf/0000-0001-6953-1385; Kovalev, Yuri/0000-0001-9303-3263; Funk, Stefan/0000-0002-2012-0080; Pavlidou, Vasiliki/0000-0002-0870-1368; Tammi, Joni/0000-0002-9164-2695; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; FU NASA [NAS500136]; Cycle 1 Fermi GI [011283]; Academy of Finland; EC DG-INFSO funded [02662]; Russian Foundation for Basic Research [01-02-16812, 08-02-00545]; National Science Foundation [0807860-AST]; NASA-Fermi [NNX08AV67G]; BMBF/PT-DESY; National Aeronautics and Space Administration; [SFB 439] FX This work is sponsored at PSU by NASA contract NAS500136. The SMARTS observations were supported by Cycle 1 Fermi GI grant number 011283. The Metsahovi team acknowledges the support from the Academy of Finland. e-VLBI developments in Europe are supported by the EC DG-INFSO funded Communication Network Developments project "EXPReS," Contract No. 02662. The European VLBI Network is a joint facility of European, Chinese, South African, and other radio astronomy institutes funded by their national research councils.; The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. RATAN-600 observations are supported in part by the Russian Foundation for Basic Research (projects 01-02-16812 and 08-02-00545). This research has made use of data from the MOJAVE database that is maintained by the MOJAVE team (Lister et al. 2009). The MOJAVE project is supported under National Science Foundation grant 0807860-AST and NASA-Fermi grant NNX08AV67G. Also based on observations with the 100 m telescope of the Max-Planck-Institut fur Radioastronomie (MPIfR) at Effelsberg.; M. H. and S. W. acknowledge financial support through SFB 439 and BMBF/PT-DESY. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration and of data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA's Goddard Space Flight Center. NR 46 TC 47 Z9 47 U1 2 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 10 PY 2009 VL 707 IS 1 BP 727 EP 737 DI 10.1088/0004-637X/707/1/727 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 524SJ UT WOS:000272162900059 ER PT J AU Venter, C Harding, AK Guillemot, L AF Venter, C. Harding, A. K. Guillemot, L. TI PROBING MILLISECOND PULSAR EMISSION GEOMETRY USING LIGHT CURVES FROM THE FERMI/LARGE AREA TELESCOPE SO ASTROPHYSICAL JOURNAL LA English DT Review DE acceleration of particles; gamma rays: theory; pulsars: general; radiation mechanisms: non-thermal; stars: neutron ID GAMMA-RAY PULSARS; HIGH-ENERGY EMISSION; OUTER GAP MODEL; ROTATION-POWERED PULSARS; RAPIDLY SPINNING PULSARS; RADIATION PAIR FRONTS; X-RAY; POLAR CAPS; PARTICLE-ACCELERATION; NEUTRON-STAR AB An interesting new high-energy pulsar sub-population is emerging following early discoveries of gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope (LAT). We present results from three-dimensional emission modeling, including the special relativistic effects of aberration and time-of-flight delays and also rotational sweepback of B-field lines, in the geometric context of polar cap (PC), outer gap (OG), and two-pole caustic (TPC) pulsar models. In contrast to the general belief that these very old, rapidly rotating neutron stars (NSs) should have largely pair-starved magnetospheres due to the absence of significant pair production, we find that most of the light curves are best fit by TPC and OG models, which indicates the presence of narrow accelerating gaps limited by robust pair production-even in these pulsars with very low spin-down luminosities. The gamma-ray pulse shapes and relative phase lags with respect to the radio pulses point to high-altitude emission being dominant for all geometries. We also find exclusive differentiation of the current gamma-ray MSP population into two MSP sub-classes: light curve shapes and lags across wavebands impose either pair-starved PC (PSPC) or TPC/OG-type geometries. In the first case, the radio pulse has a small lag with respect to the single gamma-ray pulse, while the (first) gamma-ray peak usually trails the radio by a large phase offset in the latter case. Finally, we find that the flux correction factor as a function of magnetic inclination and observer angles is typically of order unity for all models. Our calculation of light curves and flux correction factor for the case of MSPs is therefore complementary to the "ATLAS paper" of Watters et al. for younger pulsars. C1 [Venter, C.; Harding, A. K.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Venter, C.] North West Univ, Unit Space Phys, ZA-2520 Potchefstroom, South Africa. [Guillemot, L.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Guillemot, L.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. RP Venter, C (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RI Venter, Christo/E-6884-2011; Harding, Alice/D-3160-2012 OI Venter, Christo/0000-0002-2666-4812; FU NASA Postdoctoral Program at the Goddard Space Flight Center; NASA; South African National Research Foundation; NASA Astrophysics Theory Program FX C. V. is supported by the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA, and also by the South African National Research Foundation. A. K. H. acknowledges support from the NASA Astrophysics Theory Program. We thank Alex Muslimov and Jarek Dyks for useful discussions. NR 114 TC 70 Z9 70 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 10 PY 2009 VL 707 IS 1 BP 800 EP 822 DI 10.1088/0004-637X/707/1/800 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 524SJ UT WOS:000272162900066 ER PT J AU Davies, B Figer, DF Kudritzki, RP Trombley, C Kouveliotou, C Wachter, S AF Davies, Ben Figer, Don F. Kudritzki, Rolf-Peter Trombley, Christine Kouveliotou, Chryssa Wachter, Stefanie TI THE PROGENITOR MASS OF THE MAGNETAR SGR1900+14 SO ASTROPHYSICAL JOURNAL LA English DT Article DE open clusters and associations: individual (Cl 1900+14); stars: evolution; stars: individual (SGR1900+14); stars: neutron ID X-RAY PULSAR; INFRARED SPECTRAL ATLAS; REPEATER SGR 1900+14; NEUTRON-STARS; PRESUPERNOVA EVOLUTION; 120 M(CIRCLE-DOT); RED SUPERGIANTS; HESS J1813-178; STELLAR MODELS; DISCOVERY AB Magnetars are young neutron stars with extreme magnetic fields (B greater than or similar to 10(14)-10(15) G). How these fields relate to the properties of their progenitor stars is not yet clearly established. However, from the few objects associated with young clusters it has been possible to estimate the initial masses of the progenitors, with results indicating that a very massive progenitor star (M(prog) > 40M(circle dot)) is required to produce a magnetar. Here, we present adaptive-optics assisted Keck/NIRC2 imaging and Keck/NIRSPEC spectroscopy of the cluster associated with the magnetar SGR 1900+14, and report that the initial progenitor star mass of the magnetar was a factor of 2 lower than this limit, M(prog) = 17 +/- 2M(circle dot). Our result presents a strong challenge to the concept that magnetars can only result from very massive progenitors. Instead, we favor a mechanism which is dependent on more than just initial stellar mass for the production of these extreme magnetic fields, such as the "fossil-field" model or a process involving close binary evolution. C1 [Davies, Ben] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Davies, Ben; Figer, Don F.; Trombley, Christine] Rochester Inst Technol, Chester F Carlson Ctr Imaging Sci, Rochester, NY 14623 USA. [Kudritzki, Rolf-Peter] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Kouveliotou, Chryssa] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. [Wachter, Stefanie] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. RP Davies, B (reprint author), Univ Leeds, Sch Phys & Astron, Woodhouse Lane, Leeds LS2 9JT, W Yorkshire, England. RI Davies, Ben/K-3996-2012; OI Davies, Ben/0000-0002-2010-2122 FU NASA [NNG 05-GC37G]; W. M. Keck Foundation FX We thank Jim Hinton and John Eldridge for useful discussion, and the anonymous referee for helpful comments and suggestions. This work makes use of the UKIDSS survey; the UKIDSS project is defined in Lawrence et al. (2007). UKIDSS uses the UKIRT Wide Field Camera (WFCAM; Casali et al. 2007) and a photometric system described in Hewett et al. (2006). The pipeline processing and science archive are described in Hambly et al. (2008). The material in this work is supported by NASA under award NNG 05-GC37G, through the Long-term Space Astrophysics program. This research was performed in the Rochester Imaging Detector Laboratory with support from a NYSTAR Faculty Development Program grant. Part of the data presented here were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. This research has made use of the IDL software package and the GSFC IDL library. NR 50 TC 47 Z9 47 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 10 PY 2009 VL 707 IS 1 BP 844 EP 851 DI 10.1088/0004-637X/707/1/844 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 524SJ UT WOS:000272162900069 ER PT J AU Huang, X Morokuma, T Fakhouri, HK Aldering, G Amanullah, R Barbary, K Brodwin, M Connolly, NV Dawson, KS Doi, M Faccioli, L Fadeyev, V Fruchter, AS Goldhaber, G Gladders, MD Hennawi, JF Ihara, Y Jee, MJ Kowalski, M Konishi, K Lidman, C Meyers, J Moustakas, LA Perlmutter, S Rubin, D Schlegel, DJ Spadafora, AL Suzuki, N Takanashi, N Yasuda, N AF Huang, X. Morokuma, T. Fakhouri, H. K. Aldering, G. Amanullah, R. Barbary, K. Brodwin, M. Connolly, N. V. Dawson, K. S. Doi, M. Faccioli, L. Fadeyev, V. Fruchter, A. S. Goldhaber, G. Gladders, M. D. Hennawi, J. F. Ihara, Y. Jee, M. J. Kowalski, M. Konishi, K. Lidman, C. Meyers, J. Moustakas, L. A. Perlmutter, S. Rubin, D. Schlegel, D. J. Spadafora, A. L. Suzuki, N. Takanashi, N. Yasuda, N. TI HUBBLE SPACE TELESCOPE DISCOVERY OF A z=3.9 MULTIPLY IMAGED GALAXY BEHIND THE COMPLEX CLUSTER LENS WARPS J1415.1+36 AT z=1.026 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: clusters: general; galaxies: clusters: individual (WARPS J1415.1+36); gravitational lensing ID X-RAY; SCALING RELATIONS; DARK-ENERGY; EVOLUTION; CAMERA; SAMPLE; ARCS AB We report the discovery of a multiply lensed Ly alpha emitter at z = 3.90 behind the massive cluster WARPS J1415.1+3612 at z = 1.026. Images taken by the Hubble Space Telescope using the Advanced Camera for Surveys reveal a complex lensing system that produces a prominent, highly magnified arc and a triplet of smaller arcs grouped tightly around a spectroscopically confirmed cluster member. Spectroscopic observations using the Faint Object Camera and Spectrograph on Subaru confirm strong Lya emission in the source galaxy and provide the redshifts for more than 21 cluster members with a velocity dispersion of 807 +/- 185 km s(-1). Assuming a singular isothermal sphere profile, the mass within the Einstein ring (7.13 +/- 0.'' 38) corresponds to a central velocity dispersion of 686(-19)(+15) km s(-1) for the cluster, consistent with the value estimated from cluster member redshifts. Our mass profile estimate from combining strong lensing and dynamical analyses is in good agreement with both X-ray and weak lensing results. C1 [Huang, X.; Fakhouri, H. K.; Barbary, K.; Goldhaber, G.; Hennawi, J. F.; Meyers, J.; Perlmutter, S.; Rubin, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Morokuma, T.; Takanashi, N.] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Fakhouri, H. K.; Aldering, G.; Barbary, K.; Faccioli, L.; Goldhaber, G.; Meyers, J.; Perlmutter, S.; Rubin, D.; Schlegel, D. J.; Spadafora, A. L.; Suzuki, N.] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Amanullah, R.] Stockholm Univ, Dept Phys, Albanova Univ Ctr, S-10691 Stockholm, Sweden. [Brodwin, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Connolly, N. V.] Hamilton Coll, Dept Phys, Clinton, NY 13323 USA. [Dawson, K. S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Doi, M.] Univ Tokyo, Grad Sch Sci, Inst Astron, Tokyo 1810015, Japan. [Fadeyev, V.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Fruchter, A. S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Gladders, M. D.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Jee, M. J.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Kowalski, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Konishi, K.] Univ Tokyo, Inst Cosm Ray Res, Chiba 2778582, Japan. [Lidman, C.] Oskar Klein Ctr, S-10691 Stockholm, Sweden. [Moustakas, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Huang, X (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM xhuang@lbl.gov RI Yasuda, Naoki/A-4355-2011; Perlmutter, Saul/I-3505-2015; OI Perlmutter, Saul/0000-0002-4436-4661; Moustakas, Leonidas/0000-0003-3030-2360 NR 38 TC 16 Z9 16 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD DEC 10 PY 2009 VL 707 IS 1 BP L12 EP L16 DI 10.1088/0004-637X/707/1/L12 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 525MV UT WOS:000272221100003 ER PT J AU Laming, JM Hwang, U AF Laming, J. Martin Hwang, Una TI THERMAL CONDUCTIVITY AND ELEMENT FRACTIONATION IN EV Lac SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE conduction; stars: abundances; stars: flare ID XMM-NEWTON VIEW; X-RAY SPECTROSCOPY; STAR EV-LACERTAE; STELLAR CORONAE; FLARE PLASMAS; SOLAR-FLARE; II-PEGASI; ABUNDANCES; EMISSION; ASCA AB We present a 100 ks Suzaku observation of the dMe flare star EV Lac, in which the star was captured undergoing a moderate 1500 s flare. During the flare, the count rate increased by about a factor of 50 and the spectrum showed overall enhanced element abundances relative to quiescence. While the quiescent element abundances confirm the inverse first ionization potential (FIP) effect previously documented for EV Lac, with relatively higher depletions for low FIP elements, abundances during the flare spectra show a composition closer to that of the stellar photosphere. We discuss these results in the context of models that explain abundance fractionation in the stellar chromosphere as a result of the ponderomotive force due to Alfven waves. Stars with FIP or inverse FIP effects arising from differently directed ponderomotive forces may have quite different abundance signatures in their evaporated chromospheric plasma during flares, if the same ponderomotive force also affects thermal conduction downward from the corona. The regulation of the thermal conductivity by the ponderomotive force requires a level of turbulence that is somewhat higher than is normally assumed, but plausible in filamentary conduction models. C1 [Laming, J. Martin] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Hwang, Una] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Hwang, Una] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Laming, JM (reprint author), USN, Res Lab, Div Space Sci, Code 7674L, Washington, DC 20375 USA. EM Una.Hwang-1@nasa.gov RI XRAY, SUZAKU/A-1808-2009 FU NASA [NNG05HL39I, NNG04GB78A]; Office of Naval Research FX J. M. L. is supported by NASA Contract NNG05HL39I and by basic research funds of the Office of Naval Research. U. H. acknowledges support from NASA grant NNG04GB78A. We thank Uri Feldman and Ken Phillips for advice and discussion, and are grateful to the referee for helpful comments. NR 33 TC 7 Z9 7 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD DEC 10 PY 2009 VL 707 IS 1 BP L60 EP L63 DI 10.1088/0004-637X/707/1/L60 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 525MV UT WOS:000272221100013 ER PT J AU Makarov, VV Beichman, CA Catanzarite, JH Fischer, DA Lebreton, J Malbet, F Shao, M AF Makarov, V. V. Beichman, C. A. Catanzarite, J. H. Fischer, D. A. Lebreton, J. Malbet, F. Shao, M. TI STARSPOT JITTER IN PHOTOMETRY, ASTROMETRY, AND RADIAL VELOCITY MEASUREMENTS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE planetary systems; stars: individual (HD 166435, kappa(1) Ceti); stars: spots; techniques: interferometric; techniques: photometric; techniques: radial velocities ID DIFFERENTIAL ROTATION; KAPPA(1) CETI; NEARBY STARS; PLANET; SPECTROSCOPY; VARIABILITY; SEARCH; MASS AB Analytical relations are derived for the amplitude of astrometric, photometric, and radial velocity ( RV) perturbations caused by a single rotating spot. The relative power of the starspot jitter is estimated and compared with the available data for kappa(1) Ceti and HD 166435, as well as with numerical simulations for kappa(1) Ceti and the Sun. A Sun-like star inclined at i = 90 degrees at 10 pc is predicted to have an rms jitter of 0.087 mu as in its astrometric position along the equator, and 0.38 m s(-1) in radial velocities. If the presence of spots due to stellar activity is the ultimate limiting factor for planet detection, the sensitivity of SIM Lite to Earth-like planets in habitable zones is about an order of magnitude higher than the sensitivity of prospective ultra-precise RV observations of nearby stars. C1 [Makarov, V. V.; Beichman, C. A.; Lebreton, J.; Malbet, F.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Catanzarite, J. H.; Shao, M.] JPL, Pasadena, CA 94550 USA. [Fischer, D. A.] San Francisco State Univ, Dept Phys & Astron, San Francisco, CA 94132 USA. [Malbet, F.] CNRS, Paris, France. RP Makarov, VV (reprint author), CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. EM vvm@caltech.edu OI Makarov, Valeri/0000-0003-2336-7887 FU National Aeronautics and Space Administration FX The authors thank G. Walker for his detailed and helpful review. The research described in this Letter was in part carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This research has made use of the NStED database, maintained at NExScI, Pasadena, USA. NR 22 TC 38 Z9 39 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD DEC 10 PY 2009 VL 707 IS 1 BP L73 EP L76 DI 10.1088/0004-637X/707/1/L73 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 525MV UT WOS:000272221100016 ER PT J AU Zhou, SJ Duffy, D Clune, T Suarez, M Williams, S Halem, M AF Zhou, Shujia Duffy, Daniel Clune, Thomas Suarez, Max Williams, Samuel Halem, Milton TI The impact of IBM Cell technology on the programming paradigm in the context of computer systems for climate and weather models SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE IBM Cell processor; climate model; weather model AB The call for ever-increasing model resolutions and physical processes in climate and weather models demands a continual increase in computing power. The IBM Cell processor's order-of-magnitude peak performance increase over conventional processors makes it very attractive to fulfill this requirement However, the Cell's characteristics, 256kB local memory per SPE and the new low-level communication mechanism, make it very challenging to port an application. As a trial, we selected the solar radiation component of the NASA GEOS-5 climate model, which: (1) is representative of column-physics components (half of the total computational time), (2) has an extremely high computational intensity: the ratio of computational load to main memory transfers, and (3) exhibits embarrassingly parallel column computations. In this paper, we converted the baseline code (single-precision Fortran) to C and ported it to an IBM BladeCenter QS20. For performance, we manually SIMDize four independent columns and include several unrolling optimizations. Our results show that when compared with the baseline implementation running on one core of Intel's Xeon Woodcrest, Dempsey, and Itanium2, the Cell is approximately 8.8x, 11.6x, and 12.8x faster, respectively. Our preliminary analysis shows that the Cell can also accelerate the dynamics component (similar to 25% total computational time). We believe these dramatic performance improvements make the Cell processor very competitive as an accelerator. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Zhou, Shujia; Duffy, Daniel; Clune, Thomas; Suarez, Max] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Williams, Samuel] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Halem, Milton] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. RP Zhou, SJ (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM shujia.zhou@nasa.gov FU NASA; ASCR Office [DE-AC02-05CH11231]; DOE Office of Science [DE-AC02-05CH11231] FX Contract/grant sponsor: NASA High End Computing Program; Contract/grant sponsor: ASCR Office; contract/grant number: DE-AC02-05CH11231; We would like to thank Carlos Cruz and Bruce Van Aartsen for translating some of the code from Fortran to C. We also would like to thank Tsengdar Lee (NASA High End Computing Program) for providing the funding and Phil Webster for project initiation, Mike Seablom for his inspiration and helpful discussion, John Shalf for sharing his insight on the IBM Cell technology, Lara Clemence for providing assistance in developing Figures 3 and 4, NASA NCCS for installing the IBM Cell Simulator for code development, the Dice Project for training support, and finally, the UMBC Multicore Computational Center for providing access to an IBM BladeCenter QS20 for testing and benchmarking, respectively. Dr Williams was supported by the ASCR Office in the DOE Office of Science under contract number DE-AC02-05CH11231. NR 7 TC 4 Z9 4 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-0626 EI 1532-0634 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD DEC 10 PY 2009 VL 21 IS 17 SI SI BP 2176 EP 2186 DI 10.1002/cpe.1482 PG 11 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 516RH UT WOS:000271559600004 ER PT J AU Lissauer, JJ AF Lissauer, Jack J. TI Astronomia Nova SO NATURE LA English DT Book Review C1 [Lissauer, Jack J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. RP Lissauer, JJ (reprint author), NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. EM Jack.J.Lissauer@nasa.gov NR 1 TC 1 Z9 1 U1 0 U2 1 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD DEC 10 PY 2009 VL 462 IS 7274 BP 725 EP 725 DI 10.1038/462725a PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 529ZZ UT WOS:000272559900020 ER PT J AU MacNeice, P AF MacNeice, Peter TI Validation of community models: 2. Development of a baseline using the Wang-Sheeley-Arge model SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID SOLAR-WIND SPEED; CORONA; SUN AB This paper is the second in a series providing independent validation of community models of the outer corona and inner heliosphere. Here I present a comprehensive validation of the Wang-Sheeley-Arge (WSA) model. These results will serve as a baseline against which to compare the next generation of comparable forecasting models. The WSA model is used by a number of agencies to predict Solar wind conditions at Earth up to 4 days into the future. Given its importance to both the research and forecasting communities, it is essential that its performance be measured systematically and independently. I offer just such an independent and systematic validation. I report skill scores for the model's predictions of wind speed and interplanetary magnetic field (IMF) polarity for a large set of Carrington rotations. The model was run in all its routinely used configurations. It ingests synoptic line of sight magnetograms. For this study I generated model results for monthly magnetograms from multiple observatories, spanning the Carrington rotation range from 1650 to 2074. I compare the influence of the different magnetogram sources and performance at quiet and active times. I also consider the ability of the WSA model to forecast both sharp transitions in wind speed from slow to fast wind and reversals in the polarity of the radial component of the IMF. These results will serve as a baseline against which to compare future versions of the model as well as the current and future generation of magnetohydrodynamic models under development for forecasting use. C1 NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP MacNeice, P (reprint author), NASA, Goddard Space Flight Ctr, Mail Code 674, Greenbelt, MD 20771 USA. EM peter.j.macneice@nasa.gov NR 22 TC 12 Z9 12 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD DEC 10 PY 2009 VL 7 AR S12002 DI 10.1029/2009SW000489 PG 16 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 532BH UT WOS:000272717900001 ER PT J AU Bell, TL Rosenfeld, D Kim, KM AF Bell, Thomas L. Rosenfeld, Daniel Kim, Kyu-Myong TI Weekly cycle of lightning: Evidence of storm invigoration by pollution SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID DETECTION NETWORK AB We have examined summertime 1998-2009 U. S. lightning data from the National Lightning Detection Network (NLDN) to look for weekly cycles in lightning activity. As was found by Bell et al. (2008) for rain over the southeast U. S., there is a significant weekly cycle in afternoon lightning activity that peaks in the middle of the week there. The weekly cycle appears to be reduced over population centers. Lightning activity peaks on weekends over waters near the SE U. S. The statistical significance of weekly cycles over the western half of the country is generally small. We found no evidence of a weekly cycle of synoptic-scale forcing that might explain these patterns. The lightning behavior is entirely consistent with the explanation suggested by Bell et al. (2008) for the cycles in rainfall and other atmospheric data from the SE U. S., that aerosols can cause storms to intensify in humid, convectively unstable environments. Citation: Bell, T. L., D. Rosenfeld, and K.-M. Kim (2009), Weekly cycle of lightning: Evidence of storm invigoration by pollution, Geophys. Res. Lett., 36, L23805, doi: 10.1029/2009GL040915. C1 [Bell, Thomas L.; Kim, Kyu-Myong] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Rosenfeld, Daniel] Hebrew Univ Jerusalem, Inst Earth Sci, IL-91904 Jerusalem, Israel. [Kim, Kyu-Myong] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. RP Bell, TL (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Mail Code 613-2, Greenbelt, MD 20771 USA. EM thomas.l.bell@nasa.gov; daniel.rosenfeld@huji.ac.il; kyu-myong.kim@nasa.gov RI Bell, Thomas/G-5425-2012; Kim, Kyu-Myong/G-5398-2014; Rosenfeld, Daniel/F-6077-2016 OI Rosenfeld, Daniel/0000-0002-0784-7656 FU European Community-New and Emerging Science and Technologies [12444]; NASA Lightning Imaging Sensor (LIS); Global Hydrology Resource Center (GHRC) FX Research by TLB was supported by the Science Mission Directorate of the National Aeronautics and Space Administration as part of the Precipitation Measurement Mission program under Ramesh Kakar. Research by DR was supported by the European Community-New and Emerging Science and Technologies (contract 12444 (NEST)-ANTISTORM). NLDN data were provided by the NASA Lightning Imaging Sensor (LIS) instrument team and the LIS data center via the Global Hydrology Resource Center (GHRC) located at the Global Hydrology and Climate Center GHCC), Huntsville, Alabama through a license agreement with Global Atmospherics, Inc. (GAI). NR 13 TC 39 Z9 39 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 9 PY 2009 VL 36 AR L23805 DI 10.1029/2009GL040915 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 531ZW UT WOS:000272713500004 ER PT J AU Marcus, SL Dickey, JO Willis, JK Seitz, F AF Marcus, Steven L. Dickey, Jean O. Willis, Josh K. Seitz, Florian TI Earth oblateness changes reveal land ice contribution to interannual sea level variability SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID OCEAN CIRCULATION; RISE; TOPEX/POSEIDON; MODEL AB A broad consensus has emerged regarding the importance of both ocean mass and heat content changes for global sea level (GSL) rise, but their respective contributions to interannual GSL variability are less certain. Here, we use changes in the Earth's dynamic oblateness (J(2)) to infer land ice contributions to GSL variability during a 10.5-year period encompassing the intense 1997-98 ENSO event. By accounting for heat content and water mass distribution changes in the oceans, atmosphere and land hydrology using observational and model results, we isolate unexplained residuals in J(2) and GSL that are well-correlated with each other and with melt-season temperature and mass balance anomalies in Alaska, a particularly active and well-studied glaciated region. The close agreement between residual GSL and oblateness variations found in our results indicates that the latter can provide a useful proxy for changes in high-latitude land ice when corrections for other sources are applied. Citation: Marcus, S. L., J. O. Dickey, J. K. Willis, and F. Seitz (2009), Earth oblateness changes reveal land ice contribution to interannual sea level variability, Geophys. Res. Lett., 36, L23608, doi: 10.1029/2009GL041130. C1 [Marcus, Steven L.; Dickey, Jean O.; Willis, Josh K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Seitz, Florian] Tech Univ Munich, D-80333 Munich, Germany. RP Marcus, SL (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM steven.l.marcus@jpl.nasa.gov RI Seitz, Florian/F-3125-2011; OI Marcus, Steven/0000-0002-5763-6961 FU National Aeronautics and Space Administration FX We thank Chris Cox (Raytheon Systems) for providing the J2 data; Ichiro Fukumori (JPL) for providing the ECCO data; and Chris Milly (USGS Princeton) for providing the land hydrology data, that were used in our study. Helpful comments were provided by Felix Landerer (JPL) on the manuscript, and by Shailen Desai (JPL), Xiaoping Wu (JPL), and John Wahr (U. Colorado) on related scientific issues. The comments of three anonymous reviewers helped to improve the manuscript. The work of S. L. M., J. O. D., and J. K. W. presents the results of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 28 TC 3 Z9 3 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 9 PY 2009 VL 36 AR L23608 DI 10.1029/2009GL041130 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 531ZW UT WOS:000272713500005 ER PT J AU Cook, BI Buckley, BM AF Cook, Benjamin I. Buckley, Brendan M. TI Objective determination of monsoon season onset, withdrawal, and length SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ASIAN SUMMER MONSOON; 2-PHASE REGRESSION-MODEL; ENSO RELATIONSHIP; NORTH PACIFIC; VARIABILITY; RAINFALL; THAILAND; CLIMATE; WESTERN AB Using daily precipitation data from a network of weather stations across mainland Thailand, we apply a two-phase linear regression model to objectively determine the onset, withdrawal, and length of the summer monsoon season for the years 1951-2005. Our onset metric compares favorably with an independent determination of onset. Both onset and withdrawal are associated with expected wind and geopotential height anomalies in the lower atmosphere. Comparisons between stations show no coherent spatial variability in either onset or withdrawal, and trends at each station are small and statistically insignificant at the p < 0.05 level. When averaged across all stations, onset, withdrawal, and season length all show significant correlations with sea surface temperatures (SST) in the Indian ocean, tropical Pacific, and in the North Pacific regions with relatively well understood connections to monsoon variability. Additionally, there are also significant correlations with SSTs in the South Atlantic and North Atlantic, teleconnections that have been previously suggested but remain controversial. Compared to other methods for deriving the onset and withdrawal of the monsoon, our method provides one of the most objective techniques available using data readily available from most meteorological stations. C1 [Cook, Benjamin I.] Lamont Doherty Earth Observ, Div Ocean & Climate Phys, Palisades, NY 10964 USA. [Cook, Benjamin I.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Buckley, Brendan M.] Lamont Doherty Earth Observ, Tree Ring Lab, Palisades, NY 10964 USA. RP Cook, BI (reprint author), Lamont Doherty Earth Observ, Div Ocean & Climate Phys, 61 Rte 9W, Palisades, NY 10964 USA. EM bc9z@ldeo.columbia.edu RI Cook, Benjamin/H-2265-2012 FU NSF [0908971] FX This work was supported by NSF award 0908971 (dynamics of coupled natural and human systems). The authors wish to thank two anonymous reviewers for valuable comments that have greatly improved this manuscript, as well as E. R. Cook for suggesting the use of the maximum entropy bootstrap. Lamont contribution 7310. NR 25 TC 18 Z9 18 U1 2 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD DEC 9 PY 2009 VL 114 AR D23109 DI 10.1029/2009JD012795 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 532AE UT WOS:000272714400006 ER PT J AU Ho, SP Kirchengast, G Leroy, S Wickert, J Mannucci, AJ Steiner, A Hunt, D Schreiner, W Sokolovskiy, S Ao, C Borsche, M von Engeln, A Foelsche, U Heise, S Iijima, B Kuo, YH Kursinski, R Pirscher, B Ringer, M Rocken, C Schmidt, T AF Ho, Shu-peng Kirchengast, Gottfried Leroy, Stephen Wickert, Jens Mannucci, Anthony J. Steiner, Andrea Hunt, Doug Schreiner, William Sokolovskiy, Sergey Ao, Chi Borsche, Michael von Engeln, Axel Foelsche, Ulrich Heise, Stefan Iijima, Byron Kuo, Ying-Hwa Kursinski, Rob Pirscher, Barbara Ringer, Mark Rocken, Chris Schmidt, Torsten TI Estimating the uncertainty of using GPS radio occultation data for climate monitoring: Intercomparison of CHAMP refractivity climate records from 2002 to 2006 from different data centers SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID LOWER STRATOSPHERE; NEUTRAL ATMOSPHERE; TEMPERATURE; PROFILES; TROPOSPHERE; SATELLITE; INVERSION; ACCURACY; MODEL; GRACE AB To examine the suitability of GPS radio occultation (RO) observations as a climate benchmark data set, this study aims at quantifying the structural uncertainty in GPS RO-derived vertical profiles of refractivity and measured refractivity trends obtained from atmospheric excess phase processing and inversion procedures. Five years (2002-2006) of monthly mean climatologies (MMC) of retrieved refractivity from the experiment aboard the German satellite CHAMP generated by four RO operational centers were compared. Results show that the absolute values of fractional refractivity anomalies among the centers are, in general, <= 0.2% from 8 to 25 km altitude. The median absolute deviations among the centers are less than 0.2% globally. Because the differences in fractional refractivity produced by the four centers are, in general, unchanging with time, the uncertainty of the trend for fractional refractivity anomalies among centers is +/-0.04% per 5 years globally. The primary cause of the trend uncertainty is due to different quality control methods used by the four centers, which yield different sampling errors for different centers. We used the National Centers for Environmental Prediction reanalysis in the same period to estimate sampling errors. After removing the sampling errors, the uncertainty of the trend for fractional refractivity anomalies among centers is between -0.03 and 0.01% per 5 years. Thus 0.03% per 5 years can be considered an upper bound in the processing scheme-induced uncertainty for global refractivity trend monitoring. Systematic errors common to all centers are not discussed in this article but are generally believed to be small. C1 [Ho, Shu-peng; Hunt, Doug; Schreiner, William; Sokolovskiy, Sergey; Foelsche, Ulrich; Kuo, Ying-Hwa; Rocken, Chris] Univ Corp Atmospher Res, COSM Project Off, Boulder, CO 80307 USA. [Kirchengast, Gottfried; Steiner, Andrea; Borsche, Michael; Foelsche, Ulrich; Pirscher, Barbara] Graz Univ, Wegener Ctr Climate & Global Change, A-8010 Graz, Austria. [Kirchengast, Gottfried; Steiner, Andrea; Borsche, Michael; Foelsche, Ulrich; Pirscher, Barbara] Graz Univ, Inst Phys, A-8010 Graz, Austria. [Leroy, Stephen] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Wickert, Jens; Heise, Stefan; Schmidt, Torsten] German Res Ctr Geosci, Dept Geodesy & Remote Sensing, D-14473 Potsdam, Germany. [Mannucci, Anthony J.; Ao, Chi; Iijima, Byron] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [von Engeln, Axel] European Org Exploitat Meteorol Satellites, Meteorol Div, D-64295 Darmstadt, Germany. [Kursinski, Rob] Univ Arizona, Inst Atmospher Phys, Tucson, AZ 85721 USA. [Ringer, Mark] Hadley Ctr, Met Off, Exeter EX1 3PB, Devon, England. RP Ho, SP (reprint author), Univ Corp Atmospher Res, COSM Project Off, POB 3000, Boulder, CO 80307 USA. EM spho@ucar.edu RI Schmidt, Torsten/A-7142-2013; Wickert, Jens/A-7257-2013; Ringer, Mark/E-7294-2013; Heise, Stefan/K-2190-2013; Kirchengast, Gottfried/D-4990-2016; OI Schmidt, Torsten/0000-0001-9302-1000; Ringer, Mark/0000-0003-4014-2583; Kirchengast, Gottfried/0000-0001-9187-937X; Foelsche, Ulrich/0000-0002-9899-6453 FU National Science Foundation; NOAA [NA07OAR4310224]; Austrian Science Fund FWF [CLIMROCC, INDICATE]; Austrian Research Promotion Agency FFG [EOPSCLIM]; European Space Agency [ProdexCN2-EGOPS6]; Max Kade Foundation (New York); UCAR; U.S. NOAA [NA 06 0AR4310121]; DECC [GA01101]; Defra [GA01101]; MoD Integrated Climate Programme [CBC/2B/0417_Annex C5] FX We thank all the scientists, engineers, and technicians of the CHAMP satellite mission for their successful work, which is the base for our investigations. The National Center for Atmospheric Research is sponsored by the National Science Foundation. S.-P. H. acknowledges NOAA support under grant NA07OAR4310224. The work at Wegener Center (University of Graz, Austria) was sponsored by the Austrian Science Fund FWF (projects CLIMROCC, INDICATE), the Austrian Research Promotion Agency FFG (project EOPSCLIM), and the European Space Agency (project ProdexCN2-EGOPS6). U. F. received financial support from the Max Kade Foundation (New York) and from UCAR. S. L. was supported by grant NA 06 0AR4310121 of the U.S. NOAA Office of Global Programs. M. R. was supported by the joint DECC, Defra, and MoD Integrated Climate Programme (DECC/Defra, GA01101; MoD, CBC/2B/0417_Annex C5). Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 67 TC 53 Z9 53 U1 1 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD DEC 9 PY 2009 VL 114 AR D23107 DI 10.1029/2009JD011969 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 532AE UT WOS:000272714400002 ER PT J AU Shaw, A Arvidson, RE Bonitz, R Carsten, J Keller, HU Lemmon, MT Mellon, MT Robinson, M Trebi-Ollennu, A AF Shaw, Amy Arvidson, Raymond E. Bonitz, Robert Carsten, Joseph Keller, H. U. Lemmon, Mark T. Mellon, Michael T. Robinson, Matthew Trebi-Ollennu, Ashitey TI Phoenix soil physical properties investigation SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID LANDING SITE; MARS; SURFACE; DEPOSITS AB The Phoenix Lander investigated the polygonal terrain and associated soil and icy soil deposits of a high northern latitude site on Mars. The soil physical properties component involved the analysis of force data determined from motor currents from the Robotic Arm (RA)'s trenching activity. Using this information and images of the landing site, soil cohesion and angle of internal friction were determined. Dump pile slopes were used to determine the angle of internal friction of the soil: 38 degrees +/- 5 degrees. Additionally, an excavation model that treated walls and edges of the scoop as retaining walls was used to calculate mean soil cohesions for several trenches in the Phoenix landing site workspace. These cohesions were found to be consistent with the stability of steep trench slopes. Cohesions varied from 0.2 +/- 0.4 kPa to 1.2 +/- 1.8 kPa, with the exception of a subsurface platy horizon unique to a shallow trough for which cohesion will have to be determined using other methods. Soil on polygon mounds had the greatest cohesion (1.2 +/- 1.8 kPa). This was most likely due to the presence of adsorbed water or pore ice above the shallow icy soil surface. Further evidence for enhanced cohesion above the ice table includes lateral increase in excavation force, by over 30 N, as the RA approached ice. C1 [Shaw, Amy; Arvidson, Raymond E.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Bonitz, Robert; Carsten, Joseph; Robinson, Matthew; Trebi-Ollennu, Ashitey] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lemmon, Mark T.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Mellon, Michael T.] Univ Colorado, Dept Astrophys & Planetary Sci, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Keller, H. U.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. RP Shaw, A (reprint author), Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. RI Lemmon, Mark/E-9983-2010; Mellon, Michael/C-3456-2016 OI Lemmon, Mark/0000-0002-4504-5136; NR 34 TC 11 Z9 11 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD DEC 9 PY 2009 VL 114 AR E00E05 DI 10.1029/2009JE003455 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 532AW UT WOS:000272716600001 ER PT J AU Marshall, ST Cooke, ML Owen, SE AF Marshall, Scott T. Cooke, Michele L. Owen, Susan E. TI Interseismic deformation associated with three-dimensional faults in the greater Los Angeles region, California SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID LATE CENOZOIC TECTONICS; ELASTIC HALF-SPACE; PALOS-VERDES FAULT; 7.1 HECTOR MINE; SOUTHERN-CALIFORNIA; VENTURA BASIN; STRAIN ACCUMULATION; SLIP RATES; SURFACE DEFORMATION; SEISMIC-REFLECTION AB Existing interseismic models are not well-suited to simulate deformation within the network of finite, intersecting, nonplanar faults observed in the greater Los Angeles region. Instead of applying fault slip rates to a model a priori, we allow three-dimensional fault surfaces to interact and accumulate mechanically viable slip distributions and then use the deep nonseismogenic portion of slip to calculate interseismic deformation. We apply this approach to the Los Angeles region and find that the geologic timescale model results match well geologic slip rate data and the interseismic timescale model results match well the heterogeneous GPS velocity pattern in the Los Angeles region. Model results suggest that localized geodetic convergence in the San Gabriel basin can be achieved with slip on multiple active fault surfaces in the Los Angeles region including relatively fast slip on the Sierra Madre fault and slow slip on the Puente Hills thrusts, in agreement with geologic data. The ability of the three-dimensional model to reproduce well both geologic slip rates and interseismic geodetic velocity patterns suggests that current day contraction rates in the greater Los Angeles region are compatible with long-term geologic deformation rates and disputes suggestions of significant temporal variations in fault slip rates inferred from existing investigations. C1 [Marshall, Scott T.] Appalachian State Univ, Dept Geol, Boone, NC 28608 USA. [Cooke, Michele L.] Univ Massachusetts, Dept Geosci, Amherst, MA 01003 USA. [Owen, Susan E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Marshall, ST (reprint author), Appalachian State Univ, Dept Geol, Boone, NC 28608 USA. EM marshallst@appstate.edu FU U.S. Geological Survey (USGS), Department of the Interior, under USGS [05HQGR0064, 02HQAG0008]; Southern California Earthquake Center; NSF [EAR-0106924] FX This work was partially supported by U.S. Geological Survey (USGS), Department of the Interior, under USGS award 05HQGR0064. This research was also partially supported by the Southern California Earthquake Center. SCEC is funded by NSF Cooperative Agreement EAR-0106924 and USGS Cooperative Agreement 02HQAG0008. The SCEC contribution for this paper is 1168. This work benefited greatly from discussions with Eric Hetland on an early version of this work and with Don Argus concerning geodetic data corrections. We thank Chris Walls for detailed site geology of several key GPS stations. Constructive reviews by Jean Chery and three anonymous reviewers greatly improved this work. Poly3D was made available by IGEOSS. Manipulation of fault surfaces was facilitated by use of 3DMove by Midland Valley Ltd. Figures 1, 7, and 8 were generated with the assistance of Generic Mapping Tools [Wessel and Smith, 1998]. NR 87 TC 14 Z9 14 U1 1 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD DEC 9 PY 2009 VL 114 AR B12403 DI 10.1029/2009JB006439 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 532AY UT WOS:000272716800003 ER PT J AU Haefele, A De Wachter, E Hocke, K Kampfer, N Nedoluha, GE Gomez, RM Eriksson, P Forkman, P Lambert, A Schwartz, MJ AF Haefele, A. De Wachter, E. Hocke, K. Kaempfer, N. Nedoluha, G. E. Gomez, R. M. Eriksson, P. Forkman, P. Lambert, A. Schwartz, M. J. TI Validation of ground-based microwave radiometers at 22 GHz for stratospheric and mesospheric water vapor SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SPECTRAL-LINE CATALOG; MILLIMETER; SUBMILLIMETER; TEMPERATURE; RETRIEVAL; SATELLITE AB We present a detailed intercomparison of five ground-based 22 GHz microwave radiometers for stratospheric and mesospheric water vapor. Four of these instruments are members of the Network for the Detection of Atmospheric Composition Change (NDACC). The global measurements of middle atmospheric water vapor of the Microwave Limb Sounder (MLS) onboard the Aura satellite serve as reference and allow intercomparison of the ground-based systems that are located between 45 degrees S and 57 degrees N. The retrievals of water vapor profiles from the ground-based radiation measurements have been made consistent to a large extent: for the required temperature profiles, we used the global temperature measurements of MLS and we agreed on one common set of spectroscopic parameters. The agreement with the reference measurements is better than +/- 8% in the altitude range from 0.01 to 3 hPa. Strong correlation is found between the ground-based and the reference data in the mesosphere with respect to seasonal cycle and planetary waves. In the stratosphere the measurements are generally more noisy and become sensitive to instrumental instabilities toward lower levels (pressures greater than 3 hPa). We further present a compilation of a NDACC data set based on the retrieval parameters described herein but using a temperature climatology derived from the MLS record. This makes the ground-based measurements independent of additional information and allows extension of the data set for years in a homogeneous manner. C1 [Haefele, A.; De Wachter, E.; Hocke, K.; Kaempfer, N.] Univ Bern, Inst Appl Phys, Dept Microwave Phys, CH-3012 Bern, Switzerland. [Hocke, K.; Kaempfer, N.] Univ Bern, Oeschger Ctr Climate Change Res, CH-3012 Bern, Switzerland. [Nedoluha, G. E.; Gomez, R. M.] USN, Res Lab, Washington, DC 20375 USA. [Eriksson, P.; Forkman, P.] Chalmers, Dept Radio & Space Sci, S-41296 Gothenburg, Sweden. [Lambert, A.; Schwartz, M. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Haefele, A (reprint author), Univ Bern, Inst Appl Phys, Dept Microwave Phys, Sidlerstr 5, CH-3012 Bern, Switzerland. EM haefele@iap.unibe.ch RI Eriksson, Patrick/A-5321-2009; Schwartz, Michael/F-5172-2016 OI Eriksson, Patrick/0000-0002-8475-0479; Schwartz, Michael/0000-0001-6169-5094 FU Swiss National Science foundation [200020-115882/1]; MeteoSwiss within GAW; European Commission [FOP6-2005-Global-4-036677]; NASA FX This work has been supported by the Swiss National Science foundation under grant 200020-115882/1 as well as through the project SHOMING financed by MeteoSwiss within GAW. We acknowledge the support of the European Commission through the GEOMON Integrated Project under the 6th Framework Program (contract FOP6-2005-Global-4-036677) and the support by NASA under the Upper Atmosphere Research Program and by the Naval Research Laboratory. We also would like to thank the teams at Lauder, Mauna Loa, and Seoul for their technical support to run the instruments. Work at the Jet Propulsion Laboratory, California Institute of Technology, was carried out under a contract with the National Aeronautics and Space Administration. NR 31 TC 17 Z9 17 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD DEC 8 PY 2009 VL 114 AR D23305 DI 10.1029/2009JD011997 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 532AC UT WOS:000272714200001 ER PT J AU Houborg, R Anderson, MC Norman, JM Wilson, T Meyers, T AF Houborg, Rasmus Anderson, Martha C. Norman, John M. Wilson, Tim Meyers, Tilden TI Intercomparison of a 'bottom-up' and 'top-down' modeling paradigm for estimating carbon and energy fluxes over a variety of vegetative regimes across the US SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE CO2 fluxes; Evapotranspiration; Light-use-efficiency; Leaf photosynthesis; Bottom-up model; Top-down model; Stomatal conductance ID WATER-VAPOR EXCHANGE; LIGHT-USE EFFICIENCY; NET PRIMARY PRODUCTION; REMOTELY-SENSED DATA; STOMATAL CONDUCTANCE; PHOTOSYNTHETIC CAPACITY; EDDY-COVARIANCE; TEMPERATURE RESPONSE; DIOXIDE EXCHANGE; LEAF NITROGEN AB Biophysical models intended for routine applications at a range of scales should attempt to balance the competing demands of generality and simplicity and be capable of realistically simulating the response of CO2 and energy fluxes to environmental and physiological forcings. At the same time they must remain computationally inexpensive and sufficiently simple to be effectively parameterized at the scale of application. This study investigates the utility of two modeling strategies for quantifying coupled land surface fluxes of carbon and water, which differ distinctly in their description of CO2 assimilation processes. 'Bottom-up' models of land-atmosphere carbon exchange are based on detailed mechanistic descriptions of leaf-level photosynthetic processes scaled to the canopy whereas 'top-down' scaling approaches neglect the behavior of individual leaves and consider the canopy response to its environment in bulk. Effective intercomparisons of a light-use-efficiency (LUE)-based model of canopy conductance and a mechanistic model of leaf photosynthesis-stomatal response that employs a 'two-leaf' scaling strategy are facilitated by embedding both canopy sub-models in the Atmosphere-Land Exchange (ALEX) surface energy balance model. Water and carbon flux simulations are evaluated across time scales of hours, days, seasons and years for a variety of natural and agricultural ecosystems, using micrometeorological data from several AmeriFlux sites across the U.S. While both modeling paradigms reproduced observed magnitudes and variances of carbon and water vapor exchange on hourly and daily timescales with acceptable accuracy, the simpler LUE-based model often performed better than the more detailed scaled-leaf model, which has many adjustable species-specific model parameters. Actual light-use efficiencies vary significantly in response to changing environmental conditions and the success of LUE-based modeling frameworks rely on their ability to realistically respond to changes in light environment, atmospheric humidity, CO2 concentration and a desiccating environment. (C) 2009 Elsevier B.V. All rights reserved. C1 [Houborg, Rasmus] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Houborg, Rasmus] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA. [Anderson, Martha C.] ARS, USDA, Hydrol & Remote Sensing Lab, Beltsville, MD USA. [Norman, John M.] Univ Wisconsin, Dept Soil Sci, Madison, WI 53706 USA. [Wilson, Tim; Meyers, Tilden] NOAA, Atmospher Turbulence & Diffus Div, Oak Ridge, TN 37831 USA. RP Houborg, R (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. EM rasmus.houborg@nasa.gov RI Anderson, Martha/C-1720-2015; Meyers, Tilden/C-6633-2016; Wilson, Timothy/C-9863-2016 OI Anderson, Martha/0000-0003-0748-5525; Wilson, Timothy/0000-0003-1785-5323 NR 83 TC 6 Z9 6 U1 1 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD DEC 4 PY 2009 VL 149 IS 12 SI SI BP 2162 EP 2182 DI 10.1016/j.agrformet.2009.10.002 PG 21 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA 536DU UT WOS:000273023700010 ER PT J AU Nedoluha, GE Gomez, RM Hicks, BC Wrotny, JE Boone, C Lambert, A AF Nedoluha, Gerald E. Gomez, R. Michael Hicks, Brian C. Wrotny, Jonathan E. Boone, Chris Lambert, Alyn TI Water vapor measurements in the mesosphere from Mauna Loa over solar cycle 23 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID HALOGEN OCCULTATION EXPERIMENT; MILLIMETER-WAVE SPECTROMETER; MIDDLE ATMOSPHERE; VALIDATION; OZONE; TEMPERATURE; RETRIEVAL; TRANSPORT; SATELLITE; CLOUDS AB The Water Vapor Millimeter-wave Spectrometer (WVMS) system has been making measurements from the Network for the Detection of Atmospheric Composition Change site at Mauna Loa, Hawaii (19.5 degrees N, 204.4 degrees E), since 1996, covering nearly the complete period of solar cycle 23. The WVMS measurements are compared with Halogen Occultation Experiment (HALOE) (1992-2005), Microwave Limb Sounder (MLS) (2004 to present), and Atmospheric Chemistry Experiment (ACE) Fourier transform spectrometer (2004 to present) measurements in the mesosphere. In the upper mesosphere Lyman alpha radiation photodissociates water vapor; hence, water vapor in the upper mesosphere varies with the solar cycle. We calculate fits to the WVMS and HALOE water vapor data in this region using the Lasp Interactive Solar Irradiance Datacenter Lyman alpha data set. This is, to our knowledge, the only published validation of the sensitivity of HALOE water vapor measurements to the solar cycle, and the HALOE and WVMS water vapor measurements show a very similar sensitivity to the solar cycle. Once the solar cycle variations are taken into account, the primary water vapor variations at all of these altitudes from 1992 to the present are an increase from 1992 to 1996, a maximum in water vapor in 1996, and small changes from 1997 to the present. Measurements from 2004 to 2008, which are available from WVMS, MLS, and ACE, show not only good agreement in interannual variations but also excellent agreement in their absolute measurements (to within better than 3%) of the water vapor mixing ratio from 50 to 80 km. C1 [Nedoluha, Gerald E.; Gomez, R. Michael; Hicks, Brian C.; Wrotny, Jonathan E.] USN, Res Lab, Remote Sensing Div, Washington, DC 20375 USA. [Boone, Chris] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada. [Lambert, Alyn] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Nedoluha, GE (reprint author), USN, Res Lab, Remote Sensing Div, Code 7227,4555 Overlook Ave SW, Washington, DC 20375 USA. EM nedoluha@nrl.navy.mil FU Canadian Space Agency; NASA; Naval Research Laboratory FX We wish to thank S. McDermid, D. Walsh, and T. LeBlanc at Mauna Loa for their technical assistance. Thanks also to the HALOE team for making their data readily available and to E. Remsberg for helpful discussions on HALOE data. Work at the Jet Propulsion Laboratory, California Institute of Technology, was carried out under a contract with the National Aeronautics and Space Administration. Work at the University of Waterloo was funded by the Canadian Space Agency. This project was funded by NASA under the Upper Atmosphere Research Program and by the Naval Research Laboratory. NR 28 TC 17 Z9 17 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD DEC 4 PY 2009 VL 114 AR D23303 DI 10.1029/2009JD012504 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 528KO UT WOS:000272443900005 ER PT J AU Xu, JY Smith, AK Liu, HL Yuan, W Wu, Q Jiang, GY Mlynczak, MG Russell, JM AF Xu, Jiyao Smith, A. K. Liu, H. -L. Yuan, W. Wu, Qian Jiang, Guoying Mlynczak, M. G. Russell, J. M., III TI Estimation of the equivalent Rayleigh friction in mesosphere/lower thermosphere region from the migrating diurnal tides observed by TIMED SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID RESOLUTION DOPPLER IMAGER/UARS; ZONAL MEAN WINDS; GRAVITY-WAVE; SOLAR TIDES; SEASONAL-VARIATION; MIDDLE ATMOSPHERE; HOUGH COMPONENTS; PROPAGATING TIDE; PLANETARY-WAVES; PART I AB We use Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) global temperature and wind data from 2002 to 2007 to investigate the damping of the diurnal tide. Horizontal winds are measured by TIDI and are calculated from SABER temperature measurements. The determination of tidal winds from SABER temperature depends on the damping and, therefore, the discrepancy between TIDI and SABER determinations of the wind tides can be used to calculate the tidal damping. This damping is approximated here by an equivalent Rayleigh friction (ERF), and it is adjusted to minimize the difference in winds derived from SABER and TIDI data. The results show that during some periods the ERF coefficient can be very large over narrow vertical regions of about 5 km (similar to 10(-5) s(-1) in low latitudes and about 10(-4) s(-1) in midlatitudes). The magnitude and shape of the vertical profiles change with latitude and season. The peak in the vertical profile of ERF is larger and located at a higher altitude in summer than in winter and the ERF coefficients at 40 degrees are stronger than at 20 degrees in both hemispheres. The ERF deduced in this study, without a priori assumption about the mechanism of the damping, shows a seasonal variation that is clearly consistent with the seasonal variation of the zonal mean wind; the maximum ERF generally coincides with the altitudes of strongest wind reversal in the mesopause region. C1 [Xu, Jiyao; Yuan, W.; Jiang, Guoying] Chinese Acad Sci, State Key Lab Space Weather, Ctr Space Sci & Appl Res, Beijing 10091, Peoples R China. [Liu, H. -L.; Wu, Qian] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. [Mlynczak, M. G.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Russell, J. M., III] Hampton Univ, Hampton, VA 23668 USA. [Smith, A. K.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. RP Xu, JY (reprint author), Chinese Acad Sci, State Key Lab Space Weather, Ctr Space Sci & Appl Res, POB 8701, Beijing 10091, Peoples R China. EM aksmith@ucar.edu RI Liu, Han-Li/A-9549-2008; Mlynczak, Martin/K-3396-2012 OI Liu, Han-Li/0000-0002-6370-0704; FU National Science Foundation of China [40890165, 40874080, 40828003]; National Important Basic Research Project [2006CB806306]; Specialized Research Fund for State Key Laboratories; Office of Naval Research [N00014-07-C0209] FX This research was supported by the National Science Foundation of China (40890165, 40874080, and 40828003) and the National Important Basic Research Project (2006CB806306). This research is also supported by the Specialized Research Fund for State Key Laboratories. H. L. L.' s effort is supported in part by the Office of Naval Research (N00014-07-C0209). The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation. The authors thank David A. Ortland for his helpful suggestions and comments on this work. NR 56 TC 12 Z9 13 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD DEC 4 PY 2009 VL 114 AR D23103 DI 10.1029/2009JD012209 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 528KO UT WOS:000272443900004 ER PT J AU Glocer, A Toth, G Ma, Y Gombosi, T Zhang, JC Kistler, LM AF Glocer, A. Toth, G. Ma, Y. Gombosi, T. Zhang, J. -C. Kistler, L. M. TI Multifluid Block-Adaptive-Tree Solar wind Roe-type Upwind Scheme: Magnetospheric composition and dynamics during geomagnetic storms-Initial results SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ION COMPOSITION; IONOSPHERIC OUTFLOWS; MAGNETOHYDRODYNAMICS; ORIGIN; GRIDS; SPACE AB The magnetosphere contains a significant amount of ionospheric O(+), particularly during geomagnetically active times. The presence of ionospheric plasma in the magnetosphere has a notable impact on magnetospheric composition and processes. We present a new multifluid MHD version of the Block-Adaptive-Tree Solar wind Roe-type Upwind Scheme model of the magnetosphere to track the fate and consequences of ionospheric outflow. The multifluid MHD equations are presented as are the novel techniques for overcoming the formidable challenges associated with solving them. Our new model is then applied to the May 4, 1998 and March 31, 2001 geomagnetic storms. The results are juxtaposed with traditional single-fluid MHD and multispecies MHD simulations from a previous study, thereby allowing us to assess the benefits of using a more complex model with additional physics. We find that our multifluid MHD model (with outflow) gives comparable results to the multispecies MHD model (with outflow), including a more strongly negative Dst, reduced CPCP, and a drastically improved magnetic field at geosynchronous orbit, as compared to single-fluid MHD with no outflow. Significant differences in composition and magnetic field are found between the multispecies and multifluid approach further away from the Earth. We further demonstrate the ability to explore pressure and bulk velocity differences between H(+) and O(+), which is not possible when utilizing the other techniques considered. C1 [Glocer, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Toth, G.; Gombosi, T.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Zhang, J. -C.; Kistler, L. M.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Ma, Y.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90065 USA. RP Glocer, A (reprint author), NASA, Goddard Space Flight Ctr, Mail Code 673, Greenbelt, MD 20771 USA. EM alex.glocer-1@nasa.gov RI Gombosi, Tamas/G-4238-2011; Glocer, Alex/C-9512-2012; Toth, Gabor/B-7977-2013; feggans, john/F-5370-2012 OI Gombosi, Tamas/0000-0001-9360-4951; Glocer, Alex/0000-0001-9843-9094; Toth, Gabor/0000-0002-5654-9823; FU NASA [NNX07AV80G, NNX07AP96G] FX This research was mainly funded by NASA grant NNX07AV80G. The Dst index is provided by World Data Center for Geomagnetism, Kyoto, and the Dst observatories (Kakioka, Honolulu, San Juan, Hermanus, and Alibag). We would also like to thank National Space Science Data Center for providing the ACE and GOES. ACE MAG instrument (N. F. Ness), SWEPAM instrument (D. McComas), and GOES Magnetometer (H. Singer). We would also like to acknowledge the CIS instrument team and ESA Cluster Active Archive for providing the Cluster data. Support for J. Zhang and L. Kistler was provided by NASA grant NNX07AP96G. NR 31 TC 58 Z9 58 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD DEC 3 PY 2009 VL 114 AR A12203 DI 10.1029/2009JA014418 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 528LL UT WOS:000272446900002 ER PT J AU Morabito, DD AF Morabito, David D. TI Spectral broadening and phase scintillation measurements using interplanetary spacecraft radio links during the peak of solar cycle 23 SO RADIO SCIENCE LA English DT Article ID ELECTRON-DENSITY; SCATTERING OBSERVATIONS; WIND; CONJUNCTION; CASSINI; CORONA; SPEED; SUN AB When an interplanetary spacecraft is in a solar superior conjunction configuration, the received radio signals are degraded by several effects that generally increase in magnitude as the angle between the spacecraft and the Sun (Sun-Earth-Probe or SEP angle) decreases as viewed by a terrestrial tracking station. During periods of quiescent solar activity, phase scintillation and spectral broadening follow well-defined trends as a function of solar impact distance (SEP angle) and link frequency. During active solar periods, the magnitudes of these effects increase above background levels predicted by the quiet period models. Several such events were observed during the solar superior conjunction of the Cassini spacecraft during the peak of solar cycle 23 in May 2000. Pronounced features in the spectral broadening data above the quiet background appear to be associated with Coronal Mass Ejections (CMEs), and last for extended periods of time ranging from similar to 30 min to similar to 4 h. These features are coincident with periods of increased activity seen in the region of the spacecraft signal source on coronal white light images, and tend to be related or matched with EIT flare events and possibly long-duration flare events seen in satellite X-ray data. Several such features were captured in the May 2000 Cassini solar conjunction phase scintillation and spectral broadening data at X band (8.4 GHz) and Ka band (32 GHz) radio frequencies, and are presented here. Such characterizations are beneficial in understanding the impact of such events in future interplanetary communication scenarios during solar conjunction periods. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Morabito, DD (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM david.d.morabito@jpl.nasa.gov FU ESA; NASA FX I would like to thank Joan Feynman and John Armstrong for their very much appreciated comments and consultation on this effort; Shervin Shambayati, Susan Finley, and David Fort for their assistance in conducting the Cassini solar conjunction experiment; Sami Asmar, Trina Ray, and the Radio Science Support Team for their assistance and support; and the Goldstone DSS-13 station personnel Gary Bury, Paul Dendrenos, George Farner, Ron Littlefair, Bob Rees, and Lester Smith) for their efforts in acquiring the data. Finally, the author wishes to thank the anonymous reviewers for numerous comments and suggestions that resulted in a significantly improved manuscript. The CME catalog is generated and maintained at the CDAW Data Center by NASA and the Catholic University of America in cooperation with the Naval Research Laboratory. The SOHO/LASCO data used here are produced by a consortium of the Naval Research Laboratory United States), Max-Planck-Institut fuer Aeronomie Germany), Laboratoire d'Astronomie France), and the University of Birmingham United Kingdom). SOHO is a project of international cooperation between ESA and NASA. GOES X-ray data were obtained courtesy of the Space Environment Center, Boulder, Colorado National Oceanic and Atmospheric Administration NOAA), U.S. Department of Commerce). The research described in this paper was carrier out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 28 TC 1 Z9 1 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0048-6604 J9 RADIO SCI JI Radio Sci. PD DEC 3 PY 2009 VL 44 AR RS6004 DI 10.1029/2008RS004002 PG 23 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications GA 528QZ UT WOS:000272463000001 ER PT J AU Mitchard, ETA Saatchi, SS Woodhouse, IH Nangendo, G Ribeiro, NS Williams, M Ryan, CM Lewis, SL Feldpausch, TR Meir, P AF Mitchard, E. T. A. Saatchi, S. S. Woodhouse, I. H. Nangendo, G. Ribeiro, N. S. Williams, M. Ryan, C. M. Lewis, S. L. Feldpausch, T. R. Meir, P. TI Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CARBON STOCKS; SAR; VEGETATION; AUSTRALIA; WOODLANDS; SAVANNA AB Regional-scale above-ground biomass (AGB) estimates of tropical savannas and woodlands are highly uncertain, despite their global importance for ecosystems services and as carbon stores. In response, we collated field inventory data from 253 plots at four study sites in Cameroon, Uganda and Mozambique, and examined the relationships between field-measured AGB and cross-polarized radar backscatter values derived from ALOS PALSAR, an L-band satellite sensor. The relationships were highly significant, similar among sites, and displayed high prediction accuracies up to 150 Mg ha(-1) (+/-similar to 20%). AGB predictions for any given site obtained using equations derived from data from only the other three sites generated only small increases in error. The results suggest that a widely applicable general relationship exists between AGB and L-band backscatter for lower-biomass tropical woody vegetation. This relationship allows regional-scale AGB estimation, required for example by planned REDD (Reducing Emissions from Deforestation and Degradation) schemes. Citation: Mitchard, E. T. A., S. S. Saatchi, I. H. Woodhouse, G. Nangendo, N. S. Ribeiro, M. Williams, C. M. Ryan, S. L. Lewis, T. R. Feldpausch, and P. Meir (2009), Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes, Geophys. Res. Lett., 36, L23401, doi: 10.1029/2009GL040692. C1 [Mitchard, E. T. A.; Woodhouse, I. H.; Williams, M.; Ryan, C. M.; Meir, P.] Univ Edinburgh, Sch Geosci, Edinburgh EH8 9XP, Midlothian, Scotland. [Saatchi, S. S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Nangendo, G.] Wildlife Conservat Soc, Kampala, Uganda. [Ribeiro, N. S.] Univ Eduardo Mondlane, Fac Agron & Engn Florestal, Maputo, Mozambique. [Lewis, S. L.; Feldpausch, T. R.] Univ Leeds, Earth & Biosphere Inst, Sch Geog, Leeds LS2 9JT, W Yorkshire, England. RP Mitchard, ETA (reprint author), Univ Edinburgh, Sch Geosci, Edinburgh EH8 9XP, Midlothian, Scotland. EM edward.mitchard@ed.ac.uk RI Ryan, Casey/B-7967-2008; Woodhouse, Iain/B-1790-2009; Meir, Patrick/J-8344-2012; Feldpausch, Ted/D-3436-2009; Williams, Mathew/G-6140-2016; OI Ryan, Casey/0000-0002-1802-0128; Feldpausch, Ted/0000-0002-6631-7962; Williams, Mathew/0000-0001-6117-5208; Mitchard, Edward/0000-0002-5690-4055; Lewis, Simon/0000-0002-8066-6851 FU Gatsby Plants; TROBIT; NERC; EU; Royal Society Research Fellowship FX JAXA, ASF, and USGS provided remote sensing data. E Mitchard is funded by Gatsby Plants, and Cameroon fieldwork was also funded by TROBIT, a NERC-funded consortium, and assisted by WCS Cameroon and Bonaventure Sonke. Kirsty Laughlin assisted with data collection in BFR, where the Budongo Conservation Field Station provided local support. C Ryan was funded by NERC and data collection for NCCP was part-funded by the EU, and assisted by Envirotrade Ltd. N Ribeiro acknowledges the Eduardo Mondlane University - Department of forest engineering, IUCN-Mozambique and SGDRN (Sociedade para Gestao e Desenvolvimento da Reserva do Niassa). S Lewis is funded by a Royal Society Research Fellowship. Jon Lloyd provided help and expertise. NR 26 TC 69 Z9 70 U1 2 U2 32 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 2 PY 2009 VL 36 AR L23401 DI 10.1029/2009GL040692 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 528JV UT WOS:000272441400004 ER PT J AU Weinstock, EM Smith, JB Sayres, DS Pittman, JV Spackman, JR Hintsa, EJ Hanisco, TF Moyer, EJ St Clair, JM Sargent, MR Anderson, JG AF Weinstock, E. M. Smith, J. B. Sayres, D. S. Pittman, J. V. Spackman, J. R. Hintsa, E. J. Hanisco, T. F. Moyer, E. J. St Clair, J. M. Sargent, M. R. Anderson, J. G. TI Validation of the Harvard Lyman-alpha in situ water vapor instrument: Implications for the mechanisms that control stratospheric water vapor SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TROPICAL TROPOPAUSE TEMPERATURES; CIRRUS CLOUDS; TRANSPORT; OZONE; DEHYDRATION; CONVECTION; HYGROMETER; AIRCRAFT; FOUNTAIN; AEROSOL AB Building on previously published details of the laboratory calibrations of the Harvard Lyman-alpha photofragment fluorescence hygrometer (HWV) on the NASA ER-2 and WB-57 aircraft, we describe here the validation process for HWV, which includes laboratory calibrations and intercomparisons with other Harvard water vapor instruments at water vapor mixing ratios from 0 to 10 ppmv, followed by in-flight intercomparisons with the same Harvard hygrometers. The observed agreement exhibited in the laboratory and during intercomparisons helps corroborate the accuracy of HWV. In light of the validated accuracy of HWV, we present and evaluate a series of intercomparisons with satellite and balloon borne water vapor instruments made from the upper troposphere to the lower stratosphere in the tropics and midlatitudes. Whether on the NASA ER-2 or WB-57 aircraft, HWV has consistently measured about 1 - 1.5 ppmv higher than the balloon-borne NOAA/ESRL/GMD frost point hygrometer (CMDL), the NOAA Cryogenic Frost point Hygrometer (CFH), and the Microwave Limb Sounder (MLS) on the Aura satellite in regions of the atmosphere where water vapor is < 10 ppmv. Comparisons in the tropics with the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite show large variable differences near the tropopause that converge to similar to 10% above 460 K, with HWV higher. Results we show from the Aqua Validation and Intercomparison Experiment (AquaVIT) at the AIDA chamber in Karlsruhe do not reflect the observed in-flight differences. We illustrate that the interpretation of the results of comparisons between modeled and measured representations of the seasonal cycle of water entering the lower tropical stratosphere is dictated by which data set is used. C1 [Weinstock, E. M.; Smith, J. B.; Sayres, D. S.; Sargent, M. R.; Anderson, J. G.] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. [Hanisco, T. F.] NASA, Goddard Space Flight Ctr, Div Earth Sci, Greenbelt, MD 20771 USA. [Spackman, J. R.; Hintsa, E. J.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Moyer, E. J.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Pittman, J. V.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [St Clair, J. M.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Spackman, J. R.] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO USA. RP Weinstock, EM (reprint author), Harvard Univ, Dept Chem & Chem Biol, 12 Oxford St, Cambridge, MA 02138 USA. EM elliot@huarp.harvard.edu FU NASA Upper Atmospheric Research Program; NASA [NNG05GJ81G] FX We greatly appreciate the efforts of the pilots and crews of the NASA ER-2 and WB-57 aircraft in making the missions we participated in so successful. We thank the AIDA support team and especially hosts Ottmar Mohler and Harald Saathoff for their hospitality and organizational efforts, and David Fahey and Ru-Shan Gao for serving as referees along with Ottmar Mohler during AquaVIT. We also thank the PIs for data we use in the intercomparisons: Robert Herman (JLH), Holger Vomel (CFH), Cornelius Schiller (FISH), and Volker Ebert (AIDA TDL). Thanks also go to the MLS and HALOE PIs and instrument teams for all the hard work and perseverance over many years and for providing easy access to their data. Thanks go to Holger Vomel for access to flight frostpoint data and helpful comments on the manuscript. Thanks also go to Andrew Dessler for supplying his model data used in Figure 19. Helpful comments from Stephan Fueglistaler, Eric Jensen, Leonard Pfister, and Ellis Remsberg and the three manuscript referees are gratefully acknowledged. Elliot Weinstock is grateful for the encouragement of David Fahey regarding the writing of this manuscript as well as his and Rushan Gao's challenging questions about HWV. The Harvard data in this manuscript would not exist without continuous support from the NASA Upper Atmospheric Research Program, most recently NASA grant NNG05GJ81G. NR 36 TC 23 Z9 23 U1 2 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD DEC 2 PY 2009 VL 114 AR D23301 DI 10.1029/2009JD012427 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 528KN UT WOS:000272443800001 ER PT J AU Calvin, WM Roach, LH Seelos, FP Seelos, KD Green, RO Murchie, SL Mustard, JF AF Calvin, W. M. Roach, L. H. Seelos, F. P. Seelos, K. D. Green, R. O. Murchie, S. L. Mustard, J. F. TI Compact Reconnaissance Imaging Spectrometer for Mars observations of northern Martian latitudes in summer SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID POLAR LAYERED DEPOSITS; WATER ICE; OMEGA/MARS EXPRESS; RADIATIVE-TRANSFER; GRAIN-SIZE; MU-M; CAP; REGION; STRATIGRAPHY; REFLECTANCE AB This paper brings together initial results obtained of the high northern latitudes in Mars years 28 and 29, between October 2006 and October 2008. These measurements confirm many previous models and shed new light on the nature of polar surface materials, particularly in intermediate-albedo units of the polar layered deposits, many of which are found to be ice-rich. We identify hydrated non ice materials present in many low-albedo troughs, as well as in the circumpolar erg that was previously associated with gypsum. We identify icy outlier deposits that may be related to subsurface thermophysical properties and permafrost. New observations of the gypsum-rich dune material constrain models for its formation and distribution. Intrinsic properties of ice content and grain size are found to be independent of the albedo of fine layered units and may provide a novel method for stratigraphic identification and correlation. C1 [Calvin, W. M.] Univ Nevada, Dept Geol Sci & Engn, Reno, NV 89557 USA. [Roach, L. H.; Mustard, J. F.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Green, R. O.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Seelos, F. P.; Seelos, K. D.; Murchie, S. L.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP Calvin, WM (reprint author), Univ Nevada, Dept Geol Sci & Engn, MS 172, Reno, NV 89557 USA. EM wcalvin@unr.edu RI Murchie, Scott/E-8030-2015; Seelos, Kimberly/F-4647-2015; Seelos, Frank/C-7875-2016 OI Murchie, Scott/0000-0002-1616-8751; Seelos, Kimberly/0000-0001-7236-0580; Seelos, Frank/0000-0001-9721-941X FU Mars Reconnaissance Orbiter CRISM Science Team and Participating Scientist Programs FX This work supported by the Mars Reconnaissance Orbiter CRISM Science Team and Participating Scientist Programs. NR 64 TC 13 Z9 13 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD DEC 2 PY 2009 VL 114 AR E00D11 DI 10.1029/2009JE003348 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 528LE UT WOS:000272446200001 ER PT J AU Peterson, H Bailey, M Hallett, J Beasley, W AF Peterson, Harold Bailey, Matthew Hallett, John Beasley, William TI NOx production in laboratory discharges simulating blue jets and red sprites SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID NITRIC-OXIDE; TRANSPORT; DIFFUSE; ENERGY AB Sources of middle atmosphere nitrogen oxides, including transport from the troposphere and production in situ by energetic electrons, are currently not well characterized. Production of nitrogen oxides (NOx) in the middle atmosphere by transient luminous events (TLEs), such as red sprites and blue jets has previously been estimated from satellite observations and modeling studies. This is the first laboratory attempt to estimate NOx production by TLEs, following studies that have confirmed electrical similarities between laboratory discharges and TLEs. A pressure-controlled chamber and high-voltage power supplies simulated middle atmosphere discharges. Chemiluminescence NOx analyzers sampled NOx following the completion of the chamber discharges, which was used to calculate total NOx production for each discharge as well as NOx per ampere of current and NOx per Joule of discharge energy. Three different production efficiencies in NOx/J as a function of pressure pointed to three different production regimes: one for tropospheric pressures (100-500 mb), one for stratospheric pressures (1-100 mb), and one for upper stratospheric to mesospheric pressures (no greater than 1 mb). Discharges at jet-like pressures are measured to produce 1.7 x 10(16) to 6.40 x 10(17) molecules of NOx per discharge, while discharges at sprite-like pressure produce 6.97 x 10(13) to 8.57 x 10(13) molecules of NOx per discharge. Blue jets were calculated to produce 1.7 x 10(22) to 7.4 x 10(26) molecules of NOx, while red sprites were calculated to produce 6.8 x 10(23) to 6.3 x 10(27) molecules of NOx. On the basis of global sprite frequency estimates global annual NOx production by sprites is estimated to be between 7 x 10(23) and 2 x 10(28) molecules per second. C1 [Peterson, Harold] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35805 USA. [Bailey, Matthew; Hallett, John] Desert Res Inst, Div Atmospher Sci, Reno, NV 89512 USA. [Beasley, William] Univ Oklahoma, Sch Meteorol, Norman, OK 73072 USA. RP Peterson, H (reprint author), NASA, George C Marshall Space Flight Ctr, 320 Sparkman Dr, Huntsville, AL 35805 USA. EM harold.peterson@nasa.gov FU NSF EPSCoR [82725]; NSF ATM [0224865]; NSF SGER [6340-6639070]; NASA grant/cooperative agreement [NNX07AV48A]; NASA Postdoctoral Program at the Marshall Space Flight Center; American Geophysical Union FX This research was sponsored by NSF EPSCoR grant 82725, NSF ATM 0224865, NSF SGER grant 6340-6639070, and NASA grant/cooperative agreement NNX07AV48A. This research was also sponsored by an appointment to the NASA Postdoctoral Program at the Marshall Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA, and by a Chapman Conference grant from the American Geophysical Union, made possible by the National Science Foundation, the Office of Naval Research, and the Air Force Office of Scientific Research. NR 27 TC 13 Z9 13 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD DEC 2 PY 2009 VL 114 AR A00E07 DI 10.1029/2009JA014489 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 528LK UT WOS:000272446800003 ER PT J AU Pulkkinen, A Rastatter, L AF Pulkkinen, A. Rastaetter, L. TI Minimum variance analysis-based propagation of the solar wind observations: Application to real-time global magnetohydrodynamic simulations SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID INTERPLANETARY MAGNETIC-FIELD; CURRENTS; SURFACE; DELAY AB The performance of the bulk of the current real-time space weather applications is dependent on the accuracy of the driver solar wind data. One of the central aspects associated with the accuracy of the driver data is the determination of the propagation delay time of single-spacecraft solar wind observations from Lagrangian point L1 to the Earth. In this work, the value of the minimum variance analysis-based solar wind propagation technique as applied to real-time global magnetohydrodynamic (MHD) simulations is investigated. Both the method that uses the newly introduced technique for minimizing the effect of the poorly determined phase planes and the minimum variance analysis-based setup by Weimer and King (2008) along with the standard simple convection delay-based (no phase planes used) solar wind propagation technique are applied to global MHD-based modeling of the ground magnetic field and geomagnetically induced current variations. All computations are carried out in a real-time setting. It is shown by means of comparisons to ground-based observations that while the minimum variance analysis-based propagation techniques can be used to optimize the timing associated with the propagated solar wind fluctuations, the improvement is so modest that from the statistical viewpoint, the benefit over using the simpler propagation technique vanishes for the studied storm period when the information is passed through real-time global MHD modeling process. C1 [Pulkkinen, A.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Pulkkinen, A.; Rastaetter, L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Rastaetter, L.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. RP Pulkkinen, A (reprint author), Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. EM antti.a.pulkkinen@nasa.gov; lutz.rastaetter@nasa.gov RI Rastaetter, Lutz/D-4715-2012 OI Rastaetter, Lutz/0000-0002-7343-4147 NR 15 TC 6 Z9 6 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD DEC 2 PY 2009 VL 7 AR S12001 DI 10.1029/2009SW000468 PG 12 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 528LQ UT WOS:000272447600001 ER PT J AU Landis, RR Abell, PA Korsmeyer, DJ Jones, TD Adamo, DR AF Landis, Rob R. Abell, Paul A. Korsmeyer, David J. Jones, Thomas D. Adamo, Daniel R. TI Piloted operations at a near-Earth object (NEO) SO ACTA ASTRONAUTICA LA English DT Article DE NASA; Human spaceflight; NEO; Near-Earth asteroid; Orion spacecraft; Constellation program; Deep space AB In late 2006, NASA's Constellation Program sponsored a study to examine the feasibility of sending a piloted Orion spacecraft to a near-Earth object. NEOs are asteroids or comets that have perihelion distances less than or equal to 1.3 astronomical units, and can have orbits that cross that of the Earth. Therefore, the most suitable targets for the Orion Crew Exploration Vehicle (CEV) are those NEOs in heliocentric orbits similar to Earth's (i.e. low inclination and low eccentricity). One of the significant advantages of this type of mission is that it strengthens and validates the foundational infrastructure of the United States Space Exploration Policy and is highly complementary to NASA's planned lunar sortie and Outpost missions circa 2020. A human expedition to a NEO Would not only underline the broad utility of the Orion CEV and Ares launch systems, but would also be the first human expedition to an interplanetary body beyond the Earth-Moon system, These deep space operations will present unique challenges not present in lunar missions for the onboard crew, spacecraft systems, and mission control team. Executing several piloted NEO missions will enable NASA to gain crucial deep space operational experience, which will be necessary prerequisites for the eventual human missions to Mars. Our NEO learn will present and discuss the following: new mission trajectories and concepts; operational command and control considerations; expected science, operational, resource utilization, and impact mitigation returns; and continued exploration momentum and future Mars exploration benefits. (C) 2009 Published by Elsevier Ltd. C1 [Landis, Rob R.; Korsmeyer, David J.] NASA, Ames Res Ctr, Intelligent Syst Div, Moffett Field, CA 94035 USA. [Abell, Paul A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Jones, Thomas D.] Assoc Space Explorers, Houston, TX 77058 USA. RP Landis, RR (reprint author), NASA, Ames Res Ctr, Intelligent Syst Div, Code TI, Moffett Field, CA 94035 USA. EM rob.r.landis@nasa.gov; paul.a.abell@nasa.gov; david.j.korsmeyer@nasa.gov; skywalking@comcast.net; adamod@earthlink.net NR 11 TC 10 Z9 11 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD DEC PY 2009 VL 65 IS 11-12 BP 1689 EP 1697 DI 10.1016/j.actaastro.2009.04.022 PG 9 WC Engineering, Aerospace SC Engineering GA 512NM UT WOS:000271256400017 ER PT J AU Gobinddass, ML Willis, P de Viron, O Sibthorpe, A Zelensky, NP Ries, JC Ferland, R Bar-Sever, Y Diament, M Lemoine, FG AF Gobinddass, M. L. Willis, P. de Viron, O. Sibthorpe, A. Zelensky, N. P. Ries, J. C. Ferland, R. Bar-Sever, Y. Diament, M. Lemoine, F. G. TI Improving DORIS geocenter time series using an empirical rescaling of solar radiation pressure models SO ADVANCES IN SPACE RESEARCH LA English DT Article DE DORIS; Geocenter variations; Systematic errors; Solar radiation pressure ID TERRESTRIAL REFERENCE FRAME; SEA-LEVEL RISE; ORBIT DETERMINATION; TRACKING DATA; LOADING DATA; SATELLITE; SYSTEM; SLR; TOPEX/POSEIDON AB Even if Satellite Laser Ranging (SLR) remains the fundamental technique for geocenter monitoring, DORIS can also determine this geophysical parameter. Gobinddass et al. (2009) found that part of the systematic errors at 118 days and I year can be significantly reduced by rescaling the current solar radiation pressure models using satellite-dependent empirical models. Here we extend this study to all DORIS satellites and propose a complete set of empirical solar radiation parameter coefficients. A specific problem related to SPOT-5 solar panel realignment is also detected and explained. New DORIS geocenter solutions now show a much better agreement in amplitude with independent SLR solutions and with recent geophysical models. Finally, the impact of this refined DORIS data strategy is discussed in terms of Z-geocenter monitoring as well as for other geodetic products (altitude of high latitude station such as Thule in Greenland) and Precise Orbit Determination. After reprocessing the full 1993.0-2008.0 DORIS data set, we confirm that the proposed strategy allows a significant reduction of systematic errors at periods of 118 days and I year (up to 20 mm), especially for the most recent data after 2002.5, when more DORIS satellites are available for geodetic purposes. (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Gobinddass, M. L.; Willis, P.; de Viron, O.; Diament, M.] Inst Phys Globe, UFR Step, F-75205 Paris, France. [Gobinddass, M. L.] Inst Geog Natl, LAREG, F-77455 Marne La Vallee, France. [Willis, P.] Inst Geog Natl, Direct Tech, F-94160 St Mande, France. [de Viron, O.] Univ Paris Diderot, UFR Step, F-75205 Paris, France. [Sibthorpe, A.; Bar-Sever, Y.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Zelensky, N. P.] SGT Inc, Greenbelt, MD 20770 USA. [Ries, J. C.] Univ Texas Austin, Ctr Space Res, Austin, TX 78712 USA. [Ferland, R.] Geomat Canada, NRCan, Ottawa, ON K1A OE9, Canada. [Lemoine, F. G.] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. RP Willis, P (reprint author), Inst Phys Globe, UFR Step, 5 Rue Thomas Mann,Bat Lamarck,Case 7011, F-75205 Paris, France. EM willis@ipgp.jussieu.fr RI Willis, Pascal/A-8046-2008; Gobinddass, Marie-Line/B-2807-2010; Diament, Michel/F-8553-2010; Lemoine, Frank/D-1215-2013; Sibthorpe, Ant/C-1940-2012; de Viron, Olivier/N-6647-2014 OI Willis, Pascal/0000-0002-3257-0679; de Viron, Olivier/0000-0003-3112-9686 FU Centre National d'Etudes Spatiales (CNES); National Aeronautics and Space Administration FX This work was supported by the Centre National d'Etudes Spatiales (CNES). It is based on observations with DORIS embarked on SPOTs, TOPEX/Poseidon, ENVISAT and Jason satellites. This paper is IPGP contribution number 2538. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 46 TC 38 Z9 41 U1 0 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD DEC 1 PY 2009 VL 44 IS 11 BP 1279 EP 1287 DI 10.1016/j.asr.2009.08.004 PG 9 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 522KQ UT WOS:000271997100003 ER PT J AU Farrugia, CJ Erkaev, NV Maynard, NC Richardson, IG Sandholt, PE Langmayr, D Ogilvie, KW Szabo, A Taubenschuss, U Torbert, RB Biernat, HK AF Farrugia, C. J. Erkaev, N. V. Maynard, N. C. Richardson, I. G. Sandholt, P. E. Langmayr, D. Ogilvie, K. W. Szabo, A. Taubenschuss, U. Torbert, R. B. Biernat, H. K. TI Effects on the distant geomagnetic tail of a fivefold density drop in the inner sheath region of a magnetic cloud: A joint Wind-ACE study SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Effects in the distant tail of large density drop; ICME/MC-sheaths-magnetosheath interactions ID INTERPLANETARY TANGENTIAL DISCONTINUITIES; DYNAMIC PRESSURE VARIATIONS; MAGNETOSPHERIC RESPONSE; EARTHS MAGNETOTAIL; SUDDEN IMPULSES; AVERAGE; MOTION; PLASMA; SHOCKS; ISEE-3 AB Using a serendipitous configuration of the ACE and Wind spacecraft, we monitor the response of the distant geomagnetic tail (similar to-220 R(E)) to an abrupt, approx. fivefold pressure drop (from similar to 19.0 to similar to 3.5 nPa) at the front boundary of a magnetic cloud (MC) on November 20, 2003. The interplanetary data are from ACE in orbit around the L1 point. The far-tail observations are from Wind, which was nominally in the magnetosheath, separated from the Sun-Earth line by similar to 40 R(E). The magnetic field in the innermost sheath region of the MC had a large B(y) (similar to 30 nT) and substantial and variable flows lateral to the Sun-Earth line. There was also a significant northward field (similar to 35 nT), unique in the vicinity of this MC. These extreme values are reached in a filament forming the earliest relic of material accreted by the MC en route to Earth. The effects resulting from these on the far geomagnetic tail are: (1) expansion, (2) tail twisting, and (3) tail tilting. These extreme conditions were in part responsible for a crossing by Wind of a neutral sheet which is tilted by similar to 85 degrees to the ecliptic. Further, Wind made two successive excursions deep into the geomagnetic tail, in the first of which a tailward flow burst of similar to 1200 km/s was observed. The dayside part of the interaction of the sudden and large dynamic pressure drop with the bow shock is studied with a local 3D MHD simulation. This work is a contribution to the area ICME/MC-sheaths-magnetosheath interactions. (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Farrugia, C. J.; Maynard, N. C.; Torbert, R. B.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Erkaev, N. V.] Russian Acad Sci, Inst Computat Modeling, Krasnoyarsk, Russia. [Erkaev, N. V.] Siberian Fed Univ, Krasnoyarsk, Russia. [Richardson, I. G.; Ogilvie, K. W.; Szabo, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sandholt, P. E.] Univ Oslo, Dept Phys, Oslo, Norway. [Langmayr, D.; Taubenschuss, U.; Biernat, H. K.] Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria. [Langmayr, D.] Virtual Vehicle Competence Ctr Vif, Graz, Austria. [Biernat, H. K.] Graz Univ, Inst Phys, Graz, Austria. [Richardson, I. G.] Univ Maryland, Dept Astron, CRESST, College Pk, MD 20742 USA. RP Farrugia, CJ (reprint author), Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. EM charlie.farrugia@unh.edu RI Erkaev, Nikolai/M-1608-2013; Taubenschuss, Ulrich/E-3739-2015; OI Erkaev, Nikolai/0000-0001-8993-6400; Richardson, Ian/0000-0002-3855-3634 FU NASA [NNG05GG25G, NNX08AD11G]; RFBR [07-05-00135]; RAS [2.16, 16.3]; Osterreichische Austauschdient [I.2/04]; [P20145-N16] FX Work supported by Project P20145-N16 and by I.2/04 Osterreichische Austauschdient. NR 29 TC 1 Z9 1 U1 0 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD DEC 1 PY 2009 VL 44 IS 11 BP 1288 EP 1294 DI 10.1016/j.asr.2009.07.003 PG 7 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 522KQ UT WOS:000271997100004 ER PT J AU Wilson, TL Blome, HJ AF Wilson, T. L. Blome, H. -J. TI The Pioneer anomaly and a rotating Godel universe SO ADVANCES IN SPACE RESEARCH LA English DT Article DE Cosmic expansion and interplanetary spaceflight; Cosmology and local physics; Virial theorem; Frame-dragging ID LONG-RANGE ACCELERATION; PROPER REFERENCE FRAME; SCHWARZSCHILD MASS; EXPANDING UNIVERSE; COSMOLOGY; MODELS; EXPANSION; DYNAMICS; EQUATION; OBSERVER AB Based upon a simple cosmological model with no expansion, we find that the rotational terms appearing in the Godel universe are too small to explain the Pioneer anomaly. Following a brief summary of the anomaly, cosmological effects on the dynamics of local systems are addressed - including a derivation of the equations of motion for an accelerated Pioneer-type observer in a rotating universe. The rotation or vorticity present in such a cosmological model is then subjected to astrophysical limits set by observations of the cosmic microwave background radiation. Although it contributes, universal rotation is not the cause of the Pioneer effect. In view of the related fly-by anomalies, frame-dragging is also discussed. The virial theorem is used to demonstrate the non-conservation of energy during transfers from bound to hyperbolic trajectories. (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved. C1 [Wilson, T. L.] NASA, Houston, TX 77058 USA. [Blome, H. -J.] Univ Appl Sci, D-52064 Aachen, Germany. RP Wilson, TL (reprint author), NASA, 2101 NASA Pkwy, Houston, TX 77058 USA. EM thomas.l.wilson@nasa.gov NR 63 TC 4 Z9 4 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0273-1177 J9 ADV SPACE RES JI Adv. Space Res. PD DEC 1 PY 2009 VL 44 IS 11 BP 1345 EP 1353 DI 10.1016/j.asr.2009.07.004 PG 9 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA 522KQ UT WOS:000271997100012 ER PT J AU Thuruthimattam, BJ Friedmann, PP Powell, KG Bartels, RE AF Thuruthimattam, B. J. Friedmann, P. P. Powell, K. G. Bartels, R. E. TI Computational aeroelastic studies of a generic hypersonic vehicle SO AERONAUTICAL JOURNAL LA English DT Article ID FLUTTER; AIRCRAFT; FLOW AB The hypersonic aeroelastic problem of a generic hypersonic vehicle having a lifting-body type fuselage and canted fins is studied using third order piston theory and Euler aerodynamics. Computational aeroelastic response results are used to obtain frequency and damping characteristics, and compared with those from piston theory solutions for a variety of flight conditions. Aeroelastic behavior is studied for the range of 2.5 < M < 28, at altitudes ranging from 10,000ft to 80,000ft. Because of the significant computational resources required, a study on optimal mesh selection was first carried out for use with Euler aerodynamics. The three dimensional flow effects captured using Euler aerodynamics was found to lead to significantly higher flutter boundaries when compared to those based on nonlinear piston theo(r)y. The results presented here illustrate some of the more important three dimensional effects that can be encountered in hypersonic aeroelasticity of complex configurations. C1 [Thuruthimattam, B. J.; Friedmann, P. P.; Powell, K. G.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bartels, R. E.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Thuruthimattam, BJ (reprint author), Univ Michigan, Ann Arbor, MI 48109 USA. EM peretzf@umich.edu OI Powell, Kenneth/0000-0002-3708-8814 FU AFOSR [F49620-01-0158]; NASA Marshall and Glenn Research Centers [NCC 3989] FX The authors wish to express their gratitude to NASA Langley Research Center for the CFL3D code and thank Drs R. Bartels and R. Biedron for their help in using this code. This research has been supported both by AFOSR grant F49620-01-0158, with Dr. C. Allred as program manager, and NASA SVTI award NCC 3989, funded by NASA Marshall and Glenn Research Centers. NR 48 TC 4 Z9 4 U1 1 U2 4 PU ROYAL AERONAUTICAL SOC PI LONDON PA 4 HAMILTON PL, LONDON W1J 7BQ, ENGLAND SN 0001-9240 J9 AERONAUT J JI Aeronaut. J. PD DEC PY 2009 VL 113 IS 1150 BP 763 EP 774 PG 12 WC Engineering, Aerospace SC Engineering GA 547VT UT WOS:000273918400003 ER PT J AU Alperin, MJ Hoehler, TM AF Alperin, Marc J. Hoehler, Tori M. TI ANAEROBIC METHANE OXIDATION BY ARCHAEA/SULFATE-REDUCING BACTERIA AGGREGATES: 1. THERMODYNAMIC AND PHYSICAL CONSTRAINTS SO AMERICAN JOURNAL OF SCIENCE LA English DT Review ID ANOXIC MARINE-SEDIMENTS; EXTRACELLULAR ELECTRON-TRANSFER; CASCADIA CONVERGENT MARGIN; WATER EXCHANGE PROCESSES; PARTIAL MOLAL PROPERTIES; COENZYME-M REDUCTASE; SKAN BAY SEDIMENTS; SULFATE REDUCTION; HYDRATE RIDGE; BLACK-SEA AB Aggregates of archaea and sulfate-reducing bacteria (SRB) recently discovered in methane-seep sediments are widely assumed to engage in anaerobic methane oxidation (AMO), but the reaction mechanism remains poorly understood. We used a spherical diffusion-reaction model that incorporates thermodynamic controls, realistic aggregate morphology, and essential elements of cell structure to quantify maximum reaction rates and energy yields for competing mechanisms, to determine how cellular energy yields are affected by aggregate size and morphology, and to investigate the impact of organic-matter remineralization on archaea and SRB in the aggregate. The model provides the following insights: (a) syntrophic AMO is thermodynamically and physically possible for a variety of intermediate compounds (including H, formate, mid acetate); (b) the energy yield for syntrophic AMO is low but compatible with the maintenance needs of non- or slowly-growing cells; (c) archaea and SRB engaged in syntrophic AMO face a substantial energetic cost for aggregating; (d) direct contact between archaea and SRB provides only a modest energetic advantage compared to a loose association; and (e) sulfidogenic-methanogenic aggregates that take advantage of fermentation products released during organic-matter decay have a substantial energetic advantage over aggregates that rely exclusively on syntrophic AMO. Moreover, the model calls attention to a discrepancy between the observed sulfate-reduction rate at a well-characterized methane-seep site and the theoretical upper-limit rate of syntrophic AMO by a mechanism involving interspecies transfer of H-2, formate, acetate, or other chemical intermediates. An analysis of possible errors, ambiguities, and artifacts in modeling and experimental techniques leads us to a surprising conclusion: that archaea/SRB aggregates in methane-seep sediments may be methanogenic rather than methanotrophic. In contrast, AMO in non-seep (diffusion-dominated) sediments is best explained by a consortium involving methanogenic archaea (that oxidize methane and release H-2) and hydrogenotrophic SRB. C1 [Alperin, Marc J.] Univ N Carolina, Dept Marine Sci, Chapel Hill, NC 27599 USA. [Hoehler, Tori M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Alperin, MJ (reprint author), Univ N Carolina, Dept Marine Sci, Chapel Hill, NC 27599 USA. EM alperin@email.unc.edu; tori.m.hoehler@nasa.gov FU National Science Foundation [OCE-00032358] FX We are grateful to Karen Lloyd for many fruitful discussions and for sharing her unpublished micrographs of methanogen-like archaea in sediments from the White Oak River estuary. This paper benefited. from the thorough reviews provided by Andy Dale and Christof Wife. We thank Ivan L'Heureux for his insights regarding diffusion through an orifice. We also thank Dan Albert for providing sulfate-reduction rate and organic acid concentration data for Cape Lookout Bight. sediments. This research was supported by a grant from the National Science Foundation (OCE-00032358). NR 205 TC 40 Z9 46 U1 4 U2 61 PU AMER JOURNAL SCIENCE PI NEW HAVEN PA YALE UNIV, PO BOX 208109, NEW HAVEN, CT 06520-8109 USA SN 0002-9599 EI 1945-452X J9 AM J SCI JI Am. J. Sci. PD DEC PY 2009 VL 309 IS 10 BP 869 EP 957 DI 10.2475/10.2009.01 PG 89 WC Geosciences, Multidisciplinary SC Geology GA 552BT UT WOS:000274262300001 ER PT J AU Alperin, MJ Hoehler, TM AF Alperin, Marc J. Hoehler, Tori M. TI ANAEROBIC METHANE OXIDATION BY ARCHAEA/SULFATE-REDUCING BACTERIA AGGREGATES: 2. ISOTOPIC CONSTRAINTS SO AMERICAN JOURNAL OF SCIENCE LA English DT Article ID GULF-OF-MEXICO; ALEUTIAN SUBDUCTION ZONE; MARINE-SEDIMENTS; COLD SEEPS; SULFATE REDUCTION; GUAYMAS BASIN; METHANOBACTERIUM-THERMOAUTOTROPHICUM; HYDROTHERMAL SEDIMENTS; MICROBIAL COMMUNITIES; METHANOGENIC ARCHAEA AB Recent studies employing novel analytical tools provide detailed, microscopic portraits of archaea/sulfate-reducing bacteria aggregates in sediments from methane seep and vent sites. One of the most striking features of these aggregates is that lipid and cell carbon are highly depleted in (13)C (delta(13)C < -60 parts per thousand). Biogenic methane, with delta(13)C values of -50 to -110 permil, is a logical candidate for carbon source of these aggregates. Accordingly, it is widely assumed that the archaea oxidize and assimilate methane, and that methane-derived carbon is transferred to the sulfate-reducing bacteria (SRB) symbionts as CO(2) or as a partially oxidized intermediate. However, methane is not the only possible source of (13)C-depleted carbon in archaea/SRB aggregates. Sigma CO(2) in sediments at seep and vent sites tends to be isotopically "light" due to decomposition of organic matter derived from chemoautotrophic organisms. In addition, CO(2) is depleted in (13)C by similar to 10 permil compared to Sigma CO(2) owing to the equilibrium isotope effect. Assimilation of this "light" CO(2) by methanogenic archaea and autotrophic SRB, combined with enzymatic isotope effects, could also yield lipid and biomass that are highly depleted in (13)C. We derive general equations based on isotope mass-balance and calibrated with laboratory and field data to predict the isotopic composition of archaeal cell carbon and lipids derived from autotrophic methanogenesis and anaerobic methane oxidation. The calculations show that observed delta(13)C values for archaeal biomass and lipids at methane seep and vent sites are readily accounted for by isotope fractionation during methane production from CO(2) and that biomass produced during anaerobic methane oxidation is only slightly depleted in (13)C relative to methane unless the enzymatic isotope effect associated with the anabolic arm of the assimilation-dissimilation branch point is considerably larger than the isotope effect associated with the catabolic arm. We also apply an isotope diffusion-reaction model to demonstrate that micro-gradients in delta(13)C-CO(2) cannot be maintained within archaea/SRB aggregates. However, (13)C-depleted carbon in SRB members of the aggregate is readily explained by autotrophic sulfate-reduction with bulk porewater CO(2) as carbon source. These results illustrate that (13)C-depleted biomass and lipids observed in sediments from methane seep and vent sites may be derived from CO(2)-reducing archaea and autotrophic sulfate-reducing bacteria. The inference of anaerobic methanotrophy based on (13)C depletion in archaeal and sulfate-reducing bacterial cell carbon and/or lipids should be considered tentative unless corroborated by independent, concordant evidence of net methane consumption. C1 [Alperin, Marc J.] Univ N Carolina, Dept Marine Sci, Chapel Hill, NC 27599 USA. [Hoehler, Tori M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Alperin, MJ (reprint author), Univ N Carolina, Dept Marine Sci, Chapel Hill, NC 27599 USA. EM alperin@email.unc.edu; tori.m.hochler@nasa.gov FU National Science Foundation [OCE-00032358] FX John Hayes and Ketil Sorensen reviewed an earlier version off,his paper and their comments and suggestions were invaluable. We thank John Kessler, Karen Lloyd, Christof Meile, and Jack Middelburg for their constructive reviews. Don Canfield called our attention to the need to consider reversibility in the reaction network for methanogenesis. This research was supported by a grant from the National Science Foundation (OCE-00032358). NR 93 TC 25 Z9 25 U1 0 U2 43 PU AMER JOURNAL SCIENCE PI NEW HAVEN PA YALE UNIV, PO BOX 208109, NEW HAVEN, CT 06520-8109 USA SN 0002-9599 J9 AM J SCI JI Am. J. Sci. PD DEC PY 2009 VL 309 IS 10 BP 958 EP 984 DI 10.2475/10.2009.02 PG 27 WC Geosciences, Multidisciplinary SC Geology GA 552BT UT WOS:000274262300002 ER PT J AU Convey, P Bindschadler, R di Prisco, G Fahrbach, E Gutt, J Hodgson, DA Mayewski, PA Summerhayes, CP Turner, J AF Convey, P. Bindschadler, R. di Prisco, G. Fahrbach, E. Gutt, J. Hodgson, D. A. Mayewski, P. A. Summerhayes, C. P. Turner, J. CA ACCE Consortium TI Antarctic climate change and the environment SO ANTARCTIC SCIENCE LA English DT Review DE Antarctica; biology; environmental change; geology; glaciology; Southern Ocean ID SEA-LEVEL RISE; INTERNATIONAL GEOPHYSICAL YEAR; CARBON-DIOXIDE CONCENTRATIONS; OCEAN-ATMOSPHERE MODEL; SOUTHERN ANNULAR MODE; WEDDELL SEA; ICE-SHEET; SURFACE-TEMPERATURE; ARGENTINE ISLANDS; WEST ANTARCTICA AB The Antarctic climate system varies on timescales from orbital, through millennial to sub-annual, and is closely coupled to other parts of the global climate system. We review these variations from the perspective of the geological and glaciological records and the recent historical period from which we have instrumental data (similar to the last 50 years). We consider their consequences for the biosphere, and show how the latest numerical models project changes into the future, taking into account human actions in the form of the release of greenhouse gases and chlorofluorocarbons into the atmosphere. In doing so, we provide an essential Southern Hemisphere companion to the Arctic Climate Impact Assessment. C1 [Convey, P.; Hodgson, D. A.; Turner, J.] British Antarctic Survey, NERC, Cambridge CB3 0ET, England. [Bindschadler, R.] NASA, Goddard Space Flight Ctr, Hydrospher & Biospher Sci Lab, Greenbelt, MD 20771 USA. [di Prisco, G.] CNR, Inst Prot Biochem, I-80131 Naples, Italy. [Fahrbach, E.; Gutt, J.] Alfred Wegener Inst Polar & Marine Res, D-27570 Bremerhaven, Germany. [Mayewski, P. A.] Univ Maine, Sawyer Res Facil, Climate Change Inst, Orono, ME 04469 USA. [Summerhayes, C. P.] Univ Cambridge, Scott Polar Res Inst, Sci Comm Antarctic Res, Cambridge CB2 1ER, England. RP Convey, P (reprint author), British Antarctic Survey, NERC, High Cross,Madingley Rd, Cambridge CB3 0ET, England. EM pcon@bas.ac.uk RI van Ommen, Tas/B-5020-2012; Bentley, Michael/F-7386-2011; Robinson, Sharon/B-2683-2008; Adams, Byron/C-3808-2009; Lynch, Amanda/B-4278-2011; OI Zane, Lorenzo/0000-0002-6963-2132; van Ommen, Tas/0000-0002-2463-1718; Bentley, Michael/0000-0002-2048-0019; Robinson, Sharon/0000-0002-7130-9617; Abram, Nerilie/0000-0003-1246-2344; Adams, Byron/0000-0002-7815-3352; Lynch, Amanda/0000-0003-2990-1016; Heywood, Karen/0000-0001-9859-0026 NR 151 TC 70 Z9 73 U1 5 U2 80 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0954-1020 EI 1365-2079 J9 ANTARCT SCI JI Antarct. Sci. PD DEC PY 2009 VL 21 IS 6 BP 541 EP 563 DI 10.1017/S0954102009990642 PG 23 WC Environmental Sciences; Geography, Physical; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Physical Geography; Geology GA 536XT UT WOS:000273077900002 ER PT J AU Bertrand, M van der Gaast, S Vilas, F Horz, F Haynes, G Chabin, A Brack, A Westall, F AF Bertrand, Marylene van der Gaast, Sjerry Vilas, Faith Hoerz, Friedrich Haynes, Gerald Chabin, Annie Brack, Andre Westall, Frances TI The Fate of Amino Acids During Simulated Meteoritic Impact SO ASTROBIOLOGY LA English DT Article DE Shock; Impact; Meteorite; Organic matter; Racemization; Amino acid ID INTERSTELLAR ICE ANALOGS; MURCHISON METEORITE; GAS-CHROMATOGRAPHY; ORGANIC-COMPOUNDS; CARBONACEOUS METEORITES; CHEMICAL EVOLUTION; AQUEOUS ALTERATION; EARTH ORBIT; CHEMISTRY; ORIGIN AB Delivery of prebiotic molecules, such as amino acids and peptides, in meteoritic/micrometeoritic materials to early Earth during the first 500 million years is considered to be one of the main processes by which the building blocks of life arrived on Earth. In this context, we present a study in which the effects of impact shock on amino acids and a peptide in artificial meteorites composed of saponite clay were investigated. The samples were subjected to pressures ranging from 12-28.9 GPa, which simulated impact velocities of 2.4-5.8km/s for typical silicate-silicate impacts on Earth. Volatilization was determined by weight loss measurement, and the amino acid and peptide response was analyzed by gas chromatography-mass spectrometry. For all compounds, degradation increased with peak pressure. At the highest shock pressures, amino acids with an alkyl side chain were more resistant than those with functional side chains. The peptide cleaved into its two primary amino acids. Some chiral amino acids experienced partial racemization during the course of the experiment. Our data indicate that impact shock may act as a selective filter to the delivery of extraterrestrial amino acids via carbonaceous chondrites. C1 [Bertrand, Marylene; Chabin, Annie; Brack, Andre; Westall, Frances] Univ Orleans, CNRS, Ctr Biophys Mol, F-45071 Orleans, France. [van der Gaast, Sjerry] Netherlands Inst Sea Res, NL-1790 AB Den Burg, Netherlands. [Vilas, Faith] Univ Arizona, MMT Observ, Tucson, AZ USA. [Hoerz, Friedrich; Haynes, Gerald] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Bertrand, M (reprint author), Univ Orleans, CNRS, Ctr Biophys Mol, Rue Charles Sadron, F-45071 Orleans, France. EM marylene.bertrand@cnrs-orleans.fr RI BERTRAND, Marylene/C-4892-2009 FU French Centre National de la Recherche Scientifique (CNRS); French Centre National d'Etudes Spatiales (CNES) FX This study was supported by the French Centre National de la Recherche Scientifique (CNRS), and by the French Centre National d'Etudes Spatiales (CNES). J. Blank and other unnamed reviewers are thanked for their useful comments. This paper is dedicated to the memory of Gerald Haynes. NR 46 TC 8 Z9 8 U1 2 U2 10 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD DEC PY 2009 VL 9 IS 10 BP 943 EP 951 DI 10.1089/ast.2008.0327 PG 9 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 538JU UT WOS:000273181200003 PM 20041747 ER PT J AU Buchanan, CL Kastner, JH Hrivnak, BJ Sahai, R AF Buchanan, Catherine L. Kastner, Joel H. Hrivnak, Bruce J. Sahai, Raghvendra TI SPITZER IRS SPECTRA OF LUMINOUS 8 mu m SOURCES IN THE LARGE MAGELLANIC CLOUD: TESTING COLOR-BASED CLASSIFICATIONS SO ASTRONOMICAL JOURNAL LA English DT Article DE circumstellar matter; infrared: stars; Magellanic Clouds; stars: AGB and post-AGB; stars: mass loss ID INFRARED SPECTROGRAPH; SPACE-TELESCOPE; EVOLVED STARS; LOCAL GROUP; SPECTROSCOPY; EMISSION; DUST; SAGE AB We present archival Spitzer Infrared Spectrograph (IRS) spectra of 19 luminous 8 mu m selected sources in the Large Magellanic Cloud (LMC). The object classes derived from these spectra and from an additional 24 spectra in the literature are compared with classifications based on Two Micron All Sky Survey (2MASS)/MSX (J, H, K, and 8 mu m) colors in order to test the "JHK8" (Kastner et al.) classification scheme. The IRS spectra confirm the classifications of 22 of the 31 sources that can be classified under the JHK8 system. The spectroscopic classification of 12 objects that were unclassifiable in the JHK8 scheme allow us to characterize regions of the color-color diagrams that previously lacked spectroscopic verification, enabling refinements to the JHK8 classification system. The results of these new classifications are consistent with previous results concerning the identification of the most infrared-luminous objects in the LMC. In particular, while the IRS spectra reveal several new examples of asymptotic giant branch (AGB) stars with O-rich envelopes, such objects are still far outnumbered by carbon stars (C-rich AGB stars). We show that Spitzer IRAC/MIPS color-color diagrams provide improved discrimination between red supergiants and oxygen-rich and carbon-rich AGB stars relative to those based on 2MASS/MSX colors. These diagrams will enable the most luminous IR sources in Local Group galaxies to be classified with high confidence based on their Spitzer colors. Such characterizations of stellar populations will continue to be possible during Spitzer's warm mission through the use of IRAC [3.6]-[4.5] and 2MASS colors. C1 [Buchanan, Catherine L.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. [Kastner, Joel H.] Rochester Inst Technol, Ctr Imaging Sci, Rochester, NY 14623 USA. [Hrivnak, Bruce J.] Valparaiso Univ, Dept Phys & Astron, Valparaiso, IN 46383 USA. [Sahai, Raghvendra] NASA JPL, Pasadena, CA 91109 USA. RP Buchanan, CL (reprint author), Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. EM clb@unimelb.edu.au FU NASA FX This work is based on data from the Spitzer Space Telescope and has made use of the NASA/IPAC Infrared Science Archive, which are both operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. We thank the anonymous referee for considered comments which improved this manuscript. NR 20 TC 16 Z9 16 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD DEC PY 2009 VL 138 IS 6 BP 1597 EP 1608 DI 10.1088/0004-6256/138/6/1597 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 517PZ UT WOS:000271630200007 ER PT J AU Lister, ML Cohen, MH Homan, DC Kadler, M Kellermann, KI Kovalev, YY Ros, E Savolainen, T Zensus, JA AF Lister, M. L. Cohen, M. H. Homan, D. C. Kadler, M. Kellermann, K. I. Kovalev, Y. Y. Ros, E. Savolainen, T. Zensus, J. A. TI MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. VI. KINEMATICS ANALYSIS OF A COMPLETE SAMPLE OF BLAZAR JETS SO ASTRONOMICAL JOURNAL LA English DT Article DE BL Lacertae objects: general; galaxies: active; galaxies: jets; radio continuum: galaxies; quasars: general; surveys ID MULTI-EPOCH VLBI; BASE-LINE ARRAY; EXTRAGALACTIC RADIO-SOURCES; BL LACERTAE OBJECTS; POLARIZATION VARIABILITY; SUPERLUMINAL MOTION; RELATIVISTIC JETS; OPTICAL-EMISSION; HOST GALAXY; INNER JET AB We discuss the jet kinematics of a complete flux-density-limited sample of 135 radio-loud active galactic nuclei (AGNs) resulting from a 13 year program to investigate the structure and evolution of parsec-scale jet phenomena. Our analysis is based on new 2 cm Very Long Baseline Array (VLBA) images obtained between 2002 and 2007, but includes our previously published observations made at the same wavelength, and is supplemented by VLBA archive data. In all, we have used 2424 images spanning the years 1994-2007 to study and determine the motions of 526 separate jet features in 127 jets. The data quality and temporal coverage (a median of 15 epochs per source) of this complete AGN jet sample represent a significant advance over previous kinematics surveys. In all but five AGNs, the jets appear one-sided, most likely the result of differential Doppler boosting. In general, the observed motions are directed along the jet ridge line, outward from the optically thick core feature. We directly observe changes in speed and/or direction in one third of the well-sampled jet components in our survey. While there is some spread in the apparent speeds of separate features within an individual jet, the dispersion is about three times smaller than the overall dispersion of speeds among all jets. This supports the idea that there is a characteristic flow that describes each jet, which we have characterized by the fastest observed component speed. The observed maximum speed distribution is peaked at similar to 10c, with a tail that extends out to similar to 50c. This requires a distribution of intrinsic Lorentz factors in the parent population that range up to similar to 50. We also note the presence of some rare low-pattern speeds or even stationary features in otherwise rapidly flowing jets that may be the result of standing re-collimation shocks, and/or a complex geometry and highly favorable Doppler factor. C1 [Lister, M. L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Cohen, M. H.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Homan, D. C.] Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA. [Homan, D. C.] Univ Erlangen Nurnberg, D-96049 Bamberg, Germany. [Kadler, M.] Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Kadler, M.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Kadler, M.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Kellermann, K. I.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Kovalev, Y. Y.; Ros, E.; Savolainen, T.; Zensus, J. A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Kovalev, Y. Y.] PN Lebedev Phys Inst, Ctr Astro Space, Moscow 117997, Russia. [Ros, E.] Univ Valencia, Dept Astron & Astrophys, E-46100 Valencia, Spain. RP Lister, ML (reprint author), Purdue Univ, Dept Phys, 525 NW Ave, W Lafayette, IN 47907 USA. EM mlister@purdue.edu; mhc@astro.caltech.edu; homand@denison.edu; matthias.kadler@sternwarte.uni-erlangen.de; kkellerm@nrao.edu; ykovalev@mpifr-bonn.mpg.de; Eduardo.Ros@uv.es; tsavolainen@mpifr-bonn.mpg.de; azensus@mpifr-bonn.mpg.de RI Kovalev, Yuri/J-5671-2013; OI Kovalev, Yuri/0000-0001-9303-3263; Ros, Eduardo/0000-0001-9503-4892; Savolainen, Tuomas/0000-0001-6214-1085; Kadler, Matthias/0000-0001-5606-6154 FU NSF [AST-0406923, AST-0807860, AST-0707693]; NASA [NNX08AV67G]; Purdue Research Foundation; Academy of Finland [120516]; Associated Universities, Inc; National Aeronautics and Space Administration FX The authors acknowledge the contributions of additional members of the MOJAVE team: Hugh Aller, Margo Aller, Ivan Agudo, Andrei Lobanov, Alexander Pushkarev, Kirill Sokolovsky, and Rene Vermeulen. Several students also contributed to this work: Christian Fromm at MPIfR, and Amy Lankey, Kevin O'Brien, Ben Mohlie, and Nick Mellott at Purdue University. M. L. L. has been supported under NSF grants AST-0406923 & AST-0807860, NASA-Fermi grant NNX08AV67G, and a grant from the Purdue Research Foundation. D. C. H. is supported by NSF grant AST-0707693. T. S. has been supported in part by the Academy of Finland grant 120516. M. K. has been supported in part by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. Part of this work was done by Y.Y.K. and T. S. during their Alexander von Humboldt fellowships at the MPIfR. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. This research has made use of NASA's Astrophysics Data System, and the NASA/IPAC Extragalactic Database (NED). The latter is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 68 TC 214 Z9 214 U1 2 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD DEC PY 2009 VL 138 IS 6 BP 1874 EP 1892 DI 10.1088/0004-6256/138/6/1874 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 517PZ UT WOS:000271630200024 ER PT J AU Wang, JH Lehner, MJ Zhang, ZW Bianco, FB Alcock, C Chen, WP Axelrod, T Byun, YI Coehlo, NK Cook, KH Dave, R de Pater, I Porrata, R Kim, DW King, SK Lee, T Lin, HC Lissauer, JJ Marshall, SL Protopapas, P Rice, JA Schwamb, ME Wang, SY Wen, CY AF Wang, J. -H. Lehner, M. J. Zhang, Z. -W. Bianco, F. B. Alcock, C. Chen, W. -P. Axelrod, T. Byun, Y. -I. Coehlo, N. K. Cook, K. H. Dave, R. de Pater, I. Porrata, R. Kim, D. -W. King, S. -K. Lee, T. Lin, H. -C. Lissauer, J. J. Marshall, S. L. Protopapas, P. Rice, J. A. Schwamb, M. E. Wang, S. -Y. Wen, C. -Y. TI UPPER LIMITS ON THE NUMBER OF SMALL BODIES IN SEDNA-LIKE ORBITS BY THE TAOS PROJECT SO ASTRONOMICAL JOURNAL LA English DT Article DE Kuiper Belt; occultations; solar system: formation ID AMERICAN OCCULTATION SURVEY; 2003 VB12 SEDNA; SOLAR-SYSTEM; KUIPER-BELT; OORT CLOUD; STELLAR OCCULTATIONS; COMET CLOUD; OBJECTS; ENCOUNTERS; PLANETS AB We present the results of a search for occultation events by objects at distances between 100 and 1000 AU in light curves from the Taiwanese-American Occultation Survey. We searched for consecutive, shallow flux reductions in the stellar light curves obtained by our survey between 2005 February 7 and 2006 December 31 with a total of similar to 4.5 x 10(9) three-telescope simultaneous photometric measurements. No events were detected, allowing us to set upper limits on the number density as a function of size and distance of objects in Sedna-like orbits, using simple models. C1 [Wang, J. -H.; Lehner, M. J.; King, S. -K.; Lee, T.; Wang, S. -Y.; Wen, C. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 106, Taiwan. [Wang, J. -H.; Zhang, Z. -W.; Chen, W. -P.; Lin, H. -C.] Natl Cent Univ, Inst Astron, Jhongli 320, Taoyuan County, Taiwan. [Lehner, M. J.; Bianco, F. B.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Lehner, M. J.; Bianco, F. B.; Alcock, C.; Dave, R.; Protopapas, P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Axelrod, T.] Steward Observ, Tucson, AZ 85721 USA. [Byun, Y. -I.; Kim, D. -W.] Yonsei Univ, Dept Astron, Seoul 120749, South Korea. [Coehlo, N. K.; Rice, J. A.] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA. [Cook, K. H.; Marshall, S. L.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [de Pater, I.; Porrata, R.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Lissauer, J. J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div 245 3, Moffett Field, CA 94035 USA. [Marshall, S. L.] Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Schwamb, M. E.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RP Wang, JH (reprint author), Acad Sinica, Inst Astron & Astrophys, POB 23-141, Taipei 106, Taiwan. EM jhwang@asiaa.sinica.edu.tw RI Lee, Typhoon/N-8347-2013; OI Lehner, Matthew/0000-0003-4077-0985; Schwamb, Megan/0000-0003-4365-1455 FU NCU [NSC 96-2112M- 008-024-MY3]; NSF [AST-0501681]; NASA [NNG04G113G]; ASIAA [AS-88-TP-A02]; Korea Astronomy and Space Science Institute; USDOE [W-7405-Eng-48, DE-AC52-07NA27344, DE-AC0276SF00515] FX Work at NCU was supported by the grant NSC 96-2112M- 008-024-MY3. Work at the CfA was supported in part by the NSF under grant AST-0501681 and by NASA under grant NNG04G113G. Work at ASIAA was supported in part by the thematic research program AS-88-TP-A02. Work at Yonsei was supported by Korea Astronomy and Space Science Institute. Work at LLNL was performed in part under USDOE Contract W-7405-Eng-48 and Contract DE-AC52-07NA27344. Work at SLAC was performed under USDOE contract DE-AC0276SF00515. NR 35 TC 9 Z9 9 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD DEC PY 2009 VL 138 IS 6 BP 1893 EP 1901 DI 10.1088/0004-6256/138/6/1893 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 517PZ UT WOS:000271630200025 ER PT J AU Sheen, YK Jeong, H Yi, SK Ferreras, I Lotz, JM Olsen, KAG Dickinson, M Barnes, S Park, JH Ree, CH Madore, BF Barlow, TA Conrow, T Foster, K Friendman, PG Lee, YW Martin, DC Morrissey, P Neff, SG Schiminovich, D Seibert, M Small, T Wyder, TK AF Sheen, Yun-Kyeong Jeong, Hyunjin Yi, Sukyoung K. Ferreras, Ignacio Lotz, Jennifer M. Olsen, Knut A. G. Dickinson, Mark Barnes, Sydney Park, Jang-Hyun Ree, Chang H. Madore, Barry F. Barlow, Tom A. Conrow, Tim Foster, Karl Friendman, Peter G. Lee, Young-Wook Martin, D. Christopher Morrissey, Patrick Neff, Susan G. Schiminovich, David Seibert, Mark Small, Todd Wyder, Ted K. TI TIDAL DWARF GALAXIES AROUND A POST-MERGER GALAXY, NGC 4922 SO ASTRONOMICAL JOURNAL LA English DT Article DE galaxies: dwarf; galaxies: individual (NGC 4922); galaxies: interactions; galaxies: starburst; ultraviolet: galaxies ID GLOBULAR-CLUSTER FORMATION; STAR-FORMATION; INTERACTING GALAXIES; EVOLUTION-EXPLORER; TAILS; GAS; CANDIDATE; NGC-4038/39; EMISSION; ANTENNAE AB One possible channel for the formation of dwarf galaxies involves birth in the tidal tails of interacting galaxies. We report the detection of a bright UV tidal tail and several young tidal dwarf galaxy (TDG) candidates in the post-merger galaxy NGC 4922 in the Coma cluster. Based on a two-component population model ( combining young and old stellar populations), we find that the light of tidal tail predominantly comes from young stars (a few Myr old). The Galaxy Evolution Explorer ultraviolet data played a critical role in the parameter (age and mass) estimation. Our stellar mass estimates of the TDG candidates are similar to 10(6-7) M(circle dot), typical for dwarf galaxies. C1 [Sheen, Yun-Kyeong; Jeong, Hyunjin; Yi, Sukyoung K.; Lee, Young-Wook] Yonsei Univ, Dept Astron, Seoul 120749, South Korea. [Ferreras, Ignacio] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Lotz, Jennifer M.; Olsen, Knut A. G.; Dickinson, Mark] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Barnes, Sydney] Lowell Observ, Flagstaff, AZ 86001 USA. [Park, Jang-Hyun] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Madore, Barry F.; Seibert, Mark] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Barlow, Tom A.; Conrow, Tim; Foster, Karl; Friendman, Peter G.; Martin, D. Christopher; Morrissey, Patrick; Small, Todd; Wyder, Ted K.] CALTECH, Pasadena, CA 91125 USA. [Neff, Susan G.] NASA, Goddard Space Flight Ctr, Astron & Solar Phys Lab, Greenbelt, MD 20771 USA. [Schiminovich, David] Columbia Univ, Dept Astron, New York, NY 10027 USA. RP Yi, SK (reprint author), Yonsei Univ, Dept Astron, Seoul 120749, South Korea. EM yi@yonsei.ac.kr OI Ree, Chang Hee/0000-0001-8986-112X; Ferreras, Ignacio/0000-0003-4584-3127 FU Ministry of Education, Science and Technology [Doyak 20090078756]; Korea Astronomy and Space Science Institute; NASA [NAS5-98034] FX We are indebted to Giuseppe Gavazzi and Alessandro Boselli for supporting our use of the GALEX data made public after their guest investigation acquired them but prior to their use. We thank the anonymous referee for various clarifications. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Doyak 20090078756). S.K.Y. also acknowledges support from Korea Astronomy and Space Science Institute. We have used the GALEX UV data obtained from the Multimission Archive at the Space Telescope Science Institute (MAST). GALEX is operated for NASA by the California Institute of Technology under NASA contract NAS5-98034. We are grateful to the Lowell Observatory for granting observing time and hospitality during our visit. NR 51 TC 10 Z9 10 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD DEC PY 2009 VL 138 IS 6 BP 1911 EP 1916 DI 10.1088/0004-6256/138/6/1911 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 517PZ UT WOS:000271630200027 ER PT J AU Haubois, X Perrin, G Lacour, S Verhoelst, T Meimon, S Mugnier, L Thiebaut, E Berger, JP Ridgway, ST Monnier, JD Millan-Gabet, R Traub, W AF Haubois, X. Perrin, G. Lacour, S. Verhoelst, T. Meimon, S. Mugnier, L. Thiebaut, E. Berger, J. P. Ridgway, S. T. Monnier, J. D. Millan-Gabet, R. Traub, W. TI Imaging the spotty surface of Betelgeuse in the H band SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE convection; techniques: interferometric; stars: fundamental parameters; infrared: stars; stars: individual: Betelgeuse ID HUBBLE-SPACE-TELESCOPE; STARS ALPHA-ORIONIS; GIANT BRANCH STARS; MASS-LOSS; EXTENDED ATMOSPHERE; SUPERGIANT STARS; MU CEPHEI; CIRCUMSTELLAR ENVIRONMENT; MODEL ATMOSPHERES; ANGULAR DIAMETER AB Aims. This paper reports on H-band interferometric observations of Betelgeuse made at the three-telescope interferometer IOTA. We image Betelgeuse and its asymmetries to understand the spatial variation of the photosphere, including its diameter, limb darkening, effective temperature, surrounding brightness, and bright (or dark) star spots. Methods. We used different theoretical simulations of the photosphere and dusty environment to model the visibility data. We made images with parametric modeling and two image reconstruction algorithms: MIRA and WISARD. Results. We measure an average limb-darkened diameter of 44.28 +/- 0.15 mas with linear and quadratic models and a Rosseland diameter of 45.03 +/- 0.12 mas with a MARCS model. These measurements lead us to derive an updated effective temperature of 3600 +/- 66 K. We detect a fully-resolved environment to which the silicate dust shell is likely to contribute. By using two imaging reconstruction algorithms, we unveiled two bright spots on the surface of Betelgeuse. One spot has a diameter of about 11 mas and accounts for about 8.5% of the total flux. The second one is unresolved (diameter < 9 mas) with 4.5% of the total flux. Conclusions. Resolved images of Betelgeuse in the H band are asymmetric at the level of a few percent. The MOLsphere is not detected in this wavelength range. The amount of measured limb-darkening is in good agreement with model predictions. The two spots imaged at the surface of the star are potential signatures of convective cells. C1 [Haubois, X.; Perrin, G.; Lacour, S.] Observ Paris, LESIA, F-92190 Meudon, France. [Verhoelst, T.] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Meimon, S.; Mugnier, L.] DOTA, Off Natl Etud & Rech Aeronaut, F-92322 Chatillon, France. [Thiebaut, E.] CNRS UMR 5574, Ctr Rech Astrophys Lyon, F-69561 St Genis Laval, France. [Berger, J. P.] CNRS UMR 5571, Lab Astrophys Grenoble, F-38041 Grenoble, France. [Ridgway, S. T.] Kitt Peak Natl Observ, Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Monnier, J. D.] Univ Michigan, Ann Arbor, MI 48109 USA. [Millan-Gabet, R.] CALTECH, Michelson Sci Ctr, Pasadena, CA 91125 USA. [Traub, W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Haubois, X (reprint author), Observ Paris, LESIA, 5 Pl Jules Janssen, F-92190 Meudon, France. EM xavier.haubois@obspm.fr RI Mugnier, Laurent/A-7630-2012; Haubois, Xavier/I-7026-2012; OI Mugnier, Laurent/0000-0002-8364-4957 FU Region Ile-de-France; NASA [NNH09AK731]; FWO, Flanders; US Government FX This work was supported by a grant from Region Ile-de-France. We also received the support of PHASE, the high angular resolution partnership between ONERA, Observatoire de Paris, CNRS and University Paris Diderot Paris. X. H. thanks Denis Defrere and Olivier Absil for fruitful discussions on the quality of IOTA measurements. S.T.R. acknowledges support by NASA grant NNH09AK731. T. V. acknowledges financial support from the FWO, Flanders. Part of this research was carried out at the Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration. US Government sponsorship acknowledged. NR 93 TC 77 Z9 77 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2009 VL 508 IS 2 BP 923 EP 932 DI 10.1051/0004-6361/200912927 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 539YQ UT WOS:000273296700039 ER PT J AU Nevalainen, J Eckert, D Kaastra, J Bonamente, M Kettula, K AF Nevalainen, J. Eckert, D. Kaastra, J. Bonamente, M. Kettula, K. TI XMM-Newton and INTEGRAL analysis of the Ophiuchus cluster of galaxies SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: clusters: individual: Ophiuchus; X-rays: galaxies: clusters; techniques: spectroscopic ID X-RAY-EMISSION; DIFFUSE RADIO-EMISSION; EXTENDED SOURCES; COMA CLUSTER; COLD FRONTS; GAMMA-RAY; ORIGIN; REACCELERATION; TEMPERATURE; ABUNDANCES AB Aims. We investigated the non-thermal hard X-ray emission in the Ophiuchus cluster of galaxies. Our aim is to characterise the physical properties of the non-thermal component and its interaction with the cosmic microwave background. Methods. We performed spatially resolved spectroscopy and imaging using XMM-Newton data to model the thermal emission. Combining this with INTEGRAL ISGRI data, we modelled the 0.6-140 keV band total emission in the central 7 arcmin region. Results. The models that best describe both PN and ISGRI data contain a power-law component with a photon index in a range 2.2-2.5. This component produces similar to 10% of the total flux in the 1-10 keV band. The pressure of the non-thermal electrons is similar to 1% of that of the thermal electrons. Our results support the scenario whereby a relativistic electron population, which produces the recently detected radio mini-halo in Ophiuchus, also produces the hard X-rays via inverse compton scattering of the CMB photons. The best-fit models imply a differential momentum spectrum of the relativistic electrons with a slope of 3.4-4.0 and a magnetic field strength B = 0.05-0.15 mu G. The lack of evidence for a recent major merger in the Ophiuchus centre allows the possibility that the relativistic electrons are produced by turbulence or hadronic collisions. C1 [Nevalainen, J.; Kettula, K.] Univ Helsinki, FIN-00014 Helsinki, Finland. [Eckert, D.] Univ Geneva, Observ Geneva, ISDC Data Ctr Astrophys, CH-1211 Geneva 4, Switzerland. [Bonamente, M.] Univ Alabama Huntsville, Huntsville, AL USA. [Bonamente, M.] NASA, Natl Space & Technol Ctr, Huntsville, AL USA. RP Nevalainen, J (reprint author), Univ Helsinki, FIN-00014 Helsinki, Finland. EM Jukka.H.Nevalainen@helsinki.fi OI Eckert, Dominique/0000-0001-7917-3892 FU Academy of Finland FX J.N. is supported by the Academy of Finland. We thank F. Govoni, M. Murgia and C. Ferrari for providing the radio image. We thank K. Mattila for his help on the NH issue. We thank J. Wilms and D. Prokhorov for helpful discussions. NR 45 TC 14 Z9 14 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2009 VL 508 IS 3 BP 1161 EP 1171 DI 10.1051/0004-6361/200912542 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 536PW UT WOS:000273057300009 ER PT J AU Barragan, L Wilms, J Pottschmidt, K Nowak, MA Kreykenbohm, I Walter, R Tomsick, JA AF Barragan, L. Wilms, J. Pottschmidt, K. Nowak, M. A. Kreykenbohm, I. Walter, R. Tomsick, J. A. TI Suzaku observation of IGR J16318-4848 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE stars: individual IGR J16318-4848; binaries: general; X-rays: binaries ID X-RAY BINARIES; COMPTON SHOULDER; INTENSITY RATIOS; XMM-NEWTON; LINE; J16358-4726; IONIZATION; EMISSION; RXTE; CR AB We report on the first Suzaku observation of IGR J16318-4848, the most extreme example of a new group of highly absorbed X-ray binaries that have recently been discovered by the International Gamma-Ray Astrophysics Laboratory (INTEGRAL). The Suzaku observation was carried out between 2006 August 14 and 17, with a net exposure time of 97 ks. The average X-ray spectrum of the source can be well described (chi(2)(red) = 0.99) with a continuum model typical for neutron stars i.e., a strongly absorbed power law continuum with a photon index of 0.676(42) and an exponential cutoff at 20.5(6) keV. The absorbing column is N-H = 1.95(3) x 10(24) cm(-2). Consistent with earlier work, strong fluorescent emission lines of Fe K alpha, Fe K beta, and Ni K alpha are observed. Despite the large N-H, no Compton shoulder is seen in the lines, arguing for a non-spherical and inhomogeneous absorber. Seen at an average 5-60 keV absorbed flux of 3.4x10(-10) erg cm(-2) s(-1), the source exhibits significant variability on timescales of hours. C1 [Barragan, L.; Wilms, J.; Kreykenbohm, I.] Univ Erlangen Nurnberg, Dr Karl Remeis Sternwarte & Erlangen Ctr Astropar, D-96049 Bamberg, Germany. [Pottschmidt, K.] Univ Maryland Baltimore Cty, CRESST, Baltimore, MD 21250 USA. [Pottschmidt, K.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Nowak, M. A.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Walter, R.] Univ Geneva, Observ Geneva, INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Tomsick, J. A.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Barragan, L (reprint author), Univ Erlangen Nurnberg, Dr Karl Remeis Sternwarte & Erlangen Ctr Astropar, Sternwartstr 7, D-96049 Bamberg, Germany. EM laura.barragan@sternwarte.uni-erlangen.de RI Wilms, Joern/C-8116-2013; Kreykenbohm, Ingo/H-9659-2013; XRAY, SUZAKU/A-1808-2009 OI Wilms, Joern/0000-0003-2065-5410; Kreykenbohm, Ingo/0000-0001-7335-1803; FU Bundesministerium fur Wirtschaft und Technologie through the Deutsches Zentrum fur Luft- und Raumfahrt [50 OR0701]; National Aeronautics and Space Administration [NNX07AE65G, NNX06AI43G] FX We want acknowledge the anonymous referee for his/her comments that allowed us to improve this paper. This work was partially funded by the Bundesministerium fur Wirtschaft und Technologie through the Deutsches Zentrum fur Luft- und Raumfahrt contract 50 OR0701 and by National Aeronautics and Space Administration grants NNX07AE65G and NNX06AI43G. This research has made use of data obtained from the Suzaku satellite, a collaborative mission between the space agencies of Japan (JAXA) and the USA (NASA). NR 35 TC 13 Z9 13 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2009 VL 508 IS 3 BP 1275 EP 1278 DI 10.1051/0004-6361/200810811 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 536PW UT WOS:000273057300018 ER PT J AU Mookerjea, B Sandell, G Jarrett, TH McMullin, JP AF Mookerjea, B. Sandell, G. Jarrett, T. H. McMullin, J. P. TI Young stars and protostellar cores near NGC 2023 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE dust, extinction; ISM: clouds; infrared: ISM ID CIRCUMSTELLAR DUST DISKS; INITIAL MASS FUNCTION; T-TAURI STARS; STELLAR OBJECTS; MOLECULAR CLOUD; PROTOPLANETARY DISKS; B-STARS; SPECTRAL CLASSIFICATION; REFLECTION NEBULAE; FORMING REGIONS AB Context. We investigate the young ( proto) stellar population in NGC 2023 and the L 1630 molecular cloud bordering the H II region IC 434, using Spitzer IRAC and MIPS archive data, JCMT SCUBA imaging and spectroscopy as well as targeted BIMA observations of one of the Class 0 protostars, NGC 2023 MM 1. Aims. We study the distribution of gas, dust and young stars in this region to see where stars are forming, whether the expansion of the h II region has triggered star formation, and whether dense cold cores have already formed stars. Methods. We have performed photometry of all IRAC and MIPS images, and used color-color diagrams to identify and classify all young stars seen within a 22' x 26' field along the boundary between IC 434 and L 1630. For some stars, which have sufficient optical, IR, and/or sub-millimeter data we have also used the online SED fitting tool for a large 2D archive of axisymmetric radiative transfer models to perform more detailed modeling of the observed SEDs. We identify 5 sub-millimeter cores in our 850 and 450 mu m SCUBA images, two of which have embedded class 0 or I protostars. Observations with BIMA are used to refine the position and characteristics of the Class 0 source NGC 2023 MM 1. These observations show that it is embedded in a very cold cloud core, which is strongly enhanced in NH(2)D. Results. We find that HD37903 is the most massive member of a cluster with 20-30 PMS stars. We also find smaller groups of PMS stars formed from the Horsehead nebula and another elephant trunk structure to the north of the Horsehead. Star formation is also occurring in the dark lane seen in IRAC images and in the sub-millimeter continuum. We refine the spectral classification of HD37903 to B2 Ve. We find that the star has a clear IR excess, and therefore it is a young Herbig Be star. Conclusions. Our study shows that the expansion of the IC 434 H II region has triggered star formation in some of the dense elephant trunk structures and compressed gas inside the L 1630 molecular cloud. This pre-shock region is seen as a sub-millimeter ridge in which stars have already formed. The cluster associated with NGC 2023 is very young, and has a large fraction of Class I sources. C1 [Mookerjea, B.] Tata Inst Fundamental Res, Dept Astron & Astrophys, Bombay 400005, Maharashtra, India. [Sandell, G.] NASA, Ames Res Ctr, SOFIA USRA, Moffett Field, CA 94035 USA. [Jarrett, T. H.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [McMullin, J. P.] Joint ALMA Observ, Santiago, Chile. [McMullin, J. P.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. RP Mookerjea, B (reprint author), Tata Inst Fundamental Res, Dept Astron & Astrophys, Homi Bhabha Rd, Bombay 400005, Maharashtra, India. EM bhaswati@tifr.res.in FU National Research Council of Canada; Canadian Space Agency; National Science Foundation operated under cooperative agreement by Associated Universities, Inc FX We thank Tim Jenness for obtaining some of the SCUBA data discussed in this paper. William Vacca helped us with spectral classification and editing. Brian Fleming provided us with a calibrated Spitzer IRS spectrum of MM3. This research used the facilities of the Canadian Astronomy Data Centre operated by the National Research Council of Canada with the support of the Canadian Space Agency. This paper has made extensive use of the SIMBAD database, operated at CDS, Strasbourg, France. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. NR 62 TC 15 Z9 15 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2009 VL 507 IS 3 BP 1485 EP U333 DI 10.1051/0004-6361/200912550 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 524YR UT WOS:000272180800028 ER PT J AU Licandro, J Campins, H Kelley, M Fernandez, Y Delbo, M Reach, WT Groussin, O Lamy, PL Toth, I A'Hearn, MF Bauer, JM Lowry, SC Fitzsimmons, A Lisse, CM Meech, KJ Pittichova, J Snodgrass, C Weaver, HA AF Licandro, J. Campins, H. Kelley, M. Fernandez, Y. Delbo, M. Reach, W. T. Groussin, O. Lamy, P. L. Toth, I. A'Hearn, M. F. Bauer, J. M. Lowry, S. C. Fitzsimmons, A. Lisse, C. M. Meech, K. J. Pittichova, J. Snodgrass, C. Weaver, H. A. TI Spitzer observations of the asteroid-comet transition object and potential spacecraft target 107P (4015) Wilson-Harrington SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE comets: individual: 107P (4015) Wilson-Harrington; minor planets, asteroids; infrared: solar system ID NEAR-EARTH ASTEROIDS; THERMAL-PROPERTIES; 3200 PHAETHON; POPULATION; MAGNITUDE; MODEL AB Context. Near-Earth asteroid-comet transition object 107P/(4015) Wilson-Harrington is a possible target of the joint European Space Agency (ESA) and Japanese Aerospace Exploration Agency (JAXA) Marco Polo sample return mission. Physical studies of this object are relevant to this mission, and also to understanding its asteroidal or cometary nature. Aims. Our aim is to obtain significant new constraints on the surface thermal properties of this object. Methods. We present mid-infrared photometry in two filters (16 and 22 mu m) obtained with NASA's Spitzer Space Telescope on February 12, 2007, and results from the application of the Near Earth Asteroid Thermal Model (NEATM). We obtained high S/N in two mid-IR bands allowing accurate measurements of its thermal emission. Results. We obtain a well constrained beaming parameter (eta = 1.39 +/- 0.26) and obtain a diameter and geometric albedo of D = 3.46 +/- 0.32 km, and p(v) = 0.059 +/- 0.011. We also obtain similar results when we apply this best-fitting thermal model to single-band mid-IR photometry reported by Campins et al. (1995, P&SS, 43, 733), Kraemer et al. (2005, AJ, 130, 2363) and Reach et al. ( 2007, Icarus, 191, 298). Conclusions. The albedo of 4015 Wilson-Harrington is low, consistent with those of comet nuclei and primitive C-, P-, D-type asteorids. We establish a rough lower limit for the thermal inertia of W-H of 60 Jm(-2)s(-0.5)K(-1) when it is at r = 1 AU, which is slightly over the limit of 30 Jm(-2)s(-0.5)K(-1) derived by Groussin et al. (2009, Icarus, 199, 568) for the thermal inertia of the nucleus of comet 22P/Kopff. C1 [Licandro, J.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Licandro, J.] Univ La Laguna, Dept Astrofis, Tenerife 38205, Spain. [Campins, H.; Fernandez, Y.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Kelley, M.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Delbo, M.] Observ Cote Azur, CNRS, UNS, F-06003 Nice, France. [Reach, W. T.] CALTECH, IPAC, Pasadena, CA 91125 USA. [Groussin, O.; Lamy, P. L.] CNRS, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Groussin, O.; Lamy, P. L.] Univ Aix Marseille 1, F-13388 Marseille 13, France. [Toth, I.] Konkoly Obs, H-1525 Budapest, Hungary. [A'Hearn, M. F.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Bauer, J. M.; Lowry, S. C.] NASA JPL, Pasadena, CA 91109 USA. [Lowry, S. C.] Univ Kent, Ctr Astrophys & Planetary Sci, Canterbury CT2 7NH, Kent, England. [Fitzsimmons, A.] Queens Univ Belfast, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. [Lisse, C. M.; Weaver, H. A.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Meech, K. J.; Pittichova, J.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Pittichova, J.] Slovak Acad Sci, Astron Inst, Bratislava 84504, Slovakia. [Snodgrass, C.] ESO, Santiago, Chile. RP Licandro, J (reprint author), Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38200, Spain. EM jlicandr@iac.es RI Weaver, Harold/D-9188-2016; Lisse, Carey/B-7772-2016; OI Snodgrass, Colin/0000-0001-9328-2905; Lisse, Carey/0000-0002-9548-1526; Kelley, Michael/0000-0002-6702-7676; Fernandez, Yanga/0000-0003-1156-9721; Reach, William/0000-0001-8362-4094 FU "Ministerio de Ciencia e Innovacion" [AYA2005-07808-C03-02, AYA2008-06202-C03-02]; NASA's; Slovak Academy of Sciences [VEGA 2/7040/27] FX We thanks the referee J. Emery for his useful comments, and K. Hargrove for reviewing the manuscript. J. L. gratefully acknowledges support from the spanish "Ministerio de Ciencia e Innovacion" projects AYA2005-07808-C03-02 and AYA2008-06202-C03-02. H. C. gratefully acknowledges support from NASA's Spitzer Science Center, Jet Propulsion Laboratory and Planetary Astronomy program. H. C. was a visiting Fulbright Scholar at the "Instituto de Astrofisica de Canarias" in Tenerife, Spain. J. P. gratefully acknowledges support from the Slovak Academy of Sciences Grant VEGA 2/7040/27. NR 32 TC 9 Z9 9 U1 0 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2009 VL 507 IS 3 BP 1667 EP 1670 DI 10.1051/0004-6361/200913116 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 524YR UT WOS:000272180800045 ER PT J AU Scarlata, C Colbert, J Teplitz, HI Bridge, C Francis, P Palunas, P Siana, B Williger, GM Woodgate, B AF Scarlata, C. Colbert, J. Teplitz, H. I. Bridge, C. Francis, P. Palunas, P. Siana, B. Williger, G. M. Woodgate, B. TI He II EMISSION IN Ly alpha NEBULAE: ACTIVE GALACTIC NUCLEUS OR COOLING RADIATION? SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: high-redshift; large-scale structure of universe ID SPECTRAL ENERGY-DISTRIBUTIONS; REDSHIFT RADIO GALAXIES; LYMAN-BREAK GALAXIES; STAR-FORMATION; STARBURST GALAXIES; COLD ACCRETION; STELLAR POPULATIONS; FORMING GALAXIES; SPACE-TELESCOPE; 1ST STARS AB We present a study of an extended Ly alpha nebula located in a known overdensity at z similar to 2.38. The data include multiwavelength photometry covering the rest-frame spectral range from 0.1 to 250 mu m, and deep optical spectra of the sources associated with the extended emission. Two galaxies are associated with the Ly alpha nebula. One of them is a dust enshrouded active galactic nucleus (AGN), while the other is a powerful starburst, forming stars at greater than or similar to 400 M(circle dot) yr(-1). We detect the He II emission line at 1640 angstrom in the spectrum of the obscured AGN, but detect no emission from other highly ionized metals (C IV or N V) as is expected from an AGN. One scenario that simultaneously reproduces the width of the detected emission lines, the lack of C IV emission, and the geometry of the emitting gas, is that the He II and the Ly alpha emission are the result of cooling gas that is being accreted on the dark matter halo of the two galaxies, Ly1 and Ly2. Given the complexity of the environment associated with our Ly alpha nebula it is possible that various mechanisms of excitation are at work simultaneously. C1 [Scarlata, C.; Colbert, J.; Teplitz, H. I.; Bridge, C.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Francis, P.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Palunas, P.] Carnegie Observ, Pasadena, CA 91101 USA. [Williger, G. M.] Univ Louisville, Louisville, KY 40292 USA. [Williger, G. M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Williger, G. M.] Catholic Univ, Washington, DC 20064 USA. [Woodgate, B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Scarlata, C (reprint author), CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. RI Woodgate, Bruce/D-2970-2012 NR 68 TC 24 Z9 24 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2009 VL 706 IS 2 BP 1241 EP 1252 DI 10.1088/0004-637X/706/2/1241 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 520TY UT WOS:000271872900024 ER PT J AU Homan, DC Kadler, M Kellermann, KI Kovalev, YY Lister, ML Ros, E Savolainen, T Zensus, JA AF Homan, D. C. Kadler, M. Kellermann, K. I. Kovalev, Y. Y. Lister, M. L. Ros, E. Savolainen, T. Zensus, J. A. TI MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. VII. BLAZAR JET ACCELERATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE BL Lacertae objects: general; galaxies: active; galaxies: jets; quasars: general; radio continuum: galaxies; surveys ID COMPACT RADIO-SOURCES; MULTI-EPOCH VLBI; RELATIVISTIC JETS; APPARENT SPEEDS; QUASAR 3C-279; KINEMATICS; GHZ; IMAGES; 3C-345; FLUX AB We discuss acceleration measurements for a large sample of extragalactic radio jets from the Monitoring Of Jets in Active Galactic Nuclei with VLBA Experiments (MOJAVE) program, which studies the parsec-scale jet structure and kinematics of a complete, flux-density-limited sample of active galactic nuclei (AGNs). Accelerations are measured from the apparent motion of individual jet features or "components" which may represent patterns in the jet flow. We find that significant accelerations are common both parallel and perpendicular to the observed component velocities. Parallel accelerations, representing changes in apparent speed, are generally larger than perpendicular acceleration that represent changes in apparent direction. The trend for larger parallel accelerations indicates that a significant fraction of these changes in apparent speed are due to changes in intrinsic speed of the component rather than changes in direction to the line of sight. We find an overall tendency for components with increasing apparent speed to be closer to the base of their jets than components with decreasing apparent speed. This suggests a link between the observed pattern motions and the underlying flow which, in some cases, may increase in speed close to the base and decrease in speed further out; however, common hydrodynamical processes for propagating shocks may also play a role. About half of the components show "non-radial" motion, or a misalignment between the component's structural position angle and its velocity direction, and these misalignments generally better align the component motion with the downstream emission. Perpendicular accelerations are closely linked with non-radial motion. When observed together, perpendicular accelerations are usually in the correct direction to have caused the observed misalignment. C1 [Homan, D. C.] Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA. [Kadler, M.] Univ Erlangen Nurnberg, D-96049 Bamberg, Germany. [Kadler, M.] Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Kadler, M.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Kadler, M.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Kellermann, K. I.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Kovalev, Y. Y.; Ros, E.; Savolainen, T.; Zensus, J. A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Kovalev, Y. Y.] PN Lebedev Phys Inst, Ctr Astro Space, Moscow 117997, Russia. [Lister, M. L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Ros, E.] Univ Valencia, Dept Astron & Astrofis, E-46100 Valencia, Spain. RP Homan, DC (reprint author), Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA. EM homand@denison.edu; matthias.kadler@sternwarte.uni-erlangen.de; kkellerm@nrao.edu; yyk@asc.rssi.ru; mlister@purdue.edu; Eduardo.Ros@uv.es; tsavolainen@mpifr-bonn.mpg.de; zensus@mpifr-bonn.mpg.de RI Kovalev, Yuri/J-5671-2013; OI Kovalev, Yuri/0000-0001-9303-3263; Ros, Eduardo/0000-0001-9503-4892; Savolainen, Tuomas/0000-0001-6214-1085; Kadler, Matthias/0000-0001-5606-6154 FU NSF [AST-0707693, AST-0406923, AST-0807860]; NASA-Fermi [NNX08AV67G]; Purdue Research Foundation; Academy of Finland [120516]; Russian Foundation for Basic Research [08-0200545] FX The authors wish to acknowledge the other members of the MOJAVE team. D.C.H. has been supported under NSF grant AST-0707693. M.L.L. has been supported under NSF grants AST-0406923 & AST-0807860, NASA-Fermi grant NNX08AV67G and a grant from the Purdue Research Foundation. T.S. has been supported in part by the Academy of Finland grant 120516. M.K. has been supported in part by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. Part of this work was done by Y.Y.K. and T.S. during their Alexander von Humboldt fellowships at the MPIfR. Y.Y.K. is partly supported by the Russian Foundation for Basic Research (project 08-0200545). This work has made use of data obtained from the National Radio Astronomy Observatory's Very Long Baseline Array and its public archive. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. This research has made use of NASA's Astrophysics Data System, and the NASA/IPAC Extragalactic Database (NED). The latter is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 38 TC 39 Z9 39 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2009 VL 706 IS 2 BP 1253 EP 1268 DI 10.1088/0004-637X/706/2/1253 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 520TY UT WOS:000271872900025 ER PT J AU Matter, A Lopez, B Lagarde, S Danchi, WC Robbe-Dubois, S Petrov, RG Navarro, R AF Matter, A. Lopez, B. Lagarde, S. Danchi, W. C. Robbe-Dubois, S. Petrov, R. G. Navarro, R. TI PARASITIC INTERFERENCE IN LONG BASELINE OPTICAL INTERFEROMETRY: REQUIREMENTS FOR HOT JUPITER-LIKE PLANET DETECTION SO ASTROPHYSICAL JOURNAL LA English DT Article DE infrared: general; instrumentation: interferometers; methods: analytical; planetary systems; techniques: interferometric ID GIANT PLANETS AB The observable quantities in optical interferometry, which are the modulus and the phase of the complex visibility, may be corrupted by parasitic fringes superimposed on the genuine fringe pattern. These fringes are due to an interference phenomenon occurring from stray light effects inside an interferometric instrument. We developed an analytical approach to better understand this phenomenon when stray light causes cross talk between beams. We deduced that the parasitic interference significantly affects the interferometric phase and thus the associated observables including the differential phase and the closure phase. The amount of parasitic flux coupled to the piston between beams appears to be very influential in this degradation. For instance, considering a point-like source and a piston ranging from lambda/500 to lambda/5 in the L band (lambda = 3.5 mu m), a parasitic flux of about 1% of the total flux produces a parasitic phase reaching at most one-third of the intrinsic phase. The piston, which can have different origins (instrumental stability, atmospheric perturbations, etc.), thus amplifies the effect of parasitic interference. According to the specifications of piston correction in space or at ground level (respectively lambda/500 approximate to 2 nm and lambda/30 approximate to 100 nm), the detection of hot Jupiter-like planets, one of the most challenging aims for current ground-based interferometers, limits parasitic radiation to about 5% of the incident intensity. This was evaluated by considering different types of hot Jupiter synthetic spectra. Otherwise, if no fringe tracking is used, the detection of a typical hot Jupiter-like system with a solar-like star would admit a maximum level of parasitic intensity of 0.01% for piston errors equal to lambda/15. If the fringe tracking specifications are not precisely observed, it thus appears that the allowed level of parasitic intensity dramatically decreases and may prevent the detection. In parallel, the calibration of the parasitic phase by a reference star, at this accuracy level, seems very difficult. Moreover, since parasitic phase is an object-dependent quantity, the use of a hypothetical phase abacus, directly giving the parasitic phase from a given parasitic flux level, is also impossible. Some instrumental solutions, implemented at the instrument design stage for limiting or preventing this parasitic interference, appear to be crucial and are presented in this paper. C1 [Matter, A.; Lopez, B.; Lagarde, S.] UNS Observ Cote Azur, UMR 6525, Lab Fizeau, F-06304 Nice 4, France. [Danchi, W. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Robbe-Dubois, S.; Petrov, R. G.] UNS Observ Cote Azur, UMR 6525, Lab Fizeau, F-06108 Nice 02, France. [Navarro, R.] NOVA ASTRON, NL-7990 AA Dwingeloo, Netherlands. RP Matter, A (reprint author), UNS Observ Cote Azur, UMR 6525, Lab Fizeau, BP 4229, F-06304 Nice 4, France. NR 15 TC 4 Z9 4 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2009 VL 706 IS 2 BP 1299 EP 1308 DI 10.1088/0004-637X/706/2/1299 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 520TY UT WOS:000271872900028 ER PT J AU Abdo, AA Ackermann, M Ajello, M Atwood, WB Axelsson, M Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Baughman, BM Bechtol, K Bellazzini, R Berenji, B Bloom, ED Bonamente, E Borgland, AW Bregeon, J Brez, A Brigida, M Bruel, P Caliandro, GA Cameron, RA Camilo, F Caraveo, PA Casandjian, JM Cecchi, C Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cognard, I Cohen-Tanugi, J Conrad, J de Angelis, A de Palma, F Dormody, M Silva, EDE Drell, PS Dubois, R Dumora, D Farnier, C Favuzzi, C Frailis, M Freire, PCC Fukazawa, Y Funk, S Fusco, P Gargano, F Gehrels, N Germani, S Giebels, B Giglietto, N Giordano, F Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Halpern, J Hanabata, Y Harding, AK Hayashida, M Hays, E Hobbs, G Hughes, RE Johannesson, G Johnson, AS Johnson, RP Johnson, TJ Johnson, WN Johnston, S Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Knodlseder, J Kocian, ML Kramer, M Kuehn, F Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Lyne, AG Makeev, A Manchester, RN Marelli, M Mazziotta, MN McEnery, JE Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nolan, PL Norris, JP Noutsos, A Nuss, E Ohsugi, T Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Ransom, SM Razzano, M Reimer, A Reimer, O Reposeur, T Rochester, LS Rodriguez, AY Romani, RW Roth, M Ryde, F Sadrozinski, HFW Sanchez, D Sander, A Parkinson, PMS Scargle, JD Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Stappers, BW Strickman, MS Suson, DJ Tajima, H Takahashi, H Tanaka, T Thayer, JB Thayer, JG Theureau, G Thompson, DJ Thorsett, SE Tibaldo, L Torres, DF Tosti, G Uchiyama, Y Usher, TL Van Etten, A Vilchez, N Vitale, V Waite, AP Wang, P Wang, N Watters, K Weltevrede, P Winer, BL Wood, KS Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Atwood, W. B. Axelsson, M. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Baughman, B. M. Bechtol, K. Bellazzini, R. Berenji, B. Bloom, E. D. Bonamente, E. Borgland, A. W. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Caliandro, G. A. Cameron, R. A. Camilo, F. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cognard, I. Cohen-Tanugi, J. Conrad, J. de Angelis, A. de Palma, F. Dormody, M. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Frailis, M. Freire, P. C. C. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gehrels, N. Germani, S. Giebels, B. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Halpern, J. Hanabata, Y. Harding, A. K. Hayashida, M. Hays, E. Hobbs, G. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, T. J. Johnson, W. N. Johnston, S. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Knoedlseder, J. Kocian, M. L. Kramer, M. Kuehn, F. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Lyne, A. G. Makeev, A. Manchester, R. N. Marelli, M. Mazziotta, M. N. McEnery, J. E. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nolan, P. L. Norris, J. P. Noutsos, A. Nuss, E. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Ransom, S. M. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Rochester, L. S. Rodriguez, A. Y. Romani, R. W. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Stappers, B. W. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Tanaka, T. Thayer, J. B. Thayer, J. G. Theureau, G. Thompson, D. J. Thorsett, S. E. Tibaldo, L. Torres, D. F. Tosti, G. Uchiyama, Y. Usher, T. L. Van Etten, A. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Wang, N. Watters, K. Weltevrede, P. Winer, B. L. Wood, K. S. Ylinen, T. Ziegler, M. TI FERMI LARGE AREA TELESCOPE DETECTION OF PULSED gamma-RAYS FROM THE VELA-LIKE PULSARS PSR J1048-5832 AND PSR J2229+6114 SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays: observations; pulsars: general; pulsars: individual (PSR J1048-5832, PSr J222+6114) ID SOURCE 3EG J2227+6122; SOUTHERN PULSARS; SPACE-TELESCOPE; GALACTIC-PLANE; LIGHT CURVES; SOURCE LIST; EGRET DATA; WIND TORI; YOUNG; DISCOVERY AB We report the detection of gamma-ray pulsations (>= 0.1GeV) from PSR J2229+ 6114 and PSR J1048-5832, the latter having been detected as a low-significance pulsar by EGRET. Data in the gamma-ray band were acquired by the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope, while the radio rotational ephemerides used to fold the gamma-ray light curves were obtained using the Green Bank Telescope, the Lovell telescope at Jodrell Bank, and the Parkes Telescope. The two young radio pulsars, located within the error circles of the previously unidentified EGRET sources 3EG J1048-5840 and 3EG J2227+6122, present spin-down characteristics similar to the Vela pulsar. PSR J1048-5832 shows two sharp peaks at phases 0.15 +/- 0.01 and 0.57 +/- 0.01 relative to the radio pulse confirming the EGRET light curve, while PSR J2229+ 6114 presents a very broad peak at phase 0.49 +/- 0.01. The gamma-ray spectra above 0.1 GeV of both pulsars are fit with power laws having exponential cutoffs near 3 GeV, leading to integral photon fluxes of (2.19 +/- 0.22 +/- 0.32) x 10(-7) cm(-2) s(-1) for PSR J1048-5832 and (3.77 +/- 0.22 +/- 0.44) x 10(-7) cm(-2) s(-1) for PSR J2229+6114. The first uncertainty is statistical and the second is systematic. PSR J1048-5832 is one of the two LAT sources whichwere entangled together as 3EG J1048-5840. These detections add to the growing number of young gamma-ray pulsars that make up the dominant population of GeV gamma-ray sources in the Galactic plane. C1 [Abdo, A. A.; Brez, A.; Chekhtman, A.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Uchiyama, Y.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Wang, P.; Watters, K.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Uchiyama, Y.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Wang, P.; Watters, K.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, W. B.; Dormody, M.; Johnson, R. P.; Porter, T. A.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Dormody, M.; Johnson, R. P.; Porter, T. A.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Axelsson, M.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Axelsson, M.; Conrad, J.; Meurer, C.; Ryde, F.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Tibaldo, L.] Univ Paris Diderot, Lab AIM, IRFU, CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Hughes, R. E.; Kuehn, F.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dept Fis, I-06123 Perugia, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Giebels, B.; Sanchez, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Camilo, F.; Halpern, J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Caraveo, P. A.; Marelli, M.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Moiseev, A. A.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Cognard, I.; Theureau, G.] CNRS, UMR 6115, LPCE, F-45071 Orleans 02, France. [Cognard, I.; Theureau, G.] CNRS, INSU, Observ Paris, Stn Radioastron Nancay, F-18330 Nancay, France. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Piron, F.] Univ Montpellier 2, Lab Phys Theor & Astroparticules, CNRS, IN2P3, Montpellier, France. [Conrad, J.; Meurer, C.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Freire, P. C. C.] Arecibo Observ, Arecibo, PR 00612 USA. [Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.; Johnson, T. J.; Moiseev, A. A.] Univ Maryland, College Pk, MD 20742 USA. [Guiriec, S.] Univ Alabama, Huntsville, AL 35899 USA. [Hobbs, G.; Johnston, S.; Manchester, R. N.; Weltevrede, P.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Kataoka, J.; Kawai, N.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan. [Kawai, N.] RIKEN, Cosm Radiat Lab, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Kramer, M.; Lyne, A. G.; Noutsos, A.; Stappers, B. W.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Kramer, M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Morselli, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Orlando, E.; Vitale, V.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Ozaki, M.; Uchiyama, Y.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Ransom, S. M.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Rodriguez, A. Y.; Torres, D. F.] CSIC, IEEC, Inst Ciencies Espai, Barcelona 08193, Spain. [Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Wang, N.] Natl Astron Observ CAS, Urumqi 830011, Peoples R China. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM ahardingx@yahoo.com; parent@cenbg.in2p3.fr; massimiliano.razzano@pi.infn.it RI Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Johannesson, Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; OI Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Johannesson, Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Rando, Riccardo/0000-0001-6992-818X; Sgro', Carmelo/0000-0001-5676-6214; Thorsett, Stephen/0000-0002-2025-9613; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018 FU Commonwealth Government; Associated Universities, Inc.; Science and Technology Facilities Council of the United Kingdom FX The Parkes Radio Telescope is part of the Australia Telescope which is funded by the Commonwealth Government for operation as a National Facility managed by CSIRO. We thank our colleagues for their assistance with the radio timing observations.; The Green Bank Telescope is operated by the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.; The Lovell Telescope is owned and operated by the University of Manchester as part of the Jodrell Bank Centre for Astrophysics with support from the Science and Technology Facilities Council of the United Kingdom. NR 59 TC 22 Z9 23 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2009 VL 706 IS 2 BP 1331 EP 1340 DI 10.1088/0004-637X/706/2/1331 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 520TY UT WOS:000271872900032 ER PT J AU Titarchuk, L Seifina, E AF Titarchuk, Lev Seifina, Elena TI DISCOVERY OF PHOTON INDEX SATURATION IN THE BLACK HOLE BINARY GRS 1915+105 SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; black hole physics; radiation mechanisms: non-thermal; stars: individual (GRS 1915+105) ID QUASI-PERIODIC OSCILLATIONS; X-RAY BINARIES; MONTE-CARLO SIMULATIONS; NEUTRON-STAR; SPECTRAL INDEX; FREQUENCY CORRELATION; SYNCHROTRON EMISSION; INTRINSIC SIGNATURE; ACCRETION DISKS; QPO FREQUENCY AB We present a study of the correlations between spectral, timing properties, and mass accretion rate observed in X-rays from the Galactic black hole (BH) binary GRS 1915+105 during the transition between hard and soft states. We analyze all transition episodes from this source observed with the Rossi X-ray Timing Explorer, coordinated with Ryle Radio Telescope observations. We show that broadband energy spectra of GRS 1915+105 during all these spectral states can be adequately presented by two bulk motion Comptonization (BMC) components: a hard component (BMC1, photon index Gamma(1) = 1.7-3.0) with turnover at high energies and soft thermal component (BMC2, Gamma(2) = 2.7-4.2) with characteristic color temperature <= 1 keV, and the redskewed iron-line (LAOR) component. We also present observable correlations between the index and the normalization of the disk "seed" component. The use of "seed" disk normalization, which is presumably proportional to mass accretion rate in the disk, is crucial to establish the index saturation effect during the transition to the soft state. We discovered the photon index saturation of the soft and hard spectral components at values of less than or similar to 4.2 and 3, respectively. We present a physical model which explains the index-seed photon normalization correlations. We argue that the index saturation effect of the hard component (BMC1) is due to the soft photon Comptonization in the converging inflow close to the BH and that of soft component is due to matter accumulation in the transition layer when mass accretion rate increases. Furthermore, we demonstrate a strong correlation between equivalent width of the iron line and radio flux in GRS 1915+105. In addition to our spectral model components we also find a strong feature of "blackbody (BB)-like" bump whose color temperature is about 4.5 keV in eight observations of the intermediate and soft states. We discuss a possible origin of this "BB-like" emission. C1 [Titarchuk, Lev] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Titarchuk, Lev] ICRANET, I-65122 Pescara, Italy. [Titarchuk, Lev] George Mason Univ, Fairfax, VA 22030 USA. [Titarchuk, Lev] USN, Res Lab, Washington, DC 20375 USA. [Titarchuk, Lev] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Seifina, Elena] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow 119992, Russia. RP Titarchuk, L (reprint author), Univ Ferrara, Dipartimento Fis, Via Saragat 1, I-44100 Ferrara, Italy. EM titarchuk@fe.infn.it; seif@sai.msu.ru NR 59 TC 23 Z9 23 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2009 VL 706 IS 2 BP 1463 EP 1483 DI 10.1088/0004-637X/706/2/1463 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 520TY UT WOS:000271872900040 ER PT J AU Pandian, JD Menten, KM Goldsmith, PF AF Pandian, J. D. Menten, K. M. Goldsmith, P. F. TI THE ARECIBO METHANOL MASER GALACTIC PLANE SURVEY. III. DISTANCES AND LUMINOSITIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE Galaxy: kinematics and dynamics; Galaxy: structure; masers; radio lines: ISM ID ULTRACOMPACT HII-REGIONS; STAR-FORMATION REGIONS; INFRARED DARK CLOUDS; MAGELLANIC CLOUDS; MOLECULAR CLOUDS; TRIGONOMETRIC PARALLAXES; GENERAL CATALOG; H-I; GHZ; AMBIGUITIES AB We derive kinematic distances to the 86 6.7 GHz methanol masers discovered in the Arecibo Methanol Maser Galactic Plane Survey. The systemic velocities of the sources were derived from (13)CO ( J = 2-1), CS ( J = 5-4), and NH(3) observations made with the ARO Submillimeter Telescope, the APEX telescope, and the Effelsberg 100 m telescope, respectively. Kinematic distance ambiguities were resolved using Hi self-absorption with Hi data from the VLA Galactic Plane Survey. We observe roughly three times as many sources at the far distance compared to the near distance. The vertical distribution of the sources has a scale height of similar to 30 pc, and is much lower than that of the Galactic thin disk. We use the distances derived in this work to determine the luminosity function of 6.7 GHz maser emission. The luminosity function has a peak at approximately 10(-6) L(circle dot). Assuming that this luminosity function applies, the methanol maser population in the Large Magellanic Cloud and M33 is at least 4 and 14 times smaller, respectively, than in our Galaxy. C1 [Pandian, J. D.; Menten, K. M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Goldsmith, P. F.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Pandian, JD (reprint author), Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany. EM jpandian@mpifr-bonn.mpg.de; kmenten@mpifr-bonn.mpg.de; Paul.F.Goldsmith@jpl.nasa.gov RI Goldsmith, Paul/H-3159-2016 FU Jet Propulsion Laboratory; California Institute of Technology; National Aeronautics and Space Administration. FX We are very grateful to Kiriaki Xiluri, Gene Lauria, and the operators at the SMT for assistance in obtaining the 13CO spectra for our sample. We thank A. Kerr and the National Radio Astronomy Observatory for use of the ALMA Band 6 mixers at the SMT. We are also grateful to Arnaud Belloche for assistance with the APEX observations, and to Alex Kraus and the operators at Effelsberg for assistance with the NH3 observations. We also thank the anonymous referee for useful comments. This work was supported in part by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This research has made use of NASA's Astrophysics Data System. NR 50 TC 30 Z9 30 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2009 VL 706 IS 2 BP 1609 EP 1624 DI 10.1088/0004-637X/706/2/1609 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 520TY UT WOS:000271872900051 ER PT J AU Acciari, VA Aliu, E Arlen, T Aune, T Bautista, M Beilicke, M Benbow, W Boltuch, D Bradbury, SM Buckley, JH Bugaev, V Byrum, K Cannon, A Celik, O Cesarini, A Ciupik, L Cogan, P Cui, W Dickherber, R Duke, C Fegan, SJ Finley, JP Fortin, P Fortson, L Furniss, A Galante, N Gall, D Gibbs, K Gillanders, GH Godambe, S Grube, J Guenette, R Gyuk, G Hanna, D Holder, J Horan, D Hui, CM Humensky, TB Imran, A Kaaret, P Karlsson, N Kertzman, M Kieda, D Konopelko, A Krawczynski, H Krennrich, F Lang, MJ LeBohec, S Maier, G McCann, A McCutcheon, M Millis, J Moriarty, P Mukherjee, R Ong, RA Otte, AN Pandel, D Perkins, JS Pohl, M Quinn, J Ragan, K Reynolds, PT Roache, E Rose, HJ Schroedter, M Sembroski, GH Smith, AW Steele, D Swordy, SP Theiling, M Toner, JA Varlotta, A Vassiliev, VV Vincent, S Wagner, RG Wakely, SP Ward, JE Weekes, TC Weinstein, A Weisgarber, T Williams, DA Wissel, S Wood, M Zitzer, B Kataoka, J Cavazzuti, E Cheung, CC Lott, B Thompson, DJ Tosti, G AF Acciari, V. A. Aliu, E. Arlen, T. Aune, T. Bautista, M. Beilicke, M. Benbow, W. Boltuch, D. Bradbury, S. M. Buckley, J. H. Bugaev, V. Byrum, K. Cannon, A. Celik, O. Cesarini, A. Ciupik, L. Cogan, P. Cui, W. Dickherber, R. Duke, C. Fegan, S. J. Finley, J. P. Fortin, P. Fortson, L. Furniss, A. Galante, N. Gall, D. Gibbs, K. Gillanders, G. H. Godambe, S. Grube, J. Guenette, R. Gyuk, G. Hanna, D. Holder, J. Horan, D. Hui, C. M. Humensky, T. B. Imran, A. Kaaret, P. Karlsson, N. Kertzman, M. Kieda, D. Konopelko, A. Krawczynski, H. Krennrich, F. Lang, M. J. LeBohec, S. Maier, G. McCann, A. McCutcheon, M. Millis, J. Moriarty, P. Mukherjee, R. Ong, R. A. Otte, A. N. Pandel, D. Perkins, J. S. Pohl, M. Quinn, J. Ragan, K. Reynolds, P. T. Roache, E. Rose, H. J. Schroedter, M. Sembroski, G. H. Smith, A. W. Steele, D. Swordy, S. P. Theiling, M. Toner, J. A. Varlotta, A. Vassiliev, V. V. Vincent, S. Wagner, R. G. Wakely, S. P. Ward, J. E. Weekes, T. C. Weinstein, A. Weisgarber, T. Williams, D. A. Wissel, S. Wood, M. Zitzer, B. Kataoka, J. Cavazzuti, E. Cheung, C. C. Lott, B. Thompson, D. J. Tosti, G. TI VERITAS UPPER LIMIT ON THE VERY HIGH ENERGY EMISSION FROM THE RADIO GALAXY NGC 1275 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: individual (NGC 1275, 3C 84, Perseus A); galaxies: Seyfert; gamma rays: observations ID GAMMA-RAY EMISSION; ACTIVE GALACTIC NUCLEI; ATMOSPHERIC CHERENKOV TELESCOPES; PEAKED BL-LACERTAE; PROTON BLAZAR; DISCOVERY; RADIATION; JETS; MARKARIAN-501; PARAMETERS AB The recent detection by the Fermi gamma-ray space telescope of high-energy gamma-rays from the radio galaxy NGC 1275 makes the observation of the very high energy (VHE: E > 100 GeV) part of its broadband spectrum particularly interesting, especially for the understanding of active galactic nuclei with misaligned multi-structured jets. The radio galaxy NGC 1275 was recently observed by VERITAS at energies above 100 GeV for about 8 hr. No VHE gamma-ray emission was detected by VERITAS from NGC 1275. A 99% confidence level upper limit of 2.1% of the Crab Nebula flux level is obtained at the decorrelation energy of approximately 340 GeV, corresponding to 19% of the power-law extrapolation of the Fermi Large Area Telescope result. C1 [Acciari, V. A.; Benbow, W.; Galante, N.; Gibbs, K.; Perkins, J. S.; Roache, E.; Theiling, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Acciari, V. A.; Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Aliu, E.; Boltuch, D.; Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Aliu, E.; Boltuch, D.; Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Arlen, T.; Celik, O.; Fegan, S. J.; Ong, R. A.; Vassiliev, V. V.; Weinstein, A.; Wood, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Bautista, M.; Cogan, P.; Guenette, R.; Hanna, D.; Maier, G.; McCann, A.; McCutcheon, M.; Ragan, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Bradbury, S. M.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Byrum, K.; Smith, A. W.; Wagner, R. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cannon, A.; Grube, J.; Quinn, J.; Ward, J. E.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Cesarini, A.; Gillanders, G. H.; Lang, M. J.; Toner, J. A.] Natl Univ Ireland, Sch Phys, Galway, Ireland. [Ciupik, L.; Fortson, L.; Gyuk, G.; Karlsson, N.; Steele, D.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cui, W.; Finley, J. P.; Gall, D.; Sembroski, G. H.; Varlotta, A.; Zitzer, B.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Duke, C.] Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA. [Fortin, P.; Mukherjee, R.] Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Godambe, S.; Hui, C. M.; Kieda, D.; LeBohec, S.; Vincent, S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Humensky, T. B.; Swordy, S. P.; Wakely, S. P.; Weisgarber, T.; Wissel, S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Imran, A.; Krennrich, F.; Pohl, M.; Schroedter, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kaaret, P.; Pandel, D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Konopelko, A.] Pittsburg State Univ, Dept Phys, Pittsburg, KS 66762 USA. [Millis, J.] Anderson Univ, Dept Phys, Anderson, IN 46012 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. [Theiling, M.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Kataoka, J.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Cavazzuti, E.] ASI, Sci Data Ctr, I-00044 Frascati, Roma, Italy. [Cheung, C. C.; Thompson, D. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lott, B.] Ctr Etud Nucl Bordeaux Gradignan, CNRS, UMR 5797, IN2P3, F-33175 Gradignan, France. [Lott, B.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. RP Galante, N (reprint author), Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. EM ngalante@cfa.harvard.edu RI Thompson, David/D-2939-2012; Tosti, Gino/E-9976-2013; OI Thompson, David/0000-0001-5217-9135; Cui, Wei/0000-0002-6324-5772; Cesarini, Andrea/0000-0002-8611-8610; Ward, John E/0000-0003-1973-0794; Pandel, Dirk/0000-0003-2085-5586; Lang, Mark/0000-0003-4641-4201 FU U.S. Department of Energy; U.S. National Science Foundation; Smithsonian Institution, by NSERC in Canada; Science Foundation Ireland; STFC in the UK FX This research was supported by grants from the U.S. Department of Energy, the U.S. National Science Foundation and the Smithsonian Institution, by NSERC in Canada, by the Science Foundation Ireland, and by STFC in the UK. NR 35 TC 17 Z9 17 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD DEC 1 PY 2009 VL 706 IS 2 BP L275 EP L280 DI 10.1088/0004-637X/706/2/L275 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 537RY UT WOS:000273132700015 ER PT J AU Hewitt, JW Yusef-Zadeh, F Wardle, M AF Hewitt, John W. Yusef-Zadeh, Farhad Wardle, Mark TI CORRELATION OF SUPERNOVA REMNANT MASERS AND GAMMA-RAY SOURCES SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmic rays; masers; shock waves; supernova remnants ID MOLECULAR CLOUDS; IC 443; IONIZATION RATE; GALACTIC-CENTER; INNER GALAXY; SHOCK-WAVES; COSMIC-RAYS; OH MASERS; EMISSION; DISCOVERY AB Supernova remnants (SNRs) interacting with molecular clouds are potentially exciting systems in which to detect evidence of cosmic ray acceleration. Prominent gamma-ray emission is produced via the decay of neutral pions when cosmic rays encounter nearby dense clouds. In many of the SNRs coincident with. gamma-ray sources, the presence of OH ( 1720 MHz) masers is used to identify interaction with dense gas and to provide a kinematic distance to the system. In this Letter we use statistical tests to demonstrate that there is a correlation between these masers and a class of GeV- to TeV-energy gamma-ray sources coincident with interacting remnants. For pion decay the gamma-ray luminosity provides a direct estimate of the local cosmic ray density. We find the cosmic ray density is enhanced by one to two orders of magnitude over the local solar value, comparable to X-ray-induced ionization in these remnants. The inferred ionization rates are sufficient to explain non-equilibrium chemistry in the post-shock gas, where high columns of hydroxyl are observed. C1 [Hewitt, John W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Yusef-Zadeh, Farhad] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Wardle, Mark] Macquarie Univ, Dept Phys & Engn, Sydney, NSW 2109, Australia. RP Hewitt, JW (reprint author), NASA, Goddard Space Flight Ctr, Mail Stop 662-0,8800 Greenbelt Rd, Greenbelt, MD 20771 USA. OI Wardle, Mark/0000-0002-1737-0871 NR 42 TC 29 Z9 31 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD DEC 1 PY 2009 VL 706 IS 2 BP L270 EP L274 DI 10.1088/0004-637X/706/2/L270 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 537RY UT WOS:000273132700014 ER PT J AU Strohmayer, TE AF Strohmayer, Tod E. TI DISCOVERY OF A 115 DAY ORBITAL PERIOD IN THE ULTRALUMINOUS X-RAY SOURCE NGC 5408 X-1 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE black hole physics; galaxies: individual (NGC 5408); stars: oscillations; X-rays: galaxies; X-rays: stars ID MASS BLACK-HOLE; WARPED ACCRETION DISCS; TIME-SERIES; BINARIES; M82; OSCILLATIONS; VARIABILITY; FREQUENCY; MODULATION; CANDIDATES AB We report the detection of a 115 day periodicity in Swift/X-Ray Telescope monitoring data from the ultraluminous X-ray source (ULX) NGC 5408 X-1. Our ongoing campaign samples its X-ray flux approximately twice weekly and has now achieved a temporal baseline of approximate to 485 days. Periodogram analysis reveals a significant periodicity with a period of 115.5 +/- 4 days. The modulation is detected with a significance of 3.2 x 10(-4). The fractional modulation amplitude decreases with increasing energy, ranging from 0.13 +/- 0.02 above 1 keV to 0.24 +/- 0.02 below 1 keV. The shape of the profile evolves as well, becoming less sharply peaked at higher energies. The periodogram analysis is consistent with a periodic process, however, continued monitoring is required to confirm the coherent nature of the modulation. Spectral analysis indicates that NGC 5408 X-1 can reach 0.3-10 keV luminosities of approximate to 2 x 10(40) erg s(-1). We suggest that, like the 62 day period of the ULX in M82 (X41.4+60), the periodicity detected in NGC 5408 X-1 represents the orbital period of the black hole binary containing the ULX. If this is true then the secondary can only be a giant or supergiant star. C1 NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Strohmayer, TE (reprint author), NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. EM tod.strohmayer@nasa.gov NR 35 TC 24 Z9 25 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD DEC 1 PY 2009 VL 706 IS 2 BP L210 EP L214 DI 10.1088/0004-637X/706/2/L210 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 537RY UT WOS:000273132700002 ER PT J AU Rayner, JT Cushing, MC Vacca, WD AF Rayner, John T. Cushing, Michael C. Vacca, William D. TI THE INFRARED TELESCOPE FACILITY (IRTF) SPECTRAL LIBRARY: COOL STARS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Review DE atlases; infrared: stars; stars: AGB and post-AGB; stars: carbon; stars: fundamental parameters; stars: late-type; techniques: spectroscopic ID WOLF-RAYET STARS; 2.5 MU-M; FUNDAMENTAL MK STANDARDS; HIGH-RESOLUTION SPECTRA; MAIN-SEQUENCE STARS; SKY SURVEY 2MASS; POST-AGB STARS; J-BAND SPECTRA; LOW-MASS STARS; CARBON STARS AB We present a 0.8-5 mu m spectral library of 210 cool stars observed at a resolving power of R equivalent to lambda/Delta lambda similar to 2000 with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well-established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample not only contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra is measured and preserved in the data reduction process. The spectra are absolutely flux calibrated using the Two Micron All Sky Survey photometry. Potential uses of the library include studying the physics of cool stars, classifying and studying embedded young clusters and optically obscured regions of the Galaxy, evolutionary population synthesis to study unresolved stellar populations in optically obscured regions of galaxies and synthetic photometry. The library is available in digital form from the IRTF Web site. C1 [Rayner, John T.; Cushing, Michael C.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Vacca, William D.] NASA, Ames Res Ctr, SOFIA USRA, Moffett Field, CA 94035 USA. RP Rayner, JT (reprint author), Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. EM rayner@ifa.hawaii.edu; michael.cushing@gmail.com; wvacca@sofia.usra.edu NR 191 TC 309 Z9 309 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD DEC PY 2009 VL 185 IS 2 BP 289 EP 432 DI 10.1088/0067-0049/185/2/289 PG 144 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 528RY UT WOS:000272465600003 ER PT J AU Garcia, J Kallman, TR Witthoeft, M Behar, E Mendoza, C Palmeri, P Quinet, P Bautista, MA Klapisch, M AF Garcia, J. Kallman, T. R. Witthoeft, M. Behar, E. Mendoza, C. Palmeri, P. Quinet, P. Bautista, M. A. Klapisch, M. TI NITROGEN K-SHELL PHOTOABSORPTION SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE atomic data; atomic processes; line: formation; X-rays: general ID X-RAY-SPECTRUM; DIELECTRONIC SATELLITE SPECTRA; LITHIUM-LIKE IONS; R-MATRIX APPROACH; BE-LIKE SYSTEMS; ISOELECTRONIC SEQUENCE; FINE-STRUCTURE; ATOMIC DATA; XMM-NEWTON; RADIATIVE TRANSITIONS AB Reliable atomic data have been computed for the spectral modeling of the nitrogen K lines, which may lead to useful astrophysical diagnostics. Data sets comprise valence and K-vacancy level energies, wavelengths, Einstein A-coefficients, radiative and Auger widths, and K-edge photoionization cross sections. An important issue is the lack of measurements that are usually employed to fine-tune calculations so as to attain spectroscopic accuracy. In order to estimate data quality, several atomic structure codes are used and extensive comparisons with previous theoretical data have been carried out. In the calculation of K photoabsorption with the Breit-Pauli R-matrix method, both radiation and Auger dampings, which cause the smearing of the K edge, are taken into account. This work is part of a wider project to compute atomic data in the X-ray regime to be included in the database of the popular XSTAR modeling code. C1 [Garcia, J.] Catholic Univ Amer, Dept Phys, IACS, Washington, DC 20064 USA. [Garcia, J.; Kallman, T. R.; Witthoeft, M.; Behar, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mendoza, C.] IVIC, Ctr Fis, Caracas 1020A, Venezuela. [Palmeri, P.; Quinet, P.] Univ Mons, B-7000 Mons, Belgium. [Quinet, P.] Univ Liege, IPNAS, B-4000 Liege, Belgium. [Bautista, M. A.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Klapisch, M.] ARTEP Inc, Ellicott City, MD 21042 USA. [Behar, E.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. RP Garcia, J (reprint author), Catholic Univ Amer, Dept Phys, IACS, Washington, DC 20064 USA. EM javier@milkyway.gsfc.nasa.gov; timothy.r.kallman@nasa.gov; michael.c.witthoeft@nasa.gov; behar@milkyway.gsfc.nasa.gov; claudio@ivic.ve; palmeri@umons.ac.be; quinet@umons.ac.be; bautista@vt.edu; marcel.klapisch.ctr@nrl.navy.mil FU NASA [08-ADP08-0076] FX We thank the anonymous referee for suggestions that improved the clarity of this paper. This work was funded in part by the NASA Astronomy and Physics Research and Analysis Program. P. P. and P. Q. are research associates of the Belgian FRS-FNRS. E. B. acknowledges funding from NASA grant 08-ADP08-0076. E. B. and M. K. thank Michel Busquet for his significant contributions to the revised version of HULLAC used for this work. This research has made use of NASA's Astrophysics Data System. NR 59 TC 26 Z9 26 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD DEC PY 2009 VL 185 IS 2 BP 477 EP 485 DI 10.1088/0067-0049/185/2/477 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 528RY UT WOS:000272465600006 ER PT J AU Fynbo, JPU Jakobsson, P Prochaska, JX Malesani, D Ledoux, C Postigo, AD Nardini, M Vreeswijk, PM Wiersema, K Hjorth, J Sollerman, J Chen, HW Thone, CC Bjornsson, G Bloom, JS Castro-Tirado, AJ Christensen, L De Cia, A Fruchter, AS Gorosabel, J Graham, JF Jaunsen, AO Jensen, BL Kann, DA Kouveliotou, C Levan, AJ Maund, J Masetti, N Milvang-Jensen, B Palazzi, E Perley, DA Pian, E Rol, E Schady, P Starling, RLC Tanvir, NR Watson, DJ Xu, D Augusteijn, T Grundahl, F Telting, J Quirion, PO AF Fynbo, J. P. U. Jakobsson, P. Prochaska, J. X. Malesani, D. Ledoux, C. de Ugarte Postigo, A. Nardini, M. Vreeswijk, P. M. Wiersema, K. Hjorth, J. Sollerman, J. Chen, H. -W. Thoene, C. C. Bjoernsson, G. Bloom, J. S. Castro-Tirado, A. J. Christensen, L. De Cia, A. Fruchter, A. S. Gorosabel, J. Graham, J. F. Jaunsen, A. O. Jensen, B. L. Kann, D. A. Kouveliotou, C. Levan, A. J. Maund, J. Masetti, N. Milvang-Jensen, B. Palazzi, E. Perley, D. A. Pian, E. Rol, E. Schady, P. Starling, R. L. C. Tanvir, N. R. Watson, D. J. Xu, D. Augusteijn, T. Grundahl, F. Telting, J. Quirion, P. -O. TI LOW-RESOLUTION SPECTROSCOPY OF GAMMA-RAY BURST OPTICAL AFTERGLOWS: BIASES IN THE SWIFT SAMPLE AND CHARACTERIZATION OF THE ABSORBERS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Review DE dust, extinction; galaxies: high-redshift; gamma rays: bursts ID DAMPED LY-ALPHA; GRB HOST GALAXIES; COSMIC CHEMICAL EVOLUTION; LYMAN BREAK GALAXIES; 28 FEBRUARY 1997; HIGH-REDSHIFT; COLUMN DENSITY; SIGHT LINES; INTERSTELLAR-MEDIUM; MGII ABSORBERS AB We present a sample of 77 optical afterglows (OAs) of Swift detected gamma-ray bursts (GRBs) for which spectroscopic follow-up observations have been secured. Our first objective is to measure the redshifts of the bursts. For the majority (90%) of the afterglows, the redshifts have been determined from the spectra. We provide line lists and equivalent widths (EWs) for all detected lines redward of Ly alpha covered by the spectra. In addition to the GRB absorption systems, these lists include line strengths for a total of 33 intervening absorption systems. We discuss to what extent the current sample of Swift bursts with OA spectroscopy is a biased subsample of all Swift detected GRBs. For that purpose we define an X-ray-selected statistical sample of Swift bursts with optimal conditions for ground-based follow-up from the period 2005 March to 2008 September; 146 bursts fulfill our sample criteria. We derive the redshift distribution for the statistical (X-ray selected) sample and conclude that less than 18% of Swift bursts can be at z > 7. We compare the high-energy properties (e. g., gamma-ray (15-350 keV) fluence and duration, X-ray flux, and excess absorption) for three subsamples of bursts in the statistical sample: (1) bursts with redshifts measured from OA spectroscopy; (2) bursts with detected optical and/or near-IR afterglow, but no afterglow-based redshift; and (3) bursts with no detection of the OA. The bursts in group (1) have slightly higher gamma-ray fluences and higher X-ray fluxes and significantly less excess X-ray absorption than bursts in the other two groups. In addition, the fractions of dark bursts, defined as bursts with an optical to X-ray slope beta(OX) < 0.5, is 14% in group (1), 38% in group (2), and > 39% in group (3). For the full sample, the dark burst fraction is constrained to be in the range 25%-42%. From this we conclude that the sample of GRBs with OA spectroscopy is not representative for all Swift bursts, most likely due to a bias against the most dusty sight lines. This should be taken into account when determining, e. g., the redshift or metallicity distribution of GRBs and when using GRBs as a probe of star formation. Finally, we characterize GRB absorption systems as a class and compare them to QSO absorption systems, in particular the damped Lya absorbers (DLAs). On average GRB absorbers are characterized by significantly stronger EWs for Hi as well as for both low and high ionization metal lines than what is seen in intervening QSO absorbers. However, the distribution of line strengths is very broad and several GRB absorbers have lines with EWs well within the range spanned by QSO-DLAs. Based on the 33 z > 2 bursts in the sample, we place a 95% confidence upper limit of 7.5% on the mean escape fraction of ionizing photons from star-forming galaxies. C1 [Fynbo, J. P. U.; Malesani, D.; Vreeswijk, P. M.; Hjorth, J.; Sollerman, J.; Thoene, C. C.; Jaunsen, A. O.; Jensen, B. L.; Maund, J.; Milvang-Jensen, B.; Watson, D. J.; Xu, D.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen O, Denmark. [Fynbo, J. P. U.; Jakobsson, P.; Bjoernsson, G.; De Cia, A.] Univ Iceland, Inst Sci, Ctr Astrophys & Cosmol, IS-107 Reykjavik, Iceland. [Prochaska, J. X.] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Ledoux, C.; de Ugarte Postigo, A.; Vreeswijk, P. M.] European So Observ, Santiago 19, Chile. [Nardini, M.] SISSA, I-34014 Trieste, Italy. [Wiersema, K.; Rol, E.; Starling, R. L. C.; Tanvir, N. R.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Sollerman, J.] Stockholm Univ, Oskar Klein Ctr, Dept Astron, S-10691 Stockholm, Sweden. [Chen, H. -W.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Chen, H. -W.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Thoene, C. C.] Osserv Astron Brera, INAF, I-23806 Merate, Italy. [Bloom, J. S.; Perley, D. A.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Castro-Tirado, A. J.; Gorosabel, J.] CSIC, IAA, E-18080 Granada, Spain. [Christensen, L.] European So Observ, D-85748 Garching, Germany. [Fruchter, A. S.; Graham, J. F.] Johns Hopkins Univ, Space Telescope Sci Inst, Dept Phys & Astron, Baltimore, MD 21218 USA. [Jaunsen, A. O.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. [Kann, D. A.] Thuringer Landessternwarte Tautenburg, D-07778 Tautenburg, Germany. [Kouveliotou, C.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35805 USA. [Levan, A. J.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Masetti, N.; Palazzi, E.] Ist Astrofis Spaziale & Fis Cosm Bologna, INAF, I-40129 Bologna, Italy. [Pian, E.] Osserv Astron Trieste, INAF, I-34143 Trieste, Italy. [Schady, P.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Grundahl, F.; Quirion, P. -O.] Univ Aarhus, Inst Phys & Astron, DK-8000 Aarhus C, Denmark. RP Fynbo, JPU (reprint author), Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen O, Denmark. RI Fynbo, Johan/L-8496-2014; Christensen, Lise/M-5301-2014; Hjorth, Jens/M-5787-2014; Watson, Darach/E-4521-2015; Jensen, Brian Lindgren/E-1275-2015; Jakobsson, Pall/L-9950-2015; Palazzi, Eliana/N-4746-2015; OI Fynbo, Johan/0000-0002-8149-8298; Christensen, Lise/0000-0001-8415-7547; Hjorth, Jens/0000-0002-4571-2306; Watson, Darach/0000-0002-4465-8264; Jensen, Brian Lindgren/0000-0002-0906-9771; Jakobsson, Pall/0000-0002-9404-5650; Castro-Tirado, A. J./0000-0003-2999-3563; Palazzi, Eliana/0000-0002-8691-7666; Sollerman, Jesper/0000-0003-1546-6615; Maund, Justyn/0000-0003-0733-7215; Thone, Christina/0000-0002-7978-7648; de Ugarte Postigo, Antonio/0000-0001-7717-5085; Masetti, Nicola/0000-0001-9487-7740; Pian, Elena/0000-0001-8646-4858 NR 224 TC 214 Z9 215 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD DEC PY 2009 VL 185 IS 2 BP 526 EP 573 DI 10.1088/0067-0049/185/2/526 PG 48 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 528RY UT WOS:000272465600009 ER PT J AU Cotton, WD Ragland, S Pluzhnik, EA Danchi, WC Traub, WA Willson, LA Lacasse, MG AF Cotton, W. D. Ragland, S. Pluzhnik, E. A. Danchi, W. C. Traub, W. A. Willson, L. A. Lacasse, M. G. TI SiO MASERS IN ASYMMETRIC MIRAS. II. R CANCRI SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE radio lines: stars; stars: AGB and post-AGB; stars: atmospheres ID VARIABLE TX CAM; LATE-TYPE STARS; EVOLVED STARS; MASS-LOSS; EMISSION; AGB; INTERFEROMETER; TELESCOPE AB This is the second paper in a series of multi-epoch observations of the SiO masers at 7 mm wavelength in several asymptotic giant branch stars from a sample of Mira variable stars showing evidence of asymmetric structure in the infrared. These stars have been observed interferometrically in the infrared by the Infrared Optical Telescope Array and with Very Long Baseline Array measurements of the SiO masers. In this paper, we present the observations of R Cancri (R Cnc). The systemic velocity of R Cnc is estimated to be 15.8 +/- 0.2 km s(-1). A comparison is made with the model calculations of Gray et al. which predict some but not all observed features. C1 [Cotton, W. D.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Ragland, S.] WM Keck Observ, Kamuela, HI 96743 USA. [Pluzhnik, E. A.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Danchi, W. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Traub, W. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Willson, L. A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50014 USA. [Lacasse, M. G.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Cotton, WD (reprint author), Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA. EM bcotton@nrao.edu FU NSF of the IOTA [AST-0456047] FX We acknowledge support from the NSF of the IOTA observations through grant AST-0456047. NR 24 TC 5 Z9 5 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD DEC PY 2009 VL 185 IS 2 BP 574 EP 585 DI 10.1088/0067-0049/185/2/574 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 528RY UT WOS:000272465600010 ER PT J AU Gilbert, AM Vacca, WD AF Gilbert, Andrea M. Vacca, William D. TI The formation and evolution of massive stellar clusters in IC4662 SO ASTROPHYSICS AND SPACE SCIENCE LA English DT Article; Proceedings Paper CT Meeting on Young Massive Star Clusters - Initial Conditions and Environments CY SEP 11-14, 2007 CL Inst Astrofis Andaluc, Granada, SPAIN HO Inst Astrofis Andaluc DE Wolf-Rayet galaxies; IC4662; Super star clusters; Ultradense HII Regions; Spitzer; HST ID RESOLUTION MIDINFRARED SPECTROSCOPY; PRIMORDIAL HELIUM ABUNDANCE; YOUNG GLOBULAR-CLUSTERS; SUPER-STAR-CLUSTERS; ANTENNAE GALAXIES; SPACE-TELESCOPE; ELEMENTAL ABUNDANCES; IRREGULAR GALAXIES; STARBURST GALAXIES; COMPACT GALAXIES AB We present a multiwavelength study of the formation of massive stellar clusters, their emergence from cocoons of gas and dust, and their feedback on surrounding matter. Using data that span from radio to optical wavelengths, including Spitzer and Hubble Space Telescope ACS observations, we examine the population of young star clusters in the central starburst region of the irregular Wolf-Rayet galaxy IC4662. We model the radio-to-infrared (IR) spectral energy distributions of embedded clusters to determine the properties of their Hii regions and dust cocoons (sizes, masses, densities, temperatures), and use near-IR and optical data with mid-IR spectroscopy to constrain the properties of the embedded clusters themselves (mass, age, extinction, excitation, abundance). The two massive star-formation regions in IC4662 are excited by stellar populations with ages of similar to 4 Myr and masses of similar to 3x10(5) M-aS (TM) (assuming a Kroupa initial mass function). They have high excitation and subsolar abundances, and they may actually be comprised of several massive clusters rather than the single monolithic massive compact objects known as 'super star clusters' (SSCs). Mid-IR spectra reveal that these clusters have very high extinction values, A (V) similar to 20-25 mag, and that the dust in IC4662 is well mixed with the emitting gas, not in a foreground screen. C1 [Gilbert, Andrea M.] Aerosp Corp, El Segundo, CA 90245 USA. [Gilbert, Andrea M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Vacca, William D.] NASA, Ames Res Ctr, USRA SOFIA, Moffett Field, CA 94035 USA. RP Gilbert, AM (reprint author), Aerosp Corp, El Segundo, CA 90245 USA. EM andrea.m.gilbert@aero.org; wvacca@sofia.usra.edu NR 35 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0004-640X EI 1572-946X J9 ASTROPHYS SPACE SCI JI Astrophys. Space Sci. PD DEC PY 2009 VL 324 IS 2-4 BP 147 EP 154 DI 10.1007/s10509-009-0120-9 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 522SJ UT WOS:000272018700013 ER PT J AU Bearman, C Paletz, SBF Orasanu, J Brooks, BP AF Bearman, Chris Paletz, Susannah B. F. Orasanu, Judith Brooks, Benjamin P. TI Organizational Pressures and Mitigating Strategies in Small Commercial Aviation: Findings from Alaska SO AVIATION SPACE AND ENVIRONMENTAL MEDICINE LA English DT Article DE implicit norms; employer expectations; goal conflict; productivity; safety AB BEARMAN C, PALETZ SBF, ORASANU J, BROOKS BP. Organizational pressures and mitigating strategies in small commercial aviation: findings from Alaska. Aviat Space Environ Med 2009; 80:1055-8. Introduction: Recent attention has focused on the way in which organizational factors can erode safety in aviation, particularly in regions that have a high accident rate, such as Alaska. The present study builds on this work by examining the direct and indirect pressures that can be exerted on pilots by Alaskan operators. In addition, the paper examines ways in which organizations and individuals manage the effects of pressure. Method: Using the critical incident method to uncover situations where the pilot's skills had been challenged, 28 pilots who flew in Alaska were interviewed. A bottom-up qualitative analysis revealed a range of organizational pressures and mitigating strategies. Results: Pilots in Alaska encountered both implicit and explicit norms and expectations to fly in marginal conditions. Pressure also arose from pilots' awareness of the need for their company to make money and from perceived job competition. Some Alaskan operators were able to mitigate the effects of pressure on their pilots and some pilots reported mitigating pressure to fly by managing their employer's expectations and re-emphasizing safety. Discussion: Organizational factors were found to be an important source of pressure for pilots and are likely to contribute to the high accident rate in Alaska. Balancing the competing demands of safety and productivity may be extremely difficult for many small operators, which places a heavy reliance on the decision making of individuals. Both the subtle pressures on individual pilots and strategies for mitigating those pressures are, therefore, extremely important to safety and productivity in small-scale commercial aviation. C1 [Bearman, Chris] Univ S Australia, Adelaide, SA 5001, Australia. [Orasanu, Judith] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Brooks, Benjamin P.] Univ Tasmania, Launceston, Tas 7250, Australia. RP Bearman, C (reprint author), Univ S Australia, Level 7,Playford Bldg,City E Campus,CPO Box 2471, Adelaide, SA 5001, Australia. EM chris.bearman@unisa.edu.au FU NASA; FAA's Office of Human Factors FX We Would like to thank Collin Green, Jessica Nowinksi, and two anonymous reviewers for their helpful comments on this manuscript. We would also like to thank Jon Holbrook and C. Elaine McCoy for their professional contributions to the work, and Jane Bearman, Wayne Daniels, Steve Farlow, and Karen Wegienek for their limited technical or supporting roles in this project. This research was supported by NASA's Aviation Safety Program, the FAA's Office of Human Factors, and by an appointment to the first author to the NASA postdoctoral program at Ames Research Center, administered by Oak Ridge Associated Universities. NR 16 TC 3 Z9 3 U1 0 U2 1 PU AEROSPACE MEDICAL ASSOC PI ALEXANDRIA PA 320 S HENRY ST, ALEXANDRIA, VA 22314-3579 USA SN 0095-6562 J9 AVIAT SPACE ENVIR MD JI Aviat. Space Environ. Med. PD DEC PY 2009 VL 80 IS 12 BP 1055 EP 1058 DI 10.3357/ASEM.2590.2009 PG 4 WC Public, Environmental & Occupational Health; Medicine, General & Internal; Sport Sciences SC Public, Environmental & Occupational Health; General & Internal Medicine; Sport Sciences GA 530ZV UT WOS:000272632400010 PM 20027854 ER PT J AU Hurrell, J Meehl, GA Bader, D Delworth, TL Kirtman, B Wielicki, B AF Hurrell, James Meehl, Gerald A. Bader, David Delworth, Thomas L. Kirtman, Ben Wielicki, Bruce TI A UNIFIED MODELING APPROACH TO CLIMATE SYSTEM PREDICTION SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID WEATHER PREDICTION; VARIABILITY; ENSEMBLE; ENSO; PREDICTABILITY; PRECIPITATION; SIMULATION; ATMOSPHERE; MECHANISM; FRAMEWORK C1 [Hurrell, James] Natl Ctr Atmospher Res, Climate Anal Sect, Boulder, CO 80307 USA. [Bader, David] Lawrence Livermore Natl Lab, Livermore, CA USA. [Delworth, Thomas L.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Kirtman, Ben] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. [Kirtman, Ben] Ctr Ocean Land Atmosphere Studies, Calverton, MD USA. [Wielicki, Bruce] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Hurrell, J (reprint author), Natl Ctr Atmospher Res, Climate Anal Sect, POB 3000, Boulder, CO 80307 USA. EM jhurrell@ucar.edu RI Bader, David/H-6189-2011; Delworth, Thomas/C-5191-2014 OI Bader, David/0000-0003-3210-339X; NR 55 TC 75 Z9 78 U1 2 U2 24 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD DEC PY 2009 VL 90 IS 12 BP 1819 EP 1832 DI 10.1175/2009BAMS2752.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 546SJ UT WOS:000273831400005 ER PT J AU Weaver, CP Liang, XZ Zhu, J Adams, PJ Amar, P Avise, J Caughey, M Chen, J Cohen, RC Cooter, E Dawson, JP Gilliam, R Gilliland, A Goldstein, AH Grambsch, A Grano, D Guenther, A Gustafson, WI Harley, RA He, S Hemming, B Hogrefe, C Huang, HC Hunt, SW Jacob, DJ Kinney, PL Kunkel, K Lamarque, JF Lamb, B Larkin, NK Leung, LR Liao, KJ Lin, JT Lynn, BH Manomaiphiboon, K Mass, C McKenzie, D Mickley, LJ O'Neill, SM Nolte, C Pandis, SN Racherla, PN Rosenzweig, C Russell, AG Salathe, E Steiner, AL Tagaris, E Tao, Z Tonse, S Wiedinmyer, C Williams, A Winner, DA Woo, JH Wu, S Wuebbles, DJ AF Weaver, C. P. Liang, X. -Z. Zhu, J. Adams, P. J. Amar, P. Avise, J. Caughey, M. Chen, J. Cohen, R. C. Cooter, E. Dawson, J. P. Gilliam, R. Gilliland, A. Goldstein, A. H. Grambsch, A. Grano, D. Guenther, A. Gustafson, W. I. Harley, R. A. He, S. Hemming, B. Hogrefe, C. Huang, H. -C. Hunt, S. W. Jacob, D. J. Kinney, P. L. Kunkel, K. Lamarque, J. -F. Lamb, B. Larkin, N. K. Leung, L. R. Liao, K. -J. Lin, J. -T. Lynn, B. H. Manomaiphiboon, K. Mass, C. McKenzie, D. Mickley, L. J. O'Neill, S. M. Nolte, C. Pandis, S. N. Racherla, P. N. Rosenzweig, C. Russell, A. G. Salathe, E. Steiner, A. L. Tagaris, E. Tao, Z. Tonse, S. Wiedinmyer, C. Williams, A. Winner, D. A. Woo, J. -H. Wu, S. Wuebbles, D. J. TI A PRELIMINARY SYNTHESIS OF MODELED CLIMATE CHANGE IMPACTS ON US REGIONAL OZONE CONCENTRATIONS SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID EASTERN UNITED-STATES; AIR-QUALITY; SURFACE OZONE; TROPOSPHERIC OZONE; BIOGENIC HYDROCARBONS; FUTURE CLIMATE; URBAN AREAS; EMISSIONS; TEMPERATURE; SENSITIVITY C1 [Weaver, C. P.; Cooter, E.; Gilliam, R.; Gilliland, A.; Grambsch, A.; Grano, D.; Hemming, B.; Hunt, S. W.; Nolte, C.; Winner, D. A.] US EPA, Washington, DC 20460 USA. [Liang, X. -Z.; Zhu, J.; Caughey, M.; Kunkel, K.; Lin, J. -T.; Tao, Z.; Williams, A.; Wuebbles, D. J.] Univ Illinois, Urbana, IL 61801 USA. [Adams, P. J.; Dawson, J. P.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Amar, P.; He, S.] NE States Coordinated Air Use Management, Boston, MA USA. [Avise, J.] Calif Air Resources Board, Sacramento, CA USA. [Chen, J.] Natl Res Council Canada, Ottawa, ON, Canada. [Cohen, R. C.; Goldstein, A. H.; Harley, R. A.; Steiner, A. L.; Tonse, S.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Guenther, A.; Lamarque, J. -F.; Wiedinmyer, C.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Gustafson, W. I.; Leung, L. R.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Hogrefe, C.] SUNY Albany, Albany, NY 12222 USA. [Huang, H. -C.] Sci Applicat Int Corp, San Diego, CA 92121 USA. [Lin, J. -T.; Mickley, L. J.; Wu, S.] Harvard Univ, Cambridge, MA 02138 USA. [Kinney, P. L.] Columbia Univ, New York, NY USA. [Lamb, B.] Washington State Univ, Pullman, WA 99164 USA. [Larkin, N. K.; McKenzie, D.] US Forest Serv, Pacific NW Res Stn, Portland, OR 97208 USA. [Liao, K. -J.; Manomaiphiboon, K.; Russell, A. G.; Tagaris, E.] Georgia Inst Technol, Atlanta, GA 30332 USA. [Lynn, B. H.] Weather It Is Ltd, Efrat, Israel. [Mass, C.; Salathe, E.] Univ Washington, Seattle, WA 98195 USA. [O'Neill, S. M.] Nat Resources Conservat Serv, USDA, Portland, OR USA. [Pandis, S. N.] Univ Patras, Rion, Greece. [Racherla, P. N.] Fdn Res & Technol Hellas, Iraklion, Crete, Greece. [Rosenzweig, C.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Woo, J. -H.] Konkuk Univ, Seoul, South Korea. [Kunkel, K.] Univ Nevada, Desert Res Inst, Reno, NV 89506 USA. RP Weaver, CP (reprint author), US EPA, 8601-P,1200 Penn Ave, Washington, DC 20460 USA. EM weaver.chris@epamail.epa.gov RI Adams, Peter/D-7134-2013; Guenther, Alex/B-1617-2008; Harley, Robert/C-9177-2016; Weaver, Christopher/G-3714-2010; Goldstein, Allen/A-6857-2011; Cohen, Ronald/A-8842-2011; Gustafson, William/A-7732-2008; Lin, Jintai/A-8872-2012; Mickley, Loretta/D-2021-2012; Tao, Zhining/E-1432-2012; Nolte, Christopher/H-4345-2012; Kinney, Patrick/H-7914-2012; Pandis, Spyros/D-3680-2013; Steiner, Allison/F-4942-2011; Lamarque, Jean-Francois/L-2313-2014; Kunkel, Kenneth/C-7280-2015 OI Adams, Peter/0000-0003-0041-058X; Guenther, Alex/0000-0001-6283-8288; Harley, Robert/0000-0002-0559-1917; Pandis, Spyros/0000-0001-8085-9795; Chen, Jack/0000-0002-3764-1149; Weaver, Christopher/0000-0003-4016-5451; Goldstein, Allen/0000-0003-4014-4896; Cohen, Ronald/0000-0001-6617-7691; Gustafson, William/0000-0001-9927-1393; Lin, Jintai/0000-0002-2362-2940; Mickley, Loretta/0000-0002-7859-3470; Tao, Zhining/0000-0003-0608-712X; Nolte, Christopher/0000-0001-5224-9965; Lamarque, Jean-Francois/0000-0002-4225-5074; Kunkel, Kenneth/0000-0001-6667-7047 FU EPA's National Center for Environmental Research FX The authors wish to thank the three anonymous reviewers whose comments helped lead to a significantly improved paper. In addition, CPW wishes to thank members of the Global Change Assessment staff in the National Center for Environmental Assessment for its many helpful discussions and comments throughout the development of this paper. As stated in the text, much of the research synthesized here was funded through the STAR grant program of EPA's National Center for Environmental Research. The views expressed herein are those of the authors and do not necessarily reflect the views or policies of the U. S. Environmental Protection Agency, the Illinois State Water Survey, the University of Illinois at Urbana-Champaign, or any of the other institutions with which the authors are affiliated. NR 70 TC 93 Z9 94 U1 2 U2 56 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD DEC PY 2009 VL 90 IS 12 BP 1843 EP 1863 DI 10.1175/2009BAMS2568.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 546SJ UT WOS:000273831400007 ER PT J AU McClatchie, S Charter, R Watson, W Lo, N Hill, K Manzano-Sarabia, M Goericke, R Collins, C Bjorkstedt, E Schwing, FB Bograd, SJ Kahru, M Mitchell, BG Koslow, JA Ralston, S Field, J Peterson, WT Emmett, R Gomez-Valdes, J Lavaniegos, BE Caxiola-Castro, G Rogers-Bennet, L Gottschalck, J Heureux, ML Xue, Y Munger, L Campbell, G Merkens, K Camacho, D Havron, A Douglas, A Hildebrand, J AF McClatchie, Sam Charter, Richard Watson, William Lo, Nancy Hill, Kevin Manzano-Sarabia, Marlenne Goericke, Ralf Collins, Curtis Bjorkstedt, Eric Schwing, Franklin B. Bograd, Steven J. Kahru, Mati Mitchell, B. Greg Koslow, J. Anthony Ralston, Stephen Field, John Peterson, William T. Emmett, Robert Gomez-Valdes, Jose Lavaniegos, Bertha E. Caxiola-Castro, Gilberto Rogers-Bennet, Laura Gottschalck, Jon Heureux, Michelle L. Xue, Yan Munger, Lisa Campbell, Greg Merkens, Karlina Camacho, Dominique Havron, Andrea Douglas, Annie Hildebrand, John TI THE STATE OF THE CALIFORNIA CURRENT, SPRING 2008-2009 COLD CONDITIONS DRIVE REGIONAL DIFFERENCES IN COASTAL PRODUCTION SO CALIFORNIA COOPERATIVE OCEANIC FISHERIES INVESTIGATIONS REPORTS LA English DT Article ID ABUNDANCE; CETACEANS; WATERS AB This report describes the state of the California Current system (CCS) between the springs of 2008 and 2009 based on observations taken along the west coast of North America The dominant forcing on the CCS during this time period were La Nina-type conditions that prevailed from the summer of 2007 through early 2009, transitioning to neutral El Nino-Southern Oscillation conditions in the spring of 2009 The Pacific Decadal Oscillation index was negative during this time period and its values had not returned to normal by the spring of 2009 The general effects on the California Current system were stronger thin normal southward winds and upwelling as well as generally colder than normal SST and shallow nitraclines, however, there were repot-ill differences Off alp California sea surface temperatures did not respond to the La Nina conditions, however, concentrations of chlorophyll a (Chl a) were significantly above normal, probably due to the anomalously high upwelling off Baja during most of the year Off southern California there was no clear evidence of increased primary or secondary production, despite observations that previous La Nina conditions affected mixed layer depth, temperatures, nutrients, and nitracline depths In both central and northern California and Oregon, stronger than normal upwelling increased primary production and prevented potential spawning of sardine north of San Francisco In central California the midwater fish community resembled that of recent cool years, and cover by kelp was much reduced along the coast Off Oregon there was evidence of increased abundance of boreal copepods, although the neritic boreal species did not appear to extend as far south is central California Current predictions are for cooler conditions to change to El Nino conditions by the end of 2009, these are expected to last through the Northern Hemisphere wintet of 2009-10 C1 [McClatchie, Sam; Charter, Richard; Watson, William; Lo, Nancy; Hill, Kevin] Natl Marine Fisheries Serv, Fisheries Resources Div, SW Fisheries Sci Ctr, La Jolla, CA 92037 USA. [Manzano-Sarabia, Marlenne] CIBNOR, La Paz B C S, Mexico. [Goericke, Ralf; Kahru, Mati; Mitchell, B. Greg; Koslow, J. Anthony] Univ Calif San Diego, Scripps Inst Oceanog, Integrat Oceanog Div, La Jolla, CA 92093 USA. [Collins, Curtis] USN, Postgrad Sch, Dept Oceanog, Monterey, CA 93943 USA. [Bjorkstedt, Eric] Humboldt State Univ, SW Fisheries Sci Ctr, Fisheries Ecol Div, Trinidad, CA 95570 USA. [Bjorkstedt, Eric] Humboldt State Univ, Dept Fisheries Biol, Trinidad, CA 95570 USA. [Schwing, Franklin B.; Bograd, Steven J.] NOAA Fisheries Serv, Div Environm Res, SW Fisheries Sci Ctr, Pacific Grove, CA 93950 USA. [Ralston, Stephen; Field, John] SW Fisheries Sci Ctr, Fisheries Ecol Div, Santa Cruz, CA 95060 USA. [Peterson, William T.; Emmett, Robert] Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Hatfield Marine Sci Ctr, Newport, OR 97365 USA. [Gomez-Valdes, Jose; Lavaniegos, Bertha E.; Caxiola-Castro, Gilberto] Ctr Invest Cient & Educ Super Ensenada, Div Oceanol, Ensenada 22860, Baja California, Mexico. [Rogers-Bennet, Laura] Univ Calif Davis, Calif Dept Fish & Game, Bodgi Marine Lab, Bodega Bay, CA 94923 USA. [Gottschalck, Jon; Heureux, Michelle L.; Xue, Yan] NCEP NWS NOAA, Climate Predict Ctr, Camp Springs, MD 20746 USA. RP McClatchie, S (reprint author), Natl Marine Fisheries Serv, Fisheries Resources Div, SW Fisheries Sci Ctr, 8304 La Jolla Shores Dr, La Jolla, CA 92037 USA. RI Merkens, Karlina/I-9062-2012; Gomez-Valdes, Jose/B-9846-2016; OI Merkens, Karlina/0000-0002-5314-6148; Gomez-Valdes, Jose/0000-0002-8528-7826; Manzano-Sarabia, Marlenne/0000-0002-3466-9592 FU NOAA (NOAA/JIMO) [NA17RJ1231]; CICESE; SEMARNAT-CONACYT [23804]; UC-MEXUS [CN07-125]; SEP-CONACYT [23947]; Bonneville Power Administration; NOAA FX CalCOFI cruises off southern California were supported by NOAA (NOAA/JIMO NA17RJ1231) We thank the NOAA and Scripps CalCOFI technicians Dave Griffith, Amy Betcher, Dimitry Abremenkoff, Noelle Bowlin, Sue Manion, Bryan Overcash, Dave Wolgast, Jennifer Rodgers-Wolgast, Jim Wilkinson, Dave Faber, and Grant Susner-and volunteers who collected data at sea and who processed the data ashore The IMECOCAL program thanks officials and crew of the CICESE RV Francisco de Ulloa, as well as students and technicians participating in the surveys of 2008 Special thanks to Martin de la Cruz for assistance in cruise coordination and chlorophyll analysis, Jose Luis Cadena for help in zooplankton counting, and Erasmo Miranda, Joaquin Garcia, and H J Vazquez for CTD data processing IMECOCAL surveys were supported by CICESE, SEMARNAT-CONACYT 23804, UC-MEXUS (CN07-125), and SEP-CONACYT 23947 projects Observations along the Trinidad Head Line were ably assisted by Captain Scott Martin and crew of the RV Coral Sea The Oregon work is supported by the NOAA-Stock Assessment Improvement Program (Newport Line) and the Bonneville Power Administration (pelagic fish surveys) The NOAA ERD group wishes to acknowledge Xuemei Qiu of NOAA for graphics assistance This year the State of the California Current was reviewed for the first time We thank the two anonymous reviewers for the thorough and insightful reviews they provided NR 27 TC 25 Z9 25 U1 0 U2 11 PU SCRIPPS INST OCEANOGRAPHY PI LA JOLLA PA A-003, LA JOLLA, CA 92093 USA SN 0575-3317 J9 CAL COOP OCEAN FISH JI Calif. Coop. Ocean. Fish. Invest. Rep. PD DEC PY 2009 VL 50 BP 43 EP 68 PG 26 WC Fisheries SC Fisheries GA 677FI UT WOS:000283974100003 ER PT J AU Asthana, R Singh, M AF Asthana, R. Singh, M. TI Evaluation of Pd-based brazes to join silicon nitride to copper-clad-molybdenum SO CERAMICS INTERNATIONAL LA English DT Article DE Silicon nitride; Cu-clad-Mo; Pd-Co braze; Pd-Ni braze; Scanning electron microscopy; Energy dispersive spectroscopy; Knoop microhardness ID METAL INTERLAYERS; STRENGTH; MICROSTRUCTURE; COMPOSITES; CERAMICS; FOIL AB Si(3)N(4) (SN-281)/Cu-clad-Mo joints, brazed using a soft (YS: 341 MPa) and ductile (43% elongation) Pd-Co braze were sound and exhibited an interaction zone comprised of Pd(66)MO(14)Cu(10)CO(6)Si(3) and Pd(74)MO(11)CO(8)Cu(6)Si. Similar joints made using a less ductile and stronger Pd-Ni braze led to cracking from large CTE mismatch-induced strain energy (similar to 64 mJ to 348 mJ). (C) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved. C1 [Asthana, R.] Univ Wisconsin Stout, Dept Engn & Technol, Menomonie, WI 54751 USA. [Singh, M.] NASA, Ohio Aerosp Inst, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Asthana, R (reprint author), Univ Wisconsin Stout, Dept Engn & Technol, 326 Fryklund Hall,POB 790, Menomonie, WI 54751 USA. EM asthanar@uwstout.edu FU NASA Glenn Research Center, Cleveland, OH FX R. Asthana acknowledges the support received from the NASA Glenn Research Center, Cleveland, OH. Thanks are due Mike Halbig and J.D. Kiser, NASA Glenn Research Center, Cleveland, OH, for helpful technical comments. NR 12 TC 8 Z9 9 U1 0 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0272-8842 J9 CERAM INT JI Ceram. Int. PD DEC PY 2009 VL 35 IS 8 BP 3511 EP 3515 DI 10.1016/j.ceramint.2009.05.011 PG 5 WC Materials Science, Ceramics SC Materials Science GA 514BJ UT WOS:000271368100078 ER PT J AU Zhou, TJ Wu, B Scaife, AA Bronnimann, S Cherchi, A Fereday, D Fischer, AM Folland, CK Jin, KE Kinter, J Knight, JR Kucharski, F Kusunoki, S Lau, NC Li, LJ Nath, MJ Nakaegawa, T Navarra, A Pegion, P Rozanov, E Schubert, S Sporyshev, P Voldoire, A Wen, XY Yoon, JH Zeng, N AF Zhou, Tianjun Wu, Bo Scaife, A. A. Broennimann, S. Cherchi, A. Fereday, D. Fischer, A. M. Folland, C. K. Jin, K. E. Kinter, J. Knight, J. R. Kucharski, F. Kusunoki, S. Lau, N. -C. Li, Lijuan Nath, M. J. Nakaegawa, T. Navarra, A. Pegion, P. Rozanov, E. Schubert, S. Sporyshev, P. Voldoire, A. Wen, Xinyu Yoon, J. H. Zeng, N. TI The CLIVAR C20C project: which components of the Asian-Australian monsoon circulation variations are forced and reproducible? SO CLIMATE DYNAMICS LA English DT Article DE CLIVAR C20C; Asian-Australian monsoon circulation; AGCM; Reproducibility ID TROPOSPHERIC BIENNIAL OSCILLATION; SEA-SURFACE TEMPERATURE; SUMMER MONSOON; INDIAN MONSOON; ATMOSPHERIC GCM; NORTH PACIFIC; MODEL SIMULATIONS; LATE 1970S; EL-NINO; ENSO AB A multi-model set of atmospheric simulations forced by historical sea surface temperature (SST) or SSTs plus Greenhouse gases and aerosol forcing agents for the period of 1950-1999 is studied to identify and understand which components of the Asian-Australian monsoon (A-AM) variability are forced and reproducible. The analysis focuses on the summertime monsoon circulations, comparing model results against the observations. The priority of different components of the A-AM circulations in terms of reproducibility is evaluated. Among the subsystems of the wide A-AM, the South Asian monsoon and the Australian monsoon circulations are better reproduced than the others, indicating they are forced and well modeled. The primary driving mechanism comes from the tropical Pacific. The western North Pacific monsoon circulation is also forced and well modeled except with a slightly lower reproducibility due to its delayed response to the eastern tropical Pacific forcing. The simultaneous driving comes from the western Pacific surrounding the maritime continent region. The Indian monsoon circulation has a moderate reproducibility, partly due to its weakened connection to June-July-August SSTs in the equatorial eastern Pacific in recent decades. Among the A-AM subsystems, the East Asian summer monsoon has the lowest reproducibility and is poorly modeled. This is mainly due to the failure of specifying historical SST in capturing the zonal land-sea thermal contrast change across the East Asia. The prescribed tropical Indian Ocean SST changes partly reproduce the meridional wind change over East Asia in several models. For all the A-AM subsystem circulation indices, generally the MME is always the best except for the Indian monsoon and East Asian monsoon circulation indices. C1 [Zhou, Tianjun; Wu, Bo; Li, Lijuan; Wen, Xinyu] Chinese Acad Sci, Inst Atmospher Phys, LASG, Beijing, Peoples R China. [Wu, Bo] Chinese Acad Sci, Grad Univ, Beijing, Peoples R China. [Scaife, A. A.; Fereday, D.; Folland, C. K.; Knight, J. R.] Hadley Ctr, Met Off, Exeter, Devon, England. [Broennimann, S.; Fischer, A. M.; Rozanov, E.] ETH, Inst Atmospher & Climate Sci, Zurich, Switzerland. [Cherchi, A.; Navarra, A.] Ist Nazl Geofis & Vulcanol, Ctr Euromediterraneo & Cambiamenti Climatici, Bologna, Italy. [Kucharski, F.] Abdus Salam Int Ctr Theoret Phys, Trieste, Italy. [Kusunoki, S.; Nakaegawa, T.] Japan Meteorol Agcy, Meteorol Res Inst, Tsukuba, Ibaraki, Japan. [Pegion, P.; Schubert, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Rozanov, E.] World Radiat Ctr, Phys Meteorol Observ, Davos, Switzerland. [Sporyshev, P.] Vocikov Main Geophys Observ, St Petersburg, Russia. [Voldoire, A.] Meteo France, CNRM, Toulouse 1, France. [Wen, Xinyu] Beijing Univ, Dept Atmospher Sci, Beijing 100871, Peoples R China. [Yoon, J. H.; Zeng, N.] Univ Maryland, Baltimore, MD 21201 USA. [Lau, N. -C.; Nath, M. J.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. RP Zhou, TJ (reprint author), Chinese Acad Sci, Inst Atmospher Phys, LASG, Beijing, Peoples R China. EM zhoutj@lasg.iap.ac.cn RI Wu, Bo/C-8644-2009; Rozanov, Eugene/A-9857-2012; Pegion, Philip/E-5247-2012; Bronnimann, Stefan/A-5737-2008; Zeng, Ning/A-3130-2008; Folland, Chris/I-2524-2013; YOON, JIN-HO/A-1672-2009; Sporyshev, Petr/P-7323-2015; ZHOU, Tianjun/C-3195-2012 OI Bronnimann, Stefan/0000-0001-9502-7991; Rozanov, Eugene/0000-0003-0479-4488; Zeng, Ning/0000-0002-7489-7629; YOON, JIN-HO/0000-0002-4939-8078; Sporyshev, Petr/0000-0002-4047-8178; ZHOU, Tianjun/0000-0002-5829-7279 FU Major State Basic Research Development Program of China (973 Program) [2006CB403603, 2005CB321703]; National Natural Science Foundation of China [40523001, 40625014, 40221503]; Defra and MoD Integrated Climate Programme [GA01101, CBC/2B/0417_Annes C5]; Russian Foundation for Basic Research FX This work contributes to CLIVAR C20C project and is jointly supported by the Major State Basic Research Development Program of China (973 Program) under grant No. 2006CB403603, 2005CB321703 and the National Natural Science Foundation of China under grant Nos. 40523001, 40625014 and 40221503. Adam Scaife and Chris Folland were supported by the "Defra and MoD Integrated Climate Programme-GA01101, CBC/2B/0417_Annes C5''. P. Sporyshev was supported by the Russian Foundation for Basic Research. NR 64 TC 75 Z9 97 U1 0 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD DEC PY 2009 VL 33 IS 7-8 BP 1051 EP 1068 DI 10.1007/s00382-008-0501-8 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 521XN UT WOS:000271959900011 ER PT J AU Vavrus, S Waliser, D Schweiger, A Francis, J AF Vavrus, Steve Waliser, Duane Schweiger, Axel Francis, Jennifer TI Simulations of 20th and 21st century Arctic cloud amount in the global climate models assessed in the IPCC AR4 SO CLIMATE DYNAMICS LA English DT Article DE Arctic clouds; Climate change; GCM; CMIP3 ID COUPLED MODELS; RADIATION PROPERTIES; SATELLITE DATA; ENERGY BUDGET; SEA-ICE; OCEAN; SURFACE; TEMPERATURE; DATASET; ATMOSPHERE AB Simulations of late 20th and 21st century Arctic cloud amount from 20 global climate models (GCMs) in the Coupled Model Intercomparison Project phase 3 (CMIP3) dataset are synthesized and assessed. Under recent climatic conditions, GCMs realistically simulate the spatial distribution of Arctic clouds, the magnitude of cloudiness during the warmest seasons (summer-autumn), and the prevalence of low clouds as the predominant type. The greatest intermodel spread and most pronounced model error of excessive cloudiness coincides with the coldest seasons (winter-spring) and locations (perennial ice pack, Greenland, and the Canadian Archipelago). Under greenhouse forcing (SRES A1B emissions scenario) the Arctic is expected to become cloudier, especially during autumn and over sea ice, in tandem with cloud decreases in middle latitudes. Projected cloud changes for the late 21st century depend strongly on the simulated modern (late 20th century) annual cycle of Arctic cloud amount: GCMs that correctly simulate more clouds during summer than winter at present also tend to simulate more clouds in the future. The simulated Arctic cloud changes display a tripole structure aloft, with largest increases concentrated at low levels (below 700 hPa) and high levels (above 400 hPa) but little change in the middle troposphere. The changes in cloud radiative forcing suggest that the cloud changes are a positive feedback annually but negative during summer. Of potential explanations for the simulated Arctic cloud response, local evaporation is the leading candidate based on its high correlation with the cloud changes. The polar cloud changes are also significantly correlated with model resolution: GCMs with higher spatial resolution tend to produce larger future cloud increases. C1 [Vavrus, Steve] Univ Wisconsin, Ctr Climat Res, Madison, WI 53706 USA. [Waliser, Duane] CALTECH, Jet Prop Lab, Water & Carbon Cycles Grp, Pasadena, CA 91109 USA. [Schweiger, Axel] Univ Washington, Polar Sci Ctr, Seattle, WA 98105 USA. [Francis, Jennifer] Rutgers State Univ, JJ Howard Marine Lab, Highlands, NJ 07732 USA. RP Vavrus, S (reprint author), Univ Wisconsin, Ctr Climat Res, 1225 W Dayton St, Madison, WI 53706 USA. EM sjvavrus@wisc.edu; Duane.waliser@jpl.nasa.gov; axel@apl.washington.edu; francis@imcs.rutgers.edu FU National Science Foundation [OPP-0327664, ARC-0628910, DE-FG02-06ER64297]; DOE; NSF; Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration; Office of Science, U. S. Department of Energy FX This work was supported by National Science Foundation awards OPP-0327664, ARC-0628910, DE-FG02-06ER64297 (Small Grant for Exploratory Research) jointly funded by DOE and NSF as part of the DOE Office of Science SciDAC-2 initiative. The second author was supported by the Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration. Acknowledgment is also given to the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP's Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset. Support of this dataset is provided by the Office of Science, U. S. Department of Energy. The assistance of John Dyreby in the processing of the CMIP3 output was essential for completing this study. NR 47 TC 56 Z9 56 U1 0 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD DEC PY 2009 VL 33 IS 7-8 BP 1099 EP 1115 DI 10.1007/s00382-008-0475-6 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 521XN UT WOS:000271959900015 ER PT J AU Ornstein, L Aleinov, I Rind, D AF Ornstein, Leonard Aleinov, Igor Rind, David TI Irrigated afforestation of the Sahara and Australian Outback to end global warming SO CLIMATIC CHANGE LA English DT Article ID SURFACE MODEL DEVELOPMENT; AFRICAN MONSOON SYSTEM; CLIMATE-CHANGE; WATER-USE; GISS GCM; VARIABILITY; EUCALYPTUS; RAINFALL; OCEAN; PRECIPITATION AB Each year, irrigated Saharan- and Australian-desert forests could sequester amounts of atmospheric CO2 at least equal to that from burning fossil fuels. Without any rain, to capture CO2 produced from gasoline requires adding about $1 to the per-gallon pump-price to cover irrigation costs, using reverse osmosis (RO), desalinated, sea water. Such mature technology is economically competitive with the currently favored, untested, power-plant Carbon Capture (and deep underground, or under-ocean) Sequestration (CCS). Afforestation sequesters CO2, mostly as easily stored wood, both from distributed sources (automotive, aviation, etc., that CCS cannot address) and from power plants. Climatological feasibility and sustainability of such irrigated forests, and their potential global impacts are explored using a general circulation model (GCM). Biogeophysical feedback is shown to stimulate considerable rainfall over these forests, reducing desalination and irrigation costs; economic value of marketed, renewable, forest biomass, further reduces costs; and separately, energy conservation also reduces the size of the required forests and therefore their total capital and operating costs. The few negative climate impacts outside of the forests are discussed, with caveats. If confirmed with other GCMs, such irrigated, subtropical afforestation probably provides the best, near-term route to complete control of green-house-gas-induced, global warming. C1 [Ornstein, Leonard] Mt Sinai Sch Med, Dept Pathol, New York, NY 10029 USA. [Aleinov, Igor] Columbia Univ, Earth Inst, New York, NY 10025 USA. [Aleinov, Igor; Rind, David] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Rind, David] Columbia Univ, Dept Earth & Environm Sci, New York, NY 10025 USA. RP Ornstein, L (reprint author), Mt Sinai Sch Med, Dept Pathol, New York, NY 10029 USA. EM lenornst@pipeline.com; ialeinov@giss.nasa.gov; drind@giss.nasa.gov NR 89 TC 30 Z9 31 U1 2 U2 22 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 EI 1573-1480 J9 CLIMATIC CHANGE JI Clim. Change PD DEC PY 2009 VL 97 IS 3-4 BP 409 EP 437 DI 10.1007/s10584-009-9626-y PG 29 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 522VN UT WOS:000272027500005 ER PT J AU Kirk, BS Carey, GF AF Kirk, Benjamin S. Carey, Graham F. TI A parallel, adaptive finite element scheme for modeling chemotactic biological systems SO COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING LA English DT Article DE chemotaxis; reaction-diffusion; adaptive mesh refinement; parallel finite elements ID BACTERIAL CHEMOTAXIS; PATTERN-FORMATION; COMPLEX PATTERNS; POPULATION; PARAMETERS; SIMULATION; ERROR AB This paper considers the numerical approximation of complex spatial patterns and rapidly evolving transients in chemotactic biological systems using parallel adaptive multiscale schemes and algorithms Transport processes in such biological systems are typically modeled by Coupled systems of nonlinear reaction-diffusion equations. For example, a model of this form has been proposed for Studying chemotaxis in bacteria colonies. In the present study, we develop a variational formulation for this model leading to an approximate finite element scheme with adaptive time stepping and local adaptive mesh refinement/coarsening algorithms. The parallel adaptive Solution algorithm is presented in detail and applied to investigate the effect of chemotaxis in spot formation behind concentric advancing concentrations fronts. Numerical results Concerning the accuracy, efficiency, and performance of the algorithm are also presented. Copyright (C) 2008 John Wiley & Sons, Ltd. C1 [Kirk, Benjamin S.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Carey, Graham F.] Univ Texas Austin, Austin, TX 78712 USA. RP Kirk, BS (reprint author), NASA, Lyndon B Johnson Space Ctr, Mail Code EG3,2101 NASA Pkwy, Houston, TX 77058 USA. EM benjamin.kirk@nasa.gov NR 27 TC 1 Z9 1 U1 0 U2 4 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1069-8299 J9 COMMUN NUMER METH EN JI Commun. Numer. Methods Eng. PD DEC PY 2009 VL 25 IS 12 BP 1162 EP 1185 DI 10.1002/cnm.1173 PG 24 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 532IJ UT WOS:000272740200003 ER PT J AU Littell, JD Binienda, WK Arnold, WA Roberts, GD Goldberg, RK AF Littell, Justin D. Binienda, Wieslaw K. Arnold, William A. Roberts, Gary D. Goldberg, Robert K. TI Effect of microscopic damage events on static and ballistic impact strength of triaxial braid composites SO COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING LA English DT Article; Proceedings Paper CT 4th International Conference on Composites Testing and Model Indenification CY OCT 20-22, 2008 CL Dayton, OH DE Delamination; Fibre/matrix bond; Impact behavior; Mechanical properties; Optical properties/techniques AB The reliability of impact simulations for aircraft components made with triaxial braided carbon fiber composites is currently limited by inadequate material property data and lack of validated material models for analysis. Methods to characterize the material properties used in the analytical models from a systematically obtained set of test data are also lacking. A macroscopic finite element based analytical model to analyze the impact response of these materials has been developed. The stiffness and strength properties utilized in the material model are obtained from a set of quasi-static in-plane tension, compression and shear coupon level tests. Full-field optical strain measurement techniques are applied in the testing, and the results are used to help in characterizing the model. The unit cell of the braided composite is modeled as a series of shell elements, where each element is modeled as a laminated composite. The braided architecture can thus be approximated within the analytical model. The transient dynamic finite element code LS-DYNA is utilized to conduct the finite element simulations, and an internal LS-DYNA constitutive model is utilized in the analysis. Methods to obtain the stiffness and strength properties required by the constitutive model from the available test data are developed. Simulations of quasi-static coupon tests and impact tests of a represented braided composite are conducted. Overall, the developed method shows promise, but improvements that are needed in test and analysis methods for better predictive capability are examined. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Littell, Justin D.; Binienda, Wieslaw K.; Arnold, William A.] Univ Akron, Akron, OH 44325 USA. [Roberts, Gary D.; Goldberg, Robert K.] NASA, Glenn Res Ctr, Cleveland, OH USA. RP Littell, JD (reprint author), Univ Akron, Akron, OH 44325 USA. EM justin.d.littell@nasa.gov NR 17 TC 10 Z9 10 U1 3 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1359-835X J9 COMPOS PART A-APPL S JI Compos. Pt. A-Appl. Sci. Manuf. PD DEC PY 2009 VL 40 IS 12 BP 1846 EP 1862 DI 10.1016/j.compositesa.2009.08.001 PG 17 WC Engineering, Manufacturing; Materials Science, Composites SC Engineering; Materials Science GA 533YB UT WOS:000272861000006 ER PT J AU Swanson, RC Rumsey, CL AF Swanson, R. C. Rumsey, C. L. TI Computation of circulation control airfoil flows SO COMPUTERS & FLUIDS LA English DT Article ID TURBULENCE MODELS; ONE-EQUATION; CURVATURE; ROTATION; CLOSURE AB The compressible Reynolds-averaged Navier-Stokes equations are solved for circulation control (CC) airfoil flows. Three turbulence models are considered for closure, including the Spalart-Allmaras model with and without a curvature correction and the shear stress transport model of Menter. Numerical solutions are computed with a structured grid solver. The effect of mesh density on the solutions is examined. We also address two important issues that have emerged in simulations of CC airfoil flows. One is the validity of incompressible simulations with the presence of a transonic wall jet. The other issue concerns the occurrence of nonphysical solutions for CC airfoil flows. In the present work we consider circulation control flows for a range of jet momentum coefficients. Comparisons are made between computed and experimental pressure distributions, velocity profiles, Reynolds stress profiles, and streamline patterns. Including curvature effects yields the closest agreement with the measured data. Published by Elsevier Ltd. C1 [Swanson, R. C.; Rumsey, C. L.] NASA, Langley Res Ctr, Computat AeroSci Branch, Hampton, VA 23681 USA. RP Swanson, RC (reprint author), C2A2S2E Braunschweig, Ctr Comp Applicat Aerosp Sci & Engn, Braunschweig, Germany. EM r.c.swanson10@gmail.com NR 36 TC 8 Z9 9 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 J9 COMPUT FLUIDS JI Comput. Fluids PD DEC PY 2009 VL 38 IS 10 BP 1925 EP 1942 DI 10.1016/j.compfluid.2009.05.002 PG 18 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA 504OA UT WOS:000270625200007 ER PT J AU Estes, MG Al-Hamdan, MZ Crosson, W Estes, SM Quattrochi, D Kent, S McClure, LA AF Estes, Maurice G., Jr. Al-Hamdan, Mohammad Z. Crosson, William Estes, Sue M. Quattrochi, Dale Kent, Shia McClure, Leslie Ain TI Use of Remotely Sensed Data to Evaluate the Relationship between Living Environment and Blood Pressure SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Article DE blood pressure; hypertension; living environment; remote sensing; urban ID CONTERMINOUS UNITED-STATES; LAND-COVER DATABASE; RISK-FACTORS; HYPERTENSION; URBANIZATION; DISEASE; STROKE; CLASSIFICATION; INFORMATION; POPULATIONS AB BACKGROUND: Urbanization has been correlated with hypertension (HTN) in developing countries undergoing rapid economic and environmental transitions. OBJECTIVES: We examined the relationships among living environment (urban, suburban, and rural), day/night land surface temperatures (LST), and blood pressure in selected regions from the REasons for Geographic and Racial Differences in Stroke (REGARDS) cohort. Also, the linking of data on blood pressure from REGARDS with National Aeronautics and Space Administration (NASA) science data is relevant to NASA's strategic goals and missions, particularly as a primary focus of the agency's Applied Sciences Program. METHODS: REGARDS is a national cohort of 30,228 people from the 48 contiguous United States with self-reported and measured blood pressure levels. Four metropolitan regions (Philadelphia, PA; Atlanta, GA; Minneapolis, MN; and Chicago, IL) with varying geographic and health characteristics were selected for study. Satellite remotely sensed data were used to characterize the LST and land cover/land use (LCLU) environment for each area. We developed a method for characterizing participants as living in urban, suburban, or rural living environments, using the LCLU data. These data were compiled on a 1-km grid for each region and linked with the REGARDS data via an algorithm using geocoding information. RESULTS: REGARDS participants in urban areas have higher systolic and diastolic blood pressure than do those in suburban or rural areas, and also a higher incidence of HTN. In univariate models, living environment is associated with HTN, but after adjustment for known HTN risk factors, the relationship was no longer present. CONCLUSION: Further study regarding the relationship between HTN and living environment should focus on additional environmental characteristics, such as air pollution. The living environment classification method using remotely sensed data has the potential to facilitate additional research linking environmental variables to public health concerns. C1 [Estes, Maurice G., Jr.] NASA, USRA, Natl Space Sci & Technol Ctr, Marshall Space Flight Ctr, Huntsville, AL 35805 USA. [Quattrochi, Dale] NASA, George C Marshall Space Flight Ctr, Earth Sci Off, Huntsville, AL 35812 USA. [Kent, Shia; McClure, Leslie Ain] Univ Alabama, Dept Biostat, Birmingham, AL 35294 USA. RP Estes, MG (reprint author), NASA, USRA, Natl Space Sci & Technol Ctr, Marshall Space Flight Ctr, 320 Sparkman Dr, Huntsville, AL 35805 USA. EM maury.g.estes@nasa.gov RI McClure, Leslie/P-2929-2015 FU National Institutes of Health/National Institute of Neurological Disorders and Stroke [U01 NS041588]; NASA FX Funding support for this work came from the National Institutes of Health/National Institute of Neurological Disorders and Stroke (U01 NS041588) and from the NASA Applied Sciences Program. NR 29 TC 10 Z9 10 U1 0 U2 7 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD DEC PY 2009 VL 117 IS 12 BP 1832 EP 1838 DI 10.1289/ehp.0900871 PG 7 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 528VH UT WOS:000272474600023 PM 20049200 ER PT J AU Turyshev, SG Shao, M Nordtvedt, KL Dittus, H Laemmerzahl, C Theil, S Salomon, C Reynaud, S Damour, T Johann, U Bouyer, P Touboul, P Foulon, B Bertolami, O Paramos, J AF Turyshev, S. G. Shao, M. Nordtvedt, K. L. Dittus, H. Laemmerzahl, C. Theil, S. Salomon, C. Reynaud, S. Damour, T. Johann, U. Bouyer, P. Touboul, P. Foulon, B. Bertolami, O. Paramos, J. TI Advancing fundamental physics with the Laser Astrometric Test of Relativity The LATOR mission SO EXPERIMENTAL ASTRONOMY LA English DT Article DE Fundamental physics; Tests of general relativity; Scalar-tensor theories; Modified gravity; Interplanetary laser ranging; Optical interferometry; Picometer-class metrology; LATOR ID SOLAR GRAVITATIONAL DEFLECTION; ANGULAR POWER SPECTRUM; POST-NEWTONIAN ORDER; GENERAL-RELATIVITY; GRAVITY; SUPERNOVAE; PRINCIPLE; VERIFICATION; EQUIVALENCE; SPACECRAFT AB The Laser Astrometric Test of Relativity (LATOR) is an experiment designed to test the metric nature of gravitation-a fundamental postulate of the Einstein's general theory of relativity. The key element of LATOR is a geometric redundancy provided by the long-baseline optical interferometry and interplanetary laser ranging. By using a combination of independent time-series of gravitational deflection of light in the immediate proximity to the Sun, along with measurements of the Shapiro time delay on interplanetary scales (to a precision respectively better than 0.1 picoradians and 1 cm), LATOR will significantly improve our knowledge of relativistic gravity and cosmology. The primary mission objective is i) to measure the key post-Newtonian Eddington parameter gamma with accuracy of a part in 10(9). 1/2 (1 - gamma) is a direct measure for presence of a new interaction in gravitational theory, and, in its search, LATOR goes a factor 30,000 beyond the present best result, Cassini's 2003 test. Other mission objectives include: ii) first measurement of gravity's non-linear effects on light to similar to 0.01% accuracy; including both the traditional Eddington beta parameter and also the spatial metric's 2nd order potential contribution (never measured before); iii) direct measurement of the solar quadrupole moment J(2) (currently unavailable) to accuracy of a part in 200 of its expected size of similar or equal to 10(-7); iv) direct measurement of the "frame-dragging" effect on light due to the Sun's rotational gravitomagnetic field, to 0.1% accuracy. LATOR's primary measurement pushes to unprecedented accuracy the search for cosmologically relevant scalar-tensor theories of gravity by looking for a remnant scalar field in today's solar system. We discuss the science objectives of the mission, its technology, mission and optical designs, as well as expected performance of this experiment. LATOR will lead to very robust advances in the tests of fundamental physics: this mission could discover a violation or extension of general relativity and/or reveal the presence of an additional long range interaction in the physical law. There are no analogs to LATOR; it is unique and is a natural culmination of solar system gravity experiments. C1 [Dittus, H.; Laemmerzahl, C.] Univ Bremen, Ctr Appl Space Technol & Micrograv ZARM, D-28359 Bremen, Germany. [Turyshev, S. G.; Shao, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Nordtvedt, K. L.] NW Anal, Bozeman, MT 59715 USA. [Dittus, H.; Theil, S.] German Aerosp Ctr, Inst Space Syst, D-28359 Bremen, Germany. [Salomon, C.; Reynaud, S.] Univ Paris 06, Lab Kastler Brossel, F-75252 Paris, France. [Damour, T.] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France. [Johann, U.] Astrium GmbH, Dept Sci Programs Earth Observat & Sci, D-88039 Friedrichshafen, Germany. [Bouyer, P.] Ctr Sci, Inst Opt, Lab Charles Fabry, F-91403 Orsay, France. [Touboul, P.; Foulon, B.] Off Natl Etud & Rech Aerosp, Phys & Instrumentat Dept, F-92322 Chatillon, France. [Bertolami, O.; Paramos, J.] Inst Super Tecn, Dept Fis, P-1049001 Lisbon, Portugal. RP Dittus, H (reprint author), Univ Bremen, Ctr Appl Space Technol & Micrograv ZARM, D-28359 Bremen, Germany. EM dittus@zarm.uni-bremen.de; stephan.theil@dlr.de RI BOUYER, Philippe/A-9823-2009; Paramos, Jorge/J-3440-2013; Reynaud, Serge/J-8061-2014; Theil, Stephan/O-2305-2015; Laemmerzahl, Claus/P-3552-2016; OI BOUYER, Philippe/0000-0003-4458-0089; Paramos, Jorge/0000-0001-9853-9431; Reynaud, Serge/0000-0002-1494-696X; Theil, Stephan/0000-0002-5346-8091; Laemmerzahl, Claus/0000-0002-8276-5415; Bertolami, Orfeu/0000-0002-7672-0560 NR 57 TC 21 Z9 21 U1 0 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 EI 1572-9508 J9 EXP ASTRON JI Exp. Astron. PD DEC PY 2009 VL 27 IS 1-2 BP 27 EP 60 DI 10.1007/s10686-009-9170-9 PG 34 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 522VY UT WOS:000272029400004 ER PT J AU Skinner, GK Krizmanic, JF AF Skinner, Gerald K. Krizmanic, John F. TI X-ray interferometry with transmissive beam combiners for ultra-high angular resolution astronomy SO EXPERIMENTAL ASTRONOMY LA English DT Article DE X-ray; Gamma-ray; Interferometry; Imaging; Diffraction ID FRESNEL LENSES; OPTICS AB Interferometry provides one of the possible routes to ultra-high angular resolution for X-ray and gamma-ray astronomy. Sub-micro-arc-second angular resolution, necessary to achieve objectives such as imaging the regions around the event horizon of a super-massive black hole at the center of an active galaxy, can be achieved if beams from parts of the incoming wavefront separated by 100s of meters can be stably and accurately brought together at small angles. One way of achieving this is by using grazing incidence mirrors. We here investigate an alternative approach in which the beams are recombined by optical elements working in transmission. It is shown that the use of diffractive elements is a particularly attractive option. We report experimental results from a simple 2-beam interferometer using a low-cost commercially available profiled film as the diffractive elements. A rotationally symmetric filled (or mostly filled) aperture variant of such an interferometer, equivalent to an X-ray axicon, is shown to offer a much wider bandpass than either a Phase Fresnel Lens (PFL) or a PFL with a refractive lens in an achromatic pair. Simulations of an example system are presented. C1 [Skinner, Gerald K.; Krizmanic, John F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Skinner, Gerald K.; Krizmanic, John F.] NASA, CRESST, Greenbelt, MD 20771 USA. [Skinner, Gerald K.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Krizmanic, John F.] Univ Space Res Assoc, Columbia, MD 21044 USA. RP Skinner, GK (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM skinner@milkyway.gsfc.nasa.gov NR 18 TC 0 Z9 0 U1 3 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 J9 EXP ASTRON JI Exp. Astron. PD DEC PY 2009 VL 27 IS 1-2 BP 61 EP 76 DI 10.1007/s10686-009-9175-4 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 522VY UT WOS:000272029400005 ER PT J AU Brady, AL Slater, G Laval, B Lim, DS AF Brady, A. L. Slater, G. Laval, B. Lim, D. S. TI Constraining carbon sources and growth rates of freshwater microbialites in Pavilion Lake using 14C analysis SO GEOBIOLOGY LA English DT Article ID LIPID BIOMARKERS; FATTY-ACIDS; RADIOCARBON CALIBRATION; ISOTOPE FRACTIONATION; ESTUARINE SEDIMENTS; STABLE-ISOTOPES; ORGANIC-CARBON; EARTH HISTORY; C-14 ANALYSIS; COMMUNITIES AB This study determined the natural abundance isotopic compositions (13C, 14C) of the primary carbon pools and microbial communities associated with modern freshwater microbialites located in Pavilion Lake, British Columbia, Canada. The Delta 14C of dissolved inorganic carbon (DIC) was constant throughout the water column and consistent with a primarily atmospheric source. Observed depletions in DIC 14C values compared with atmospheric CO(2) indicated effects due either to DIC residence time and/or inputs of 14C-depleted groundwater. Mass balance comparisons of local and regional groundwater indicate that groundwater DIC could contribute a maximum of 9-13% of the DIC. 14C analysis of microbial phospholipid fatty acids from microbialite communities had Delta 14C values comparable with lake water DIC, demonstrating that lake water DIC was their primary carbon source. Microbialite carbonate was also primarily derived from DIC. However, some depletion in microbialite carbonate 14C relative to lake water DIC occurred, due either to residence time or mixing with a 14C-depleted carbon source. A detrital branch covered with microbialite growth was used to estimate a microbialite growth rate of 0.05 mm year-1 for the past 1000 years, faster than previous estimates for this system. These results demonstrate that the microbialites are actively growing and that the primary carbon source for both microbial communities and recent carbonate is DIC originating from the atmosphere. While these data cannot conclusively differentiate between abiotic and biotic formation mechanisms, the evidence for minor inputs of groundwater-derived DIC is consistent with the previously hypothesized biological origin of the Pavilion Lake microbialites. C1 [Brady, A. L.; Slater, G.] McMaster Univ, Sch Geog & Earth Sci, Hamilton, ON, Canada. [Laval, B.] Univ British Columbia, Fac Sci Appl, Vancouver, BC V5Z 1M9, Canada. [Lim, D. S.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. RP Slater, G (reprint author), McMaster Univ, Sch Geog & Earth Sci, Hamilton, ON, Canada. EM gslater@mcmaster.ca RI Laval, Bernard/J-9861-2012; Slater, Greg/B-5163-2013 OI Slater, Greg/0000-0001-7418-7566 FU NSERC Discovery Grant; Canadian Space Agency FX We thank the members of the Pavilion Lake Research Project, in particular Mickey and Linda Macri for their assistance in the field. Additional thanks are due to the Ts'Kw'aylaxw First Nations Band and B.C. Parks for logistical assistance and continued support. Select underwater images are courtesy of D. Reid. Thanks are also due to Jennie Kirby and members of the Environmental Organic Geochemistry Laboratory at McMaster University for valuable laboratory assistance, and to the editors and two anonymous reviewers for their valuable input. Funding was provided by a NSERC Discovery Grant to G.F.S. and the Canadian Space Agency 'Canadian Analogue Research Network' program. This is PLRP contribution #09-02. NR 62 TC 26 Z9 27 U1 3 U2 22 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1472-4677 J9 GEOBIOLOGY JI Geobiology PD DEC PY 2009 VL 7 IS 5 BP 544 EP 555 DI 10.1111/j.1472-4669.2009.00215.x PG 12 WC Biology; Environmental Sciences; Geosciences, Multidisciplinary SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Geology GA 517RA UT WOS:000271633500006 PM 19702837 ER PT J AU Kuang, WJ Tangborn, A Wei, ZG Sabaka, T AF Kuang, Weijia Tangborn, Andrew Wei, Zigang Sabaka, Terence TI Constraining a numerical geodynamo model with 100 years of surface observations SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Numerical solutions; Inverse theory; Dynomo: theories and simulations; Magnetic anomalies: modelling and interpretation; Core, outer core and inner core ID GEOMAGNETIC DATA ASSIMILATION; DIPOLE-MOMENT; MHD SYSTEM; FIELD; DYNAMO; CORE; CONVECTION; FLOW AB To constrain numerical geodynamo models with surface geomagnetic observations, we develop an assimilation scheme for mapping surface geomagnetic data into numerical dynamo solutions. This approach is similar to the optimal interpolation that has been used in atmospheric data assimilation for many years. The scheme is numerically stable and computationally efficient, and has been tested in a series of observing system simulation experiments with either simplified MHD systems or synthetic data from numerical dynamo simulations. In this study, the algorithm is integrated with our MoSST core dynamics model and is tested with 100-yr surface geomagnetic observations, starting in 1900. These experiments use 5 and 20-yr analysis intervals, and forecasts are made every 5 yr starting from 1905. We show that forecast errors gradually reduce over the course of the assimilation. Shorter assimilation runs (starting in 1960 and 1980) result in much larger forecast errors. We investigate the causes of the error reduction by examining how the assimilation impacts the unobserved variables. We discuss the implications for the ability of much longer assimilation runs to constrain the physical fields within the Earth's outer core. C1 [Kuang, Weijia; Sabaka, Terence] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. [Tangborn, Andrew; Wei, Zigang] Univ Maryland Baltimore Cty, Joint Ctr Earth Sci Technol, Baltimore, MD 21228 USA. NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. RP Kuang, WJ (reprint author), NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Code 698, Greenbelt, MD 20771 USA. EM Weijia.Kuang-1@nasa.gov RI Sabaka, Terence/D-5618-2012; Kuang, Weijia/K-5141-2012 OI Kuang, Weijia/0000-0001-7786-6425 FU NSF [EAR-0327875]; NASA FX This research is supported by the NSF Collaborative Mathematical Geophysics (CMG) program under the grant EAR-0327875, and by the NASA Earth's Surface and Interior Program. NR 39 TC 18 Z9 18 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0956-540X J9 GEOPHYS J INT JI Geophys. J. Int. PD DEC PY 2009 VL 179 IS 3 BP 1458 EP 1468 DI 10.1111/j.1365-246X.2009.04376.x PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 517RH UT WOS:000271634300013 ER PT J AU Olsen, N Mandea, M Sabaka, TJ Toffner-Clausen, L AF Olsen, Nils Mandea, Mioara Sabaka, Terence J. Toffner-Clausen, Lars TI CHAOS-2-a geomagnetic field model derived from one decade of continuous satellite data SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Magnetic anomalies: modelling and interpretation; Rapid time variations; Satellite magnetics; Core, outer core and inner core ID EARTHS MAGNETIC-FIELD; SECULAR VARIATION; ORSTED DATA; RESOLUTION; CORE; SPLINES; SURFACE; MAGSAT; CHAMP; FLOWS AB We have derived a model of the near-Earth's magnetic field using more than 10 yr of high-precision geomagnetic measurements from the three satellites Orsted, CHAMP and SAC-C. This model is an update of the two previous models, CHAOS (Olsen et al. 2006) and xCHAOS (Olsen & Mandea 2008). Data selection and model parameterization follow closely those chosen for deriving these models. The main difference concerns the maximum spherical harmonic degree of the static field (n = 60 compared to n = 50 for CHAOS and xCHAOS), and of the core field time changes, for which spherical harmonic expansion coefficients up to n = 20 are described by order 5 splines (with 6-month knot spacing) spanning the years from 1997.0 to 2009.5. Compared to its predecessors, the temporal regularization of the CHAOS-2 model is also modified. Indeed, second and higher order time derivatives of the core field are damped by minimizing the second time derivative of the squared magnetic field intensity at the core-mantle boundary. The CHAOS-2 model describes rapid time changes, as monitored by the ground magnetic observatories, much better than its predecessors. C1 [Olsen, Nils; Toffner-Clausen, Lars] DTU Space, DK-2100 Copenhagen, Denmark. [Mandea, Mioara] Deutsch GeoForschungsZentrum, Helmholtz Zentrum Potsdam, D-14473 Potsdam, Germany. [Sabaka, Terence J.] NASA, Goddard Space Flight Ctr, Geodynam Branch, Greenbelt, MD 20771 USA. [Olsen, Nils] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. RP Olsen, N (reprint author), DTU Space, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark. EM nio@space.dtu.dk RI Olsen, Nils/H-1822-2011; Sabaka, Terence/D-5618-2012; MANDEA, Mioara/E-4892-2012; OI Olsen, Nils/0000-0003-1132-6113; Toffner-Clausen, Lars/0000-0003-4314-3776 FU Danish Government; NASA; ESA; CNES; DARA; German Aerospace Center (DLR); Federal Ministry of Education and Research FX The Orsted Project was made possible by extensive support from the Danish Government, NASA, ESA, CNES and DARA. The support of the CHAMP mission by the German Aerospace Center (DLR) and the Federal Ministry of Education and Research is gratefully acknowledged. We would like to thank Nicolas Gillet for spotting a bug in our modelling software, the staff of the geomagnetic observatories and INTERMAGNET for supplying high-quality observatory data, and two anonymous reviewers for their constructive comments on an earlier version of the manuscript. NR 34 TC 67 Z9 73 U1 2 U2 8 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0956-540X J9 GEOPHYS J INT JI Geophys. J. Int. PD DEC PY 2009 VL 179 IS 3 BP 1477 EP 1487 DI 10.1111/j.1365-246X.2009.04386.x PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 517RH UT WOS:000271634300015 ER PT J AU Chow, D Cheng, W Dai, HX Wagner, SR Luzzi, SD Landi, BJ He, LL Illingsworth, ML Siochi, EJ AF Chow, Derek Cheng, Wei Dai, Huixiong Wagner, Shawn R. Luzzi, Scott D. Landi, Brian J. He, Liling Illingsworth, Marvin L. Siochi, Emilie J. TI Pendent Polyimides using Mellitic Acid Dianhydride. IV. Effect of Increased Zirconium-Pendent Group Content on Polymer Properties SO HIGH PERFORMANCE POLYMERS LA English DT Article DE Functionalization of polymers; polyimide; films; zirconium; atomic oxygen ID AROMATIC TETRACARBOXYLIC DIANHYDRIDES; TRIFLUOROMETHYL-SUBSTITUTED BENZENE; PROTON-EXCHANGE MEMBRANES; FUEL-CELL APPLICATIONS; LOW-EARTH-ORBIT; ATOMIC-OXYGEN; SIDE-CHAIN; FLUORINATED POLYIMIDES; SULFONATED POLYIMIDES; MOLECULAR-STRUCTURE AB For co-polyimides (Pis) of mellitic acid dianhydride, 1,3-aminophenoxybenzene and 4,4'-oxydiphthalic anhydride, Zr-pendent group content could be increased to 50% (mol) improving atomic oxygen (AO) resistance while retaining good film properties. Spectral data are consistent with expected structures. Intrinsic viscosities of 0.54-0.60 dL g(-1) and average molecular weights of 111 000-122 000 g mol(-1) estimated from gel permeation chromatography confirm the polymeric nature of co-polyamic acid precursors. Nuclear magnetic resonance integrations and amounts of thermogravimetric analysis residue verify pendent group concentrations. Increasing Zr-pendent group concentration from 10 to 50% (mol) caused glass transition temperatures to increase (198-245 degrees C), decomposition temperatures to decrease (518-455 degrees C), and the number of film layers able to be fabricated prior to crack formation to decrease (10 to 8). These numbers of layers were much higher than those for other Pis with comparable Zr-pendent group concentrations. Increased pendent group concentration caused the amount of protective oxide layer formed upon AO exposure to increase. C1 [Chow, Derek; Cheng, Wei; Dai, Huixiong; Wagner, Shawn R.; Luzzi, Scott D.; Landi, Brian J.; He, Liling; Illingsworth, Marvin L.] Rochester Inst Technol, Dept Chem, Rochester, NY 14623 USA. [Siochi, Emilie J.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Illingsworth, ML (reprint author), Rochester Inst Technol, Dept Chem, Rochester, NY 14623 USA. EM mlisch@rit.edu FU NASA; NASA Langley Research Center; National Starch and Chemical Corporation FX The authors would like to acknowledge the NASA Joint Ventures program (NASA JOVE) for partial financial support of this work, NASA Langley Research Center for GPC analytical support, and National Starch and Chemical Corporation for generous donation of the APB used in this project. NR 81 TC 1 Z9 1 U1 1 U2 10 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0954-0083 EI 1361-6412 J9 HIGH PERFORM POLYM JI High Perform. Polym. PD DEC PY 2009 VL 21 IS 6 BP 744 EP 764 DI 10.1177/0954008308097490 PG 21 WC Polymer Science SC Polymer Science GA 535MH UT WOS:000272971900004 ER PT J AU Potter, AE Morgan, TH Killen, RM AF Potter, A. E. Morgan, T. H. Killen, R. M. TI Sodium winds on Mercury SO ICARUS LA English DT Article DE Mercury, Atmosphere; Atmospheres, Dynamics; Spectroscopy ID ATMOSPHERES; ATOMS AB Solar radiation acceleration imparts anti-sunward velocities to sodium atoms in the Mercury exosphere. The Earthward-directed vectors of the Sun-accelerated atom velocities can be observed from Earth as small Doppler shifts, either added to, or subtracted from the Earth-Mercury Doppler shifts. We measured these small Doppler shifts using high resolution spectrographs capable of detecting sodium velocity differences as small as 0.1 km/s. We report here four sets of observations performed at different Mercury true anomaly angles. For these measurements, the spectrograph slit was oriented first east-west, and then north-south on the planet so as to get east-west and north-south transects of the velocities. The velocity patterns in east-west transects could be explained in terms of sodium flows outwards from the subsolar point, except for unexpectedly large Earthward velocities observed above the dawn terminator, which we interpreted to be the result Of evaporation of sodium as the cold surface is heated by the rising Sun. North-south transects also showed a general pattern consistent with sodium flows outwards from the subsolar point. However, in all cases, the velocities were higher in one hemisphere relative to the other. For two cases, excess sodium emission was observed in the same hemisphere as the velocity excess. We interpreted these results to mean that there existed sources of sodium at high latitudes, which could appear in either hemisphere. (C) 2009 Elsevier Inc. All rights reserved. C1 [Potter, A. E.] Natl Solar Observ, Tucson, AZ 85719 USA. [Morgan, T. H.] NASA Headquarters, Washington, DC 20546 USA. [Killen, R. M.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Potter, AE (reprint author), Natl Solar Observ, Tucson, AZ 85719 USA. EM apotter@noao.edu RI Killen, Rosemary/E-7127-2012; Morgan, Thomas/I-5943-2013 FU NASA Planetary Astronomy program [NNG05GF53G, NAG5-6991] FX The data reported here were obtained at the Harlan Smith Telescope at the McDonald Observatory, Texas, operated by the University of Texas and at the McMath-Pierce Solar Telescope at the Kitt Peak National Observatory, operated by the National Solar Observatory under agreement with the National Science Foundation. This work was supported by the NASA Planetary Astronomy program under Grants NNG05GF53G and NAG5-6991. We thank Claude Plymate of the McMath-Pierce Solar Telescope staff for his unstinting operational support, Matthew Knight for observing support in 2007, and the referees for helpful and penetrating reviews. NR 12 TC 7 Z9 7 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD DEC PY 2009 VL 204 IS 2 BP 355 EP 367 DI 10.1016/j.icarus.2009.06.028 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 519AX UT WOS:000271738500001 ER PT J AU Putzig, NE Phillips, RJ Campbell, BA Holt, JW Plaut, JJ Carter, LM Egan, AF Bernardini, F Safaeinili, A Seu, R AF Putzig, Nathaniel E. Phillips, Roger J. Campbell, Bruce A. Holt, John W. Plaut, Jeffrey J. Carter, Lynn M. Egan, Anthony F. Bernardini, Fabrizio Safaeinili, Ali Seu, Roberto TI Subsurface structure of Planum Boreum from Mars Reconnaissance Orbiter Shallow Radar soundings SO ICARUS LA English DT Article DE Mars; Radar observations; Mars, Polar caps; Mars, Polar geology ID POLAR LAYERED DEPOSITS; DIELECTRIC-PROPERTIES; STRATIGRAPHY; ICE; FREQUENCIES; ANTARCTICA; HISTORY; REGION; AGE AB We map the subsurface structure of Planum Boreum using sounding data from the Shallow Radar (SHARAD) instrument onboard the Mars Reconnaissance Orbiter. Radar coverage throughout the 1,000,000-km(2) area reveals widespread reflections from basal and internal interfaces of the north polar layered deposits (NPLD). A dome-shaped zone of diffuse reflectivity up to 12 mu s (similar to 1-km thick) underlies two-thirds of the NPLD, predominantly in the main lobe but also extending into the Gemina Lingula lobe across Chasma Boreale. We equate this zone with a basal unit identified in image data as Amazonian sand-rich layered deposits [Byrne, S., Murray, B.C., 2002. J. Geophys. Res. 107, 5044, 12 pp. doi:10.1029/2001JE001615; Fishbaugh, K.E., Head, J.W., 2005. Icarus 174, 444-474; Tanaka, K.L., Rodriguez, J.A.P., Skinner, J.A., Bourke, M.C., Fortezzo, C.M., Herkenhoff, K.E., Kolb, E.J., Okubo, C.H., 2008. Icarus 196, 318-358]. Elsewhere, the NPLD base is remarkably flat-lying and co-planar with the exposed surface of the surrounding Vastitas Borealis materials. Within the NPLD, we delineate and map four units based on the radar-layer packets of Phillips et al. [Phillips, R.J., and 26 colleagues, 2008. Science 320, 1182-1185] that extend throughout the deposits and a fifth unit confined to eastern Gemina Lingula. We estimate the volume of each internal unit and of the entire NPLD stack (821,000 km(3)), exclusive of the basal unit. Correlation of these units to models of insolation cycles and polar deposition [Laskar, J., Levrard, B., Mustard, J.F., 2002. Nature 419, 375-377; Levrard, B., Forget, F., Montmessin, F., Laskar, J., 2007. J. Geophys. Res. 112, E06012, 18 pp. doi: 10.102912006JE002772] is consistent with the 4.2-Ma age of the oldest preserved NPLD obtained by Levrard et al. [Levrard, B., Forget, F., Montmessin, F., Laskar, J., 2007. J. Geophys. Res. 112, E06012, 18 pp. doi:10.1029/2006JE002772]. We suggest a dominant layering mechanism of dust-content variation during accumulation rather than one of lag production during periods of sublimation. (C) 2009 Elsevier Inc. All rights reserved. C1 [Putzig, Nathaniel E.; Phillips, Roger J.; Egan, Anthony F.] SW Res Inst, Boulder, CO 80302 USA. [Phillips, Roger J.] Washington Univ, St Louis, MO 63130 USA. [Campbell, Bruce A.; Carter, Lynn M.] Smithsonian Inst, Ctr Earth & Planetary Studies, Washington, DC 20013 USA. [Holt, John W.] Univ Texas Austin, Jackson Sch Geosci, Austin, TX 78712 USA. [Plaut, Jeffrey J.; Safaeinili, Ali] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Bernardini, Fabrizio] A&C2000 SRL, I-00145 Rome, Italy. [Seu, Roberto] Univ Roma La Sapienza, Dipartimento InfoCom, I-00184 Rome, Italy. RP Putzig, NE (reprint author), SW Res Inst, 1050 Walnut St,Suite 300, Boulder, CO 80302 USA. EM nathaniel@putzig.com RI Holt, John/C-4896-2009; Carter, Lynn/D-2937-2012 NR 39 TC 39 Z9 39 U1 1 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD DEC PY 2009 VL 204 IS 2 BP 443 EP 457 DI 10.1016/j.icarus.2009.07.034 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 519AX UT WOS:000271738500007 ER PT J AU Farrand, WH Glotch, TD Rice, JW Hurowitz, JA Swayze, GA AF Farrand, William H. Glotch, Timothy D. Rice, James W., Jr. Hurowitz, Joel A. Swayze, Gregg A. TI Discovery of jarosite within the Mawrth Vallis region of Mars: Implications for the geologic history of the region SO ICARUS LA English DT Article DE Mars; Mars, Surface; Mineralogy; Spectroscopy ID OMEGA/MARS EXPRESS; MERIDIANI-PLANUM; RADIATIVE-TRANSFER; MINERALS; DIVERSITY; HEMATITE AB Analysis of visible to near infrared reflectance data from the MRO CRISM hyperspectral imager has revealed the presence of an ovoid-shaped landform, approximately 3 by 5 km in size, within the layered terrains surrounding the Mawrth Vallis outflow channel. This feature has spectral absorption features consistent with the presence of the ferric sulfate mineral jarosite, specifically a K-bearing jarosite (KFe3(SO4)(2)(OH)(6)). Terrestrial jarosite is formed through the oxidation of iron sulfides in acidic environments or from basaltic precursor minerals with the addition of sulfur. Previously identified phyllosilicates in the Mawrth Vallis layered terrains include a basal sequence of layers containing Fe-Mg smectites and an upper set of layers of hydrated silica and aluminous phyllosilicates. In terms of its fine scale morphology revealed by MRO HiRISE imagery, the jarosite-bearing unit has fracture patterns very similar to that observed in Fe-Mg smectite-bearing layers, but unlike that observed in the Al-bearing phyllosilicate unit. The ovoid-shaped landform is situated in an east-west bowl-shaped depression superposed on a north sloping surface. Spectra of the ovoid-shaped jarosite-bearing landform also display an anomalously high 600 nm shoulder, which may be consistent with the presence of goethite and a 1.92 mu m absorption which could indicate the presence of ferrihydrite. Goethite, jarosite, and ferrihydrite can be co-precipitated and/ or form through transformation of schwertmannite, both processes generally occurring under low pH conditions (pH 2-4). To date, this location appears to be unique in the Mawrth Vallis region and could represent precipitation of jarosite in acidic, sulfur-rich ponded water during the waning stages of drying. (C) 2009 Elsevier Inc. All rights reserved. C1 [Farrand, William H.] Space Sci Inst, Boulder, CO 80301 USA. [Glotch, Timothy D.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Rice, James W., Jr.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Hurowitz, Joel A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Swayze, Gregg A.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. RP Farrand, WH (reprint author), Space Sci Inst, 4750 Walnut St 205, Boulder, CO 80301 USA. EM farrand@spacescience.org FU NASA's Mars Data Analysis Program FX We thank Kim Lichtenberg of Washington University for doing the conversion to surface Lambert albedo for the CRISM data. Thanks to Ed Cloutis for providing some laboratory spectra through the University of Winnipeg Planetary Spectrophotometer Facility (PSF). This work was funded by NASA's Mars Data Analysis Program. NR 40 TC 77 Z9 78 U1 3 U2 22 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD DEC PY 2009 VL 204 IS 2 BP 478 EP 488 DI 10.1016/j.icarus.2009.07.014 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 519AX UT WOS:000271738500010 ER PT J AU Anderson, RC Beegle, LW Peters, GH Fleming, GM Jandura, L Kriechbaum, K Manatt, K Okon, A Pounders, E Sollitt, L Sunshine, D AF Anderson, Robert C. Beegle, Luther W. Peters, Gregory H. Fleming, Gerald M., II Jandura, Louise Kriechbaum, Kristo Manatt, Kenneth Okon, Avi Pounders, Erik Sollitt, Luke Sunshine, Dan TI Particle transport and distribution on the Mars Science Laboratory mission: Effects of triboelectric charging SO ICARUS LA English DT Article DE Mars, Surface; Instrumentation; Experimental techniques ID MARTIAN REGOLITH SIMULANT; JSC MARS-1; PHARMACEUTICAL POWDERS; TEXTILE SURFACES; DUST; DISSIPATION; ANALOG; FORMULATIONS; DISCHARGES; SYSTEMS AB We report on the nature of fine particle (<150 mu m) transport under simulated martian conditions, in order to better understand the Mars Science Laboratory's (MSL) sample acquisition, processing and handling Subsystem (SA/SPaH). We find that triboelectric charging due to particle movement may have to be controlled in order for successful transport of fines that are created within the drill, processed through the Collection and Handling for In situ Martian Rock Analysis (CHIMRA) sample handing system, and delivered to the Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments. These fines will be transferred from the surface material to the portioner, a 3 mm diameter, 8 mm deep distribution center where they will drop similar to 2 cm to the instrument inlet funnels. In our experiments, movement of different material including terrestrial analogs and martian soil simulants (Mars Mojave Simulant - MMS) resulted in 1-7 nanocoulombs of charge to build up for several different experimental configurations. When this charging phenomenon occurs, several different results are observed including particle clumping, adherence of material on conductive surfaces, or electrostatic repulsion, which causes like-charged particles to move away from each other. This electrostatic repulsion can sort samples based upon differing size fractions, while adhesion causes particles of different sizes to bind into clods. Identifying these electrostatic effects can help us understand potential bias in the analytical instruments and to define the best operational protocols to collect samples on the Surface of Mars. (C) 2009 Elsevier Inc. All rights reserved. C1 [Anderson, Robert C.; Beegle, Luther W.; Peters, Gregory H.; Fleming, Gerald M., II; Jandura, Louise; Kriechbaum, Kristo; Manatt, Kenneth; Okon, Avi; Pounders, Erik; Sunshine, Dan] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Sollitt, Luke] Northrop Grumman Aeronaut Syst, Sensors & Instruments Dept, Redondo Beach, CA 90278 USA. RP Beegle, LW (reprint author), Citadel, Dept Phys, 171 Moultrie St, Charleston, SC 29409 USA. EM Luther.Beegle@jpl.nasa.gov RI Beegle, Luther/A-6354-2010 FU National Aeronautics and Space Administration (NASA); Northrop Grumman Aerospace Systems; Mars Instrument Development Program; Mars Science Laboratory FX This research was carried out at the Extraterrestrial Material Simulation Laboratory at the jet Propulsion Laboratory, California Institute of Technology under a contract from the National Aeronautics and Space Administration (NASA) and at Northrop Grumman Aerospace Systems under internal funding. We gratefully acknowledge funding from Mars Instrument Development Program, and Mars Science Laboratory. We also wish to thank the two anonymous reviewers for comments leading to the improving of the paper. NR 41 TC 11 Z9 11 U1 4 U2 19 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD DEC PY 2009 VL 204 IS 2 BP 545 EP 557 DI 10.1016/j.icarus.2009.07.006 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 519AX UT WOS:000271738500015 ER PT J AU Soderblom, LA Brown, RH Soderblom, JM Barnes, JW Kirk, RL Sotin, C Jaumann, R Mackinnon, DJ Mackowski, DW Baines, KH Buratti, BJ Clark, RN Nicholson, PD AF Soderblom, Laurence A. Brown, Robert H. Soderblom, Jason M. Barnes, Jason W. Kirk, Randolph L. Sotin, Christophe Jaumann, Ralf Mackinnon, David J. Mackowski, Daniel W. Baines, Kevin H. Buratti, Bonnie J. Clark, Roger N. Nicholson, Philip D. TI The geology of Hotei Regio, Titan: Correlation of Cassini VIMS and RADAR SO ICARUS LA English DT Article DE Saturn; Titan; Geological processes ID HUYGENS PROBE; LANDING SITE; SURFACE; METHANE; AMMONIA; LIQUID; SPECTRA; ATMOSPHERE; DIVERSITY; SEARCH AB Joint Cassini VIMS and RADAR SAR data of similar to 700-km-wide Hotei Regio reveal a rich collection of geological features that correlate between the two sets of images. The degree of correlation is greater than anywhere else seen on Titan. Central to Hotei Regio is a basin filled with cryovolcanic flows that are anomalously bright in VIMS data (in particular at 5 mu m) and quite variable in roughness in SAR. The edges of the flows are dark in SAR data and appear to overrun a VIMS-bright substrate. SAR-stereo topography shows the flows to be viscous, 100-200 m thick. On its southern edge the basin is ringed by higher (similar to 1 km) mountainous terrain. The mountains show mixed texture in SAR data: some regions are extremely rough, exhibit low and spectrally neutral albedo in VIMS data and may be partly coated with darker hydrocarbons. Around the southern margin of Hotei Regio, the SAR image shows several large, dendritic, radar-bright channels that flow down from the mountainous terrain and terminate in dark blue patches. seen in VIMS images, whose infrared color is consistent with enrichment in water ice. The patches are in depressions that we interpret to be filled with fluvial deposits eroded and transported by liquid methane in the channels. In the VIMS images the dark blue patches are encased in a latticework of lighter bands that we suggest to demark a set of circumferential and radial fault systems bounding structural depressions. Conceivably the circular features are tectonic structures that are remnant from an ancient impact structure. We suggest that impact-generated structures may have simply served as zones of weakness; no direct causal connection, such as impact-induced volcanism, is implied. We also speculate that two large dark features lying on the northern margin of Hotei Regio could be calderas. In summary the preservation of such a broad suite of VIMS infrared color variations and the detailed correlation with features in the SAR image and SAR topography evidence a complex set of geological processes (pluvial. fluvial, tectonic, cryovolcanic, impact) that have likely remained active up to very recent geological time (< 10(4) year). That the cryovolcanic flows are excessively bright in the infrared, particularly at 5 mu m, might signal ongoing geological activity. One study [Nelson, R.M., and 28 colleagues, 2009. Icarus 199, 429-441] reported significant 2-mu m albedo changes in VIMS data for Hotei Arcus acquired between 2004 and 2006, that were interpreted as evidence for such activity. However in our review of that work, we do not agree that such evidence has yet been found. Published by Elsevier Inc. C1 [Soderblom, Laurence A.; Kirk, Randolph L.; Mackinnon, David J.] US Geol Survey, Flagstaff, AZ 86001 USA. [Brown, Robert H.; Soderblom, Jason M.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Barnes, Jason W.] Univ Idaho, Dept Phys, Moscow, ID USA. [Sotin, Christophe; Baines, Kevin H.; Buratti, Bonnie J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Jaumann, Ralf] Inst Planetary Res, DLR, Berlin, Germany. [Jaumann, Ralf] Free Univ Berlin, Dept Earth Sci, Inst Geosci, D-1000 Berlin, Germany. [Mackowski, Daniel W.] Auburn Univ, Dept Mech Engn, Auburn, AL 36849 USA. [Clark, Roger N.] US Geol Survey, Denver, CO 80225 USA. [Nicholson, Philip D.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. RP Soderblom, LA (reprint author), US Geol Survey, 2255 N Gemini Dr, Flagstaff, AZ 86001 USA. EM lsoderblom@usgs.gov RI Barnes, Jason/B-1284-2009; Mackowski, Daniel/K-1917-2013; OI Barnes, Jason/0000-0002-7755-3530; Soderblom, Jason/0000-0003-3715-6407 FU NASA FX We are grateful to Ralph Lorenz and Jani Radebaugh for thoughtful and constructive reviews. This research was carried out under funding from the Cassini Flight Project managed by the jet Propulsion Laboratory, Caltech for NASA. NR 52 TC 37 Z9 38 U1 1 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD DEC PY 2009 VL 204 IS 2 BP 610 EP 618 DI 10.1016/j.icarus.2009.07.033 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 519AX UT WOS:000271738500021 ER PT J AU Castillo-Rogez, J Johnson, TV Lee, MH Turner, NJ Matson, DL Lunine, J AF Castillo-Rogez, Julie Johnson, Torrence V. Lee, Man Hoi Turner, Neal J. Matson, Dennis L. Lunine, Jonathan TI Al-26 decay: Heat production and a revised age for Iapetus SO ICARUS LA English DT Article DE Geophysics; Cosmochemistry ID CHONDRITE PARENT BODIES; GAMMA-RAY LINE; THERMAL EVOLUTION; GALACTIC AL-26; LIQUID WATER; KUIPER-BELT; CONSTRAINTS; CONVECTION; OBJECTS; STARS AB We revisit the appropriate energies to be used for computing heat production from Al-26 decay. Due to the complexity of the decay scheme of this radioisotope, previous geophysical studies have used values ranging from 1.2 to 4 MeV per decay. The upper bound corresponds to the difference in mass energy between the Al-26 and Mg-26 ground states. This includes energy carried away by neutrinos, which does not contribute to heating planetary material. The lower bound does not account for the heating caused by the absorption of the gamma rays from the excited Mg-26, or for the annihilation energy deposited in the material if the decay occurs inside even small planetesimals. Based on the calculations described by Schramm 2 et al. [Schramm, D., Tera, F., Wasserburg, G.J., 1970. The isotopic abundance of Mg-26 and limits on Al-26 in the early Solar System. Earth Planet. Sci. Lett. 10, 44-59] updated with the most recent nuclear constants, we recommend using a heat production value of 3.12 MeV per decay, which is the total energy of disintegration minus the energy carried off by the neutrinos. This heat production value is higher than the value used in the modeling of Iapetus by Castillo-Rogez et al. [Castillo-Rogez, J., Matson, D.L., Sotin, C., Johnson, T.V., Lunine, J.I., Thomas, P.C., 2007. Iapetus' geophysics: Rotation rate, shape, and equatorial ridge. Icarus 190, 179-202] by about a factor 2.5. The resulting estimate of the time of formation of Iapetus is shifted by about 1 Myr, to between similar to 3.4 and 5.4 Myr after the production of the calcium-aluminum inclusions (CAls). (C) 2009 Elsevier Inc. All rights reserved. C1 [Castillo-Rogez, Julie; Johnson, Torrence V.; Turner, Neal J.; Matson, Dennis L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lee, Man Hoi] Univ Hong Kong, Dept Earth Sci, Hong Kong, Hong Kong, Peoples R China. [Lee, Man Hoi] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Lunine, Jonathan] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. RP Castillo-Rogez, J (reprint author), CALTECH, Jet Prop Lab, M-S 79-24,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Julie.C.Castillo@jpl.nasa.gov RI Lee, Man Hoi/D-3093-2009; OI Turner, Neal/0000-0001-8292-1943 FU Government sponsorship; JPL Research and Technology Development program; NASA; Hong Kong RGC [HKU 7024/08P] FX The authors are grateful to Dimitri Papanastassiou (JPL) for recommending use of the study by Schramm et al. (1970). The authors also thank William McKinnon and GJ. Wasserburg for their reviews, which contributed to improve the clarity of this article. This work has been conducted at the jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2008 California Institute of Technology. Government sponsorship acknowledged. JCCR acknowledges support of the JPL Research and Technology Development program, NJT the support of the NASA Outer Planets Research Program, and MHL the support of Hong Kong RGC Grant HKU 7024/08P. NR 38 TC 41 Z9 41 U1 0 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD DEC PY 2009 VL 204 IS 2 BP 658 EP 662 DI 10.1016/j.icarus.2009.07.025 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 519AX UT WOS:000271738500025 ER PT J AU Beegle, LW Peters, GH Anderson, RC Bhartia, R Ball, AG Sollitt, L AF Beegle, Luther W. Peters, Gregory H. Anderson, Robert C. Bhartia, Rohit Ball, Aaron G. Sollitt, Luke TI Particle sieving and sorting under simulated martian conditions SO ICARUS LA English DT Article DE Mars, surface; Instrumentation; Regoliths ID TRIBOELECTRIC CHARGE; TEXTILE SURFACES; MARS; SAMPLES; DISSIPATION; ELECTRON; SYSTEMS; DISCHARGES; VOLATILE; MISSION AB We report on sorting of small grained material under simulated martian conditions in order to better understand the nature of particle movement in the acquisition-to-analysis chain for future martian missions. We find that triboelectric charging when material is sieved is a major phenomenon that has to be understood and mitigation strategies explored in order to be able to Successfully move particles under these types of conditions while minimizing cross sample talk. In different experimental set-ups, we have observed Such phenomena as caking of the sieve, adhesion of particles to hardware, clodding of dry fines, and electrostatic repulsion. These phenomena occur when different experimental testing is performed with varied configurations and environmental conditions. Identifying these electrostatic effects can help US Understand potential bias in the analytical instruments and to define the best operational protocols to collect samples on the surface of Mars. These experiments demonstrate the need for end-to-end system testing under the most realistic environmental conditions and platforms before mission configurations can be demonstrated before launch. (C) 2009 Elsevier Inc. All rights reserved. C1 [Beegle, Luther W.; Peters, Gregory H.; Anderson, Robert C.; Bhartia, Rohit] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ball, Aaron G.] Brigham Young Univ Idaho, Rexburg, ID 83460 USA. [Sollitt, Luke] Northrop Grumman Aeronaut Syst, Sensors & Instruments Dept, Redondo Beach, CA 90278 USA. RP Beegle, LW (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Luther.Beegle@jpl.nasa.gov RI Beegle, Luther/A-6354-2010 FU National Aeronautics and Space Administration (NASA); Northrop Grumman Aerospace Systems; Mars Instrument Development Program; Mars Science Laboratory FX This research was carried out at the Extraterrestrial Material Simulation Laboratory at the jet Propulsion Laboratory, California Institute of Technology under a contract from the National Aeronautics and Space Administration (NASA) and at Northrop Grumman Aerospace Systems under internal funding. We gratefully acknowledge funding from Mars Instrument Development Program, and Mars Science Laboratory. We wish to thank by an anonymous referee and Kris Zacny for their very helpful comments. NR 50 TC 4 Z9 4 U1 1 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD DEC PY 2009 VL 204 IS 2 BP 687 EP 696 DI 10.1016/j.icarus.2009.07.008 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 519AX UT WOS:000271738500029 ER PT J AU Bayard, DS Kang, BH Brugarolas, PB Boussalis, D AF Bayard, David S. Kang, Bryan H. Brugarolas, Paul B. Boussalis, Dhemetrios TI Focal Plane Calibration of the Spitzer Space Telescope AN INTEGRATED HIGH-ORDER KALMAN FILTER APPROACH SO IEEE CONTROL SYSTEMS MAGAZINE LA English DT Article ID OPTICAL-PERFORMANCE TEST; POINTING CONTROL; SYSTEM C1 [Boussalis, Dhemetrios] NMSU, Dept Elect Engn, Las Cruces, NM USA. RP Bayard, DS (reprint author), CALTECH, Jet Prop Lab, MS 198-326,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM david.bayard@jpl.nasa.gov NR 22 TC 1 Z9 1 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1066-033X J9 IEEE CONTR SYST MAG JI IEEE Control Syst. Mag. PD DEC PY 2009 VL 29 IS 6 BP 47 EP 70 DI 10.1109/MCS.2009.934466 PG 24 WC Automation & Control Systems SC Automation & Control Systems GA 523BI UT WOS:000272045600005 ER PT J AU Loyola, DG Hilsenrath, E Reid, JS Braathen, G AF Loyola R, Diego G. Hilsenrath, Ernest Reid, Jeffrey S. Braathen, Geir TI Introduction to the Issue on Fostering Applications of Earth Observations of the Atmosphere-Part II SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Editorial Material C1 [Loyola R, Diego G.] German Aerosp Ctr, Remote Sensing Technol Inst, D-82234 Oberpfaffenhofen, Wessling, Germany. [Hilsenrath, Ernest] NASA Headquarters, Div Earth Sci, Washington, DC 20546 USA. [Reid, Jeffrey S.] USN, Res Lab, Marine Meteorol Div, Monterey, CA 93943 USA. [Braathen, Geir] World Meteorol Org, Environm Div, CH-1211 Geneva 2, Switzerland. RP Loyola, DG (reprint author), German Aerosp Ctr, Remote Sensing Technol Inst, D-82234 Oberpfaffenhofen, Wessling, Germany. EM diego.loyola@dlr.de; ernest.hilsenrath@nasa.gov; jeffrey.reid@nrlmry.navy.mil; gbraathen@wmo.int OI Loyola R., Diego G./0000-0002-8547-9350 NR 0 TC 0 Z9 0 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD DEC PY 2009 VL 2 IS 4 BP 270 EP 270 DI 10.1109/JSTARS.2009.2039911 PG 1 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA 546BY UT WOS:000273784400006 ER PT J AU Krueger, AJ Krotkov, NA Yang, K Carn, S Vicente, G Schroeder, W AF Krueger, A. J. Krotkov, Nickolay A. Yang, Kai Carn, S. Vicente, Gilberto Schroeder, Wilfrid TI Applications of Satellite-Based Sulfur Dioxide Monitoring SO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING LA English DT Article DE Air quality; aviation hazards; remote sensing; sulfur dioxide; volcanic emissions ID OZONE MAPPING SPECTROMETER; MOUNT-PINATUBO; EL-CHICHON; CLOUDS; SO2; ULTRAVIOLET; INSTRUMENT; RETRIEVAL; ERUPTION; TRACKING AB Sulfur dioxide is emitted by volcanoes, produced by combustion of fossil fuels or smelting of ores, and is an intermediate product from organic sources in the ocean. It is rapidly oxidized to sulfuric acid, which causes acidic pollution of lakes and streams and forms an aerosol that is important in climate change. Volcanic sulfur dioxide is a useful marker for ash clouds that are a hazard to aircraft. Satellites offer the best platform to monitor SO sources and to track volcanic clouds. UV remote sensing instruments have measured eruption plume masses since 1978. Newer instruments are sensitive enough to also measure volcanic degassing, emissions from power plants, refineries, smelters, and heavy air pollution episodes. New retrieval algorithms have improved the data quality. The observations are used to constrain models of eruption processes and to monitor activity of all volcanoes in a consistent manner. The practical applications of the satellite data include aviation safety, air quality, environmental control, climate modeling, and atmospheric dynamics modeling. C1 [Krueger, A. J.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21250 USA. [Krotkov, Nickolay A.; Yang, Kai] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21250 USA. [Carn, S.] Michigan Tech Univ, Dept Geol & Min Engn, Houghton, MI 49931 USA. [Vicente, Gilberto] NOAA, NOAA Sci Ctr, NESDIS, OSDPD,SSD,Prod Implementat Branch,E SP2, Camp Springs, MD 20746 USA. [Schroeder, Wilfrid] Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. RP Krueger, AJ (reprint author), Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21250 USA. EM akrueger@umbc.edu; nickolay.a.krotkov@nasa.gov; kai.yang.1@gsfc.nasa.gov; scarn@mtu.edu; gilberto.vicente@noaa.gov; wilfrid.schroeder@noaa.gov RI Schroeder, Wilfrid/F-6738-2010; Krotkov, Nickolay/E-1541-2012 OI Krotkov, Nickolay/0000-0001-6170-6750 FU NASA OMI Science Team [NNG06GJ02G, NNS06AA05G] FX Manuscript received February 27, 2009; revised July 27, 2009. First published December 15, 2009; current version published January 20, 2010. This work was supported in part by the NASA OMI Science Team under Grant NNG06GJ02G and in part by the NASA Applications Program under Grant NNS06AA05G. NR 24 TC 10 Z9 11 U1 0 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1939-1404 J9 IEEE J-STARS JI IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. PD DEC PY 2009 VL 2 IS 4 BP 293 EP 298 DI 10.1109/JSTARS.2009.2037334 PG 6 WC Engineering, Electrical & Electronic; Geography, Physical; Remote Sensing; Imaging Science & Photographic Technology SC Engineering; Physical Geography; Remote Sensing; Imaging Science & Photographic Technology GA 546BY UT WOS:000273784400009 ER PT J AU Trebi-Ollennu, A Volpe, R Bonitz, RG Robinson, ML Carsten, J AF Trebi-Ollennu, Ashitey Volpe, Richard Bonitz, Robert G. Robinson, Matthew L. Carsten, Joseph TI In-Situ Robotic Arm Operations Phoenix Mars Lander and Mars Exploration Rover Missions SO IEEE ROBOTICS & AUTOMATION MAGAZINE LA English DT Article DE Space robotics; manipulation planning C1 [Trebi-Ollennu, Ashitey] CALTECH, Mobil & Manipulat Grp, NASA JPL, Pasadena, CA 91109 USA. RP Trebi-Ollennu, A (reprint author), CALTECH, Mobil & Manipulat Grp, NASA JPL, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Ashitey.Trebi-Ollennu@jpl.nasa.gov NR 12 TC 3 Z9 3 U1 0 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1070-9932 J9 IEEE ROBOT AUTOM MAG JI IEEE Robot. Autom. Mag. PD DEC PY 2009 VL 16 IS 4 BP 34 EP 43 DI 10.1109/MRA.2009.934820 PG 10 WC Automation & Control Systems; Robotics SC Automation & Control Systems; Robotics GA 532FI UT WOS:000272730600008 ER PT J AU Balaban, E Saxena, A Bansal, P Goebel, KF Curran, S AF Balaban, Edward Saxena, Abhinav Bansal, Prasun Goebel, Kai F. Curran, Simon TI Modeling, Detection, and Disambiguation of Sensor Faults for Aerospace Applications SO IEEE SENSORS JOURNAL LA English DT Article DE Fault diagnosis; modeling; transducers ID DIAGNOSIS; OBSERVERS AB Sensor faults continue to be a major hurdle for systems health management to reach its full potential. At the same time, few recorded instances of sensor faults exist. It is equally difficult to seed particular sensor faults. Therefore, research is underway to better understand the different fault modes seen in sensors and to model the faults. The fault models can then be used in simulated sensor fault scenarios to ensure that algorithms can distinguish between sensor faults and system faults. The paper illustrates the work with data collected from an electromechanical actuator in an aerospace setting, equipped with temperature, vibration, current, and position sensors. The most common sensor faults, such as bias, drift, scaling, and dropout were simulated and injected into the experimental data, with the goal of making these simulations as realistic as feasible. A neural network-based classifier was then created and tested on both experimental data and the more challenging randomized data sequences. Additional studies were also conducted to determine sensitivity of detection and disambiguation efficacy with respect to severity of fault conditions. C1 [Balaban, Edward; Saxena, Abhinav] NASA, Ames Res Ctr, Adv Comp Sci Res Inst, Moffett Field, CA 94035 USA. [Bansal, Prasun] NASA, Ames Res Ctr, Mission Crit Technol Inc, Moffett Field, CA 94035 USA. [Curran, Simon] Moog Inc, E Aurora, NY 14052 USA. RP Balaban, E (reprint author), NASA, Ames Res Ctr, Adv Comp Sci Res Inst, Moffett Field, CA 94035 USA. EM edward.balaban@nasa.gov; abhinav.saxena@nasa.gov; pbansal@mail.arc.nasa.gov; kai.goebel@nasa.gov; scurran@moog.com FU NASA Aerospace Technology (AST) FX This work was supported in part by the NASA Aerospace Technology (AST) Integrated Vehicle Health Management (IVHM) Program. The associate editor coordinating the review of this paper and approving it for publication was Prof. Jakoby Bernhard. NR 33 TC 30 Z9 33 U1 2 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1530-437X J9 IEEE SENS J JI IEEE Sens. J. PD DEC PY 2009 VL 9 IS 12 BP 1907 EP 1917 DI 10.1109/JSEN.2009.2030284 PG 11 WC Engineering, Electrical & Electronic; Instruments & Instrumentation; Physics, Applied SC Engineering; Instruments & Instrumentation; Physics GA 515AX UT WOS:000271439700003 ER PT J AU Shimada, M Touzi, R Tadono, T Smith, JA AF Shimada, Masanobu Touzi, Ridha Tadono, Take Smith, James A. TI Foreword to the Special Issue on Calibration and Validation of ALOS Sensors (PALSAR, AVNIR-2, and PRISM) and Their Use for Bio- and Geophysical Parameter Retrievals SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Editorial Material DE Special issues and sections; Polarimetric synthetic aperture radar; Sensor systems and applications; Calibration; Geophysical measurements; Remote monitoring C1 [Shimada, Masanobu; Tadono, Take] Japan Aerosp Explorat Agcy, Earth Observat Res Ctr, Tsukuba, Ibaraki 3058505, Japan. [Touzi, Ridha] Nat Resources Canada, Canada Ctr Remote Sensing, Ottawa, ON K1A 0Y7, Canada. [Smith, James A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Shimada, M (reprint author), Japan Aerosp Explorat Agcy, Earth Observat Res Ctr, Tsukuba, Ibaraki 3058505, Japan. NR 0 TC 0 Z9 0 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD DEC PY 2009 VL 47 IS 12 BP 3911 EP 3913 DI 10.1109/TGRS.2009.2036389 PG 3 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 521VK UT WOS:000271952700001 ER PT J AU Kahn, RA Nelson, DL Garay, MJ Levy, RC Bull, MA Diner, DJ Martonchik, JV Paradise, SR Hansen, EG Remer, LA AF Kahn, Ralph A. Nelson, David L. Garay, Michael J. Levy, Robert C. Bull, Michael A. Diner, David J. Martonchik, John V. Paradise, Susan R. Hansen, Earl G. Remer, Lorraine A. TI MISR Aerosol Product Attributes and Statistical Comparisons With MODIS SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Aerosols; Moderate Resolution Imaging Spectroradiometer (MODIS); Multi-angle Imaging SpectroRadiometer (MISR); remote sensing ID SIZE DISTRIBUTIONS; OPTICAL-PROPERTIES; AIRBORNE; DEPTH; OCEAN AB In this paper, Multi-angle Imaging SpectroRadiometer (MISR) aerosol product attributes are described, including geometry and algorithm performance flags. Actual retrieval coverage is mapped and explained in detail using representative global monthly data. Statistical comparisons are made with coincident aerosol optical depth (AOD) and Angstrom exponent (ANG) retrieval results from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The relationship between these results and the ones previously obtained for MISR and MODIS individually, based on comparisons with coincident ground-truth observations, is established. For the data examined, MISR and MODIS each obtain successful aerosol retrievals about 15% of the time, and coincident MISR-MODIS aerosol retrievals are obtained for about 6%-7% of the total overlap region. Cloud avoidance, glint and oblique-Sun exclusions, and other algorithm physical limitations account for these results. For both MISR and MODIS, successful retrievals are obtained for over 75% of locations where attempts are made. Where coincident AOD retrievals are obtained over ocean, the MISR-MODIS correlation coefficient is about 0.9; over land, the correlation coefficient is about 0.7. Differences are traced to specific known algorithm issues or conditions. Over-ocean ANG comparisons yield a correlation of 0.67, showing consistency in distinguishing aerosol air masses dominated by coarse-mode versus fine-mode particles. Sampling considerations imply that care must be taken when assessing monthly global aerosol direct radiative forcing and AOD trends with these products, but they can be used directly for many other applications, such as regional AOD gradient and aerosol air mass type mapping and aerosol transport model validation. Users are urged to take seriously the published product data-quality statements. C1 [Kahn, Ralph A.; Remer, Lorraine A.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Nelson, David L.; Garay, Michael J.] Raytheon Intelligence & Informat Syst, Pasadena, CA 91101 USA. [Levy, Robert C.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Bull, Michael A.; Diner, David J.; Martonchik, John V.; Paradise, Susan R.; Hansen, Earl G.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. RP Kahn, RA (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. EM Ralph.Kahn@nasa.gov RI Levy, Robert/M-7764-2013; Kahn, Ralph/D-5371-2012 OI Levy, Robert/0000-0002-8933-5303; Kahn, Ralph/0000-0002-5234-6359 FU NASA Goddard Space Flight Center FX The authors would like to thank their colleagues at the NASA Langley Research Center's Atmospheric Sciences Data Center for their roles in producing the MISR data sets; L. Di Girolamo, J. Pierce, D. Wu, and several anonymous reviewers for helpful comments on early versions of this paper; D. McDonald, T. Nolan, and B. Rheingans for contributions to Fig. 1; and C. Newman for helping prepare this paper. This work was performed in part at the NASA Goddard Space Flight Center and in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 39 TC 125 Z9 125 U1 2 U2 33 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD DEC PY 2009 VL 47 IS 12 BP 4095 EP 4114 DI 10.1109/TGRS.2009.2023115 PN 2 PG 20 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 521VL UT WOS:000271952800001 ER PT J AU Xiong, XX Wenny, BN Wu, AS Barnes, WL AF Xiong, Xiaoxiong Wenny, Brian N. Wu, Aisheng Barnes, William L. TI MODIS Onboard Blackbody Function and Performance SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Blackbody (BB); calibration; Moderate Resolution Imaging Spectroradiometer (MODIS); onboard calibrators (OBCs); temperature stability ID ON-ORBIT CALIBRATION; IMAGING SPECTRORADIOMETER MODIS; LAND-SURFACE TEMPERATURE; THERMAL EMISSIVE BANDS; RADIOMETRIC CALIBRATION; TERRA; VALIDATION; AQUA; INSTRUMENT; PRELAUNCH AB Two Moderate Resolution Imaging Spectroradiometer (MODIS) instruments are currently in orbit, making continuous global observations in visible to long-wave infrared wavelengths. Compared to heritage sensors, MODIS was built with an advanced set of onboard calibrators, providing sensor radiometric, spectral, and spatial calibration and characterization during on-orbit operation. For the thermal emissive bands (TEB) with wavelengths from 3.7 to 14.4 mu m, a v-grooved blackbody (BB) is used as the primary calibration source. The BB temperature is accurately measured each scan (1.47 s) using a set of 12 temperature sensors traceable to the National Institute of Standards and Technology (NIST) temperature standards. The onboard BB is nominally operated at a fixed temperature, 290 K for Terra MODIS and 285 K for Aqua MODIS, to compute the TEB linear calibration coefficients. Periodically, its temperature is varied from 270 K (instrument ambient) to 315 K in order to evaluate and update the nonlinear calibration coefficients. This paper describes MODIS onboard BB functions with emphasis on on-orbit operation and performance. It examines the BB temperature uncertainties under different operational conditions and their impact on TEB calibration and data product quality. The temperature uniformity of the BB is also evaluated using TEB detector responses at different operating temperatures. On-orbit results demonstrate excellent short-term and long-term stability for both the Terra and Aqua MODIS onboard BB. The on-orbit BB temperature uncertainty is estimated to be 10 mK for Terra MODIS at 290 K and 5 mK for Aqua MODIS at 285 K, thus meeting the TEB design specifications. In addition, there has been no measurable BB temperature drift over the entire mission of both Terra and Aqua MODIS. C1 [Xiong, Xiaoxiong] NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. [Wenny, Brian N.; Wu, Aisheng] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Barnes, William L.] Univ Maryland, Baltimore, MD 21250 USA. RP Xiong, XX (reprint author), NASA, Goddard Space Flight Ctr, Sci & Explorat Directorate, Greenbelt, MD 20771 USA. NR 28 TC 12 Z9 12 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD DEC PY 2009 VL 47 IS 12 BP 4210 EP 4222 DI 10.1109/TGRS.2009.2023317 PG 13 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 521VL UT WOS:000271952800011 ER PT J AU Zhang, T Wei, XY Niu, GF Cressler, JD Marshall, PW Reed, RA AF Zhang, Tong Wei, Xiaoyun Niu, Guofu Cressler, John D. Marshall, Paul W. Reed, Robert A. TI A Mechanism Versus SEU Impact Analysis of Collector Charge Collection in SiGe HBT Current Mode Logic SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 46th Annual IEEE International Nuclear and Space Radiation Effects Conference CY JUL 20-24, 2009 CL Quebec City, CANADA SP IEEE DE Charge collection; cross sections; heterojunction bipolar transistors; linear energy transfer; SiGe; simulation; single event effects; single event mechanisms; single event modeling; single event upset ID 3-D SIMULATION; DIGITAL LOGIC; BIPOLAR AB This work examines the individual impact of drift and diffusion charge collection in the collector-base (CB) and collector-substrate (CS) junctions on single-event-upset (SEU) in SiGe HBT current mode logic (CML) circuits. The CS junction diffusion charge collection has negligible impact on circuit SEU, despite its large charge collection magnitude. The CB and CS drift charge collection are primarily responsible for the observed SEU in CML circuits. The CB drift charge collection is as important as the CS drift charge collection, even though its charge magnitude is much less, because the resulting current excitation appears between collector and base nodes, and hence is amplified. Using selective ion track placement, we show that an ion track passing through the physical CS junction is much more effective in causing SEU than an ion track not passing through the CS junction because of potential funneling and consequent large induced drift current magnitude, which is necessary for SEU of CML circuit. C1 [Zhang, Tong; Niu, Guofu] Auburn Univ, Dept Elect & Comp Engn, Auburn, AL 36849 USA. [Wei, Xiaoyun] Huazhong Univ Sci & Technol, Elect & Informat Engn Dept, Wuhan 430074, Hubei, Peoples R China. [Cressler, John D.] Georgia Tech, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. [Marshall, Paul W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Reed, Robert A.] Vanderbilt Univ, Nashville, TN 37235 USA. RP Zhang, T (reprint author), Auburn Univ, Dept Elect & Comp Engn, Auburn, AL 36849 USA. EM zhangto@auburn.edu NR 14 TC 5 Z9 5 U1 1 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2009 VL 56 IS 6 BP 3071 EP 3077 DI 10.1109/TNS.2009.2032911 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 530PN UT WOS:000272604900010 ER PT J AU Pellish, JA Reed, RA McMorrow, D Vizkelethy, G Cavrois, VF Baggio, J Paillet, P Duhamel, O Moen, KA Phillips, SD Diestelhorst, RM Cressler, JD Sutton, AK Raman, A Turowski, M Dodd, PE Alles, ML Schrimpf, RD Marshall, PW LaBel, KA AF Pellish, Jonathan A. Reed, Robert A. McMorrow, Dale Vizkelethy, Gyorgy Cavrois, Veronique Ferlet Baggio, Jacques Paillet, Philippe Duhamel, Olivier Moen, Kurt A. Phillips, Stanley D. Diestelhorst, Ryan M. Cressler, John D. Sutton, Akil K. Raman, Ashok Turowski, Marek Dodd, Paul E. Alles, Michael L. Schrimpf, Ronald D. Marshall, Paul W. LaBel, Kenneth A. TI Heavy Ion Microbeam- and Broadbeam-Induced Transients in SiGe HBTs SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 46th Annual IEEE International Nuclear and Space Radiation Effects Conference CY JUL 20-24, 2009 CL Quebec City, CANADA SP IEEE DE Heavy ion; real-time oscilloscope; silicon-germanium heterojunction bipolar transistor (SiGe HBT); transient ID SINGLE-EVENT UPSET; ENERGY-DEPOSITION; CHARGE-COLLECTION; SEU; CIRCUIT; SILICON; LOGIC; SIMULATION; TRACK; ELECTRON AB Silicon-germanium heterojunction bipolar transistor (SiGe HBT) heavy ion-induced current transients are measured using Sandia National Laboratories' microbeam and high- and low-energy broadbeam sources at the Grand Accelerateur National d'Ions Lourds, Caen, France, and the University of Jyvaskyla, Finland. The data were captured using a custom broadband IC package and real-time digital phosphor oscilloscopes with at least 16 GHz of analog bandwidth. These data provide detailed insight into the effects of ion strike location, range, and LET. C1 [Pellish, Jonathan A.; LaBel, Kenneth A.] NASA, Goddard Space Flight Ctr, Flight Data Syst & Radiat Effects Branch, Greenbelt, MD 20771 USA. [Reed, Robert A.; Alles, Michael L.; Schrimpf, Ronald D.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. [McMorrow, Dale] USN, Res Lab, Washington, DC 20375 USA. [Vizkelethy, Gyorgy; Dodd, Paul E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Cavrois, Veronique Ferlet; Baggio, Jacques; Paillet, Philippe; Duhamel, Olivier] CEA, DAM, DIF, F-91297 Arpajon, France. [Moen, Kurt A.; Phillips, Stanley D.; Diestelhorst, Ryan M.; Cressler, John D.] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. [Sutton, Akil K.] IBM Corp, Semicond Res & Dev Ctr, Hopewell Jct, NY 12533 USA. [Raman, Ashok; Turowski, Marek] CFD Res Corp, Huntsville, AL 35805 USA. [Marshall, Paul W.] NASA, Brookneal, VA 24528 USA. RP Pellish, JA (reprint author), NASA, Goddard Space Flight Ctr, Flight Data Syst & Radiat Effects Branch, Greenbelt, MD 20771 USA. EM jonathan.a.pellish@nasa.gov RI Schrimpf, Ronald/L-5549-2013; OI Schrimpf, Ronald/0000-0001-7419-2701; Moen, Kurt/0000-0001-7697-8636 NR 36 TC 22 Z9 23 U1 1 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2009 VL 56 IS 6 BP 3078 EP 3084 DI 10.1109/TNS.2009.2034158 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 530PN UT WOS:000272604900011 ER PT J AU Sierawski, BD Pellish, JA Reed, RA Schrimpf, RD Warren, KM Weller, RA Mendenhall, MH Black, JD Tipton, AD Xapsos, MA Baumann, RC Deng, XW Campola, MJ Friendlich, MR Kim, HS Phan, AM Seidleck, CM AF Sierawski, Brian D. Pellish, Jonathan A. Reed, Robert A. Schrimpf, Ronald D. Warren, Kevin M. Weller, Robert A. Mendenhall, Marcus H. Black, Jeffrey D. Tipton, Alan D. Xapsos, Michael A. Baumann, Robert C. Deng, Xiaowei Campola, Michael J. Friendlich, Mark R. Kim, Hak S. Phan, Anthony M. Seidleck, Christina M. TI Impact of Low-Energy Proton Induced Upsets on Test Methods and Rate Predictions SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 46th Annual IEEE International Nuclear and Space Radiation Effects Conference CY JUL 20-24, 2009 CL Quebec City, CANADA SP IEEE DE Direct ionization; hardness-assurance; Monte Carlo; proton; single event upset (SEU); soft error rate ID SILICON-ON-INSULATOR; CROSS-SECTION; MEMORY CELLS; SINGLE; LATCHES; SRAM AB Direct ionization from low energy protons is shown to cause upsets in a 65-nm bulk CMOS SRAM, consistent with results reported for other deep submicron technologies. The experimental data are used to calibrate a Monte Carlo rate prediction model, which is used to evaluate the importance of this upset mechanism in typical space environments. For the ISS orbit and a geosynchronous (worst day) orbit, direct ionization from protons is a major contributor to the total error rate, but for a geosynchronous (solar min) orbit, the proton flux is too low to cause a significant number of events. The implications of these results for hardness assurance are discussed. C1 [Sierawski, Brian D.; Warren, Kevin M.] Vanderbilt Univ, Inst Space & Def Elect, Nashville, TN 37203 USA. [Pellish, Jonathan A.; Xapsos, Michael A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Reed, Robert A.; Schrimpf, Ronald D.; Weller, Robert A.; Mendenhall, Marcus H.; Black, Jeffrey D.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. [Tipton, Alan D.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Baumann, Robert C.; Deng, Xiaowei] Texas Instruments Inc, Dallas, TX 75243 USA. [Campola, Michael J.; Friendlich, Mark R.; Kim, Hak S.; Phan, Anthony M.; Seidleck, Christina M.] MEI Technol NASA GSFC, Greenbelt, MD 20771 USA. RP Sierawski, BD (reprint author), Vanderbilt Univ, Inst Space & Def Elect, Nashville, TN 37203 USA. EM brian.sierawski@vanderbilt.edu RI Schrimpf, Ronald/L-5549-2013 OI Schrimpf, Ronald/0000-0001-7419-2701 NR 17 TC 73 Z9 76 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2009 VL 56 IS 6 BP 3085 EP 3092 DI 10.1109/TNS.2009.2032545 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 530PN UT WOS:000272604900012 ER PT J AU Gadlage, MJ Ahlbin, JR Ramachandran, V Gouker, P Dinkins, CA Bhuva, BL Narasimham, B Schrimpf, RD McCurdy, MW Alles, ML Reed, RA Mendenhall, MH Massengill, LW Shuler, RL McMorrow, D AF Gadlage, Matthew J. Ahlbin, Jonathan R. Ramachandran, Vishwanath Gouker, Pascale Dinkins, Cody A. Bhuva, Bharat L. Narasimham, Balaji Schrimpf, Ronald D. McCurdy, Michael W. Alles, Michael L. Reed, Robert A. Mendenhall, Marcus H. Massengill, Lloyd W. Shuler, Robert L. McMorrow, Dale TI Temperature Dependence of Digital Single-Event Transients in Bulk and Fully-Depleted SOI Technologies SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 46th Annual IEEE International Nuclear and Space Radiation Effects Conference CY JUL 20-24, 2009 CL Quebec City, CANADA SP IEEE DE Heavy ions; ion radiation effects; silicon-on-insulator technology; single event upset (SEU); single event transients ID HEAVY-ION; WELL CONTACTS; PULSE-WIDTHS; CMOS; PROPAGATION; LOGIC AB Factors that affect single-event transient pulse widths, such as drift, diffusion, and parasitic bipolar transistor parameters, are also strong functions of operating temperature. In this paper, SET pulse-width measurements are performed over a wide temperature range in both bulk and fully-depleted SOI (silicon on insulator) technologies. The average pulse-width increases with temperature for the bulk process, but not for the FDSOI process. C1 [Gadlage, Matthew J.; Ahlbin, Jonathan R.; Ramachandran, Vishwanath; Dinkins, Cody A.; Bhuva, Bharat L.; Schrimpf, Ronald D.; McCurdy, Michael W.; Alles, Michael L.; Reed, Robert A.; Mendenhall, Marcus H.; Massengill, Lloyd W.] Vanderbilt Univ, Nashville, TN 37212 USA. [Gouker, Pascale] MIT, Lincoln Lab, Lexington, MA 02420 USA. [Narasimham, Balaji] Broadcom Inc, Irvine, CA 92617 USA. [Shuler, Robert L.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [McMorrow, Dale] USA, Res Lab, Washington, DC 20375 USA. RP Gadlage, MJ (reprint author), Vanderbilt Univ, Nashville, TN 37212 USA. EM matthew.j.gadlage@vanderbilt.edu; jon.ahlbin@van-derbilt.edu; vishwa.ramachandran@vanderbilt.edu; pgouker@ll.mit.edu; cody.a.dinkins@vander-bilt.edu; bharat.bhuva@vanderbilt.edu; bal-ajin@broadcom.com; ron.schrimpf@vanderbilt.edu; mike.mccurdy@vanderbilt.edu; mike.alles@vanderbilt.edu; robert.reed@vander-bilt.edu; marcus.h.mendenhall@vanderbilt.edu; lloyd.massengill@vanderbilt.edu; robert.l.shuler@nasa.gov; mcmorrow@ccs.nrl.navy.mil RI Schrimpf, Ronald/L-5549-2013 OI Schrimpf, Ronald/0000-0001-7419-2701 NR 15 TC 17 Z9 19 U1 1 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2009 VL 56 IS 6 BP 3115 EP 3121 DI 10.1109/TNS.2009.2034150 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 530PN UT WOS:000272604900016 ER PT J AU Chen, DK Buchner, SP Phan, AM Kim, HS Sternberg, AL McMorrow, D LaBel, KA AF Chen, Dakai Buchner, Stephen P. Phan, Anthony M. Kim, Hak S. Sternberg, Andrew L. McMorrow, Dale LaBel, Kenneth A. TI The Effects of Elevated Temperature on Pulsed-Laser-Induced Single Event Transients in Analog Devices SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 46th Annual IEEE International Nuclear and Space Radiation Effects Conference CY JUL 20-24, 2009 CL Quebec City, CANADA SP IEEE DE Analog integrated circuits; bipolar circuits; elevated temperature effects; lasers; radiation hardness assurance; single event transients (SETs) ID OPERATIONAL-AMPLIFIER; INTEGRATED-CIRCUITS; DEPENDENCE; TRANSISTORS AB We present results of laser-induced analog SETs at elevated temperatures. We found increasing pulse widths with increasing temperature for the LM124. We also observed increasing pulse amplitudes with increasing temperature for several sensitive transistors in the LM139. However the response from the input transistor was a rapidly shrinking SET, suggesting that the SET threshold increases at elevated temperatures for the input stage transistors. In addition we observed increases in the SET leading edge fall times with increasing temperature for the LM139 that are consistent with independently measured slew rates. Simulations revealed that the dominant mechanism is bipolar current gain enhancement at elevated temperatures. These temperature-induced changes to the SETs may have critical implications for radiation hardness assurance. C1 [Chen, Dakai; Buchner, Stephen P.; Phan, Anthony M.; Kim, Hak S.] NASA, Goddard Space Flight Ctr, MEI Technol Inc, Greenbelt, MD 20771 USA. [Sternberg, Andrew L.] Vanderbilt Univ, ISDE, Nashville, TN 37235 USA. [McMorrow, Dale] USN, Res Lab, Washington, DC USA. RP Chen, DK (reprint author), NASA, Goddard Space Flight Ctr, MEI Technol Inc, Greenbelt, MD 20771 USA. EM dakai.chen-1@nasa.gov; stephen.buchner@globalgroup.us.com; anthony.m.phan@nasa.gov; hak.s.kim@nasa.gov; an-drew.sternberg@vanderbilt.edu; mcmorrow@ccs.nrl.navy.mil; ken-neth.a.label@nasa.gov NR 18 TC 3 Z9 3 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2009 VL 56 IS 6 BP 3138 EP 3144 DI 10.1109/TNS.2009.2032763 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 530PN UT WOS:000272604900019 ER PT J AU Dodds, NA Reed, RA Mendenhall, MH Weller, RA Clemens, MA Dodd, PE Shaneyfelt, MR Vizkelethy, G Schwank, JR Ferlet-Cavrois, V Adams, JH Schrimpf, RD King, MP AF Dodds, N. A. Reed, R. A. Mendenhall, M. H. Weller, R. A. Clemens, M. A. Dodd, P. E. Shaneyfelt, M. R. Vizkelethy, G. Schwank, J. R. Ferlet-Cavrois, V. Adams, J. H., Jr. Schrimpf, R. D. King, M. P. TI Charge Generation by Secondary Particles From Nuclear Reactions in BEOL Materials SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 46th Annual IEEE International Nuclear and Space Radiation Effects Conference CY JUL 20-24, 2009 CL Quebec City, CANADA SP IEEE DE Charge collection; high-Z; indirect ionization; Monte Carlo; MRED; nuclear reactions; secondary particles; worst-case energy ID SINGLE-EVENT UPSET; ION ENERGY; LATCHUP; IMPACT AB Direct charge collection measurements are presented, which prove that the presence of tungsten near sensitive volumes leads to extreme charge collection events through nuclear reactions. We demonstrate that, for a fixed incident particle linear energy transfer (LET), increasing particle energy beyond a certain point causes a decrease in nuclear reaction-induced charge collection. This suggests that a worst-case energy exists for single-event effect (SEE) susceptibility, which depends on the technology, device layout, and the incident ions' fixed LET value. A Monte Carlo approach for identifying the worst-case energy is applied to certain bulk-Si and silicon-on-insulator (SOI) technologies. Simulation results suggest that the decrease in charge collection beyond the worst-case energy occurs because the secondary particles produced from the high-energy nuclear reactions have less mass and higher energy and are therefore less ionizing than those produced by lower-energy reactions. C1 [Dodds, N. A.; Reed, R. A.; Mendenhall, M. H.; Weller, R. A.; Clemens, M. A.; Schrimpf, R. D.; King, M. P.] Vanderbilt Univ, Nashville, TN 37203 USA. [Dodd, P. E.; Shaneyfelt, M. R.; Vizkelethy, G.; Schwank, J. R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Ferlet-Cavrois, V.] CEA, DAM, DIF, F-91297 Arpajon, France. [Adams, J. H., Jr.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Dodds, NA (reprint author), Vanderbilt Univ, Nashville, TN 37203 USA. EM nathaniel.dodds@vanderbilt.edu RI Schrimpf, Ronald/L-5549-2013 OI Schrimpf, Ronald/0000-0001-7419-2701 NR 14 TC 19 Z9 21 U1 0 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2009 VL 56 IS 6 BP 3172 EP 3179 DI 10.1109/TNS.2009.2034160 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 530PN UT WOS:000272604900024 ER PT J AU Chen, XJ Barnaby, HJ Adell, P Pease, RL Vermeire, B Holbert, KE AF Chen, X. Jie Barnaby, Hugh J. Adell, Philippe Pease, Ronald L. Vermeire, Bert Holbert, Keith E. TI Modeling the Dose Rate Response and the Effects of Hydrogen in Bipolar Technologies SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 46th Annual IEEE International Nuclear and Space Radiation Effects Conference CY JUL 20-24, 2009 CL Quebec City, CANADA SP IEEE DE Bipolar oxide; dose rate; enhanced low dose rate sensitivity (ELDRS); hydrogen; interface traps; radiation-induced ID INDUCED INTERFACE STATES; RATE SENSITIVITY ELDRS; GAIN DEGRADATION; TRANSISTORS; MECHANISMS; DEVICES; CIRCUITS; OXIDES; ICS AB A physical model describing the dose rate response and the effect of hydrogen in bipolar technologies is presented. The model uses electron-hole pair recombination and competing hydrogen reactions to explain the behaviors of bipolar devices and circuits at different dose rates. Dose-rate-dependent computer simulations based on the model were performed, and the results provide excellent qualitative agreement with the dose rate data taken on both gated lateral pnp bipolar test transistors and LM193 bipolar dual-voltage comparators. The model presented in this paper can be used to explain a variety of factors that can influence device dose rate response in bipolar technologies. C1 [Chen, X. Jie] Radiat Monitoring Devices, Watertown, MA 02472 USA. [Barnaby, Hugh J.; Vermeire, Bert; Holbert, Keith E.] Arizona State Univ, Tempe, AZ 85287 USA. [Adell, Philippe] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Pease, Ronald L.] RLP Res, Los Lunas, NM 87031 USA. RP Chen, XJ (reprint author), Radiat Monitoring Devices, Watertown, MA 02472 USA. EM JChen@rmdinc.com; philippe.c.adell@jpl.nasa.gov; rpease@rlpresearch.com RI Holbert, Keith/B-6518-2008; OI Holbert, Keith/0000-0002-2772-1954 NR 20 TC 9 Z9 9 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2009 VL 56 IS 6 BP 3196 EP 3202 DI 10.1109/TNS.2009.2034154 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 530PN UT WOS:000272604900028 ER PT J AU Park, H Cummings, DJ Arora, R Pellish, JA Reed, RA Schrimpf, RD McMorrow, D Armstrong, SE Roh, U Nishida, T Law, ME Thompson, SE AF Park, Hyunwoo Cummings, Daniel J. Arora, Rajan Pellish, Jonathan A. Reed, Robert A. Schrimpf, Ronald D. McMorrow, Dale Armstrong, Sarah E. Roh, Ukjin Nishida, Toshikazu Law, Mark E. Thompson, Scott E. TI Laser-Induced Current Transients in Strained-Si Diodes SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 46th Annual IEEE International Nuclear and Space Radiation Effects Conference CY JUL 20-24, 2009 CL Quebec City, CANADA SP IEEE DE Current transient; pulsed laser; silicon diode; single event transient (SET); single event upset (SEU); strained-silicon; uniaxial stress ID PIEZORESISTANCE COEFFICIENTS; SILICON; COLLECTION; MICROELECTRONICS; ABSORPTION; MOBILITY; STRESS; CHARGE; CMOS AB Laser-induced current transients are measured on uniaxially stressed silicon (Si) N+/P diodes using a high speed measurement system. Controlled external mechanical stress along the < 110 > direction is applied via a four-point bending jig while the samples are irradiated using a cavity-dumped dye laser with a wavelength of 590 nm. A decrease in the peak current is observed for increasing tensile stress applied to the diode. Unlike tensile stress, compressive stress increases the peak current. Charge collection is observed to decrease with tensile and increase with compressive stress. These results suggest that uniaxial mechanical stress alters the current transients due to strain-induced changes in electron mobility along the < 001 > direction. The average effective electron mass along the < 001 > direction increases with tensile and decreases with compressive stress resulting from the splitting of degenerate conduction band valleys and the repopulation of electrons from higher to lower valleys. The Florida object oriented device simulator (FLOODS) is used to explain the mechanism of current transients in unstressed and stressed diodes. FLOODS is also used to predict results for values of applied stress (similar to 1 GPa) beyond those that can be obtained using the bending jig (similar to 240 MPa). C1 [Park, Hyunwoo; Cummings, Daniel J.; Roh, Ukjin; Nishida, Toshikazu; Law, Mark E.; Thompson, Scott E.] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA. [Arora, Rajan; Reed, Robert A.; Schrimpf, Ronald D.; Armstrong, Sarah E.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. [Pellish, Jonathan A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McMorrow, Dale] USN, Res Lab, Washington, DC 20375 USA. RP Park, H (reprint author), Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA. EM hwpark76@ufl.edu; danieljc@ufl.edu; rajan.arora@vanderbilt.edu; Jonathan.A.Pellish@nasa.gov; robert.reed@vanderbilt.edu; ron.schrimpf@vander-bilt.edu; mcmorrow@ccs.nrl.navy.mil; sarah.armstrong@vanderbilt.edu; ukroh@ufl.edu; nishida@ufl.edu; law@tec.ufl.edu; thompson@ece.ufl.edu RI Schrimpf, Ronald/L-5549-2013 OI Schrimpf, Ronald/0000-0001-7419-2701 NR 39 TC 8 Z9 8 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2009 VL 56 IS 6 BP 3203 EP 3209 DI 10.1109/TNS.2009.2033361 PN 1 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 530PN UT WOS:000272604900029 ER PT J AU Jun, I Kim, W Evans, R AF Jun, Insoo Kim, Wousik Evans, Robin TI Electron Nonionizing Energy Loss for Device Applications SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 46th Annual IEEE International Nuclear and Space Radiation Effects Conference CY JUL 20-24, 2009 CL Quebec City, CANADA SP IEEE DE Lindhard partition function; Mott cross section; nonionizing energy loss (NIEL) ID NIEL CALCULATIONS; DAMAGE; IONS AB The electron induced nonionizing energy loss (NIEL) for representative device and detector materials are presented here. The electron NIELs are computed analytically using the Mott differential cross section. As for the partition function, which describes the portion of energy deposited into displacing lattice atoms, the expression recently developed by Akkerman et al. was used that better fits for the low recoil energy. C1 [Jun, Insoo; Kim, Wousik] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Evans, Robin] ManTech SRS Technol Inc, Montrose, CA 91020 USA. RP Jun, I (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Insoo.Jun@jpl.nasa.gov; Wousik.kim@jpl.nasa.gov; Robin.W.Evans@jpl.nasa.gov NR 9 TC 20 Z9 21 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2009 VL 56 IS 6 BP 3229 EP 3235 DI 10.1109/TNS.2009.2033692 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 530PN UT WOS:000272604900033 ER PT J AU Madan, A Verma, R Arora, R Wilcox, EP Cressler, JD Marshall, PW Schrimpf, RD Cheng, PF Del Castillo, LY Liang, QQ Freeman, G AF Madan, Anuj Verma, Rohan Arora, Rajan Wilcox, Edward P. Cressler, John D. Marshall, Paul W. Schrimpf, Ronald D. Cheng, Peter F. Del Castillo, Linda Y. Liang, Qingqing Freeman, Greg TI The Enhanced Role of Shallow-Trench Isolation in Ionizing Radiation Damage of 65 nm RF-CMOS on SOI SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 46th Annual IEEE International Nuclear and Space Radiation Effects Conference CY JUL 20-24, 2009 CL Quebec City, CANADA SP IEEE DE CMOS; proton radiation; radio-frequency (RF) technology; silicon-on-insulator (SOI); total dose ID TOTAL-DOSE IRRADIATION; TRANSISTOR RESPONSE; TECHNOLOGIES; PERFORMANCE AB The mechanism for ionizing radiation damage in multi-finger SOI CMOS devices is presented for the first time. We analyzed the effects of shallow-trench isolation on ionizing radiation response of 65 nm Silicon-On-Insulator (SOI) CMOS technology. The radiation response of the CMOS devices was investigated using 63 MeV protons and 10 keV X-rays. The implications of proton irradiation and X-ray irradiation on the and RF performance of these devices are presented. The cut-off frequency is degraded due to post-irradiation degradation of device transconductance. Even though there is charge-accumulation in the buried-oxide, there is minimal impact on the front-gate characteristics of the partially-depleted SOI devices in this 65 nm CMOS technology. The implications of parasitic conduction along the STI on device design constraints, particularly for varying device width and number of gate fingers, are discussed in the context of high performance RF CMOS technology. These results suggest that body-contacting schemes which eliminate sidewalls (e.g., H-body, T-body) will provide the necessary total-dose radiation tolerance for multi-finger analog and RF devices, without additional hardening techniques. C1 [Madan, Anuj; Verma, Rohan; Wilcox, Edward P.; Cressler, John D.] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. [Arora, Rajan; Schrimpf, Ronald D.] Vanderbilt Univ, Nashville, TN 37235 USA. [Marshall, Paul W.] NASA GSFC, Brookneal, VA 24528 USA. [Cheng, Peter F.; Del Castillo, Linda Y.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Liang, Qingqing; Freeman, Greg] IBM Microelect Div, Fishkill, NY 12533 USA. RP Madan, A (reprint author), Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. EM madan@ece.gatech.edu; rohan.verma@gatech.edu; arora@ece.gatech.edu; twilcox@ece.gatech.edu; cressler@ece.gatech.edu; pwmarshall@aol.com; ron.schrimpf@vanderbilt.edu; peter.cheng@jpl.nasa.gov; linda.y.delcastillo@jpl.nasa.gov; qinliang@us.ibm.com; freeman@us.ibm.com RI Schrimpf, Ronald/L-5549-2013 OI Schrimpf, Ronald/0000-0001-7419-2701 NR 17 TC 11 Z9 11 U1 1 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2009 VL 56 IS 6 BP 3256 EP 3261 DI 10.1109/TNS.2009.2033998 PG 6 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 530PN UT WOS:000272604900037 ER PT J AU Oldham, TR Friendlich, M Carts, MA Seidleck, CM LaBel, KA AF Oldham, Timothy R. Friendlich, M. Carts, M. A. Seidleck, C. M. LaBel, Kenneth A. TI Effect of Radiation Exposure on the Endurance of Commercial Flash Memory SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 46th Annual IEEE International Nuclear and Space Radiation Effects Conference CY JUL 20-24, 2009 CL Quebec City, CANADA SP IEEE DE Endurance; flash memory; ionizing radiation; reliability ID INDUCED LEAKAGE CURRENT; SILICON DIOXIDE FILMS; TRAP GENERATION; MOS DEVICES; HOLE TRAPS; ELECTRON; FIELD; CENTERS; OXIDES; SIO2 AB We have compared the endurance of irradiated commercial NAND flash memories with that of unirradiated controls. Radiation exposure has little or no effect on the endurance of flash memories. Results are discussed in light of the relevant models for electron and hole trapping. C1 [Oldham, Timothy R.] Perot Syst Govt Serv Inc, Greenbelt, MD 20771 USA. [Friendlich, M.; Carts, M. A.; Seidleck, C. M.] MEI Technol Inc, Greenbelt, MD 20771 USA. [LaBel, Kenneth A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Oldham, TR (reprint author), Perot Syst Govt Serv Inc, Greenbelt, MD 20771 USA. EM timothy.r.oldham@nasa.gov; mark.r.friendlich@nasa.gov; martin.a.carts@nasa.gov; christina.m.seidleck@nasa.gov; ken-neth.a.label@nasa.gov NR 25 TC 17 Z9 17 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2009 VL 56 IS 6 BP 3280 EP 3284 DI 10.1109/TNS.2009.2034463 PG 5 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 530PN UT WOS:000272604900041 ER PT J AU Srour, JR Palko, JW Lo, DH Liu, SH Mueller, RL Nocerino, JC AF Srour, J. R. Palko, J. W. Lo, D. H. Liu, S. H. Mueller, R. L. Nocerino, J. C. TI Radiation Effects and Annealing Studies on Amorphous Silicon Solar Cells SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 46th Annual IEEE International Nuclear and Space Radiation Effects Conference CY JUL 20-24, 2009 CL Quebec City, CANADA SP IEEE DE Amorphous silicon; annealing; radiation effects; solar cells ID HYDROGEN COLLISION MODEL; METASTABLE DEFECTS; CONDUCTIVITY CHANGES; ENERGY-LOSS; CREATION; LIGHT; SI AB Results of radiation effects and annealing studies are presented for amorphous silicon solar cells from three manufacturers. Data scale well with ionizing dose in many cases for proton, x-ray, and electron irradiation. Significant long-term annealing occurs at room temperature. Results for small-area diodes are in reasonable agreement with findings for monolithic modules. Damage mechanisms in irradiated and illuminated devices are compared. C1 [Srour, J. R.; Palko, J. W.; Liu, S. H.; Nocerino, J. C.] Aerosp Corp, Los Angeles, CA 90009 USA. [Lo, D. H.] Northrop Grumman Corp, Redondo Beach, CA 90278 USA. [Mueller, R. L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Srour, JR (reprint author), Aerosp Corp, POB 92957, Los Angeles, CA 90009 USA. NR 24 TC 12 Z9 12 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2009 VL 56 IS 6 BP 3300 EP 3306 DI 10.1109/TNS.2009.2034329 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 530PN UT WOS:000272604900044 ER PT J AU Johnston, AH Harris, RD Miyahira, TF AF Johnston, A. H. Harris, R. D. Miyahira, T. F. TI Optocouplers: Fundamentals and Hardness Assurance for Space Applications SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 46th Annual IEEE International Nuclear and Space Radiation Effects Conference CY JUL 20-24, 2009 CL Quebec City, CANADA SP IEEE DE Displacement damage; hardness assurance; optocoupler; proton damage; space radiation effects ID LIGHT-EMITTING-DIODES; PROTON DAMAGE; RADIATION DEGRADATION; ENERGY-DEPENDENCE AB Operating principles and hardness assurance methods are discussed for various types of optocouplers. Radiation damage in light-emitting diodes is addressed, along with the impact of phototransistors and internal amplifiers on overall performance. Hardness assurance for optocouplers is contrasted with the approach used for conventional microelectronics. Methods of detecting abnormal devices are discussed, along with the implementation of special screening measurements. C1 [Johnston, A. H.; Harris, R. D.; Miyahira, T. F.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Johnston, AH (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. EM allan.h.johnston@jpl.nasa.gov; richard.d.harris@jpl.nasa.gov; tetsuo.f.miyahira@jpl.nasa.gov NR 19 TC 2 Z9 2 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2009 VL 56 IS 6 BP 3310 EP 3317 DI 10.1109/TNS.2009.2033685 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 530PN UT WOS:000272604900046 ER PT J AU Cheng, P Pellish, JA Carts, MA Phillips, S Wilcox, E Thrivikraman, T Najafizadeh, L Cressler, JD Marshall, PW AF Cheng, Peng Pellish, Jonathan A. Carts, Martin A. Phillips, Stanley Wilcox, Edward Thrivikraman, Tushar Najafizadeh, Laleh Cressler, John D. Marshall, Paul W. TI Re-Examining TID Hardness Assurance Test Protocols for SiGe HBTs SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 46th Annual IEEE International Nuclear and Space Radiation Effects Conference CY JUL 20-24, 2009 CL Quebec City, CANADA SP IEEE DE Anneal; BGR; dose rate; gamma; Gummel; phase-shifter; proton; Silicon-Germanium heterojunction bipolar transistors (SiGe HBTs) ID IONIZING-RADIATION TOLERANCE; INTERFACE TRAPS; TECHNOLOGY; UHV/CVD; IRRADIATION; PERFORMANCE; TRANSISTORS; GAMMA AB We investigate the applicability of current total ionizing dose (TID) test protocols in the context of advanced transistor technologies such as Silicon-Germanium heterojunction bipolar transistors (SiGe HBTs). In SiGe HBTs, an unexpected shift in collector current is observed during total dose irradiation. Using both device and circuit measurements, we investigate this phenomenon and assess its potential importance in hardness assurance of SiGe components. TCAD simulations were performed to explain the observed current shifts. C1 [Cheng, Peng; Phillips, Stanley; Wilcox, Edward; Thrivikraman, Tushar; Najafizadeh, Laleh; Cressler, John D.] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. [Carts, Martin A.] NASA, Goddard Space Flight Ctr, Radiat Effects & Anal Grp, MEI Technol, Greenbelt, MD 20771 USA. [Marshall, Paul W.] NASA GSFC, Brookneal, VA 24528 USA. RP Cheng, P (reprint author), Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. EM pcheng@ece.gatech.edu NR 20 TC 4 Z9 5 U1 3 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2009 VL 56 IS 6 BP 3318 EP 3325 DI 10.1109/TNS.2009.2032857 PN 1 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 530PN UT WOS:000272604900047 ER PT J AU Adell, PC Pease, RL Barnaby, HJ Rax, B Chen, XJ McClure, SS AF Adell, Philippe C. Pease, Ronald L. Barnaby, Hugh J. Rax, Bernard Chen, Xiao J. McClure, Steven S. TI Irradiation With Molecular Hydrogen as an Accelerated Total Dose Hardness Assurance Test Method for Bipolar Linear Circuits SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 46th Annual IEEE International Nuclear and Space Radiation Effects Conference CY JUL 20-24, 2009 CL Quebec City, CANADA SP IEEE DE Accelerated testing; dose rate; enhanced low-dose rate sensitivity; hydrogen; interface traps; radiation effects; radiation hardness assurance; total ionizing dose ID RADIATION-INDUCED DEGRADATION; INTERFACE-TRAP FORMATION; INTEGRATED-CIRCUITS; IONIZING-RADIATION; RATE SENSITIVITY; GAIN DEGRADATION; TRANSISTORS; ICS; MICROCIRCUITS; MECHANISMS AB High dose rate irradiation with hydrogen stress is proposed as an accelerated total dose test method for bipolar linear circuits. The method is validated across process and circuit technologies with five parts that are commonly used in space: a comparator (LM193 from National Semiconductor), a voltage regulator (HSYE-117 RH from Intersil), a voltage reference (LT1019 from Linear Technology), a JFET input op amp (OP42 from Analog Devices) and a temperature transducer (AD590 from Analog Devices). The testing technique could rapidly establish an upper bound to the low dose rate response of parts in space and help with the part selection process in the design phase of a mission. Radiation hardness assurance implications are discussed. C1 [Adell, Philippe C.; Rax, Bernard; McClure, Steven S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Pease, Ronald L.] RLP Res, Los Lunas, NM 87031 USA. [Barnaby, Hugh J.; Chen, Xiao J.] Arizona State Univ, Tempe, AZ 85287 USA. RP Adell, PC (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM philippe.c.adell@jpl.nasa.gov; lsrlpease@wildblue.net; hbarnaby@asu.edu NR 39 TC 11 Z9 12 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2009 VL 56 IS 6 BP 3326 EP 3333 DI 10.1109/TNS.2009.2033797 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 530PN UT WOS:000272604900048 ER PT J AU Ladbury, RL Benedetto, J McMorrow, D Buchner, SP Label, KA Berg, MD Kim, HS Sanders, AB Friendlich, MR Phan, A AF Ladbury, Ray L. Benedetto, Joe McMorrow, Dale Buchner, Stephen P. Label, Kenneth A. Berg, Melanie D. Kim, Hak S. Sanders, Anthony B. Friendlich, Mark R. Phan, Anthony TI TPA Laser and Heavy-Ion SEE Testing: Complementary Techniques for SDRAM Single-Event Evaluation SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 46th Annual IEEE International Nuclear and Space Radiation Effects Conference CY JUL 20-24, 2009 CL Quebec City, CANADA SP IEEE DE Quality assurance; reliability estimation; SDRAMs; single-event effects ID 2-PHOTON ABSORPTION; THROUGH-WAFER AB We report on complementary use of two-photon absorption laser and heavy-ion SEE testing to evaluate the single-event response of SDRAMs. The tandem testing technique helps disentangle the response of devices exhibiting multiple SEE modes. C1 [Ladbury, Ray L.; Label, Kenneth A.; Berg, Melanie D.; Kim, Hak S.; Sanders, Anthony B.; Friendlich, Mark R.; Phan, Anthony] NASA, MEI Technol Inc, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Benedetto, Joe] Radiat Assured Devices, Colorado Springs, CO 80919 USA. [McMorrow, Dale] USN, Res Lab, Washington, DC 20375 USA. [Buchner, Stephen P.] Global Strategies Grp, Crofton, MD 21114 USA. RP Ladbury, RL (reprint author), NASA, MEI Technol Inc, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM raymond.L.Ladbury.1@gsfc.nasa.gov; jbenedetto@radiationassureddevices.com; mcmorrow@ccs.nrl.navy.mil; stephen.buchner.ctr@nrl.navy.mil; kenneth.a.label@nasa.gov; Melanie.D.Berg@nasa.gov; hak.s.kim@nasa.gov; anthony.b.sanders@nasa.gov; mark.r.friendlich@nasa.gov; anthony.m.phan@nasa.gov NR 10 TC 9 Z9 9 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2009 VL 56 IS 6 BP 3334 EP 3340 DI 10.1109/TNS.2009.2033690 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 530PN UT WOS:000272604900049 ER PT J AU Ladbury, R Gorelick, JL McClure, SS AF Ladbury, R. Gorelick, J. L. McClure, S. S. TI Statistical Model Selection for TID Hardness Assurance SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 46th Annual IEEE International Nuclear and Space Radiation Effects Conference CY JUL 20-24, 2009 CL Quebec City, CANADA SP IEEE DE Radiation effects; reliability estimation; quality assurance AB We investigate model dependence of bounding estimates of TID degradation as a function of sample size and statistical model and develop a method for selecting the model with greatest predictive power. C1 [Ladbury, R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McClure, S. S.] NASA, Jet Prop Labs, Pasadena, CA 91109 USA. RP Ladbury, R (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Raymond.L.Ladbury.1@gsfc.nasa.gov; j.l.gorelick@att.net; Steven.S.Mcclure@jpl.nasa.gov NR 11 TC 6 Z9 6 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2009 VL 56 IS 6 BP 3354 EP 3360 DI 10.1109/TNS.2009.2033691 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 530PN UT WOS:000272604900052 ER PT J AU Diestelhorst, RM Phillips, SD Appaswamy, A Sutton, AK Cressler, JD Pellish, JA Reed, RA Vizkelethy, G Marshall, PW Gustat, H Heinemann, B Fischer, GG Knoll, D Tillack, B AF Diestelhorst, Ryan M. Phillips, Stanley D. Appaswamy, Aravind Sutton, Akil K. Cressler, John D. Pellish, Jonathan A. Reed, Robert A. Vizkelethy, Gyorgy Marshall, Paul W. Gustat, Hans Heinemann, Bernd Fischer, Gerhard G. Knoll, Dieter Tillack, Bernd TI Junction Isolation Single Event Radiation Hardening of a 200 GHz SiGe:C HBT Technology Without Deep Trench Isolation SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 46th Annual IEEE International Nuclear and Space Radiation Effects Conference CY JUL 20-24, 2009 CL Quebec City, CANADA SP IEEE DE Heterojunction bipolar transistors; radiation effects; SiGe HBT; silicon-germanium; single event effects ID SIGEHBTS; CIRCUIT AB We investigate a novel implementation of junction isolation to harden a 200 GHz SiGe: C HBT technology without deep trench isolation against single event effects. The inclusion of isolation is shown to have no effect on the dc or ac performance of the nominal device, and likewise does not reduce the HBTs inherent tolerance to TID radiation exposure on the order of a Mrad. A 69% reduction in total integrated charge collection across a slice through the center of the device was achieved. In addition, a 26% reduction in collected charge is reported for strikes to the center of the emitter. 3-D NanoTCAD simulations are performed on RHBD and control device models yielding a good match to measured results for strikes from the emitter center to 8 mu m away. This result represents one of the most effective transistor layout-level RHBD approaches demonstrated to date in SiGe. C1 [Diestelhorst, Ryan M.; Phillips, Stanley D.; Appaswamy, Aravind; Sutton, Akil K.; Cressler, John D.] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. [Pellish, Jonathan A.; Marshall, Paul W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Reed, Robert A.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. [Vizkelethy, Gyorgy] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Gustat, Hans; Heinemann, Bernd; Fischer, Gerhard G.; Knoll, Dieter; Tillack, Bernd] IHP Microelect, D-15236 Frankfurt, Oder, Germany. RP Diestelhorst, RM (reprint author), Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. EM ryan@ece.gatech.edu; stan.phillips@gatech.edu; aravinda@ece.gatech.edu; asutton@ece.gatech.edu; cressler@ece.gatech.edu; jonathan.a.pellish@nasa.gov; robert.reed@vanderbilt.edu; gvizkel@sandia.gov; pwmarshall@aol.com; gustat@ihp-microelectronics.com; heinemann@ihp-microelectronics.com NR 13 TC 6 Z9 6 U1 4 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2009 VL 56 IS 6 BP 3402 EP 3407 DI 10.1109/TNS.2009.2030801 PG 6 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 530PN UT WOS:000272604900059 ER PT J AU Najafizadeh, L Phillips, SD Moen, KA Diestelhorst, RM Bellini, M Saha, PK Cressler, JD Vizkelethy, G Turowski, M Raman, A Marshall, PW AF Najafizadeh, Laleh Phillips, Stanley D. Moen, Kurt A. Diestelhorst, Ryan M. Bellini, Marco Saha, Prabir K. Cressler, John D. Vizkelethy, Gyorgy Turowski, Marek Raman, Ashok Marshall, Paul W. TI Single Event Transient Response of SiGe Voltage References and Its Impact on the Performance of Analog and Mixed-Signal Circuits SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 46th Annual IEEE International Nuclear and Space Radiation Effects Conference CY JUL 20-24, 2009 CL Quebec City, CANADA SP IEEE DE Radiation hardening by design (RHBD); silicon-germanium (SiGe); silicon-germanium heterojunction bipolar transistor (SiGe HBT); single-event transient (SET); time-resolved ion-beam induced charge collection (TRIBICC); voltage references ID INDUCED CHARGE COLLECTION; CONTROLLED OSCILLATORS; RHBD TECHNIQUES; 3-D SIMULATION; MITIGATION; COMPARATOR; REGULATORS; TEMPERATURE; IRRADIATION; ELECTRONICS AB We investigate the single-event transient (SET) response of bandgap voltage references (BGRs) implemented in SiGe BiCMOS technology through heavy ion microbeam experiments. The SiGe BGR circuit is used to provide the input reference voltage to a voltage regulator. SiGe HBTs in the BGR circuit are struck with 36-MeV oxygen ions, and the subsequent transient responses are captured at the output of the regulator. Sensitive devices responsible for generating transients with large peak magnitudes (more than 5% of the dc output voltage) are identified. To determine the effectiveness of a transistor-layout-based radiation hardened by design (RHBD) technique with respect to immunity to SETs at the circuit level, the BGR circuit implemented with HBTs surrounded by an alternate reverse-biased junction (n-ring RHBD) is also bombarded with oxygen ions, and subsequent SETs are captured. Experimental results indicate that the number of events causing transients with peak magnitude more than 5% above the dc level have been reduced in the RHBD version; however, with the inclusion of the n-ring RHBD, new locations for the occurrence of transients (albeit with smaller peak magnitude) are created. Transients at the transistor-level are also independently captured and are presented. It is demonstrated that while the transients are short at the transistor level (ns duration), relatively long transients are obtained at the circuit level (hundreds of nanoseconds). In addition, the impact of the SET response of the BGR on the performance of an ultra-high-speed 3-bit SiGe analog-to-digital converter (ADC) is investigated through simulation. It is shown that ion-induced transients in the reference voltage could eventually lead to data corruption at the output of the ADC. C1 [Najafizadeh, Laleh; Phillips, Stanley D.; Moen, Kurt A.; Diestelhorst, Ryan M.; Bellini, Marco; Saha, Prabir K.; Cressler, John D.] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. [Vizkelethy, Gyorgy] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Turowski, Marek; Raman, Ashok] CFD Res Corp, Huntsville, AL 35805 USA. [Marshall, Paul W.] NASA, GSFC, Brookneal, VA 24528 USA. RP Najafizadeh, L (reprint author), Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. EM laleh@ece.gatech.edu; stan.phillips@gatech.edu; kmoen@ece.gatech.edu; ryan@ece.gatech.edu; bellini@ece.gatech.edu; prabirs@ece.gatech.edu; cressler@ece.gatech.edu; gvizkel@sandia.gov; mt@cfdrc.com; ar2@cfdrc.com; pwmarshall@aol.com OI Moen, Kurt/0000-0001-7697-8636 NR 38 TC 18 Z9 19 U1 1 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2009 VL 56 IS 6 BP 3469 EP 3476 DI 10.1109/TNS.2009.2034159 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 530PN UT WOS:000272604900069 ER PT J AU Heidel, DF Marshall, PW Pellish, JA Rodbell, KP LaBel, KA Schwank, JR Rauch, SE Hakey, MC Berg, MD Castaneda, CM Dodd, PE Friendlich, MR Phan, AD Seidleck, CM Shaneyfelt, MR Xapsos, MA AF Heidel, David F. Marshall, Paul W. Pellish, Jonathan A. Rodbell, Kenneth P. LaBel, Kenneth A. Schwank, James R. Rauch, Stewart E. Hakey, Mark C. Berg, Melanie D. Castaneda, Carlos M. Dodd, Paul E. Friendlich, Mark R. Phan, Anthony D. Seidleck, Christina M. Shaneyfelt, Marty R. Xapsos, Michael A. TI Single-Event Upsets and Multiple-Bit Upsets on a 45 nm SOI SRAM SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 46th Annual IEEE International Nuclear and Space Radiation Effects Conference CY JUL 20-24, 2009 CL Quebec City, CANADA SP IEEE DE Proton irradiation; silicon on insulator technology; single event upset; SRAM ID SIMULATIONS AB Experimental results are presented on single-bit-upsets (SBU) and multiple-bit-upsets (MBU) on a 45 nm SOI SRAM. The accelerated testing results show the SBU-per-bit cross section is relatively constant with technology scaling but the MBU cross section is increasing. The MBU data show the importance of acquiring and analyzing the data with respect to the location of the multiple-bit upsets since the relative location of the cells is important in determining which MBU upsets can be corrected with error correcting code (ECC) circuits. For the SOI SRAMs, a large MBU orientation effect is observed with most of the MBU events occurring along the same SRAM bit-line; allowing ECC circuits to correct most of these MBU events. C1 [Heidel, David F.; Rodbell, Kenneth P.] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Marshall, Paul W.] NASA, Brookneal, VA 24528 USA. [Pellish, Jonathan A.; LaBel, Kenneth A.; Xapsos, Michael A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Schwank, James R.; Dodd, Paul E.; Shaneyfelt, Marty R.] Sandia Natl Labs, Albuquerque, NM 87175 USA. [Rauch, Stewart E.] IBM Corp, Syst & Technol Grp, Hopewell Jct, NY 12533 USA. [Hakey, Mark C.] IBM Corp, Syst & Technol Grp, Essex Jct, VT 05452 USA. [Seidleck, Christina M.] Univ Calif Davis, Davis, CA 95616 USA. [Berg, Melanie D.; Friendlich, Mark R.; Phan, Anthony D.; Seidleck, Christina M.] MEI Technol, Greenbelt, MD 20771 USA. RP Heidel, DF (reprint author), IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA. EM heidel@us.ibm.com; pwmarshall@aol.com; jonathan.a.pellish@nasa.gov; rodbell@us.ibm.com; kenneth.a.label@nasa.gov; schwanjr@sandia.gov; rauchs@us.ibm.com; mhakey@us.ibm.com; melanie.d.berg@nasa.gov; castaneda@crocker.ucdavis.edu; pedodd@sandia.gov; Mark.R.Friendlich.1@gsfc.nasa.gov; Anthony.M.Phan.1@gsfc.nasa.gov; Christina.M.Seidleck.1@gsfc.nasa.gov; shaneymr@sandia.gov; michael.a.xapsos@nasa.gov OI Rauch, Stewart/0000-0001-5749-0889 NR 20 TC 73 Z9 79 U1 1 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2009 VL 56 IS 6 BP 3499 EP 3504 DI 10.1109/TNS.2009.2033796 PN 1 PG 6 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 530PN UT WOS:000272604900073 ER PT J AU Quinn, H Allen, GR Swift, GM Tseng, CW Graham, PS Morgan, KS Ostler, P AF Quinn, Heather Allen, Gregory R. Swift, Gary M. Tseng, Chen Wei Graham, Paul S. Morgan, Keith Shearl Ostler, Patrick TI SEU-Susceptibility of Logical Constants in Xilinx FPGA Designs SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 46th Annual IEEE International Nuclear and Space Radiation Effects Conference CY JUL 20-24, 2009 CL Quebec City, CANADA SP IEEE DE Fault tolerance; field programmable gate arrays; proton radiation effects; reliability estimation ID PROPAGATION; MITIGATION AB In Xilinx Field Programmable Gate Arrays two types of logical constants, implicit and explicit, are used to prevent unspecified signals from floating. Implicit logical constants are implemented with a weak keeper circuit, called a half latch, and are used to tie off unspecified input signals to user flip-flops. Explicit logical constants in the earlier devices are implemented using look up tables (LUTs) set to a constant value (constant LUTs) and in the newer devices are implemented using posts that provide access to the ground plane. Explicit logical constants often are used in adders and multipliers. In this paper, we will present radiation test data and analysis of the three types of logical constants. C1 [Quinn, Heather; Graham, Paul S.; Morgan, Keith Shearl] Los Alamos Natl Lab, Space Data Syst ISR 3, Los Alamos, NM 87545 USA. [Allen, Gregory R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Swift, Gary M.; Tseng, Chen Wei] Xilinx Corp, San Jose, CA 95124 USA. [Ostler, Patrick] Brigham Young Univ, Provo, UT 84602 USA. RP Quinn, H (reprint author), Los Alamos Natl Lab, Space Data Syst ISR 3, POB 1663, Los Alamos, NM 87545 USA. EM hquinn@lanl.gov; gregory.allen@jpl.nasa.gov; gary.swift@xilinx.com; weitseng@xilinx.com; grahamp@lanl.gov; morgank@lanl.gov; patchos@lanl.gov NR 12 TC 8 Z9 8 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2009 VL 56 IS 6 BP 3527 EP 3533 DI 10.1109/TNS.2009.2033925 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 530PN UT WOS:000272604900077 ER PT J AU Krawczynski, H Garson, A Martin, J Li, Q Beilicke, M Dowkontt, P Lee, K Wulf, E Kurfess, J Novikova, EI De Geronimo, G Baring, MG Harding, AK Grindlay, J Hong, JS AF Krawczynski, H. Garson, A., III Martin, J. Li, Q. Beilicke, M. Dowkontt, P. Lee, K. Wulf, E. Kurfess, J. Novikova, E. I. De Geronimo, G. Baring, M. G. Harding, A. K. Grindlay, J. Hong, J. S. TI HX-POLA Balloon-Borne Hard X-Ray Polarimeter SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Gamma-ray astronomy; gamma-ray astronomy detectors; polarization; semiconductor radiation detectors; X-ray astronomy; X-ray astronomy detectors ID POLARIZATION; CMOS; PULSARS; PROSPECTS; SPECTRUM; BURST AB We report on the design and estimated performance of a balloon-borne hard X-ray polarimeter called HX-POL. The experiment uses a combination of Si and Cadmium Zinc Telluride detectors to measure the polarization of 50 keV-400 keV X-rays from cosmic sources through the dependence of the angular distribution of Compton scattered photons on the polarization direction. On a one-day balloon flight, HX-POL would allow us to measure the polarization of bright Crab-like sources for polarization degrees well below 10%. On a longer (15-30 day) flight from Australia or Antarctica, HX-POL would be be able to measure the polarization of bright galactic X-ray sources down to polarization degrees of a few percent. Hard X-ray polarization measurements provide unique venues for the study of particle acceleration processes by compact objects and relativistic outflows. In this paper, we discuss the overall instrument design and performance. Furthermore, we present results from laboratory tests of the Si and CZT detectors. C1 [Krawczynski, H.; Garson, A., III; Martin, J.; Li, Q.; Beilicke, M.; Dowkontt, P.; Lee, K.] Washington Univ, St Louis, MO 63130 USA. [Krawczynski, H.; Garson, A., III; Martin, J.; Li, Q.; Beilicke, M.; Dowkontt, P.; Lee, K.] McDonnel Ctr Space Sci, St Louis, MO 63110 USA. [Wulf, E.; Novikova, E. I.] USN, Res Lab, High Energy Space Environm Branch, Washington, DC 20375 USA. [Kurfess, J.] Praxis Inc, Alexandria, VA 22303 USA. [De Geronimo, G.] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77001 USA. [Harding, A. K.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20770 USA. [Grindlay, J.; Hong, J. S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Krawczynski, H (reprint author), Washington Univ, St Louis, MO 63130 USA. RI Wulf, Eric/B-1240-2012; Harding, Alice/D-3160-2012 FU Washington University; NASA [NNX07AH37G] FX The work of the Washington University group was supported by NASA under Grant NNX07AH37G. NR 37 TC 6 Z9 6 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2009 VL 56 IS 6 BP 3607 EP 3613 DI 10.1109/TNS.2009.2034523 PN 2 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 530PR UT WOS:000272605300006 ER PT J AU Jordan, JA Verhoff, AM Morgan, JE Fischer, DG AF Jordan, Jacqueline A. Verhoff, Ashley M. Morgan, Julie E. Fischer, David G. TI Assessing the in vitro toxicity of the lunar dust environment using respiratory cells exposed to Al2O3 or SiO2 fine dust particles SO IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL LA English DT Article DE NASA; Dust; Respiratory cells; Moon; Silica; Aluminum ID SILICA-INDUCED APOPTOSIS; ULTRAFINE PARTICLES; PULMONARY TOXICITY; INTRATRACHEAL INSTILLATION; ALVEOLAR MACROPHAGES; EPITHELIAL-CELLS; SIMULATED LUNAR; MARTIAN DUSTS; HISTOPATHOLOGY; ACTIVATION AB Prior chemical and physical analysis of lunar soil suggests a composition of dust particles that may contribute to the development of acute and chronic respiratory disorders. In this study, fine Al2O3 (0.7 mu m) and fine SiO2 (mean 1.6 mu m) were used to assess the cellular uptake and cellular toxicity of lunar dust particle analogs. Respiratory cells, murine alveolar macrophages (RAW 264.7) and human type II epithelial (A549), were cultured as the in vitro model system. The phagocytic activity of both cell types using ultrafine (0.1 mu m) and fine (0.5 mu m) fluorescent polystyrene beads was determined. Following a 6-h exposure, RAW 264.7 cells had extended pseudopods with beads localized in the cytoplasmic region of cells. After 24 h, the macrophage cells were rounded and clumped and lacked pseudopods, which suggest impairment of phagocytosis. A549 cells did not contain beads, and after 24 h, the majority of the beads appeared to primarily coat the surface of the cells. Next, we investigated the cellular response to fine SiO2 and Al2O3 (up to 5 mg/ml). RAW 264.7 cells exposed to 1.0 mg/ml of fine SiO2 for 6 h demonstrated pseudopods, cellular damage, apoptosis, and necrosis. A549 cells showed slight toxicity when exposed to fine SiO2 for the same time and dose. A549 cells had particles clustered on the surface of the cells. Only a higher dose (5.0 mg/ml) of fine SiO2 resulted in a significant cytotoxicity to A549 cells. Most importantly, both cell types showed minimal cytotoxicity following exposure to fine Al2O3. Overall, this study suggests differential cellular toxicity associated with exposure to fine mineral dust particles. C1 [Jordan, Jacqueline A.; Morgan, Julie E.] Clayton State Univ, Dept Nat Sci, Morrow, GA 30281 USA. [Verhoff, Ashley M.; Fischer, David G.] NASA, Res & Technol Directorate, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Jordan, JA (reprint author), Clayton State Univ, Dept Nat Sci, Morrow, GA 30281 USA. EM jacquelinejordan@clayton.edu FU Ohio Aerospace Institute; NASA FX This work was supported by the Ohio Aerospace Institute and the NASA Glenn Summer Faculty Fellowship Program. Material support and NASA Internal Review was provided by Paul Greenberg, NASA Glenn Research Institute, Cleveland, OH. NR 65 TC 4 Z9 6 U1 0 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1071-2690 J9 IN VITRO CELL DEV-AN JI In Vitro Cell. Dev. Biol.-Anim. PD DEC PY 2009 VL 45 IS 10 BP 602 EP 613 DI 10.1007/s11626-009-9222-5 PG 12 WC Cell Biology; Developmental Biology SC Cell Biology; Developmental Biology GA 519FC UT WOS:000271749400005 PM 19688407 ER PT J AU Fitzgerald, W Chen, S Walz, C Zimmerberg, J Margolis, L Grivel, JC AF Fitzgerald, Wendy Chen, Silvia Walz, Carl Zimmerberg, Joshua Margolis, Leonid Grivel, Jean-Charles TI Immune suppression of human lymphoid tissues and cells in rotating suspension culture and onboard the International Space Station SO IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL LA English DT Article DE Immune response; Space flight; Microgravity ID PROTEIN-KINASE-C; SIMULATED MICROGRAVITY; EX-VIVO; IMMUNODEFICIENCY; PATHOGENESIS; ACTIVATION; INFECTION; FLIGHT AB The immune responses of human lymphoid tissue explants or cells isolated from this tissue were studied quantitatively under normal gravity and microgravity. Microgravity was either modeled by solid body suspension in a rotating, oxygenated culture vessel or was actually achieved on the International Space Station (ISS). Our experiments demonstrate that tissues or cells challenged by recall antigen or by polyclonal activator in modeled microgravity lose all their ability to produce antibodies and cytokines and to increase their metabolic activity. In contrast, if the cells were challenged before being exposed to modeled microgravity suspension culture, they maintained their responses. Similarly, in microgravity in the ISS, lymphoid cells did not respond to antigenic or polyclonal challenge, whereas cells challenged prior to the space flight maintained their antibody and cytokine responses in space. Thus, immune activation of cells of lymphoid tissue is severely blunted both in modeled and true microgravity. This suggests that suspension culture via solid body rotation is sufficient to induce the changes in cellular physiology seen in true microgravity. This phenomenon may reflect immune dysfunction observed in astronauts during space flights. If so, the ex vivo system described above can be used to understand cellular and molecular mechanisms of this dysfunction. C1 [Fitzgerald, Wendy; Chen, Silvia; Zimmerberg, Joshua; Margolis, Leonid; Grivel, Jean-Charles] NICHHD, NASA, NIH Ctr Dimens Tissue Culture 3, Lab Cellular & Mol Biophys,Program Phys Biol,NIH, Bethesda, MD 20892 USA. [Walz, Carl] NASA, Lyndon B Johnson Space Ctr, Astronaut Off, Houston, TX 77058 USA. RP Grivel, JC (reprint author), NICHHD, NASA, NIH Ctr Dimens Tissue Culture 3, Lab Cellular & Mol Biophys,Program Phys Biol,NIH, Bethesda, MD 20892 USA. EM grivelj@mail.nih.gov FU Intramural NIH HHS [ZIA HD001409-25] NR 23 TC 8 Z9 8 U1 4 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1071-2690 J9 IN VITRO CELL DEV-AN JI In Vitro Cell. Dev. Biol.-Anim. PD DEC PY 2009 VL 45 IS 10 BP 622 EP 632 DI 10.1007/s11626-009-9225-2 PG 11 WC Cell Biology; Developmental Biology SC Cell Biology; Developmental Biology GA 519FC UT WOS:000271749400007 PM 19609626 ER PT J AU Brown, MV Philip, GK Bunge, JA Smith, MC Bissett, A Lauro, FM Fuhrman, JA Donachie, SP AF Brown, Mark V. Philip, Gayle K. Bunge, John A. Smith, Matthew C. Bissett, Andrew Lauro, Federico M. Fuhrman, Jed A. Donachie, Stuart P. TI Microbial community structure in the North Pacific ocean SO ISME JOURNAL LA English DT Article DE marine; pyrosequencing; diversity; bacteria; archaea; eukaryotes ID SARGASSO SEA; DEEP-SEA; MARINE ALVEOLATE; BACTERIOPLANKTON ASSEMBLAGES; GENETIC DIVERSITY; GENUS AMOEBOPHRYA; EUPHOTIC ZONE; EUKARYOTES; BIOSPHERE; HABITATS AB We report a ribosomal tag pyrosequencing study of the phylogenetic diversity of Archaea, Bacteria and Eucarya over a depth profile at the Hawaii Ocean Time-Series Station, ALOHA. The V9 region of the SSU rRNA gene was amplified from samples representing the epi- (10 m), meso- (800 m) and bathy- (4400 m) pelagia. The primers used are expected to amplify representatives of B80% of known phylogenetic diversity across all three domains. Comparisons of unique sequences revealed a remarkably low degree of overlap between communities at each depth. The 444 147 sequence tags analyzed represented 62 975 unique sequences. Of these, 3707 (5.9%) occurred at two depths, and only 298 (0.5%) were observed at all three depths. At this level of phylogenetic resolution, Bacteria diversity decreased with depth but was still equivalent to that reported elsewhere for different soil types. Archaea diversity was highest in the two deeper samples. Eucarya observations and richness estimates are almost one order of magnitude higher than any previous marine microbial Eucarya richness estimates. The associations of many Eucarya sequences with putative parasitic organisms may have significant impacts on our understanding of the mechanisms controlling host population density and diversity, and point to a more significant role for microbial Eucarya in carbon flux through the microbial loop. We posit that the majority of sequences detected from the deep sea that have closest matches to sequences from non-pelagic sources are indeed native to the marine environment, and are possibly responsible for key metabolic processes in global biogeochemical cycles. The ISME Journal (2009) 3, 1374-1386; doi: 10.1038/ismej.2009.86; published online 23 July 2009 C1 [Brown, Mark V.; Lauro, Federico M.] Univ New S Wales, Dept Biotechnol & Biomol Sci, Sydney, NSW 2052, Australia. [Brown, Mark V.; Philip, Gayle K.; Donachie, Stuart P.] Univ Hawaii, NASA, Astrobiol Inst, Honolulu, HI 96822 USA. [Bunge, John A.] Cornell Univ, Dept Stat Sci, Ithaca, NY USA. [Smith, Matthew C.] Univ Puerto Rico, Dept Marine Sci, Mayaguez, PR 00709 USA. [Bissett, Andrew] Max Planck Inst Marine Microbiol, Bremen, Germany. [Fuhrman, Jed A.] Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USA. [Donachie, Stuart P.] Univ Hawaii, Dept Microbiol, Honolulu, HI 96822 USA. RP Brown, MV (reprint author), Univ New S Wales, Dept Biotechnol & Biomol Sci, 357A Biol Sci Bldg, Sydney, NSW 2052, Australia. EM markbrown@unsw.edu.au RI Fuhrman, Jed/C-6461-2013; OI Philip, Gayle/0000-0002-2671-5093; Lauro, Federico/0000-0002-8373-1014 FU Cornell University, New York State; National Science Foundation; NASA Astrobiology Institute [NNA04CC08A]; University of Hawaii EPSCoR REAP [EPS0554657]; Environmental Microbiology Initiative at UNSW FX We gratefully acknowledge the access provided to the computational facilities of the Bioinformatics research unit at NUI Maynooth, and the Cornell University Center for Advanced Computing, which receives funding from Cornell University, New York State, the National Science Foundation and other leading public agencies, foundations and corporations. We thank Claire Mahaffey for nutrient analysis data, Linda Woodard for overseeing the richness calculations and Shauna Murray for helpful comments on the paper. We thank the crew of the RV Kilo Moana and the Hawaii Ocean Time-Series for sample collection. This work was funded by the NASA Astrobiology Institute under Cooperative Agreement NNA04CC08A at the Institute for Astronomy (University of Hawaii-Manoa) and by a University of Hawaii EPSCoR REAP award under project EPS0554657 to SPD and MB. MB and FML acknowledge additional support from the Environmental Microbiology Initiative at UNSW. NR 46 TC 102 Z9 107 U1 6 U2 59 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1751-7362 J9 ISME J JI ISME J. PD DEC PY 2009 VL 3 IS 12 BP 1374 EP 1386 DI 10.1038/ismej.2009.86 PG 13 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 529FG UT WOS:000272500800005 PM 19626056 ER PT J AU Rabbitt, RD Breneman, KD King, C Yamauchi, AM Boyle, R Highstein, SM AF Rabbitt, Richard D. Breneman, Kathryn D. King, Curtis Yamauchi, Angela M. Boyle, Richard Highstein, Stephen M. TI Dynamic Displacement of Normal and Detached Semicircular Canal Cupula SO JARO-JOURNAL OF THE ASSOCIATION FOR RESEARCH IN OTOLARYNGOLOGY LA English DT Article DE vestibular; inner ear micromechanics; cupula regeneration; angular motion sensation; afferent response dynamics ID OPSANUS-TAU; RESPONSE DYNAMICS; AFFERENT RESPONSES; VESTIBULAR LABYRINTH; SINUSOIDAL ROTATION; RESTING DISCHARGE; SQUIRREL MONKEY; HAIR-CELL; TOADFISH; STIMULATION AB The dynamic displacement of the semicircular canal cupula and modulation of afferent nerve discharge were measured simultaneously in response to physiological stimuli in vivo. The adaptation time constant(s) of normal cupulae in response to step stimuli averaged 36 s, corresponding to a mechanical lower corner frequency for sinusoidal stimuli of 0.0044 Hz. For stimuli equivalent to 40-200 deg/s of angular head velocity, the displacement gain of the central region of the cupula averaged 53 nm per deg/s. Afferents adapted more rapidly than the cupula, demonstrating the presence of a relaxation process that contributes significantly to the neural representation of angular head motions by the discharge patterns of canal afferent neurons. We also investigated changes in time constants of the cupula and afferents following detachment of the cupula at its apex-mechanical detachment that occurs in response to excessive transcupular endolymph pressure. Detached cupulae exhibited sharply reduced adaptation time constants (300 ms-3 s, n = 3) and can be explained by endolymph flowing rapidly over the apex of the cupula. Partially detached cupulae reattached and normal afferent discharge patterns were recovered 5-7 h following detachment. This regeneration process may have relevance to the recovery of semicircular canal function following head trauma. C1 [Rabbitt, Richard D.; Breneman, Kathryn D.; Yamauchi, Angela M.] Univ Utah, Dept Bioengn, Salt Lake City, UT 84112 USA. [Boyle, Richard] NASA, Ames Res Ctr, BioVIS Ctr, Moffett Field, CA 94035 USA. [Rabbitt, Richard D.; Highstein, Stephen M.] Marine Biol Lab, Woods Hole, MA 02543 USA. [King, Curtis] EI Spectra LLC, Woodinville, WA 98077 USA. RP Rabbitt, RD (reprint author), Univ Utah, Dept Bioengn, 72 S Cent Campus Dr,Rm 2646, Salt Lake City, UT 84112 USA. EM r.rabbitt@utah.edu; richard.boyle@nasa.gov; shighstein@mbl.edu FU NIDCD NIH HHS [R01 DC06685, R01 DC006685] NR 44 TC 13 Z9 15 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1525-3961 J9 JARO-J ASSOC RES OTO JI JARO PD DEC PY 2009 VL 10 IS 4 BP 497 EP 509 DI 10.1007/s10162-009-0174-y PG 13 WC Neurosciences; Otorhinolaryngology SC Neurosciences & Neurology; Otorhinolaryngology GA 516LO UT WOS:000271543900003 PM 19513793 ER PT J AU Schultz, CJ Petersen, WA Carey, LD AF Schultz, Christopher J. Petersen, Walter A. Carey, Lawrence D. TI Preliminary Development and Evaluation of Lightning Jump Algorithms for the Real-Time Detection of Severe Weather SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID FLORIDA THUNDERSTORMS; MAPPING ARRAY; PART I; STORM; RADAR; PRECIPITATION; STEPS; ELECTRIFICATION; THUNDERCLOUDS; EVOLUTION AB Previous studies have demonstrated that rapid increases in total lightning activity (intracloud + cloud-to-ground) are often observed tens of minutes in advance of the occurrence of severe weather at the ground. These rapid increases in lightning activity have been termed "lightning jumps.'' Herein, the authors document a positive correlation between lightning jumps and the manifestation of severe weather in thunderstorms occurring across the Tennessee Valley and Washington D. C. A total of 107 thunderstorms from the Tennessee Valley; Washington, D. C.; Dallas, Texas; and Houston, Texas, were examined in this study. Of the 107 thunderstorms, 69 thunderstorms fall into the category of nonsevere and 38 into the category of severe. From the dataset of 69 isolated nonsevere thunderstorms, an average, peak, 1-min flash rate of 10 flashes perminute was determined. A variety of severe thunderstorm types were examined for this study, including a mesoscale convective system, mesoscale convective vortex, tornadic outer rainbands of tropical remnants, supercells, and pulse severe thunderstorms. Of the 107 thunderstorms, 85 thunderstorms (47 nonsevere, 38 severe) were from the Tennessee Valley and Washington, D. C., and these 85 thunderstorms tested six lightning jump algorithm configurations (Gatlin, Gatlin 45, 2 sigma, 3 sigma, Threshold 10, and Threshold 8). Performance metrics for each algorithm were then calculated, yielding encouraging results from the limited sample of 85 thunderstorms. The 2 sigma lightning jump algorithm had a high probability of detection (POD; 87%), a modest false-alarm rate (FAR; 33%), and a solid Heidke skill score (0.75). These statistics exceed current NWS warning statistics with this dataset; however, this algorithm needs further testing because there is a large difference in sample sizes. A second and more simplistic lightning jump algorithm named the Threshold 8 lightning jump algorithm also shows promise, with a POD of 81% and a FAR of 41%. Average lead times to severe weather occurrence for these two algorithms were 23 min. The overall goal of this study is to advance the development of an operationally applicable jump algorithm that can be used with either total lightning observations made from the ground, or in the near future from space using the Geostationary Operational Environmental Satellite Series R (GOES-R) Geostationary Lightning Mapper. C1 [Schultz, Christopher J.] Univ Alabama, Natl Space Sci & Technol Ctr, Dept Atmospher Sci, Huntsville, AL 35805 USA. [Petersen, Walter A.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Carey, Lawrence D.] Univ Alabama, Ctr Earth Syst Sci, Huntsville, AL 35805 USA. RP Schultz, CJ (reprint author), Univ Alabama, Natl Space Sci & Technol Ctr, Dept Atmospher Sci, 320 Sparkman Dr, Huntsville, AL 35805 USA. EM schultz@nsstc.uah.edu FU GOES-R Risk Reduction effort [NA07AANEG0284]; NOAA NWS CSTAR [NA08NWS4680034]; NOAA; UAH/NSSTC tornado; Hurricane Observations Research Center (THOR) FX This work was funded by the GOES-R Risk Reduction effort under Space Act Agreement NA07AANEG0284. Larry Carey also gratefully acknowledges partial support for this research under an award from the NOAA NWS CSTAR program (NA08NWS4680034). Walt Petersen and Larry Carey acknowledge partial funding of this research via NOAA support of the UAH/NSSTC tornado and Hurricane Observations Research Center (THOR). The authors also acknowledge John Hall and Jeff Bailey for the North Alabama LMA and DCLMA data, as well as Eugene McCaul and Dennis Buechler for their contributions and help with the LMA datasets and Hugh Christian and William Koshak of NASA MSFC for their continued support and advice throughout this study. A special thanks is given to Pat Gatlin of ESSC for his technical support with the WDSS-II system and many conversations on lightning jump algorithm development. The authors also thank members of the National Weather Service WFO Huntsville for their insights into warning operations, specifically WCM Tim Troutman (now WCM of the NWS Morristown, Tennessee, WFO), SOO Chris Darden, and Meteorologist-in-Charge Mike Coyne. NR 51 TC 56 Z9 58 U1 0 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD DEC PY 2009 VL 48 IS 12 BP 2543 EP 2563 DI 10.1175/2009JAMC2237.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 543YP UT WOS:000273618000008 ER PT J AU Liu, Z Rui, HL Teng, W Chiu, L Leptoukh, G Kempler, S AF Liu, Zhong Rui, Hualan Teng, William Chiu, Long Leptoukh, Gregory Kempler, Steven TI Developing an Online Information System Prototype for Global Satellite Precipitation Algorithm Validation and Intercomparison SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID PASSIVE MICROWAVE; RAINFALL ESTIMATION; PROFILING ALGORITHM; VISUALIZATION; RESOLUTION AB Over the decades, significant progress has been made in satellite precipitation product development. In particular, temporal resolution and timely availability have been improved by blended techniques. The resulting products, including near-real-time precipitation products, are widely used in various research and applications. However, the lack of support for user-defined areas or points of interest poses a major obstacle to quickly gaining knowledge of product quality and behavior on a local or regional scale. Current online operational intercomparison and validation services have not addressed this issue adequately. This paper describes an ongoing work to develop an online information system prototype for global satellite precipitation algorithm validation and intercomparison, to overcome current shortcomings by providing dynamic and customized information to users on the expected bias and accuracy of the products, and to give algorithm developers a better understanding of the strengths and weaknesses of different algorithmic approaches and data sources. An example is provided to illustrate the functionality and capabilities of the system, and future plans are discussed. The system being developed complements and accelerates the existing and ongoing validation activities in the community and contributes to the current NASA Tropical Rainfall Measuring Mission and the future NASA Global Precipitation Mission. C1 [Liu, Zhong; Rui, Hualan; Teng, William; Chiu, Long; Leptoukh, Gregory; Kempler, Steven] NASA, Goddard Space Flight Ctr, Goddard Earth Sci Data & Informat Serv Ctr, Greenbelt, MD 20771 USA. [Liu, Zhong; Chiu, Long] George Mason Univ, Ctr Earth Observing & Space Res, Fairfax, VA 22030 USA. [Rui, Hualan] ADNET Syst, Rockville, MD USA. [Teng, William] Wyle Informat Syst, Mclean, VA USA. RP Liu, Z (reprint author), NASA, Goddard Space Flight Ctr, Goddard Earth Sci Data & Informat Serv Ctr, Code 610-2, Greenbelt, MD 20771 USA. EM zhong.liu@nasa.gov FU NASA GES DISC FX The authors thank IPWG for assistance in providing GrADS-ready data archives for OPIT. Thanks also are extended to Steven Lloyd and Diane Bruton for improving the manuscript and to two anonymous reviewers for their constructive comments and suggestions. The NASA GES DISC supported this work. NR 30 TC 9 Z9 9 U1 1 U2 2 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD DEC PY 2009 VL 48 IS 12 BP 2581 EP 2589 DI 10.1175/2009JAMC2244.1 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 543YP UT WOS:000273618000010 ER PT J AU Brown, S Desai, S Keihm, S Lu, WW AF Brown, Shannon Desai, Shailen Keihm, Stephen Lu, Wenwen TI Microwave Radiometer Calibration on Decadal Time Scales Using On-Earth Brightness Temperature References: Application to the TOPEX Microwave Radiometer SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID VICARIOUS COLD REFERENCE; IN-FLIGHT CALIBRATION; LONG-TERM STABILITY; ALGORITHM; TMR; PERFORMANCE AB A method is described to calibrate a satellite microwave radiometer operating near 18-37 GHz on decadal time scales for the purposes of climate studies. The method uses stable on-earth brightness temperature references over the full dynamic range of on-earth brightness temperatures to stabilize the radiometer calibration and is applied to the Ocean Topography Experiment (TOPEX) Microwave Radiometer (TMR). These references are a vicarious cold reference, which is a statistical lower bound on ocean surface brightness temperature, and heavily vegetated, pseudoblackbody regions in the Amazon rain forest. The sensitivity of the on-earth references to climate variability is assessed. No significant climate sensitivity is found in the cold reference, as it is not sensitive to a climate minimum (e. g., coldest sea surface temperature or driest atmosphere) but arises because of a minimum in the sea surface radio brightness that occurs in the middle of the climatic distribution of sea surface temperatures (SSTs). The hot reference is observed to have a small climate dependency, which is most evident during the 1997/98 El Nino event. A time-dependent model for the hot reference region is constructed using meteorological fields from the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis product. This model is shown to accurately account for the small climate variations in this reference. In addition to the long-term stabilization of the brightness temperatures, an improvement to the TMR antenna pattern correction is described that removes residual geographically correlated errors, in particular errors correlated with distance to land or sea ice. The recalibrated TMR climate data record is cross-validated with the climate data record produced from the Special Sensor Microwave Imager (SSM/I). It is shown that the intersensor drift is small, providing realistic error bars for the climate trends generated from the instrument pair, as well as validating both the methodology described in this paper and the SSM/I climate data record. C1 [Brown, Shannon; Desai, Shailen; Keihm, Stephen; Lu, Wenwen] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Brown, S (reprint author), CALTECH, Jet Prop Lab, M-S 168-314,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM shannon.t.brown@jpl.nasa.gov NR 22 TC 17 Z9 18 U1 0 U2 2 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD DEC PY 2009 VL 26 IS 12 BP 2579 EP 2591 DI 10.1175/2009JTECHA1305.1 PG 13 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 530WW UT WOS:000272624200006 ER PT J AU Freund, FT Kulahci, IG Cyr, G Ling, J Winnick, M Tregloan-Reed, J Freund, MM AF Freund, Friedemann T. Kulahci, Ipek G. Cyr, Gary Ling, Julia Winnick, Matthew Tregloan-Reed, Jeremy Freund, Minoru M. TI Air ionization at rock surfaces and pre-earthquake signals SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Pre-earthquake phenomena; Ionosphere; Air ionization; Corona discharges; Thermal infrared anomalies; Earthquake lights; Animal behavior ID SEISMIC ACTIVITY; KOBE EARTHQUAKE; IGNEOUS ROCKS; LIGHTS; IONOSPHERE; ANOMALIES; MECHANISM; RADON; IRAN; PREDICTION AB Pre-earthquake signals have been widely reported, including perturbations in the ionosphere. These precursory signals, though highly diverse, may be caused by just one underlying physical process: activation of highly mobile electronic charge carriers in rocks that are subjected to ever increasing levels of stress. The charge carriers are defect electrons associated with O- in a matrix of O2-. Known as positive holes or pholes h(center dot), they flow out of the stressed rock into the unstressed rock volume, traveling meters in the laboratory, probably kilometers in the field. At the rock-air interface they cause: (i) positive surface potential, (ii) field-ionization of air molecules, (iii) corona discharges. The rate of formation of airborne ions can exceed 10(9) cm(-2) s(-1). Massive air ionization prior to major earthquakes increases the electrical conductivity in the air column and may cause ionospheric perturbations, earthquake lights, and unusual animal behavior as well as infrared emission. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Freund, Friedemann T.] San Jose State Univ, SETI Inst, Dept Phys, REU Summer 2008, San Jose, CA 95192 USA. [Freund, Friedemann T.; Freund, Minoru M.] NASA, Ames Res Ctr, Code SGE, Moffett Field, CA 94035 USA. [Freund, Friedemann T.; Kulahci, Ipek G.; Tregloan-Reed, Jeremy] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Cyr, Gary] San Jose State Univ Fdn, San Jose, CA 95192 USA. [Ling, Julia] NASA, Ames Res Ctr, NASA Acad 2007, Moffett Field, CA 94025 USA. [Ling, Julia] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Winnick, Matthew] Vassar Coll, Dept Phys & Astron, Poughkeepsie, NY 12604 USA. [Tregloan-Reed, Jeremy] Univ Lancaster, Dept Phys, Lancaster LA1 4YQ, England. RP Freund, FT (reprint author), San Jose State Univ, SETI Inst, Dept Phys, REU Summer 2008, 515 N Whisman Rd, San Jose, CA 95192 USA. EM friedemann.t.freund@nasa.gov RI Kulahci, Ipek/A-7105-2009 OI Kulahci, Ipek/0000-0003-0104-0365 FU NASA [NNX08AG81G, NNX07AU04G]; NSF-REU FX Supported by NASA grants "Earth Surface and Interior" #NNX08AG81G and "Exobiology" #NNX07AU04G, by the 2007 NASA Ames Academy, and a 2008 NSF-REU grant to the Department of Physics, SJSU. We thank the staff of the NASA Ames EEL (Engineering Evaluation Laboratory) Jerry Wang, Lynn Hofland, and Frank Pichay. NR 77 TC 48 Z9 50 U1 6 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 EI 1879-1824 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD DEC PY 2009 VL 71 IS 17-18 BP 1824 EP 1834 DI 10.1016/j.jastp.2009.07.013 PG 11 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 535QK UT WOS:000272985200017 ER PT J AU Truhlik, V Triskova, L Bilitza, D Podolska, K AF Truhlik, Vladimir Triskova, Ludmila Bilitza, Dieter Podolska, Katerina TI Variations of daytime and nighttime electron temperature and heat flux in the upper ionosphere, topside ionosphere and lower plasmasphere for low and high solar activity SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article DE Electron temperature; Solar activity variation; Latitudinal and field aligned profiles; Heat flux ID F-REGION; CYCLE VARIATIONS; MODEL; ALTITUDE; SATELLITE; DENSITY; ISIS-1; IRI AB A database of the electron temperature (T(e)) comprising of most of the available LEO satellite measurements is used for Studying the solar activity variations of T(e). The T(e) data are grouped for two levels of solar activity (low LSA and high HSA). five altitude ranges between 350 and 2000 km, and day and night. By fitting a theoretical expression to the T(e) values we obtain variation of T(e) along magnetic held lines and heat flux for LSA and HSA. We have found that T(e) increases with increase in solar activity at low and mid-latitudes during nighttime at all altitudes studied. During daytime the T(e) response to solar activity depends on latitude, altitude, and season. This analysis shows existence of anti-correlation between T(e) and solar activity at mid-latitudes below 700 km during the equinox and winter day hours. Heat fluxes show small latitudinal dependence for daytime but substantial for nighttime. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Truhlik, Vladimir; Triskova, Ludmila; Podolska, Katerina] Inst Atmospher Phys, Prague 1431 4, Czech Republic. [Bilitza, Dieter] NASA, Goddard Space Flight Ctr, Heliophys Lab, Greenbelt, MD 20771 USA. [Bilitza, Dieter] George Mason Univ, Fairfax, VA 22030 USA. RP Truhlik, V (reprint author), Inst Atmospher Phys, Bocni 2, Prague 1431 4, Czech Republic. EM vtr@ufa.cas.cz RI Podolska, Katerina/G-1946-2014; Triskova, Ludmila/H-6503-2014; Truhlik, Vladimir/H-6971-2014 OI Truhlik, Vladimir/0000-0002-6624-4388 FU Agency of the Academy of Sciences of the Czech Republic [A300420603]; NASA [NNH06CD17C] FX We are very grateful to K-I. Oyama, J. Smilauer, M. Hairston, F. Rich, K.W. Min and RK. Bhuyan for providing data from Hinotori, Intercosmos (19, 24, 25), DMSP (F12, F13, F14, and F15), DMSP (F10 and F11), KOMPSAT-1 and SROSS C2 satellites, respectively. We are also grateful to NASA's National Space Science Data Center (NSSDQ and Space Physics Data Facility (SPDF) for providing other satellite T, data and also the Modelweb interface. This study was supported by the Grant A300420603 of the Grant Agency of the Academy of Sciences of the Czech Republic and by the NASA Grant NNH06CD17C. NR 21 TC 4 Z9 4 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD DEC PY 2009 VL 71 IS 17-18 BP 2055 EP 2063 DI 10.1016/j.jastp.2009.09.013 PG 9 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 535QK UT WOS:000272985200044 ER PT J AU Sun, DL Lau, WKM Kafatos, M Boybeyi, Z Leptoukh, G Yang, CW Yang, RX AF Sun, Donglian Lau, W. K. M. Kafatos, Menas Boybeyi, Zafer Leptoukh, Gregory Yang, Chaiwei Yang, Ruixin TI Numerical Simulations of the Impacts of the Saharan Air Layer on Atlantic Tropical Cyclone Development SO JOURNAL OF CLIMATE LA English DT Article ID NORTH-ATLANTIC; WESTERN PACIFIC; MINERAL DUST; WATER-VAPOR; MODEL; CLIMATE; CONVECTION; AEROSOLS; RAINFALL; PARAMETERIZATION AB In this study, the role of the Saharan air layer (SAL) is investigated in the development and intensification of tropical cyclones (TCs) via modifying environmental stability and moisture, using multisensor satellite data, long-term TC track and intensity records, dust data, and numerical simulations with a state-of-the-art Weather Research and Forecasting model (WRF). The long-term relationship between dust and Atlantic TC activity shows that dust aerosols are negatively associated with hurricane activity in the Atlantic basin, especially with the major hurricanes in the western Atlantic region. Numerical simulations with the WRF for specific cases during the NASA African Monsoon Multidisciplinary Analyses (NAMMA) experiment show that, when vertical temperature and humidity profiles from the Atmospheric Infrared Sounder (AIRS) were assimilated into the model, detailed features of the warm and dry SAL, including the entrainment of dry air wrapping around the developing vortex, are well simulated. Active tropical disturbances are found along the southern edge of the SAL. The simulations show an example where the dry and warm air of the SAL intruded into the core of a developing cyclone, suppressing convection and causing a spin down of the vortical circulation. The cyclone eventually weakened. To separate the contributions from the warm temperature and dry air associated with the SAL, two additional simulations were performed, one assimilating only AIRS temperature information (AIRST) and one assimilating only AIRS humidity information (AIRSH) while keeping all other conditions the same. The AIRST experiments show almost the same simulations as the full AIRS assimilation experiments, whereas the AIRSH is close to the non-AIRS simulation. This is likely due to the thermal structure of the SAL leading to low-level temperature inversion and increased stability and vertical wind shear. These analyses suggest that dry air entrainment and the enhanced vertical wind shear may play the direct roles in leading to the TC suppression. On the other hand, the warm SAL temperature may play the indirect effects by enhancing vertical wind shear; increasing evaporative cooling; and initiating mesoscale downdrafts, which bring dry air from the upper troposphere to the lower levels. C1 [Sun, Donglian; Boybeyi, Zafer; Yang, Chaiwei; Yang, Ruixin] George Mason Univ, Coll Sci, Dept Geog & Geoinformat Sci, Fairfax, VA 22030 USA. [Lau, W. K. M.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Kafatos, Menas] Chapman Univ, Orange, CA USA. RP Sun, DL (reprint author), George Mason Univ, Coll Sci, Dept Geog & Geoinformat Sci, Room 252,Res Bldg 1,4400 Univ Dr, Fairfax, VA 22030 USA. EM dsun@gmu.edu RI Lau, William /E-1510-2012; Yang, Chaowei/A-9881-2017; OI Lau, William /0000-0002-3587-3691; Yang, Chaowei/0000-0001-7768-4066 FU NASA [NNX06AF30G, NNG06GB54G] FX This work was supported by NASA Grants NNX06AF30G and NNG06GB54G. The numerical simulations with the WRF were performed at the UCAR's supercomputers under NSF Grant NSF0543330. We thank Alok Sahoo for his helps to process the MODIS data. We thank Dr. Joe Prospero for providing the Barbados dust observation data and helpful comments. We are grateful to the editor Dr. Anthony D. Del Genio for his precious time and selfless contributions to the community and for his serious efforts to keep and improve the quality of this journal. We appreciate the reviewers for their detailed and constructive comments on our manuscript. NR 54 TC 23 Z9 23 U1 1 U2 17 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD DEC 1 PY 2009 VL 22 IS 23 BP 6230 EP 6250 DI 10.1175/2009JCLI2738.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 526GC UT WOS:000272274700006 ER PT J AU Hong, G Yang, P Baum, BA Heymsfield, AJ Xu, KM AF Hong, Gang Yang, Ping Baum, Bryan A. Heymsfield, Andrew J. Xu, Kuan-Man TI Parameterization of Shortwave and Longwave Radiative Properties of Ice Clouds for Use in Climate Models SO JOURNAL OF CLIMATE LA English DT Article ID SINGLE-SCATTERING PROPERTIES; DISCRETE-DIPOLE APPROXIMATION; AIRBORNE SIMULATOR IMAGERY; CIRRUS CLOUDS; LIGHT-SCATTERING; OPTICAL-PROPERTIES; ACCURATE PARAMETERIZATION; NONSPHERICAL PARTICLES; ABSORPTION PROPERTIES; SIZE DISTRIBUTIONS AB Climate modeling and prediction require that the parameterization of the radiative effects of ice clouds be as accurate as possible. The radiative properties of ice clouds are highly sensitive to the single-scattering properties of ice particles and ice cloud microphysical properties such as particle habits and size distributions. In this study, parameterizations for shortwave (SW) and longwave (LW) radiative properties of ice clouds are developed for three existing schemes using ice cloud microphysical properties obtained from five field campaigns and broadband-averaged single-scattering properties of nonspherical ice particles as functions of the effective particle size D-e (defined as 1.5 times the ratio of total volume to total projected area), which include hexagonal solid columns and hollow columns, hexagonal plates, six-branch bullet rosettes, aggregates, and droxtals. A combination of the discrete ordinates radiative transfer model and a line-by-line model is used to simulate ice cloud radiative forcing (CRF) at both the surface and the top of the atmosphere (TOA) for the three redeveloped parameterization schemes. The differences in CRF for different parameterization schemes are in the range of 25 to 5 W m(-2). In general, the large differences in SW and total CRF occur for thick ice clouds, whereas the large differences in LW CRF occur for ice clouds with small ice particles (D-e less than 20 mu m). The redeveloped parameterization schemes are then applied to the radiative transfer models used for climate models. The ice cloud optical and microphysical properties from the Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product over a granule and the collocated atmospheric profiles from the Atmospheric Infrared Sounder (AIRS) product are input into these radiative transfer models to compare the differences in CRF between the redeveloped and existing parameterization schemes. Although differences between these schemes are small in the LW CRF, the differences in the SW CRF are quite large. C1 [Hong, Gang; Yang, Ping] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Baum, Bryan A.] Univ Wisconsin, Ctr Space Sci & Engn, Madison, WI 53706 USA. [Heymsfield, Andrew J.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Xu, Kuan-Man] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Hong, G (reprint author), Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. EM hong@ariel.met.tamu.edu RI Baum, Bryan/B-7670-2011; Yang, Ping/B-4590-2011; Heymsfield, Andrew/E-7340-2011; Hong, Gang/A-2323-2012; Xu, Kuan-Man/B-7557-2013 OI Baum, Bryan/0000-0002-7193-2767; Xu, Kuan-Man/0000-0001-7851-2629 FU NASA [NNL06AA01A, NNX08AF68G, NNX08AF81G]; National Science Foundation (NSF) [ATM-0239605] FX This research was supported in part by a NASA Research Grants NNL06AA01A and NNX08AF68G. The authors specifically acknowledge the support and encouragement of Dr. Donald Anderson and Dr. Hal Maring at NASA Headquarters. Dr. Baum's research is supported by NASA Grant NNX08AF81G. This study is also partially supported by the National Science Foundation (NSF) Physical Meteorology Program (ATM-0239605). NR 88 TC 19 Z9 19 U1 1 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD DEC 1 PY 2009 VL 22 IS 23 BP 6287 EP 6312 DI 10.1175/2009JCLI2844.1 PG 26 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 526GC UT WOS:000272274700009 ER PT J AU Grecu, M Olson, WS Shie, CL L'Ecuyer, TS Tao, WK AF Grecu, Mircea Olson, William S. Shie, Chung-Lin L'Ecuyer, Tristan S. Tao, Wei-Kuo TI Combining Satellite Microwave Radiometer and Radar Observations to Estimate Atmospheric Heating Profiles SO JOURNAL OF CLIMATE LA English DT Article ID MESOSCALE CONVECTIVE SYSTEMS; TRMM PRECIPITATION RADAR; TROPICAL CLOUD CLUSTERS; SOUTH CHINA SEA; PART II; RETRIEVAL ALGORITHMS; RAINFALL RETRIEVAL; SPECTRAL RETRIEVAL; ENERGY BUDGET; TOGA COARE AB In this study, satellite passive microwave sensor observations from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) are utilized to make estimates of latent + eddy sensible heating rates (Q(1) - Q(R)) where Q(1) is the apparent heat source and Q(R) is the radiative heating rate in regions of precipitation. The TMI heating algorithm (herein called TRAIN) is calibrated or "trained" using relatively accurate estimates of heating based on spaceborne Precipitation Radar (PR) observations collocated with the TMI observations over a one-month period. The heating estimation technique is based on a previously described Bayesian methodology, but with improvements in supporting cloud-resolving model simulations, an adjustment of precipitation echo tops to compensate for model biases, and a separate scaling of convective and stratiform heating components that leads to an approximate balance between estimated vertically integrated condensation and surface precipitation. Estimates of Q(1) - Q(R) from TMI compare favorably with the PR training estimates and show only modest sensitivity to the cloud-resolving model simulations of heating used to construct the training data. Moreover, the net condensation in the corresponding annual mean satellite latent heating profile is within a few percent of the annual mean surface precipitation rate over the tropical and subtropical oceans where the algorithm is applied. Comparisons of Q(1) produced by combining TMI Q(1) - Q(R) with independently derived estimates of Q(R) show reasonable agreement with rawinsonde-based analyses of Q(1) from two field campaigns, although the satellite estimates exhibit heating profile structures with sharper and more intense heating peaks than the rawinsonde estimates. C1 [Grecu, Mircea; Tao, Wei-Kuo] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Grecu, Mircea; Shie, Chung-Lin] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Olson, William S.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [L'Ecuyer, Tristan S.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. RP Grecu, M (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Code 613-1, Greenbelt, MD 20771 USA. EM mircea.grecu-1@nasa.gov RI L'Ecuyer, Tristan/C-7040-2013; L'Ecuyer, Tristan/E-5607-2012 OI L'Ecuyer, Tristan/0000-0002-7584-4836 FU NASA's Energy and Water Cycle Study (NEWS); Precipitation Measurement Missions (PMM) FX The authors greatly appreciate the efforts of Richard Johnson and Paul Ciesielski of Colorado State University and Masaki Katsumata of JAMSTEC, who made available estimates of surface rain rate and heating profiles from the SCSMEX and MISMO campaigns, respectively, and provided valuable discussions of the quality of their estimates. The advective forcing for the KWAJEX cloud-resolving simulation was kindly provided by Minghua Zhang of Stony Brook University. We also thank Shoichi Shige of Osaka Prefecture University and Stephen Lang of Science Systems and Applications, Inc., for their insights regarding the modeling of convection and heating algorithm development. This research was supported by NASA's Energy and Water Cycle Study (NEWS) and Precipitation Measurement Missions (PMM) programs. NR 48 TC 14 Z9 14 U1 0 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD DEC 1 PY 2009 VL 22 IS 23 BP 6356 EP 6376 DI 10.1175/2009JCLI3020.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 526GC UT WOS:000272274700013 ER PT J AU Kim, D Sperber, K Stern, W Waliser, D Kang, IS Maloney, E Wang, W Weickmann, K Benedict, J Khairoutdinov, M Lee, MI Neale, R Suarez, M Thayer-Calder, K Zhang, G AF Kim, D. Sperber, K. Stern, W. Waliser, D. Kang, I. -S. Maloney, E. Wang, W. Weickmann, K. Benedict, J. Khairoutdinov, M. Lee, M. -I. Neale, R. Suarez, M. Thayer-Calder, K. Zhang, G. TI Application of MJO Simulation Diagnostics to Climate Models SO JOURNAL OF CLIMATE LA English DT Review ID MADDEN-JULIAN OSCILLATION; GENERAL-CIRCULATION MODEL; TROPICAL INTRASEASONAL OSCILLATION; COUPLED EQUATORIAL WAVES; CLOUD-RESOLVING MODEL; ASIAN SUMMER MONSOON; MCFARLANE CONVECTION PARAMETERIZATION; OUTGOING LONGWAVE RADIATION; STATISTICAL FORECAST MODEL; EXTENDED RANGE FORECASTS AB The ability of eight climate models to simulate the Madden-Julian oscillation (MJO) is examined using diagnostics developed by the U. S. Climate Variability and Predictability (CLIVAR) MJO Working Group. Although the MJO signal has been extracted throughout the annual cycle, this study focuses on the boreal winter (November-April) behavior. Initially, maps of the mean state and variance and equatorial space-time spectra of 850-hPa zonal wind and precipitation are compared with observations. Models best represent the intraseasonal space-time spectral peak in the zonal wind compared to that of precipitation. Using the phase-space representation of the multivariate principal components (PCs), the life cycle properties of the simulated MJOs are extracted, including the ability to represent how the MJO evolves from a given subphase and the associated decay time scales. On average, the MJO decay (e-folding) time scale for all models is shorter (similar to 20-29 days) than observations (similar to 31 days). All models are able to produce a leading pair of multivariate principal components that represents eastward propagation of intraseasonal wind and precipitation anomalies, although the fraction of the variance is smaller than observed for all models. In some cases, the dominant time scale of these PCs is outside of the 30-80-day band. Several key variables associated with the model's MJO are investigated, including the surface latent heat flux, boundary layer (925 hPa) moisture convergence, and the vertical structure of moisture. Low-level moisture convergence ahead (east) of convection is associated with eastward propagation in most of the models. A few models are also able to simulate the gradual moistening of the lower troposphere that precedes observed MJO convection, as well as the observed geographical difference in the vertical structure of moisture associated with the MJO. The dependence of rainfall on lower tropospheric relative humidity and the fraction of rainfall that is stratiform are also discussed, including implications these diagnostics have for MJO simulation. Based on having the most realistic intraseasonal multivariate empirical orthogonal functions, principal component power spectra, equatorial eastward propagating outgoing longwave radiation (OLR), latent heat flux, low-level moisture convergence signals, and vertical structure of moisture over the Eastern Hemisphere, the superparameterized Community Atmosphere Model (SPCAM) and the ECHAM4/Ocean Isopycnal Model (OPYC) show the best skill at representing the MJO. C1 [Kim, D.; Kang, I. -S.] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151747, South Korea. [Sperber, K.] PCMDI, Lawrence Livermore Natl Lab, Livermore, CA USA. [Stern, W.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Waliser, D.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Maloney, E.; Benedict, J.; Thayer-Calder, K.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Wang, W.; Suarez, M.] NOAA, Natl Ctr Environm Predict, Camp Springs, MD USA. [Weickmann, K.] NOAA, Div Phys Sci, Earth Syst Res Lab, Boulder, CO USA. [Khairoutdinov, M.] SUNY Stony Brook, Inst Terr & Planetary Atmospheres, Stony Brook, NY 11794 USA. [Lee, M. -I.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lee, M. -I.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Neale, R.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Zhang, G.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. RP Kim, D (reprint author), Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151747, South Korea. EM kim@climate.snu.ac.kr RI Benedict, James/M-5824-2013; Maloney, Eric/A-9327-2008; Sperber, Kenneth/H-2333-2012; 안, 민섭/D-9972-2015; OI Benedict, James/0000-0001-5115-5131; Maloney, Eric/0000-0002-2660-2611; Lee, Myong-In/0000-0001-8983-8624 FU Korea Meteorological Administration Research and Development Program [CATER_2006-4206]; BK21; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NSF [ATM-0832868]; National Oceanic and Atmospheric Administration [NA050AR4310006] FX The MJOWG wishes to acknowledge and thank U. S. CLIVAR and International CLIVAR for supporting this working group and its activities. We would like to specifically acknowledge the administrative support on behalf of the MJOWG by Cathy Stevens of the U. S. CLIVAR Office. D. Kim and I.-S. Kang have been supported by the Korea Meteorological Administration Research and Development Program under Grant CATER_2006-4206 and the BK21 program. K. Sperber was supported under the auspices of the U.S. Department of Energy Office of Science, Climate Change Prediction Program by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. D. Waliser's contributions to this study were carried out on behalf of the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). E. Maloney was supported by the Climate and Large-Scale Dynamics program of the NSF under Grant ATM-0832868, and under Award NA050AR4310006 from the National Oceanic and Atmospheric Administration. We thank Dr. M. Wheeler (Centre for Australian Weather and Climate Research) and Prof. B. Wang (University of Hawaii) for helpful comments. NR 105 TC 166 Z9 169 U1 4 U2 37 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD DEC 1 PY 2009 VL 22 IS 23 BP 6413 EP 6436 DI 10.1175/2009JCLI3063.1 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 526GC UT WOS:000272274700016 ER PT J AU Gutzler, DS Long, LN Schemm, J Roy, SB Bosilovich, M Collier, JC Kanamitsu, M Kelly, P Lawrence, D Lee, MI Sanchez, RL Mapes, B Mo, K Nunes, A Ritchie, EA Roads, J Schubert, S Wei, H Zhang, GJ AF Gutzler, D. S. Long, L. N. Schemm, J. Roy, S. Baidya Bosilovich, M. Collier, J. C. Kanamitsu, M. Kelly, P. Lawrence, D. Lee, M. -I. Lobato Sanchez, R. Mapes, B. Mo, K. Nunes, A. Ritchie, E. A. Roads, J. Schubert, S. Wei, H. Zhang, G. J. TI Simulations of the 2004 North American Monsoon: NAMAP2 SO JOURNAL OF CLIMATE LA English DT Article ID GULF-OF-CALIFORNIA; SOUTHWESTERN UNITED-STATES; SEA-SURFACE TEMPERATURES; DIURNAL CYCLE; CONVECTIVE PARAMETERIZATION; HORIZONTAL RESOLUTION; SUMMER PRECIPITATION; MEXICAN MONSOON; NCAR CCM3; MODEL AB The second phase of the North American Monsoon Experiment (NAME) Model Assessment Project (NAMAP2) was carried out to provide a coordinated set of simulations from global and regional models of the 2004 warm season across the North American monsoon domain. This project follows an earlier assessment, called NAMAP, that preceded the 2004 field season of the North American Monsoon Experiment. Six global and four regional models are all forced with prescribed, time-varying ocean surface temperatures. Metrics for model simulation of warm season precipitation processes developed in NAMAP are examined that pertain to the seasonal progression and diurnal cycle of precipitation, monsoon onset, surface turbulent fluxes, and simulation of the low-level jet circulation over the Gulf of California. Assessment of the metrics is shown to be limited by continuing uncertainties in spatially averaged observations, demonstrating that modeling and observational analysis capabilities need to be developed concurrently. Simulations of the core subregion (CORE) of monsoonal precipitation in global models have improved since NAMAP, despite the lack of a proper low-level jet circulation in these simulations. Some regional models run at higher resolution still exhibit the tendency observed in NAMAP to overestimate precipitation in the CORE subregion; this is shown to involve both convective and resolved components of the total precipitation. The variability of precipitation in the Arizona/New Mexico (AZNM) subregion is simulated much better by the regional models compared with the global models, illustrating the importance of transient circulation anomalies (prescribed as lateral boundary conditions) for simulating precipitation in the northern part of the monsoon domain. This suggests that seasonal predictability derivable from lower boundary conditions may be limited in the AZNM subregion. C1 [Gutzler, D. S.] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Long, L. N.] Wyle Informat Syst, Mclean, VA USA. [Schemm, J.; Mo, K.] NOAA, Climate Predict Ctr, Camp Springs, MD USA. [Roy, S. Baidya] Univ Illinois, Urbana, IL USA. [Bosilovich, M.; Lee, M. -I.; Schubert, S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Collier, J. C.; Kanamitsu, M.; Nunes, A.; Roads, J.; Zhang, G. J.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Kelly, P.; Mapes, B.] Univ Miami, Coral Gables, FL 33124 USA. [Lawrence, D.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Lee, M. -I.] Univ Maryland, Baltimore, MD 21201 USA. [Lobato Sanchez, R.] Inst Mexicano Tecnol Agua, Jiutepec, Mexico. [Ritchie, E. A.] Univ Arizona, Tucson, AZ USA. [Wei, H.] NOAA, Environm Modeling Ctr, Camp Springs, MD USA. RP Gutzler, DS (reprint author), Univ New Mexico, Dept Earth & Planetary Sci, MSC03-2040, Albuquerque, NM 87131 USA. EM gutzler@unm.edu RI Nunes, Ana/G-6160-2013; Mapes, Brian/A-5647-2010; Lawrence, David/C-4026-2011; Bosilovich, Michael/F-8175-2012; OI Nunes, Ana/0000-0002-1877-2688; Gutzler, David/0000-0001-6476-8412; Lawrence, David/0000-0002-2968-3023; Lee, Myong-In/0000-0001-8983-8624 FU UNM; CPC; University of Miami; NOAA/Climate Prediction Program for the Americas FX Support for analysis of the NAMAP2 output at UNM and CPC, and for the NAMAP2 online atlas at the University of Miami, was derived from a grant from the NOAA/Climate Prediction Program for the Americas. The UCAR Joint Office for Science Support created and maintained the NAMAP2 Web page as part of overall NAME Web support. We thank Dr. David Gochis for providing NERN rainfall data. Dr. Gochis and two anonymous referees provided very constructive manuscript reviews. NR 53 TC 18 Z9 18 U1 0 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD DEC PY 2009 VL 22 IS 24 BP 6716 EP 6740 DI 10.1175/2009JCLI3138.1 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 540SJ UT WOS:000273359000013 ER PT J AU Hinderer, J de Linage, C Boy, JP Gegout, P Masson, F Rogister, Y Amalvict, M Pfeffer, J Littel, F Luck, B Bayer, R Champollion, C Collard, P Le Moigne, N Diament, M Deroussi, S de Viron, O Biancale, R Lernoine, JM Bonvalot, S Gabalda, G Bock, O Genthon, P Boucher, M Favreau, G Seguis, L Delclaux, F Cappelaere, B Oi, M Descloitres, M Galle, S Laurent, JP Legchenko, A Bouin, MN AF Hinderer, J. de Linage, C. Boy, J. -P. Gegout, P. Masson, F. Rogister, Y. Amalvict, M. Pfeffer, J. Littel, F. Luck, B. Bayer, R. Champollion, C. Collard, P. Le Moigne, N. Diament, M. Deroussi, S. de Viron, O. Biancale, R. Lernoine, J. -M. Bonvalot, S. Gabalda, G. Bock, O. Genthon, P. Boucher, M. Favreau, G. Seguis, L. Delclaux, F. Cappelaere, B. Oi, M. Descloitres, M. Galle, S. Laurent, J. -P Legchenko, A. Bouin, M. -N TI The GHYRAF (Gravity and Hydrology in Africa) experiment: Description and first results SO JOURNAL OF GEODYNAMICS LA English DT Article; Proceedings Paper CT 16th International Symposium on Earth Tides CY SEP 01-05, 2008 CL Jena, GERMANY DE Gravity; GPS; Water storage; Sahel; Monsoon ID LAKE CHAD BASIN; SUPERCONDUCTING GRAVIMETERS; TIME VARIATIONS; SEMIARID NIGER; WATER-BALANCE; GRACE; STORAGE; FIELD; CATCHMENT; RECHARGE AB This paper is the first presentation of a project called GHYRAF (Gravity and Hydrology in Africa) devoted to the detailed comparison between models and multidisciplinary observations (ground and satellite gravity, geodesy, hydrology, meteorology) of the variations of water storage in Africa from the Sahara and part to the monsoon equatorial part. We describe the various actions planned in this project. We first detail the actions planned in gravimetry which consist in two main surface gravity experiments: on the one hand the periodic repetition of absolute gravity measurements along a north-south monsoonal gradient of rainfall in West Africa, going from Tamanrasset (20 mm/year) in southern Algeria to Djougou (1200 mm/year) in central Benin; on the other hand the continuous measurements at Djougou (Benin) with a superconducting gravimeter to monitor with a higher sampling rate the gravity changes related to an extreme hydrological cycle. Another section describes the actions planned in GPS which will maintain and develop the present-day existing network in West Africa. The third type of actions deals with hydrology and we review the three sites that will be investigated in this joint hydrogeophysics project namely Wankama (near Niamey) and Bagara (near Diffa) in the Niger Sahelian zone and Nalohou (near Djougou) in the Benin monsoon zone. We also address the question of the ground truth of satellite-derived missions: in this context the GHYRAF project will lead to test the hydrology models by comparison both with in situ and satellite data such as GRACE, as well as to an important increase of our knowledge of the seasonal water cycle in Africa. We finally present preliminary results in GPS based on the analysis of the vertical motion of the Djougou site. The resulting absolute gravity changes related to the 2008 monsoon are finally given. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Hinderer, J.; de Linage, C.; Boy, J. -P.; Gegout, P.; Masson, F.; Rogister, Y.; Amalvict, M.; Pfeffer, J.; Littel, F.; Luck, B.] Univ Strasbourg, CNRS, UMR 7516, Inst Phys Globe Strasbourg, F-67084 Strasbourg, France. [Bayer, R.; Champollion, C.; Collard, P.; Le Moigne, N.] Univ Montpellier 2, CNRS, Geosci Montpellier UMR 5243, F-34095 Montpellier, France. [Diament, M.; Deroussi, S.; de Viron, O.] Univ Paris 07, CNRS, IPGP, Inst Phys Globe Paris,UMR 7154, F-75252 Paris, France. [Biancale, R.; Lernoine, J. -M.] Univ Toulouse 3, CNRS, Dynam Terrestre & Planetaire UMR 5562, F-31400 Toulouse, France. [Bonvalot, S.; Gabalda, G.] Univ Toulouse 3, CNRS, IRD, Lab Mecan & Transferts Geol,UMR 5563, F-31400 Toulouse, France. [Bock, O.] Lab Rech Geodesie IGN, F-77455 Marne La Vallee, France. [Genthon, P.; Boucher, M.; Favreau, G.; Seguis, L.; Delclaux, F.; Cappelaere, B.; Oi, M.] Univ Montpellier 2, CNRS, IRD, Hydrosci Montpellier UMR 5569, F-34095 Montpellier, France. [Descloitres, M.; Galle, S.; Laurent, J. -P; Legchenko, A.] Univ Grenoble 1, CNRS, INPG,Lab Etud Transferts Hydrol & Environm, IRD,UMR 5564, F-38041 Grenoble, France. [de Linage, C.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Boy, J. -P.] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. [Bouin, M. -N] CNRM Ctr Meteorol Marine, F-29604 Brest, France. RP Hinderer, J (reprint author), Univ Strasbourg, CNRS, UMR 7516, Inst Phys Globe Strasbourg, F-67084 Strasbourg, France. EM jacques.hinderer@eost.u-strasbg.fr RI Legchenko, Anatoly/L-1706-2016; Diament, Michel/F-8553-2010; Favreau, guillaume/A-7573-2008; Boucher, Marie/M-7393-2016; BONVALOT, Sylvain/F-8410-2014; Boy, Jean-Paul/E-6677-2017; Champollion, Cedric/E-9824-2010; Laurent, Jean-Paul/B-3450-2010; Galle, Sylvie/D-4935-2013; de Viron, Olivier/N-6647-2014; champollion, cedric/J-6447-2015; Bouin, Marie-Noelle/P-9236-2015 OI Legchenko, Anatoly/0000-0002-1336-8520; Favreau, guillaume/0000-0001-7358-9301; Boucher, Marie/0000-0003-4994-2448; Boy, Jean-Paul/0000-0003-0259-209X; Galle, Sylvie/0000-0002-3100-8510; de Viron, Olivier/0000-0003-3112-9686; champollion, cedric/0000-0001-5550-3252; Bouin, Marie-Noelle/0000-0002-0437-6561 NR 58 TC 15 Z9 15 U1 2 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0264-3707 J9 J GEODYN JI J. Geodyn. PD DEC PY 2009 VL 48 IS 3-5 SI SI BP 172 EP 181 DI 10.1016/j.jog.2009.09.014 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 533YP UT WOS:000272862500012 ER PT J AU Boy, JP Longuevergne, L Boudin, F Jacob, T Lyard, F Llubes, M Florsch, N Esnoult, MF AF Boy, Jean-Paul Longuevergne, Laurent Boudin, Frederic Jacob, Thomas Lyard, Florent Llubes, Muriel Florsch, Nicolas Esnoult, Marie-France TI Modelling atmospheric and induced non-tidal oceanic loading contributions to surface gravity and tilt measurements SO JOURNAL OF GEODYNAMICS LA English DT Article; Proceedings Paper CT 16th International Symposium on Earth Tides CY SEP 01-05, 2008 CL Jena, GERMANY DE Atmospheric loading; Non-tidal oceanic loading; Superconducting gravimeters; Hydrostatic tiltmeters; Storm surges ID BAROTROPIC RESPONSE; PRESSURE; EARTH; DEFORMATION; TIDES; REDUCTION; RAINFALL AB We investigate the contribution of atmospheric and its induced non-tidal oceanic loading effects on surface time-varying gravity and tilt measurements for several stations in Western Europe. The ocean response to pressure forcing can be modelled accordingly to the inverted barometer, i.e. assuming that air pressure variations are fully compensated by static sea height changes, or using ocean general circulation models. We validate two runs of the HUGO-m barotropic ocean model by comparing predicted sea surface height variations with hundred tide-gauge measurements along the European coasts. We then show that global surface pressure field, as well as a barotropic high-resolution ocean model forced by air pressure and winds allow in most cases a significant reduction of the variance of gravity residuals and, to a smaller extends tilt residuals. We finally show that precise gravity measurements with superconducting gravimeters allow the observation of large storm surges, occurring in the North Sea, even for inland stations. However, we also confirm that the continental hydrology contribution cannot be neglected. Thanks to their specific sensitivity feature, only tiltmeters closest to the coast can clearly detect the loading due to these storm surges. (C) 2009 Elsevier Ltd. All rights reserved C1 [Boy, Jean-Paul] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. [Boy, Jean-Paul] EOST IPGS, CNRS UdS, UMR 7516, F-67084 Strasbourg, France. [Longuevergne, Laurent] Univ Texas Austin, Jackson Sch Geosci, Bur Econ Geol, Austin, TX 78713 USA. [Longuevergne, Laurent] Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX 78713 USA. [Boudin, Frederic; Jacob, Thomas] Univ Montpellier 2, Geosci Montpellier UMR 5243, F-34095 Montpellier, France. [Lyard, Florent; Llubes, Muriel] UPS, IRD, CNRS, CNES,LEGOS,UMR5566, F-31400 Toulouse, France. [Florsch, Nicolas] UMPC, UMMISCO, IRD, F-93143 Bondy, France. [Florsch, Nicolas] Univ Cape Town, Dept Math & Appl Math, ZA-7700 Rondebosch, South Africa. [Esnoult, Marie-France] Inst Phys Globe Strasbourg, F-75252 Paris 05, France. RP Boy, JP (reprint author), NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Code 698, Greenbelt, MD 20771 USA. EM jpboy@eost.u-strasbg.fr RI larzac, Larzac/I-9442-2012; Ploemeur, Ploemeur/I-9338-2012; Longuevergne, Laurent /F-4641-2010; Boy, Jean-Paul/E-6677-2017 OI Longuevergne, Laurent /0000-0003-3169-743X; Boy, Jean-Paul/0000-0003-0259-209X NR 29 TC 15 Z9 15 U1 1 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0264-3707 J9 J GEODYN JI J. Geodyn. PD DEC PY 2009 VL 48 IS 3-5 SI SI BP 182 EP 188 DI 10.1016/j.jog.2009.09.022 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 533YP UT WOS:000272862500013 ER PT J AU Longuevergne, L Boy, JP Florsch, N Viville, D Ferhat, G Ulrich, P Luck, B Hinderer, J AF Longuevergne, Laurent Boy, J. P. Florsch, Nicolas Viville, Daniel Ferhat, Gilbert Ulrich, Patrice Luck, Bernard Hinderer, Jacques TI Local and global hydrological contributions to gravity variations observed in Strasbourg SO JOURNAL OF GEODYNAMICS LA English DT Article; Proceedings Paper CT 16th International Symposium on Earth Tides CY SEP 01-05, 2008 CL Jena, GERMANY DE Superconducting gravimeter; Local hydrology; Global hydrology; Soil moisture; Water storage; Newtonian attraction ID SOIL-WATER CONTENT; SUPERCONDUCTING GRAVIMETER; ATMOSPHERIC-PRESSURE; DEFORMATION; REDUCTION; RAINFALL; OCEAN; EARTH; MOXA AB We investigate the contribution of local and global hydrology to the superconducting gravimeter (SG) installed in the Strasbourg observatory. A deterministic approach is presented to account for the contribution of water storage variations in the soils in the vicinity of the gravimeter: both amount and distribution of water masses are determined before calculating Newtonian attraction. No adjustment is performed on gravity time series. Two multi-depth Frequency Domain Reflectometer (FDR) probes have been installed to monitor the amount of water stored in the soil layer above the gravimeter. Since August 2005, they have been monitoring the variation of the water content of the entire soil thickness. Several investigations have been undertaken in order to estimate the distribution of water masses: a precise local DEM (Digital Elevation Model) has been determined using differential GPS. The geometry and heterogeneity of the soil layer have been evaluated thanks to geophysical and geomechanical prospections. The comparison between observed and modelled gravity variations shows that daily up to seasonal variations are in good agreement. For long-term variations, deep water storage and other processes have to be modelled to explain recorded gravity variations. Published by Elsevier Ltd. C1 [Longuevergne, Laurent] Univ Texas Austin, Jackson Sch Geosci, Bur Econ Geol, Austin, TX 78713 USA. [Longuevergne, Laurent] Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX 78713 USA. [Boy, J. P.; Ferhat, Gilbert; Ulrich, Patrice; Luck, Bernard; Hinderer, Jacques] U Strasbourg, CNRS, EOST IPGS, UMR 7516, F-67084 Strasbourg, France. [Boy, J. P.] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. [Florsch, Nicolas] Univ Paris 06, CNRS, Sisyphe UMR 7619, F-75252 Paris 05, France. [Florsch, Nicolas] UPMC, IRD, UMMISCO, UMI 209, F-93143 Bondy, France. [Florsch, Nicolas] Univ Cape Town, Dept Math & Appl Math, ZA-7700 Rondebosch, South Africa. [Viville, Daniel] U Strasbourg, CNRS, UMR 7517, EOST LHyGeS, F-67084 Strasbourg, France. [Ferhat, Gilbert] INSA Strasbourg, F-67084 Strasbourg, France. RP Longuevergne, L (reprint author), Univ Texas Austin, Jackson Sch Geosci, Bur Econ Geol, 10100 Burnet Rd, Austin, TX 78713 USA. EM laurent.longuevergne@beg.utexas.edu RI Longuevergne, Laurent /F-4641-2010; Boy, Jean-Paul/E-6677-2017 OI Longuevergne, Laurent /0000-0003-3169-743X; Boy, Jean-Paul/0000-0003-0259-209X NR 35 TC 30 Z9 30 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0264-3707 J9 J GEODYN JI J. Geodyn. PD DEC PY 2009 VL 48 IS 3-5 BP 189 EP 194 DI 10.1016/j.jog.2009.09.008 PG 6 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 533YP UT WOS:000272862500014 ER PT J AU Florsch, N Llubes, M Woppelmann, G Longuevergne, L Boy, JP AF Florsch, Nicolas Llubes, Muriel Woeppelmann, Guy Longuevergne, Laurent Boy, Jean-Paul TI Oceanic loading monitored by ground-based tiltmeters at Cherbourg (France) SO JOURNAL OF GEODYNAMICS LA English DT Article; Proceedings Paper CT 16th International Symposium on Earth Tides CY SEP 01-05, 2008 CL Jena, GERMANY DE Inclinometry; Tilt; Oceanic loading; FES2004; Non-linear tides ID GLOBAL OCEAN; TIDE MODELS; EARTH; DEFORMATION; BRITTANY AB We installed two orthogonal Blum-Esnoult silica tiltmeters in an underground military facility close to the shore in Cherbourg (France). They have recorded the oceanic loading effects from March 2004 to July 2005. The signal to noise ratio is such that, within a period range from a few minutes to a few days, the main non-linear oceanic tides up to the M10 group can be observed. The modelling of the tidal tilt deformation has been carried out using oceanic models of the FES2004 family, with a stepwise refinement of the grid size based on the unstructured grid T-UGAm model leading to the NEA-2004 tidal solution. This improvement permits to reduce the discrepancy between the model and the data with respect to the use of FES2004 alone, and show that, although the misfit remains significant, one progresses toward an independent mean to validate the oceanic models and finally the whole modelling process. We also show that tiltmeters open new opportunities to explore loading of non-linear tides on a larger spectrum than gravimeters and GPS do. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Florsch, Nicolas] UMMISCO IRD, F-93143 Bondy, France. [Florsch, Nicolas] UPMC, Paris, France. [Llubes, Muriel] Univ Toulouse, OMP, F-31400 Toulouse, France. [Woeppelmann, Guy] Univ Rochelle, CNRS, LIENSs, F-17000 La Rochelle, France. [Longuevergne, Laurent] Univ Texas Austin, Jackson Sch Geosci, Bur Econ Geol, Austin, TX 78713 USA. [Longuevergne, Laurent] Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX 78713 USA. [Boy, Jean-Paul] ULP, CNRS, EOST IPGS, UMR 7516, F-67084 Strasbourg, France. [Boy, Jean-Paul] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. RP Florsch, N (reprint author), UMMISCO IRD, 32 Ave Henri Varagnat, F-93143 Bondy, France. EM nicolas.florsch@upmc.fr RI WOPPELMANN, Guy/N-6386-2014; Longuevergne, Laurent /F-4641-2010; Boy, Jean-Paul/E-6677-2017 OI Longuevergne, Laurent /0000-0003-3169-743X; Boy, Jean-Paul/0000-0003-0259-209X NR 30 TC 3 Z9 4 U1 1 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0264-3707 J9 J GEODYN JI J. Geodyn. PD DEC PY 2009 VL 48 IS 3-5 BP 211 EP 218 DI 10.1016/j.jog.2009.09.017 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 533YP UT WOS:000272862500017 ER PT J AU Gross, RS AF Gross, Richard S. TI Ocean tidal effects on Earth rotation SO JOURNAL OF GEODYNAMICS LA English DT Article; Proceedings Paper CT 16th International Symposium on Earth Tides CY SEP 01-05, 2008 CL Jena, GERMANY DE Earth rotation; Length-of-day; Solid body tides; Ocean tides ID MANTLE ANELASTICITY; ANGULAR-MOMENTUM; POLAR MOTION; TIDES; MODEL; VOLUME AB Tidal forces due to the tide-raising potential deform the solid and fluid regions of the Earth, causing the Earth's inertia tensor to change, and hence causing the Earth's rate of rotation and length-of-day to change. Because both the tide-raising potential and the solid Earth's elastic response to the tidal forces caused by this potential are well-known, accurate models for the effects of the elastic solid body tides on the Earth's rotation are available. However, models for the effect of the ocean tides on the Earth's rotation are more problematic because of the need to model the dynamic response of the oceans to the tidal forces. Hydrodynamic ocean tide models that have recently become available are evaluated here for their ability to account for long-period ocean tidal signals in length-of-day observations. Of the models tested here, the older altimetric data-constrained model of Kantha et al. (1998) is shown to still do the best job of accounting for ocean tidal effects in length-of-day, particularly at the fortnightly tidal frequency. The model currently recommended by the IERS is shown to do the worst job. (C) 2009 Elsevier Ltd. All rights reserved. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Gross, RS (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Richard.Gross@jpl.nasa.gov NR 26 TC 6 Z9 6 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0264-3707 J9 J GEODYN JI J. Geodyn. PD DEC PY 2009 VL 48 IS 3-5 BP 219 EP 225 DI 10.1016/j.jog.2009.09.016 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 533YP UT WOS:000272862500018 ER PT J AU Riccardi, U Hinderer, J Boy, JP Rogister, Y AF Riccardi, U. Hinderer, J. Boy, J. -P. Rogister, Y. TI Tilt effects on GWR superconducting gravimeters SO JOURNAL OF GEODYNAMICS LA English DT Article; Proceedings Paper CT 16th International Symposium on Earth Tides CY SEP 01-05, 2008 CL Jena, GERMANY DE Superconducting gravimeter; Tilt output calibration; Gravity ID TIDES; GRAVITY; TIME AB The superconducting gravimeters (SGs) are the most sensitive and stable gravity sensors currently available. The low drift and high sensitivity of these instruments allow to investigate several geophysical phenomena inducing small- and long-period gravity changes. In order to study such topics, any kind of disturbance of instrumental origin has to be identified and possibly modelled. A critical point in gravity measurement is the alignment of the gravimeter to the local vertical. In fact a tilt of the instrument will lead to an apparent gravity change and can affect the instrumental drift. To avoid these drawbacks, SGs are provided with an "active tilt feedback system" (ATFS) designed to keep the meter aligned to the vertical. We analyse tilt and environmental parameters collected near Strasbourg, France, since 1997 to study the source of the tilt changes and check the capability of the ATFS to compensate them. We also present the outcomes of a calibration test applied to the ATFS output to convert the Tilt Power signals into angles. We find that most of the observed signal has a thermal origin dominated by a strong annual component of about 200 mu rad. Nevertheless, our analysis shows that even the tilt due to different geophysical phenomena, other than the thermal ones, can be detected. A clear tidal signal of about 0.05 mu rad is detectable thanks to the large data stacking (>11 years). We conclude that (i) the ATFS device compensates the tilt having a thermal origin or coming from any sources and (ii) no significant tilt changes alter the gravity signal, except for the high frequency (>1 mHz) perturbations. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Riccardi, U.] Univ Naples Federico 2, Dipartimento Sci Terra, I-80138 Naples, Italy. [Riccardi, U.; Hinderer, J.; Boy, J. -P.; Rogister, Y.] Univ Strasbourg, Inst Phys Globe Strasbourg, CNRS, UMR 7516, F-67084 Strasbourg, France. [Boy, J. -P.] NASA, Goddard Space Flight Ctr, Planetary Geodynam Lab, Greenbelt, MD 20771 USA. RP Riccardi, U (reprint author), Univ Naples Federico 2, Dipartimento Sci Terra, Lgo S Marcellino 10, I-80138 Naples, Italy. EM umberto.riccardi@unina.it RI Boy, Jean-Paul/E-6677-2017; OI Boy, Jean-Paul/0000-0003-0259-209X; Riccardi, Umberto/0000-0003-0720-5415 NR 20 TC 5 Z9 5 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0264-3707 J9 J GEODYN JI J. Geodyn. PD DEC PY 2009 VL 48 IS 3-5 BP 316 EP 324 DI 10.1016/j.jog.2009.09.001 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 533YP UT WOS:000272862500033 ER PT J AU Behrangi, A Hsu, KL Imam, B Sorooshian, S Huffman, GJ Kuligowski, RJ AF Behrangi, Ali Hsu, Kuo-Lin Imam, Bisher Sorooshian, Soroosh Huffman, George J. Kuligowski, Robert J. TI PERSIANN-MSA: A Precipitation Estimation Method from Satellite-Based Multispectral Analysis SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID ARTIFICIAL NEURAL-NETWORKS; RAINFALL ESTIMATION; PASSIVE MICROWAVE; GLOBAL PRECIPITATION; INFRARED TECHNIQUE; VISIBLE DATA; CLOUD; IMAGERY; ALGORITHM; DELINEATION AB Visible and infrared data obtained from instruments onboard geostationary satellites have been extensively used for monitoring clouds and their evolution. The Advanced Baseline Imager (ABI) that will be launched onboard the Geostationary Operational Environmental Satellite-R (GOES-R) series in the near future will offer a larger range of spectral bands; hence, it will provide observations of cloud and rain systems at even finer spatial, temporal, and spectral resolutions than are possible with the current GOES. In this paper, a new method called Precipitation Estimation from Remotely Sensed information using Artificial Neural Networks-Multispectral Analysis (PERSIANN-MSA) is proposed to evaluate the effect of using multispectral imagery on precipitation estimation. The proposed approach uses a self-organizing feature map (SOFM) to classify multidimensional input information, extracted from each grid box and corresponding textural features of multispectral bands. In addition, principal component analysis (PCA) is used to reduce the dimensionality to a few independent input features while preserving most of the variations of all input information. The above method is applied to estimate rainfall using multiple channels of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) satellite. In comparison to the use of a single thermal infrared channel, the analysis shows that using multispectral data has the potential to improve rain detection and estimation skills with an average of more than 50% gain in equitable threat score for rain/no-rain detection, and more than 20% gain in correlation coefficient associated with rain-rate estimation. C1 [Behrangi, Ali; Hsu, Kuo-Lin; Imam, Bisher; Sorooshian, Soroosh] Univ Calif Irvine, Ctr Hydrometeorol & Remote Sensing, Henry Samueli Sch Engn, Dept Civil & Environm Engn, Irvine, CA 92697 USA. [Huffman, George J.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Huffman, George J.] Sci Syst & Applicat Inc, Greenbelt, MD USA. [Kuligowski, Robert J.] NOAA, NESDIS, Ctr Satellite Applicat & Res, Camp Springs, MD USA. RP Behrangi, A (reprint author), Univ Calif Irvine, Ctr Hydrometeorol & Remote Sensing, Henry Samueli Sch Engn, Dept Civil & Environm Engn, Irvine, CA 92697 USA. EM abehrang@uci.edu RI sorooshian, soroosh/B-3753-2008; Huffman, George/F-4494-2014; Kuligowski, Robert/C-6981-2009 OI sorooshian, soroosh/0000-0001-7774-5113; Huffman, George/0000-0003-3858-8308; Kuligowski, Robert/0000-0002-6909-2252 FU NASA Earth and Space Science Fellowship (NESSF) [NNX08AU78H]; NASA-PMM [NNG04GC74G]; NOAA/NESDIS GOES-R Program Office (GPO); NASA NEWS [NNX06AF934] FX Partial financial support is made available from NASA Earth and Space Science Fellowship (NESSF; Award NNX08AU78H), NASA-PMM (Grant NNG04GC74G), NOAA/NESDIS GOES-R Program Office (GPO) via the GOES-R Algorithm Working Group (AWG), and NASA NEWS (Grant NNX06AF934) programs. The authors thank Mr. Dan Braithwaite for his technical assistance on processing the satellite data for this experiment. The contents of this paper are solely the opinion of the authors and do not constitute a statement of policy, decision, or position on behalf of the GOES-R Program Office, NOAA, or the U.S. government. NR 61 TC 39 Z9 39 U1 1 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X J9 J HYDROMETEOROL JI J. Hydrometeorol. PD DEC PY 2009 VL 10 IS 6 BP 1414 EP 1429 DI 10.1175/2009JHM1139.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 536RF UT WOS:000273060800006 ER PT J AU Kumar, SV Reichle, RH Koster, RD Crow, WT Peters-Lidard, CD AF Kumar, Sujay V. Reichle, Rolf H. Koster, Randal D. Crow, Wade T. Peters-Lidard, Christa D. TI Role of Subsurface Physics in the Assimilation of Surface Soil Moisture Observations SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID LAND INFORMATION-SYSTEM; ENSEMBLE KALMAN FILTER; PROFILE RETRIEVAL; FIELD APPLICATION; WATER CONTENT; MODEL; FRAMEWORK; IMPACT; FLUXES AB Root-zone soil moisture controls the land-atmosphere exchange of water and energy, and exhibits memory that may be useful for climate prediction at monthly scales. Assimilation of satellite-based surface soil moisture observations into a land surface model is an effective way to estimate large-scale root-zone soil moisture. The propagation of surface information into deeper soil layers depends on the model-specific representation of subsurface physics that is used in the assimilation system. In a suite of experiments. synthetic surface soil moisture observations are assimilated into four different models [Catchment, Mosaic, Noah, and Community Land Model (CLM)] using the ensemble Kalman filter. The authors demonstrate that identical twin experiments significantly overestimate the information that can be obtained from the assimilation of surface soil moisture observations. The second key result indicates that the potential of surface soil moisture assimilation to improve root-zone information is higher when the surface-root zone coupling is stronger. The experiments also suggest that (faced with unknown true subsurface physics) overestimating surface-root zone coupling in the assimilation system provides more robust skill improvements in the root zone compared with underestimating the coupling. When CLM is excluded from the analysis, the skill improvements from using models with different vertical coupling strengths are comparable for different subsurface truths. Last, the skill improvements through assimilation were found to be sensitive to the regional climate and soil types. C1 [Kumar, Sujay V.; Peters-Lidard, Christa D.] NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Greenbelt, MD 20771 USA. [Kumar, Sujay V.] Sci Applicat Int Corp, Beltsville, MD USA. [Reichle, Rolf H.; Koster, Randal D.] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA. [Crow, Wade T.] ARS, Hydrol & Remote Sensing Lab, USDA, Beltsville, MD USA. RP Kumar, SV (reprint author), NASA, Goddard Space Flight Ctr, Hydrol Sci Branch, Code 614-3, Greenbelt, MD 20771 USA. EM sujay.v.kumar@nasa.gov RI Reichle, Rolf/E-1419-2012; Koster, Randal/F-5881-2012; Kumar, Sujay/B-8142-2015; Peters-Lidard, Christa/E-1429-2012 OI Koster, Randal/0000-0001-6418-6383; Peters-Lidard, Christa/0000-0003-1255-2876 FU NASA Goddard Space Flight Center; Air Force Weather Agency; NASA [NNG05GB61G, NNX08AH36G]; NASA High-End Computing Program FX This research was partly supported by an internal investment grant from the NASA Goddard Space Flight Center. We also acknowledge the support from the Air Force Weather Agency, which funded the development of data assimilation capabilities in LIS. Rolf Reichle was partly supported through NASA Grants NNG05GB61G and NNX08AH36G. Computing was supported by the NASA High-End Computing Program; we gratefully acknowledge this support. NR 42 TC 55 Z9 57 U1 1 U2 11 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD DEC PY 2009 VL 10 IS 6 BP 1534 EP 1547 DI 10.1175/2009JHM1134.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 536RF UT WOS:000273060800014 ER PT J AU Siegel, PH AF Siegel, Peter H. TI Special Issue: THz for life SO JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES LA English DT Editorial Material C1 CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Siegel, PH (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM phs@caltech.edu NR 1 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1866-6892 J9 J INFRARED MILLIM TE JI J. Infrared Millim. Terahertz Waves PD DEC PY 2009 VL 30 IS 12 BP 1243 EP 1244 DI 10.1007/s10762-009-9570-y PG 2 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 495RR UT WOS:000269913200001 ER PT J AU Cooper, KB Dengler, RJ Llombart, N Bryllert, T Chattopadhyay, G Mehdi, I Siegel, PH AF Cooper, K. B. Dengler, R. J. Llombart, N. Bryllert, T. Chattopadhyay, G. Mehdi, I. Siegel, P. H. TI An Approach for Sub-Second Imaging of Concealed Objects Using Terahertz (THz) Radar SO JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES LA English DT Article; Proceedings Paper CT 33rd International Conference on Infrared, Millimeter, and Terahertz Waves CY SEP, 2008 CL Pasadena, CA DE THz radar; Imaging radar AB High-resolution, long-range detection of person-borne concealed weapons has recently been demonstrated using a terahertz imaging radar. However, the radar's image acquisition time must be greatly shortened, from minutes to less than one second, before the system can be effectively deployed in a real-life threat environment. Here we analyze the major system modifications necessary for increasing the speed of a terahertz imaging radar by up to two orders of magnitude. C1 [Cooper, K. B.; Dengler, R. J.; Llombart, N.; Bryllert, T.; Chattopadhyay, G.; Mehdi, I.; Siegel, P. H.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Cooper, KB (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM ken.b.cooper@jpl.nasa.gov NR 11 TC 34 Z9 36 U1 0 U2 28 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1866-6892 J9 J INFRARED MILLIM TE JI J. Infrared Millim. Terahertz Waves PD DEC PY 2009 VL 30 IS 12 BP 1297 EP 1307 DI 10.1007/s10762-009-9515-5 PG 11 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 495RR UT WOS:000269913200006 ER PT J AU Manohara, HM Toda, R Lin, RH Liao, A Bronikowski, MJ Siegel, PH AF Manohara, Harish M. Toda, Risaku Lin, Robert H. Liao, Anna Bronikowski, Michael J. Siegel, Peter H. TI Carbon Nanotube Bundle Array Cold Cathodes for THz Vacuum Tube Sources SO JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES LA English DT Article; Proceedings Paper CT 33rd International Conference on Infrared, Millimeter, and Terahertz Waves CY SEP, 2008 CL Pasadena, CA DE Field emission; Carbon nanotube; CNTs; Nanoklystron; Vacuum tube; High frequency sources ID FIELD-EMISSION CATHODES; FABRICATION; ELECTRODE; EMITTERS; SILICON AB We present high performance cold cathodes composed of arrays of carbon nanotube bundles that routinely produce > 15 A/cm(2) at applied fields of 5 to 8 V/A mu m without any beam focusing. They have exhibited robust operation in poor vacuums of 10(-6) to 10(-4) Torr- a typically achievable range inside hermetically sealed microcavities. A new double-SOI process was developed to monolithically integrate a gate and additional beam tailoring electrodes. The ability to design the electrodes for specific requirements makes carbon nanotube field emission sources extremely flexible. The lifetime of these cathodes is found to be affected by two effects: a gradual decay of emission due to anode sputtering, and catastrophic failure because of dislodging of CNT bundles at high fields ( > 10 V/A mu m). C1 [Manohara, Harish M.; Toda, Risaku; Lin, Robert H.; Liao, Anna; Bronikowski, Michael J.; Siegel, Peter H.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Siegel, Peter H.] CALTECH, Beckman Inst, Pasadena, CA 91125 USA. RP Manohara, HM (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM Harish.Manohara@jpl.nasa.gov NR 26 TC 19 Z9 20 U1 0 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1866-6892 J9 J INFRARED MILLIM TE JI J. Infrared Millim. Terahertz Waves PD DEC PY 2009 VL 30 IS 12 BP 1338 EP 1350 DI 10.1007/s10762-009-9547-x PG 13 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 495RR UT WOS:000269913200009 ER PT J AU Davis, RJ Wilkinson, A Davies, RD Winder, WF Roddis, N Blackhurst, EJ Lawson, D Lowe, SR Baines, C Butlin, M Galtress, A Shepherd, D Aja, B Artal, E Bersanelli, M Butler, RC Castelli, C Cuttaia, F D'Arcangelo, O Gaier, T Hoyland, R Kettle, D Leonardi, R Mandolesi, N Mennella, A Meinhold, P Pospieszalski, M Stringhetti, L Tomasi, M Valenziano, L Zonca, A AF Davis, R. J. Wilkinson, A. Davies, R. D. Winder, W. F. Roddis, N. Blackhurst, E. J. Lawson, D. Lowe, S. R. Baines, C. Butlin, M. Galtress, A. Shepherd, D. Aja, B. Artal, E. Bersanelli, M. Butler, R. C. Castelli, C. Cuttaia, F. D'Arcangelo, O. Gaier, T. Hoyland, R. Kettle, D. Leonardi, R. Mandolesi, N. Mennella, A. Meinhold, P. Pospieszalski, M. Stringhetti, L. Tomasi, M. Valenziano, L. Zonca, A. TI Design, development and verification of the 30 and 44 GHz front-end modules for the Planck Low Frequency Instrument SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Space instrumentation; HEMT amplifiers; Microwave radiometers; Instruments for CMB observations ID MICROWAVE-ANISOTROPY-PROBE; BACKGROUND POWER SPECTRUM; SPINNING DUST; 1/F NOISE; RADIOMETERS; IMPLEMENTATION; EMISSION; FLIGHT AB We give a description of the design, construction and testing of the 30 and 44 GHz Front End Modules (FEMs) for the Low Frequency Instrument (LFI) of the Planck mission to be launched in 2009. The scientific requirements of the mission determine the performance parameters to be met by the FEMs, including their linear polarization characteristics. The FEM design is that of a differential pseudo-correlation radiometer in which the signal from the sky is compared with a 4-K blackbody load. The Low Noise Amplifier (LNA) at the heart of the FEM is based on indium phosphide High Electron Mobility Transistors (HEMTs). The radiometer incorporates a novel phase-switch design which gives excellent amplitude and phase match across the band. The noise temperature requirements are met within the measurement errors at the two frequencies. For the most sensitive LNAs, the noise temperature at the band centre is 3 and 5 times the quantum limit at 30 and 44 GHz respectively. For some of the FEMs, the noise temperature is still falling as the ambient temperature is reduced to 20 K. Stability tests of the FEMs, including a measurement of the 1/f knee frequency, also meet mission requirements. The 30 and 44 GHz FEMs have met or bettered the mission requirements in all critical aspects. The most sensitive LNAs have reached new limits of noise temperature for HEMTs at their band centres. The FEMs have well-defined linear polarization characteristcs. C1 [Davis, R. J.; Wilkinson, A.; Davies, R. D.; Winder, W. F.; Roddis, N.; Blackhurst, E. J.; Lawson, D.; Lowe, S. R.; Baines, C.; Butlin, M.; Galtress, A.; Shepherd, D.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Aja, B.; Artal, E.] Univ Cantabria, Dept Ingn Comunicac, E-39005 Santander, Spain. [Bersanelli, M.; Mennella, A.; Tomasi, M.; Zonca, A.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Butler, R. C.; Cuttaia, F.; Mandolesi, N.; Stringhetti, L.; Valenziano, L.] INAF IASF Bologna, I-40129 Bologna, Italy. [Castelli, C.] Sci & Technol Facil Council, Swindon SN2 1SZ, Wilts, England. [D'Arcangelo, O.] IFP CNR, Milan, Italy. [Gaier, T.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Hoyland, R.] Inst Astrofis Canarias, E-38205 San Cristobal la Laguna, Tenerife, Spain. [Kettle, D.] Univ Manchester, Sch Elect & Elect Engn, Manchester M60 1QD, Lancs, England. [Leonardi, R.; Meinhold, P.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Pospieszalski, M.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. RP Davis, RJ (reprint author), Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. EM Richard.Davis@manchester.ac.uk RI Artal, Eduardo/H-5546-2015; Tomasi, Maurizio/I-1234-2016; Aja, Beatriz/H-5573-2015; Butler, Reginald/N-4647-2015; OI Artal, Eduardo/0000-0002-2569-1894; Tomasi, Maurizio/0000-0002-1448-6131; Aja, Beatriz/0000-0002-4229-2334; Stringhetti, Luca/0000-0002-3961-9068; Butler, Reginald/0000-0003-4366-5996; Cuttaia, Francesco/0000-0001-6608-5017; Valenziano, Luca/0000-0002-1170-0104 FU NASA (USA); UK LFI programm FX Planck is a project of the European Space Agency with instruments funded by ESA member states, and with special contributions from Denmark and NASA (USA). The Planck-LFI project is developed by an International Consortium lead by Italy and involving Canada, Finland, Germany, Norway, Spain, Switzerland, UK, and USA. We would also like to thank Keith Williams of UMIST Departement of Electronic and Eleactical Engineering (now the University of Manchester) for measuring device data on wafer, Helen Yates for contibutions to the radiometer testing, Bert Fujiwara and Mary Wells of JPL for assistance with LNA fabrication and testing, Prof. J. Cooper and A. Ainul, of the Electrical Engineering department of the University of Manchester for the structural analysis, and STFC for funding the UK LFI programme. NR 39 TC 16 Z9 16 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD DEC PY 2009 VL 4 AR T12002 DI 10.1088/1748-0221/4/12/T12002 PG 39 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 540OC UT WOS:000273342200038 ER PT J AU Meinhold, P Leonardi, R Aja, B Artal, E Battaglia, P Bersanelli, M Blackhurst, E Butler, CR Cuevas, LP Cuttaia, F D'Arcangelo, O Davis, R de la Fuente, ML Frailis, M Franceschet, C Franceschi, E Gaier, T Galeotta, S Gregorio, A Hoyland, R Hughes, N Jukkala, P Kettle, D Laaninen, M Leutenegger, P Lowe, SR Malaspina, M Mandolesi, R Maris, M Martinez-Gonzalez, E Mendes, L Mennella, A Miccolis, M Morgante, G Roddis, N Sandri, M Seiffert, M Salmon, M Stringhetti, L Poutanen, T Terenzi, L Tomasi, M Tuovinen, J Varis, J Valenziano, L Villa, F Wilkinson, A Winder, F Zacchei, A Zonca, A AF Meinhold, P. Leonardi, R. Aja, B. Artal, E. Battaglia, P. Bersanelli, M. Blackhurst, E. Butler, C. R. Cuevas, L. P. Cuttaia, F. D'Arcangelo, O. Davis, R. de la Fuente, M. L. Frailis, M. Franceschet, C. Franceschi, E. Gaier, T. Galeotta, S. Gregorio, A. Hoyland, R. Hughes, N. Jukkala, P. Kettle, D. Laaninen, M. Leutenegger, P. Lowe, S. R. Malaspina, M. Mandolesi, R. Maris, M. Martinez-Gonzalez, E. Mendes, L. Mennella, A. Miccolis, M. Morgante, G. Roddis, N. Sandri, M. Seiffert, M. Salmon, M. Stringhetti, L. Poutanen, T. Terenzi, L. Tomasi, M. Tuovinen, J. Varis, J. Valenziano, L. Villa, F. Wilkinson, A. Winder, F. Zacchei, A. Zonca, A. TI Noise properties of the Planck-LFI receivers SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Space instrumentation; Microwave radiometers; Instruments for CMB observations; Instrumental noise ID 1/F NOISE; RADIOMETERS; GHZ AB The Planck Low Frequency Instrument (LFI) radiometers have been tested extensively during several dedicated campaigns. The present paper reports the principal noise properties of the LFI radiometers. A brief description of the LFI radiometers is given along with details of the test campaigns relevant to determination of noise properties. Current estimates of flight sensitivities, 1/f parameters, and noise effective bandwidths are presented. The LFI receivers exhibit exceptional 1/f noise, and their white noise performance is sufficient for the science goals of Planck. C1 [Meinhold, P.; Leonardi, R.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Aja, B.; Artal, E.; de la Fuente, M. L.] Univ Cantabria, Dept Ingn Comunicac, E-39005 Santander, Spain. [Battaglia, P.; Leutenegger, P.; Miccolis, M.] IUEL Sci Instruments, Thales Alenia Space Italia SpA, I-20090 Vimodrone Milano, Italy. [Bersanelli, M.; Mennella, A.; Tomasi, M.] Univ Milan, Dipartamento Fis, I-20133 Milan, Italy. [Blackhurst, E.; Lowe, S. R.; Winder, F.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Butler, C. R.; Cuttaia, F.; Franceschi, E.; Malaspina, M.; Mandolesi, R.; Morgante, G.; Sandri, M.; Stringhetti, L.; Valenziano, L.; Villa, F.] INAF IASF, I-40129 Bologna, Italy. [Cuevas, L. P.] Estec, NL-2200 AG Noordwijk, Netherlands. [D'Arcangelo, O.] CNR, Ist Fis Plasma, I-20125 Milan, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Zacchei, A.] INAF OATs, I-34143 Trieste, Italy. [Seiffert, M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gregorio, A.] Univ Trieste, Dept Phys, I-34127 Trieste, Italy. [Hoyland, R.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Tenerife, Spain. [Hughes, N.; Jukkala, P.] DA Design Oy, FI-31600 Jokioinen, Finland. [Kettle, D.] Univ Manchester, Sch Elect & Elect Engn, Manchester M60 1QD, Lancs, England. [Laaninen, M.] Ylinen Elect Oy, FI-02700 Kauniainen, Finland. [Martinez-Gonzalez, E.; Salmon, M.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Mendes, L.] European Space Agcy ESAC, Planck Sci Off, Madrid, Spain. [Poutanen, T.] Univ Helsinki, Dept Phys, FI-00014 Helsinki, Finland. [Poutanen, T.] Helsinki Inst Phys, FI-00014 Helsinki, Finland. [Poutanen, T.] Helsinki Univ Technol, Metsahovi Radio Observ, FI-02540 Kylmala, Finland. [Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, FI-02044 Espoo, Finland. [Zonca, A.] INAF IASF Milano, I-20133 Milan, Italy. RP Meinhold, P (reprint author), Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. EM peterm@cfi.ucsb.edu RI de la Fuente, Luisa/J-5142-2012; Martinez-Gonzalez, Enrique/E-9534-2015; Artal, Eduardo/H-5546-2015; Tomasi, Maurizio/I-1234-2016; Aja, Beatriz/H-5573-2015; Butler, Reginald/N-4647-2015; OI Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; de la Fuente, Luisa/0000-0003-1403-1660; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Artal, Eduardo/0000-0002-2569-1894; Tomasi, Maurizio/0000-0002-1448-6131; Aja, Beatriz/0000-0002-4229-2334; Franceschi, Enrico/0000-0002-0585-6591; TERENZI, LUCA/0000-0001-9915-6379; Zacchei, Andrea/0000-0003-0396-1192; Stringhetti, Luca/0000-0002-3961-9068; Gregorio, Anna/0000-0003-4028-8785; Butler, Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Valenziano, Luca/0000-0002-1170-0104; Frailis, Marco/0000-0002-7400-2135; Villa, Fabrizio/0000-0003-1798-861X; Galeotta, Samuele/0000-0002-3748-5115 FU NASA (USA); Ministerio de Educacion y Ciencia, Spain [ESP2004-07067-C03-02]; Academy of Finland [205800, 214598, 121703, 121962]; Frenckells stiftelse; Magnus Ehrnrooth Foundation; Vaisala Foundation FX Planck is a project of the European Space Agency with instruments funded by ESA member states, and with special contributions from Denmark and NASA (USA). The Planck-LFI project is developed by an International Consortium lead by Italy and involving Canada, Finland, Germany, Norway, Spain, Switzerland, UK, USA. The US Planck Project is supported by the NASA Science Mission Directorate. The Italian contribution to Planck is supported by ASI - Agenzia Spaziale Italiana. Part of this work was supported by Plan Nacional de I+D, Ministerio de Educacion y Ciencia, Spain, grant reference ESP2004-07067-C03-02. TP's work was supported in part by the Academy of Finland grants 205800, 214598, 121703, and 121962. TP thanks Waldemar von Frenckells stiftelse, Magnus Ehrnrooth Foundation, and Vaisala Foundation for financial support. We acknowledge the use of the Lfi Integrated performance Evaluator (LIFE) package [26]. NR 31 TC 18 Z9 18 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD DEC PY 2009 VL 4 AR T12009 DI 10.1088/1748-0221/4/12/T12009 PG 17 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 540OC UT WOS:000273342200031 ER PT J AU Morgante, G Pearson, D Melot, F Stassi, P Terenzi, L Wilson, P Hernandez, B Wade, L Gregorio, A Bersanelli, M Butler, C Mandolesi, N AF Morgante, G. Pearson, D. Melot, F. Stassi, P. Terenzi, L. Wilson, P. Hernandez, B. Wade, L. Gregorio, A. Bersanelli, M. Butler, C. Mandolesi, N. TI Cryogenic characterization of the Planck sorption cooler system flight model SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Cryocoolers; Space instrumentation; Cryogenics and thermal models; Instruments for CMB observations AB Two continuous closed-cycle hydrogen Joule-Thomson (J-T) sorption coolers have been fabricated and assembled by the Jet Propulsion Laboratory (JPL) for the European Space Agency (ESA) Planck mission. Each refrigerator has been designed to provide a total of similar to 1W of cooling power at two instrument interfaces: they directly cool the Planck Low Frequency Instrument (LFI) around 20K while providing a pre-cooling stage for a 4 K J-T mechanical refrigerator for the High Frequency Instrument (HFI). After sub-system level validation at JPL, the cryocoolers have been delivered to ESA in 2005. In this paper we present the results of the cryogenic qualification and test campaigns of the Nominal Unit on the flight model spacecraft performed at the CSL (Centre Spatial de Liege) facilities in 2008. Test results in terms of input power, cooling power, temperature, and temperature fluctuations over the flight allowable ranges for these interfaces are reported and analyzed with respect to mission requirements. C1 [Morgante, G.; Terenzi, L.; Butler, C.; Mandolesi, N.] INAF IASF Bologna, I-40129 Bologna, Italy. [Pearson, D.; Wilson, P.; Hernandez, B.; Wade, L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Melot, F.; Stassi, P.] Lab Phys Subatom & Cosmol, F-38026 Grenoble, France. [Gregorio, A.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bersanelli, M.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. RP Morgante, G (reprint author), INAF IASF Bologna, Via P Gobetti 101, I-40129 Bologna, Italy. EM morgante@iasfbo.inaf.it OI Morgante, Gianluca/0000-0001-9234-7412; Gregorio, Anna/0000-0003-4028-8785; TERENZI, LUCA/0000-0001-9915-6379 NR 14 TC 19 Z9 21 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD DEC PY 2009 VL 4 AR T12016 DI 10.1088/1748-0221/4/12/T12016 PG 18 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 540OC UT WOS:000273342200024 ER PT J AU Valenziano, L Cuttaia, F De Rosa, A Terenzi, L Brighenti, A Cazzola, GP Garbesi, A Mariotti, S Orsi, G Pagan, L Cavaliere, F Biggi, M Lapini, R Panagin, E Battaglia, P Butler, RC Bersanelli, M D'Arcangelo, O Levin, S Mandolesi, N Mennella, A Morgante, G Morigi, G Sandri, M Simonetto, A Tomasi, M Villa, F Frailis, M Galeotta, S Gregorio, A Leonardi, R Lowe, SR Maris, M Meinhold, P Mendes, L Stringhetti, L Zonca, A Zacchei, A AF Valenziano, L. Cuttaia, F. De Rosa, A. Terenzi, L. Brighenti, A. Cazzola, G. P. Garbesi, A. Mariotti, S. Orsi, G. Pagan, L. Cavaliere, F. Biggi, M. Lapini, R. Panagin, E. Battaglia, P. Butler, R. C. Bersanelli, M. D'Arcangelo, O. Levin, S. Mandolesi, N. Mennella, A. Morgante, G. Morigi, G. Sandri, M. Simonetto, A. Tomasi, M. Villa, F. Frailis, M. Galeotta, S. Gregorio, A. Leonardi, R. Lowe, S. R. Maris, M. Meinhold, P. Mendes, L. Stringhetti, L. Zonca, A. Zacchei, A. TI Planck-LFI: design and performance of the 4 Kelvin Reference Load Unit SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Space instrumentation; Microwave radiometers; Instruments for CMB observations; Microwave Calibrators ID LOW-FREQUENCY INSTRUMENT; 1/F NOISE; MISSION; SUBMILLIMETER; SYSTEM; RADIOMETERS; SATELLITE; FIRAS; BOARD AB The LFI radiometers use a pseudo-correlation design where the signal from the sky is continuously compared with a stable reference signal, provided by a cryogenic reference load system. The reference unit is composed by small pyramidal horns, one for each radiometer, 22 in total, facing small absorbing targets, made of a commercial resin ECCOSORB CR (TM), cooled to similar to 4.5 K. Horns and targets are separated by a small gap to allow thermal decoupling. Target and horn design is optimized for each of the LFI bands, centered at 70, 44 and 30 GHz. Pyramidal horns are either machined inside the radiometer 20K module or connected via external electroformed bended waveguides. The requirement of high stability of the reference signal imposed a careful design for the radiometric and thermal properties of the loads. Materials used for the manufacturing have been characterized for thermal, RF and mechanical properties. We describe in this paper the design and the performance of the reference system. C1 [Valenziano, L.; Cuttaia, F.; De Rosa, A.; Terenzi, L.; Brighenti, A.; Cazzola, G. P.; Orsi, G.; Butler, R. C.; Mandolesi, N.; Morgante, G.; Morigi, G.; Sandri, M.; Stringhetti, L.] INAF, Ist Astrofis Spaziale & Fis Cosm Bologna, I-40129 Bologna, Italy. [Garbesi, A.] CNR, Ist Sintesi Organ & Fotoreattivita, I-40129 Bologna, Italy. [Mariotti, S.] INAF, Ist Radioastron, I-40129 Bologna, Italy. [Biggi, M.; Lapini, R.; Panagin, E.; Battaglia, P.] Off Pasquali, I-50142 Florence, Italy. [Pagan, L.] Thales Alenia Space Italia, Sede Milano, I-20090 Vimodrone, Italy. [Cavaliere, F.; Bersanelli, M.; Mennella, A.] Univ Milan, I-20133 Milan, Italy. [D'Arcangelo, O.; Simonetto, A.] CNR, Ist Fis Plasma, I-20125 Milan, Italy. [Levin, S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tomasi, M.; Zonca, A.] INAF, Ist Astrofis Spaziale & Fis Cosm Milano, I-20133 Milan, Italy. [Frailis, M.; Gregorio, A.; Maris, M.] INAF, Osservatorio Astron Treste, I-34143 Trieste, Italy. [Galeotta, S.; Gregorio, A.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Leonardi, R.; Meinhold, P.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Lowe, S. R.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Mendes, L.] European Space Agcy, NL-2200 AG Noordwijk, Netherlands. RP Valenziano, L (reprint author), INAF, Ist Astrofis Spaziale & Fis Cosm Bologna, Via P Gobetti 101, I-40129 Bologna, Italy. EM valenziano@iasfbo.inaf.it RI Tomasi, Maurizio/I-1234-2016; Butler, Reginald/N-4647-2015; OI Lowe, Stuart/0000-0002-2975-9032; Morgante, Gianluca/0000-0001-9234-7412; Tomasi, Maurizio/0000-0002-1448-6131; Maris, Michele/0000-0001-9442-2754; Stringhetti, Luca/0000-0002-3961-9068; Gregorio, Anna/0000-0003-4028-8785; Butler, Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Valenziano, Luca/0000-0002-1170-0104; Frailis, Marco/0000-0002-7400-2135; Villa, Fabrizio/0000-0003-1798-861X; Galeotta, Samuele/0000-0002-3748-5115; TERENZI, LUCA/0000-0001-9915-6379; Zacchei, Andrea/0000-0003-0396-1192 NR 38 TC 22 Z9 22 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD DEC PY 2009 VL 4 AR T12006 DI 10.1088/1748-0221/4/12/T12006 PG 29 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 540OC UT WOS:000273342200034 ER PT J AU Varis, J Hughes, NJ Laaninen, M Kilpia, VH Jukkala, P Tuovinen, J Ovaska, S Sjoman, P Kangaslahti, P Gaier, T Hoyland, R Meinhold, P Mennella, A Bersanelli, M Butler, RC Cuttaia, F Franceschi, E Leonardi, R Leutenegger, P Malaspina, M Mandolesi, N Miccolis, M Poutanen, T Kurki-Suonio, H Sandri, M Stringhetti, L Terenzi, L Tomasi, M Valenziano, L AF Varis, J. Hughes, N. J. Laaninen, M. Kilpia, V. -H. Jukkala, P. Tuovinen, J. Ovaska, S. Sjoman, P. Kangaslahti, P. Gaier, T. Hoyland, R. Meinhold, P. Mennella, A. Bersanelli, M. Butler, R. C. Cuttaia, F. Franceschi, E. Leonardi, R. Leutenegger, P. Malaspina, M. Mandolesi, N. Miccolis, M. Poutanen, T. Kurki-Suonio, H. Sandri, M. Stringhetti, L. Terenzi, L. Tomasi, M. Valenziano, L. TI Design, development, and verification of the Planck Low Frequency Instrument 70 GHz Front-End and Back-End Modules SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Space instrumentation; HEMT amplifiers; Microwave radiometers; Instruments for CMB observations ID NOISE AB 70 GHz radiometer front-end and back-end modules for the Low Frequency Instrument of the European Space Agency's Planck Mission were built and tested. The operating principles and the design details of the mechanical structures are described along with the key InP MMIC low noise amplifiers and phase switches of the units. The units were tested in specially designed cryogenic vacuum chambers capable of producing the operating conditions required for Planck radiometers, specifically, a physical temperature of 20 K for the front-end modules, 300 K for the back-end modules and 4 K for the reference signal sources. Test results of the low noise amplifiers and phase switches, the front and back-end modules, and the combined results of both modules are discussed. At 70 GHz frequency, the system noise temperature of the front and back end is 28 K; the effective bandwidth 16 GHz, and the 1/f spectrum knee frequency is 38 mHz. The test results indicate state-of-the-art performance at 70 GHz frequency and fulfil the Planck performance requirements. C1 [Varis, J.; Tuovinen, J.] VTT Tech Res Ctr Finland, MilliLab, FI-02044 Espoo, Finland. [Hughes, N. J.; Kilpia, V. -H.; Jukkala, P.; Sjoman, P.] DA Design Oy, FI-31600 Jokioinen, Finland. [Laaninen, M.; Ovaska, S.] Ylinen Elect Oy, FI-02700 Kauniainen, Finland. [Kangaslahti, P.; Gaier, T.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Hoyland, R.] Inst Astrofis Canarias, Tenerife, Spain. [Meinhold, P.; Leonardi, R.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Mennella, A.; Bersanelli, M.; Tomasi, M.; Valenziano, L.] Univ Milan, Dipartimento Fis, Milan, Italy. [Butler, R. C.; Cuttaia, F.; Franceschi, E.; Malaspina, M.; Mandolesi, N.; Sandri, M.; Stringhetti, L.; Terenzi, L.] INAF IASF, I-40129 Bologna, Italy. [Leutenegger, P.; Miccolis, M.] IUEL Sci Instruments, Thales Alenia Space Italia SpA, I-20090 Vimodrone, Mi, Italy. [Poutanen, T.; Kurki-Suonio, H.] Univ Helsinki, Dept Phys, FI-00014 Helsinki, Finland. [Poutanen, T.; Kurki-Suonio, H.] Univ Helsinki, Helsinki Inst Phys, FI-00014 Helsinki, Finland. [Poutanen, T.; Kurki-Suonio, H.] Helsinki Univ Technol, Metsahovi Radio Observ, FI-02540 Kylmala, Finland. RP Varis, J (reprint author), VTT Tech Res Ctr Finland, MilliLab, POB 1000, FI-02044 Espoo, Finland. EM Jussi.Varis@vtt.fi RI Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Butler, Reginald/N-4647-2015; OI Kurki-Suonio, Hannu/0000-0002-4618-3063; TERENZI, LUCA/0000-0001-9915-6379; Tomasi, Maurizio/0000-0002-1448-6131; Franceschi, Enrico/0000-0002-0585-6591; Stringhetti, Luca/0000-0002-3961-9068; Butler, Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Valenziano, Luca/0000-0002-1170-0104 FU ESA; Denmark (NASA); United States (NASA); Finnish Funding Agency for Technology and Innovation (Tekes); Academy of Finland; Waldemar von Frenckells stiftelse; Magnus Ehrnrooth Foundation; Vaisala Foundation; Italian Space Agency; NASA Science Mission Directorate FX Planck is a project of the European Space Agency (ESA) with instruments funded by ESA member states, and with special contributions from Denmark and the United States (NASA). The Planck-LFI project is developed by an international consortium led by Italy and involving Canada, Finland, Germany, Norway, Spain, Switzerland, UK, and USA.; The authors wish to thank the various funding agencies who have supported this work. In Finland, the Finnish Funding Agency for Technology and Innovation (Tekes), the Academy of Finland, the Waldemar von Frenckells stiftelse, the Magnus Ehrnrooth Foundation, and the Vaisala Foundation are gratefully acknowledged. In Italy, the Italian Space Agency for continuous support throughout the Planck Program is gratefully acknowledged. In the USA, the Planck project is supported by the NASA Science Mission Directorate. NR 18 TC 14 Z9 14 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD DEC PY 2009 VL 4 AR T12001 DI 10.1088/1748-0221/4/12/T12001 PG 18 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 540OC UT WOS:000273342200039 ER PT J AU Walsh, BM Barnes, NP AF Walsh, Brian M. Barnes, Norman P. TI Nonstoichiometric laser materials: Designer wavelengths in neodymium-doped garnets SO JOURNAL OF LUMINESCENCE LA English DT Article; Proceedings Paper CT International Conference on Luminescence and Optical Spectroscopy of Condensed Matter (ICL'08) CY JUL 07-11, 2008 CL Univ Lumiere L:yon 2, Lyon, FRANCE SP Lyon 1, cnrs, lpcm, Univ Lyon HO Univ Lumiere L:yon 2 DE Nd lasers; 0.94 mu m lasers; Compositional tuning; Amplified spontaneous emission (ASE); Voigt lineshape; Water vapor ID COMPOSITIONALLY TUNED LASERS AB The tunable nature of lasers provides for a wide range of applications. Most applications rely on finding available laser wavelengths to meet the needs of the research. This article presents the concept of compositional tuning, whereby the laser wavelength is designed by exploiting nonstoichiometry. For research where precise wavelengths are required, such as remote sensing, this is highly advantageous. A theoretical basis for the concept is presented and experimental results in spectroscopic measurements support the theoretical basis. Laser operation nicely demonstrates the validity of the concept of designer lasers. Published by Elsevier B.V. C1 [Walsh, Brian M.; Barnes, Norman P.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Walsh, BM (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. EM brian.m.walsh@nasa.gov NR 11 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-2313 J9 J LUMIN JI J. Lumines. PD DEC PY 2009 VL 129 IS 12 BP 1401 EP 1406 DI 10.1016/j.jlumin.2009.01.021 PG 6 WC Optics SC Optics GA 519KM UT WOS:000271765300003 ER PT J AU Ellis, SR Adelstein, BD AF Ellis, Stephen R. Adelstein, Bernard D. TI Kinesthetic Compensation for Sensorimotor Rearrangements SO JOURNAL OF MOTOR BEHAVIOR LA English DT Article DE kinesthetic cue; manual control; sensorimotor rearrangement; telerobotics ID ADAPTATION; MOVEMENT; PERFORMANCE; SYSTEM AB The authors report a new sensorimotor phenomenon in which participants use hand-sensed kinesthetic information to compensate for rotational sensorimotor rearrangements. This compensation benefits from conscious awareness and is related to hand posture. The technique can reduce control inefficiency with some misalignments by as much as 64%. The results Support Y. Guiard's (1987) suggestion that in bimanual tasks one hand provides an operational frame of reference for the other hand as in a closed kinematic chain. Results with right-handed participants show that the right and left hands are equally effective at providing Such a cue. A constant-angular-targeting-error model, similar to that used for hand movements by H. Cunningham and I. Vardi (1990) and for walking by S. K. Rushton, J. M. Harris, M. R. Lloyd, and J. P. Wann ( 1998), is used to model the trajectories of targeting hand movements demonstrating the phenomenon. The model provides a natural parameter of the error. C1 [Ellis, Stephen R.; Adelstein, Bernard D.] NASA, Ames Res Ctr, Moffett Field, CA 94619 USA. RP Ellis, SR (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94619 USA. EM stephen.r.ellis@nasa.gov FU NASA FX The authors thank Kenneth Cheung for writing the program to run the experiment and Joelle Schmidt-Ott, Aminah Perkins, Matthew Panos-Ellis, and Sarah Reidenbach for assistance in data collection and data processing. Dr. Frank Kooi also assisted in early pilot studies. This research was partially supported by a research grant from NASA Headquarters Code UL Space Human Factors Program. A preliminary version of some the material from Experiment I was previously reported in the Proceedings of the 46th Annual Meeting of the Human Factors and Ergonomics Society and as an abstract in the 2002 Psychonomic Society Meeting. NR 34 TC 0 Z9 0 U1 0 U2 2 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXFORDSHIRE, ENGLAND SN 0022-2895 EI 1940-1027 J9 J MOTOR BEHAV JI J. Mot. Behav. PD DEC PY 2009 VL 41 IS 6 BP 501 EP 518 PG 18 WC Neurosciences; Psychology; Psychology, Experimental; Sport Sciences SC Neurosciences & Neurology; Psychology; Sport Sciences GA 523ZR UT WOS:000272114100003 PM 19581219 ER PT J AU Drouin, BJ Yu, SS Pearson, JC Muller, HSP AF Drouin, Brian J. Yu, Shanshan Pearson, John C. Mueller, Holger S. P. TI High resolution spectroscopy of (CH3D)-C-12 and (CH3D)-C-13 SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Atmospheric spectra; Astrophysical spectra; Methane; D/H ratio; 13-C/12-C ratio ID STATE ROTATIONAL-CONSTANTS; GROUND-STATE; MOLECULAR-SPECTROSCOPY; COLOGNE DATABASE; CH3D; METHANE; ABUNDANCE; SPECTRUM; LIMITS; CDMS AB Extensions in frequency coverage coupled with sensitive spectroscopic techniques have enabled high resolution measurements of pure rotational spectra of deuteromethane and its 13-C substituted counterpart up to J' = 7. The current work reveals a small inconsistency in previously reported frequency measurements of (CH3D)-C-12 at J' = 5. (c) 2009 Elsevier Ltd. All rights reserved. C1 [Drouin, Brian J.; Yu, Shanshan; Pearson, John C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Mueller, Holger S. P.] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany. RP Drouin, BJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM brian.j.drouin@jpl.nasa.gov RI Yu, Shanshan/D-8733-2016; OI Mueller, Holger/0000-0002-0183-8927 FU Bundesministerium fur Bildung und Forschung (BMBF); Deutsches Zentrum fur Luft- und Raumfahrt (DLR) FX The authors thank Pin Chen for the use of the 13CH3D sample. H.S.P.M. is grateful for support by the Bundesministerium fur Bildung und Forschung (BMBF) administered through Deutsches Zentrum fur Luft- und Raumfahrt (DLR). His support was aimed in particular at maintaining the CDMS. This paper presents research carried out at the jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 13 TC 6 Z9 6 U1 2 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD DEC PY 2009 VL 110 IS 18 BP 2077 EP 2081 DI 10.1016/j.jqsrt.2009.05.014 PG 5 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 504PN UT WOS:000270629400009 ER PT J AU Sung, K Toth, RA Brown, LR Crawford, TJ AF Sung, Keeyoon Toth, Robert A. Brown, Linda R. Crawford, Timothy J. TI Line strength measurements of carbonyl sulfide ((OCS)-O-16-C-12-S-32) in the 2 nu(3), nu(1)+2 nu(2)+nu(3), and 4 nu(2)+nu(3) bands SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE OCS; Carbonyl sulfide; Line strength; Line parameters; HITRAN; VIRTIS; Fourier transform spectroscopy; Infrared spectroscopy ID MOLECULAR SPECTROSCOPIC DATABASE; FOURIER-TRANSFORM SPECTROSCOPY; VENUS; INTENSITIES; CM(-1); POSITIONS; OCS; (CO)-C-12-O-16; PARAMETERS; ATMOSPHERE AB To support planetary studies of the Venus atmosphere, we measured line strengths of the 2 nu(3), nu(1)+2 nu(2)+nu(3), and 4 nu(2)+nu(3) bands of the primary isotopologue of carbonyl sulfide ((OCS)-O-16-C-12-S-32), whose band centers are located at 4101.387, 3937.427, and 4141.212 cm(-1), respectively. For this, infrared absorption spectra in normal carbonyl sulfide (OCS) sample gas were recorded at an unapodized resolution of 0.0033 cm(-1) at ambient room temperatures using a Bruker Fourier transform spectrometer (FTS) at the jet Propulsion Laboratory. The FTS instrumental line shape (ILS) function was investigated, which revealed no significant instrumental line broadening or distortions. Various custom-made short cells and a multi-pass White cell were employed to achieve optical densities sufficient to observe the strong 2 nu(3) and the weaker bands in the region. Gas sample impurities and the isotopic abundances were determined from mass spectrum analysis. Line strengths were retrieved spectrum by spectrum using a non-linear curve fitting algorithm adopting a standard Voigt line profile, from which Herman-Wallis factors were derived for the three bands. The band strengths of 2 nu(3), nu(1)+2 nu(2)+nu(3), and 4 nu(2)+nu(3) of (OCS)-O-16-C-12-S-32 (normalized at 100% of isotopologue) are observed to be 6.315(13) x 10(-19), 1.570(2) x 10(-20), and 7.949(20) x 10(-21) cm(-1)/molecule cm(-2), respectively, at 296 K. These results are compared with earlier measurements and the HITRAN 2004 database. (c) 2009 Elsevier Ltd. All rights reserved. C1 [Sung, Keeyoon; Toth, Robert A.; Brown, Linda R.; Crawford, Timothy J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Sung, K (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM ksung@jpl.nasa.gov RI Sung, Keeyoon/I-6533-2015 NR 49 TC 11 Z9 11 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD DEC PY 2009 VL 110 IS 18 BP 2082 EP 2101 DI 10.1016/j.jqsrt.2009.05.013 PG 20 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 504PN UT WOS:000270629400010 ER PT J AU Rinsland, CP Chiou, L Boone, C Bernath, P Mahieu, E AF Rinsland, Curtis P. Chiou, Linda Boone, Chris Bernath, Peter Mahieu, Emmanuel TI First measurements of the HCFC-142b trend from atmospheric chemistry experiment (ACE) solar occultation spectra SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Remote sensing; Atmospheric chemistry; Composition; Hydrochlorofluorocarbons; Trends; Ozone depletion ID MOLECULAR SPECTROSCOPIC DATABASE; CROSS-SECTIONS AB The first measurement of the HCFC-142b (CH3CClF2) trend near the tropopause has been derived from volume mixing ratio (VMR) measurements at northern and southern hemisphere mid-latitudes for the 2004-2008 time period from spaceborne solar occultation observations recorded at 0.02 cm(-1) resolution with the ACE (atmospheric chemistry experiment) Fourier transform spectrometer. The HCFC-142b molecule is currently the third most abundant HCFC (hydrochlorofluorocarbon) in the atmosphere and ACE measurements over this time span show a continuous rise in its volume mixing ratio. Monthly average measurements at northern and southern hemisphere mid-latitudes have similar increase rates that are consistent with surface trend measurements for a similar time span. A mean northern hemisphere profile for the time span shows a near constant VMR at 8-20 km altitude range, consistent on average for the same time span with in situ results. The nearly constant vertical VMR profile also agrees with model predictions of a long lifetime in the lower atmosphere. (c) 2009 Elsevier Ltd. All rights reserved. C1 [Rinsland, Curtis P.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Chiou, Linda] Sci Syst & Applicat Inc, Hampton, VA USA. [Boone, Chris] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada. [Bernath, Peter] Univ York, Dept Chem, York YO10 5DD, N Yorkshire, England. [Mahieu, Emmanuel] Univ Liege, Inst Astrophys & Geophys, Liege, Belgium. RP Rinsland, CP (reprint author), NASA, Langley Res Ctr, Hampton, VA 23665 USA. EM curtis.p.rinsland@nasa.gov; linda.s.chiou@nasa.gov; cboone@sciborg.uwaterloo.ca; bernath@uwaterloo.ca; emmanuel.mahieu@ulg.ac.be RI Bernath, Peter/B-6567-2012; OI Bernath, Peter/0000-0002-1255-396X; Mahieu, Emmanuel/0000-0002-5251-0286 FU UK National Environment Research Council (NERC); Belgian Federal Science Policy Office (AGACC and SECPEA projects), Brussels FX Analysis of the ACE spectra at the NASA Langley Research Center was supported by funding from NASA. The ACE mission is supported primarily by the Canadian Space Agency. Funding for ACE work at York is provided by the UK National Environment Research Council (NERC). E. Mahieu was primarily supported by the Belgian Federal Science Policy Office (AGACC and SECPEA projects), Brussels. We thank S. Montzka of the NOAA ESRL/GMD group (formerly CMDL) for making available a preliminary version of Niwot Ridge HCFC142b time series. We also thank G. Toon of the jet Propulsion laboratory for access to the "pseudo-line" parameters adopted for analysis of HCFC-142b and CCI2F2. NR 23 TC 7 Z9 7 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD DEC PY 2009 VL 110 IS 18 BP 2127 EP 2134 DI 10.1016/j.jqsrt.2009.05.011 PG 8 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 504PN UT WOS:000270629400013 ER PT J AU Heymsfield, AJ Bansemer, A Heymsfield, G Fierro, AO AF Heymsfield, Andrew J. Bansemer, Aaron Heymsfield, Gerald Fierro, Alexandre O. TI Microphysics of Maritime Tropical Convective Updrafts at Temperatures from-20 degrees to-60 degrees C SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID HOMOGENEOUS ICE NUCLEATION; VERTICAL VELOCITY; LIQUID WATER; CLOUDS; HURRICANE; MODEL; AIR; PARTICLES; AEROSOLS; NUCLEI AB Anvils produced by vigorous tropical convection contribute significantly to the earth's radiation balance, and their radiative properties depend largely on the concentrations and sizes of the ice particles that form them. These microphysical properties are determined to an important extent by the fate of supercooled droplets, with diameters from 3 to about 20 microns, lofted in the updrafts. The present study addresses the question of whether most or all of these droplets are captured by ice particles or if they remain uncollected until arriving at the -38 degrees C level where they freeze by homogeneous nucleation, producing high concentrations of very small ice particles that can persist and dominate the albedo. Aircraft data of ice particle and water droplet size distributions from seven field campaigns at latitudes from 25 degrees N to 11 degrees S are combined with a numerical model in order to examine the conditions under which significant numbers of supercooled water droplets can be lofted to the homogeneous nucleation level. Microphysical data were collected in pristine to heavily dust-laden maritime environments, isolated convective updrafts, and tropical cyclone updrafts with peak velocities reaching 25 m s(-1). The cumulative horizontal distance of in-cloud sampling at temperatures of -20 degrees C and below exceeds 50 000 km. Analysis reveals that most of the condensate in these convective updrafts is removed before reaching the -20 degrees C level, and the total condensate continues to diminish linearly upward. The amount of condensate in small (<50 mu m in diameter) droplets and ice particles, however, increases upward, suggesting new droplet activation with an appreciable radiative impact. Conditions promoting the generation of large numbers of small ice particles through homogeneous ice nucleation include high concentrations of cloud condensation nuclei (sometimes from dust), removal of most of the water substance between cloud base and the -38 degrees C levels, and acceleration of the updrafts at mid-and upper levels such that velocities exceed 5-7 m s(-1). C1 [Heymsfield, Andrew J.; Bansemer, Aaron] NCAR, Boulder, CO 80307 USA. [Heymsfield, Gerald] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fierro, Alexandre O.] NOAA, Atlantic Oceanog & Meteorol Lab, Hurricane Res Div, Miami, FL 33149 USA. RP Heymsfield, AJ (reprint author), NCAR, POB 3000, Boulder, CO 80307 USA. EM heyms1@ncar.ucar.edu RI Heymsfield, Andrew/E-7340-2011; Fierro, Alexandre/C-4733-2014 OI Fierro, Alexandre/0000-0002-4859-1255 FU National Science Foundation FX The National Center for Atmospheric Research is sponsored by the National Science Foundation. NR 39 TC 39 Z9 39 U1 0 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD DEC PY 2009 VL 66 IS 12 BP 3530 EP 3562 DI 10.1175/2009JAS3107.1 PG 33 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 530UA UT WOS:000272616600002 ER PT J AU Reale, O Lau, WK Kim, KM Brin, E AF Reale, Oreste Lau, William K. Kim, Kyu-Myong Brin, Eugenia TI Atlantic Tropical Cyclogenetic Processes during SOP-3 NAMMA in the GEOS-5 Global Data Assimilation and Forecast System SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID AFRICAN EASTERLY WAVES; MODELS AB This article investigates the role of the Saharan air layer (SAL) in tropical cyclogenetic processes associated with a nondeveloping and a developing African easterly wave observed during the Special Observation Period (SOP-3) phase of the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA). The two waves are chosen because they both interact heavily with Saharan air. A global data assimilation and forecast system, the NASA Goddard Earth Observing System, version 5 (GEOS-5), is being run to produce a set of high-quality global analyses, inclusive of all observations used operationally but with additional satellite information. In particular, following previous works by the same authors, the quality-controlled data from the Atmospheric Infrared Sounder (AIRS) used to produce these analyses have a better coverage than the one adopted by operational centers. From these improved analyses, two sets of 31 five-day high-resolution forecasts, at horizontal resolutions of both half and quarter degrees, are produced. Results indicate that very steep moisture gradients are associated with the SAL in forecasts and analyses, even at great distances from their source over the Sahara. In addition, a thermal dipole in the vertical (warm above, cool below) is present in the nondeveloping case. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra and Aqua satellites shows that aerosol optical thickness, indicative of more dust as opposed to other factors, is higher in the nondeveloping case. Altogether, results suggest that the radiative effect of dust may play some role in producing a thermal structure less favorable to cyclogenesis. Results also indicate that only global horizontal resolutions on the order of 20-30 km can capture the large-scale transport and the fine thermal structure of the SAL, inclusive of the sharp moisture gradients, reproducing the effect of tropical cyclone suppression that has been hypothesized by previous authors from observational and regional modeling perspectives. These effects cannot be fully represented at lower resolutions, therefore global resolution of a quarter of a degree is a minimum critical threshold necessary to investigate Atlantic tropical cyclogenesis from a global modeling perspective. C1 [Reale, Oreste; Lau, William K.; Kim, Kyu-Myong; Brin, Eugenia] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Reale, Oreste; Kim, Kyu-Myong] Univ Maryland, Baltimore, MD 21201 USA. [Brin, Eugenia] Sci Applicat Int Corp, Beltsville, MD USA. RP Reale, O (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Code 613, Greenbelt, MD 20771 USA. EM oreste.reale-1@nasa.gov RI Kim, Kyu-Myong/G-5398-2014; Lau, William /E-1510-2012 OI Lau, William /0000-0002-3587-3691 NR 25 TC 20 Z9 21 U1 0 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD DEC PY 2009 VL 66 IS 12 BP 3563 EP 3578 DI 10.1175/2009JAS3123.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 530UA UT WOS:000272616600003 ER PT J AU Lee, J Yang, P Dessler, AE Gao, BC Platnick, S AF Lee, Joonsuk Yang, Ping Dessler, Andrew E. Gao, Bo-Cai Platnick, Steven TI Distribution and Radiative Forcing of Tropical Thin Cirrus Clouds SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID OPTICAL-PROPERTIES; CLIMATE MODELS; ICE CRYSTALS; ACCURATE PARAMETERIZATION; AIRCRAFT OBSERVATIONS; INFRARED RADIANCES; MODIS; TROPOPAUSE; SCATTERING; RETRIEVAL AB To understand the radiative impact of tropical thin cirrus clouds, the frequency of occurrence and optical depths of these clouds have been derived. "Thin'' cirrus clouds are defined here as being those that are not detected by the operational Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask, corresponding to an optical depth value of approximately 0.3 or smaller, but that are detectable in terms of the cirrus reflectance product based on the MODIS 1.375-mu m channel. With such a definition, thin cirrus clouds were present in more than 40% of the pixels flagged as "clear sky'' by the operational MODIS cloud mask algorithm. It is shown that these thin cirrus clouds are frequently observed in deep convective regions in the western Pacific. Thin cirrus optical depths were derived from the cirrus reflectance product. Regions of significant cloud fraction and large optical depths were observed in the Northern Hemisphere during the boreal spring and summer and moved southward during the boreal autumn and winter. The radiative effects of tropical thin cirrus clouds were studied on the basis of the retrieved cirrus optical depths, the atmospheric profiles derived from the Atmospheric Infrared Sounder (AIRS) observations, and a radiative transfer model in conjunction with a parameterization of ice cloud spectral optical properties. To understand how these clouds regulate the radiation field in the atmosphere, the instantaneous net fluxes at the top of the atmosphere (TOA) and at the surface were calculated. The present study shows positive and negative net forcings at the TOA and at the surface, respectively. The positive (negative) net forcing at the TOA (surface) is due to the dominance of longwave (shortwave) forcing. Both the TOA and surface forcings are in a range of 0-20 W m(-2), depending on the optical depths of thin cirrus clouds. C1 [Yang, Ping; Dessler, Andrew E.] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Lee, Joonsuk] Univ Maryland, Cooperat Inst Climate Studies, College Pk, MD 20742 USA. [Lee, Joonsuk] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Gao, Bo-Cai] USN, Res Lab, Washington, DC 20375 USA. [Platnick, Steven] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Yang, P (reprint author), Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. EM pyang@ariel.met.tamu.edu RI Yang, Ping/B-4590-2011; Dessler, Andrew/G-8852-2012; Platnick, Steven/J-9982-2014 OI Dessler, Andrew/0000-0003-3939-4820; Platnick, Steven/0000-0003-3964-3567 FU NASA [NNX08AF68G]; NASA Radiation Sciences; National Science Foundation (NSF) CAREER Award research [ATM-0239605] FX This research is supported by a research grant from NASA (NNX08AF68G) from the NASA Radiation Sciences Program managed by Dr. Hal Maring and the MODIS Program managed by Dr. Paula Bontempi. This study was also partly supported by a National Science Foundation (NSF) CAREER Award research grant (ATM-0239605). NR 52 TC 29 Z9 29 U1 1 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD DEC PY 2009 VL 66 IS 12 BP 3721 EP 3731 DI 10.1175/2009JAS3183.1 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 530UA UT WOS:000272616600012 ER PT J AU Nair, S Srinivasan, G Nemani, R AF Nair, Sushma Srinivasan, Govindrajan Nemani, Ramkrishna TI Evaluation of Multi-Satellite TRMM Derived Rainfall Estimates over a Western State of India SO JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN LA English DT Article ID VALIDATION; AFRICA AB The Tropical Rainfall Measuring Mission (TRMM) blended rainfall product (3B42-V6 data set) has been used for inter-comparison with observations from a high density rain-gauge network over the western state of Maharashtra, India. The state of Maharashtra was chosen for the inter-comparison exercise primarily because of its diverse rainfall regime. The rain distribution over Maharashtra, characterized by a pronounced longitudinal gradient is closely linked to the north-south oriented orography of the region known as the Western Ghats. The validation exercise was carried out for 7 monsoon seasons from June to September from 1998 to 2004 at various space and time scales. The results are consistent at daily, monthly and seasonal timescales. The comparisons among stations and over geographically similar climatic zones demonstrated that the performance of 3B42-V6 product varies over the different climatic regimes. In terms of spatial reproductivity, the existence of the west-east rainfall gradient along the west coast is captured by the satellite product, but the orographic effect (rainfall maxima is over the Western Ghats as captured by the rain-gauge) is not reflected by 3B42-V6 product. The 3B42-V6 product shows rainfall maxima at the coast. The satellite estimates of rainfall amounts over the state were found to be most accurate over regions of moderate rainfall and mainly inaccurate in regions of sharp rainfall gradient. In terms of magnitude of the rainfall amounts, over the windward side of the Western Ghats the 3B42-V6 product was unable to resolve the heavy orographic rainfall amounts and over the leeward side the rainfall amounts in the immediate rain-shadow region were overestimated. One of the key results obtained from the daily rainfall intercomparison exercise is the ability of the 3B42-V6 estimates to detect the wet and dry phases of monsoon over most parts of the state (except the leeward side). Though the rainfall amounts estimated by the satellite product were sometimes under/over estimated, the timing of the rain events as estimated by the satellite product was generally coincident with the gauge observations over most of the regions except in the immediate rain-shadow region of the state. The TRMM 3B42-V6 estimates therefore could have tremendous potential to be used for intraseasonal studies over most regions of the state. C1 [Nair, Sushma] Reg Meteorol Ctr, Bombay 400005, Maharashtra, India. [Srinivasan, Govindrajan] Indian Meteorol Dept, Delhi, India. [Nemani, Ramkrishna] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Nair, S (reprint author), Reg Meteorol Ctr, Bombay 400005, Maharashtra, India. EM nairsusha@gmail.com NR 11 TC 56 Z9 57 U1 0 U2 6 PU METEOROLOGICAL SOC JAPAN PI TOKYO PA C/O JAPAN METEOROLOGICAL AGENCY 1-3-4 OTE-MACHI, CHIYODA-KU, TOKYO, 100-0004, JAPAN SN 0026-1165 EI 2186-9057 J9 J METEOROL SOC JPN JI J. Meteorol. Soc. Jpn. PD DEC PY 2009 VL 87 IS 6 BP 927 EP 939 DI 10.2151/jmsj.87.927 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 556JZ UT WOS:000274588300001 ER PT J AU Rosario-Castro, BI Contes, EJ Lebron-Colon, M Meador, MA Sanchez-Pomales, G Cabrera, CR AF Rosario-Castro, Belinda I. Contes, Enid J. Lebron-Colon, Marisabel Meador, Michael A. Sanchez-Pomales, Germarie Cabrera, Carlos R. TI Combined electron microscopy and spectroscopy characterization of as-received, acid purified, and oxidized HiPCO single-wall carbon nanotubes SO MATERIALS CHARACTERIZATION LA English DT Article DE Single-wall carbon nanotubes; SWCNTs purification; SWCNTs chemical oxidation; Thermogravimetric analysis; Raman spectroscopy; Infrared spectroscopy; X-ray photoelectron spectroscopy; Transmission electron microscopy; Scanning electron microscopy ID THERMAL-ANALYSIS; PURIFICATION; ELECTROCHEMISTRY; SURFACE; ARRAYS; FUNCTIONALIZATION; ATTACHMENT; OXIDATION; SWNTS; GAS AB Single-wall carbon nanotubes (SWCNTs) are very important materials due to their combination of unique structure, dimension, strength, chemical stability, and electronic properties. Nevertheless, SWCNTs from commercial sources usually contain several impurities, which are usually removed by a purification process that includes reflux in acids and strong oxidation. This strong chemical procedure may alter the nanotube properties and it is thus important to control the extent of functionalization and oxidation during the purification procedure. In this report, we provide a comprehensive study of the structure and physical composition of SWCNTs during each step of the purification process. Techniques such as Raman spectroscopy, transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy and Infrared spectroscopy were used to track the SWCNTs structure, in terms of length and diameter distribution, and surface chemical modifications during each purification stage. (C) 2009 Elsevier Inc. All rights reserved. C1 [Rosario-Castro, Belinda I.; Contes, Enid J.; Sanchez-Pomales, Germarie; Cabrera, Carlos R.] Univ Puerto Rico, Dept Chem, San Juan, PR 00931 USA. [Rosario-Castro, Belinda I.; Contes, Enid J.; Sanchez-Pomales, Germarie; Cabrera, Carlos R.] Univ Puerto Rico, Ctr Adv Nanoscale Mat, San Juan, PR 00931 USA. [Lebron-Colon, Marisabel; Meador, Michael A.] NASA, John H Glenn Res Ctr, Cleveland, OH 44135 USA. RP Cabrera, CR (reprint author), Univ Puerto Rico, Dept Chem, Rio Piedras Campus,POB 23346, San Juan, PR 00931 USA. EM carlos.cabrera2@upr.edu OI Cabrera, Carlos/0000-0002-3342-8666 FU NASA-URC [NCC3-1034, NNX08BA48A]; NASA Graduate Student Researcher Program (GSRP) [NGT3-52381] FX The authors acknowledge the assistance of members of the Materials Characterization Center and the NASA Center for Advanced Nanoscale Materials, both at the University of Puerto Rico, Rio Piedras Campus, for XPS and TEM characterization, respectively. We are grateful to Eunice Wong for her assistance with the TGA and Raman analysis at NASA Glenn Research Center. This project was partially funded by NASA-URC Grant Numbers NCC3-1034 and NNX08BA48A. B.I.R.C. would like to acknowledge the financial support from NASA Graduate Student Researcher Program (GSRP) fellowship (NGT3-52381). NR 38 TC 24 Z9 27 U1 2 U2 11 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1044-5803 J9 MATER CHARACT JI Mater. Charact. PD DEC PY 2009 VL 60 IS 12 BP 1442 EP 1453 DI 10.1016/j.matchar.2009.07.001 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Materials Science, Characterization & Testing SC Materials Science; Metallurgy & Metallurgical Engineering GA 532UY UT WOS:000272776800004 ER PT J AU Abdul-Aziz, A AF Abdul-Aziz, Ali TI Computational Software Applications in nDT SO MATERIALS EVALUATION LA English DT Article C1 NASA, Glenn Res Ctr, Opt Instrumentat & NDE Branch, Cleveland, OH 44135 USA. RP Abdul-Aziz, A (reprint author), NASA, Glenn Res Ctr, Opt Instrumentat & NDE Branch, MS 6-1,21000 Brookpk Rd, Cleveland, OH 44135 USA. EM smaziz@grc.nasa.gov NR 6 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC NONDESTRUCTIVE TEST PI COLUMBUS PA 1711 ARLINGATE LANE PO BOX 28518, COLUMBUS, OH 43228-0518 USA SN 0025-5327 J9 MATER EVAL JI Mater. Eval. PD DEC PY 2009 VL 67 IS 12 BP A26 EP A30 PG 5 WC Materials Science, Characterization & Testing SC Materials Science GA 535KD UT WOS:000272966200006 ER PT J AU Abell, PA Korsmeyer, DJ Landis, RR Jones, TD Adamo, DR Morrison, DD Lemke, LG Gonzales, AA Gershman, R Sweetser, TH Johnson, LN Lu, E AF Abell, Paul A. Korsmeyer, David J. Landis, Rob R. Jones, Thomas D. Adamo, Daniel R. Morrison, David D. Lemke, Lawrence G. Gonzales, Andrew A. Gershman, Robert Sweetser, Theodore H. Johnson, Lindley N. Lu, Ed TI Scientific exploration of near-Earth objects via the Orion Crew Exploration Vehicle SO METEORITICS & PLANETARY SCIENCE LA English DT Article; Proceedings Paper CT 10th Asteroids Comets Meteors Meeting CY JUL 14-18, 2008 CL Johns Hopkins Univ Appl Phys Lab, Laurel, MD SP NASA, Lumar & Planetary Inst, Lockheed Martin HO Johns Hopkins Univ Appl Phys Lab ID SPACECRAFT; HAYABUSA; ITOKAWA AB A study in late 2006 was sponsored by the Advanced Projects Office within NASA's Constellation Program to examine the feasibility of sending the Orion Crew Exploration Vehicle (CEV) to a near-Earth object (NEO). The ideal mission profile would involve two or three astronauts on a 90 to 180 day flight, which would include a 7 to 14 day stay for proximity operations at the target NEO. This mission would be the first human expedition to an interplanetary body beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars and other solar system destinations. Piloted missions to NEOs using the CEV would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human-space exploration while conducting in-depth scientific investigations of these primitive objects. The main scientific advantage of sending piloted missions to NEOs would be the flexibility of the crew to perform tasks and to adapt to Situations in real time. A crewed vehicle would be able to test several different sample collection techniques and tat-get specific areas of interest via extra-vehicular activities (EVAs) more efficiently than robotic spacecraft. Such capabilities greatly enhance the scientific return from these missions to NEOs, destinations vital to understanding the evolution and thermal histories of primitive bodies during the formation of the early solar system. Data collected from these missions would help constrain the suite of materials possibly delivered to the early Earth, and would identify potential Source regions from which NEOs originate. In addition, the resulting scientific investigations would refine designs for future extraterrestrial resource extraction and utilization, and assist in the development of hazard mitigation techniques for planetary defense. C1 [Abell, Paul A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Abell, Paul A.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Korsmeyer, David J.; Landis, Rob R.] NASA, Ames Res Ctr, Intelligent Syst Div, Moffett Field, CA 94035 USA. [Jones, Thomas D.] Assoc Space Explorers, Houston, TX 77058 USA. [Adamo, Daniel R.] Trajectory Consultant, Houston, TX 77059 USA. [Morrison, David D.] NASA, Ames Res Ctr, Astrobiol Inst, Moffett Field, CA 94035 USA. [Gershman, Robert; Sweetser, Theodore H.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Johnson, Lindley N.] NASA Headquarters, Planetary Sci Div, Washington, DC 20546 USA. [Lu, Ed] Google Inc, Mountain View, CA 94043 USA. RP Abell, PA (reprint author), NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. EM paul.a.abell@nasa.gov NR 37 TC 21 Z9 21 U1 0 U2 6 PU METEORITICAL SOC PI FAYETTEVILLE PA DEPT CHEMISTRY/BIOCHEMISTRY, UNIV ARKANSAS, FAYETTEVILLE, AR 72701 USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD DEC PY 2009 VL 44 IS 12 BP 1825 EP 1836 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 557NU UT WOS:000274677000002 ER PT J AU Haghighipour, N AF Haghighipour, N. TI Dynamical constraints on the origin of Main Belt comets SO METEORITICS & PLANETARY SCIENCE LA English DT Article; Proceedings Paper CT 10th Asteroids Comets Meteors Meeting CY JUL 14-18, 2008 CL Johns Hopkins Univ Appl Phys Lab, Laurel, MD SP NASA, Lumar & Planetary Inst, Lockheed Martin HO Johns Hopkins Univ Appl Phys Lab ID ASTEROID BELT; SOLAR-SYSTEM; POPULATION; PLANETS AB In an effort to understand the origin of Main Belt comets (MBCs) 7968 Elst-Pizzaro, 118401, and P/2005 Ul, the dynamics of these three icy asteroids and a large number of hypothetical MBCs were studied. Results of extensive numerical integrations of these objects Suggest that they were formed in place through the collisional breakup of a larger precursor body. Simulations point specifically to the Themis family of asteroids as the origin of these objects and rule out the possibility of a cometary origin (i.e., inward scattering of comets from outer solar system and their primordial capture in the asteroid belt). Results also indicate that while 7968 Elst-Pizzaro and 118401 maintain their orbits for 1 Gyr, P/2005 Ul diffuses chaotically in eccentricity and becomes unstable in similar to 20 Myr. The latter suggest that this MBC used to be a member of the Themis family and is now escaping away. Numerical integrations of the orbits of hypothetical MBCs in the vicinity of the Themis family show a clustering of stable orbits (with eccentricities smaller than 0.2 and inclinations less than 25 degrees) Suggesting that many more MBCs may exist in the vicinity of this family (although they might have not been activated yet). The details of the results Of Simulations and the constraints on the models of the formation and origins of MBCs are presented and their implications for the detection of more of these objects are discussed. C1 [Haghighipour, N.] Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA. [Haghighipour, N.] Univ Hawaii Manoa, NASA, Astrobiol Inst, Honolulu, HI 96822 USA. RP Haghighipour, N (reprint author), Univ Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA. EM nader@ifa.hawaii.edu NR 15 TC 24 Z9 24 U1 0 U2 0 PU METEORITICAL SOC PI FAYETTEVILLE PA DEPT CHEMISTRY/BIOCHEMISTRY, UNIV ARKANSAS, FAYETTEVILLE, AR 72701 USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD DEC PY 2009 VL 44 IS 12 BP 1863 EP 1869 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 557NU UT WOS:000274677000006 ER PT J AU Ramsay, HA Leslie, LM Kepert, JD AF Ramsay, Hamish A. Leslie, Lance M. Kepert, Jeffrey D. TI A High-Resolution Simulation of Asymmetries in Severe Southern Hemisphere Tropical Cyclone Larry (2006) SO MONTHLY WEATHER REVIEW LA English DT Article ID VERTICAL WIND SHEAR; HURRICANE-LIKE VORTICES; CONVECTIVE ADJUSTMENT SCHEME; BOUNDARY-LAYER JETS; PART II; VORTEX RESILIENCY; STORM MOTION; BONNIE 1998; CORE; MODEL AB Advances in observations, theory, and modeling have revealed that inner-core asymmetries are a common feature of tropical cyclones (TCs). In this study, the inner-core asymmetries of a severe Southern Hemisphere tropical cyclone, TC Larry (2006), are investigated using the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5) and the Kepert-Wang boundary layer model. The MM5-simulated TC exhibited significant asymmetries in the inner-core region, including rainfall distribution, surface convergence, and low-level vertical motion. The near-core environment was characterized by very low environmental vertical shear and consequently the TC vortex had almost no vertical tilt. It was found that, prior to landfall, the rainfall asymmetry was very pronounced with precipitation maxima consistently to the right of the westward direction of motion. Persistent maxima in low-level convergence and vertical motion formed ahead of the translating TC, resulting in deep convection and associated hydrometeor maxima at about 500 hPa. The asymmetry in frictional convergence was mainly due to the storm motion at the eyewall, but was dominated by the proximity to land at larger radii. The displacement of about 30 degrees-120 degrees of azimuth between the surface and midlevel hydrometeor maxima is explained by the rapid cyclonic advection of hydrometeors by the tangential winds in the TC core. These results for TC Larry support earlier studies that show that frictional convergence in the boundary layer can play a significant role in determining the asymmetrical structures, particularly when the environmental vertical shear is weak or absent. C1 [Ramsay, Hamish A.] Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, Norman, OK 73019 USA. [Ramsay, Hamish A.; Leslie, Lance M.] Univ Oklahoma, Sch Meteorol, Norman, OK 73019 USA. [Ramsay, Hamish A.; Kepert, Jeffrey D.] Ctr Australian Weather & Climate Res, Melbourne, Vic, Australia. RP Ramsay, HA (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM hramsay@giss.nasa.gov RI Ramsay, Hamish/G-9604-2011; Kepert, Jeffrey/I-6786-2013 OI Kepert, Jeffrey/0000-0001-6771-0769 FU Insurance Australia Group; University of Oklahoma School of Meteorology FX The authors thank the Insurance Australia Group and the University of Oklahoma School of Meteorology's Robert E. Lowry Chair for providing funding for this study. We are grateful to the two anonymous reviewers whose comments helped to greatly improve this manuscript. We also thank Professor Peter J. Lamb, director of the Cooperative Institute for Mesoscale Meteorological Studies, for encouraging this work. NR 46 TC 5 Z9 5 U1 0 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 J9 MON WEATHER REV JI Mon. Weather Rev. PD DEC PY 2009 VL 137 IS 12 BP 4171 EP 4187 DI 10.1175/2009MWR2744.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 543GT UT WOS:000273562700006 ER PT J AU Kaul, AB von Allmen, P Megerian, KG Baron, RL AF Kaul, A. B. von Allmen, P. Megerian, K. G. Baron, R. L. TI Nanomanipulation Measurements and Monte Carlo Modeling of Single, Vertically-Oriented Carbon Nanofibers as Electro-Mechanical Switches SO NANOSCIENCE AND NANOTECHNOLOGY LETTERS LA English DT Article DE Nanomanipulation; Carbon Nanofibers; NEMS; 3D Electronics; Nanoelectronics; Polarizability; Monte Carlo Analysis AB We describe our work in using high aspect ratio, vertically oriented carbon nanostructures that were synthesized using plasma-enhanced chemical vapor deposition (PECVD), where such structures are under consideration for three-dimensional (3D) electronics applications, specifically for nano-electromechanical-systems (NEMS). Low-cost, manufacturable, top down techniques were implemented, where a deep UV eximer laser (lambda = 248 nm) was used to pattern Ni catalyst dots with dimensions that resulted in the nucleation of single carbon nanofibers (CNFs). Electro-mechanical characterization of individual nanotubes was conducted with nanomanipulation inside a scanning electron microscope, to shed insight into the mechanical and electrical properties of individual tubes. We also simulated the static switching properties of the tubes using first-principles calculations. The static equilibrium equations for the bending of a tube in an electric field was modeled using the Poisson's equation. A Monte Carlo approach was implemented to determine the switching voltage, where a Gaussian distribution was assumed for the parametric variations of the probe-to-tube geometry. C1 [Kaul, A. B.; von Allmen, P.; Megerian, K. G.; Baron, R. L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Kaul, AB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. FU National Aeronautics and Space Administration; internal Research and Technology Development (RTD) program FX We sincerely acknowledge useful discussions with Dr. Trinh Vo, Dr. Choonsup Lee, Mr. Andrew T. Jennings, and Professor Julia R. Greer at the California Institute of Technology (Caltech). We would also like to thank Mr. Robert Kowalczyk for assistance with the PECVD growth chamber and Mr. Ron Ruiz for SEM system configuration. We gratefully acknowledge critical support and infrastructure provided for this work by the Kavli Nanoscience Institute at Caltech. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and was funded through the internal Research and Technology Development (R&TD) program. NR 23 TC 0 Z9 0 U1 2 U2 7 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1941-4900 J9 NANOSCI NANOTECH LET JI Nanosci. Nanotechnol. Lett. PD DEC PY 2009 VL 1 IS 3 BP 145 EP 150 DI 10.1166/nnl.2009.1040 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA V18OJ UT WOS:000208013800001 ER PT J AU Aharonson, O Hayes, AG Lunine, JI Lorenz, RD Allison, MD Elachi, C AF Aharonson, O. Hayes, A. G. Lunine, J. I. Lorenz, R. D. Allison, M. D. Elachi, C. TI An asymmetric distribution of lakes on Titan as a possible consequence of orbital forcing SO NATURE GEOSCIENCE LA English DT Article ID RADAR; SURFACE; CYCLE AB A set of lakes filled or partially filled with liquid hydrocarbon and empty lake basins have been discovered in the high latitudes of Saturn's moon Titan(1). These features were mapped by the radar instrument on the Cassini orbiter(1-4). Here we quantify the distribution of the lakes and basins, and show a pronounced hemispheric asymmetry in their occurrence. Whereas significant fractions of the northern high latitudes are covered by filled and empty lakes(5), the same latitudes in the southern hemisphere are largely devoid of such features. We propose that in addition to known seasonal changes, the observed difference in lake distribution may be caused by an asymmetry in the seasons on Titan that results from the eccentricity of Saturn's orbit around the Sun. We suggest that the consequent hemispheric difference in the balance between evaporation and precipitation could lead to an accumulation of lakes in one of Titan's hemispheres. This effect would be modulated by, and reverse with, dynamical variations in the orbit. We propose that much like in the Earth's glacial cycles, the resulting vigorous hydrologic cycle(6) has a period of tens of thousands of years and leads to active geologic surface modification in the polar latitudes. C1 [Aharonson, O.; Hayes, A. G.] CALTECH, Dept Geol Planetary & Sci, Pasadena, CA 91125 USA. [Lunine, J. I.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Lorenz, R. D.] Johns Hopkins Univ, Appl Phys Lab, Space Dept SRE, Laurel, MD 20723 USA. [Allison, M. D.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Elachi, C.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Aharonson, O (reprint author), CALTECH, Dept Geol Planetary & Sci, Pasadena, CA 91125 USA. EM oa@caltech.edu RI Hayes, Alexander/P-2024-2014; Lorenz, Ralph/B-8759-2016 OI Hayes, Alexander/0000-0001-6397-2630; Lorenz, Ralph/0000-0001-8528-4644 FU Cassini Project FX We would like to thank E. Schaller, M. Brown, M. Richardson, C. Newman, T. Schneider and K. Lewis for helpful discussions. This work was partially supported by the Cassini Project. O.A. would like to thank R. Sari, Y. Erel and the Hebrew University of Jerusalem, Israel, for hosting him while carrying out this work NR 29 TC 80 Z9 80 U1 0 U2 10 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 J9 NAT GEOSCI JI Nat. Geosci. PD DEC PY 2009 VL 2 IS 12 BP 851 EP 854 DI 10.1038/ngeo698 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 525TO UT WOS:000272239400017 ER PT J AU Goldblatt, C Claire, MW Lenton, TM Matthews, AJ Watson, AJ Zahnle, KJ AF Goldblatt, Colin Claire, Mark W. Lenton, Timothy M. Matthews, Adrian J. Watson, Andrew J. Zahnle, Kevin J. TI Nitrogen-enhanced greenhouse warming on early Earth SO NATURE GEOSCIENCE LA English DT Article ID CONTINENTAL-CRUST; CO2 LEVELS; EVOLUTION; SUBDUCTION; ATMOSPHERE; MODEL; CHEMISTRY; MANTLE; METASEDIMENTS; OXIDATION AB Early in Earth's history, the Sun provided less energy to the Earth than it does today. However, the Earth was not permanently glaciated, an apparent contradiction known as the faint young Sun paradox. By implication, the Earth must have been warmed by a stronger greenhouse effect or a lower planetary albedo. Here we use a radiative-convective climate model to show that more N(2) in the atmosphere would have increased the warming effect of existing greenhouse gases by broadening their absorption lines. With the atmospheric CO(2) and CH(4) levels estimated for 2.5 billion years ago, a doubling of the present atmospheric nitrogen (PAN) level would cause a warming of 4.4 degrees C. Our new budget of Earth's geological nitrogen reservoirs indicates that there is a sufficient quantity of nitrogen in the crust (0.5 PAN) and mantle (>1.4 PAN) to have supported this, and that this nitrogen was previously in the atmosphere. In the mantle, N correlates with (40)Ar, the daughter product of (40)K, indicating that the source of mantle N is subducted crustal rocks in which NH(4)(+) has been substituted for K C. We thus conclude that a higher nitrogen level probably helped warm the early Earth, and suggest that the effects of N(2) should be considered in assessing the habitable zone for terrestrial planets. C1 [Goldblatt, Colin; Zahnle, Kevin J.] NASA, Space Sci & Astrobiol Div, Ames Res Ctr, Moffett Field, CA 94035 USA. [Goldblatt, Colin; Lenton, Timothy M.; Matthews, Adrian J.; Watson, Andrew J.] Univ E Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England. [Claire, Mark W.] Univ Washington, Virtual Planetary Lab, Seattle, WA 98195 USA. [Claire, Mark W.] Univ Washington, Astrobiol Program, Seattle, WA 98195 USA. RP Goldblatt, C (reprint author), NASA, Space Sci & Astrobiol Div, Ames Res Ctr, M-S 245-3, Moffett Field, CA 94035 USA. EM colin.goldblatt@nasa.gov RI Matthews, Adrian/A-6444-2011 OI Matthews, Adrian/0000-0003-0492-1168 FU NASA Exobiology programme [NE/F001657/1]; NAI Virtual Planetary Laboratory FX We thank the Met Office for providing us access to the Edwards-Slingo radiation code. We thank R. Buick, D. Catling, R. von Glasow, R. Haberle, J. Kirschvink, J. Manners, E. Nisbet, R. Pierrehumbert, N. Sleep and Q. Williams for discussions and R. Haberle, K. Cahoy and J. Lissauer for comments on the manuscript. C. G. was financially supported by a NASA Postdoctoral Program fellowship. T. M. L.'s contribution was part of the NERC Feedbacks QUEST project (NE/F001657/1), which partly supported C.G.'s contribution. K.J.Z. was supported by the NASA Exobiology programme. M. W. C. received support from the NAI Virtual Planetary Laboratory. NR 50 TC 89 Z9 91 U1 6 U2 50 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 J9 NAT GEOSCI JI Nat. Geosci. PD DEC PY 2009 VL 2 IS 12 BP 891 EP 896 DI 10.1038/NGEO692 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 525TO UT WOS:000272239400026 ER PT J AU Maestro, P Ahn, HS Allison, P Bagliesi, MG Barbier, L Beatty, JJ Bigongiari, G Brandt, TJ Childers, JT Conklin, NB Coutu, S DuVernois, MA Ganel, O Han, JH Jeon, JA Kim, KC Lee, MH Malinine, A Marrocchesi, PS Minnick, S Mognet, SI Nam, SW Nutter, S Park, IH Park, NH Seo, ES Sina, R Walpole, P Wu, J Yang, J Yoon, YS Zei, R Zinn, SY AF Maestro, P. Ahn, H. S. Allison, P. Bagliesi, M. G. Barbier, L. Beatty, J. J. Bigongiari, G. Brandt, T. J. Childers, J. T. Conklin, N. B. Coutu, S. DuVernois, M. A. Ganel, O. Han, J. H. Jeon, J. A. Kim, K. C. Lee, M. H. Malinine, A. Marrocchesi, P. S. Minnick, S. Mognet, S. I. Nam, S. W. Nutter, S. Park, I. H. Park, N. H. Seo, E. S. Sina, R. Walpole, P. Wu, J. Yang, J. Yoon, Y. S. Zei, R. Zinn, S. Y. TI Measurements of cosmic-ray energy spectra with the 2(nd) CREAM flight SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT 15th International Symposium on Very High Energy Interactions CY SEP 01-06, 2008 CL Univ Paris-Diderot, Paris, FRANCE SP Minist Enseignement Super Rech, CNRS, IN2P3, IN2P3-PCHE, Photon Co, Brive HO Univ Paris-Diderot ID NUCLEI AB During its second Antarctic flight, the CREAM (Cosmic Ray Energetics And Mass) balloon experiment collected data for 28 days, measuring the charge and the energy of cosmic rays (CR) with a redundant system of particle identification and an imaging thin ionization calorimeter. Preliminary direct measurements of the absolute intensities of individual CR nuclei are reported in the elemental range from carbon to iron at very high energy. C1 [Maestro, P.; Bagliesi, M. G.; Bigongiari, G.; Marrocchesi, P. S.; Zei, R.] Univ Siena, Dept Phys, I-53100 Siena, Italy. [Maestro, P.; Bagliesi, M. G.; Bigongiari, G.; Marrocchesi, P. S.; Zei, R.] Ist Nazl Fis Nucl, I-53100 Siena, Italy. [Ahn, H. S.; Ganel, O.; Han, J. H.; Kim, K. C.; Lee, M. H.; Malinine, A.; Seo, E. S.; Sina, R.; Walpole, P.; Wu, J.; Yoon, Y. S.; Zinn, S. Y.] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA. [Allison, P.; Beatty, J. J.; Brandt, T. J.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Barbier, L.] NASA, Goddard Space Flight Ctr, Astroparticle Phys Lab, Greenbelt, MD 20771 USA. [Childers, J. T.; DuVernois, M. A.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Conklin, N. B.; Coutu, S.; Mognet, S. I.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Jeon, J. A.; Nam, S. W.; Park, I. H.; Park, N. H.; Yang, J.] Ewha Womans Univ, Dept Phys, Seoul 120750, South Korea. [Minnick, S.] Kent State Univ, Dept Phys, New Philadelphia, OH 44663 USA. [Nutter, S.] No Kentucky Univ, Dept Phys & Geol, Highland Hts, KY 41099 USA. [Seo, E. S.; Yoon, Y. S.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. RP Maestro, P (reprint author), Univ Siena, Dept Phys, Via Roma 56, I-53100 Siena, Italy. EM paolo.maestro@pi.infn.it RI maestro, paolo/E-3280-2010; Marrocchesi, Pier Simone/N-9068-2015; Yoon, Young Soo/O-8580-2014; Beatty, James/D-9310-2011; OI maestro, paolo/0000-0002-4193-1288; Marrocchesi, Pier Simone/0000-0003-1966-140X; Yoon, Young Soo/0000-0001-7023-699X; Beatty, James/0000-0003-0481-4952; Bigongiari, Gabriele/0000-0003-3691-0826 NR 10 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 EI 1873-3832 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD DEC PY 2009 VL 196 BP 239 EP 242 DI 10.1016/j.nuclphysbps.2009.09.045 PG 4 WC Physics, Particles & Fields SC Physics GA 537EO UT WOS:000273096000046 ER PT J AU Geng, JH Wang, Q Smith, J Luo, T Amzajerdian, F Jiang, SB AF Geng, Jihong Wang, Qing Smith, Jake Luo, Tao Amzajerdian, Farzin Jiang, Shibin TI All-fiber Q-switched single-frequency Tm-doped laser near 2 mu m SO OPTICS LETTERS LA English DT Article AB We present an all-fiber Q-switched single-frequency laser oscillator operating in the eye-safe region at 1950 nm. It is based on the stress-induced polarization modulation in a Tm-doped distributed Bragg reflector fiber laser. The laser emits Q-switched single-frequency laser pulses with a pulse repetition rate ranging from tens of hertz to hundreds of kilohertz and an average power of several milliwatts. Pulse duration and laser spectral linewidth have been characterized. This is, to our best knowledge, the first demonstration of a Q-switched single-frequency fiber laser near 2 mu m. (C) 2009 Optical Society of America C1 [Geng, Jihong; Wang, Qing; Smith, Jake; Luo, Tao; Jiang, Shibin] AdValue Photon, Tucson, AZ 85714 USA. [Amzajerdian, Farzin] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Geng, JH (reprint author), AdValue Photon, 4585 S Palo Verde Rd,Suite 405, Tucson, AZ 85714 USA. EM jgeng@advaluephotonics.com RI wang, qing/A-1693-2012 FU NASA SBIR [NNX09CF21P] FX This work was supported by NASA SBIR project NNX09CF21P. NR 11 TC 51 Z9 56 U1 1 U2 15 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD DEC 1 PY 2009 VL 34 IS 23 BP 3713 EP 3715 PG 3 WC Optics SC Optics GA 526GI UT WOS:000272275300040 PM 19953171 ER PT J AU Smialek, JL AF Smialek, James L. TI Moisture-Induced Delayed Alumina Scale Spallation on a Ni(Pt)Al Coating SO OXIDATION OF METALS LA English DT Article DE Cyclic oxidation; Alumina scales; Moisture-induced delayed spallation; NiPtAl diffusion aluminide coatings; Single crystal superalloy; Relative humidity; Hydrogen embrittlement ID THERMAL BARRIER COATINGS; TEMPERATURE OXIDATION BEHAVIOR; CYCLIC-OXIDATION; WATER-VAPOR; BOND COAT; SPALLING FAILURE; NIAL ALLOYS; PART I; SEGREGATION; EVOLUTION AB Delayed interfacial scale failure takes place after cooling for samples of a Ni(Pt)Al-coated CMSX4 single crystal superalloy, cycled at 1150 A degrees C for up to 2000 h. One sample exhibited premature coating grain boundary wrinkling, alumina scale spallation to bare metal, and a final weight loss of 3.3 mg/cm(2). Spallation under ambient conditions was monitored with time after cooldown and was found to continue for 24 h. This produced up to 0.05 mg/cm(2) additional loss for each hold, accumulating 0.7 mg/cm(2) (20% of the total) over the course of the test. After test termination, water immersion produced an additional 0.15 mg/cm(2) loss (a duplicate sample produced much less wrinkling and time dependent spalling, maintaining a net weight gain). The results are consistent with the general phenomena of moisture-induced delayed spallation (MIDS) of mature, distressed alumina scales formed on oxidation resistant M-Al alloys. Relative ambient humidity is discussed as the factor controlling adsorbed moisture, reaction with the substrate, and hydrogen effects on interface strength. C1 NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Smialek, JL (reprint author), NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. EM james.l.smialek@nasa.gov NR 61 TC 8 Z9 8 U1 1 U2 16 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X J9 OXID MET JI Oxid. Met. PD DEC PY 2009 VL 72 IS 5-6 BP 259 EP 278 DI 10.1007/s11085-009-9159-9 PG 20 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 509BA UT WOS:000270984800002 ER PT J AU Hahne, GE AF Hahne, G. E. TI Quantum dwell-correlation times in the scattering of two nonrelativistic particles SO PHYSICAL REVIEW A LA English DT Article ID MECHANICS AB In a previous paper [G. E. Hahne, J. Phys. A 36, 7149 (2003)] the author studied a nontraditional boundary value problem associated with Schrodinger's partial differential equation for the wave function of a structureless particle moving in four-dimensional spacetime: in this boundary value problem, instead of the conventional specification of initial wave-function values on a time=constant surface, suitable time-dependent boundary and normal-derivative values are given on a three-dimensional space-time surface surrounding a slablike region of interaction in four-dimensional spacetime. The particle's time coordinate plays a natural role as an operator and observable in the modified formalism. In the present paper, the formalism is extended to describe a system of two nonrelativistic particles-each with its own time coordinate-scattering from background potentials and from one another in four-dimensional spacetime. The two-body interaction is taken as a generic noninstantaneous action-at-a-distance, which depends independently on the space-time positions of the two particles. The dynamics is expressed in terms of an integral equation for the wave function, that is, a nonrelativistic version of the Bethe-Salpeter equation. An optical theorem is derived for the transition operator associated with scattering processes; when the theorem holds, the pointwise probability current density derivable from the wave function is conserved globally, that is, in a region covering the space-time domain of significant interparticle interaction. A general formula for the expected dwell-correlation time for the two particles in the space-time region in terms of the scattering matrices is worked out. C1 NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Hahne, GE (reprint author), NASA, Ames Res Ctr, MS T27B-1, Moffett Field, CA 94035 USA. EM gerhard.e.hahne@nasa.gov NR 24 TC 2 Z9 2 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD DEC PY 2009 VL 80 IS 6 AR 062101 DI 10.1103/PhysRevA.80.062101 PG 19 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 539DN UT WOS:000273233800023 ER PT J AU Abdo, AA Ackermann, M Ajello, M Atwood, WB Baldini, L Ballet, J Barbiellini, G Bastieri, D Baughman, BM Bechtol, K Bellazzini, R Berenji, B Bloom, ED Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Brigida, M Bruel, P Buehler, R Burnett, TH Buson, S Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cecchi, C Celik, O Charles, E Chekhtman, A Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J de Palma, F Digel, SW Silva, EDE Drell, PS Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Focke, WB Fortin, P Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Gehrels, N Germani, S Giebels, B Giglietto, N Giordano, F Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Hays, E Horan, D Hughes, RE Johannesson, G Johnson, AS Johnson, TJ Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Knodlseder, J Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Makeev, A Mazziotta, MN McEnery, JE Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nolan, PL Norris, JP Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Reposeur, T Rochester, LS Rodriguez, AY Roth, M Sadrozinski, HFW Sander, A Parkinson, PMS Sgro, C Share, GH Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Strickman, MS Suson, DJ Takahashi, H Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vasileiou, V Vilchez, N Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Atwood, W. B. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Baughman, B. M. Bechtol, K. Bellazzini, R. Berenji, B. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Buehler, R. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Celik, Oe Charles, E. Chekhtman, A. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. de Palma, F. Digel, S. W. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Focke, W. B. Fortin, P. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gehrels, N. Germani, S. Giebels, B. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Hays, E. Horan, D. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, T. J. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Knoedlseder, J. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Makeev, A. Mazziotta, M. N. McEnery, J. E. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Rochester, L. S. Rodriguez, A. Y. Roth, M. Sadrozinski, H. F. -W. Sander, A. Parkinson, P. M. Saz Sgro, C. Share, G. H. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Suson, D. J. Takahashi, H. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vasileiou, V. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Ylinen, T. Ziegler, M. TI Fermi large area telescope observations of the cosmic-ray induced gamma-ray emission of the Earth's atmosphere SO PHYSICAL REVIEW D LA English DT Article ID HELIUM SPECTRA; RADIATION; ALBEDO; PROTON; MODEL; SATELLITE; OSO-3; EGRET; ANGLE AB We report on measurements of the cosmic-ray induced gamma-ray emission of Earth's atmosphere by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The Large Area Telescope has observed the Earth during its commissioning phase and with a dedicated Earth limb following observation in September 2008. These measurements yielded similar to 6.4x10(6) photons with energies > 100 MeV and similar to 250 hours total live time for the highest quality data selection. This allows the study of the spatial and spectral distributions of these photons with unprecedented detail. The spectrum of the emission-often referred to as Earth albedo gamma-ray emission-has a power-law shape up to 500 GeV with spectral index Gamma=2.79 +/- 0.06. C1 [Abdo, A. A.; Baughman, B. M.; Chekhtman, A.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Share, G. H.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Chiang, J.] Natl Acad Sci, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, W. B.; Porter, T. A.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Porter, T. A.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Tibaldo, L.] Univ Paris Diderot, CEA Saclay, Serv Astrophys, CNRS,CEA,IRFU,Lab AIM, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Rodriguez, A. Y.; Torres, D. F.] CSIC, IEEC, Inst Ciencies Espai, Barcelona 08193, Spain. [Caraveo, P. A.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy. [Celik, Oe; Gehrels, N.; Hays, E.; Johnson, T. J.; McEnery, J. E.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, Lab Phys Theor & Astroparticules, CNRS, IN2P3, Montpellier, France. [Conrad, J.; Meurer, C.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Meurer, C.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Dumora, D.; Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.; Ohsugi, T.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Gehrels, N.; Johnson, T. J.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Gehrels, N.; Johnson, T. J.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Guillemot, L.; McEnery, J. E.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan. [Kawai, N.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kawai, N.] RIKEN, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Okumura, A.] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Share, G. H.] Praxis Inc, Alexandria, VA 22303 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.] ICREA, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM markusa@slac.stanford.edu; funk@slac.stanford.edu; warit@slac.stanford.edu RI Thompson, David/D-2939-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Gargano, Fabio/O-8934-2015; Loparco, Francesco/O-8847-2015; Johannesson, Gudlaugur/O-8741-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; OI Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Gargano, Fabio/0000-0002-5055-6395; Loparco, Francesco/0000-0002-1173-5673; Johannesson, Gudlaugur/0000-0003-1458-7036; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Rando, Riccardo/0000-0001-6992-818X; Sgro', Carmelo/0000-0001-5676-6214; Giordano, Francesco/0000-0002-8651-2394; SPINELLI, Paolo/0000-0001-6688-8864; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018 FU National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/ Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science, and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/ Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), High Energy Accelerator Research Organization (KEK), and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council, and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 30 TC 40 Z9 40 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC PY 2009 VL 80 IS 12 AR 122004 DI 10.1103/PhysRevD.80.122004 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 539DI UT WOS:000273233300010 ER PT J AU Thrane, E Ballmer, S Romano, JD Mitra, S Talukder, D Bose, S Mandic, V AF Thrane, Eric Ballmer, Stefan Romano, Joseph D. Mitra, Sanjit Talukder, Dipongkar Bose, Sukanta Mandic, Vuk TI Probing the anisotropies of a stochastic gravitational-wave background using a network of ground-based laser interferometers SO PHYSICAL REVIEW D LA English DT Article ID SCIENCE RUN; LIGO; ANTENNA; BURSTS; SEARCH; ORIGIN; LIMIT AB We present a maximum-likelihood analysis for estimating the angular distribution of power in an anisotropic stochastic gravitational-wave background using ground-based laser interferometers. The standard isotropic and gravitational-wave radiometer searches (optimal for point sources) are recovered as special limiting cases. The angular distribution can be decomposed with respect to any set of basis functions on the sky, and the single-baseline, cross-correlation analysis is easily extended to a network of three or more detectors-that is, to multiple baselines. A spherical-harmonic decomposition, which provides maximum-likelihood estimates of the multipole moments of the gravitational-wave sky, is described in detail. We also discuss (i) the covariance matrix of the estimators and its relationship to the detector response of a network of interferometers, (ii) a singular-value decomposition method for regularizing the deconvolution of the detector response from the measured sky map, (iii) the expected increase in sensitivity obtained by including multiple baselines, and (iv) the numerical results of this method when applied to simulated data consisting of both pointlike and diffuse sources. Comparisions between this general method and the standard isotropic and radiometer searches are given throughout, to make contact with the existing literature on stochastic background searches. C1 [Thrane, Eric; Mandic, Vuk] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Ballmer, Stefan] CALTECH, LIGO Lab, Pasadena, CA 91125 USA. [Romano, Joseph D.] Univ Texas Brownsville, Brownsville, TX 78520 USA. [Mitra, Sanjit] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Mitra, Sanjit] Observ Cote Azur, F-06304 Nice 4, France. [Talukder, Dipongkar; Bose, Sukanta] Washington State Univ, Dept Phys, Pullman, WA 99164 USA. RP Thrane, E (reprint author), Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. EM ethrane@physics.umn.edu; sballmer@caltech.edu; joe@phys.utb.edu; smitra@ligo.caltech.edu; talukder_d@wsu.edu; sukanta@mail.wsu.edu; mandic@physics.umn.edu NR 48 TC 20 Z9 20 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD DEC PY 2009 VL 80 IS 12 AR 122002 DI 10.1103/PhysRevD.80.122002 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 539DI UT WOS:000273233300008 ER PT J AU Hesse, M Zenitani, S Kuznetsova, M Klimas, A AF Hesse, Michael Zenitani, Seiji Kuznetsova, Masha Klimas, Alex TI A simple, analytical model of collisionless magnetic reconnection in a pair plasma (vol 16, 102106, 2009) SO PHYSICS OF PLASMAS LA English DT Correction DE magnetic reconnection; plasma confinement C1 [Hesse, Michael; Zenitani, Seiji; Kuznetsova, Masha; Klimas, Alex] NASA, Goddard Space Flight Ctr, Space Weather Lab, Greenbelt, MD 20771 USA. RP Hesse, M (reprint author), NASA, Goddard Space Flight Ctr, Space Weather Lab, Code 674, Greenbelt, MD 20771 USA. RI Hesse, Michael/D-2031-2012; Kuznetsova, Maria/F-6840-2012; NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 NR 1 TC 2 Z9 2 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2009 VL 16 IS 12 AR 129906 DI 10.1063/1.3275791 PG 2 WC Physics, Fluids & Plasmas SC Physics GA 538XI UT WOS:000273217200075 ER PT J AU Barnes, JW Simon-Miller, AA Turtle, EP Dougherty, MK Brown, RH AF Barnes, Jason W. Simon-Miller, Amy A. Turtle, Elizabeth P. Dougherty, Michele K. Brown, Robert H. TI Special issue: Titan, Saturn, and Saturn's Magnetosphere Preface SO PLANETARY AND SPACE SCIENCE LA English DT Editorial Material C1 [Barnes, Jason W.] Univ Idaho, Dept Phys, Moscow, ID 83844 USA. [Simon-Miller, Amy A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Turtle, Elizabeth P.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Dougherty, Michele K.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Brown, Robert H.] Univ Arizona, Dept Planetary Sci, Tucson, AZ 85721 USA. RP Barnes, JW (reprint author), Univ Idaho, Dept Phys, Engn Phys Bldg, Moscow, ID 83844 USA. EM jwbarnes@uidaho.edu RI Turtle, Elizabeth/K-8673-2012; OI Turtle, Elizabeth/0000-0003-1423-5751; Barnes, Jason W./0000-0002-7755-3530; Simon, Amy/0000-0003-4641-6186 NR 0 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD DEC PY 2009 VL 57 IS 14-15 BP 1649 EP 1649 DI 10.1016/j.pss.2009.09.015 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 537FR UT WOS:000273099100001 ER PT J AU Baines, KH Delitsky, ML Momary, TW Brown, RH Buratti, BJ Clark, RN Nicholson, PD AF Baines, Kevin H. Delitsky, Mona L. Momary, Thomas W. Brown, Robert H. Buratti, Bonnie J. Clark, Roger N. Nicholson, Philip D. TI Storm clouds on Saturn: Lightning-induced chemistry and associated materials consistent with Cassini/VIMS spectra SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Saturn:lightning; Cassini-huygens; Visual-infrared mapping spectrometer (VIMS); Lightning chemistry; Thunderstorm; Saturn:clouds ID RADIO ASTRONOMY OBSERVATIONS; ORGANOPHOSPHORUS COMPOUNDS; SPATIAL-DISTRIBUTION; GALILEO IMAGES; GIANT PLANETS; JUPITER; ATMOSPHERE; DISCHARGE; PHOSPHORUS; AMMONIA AB Thunderstorm activity on Saturn is associated with optically detectable clouds that are atypically dark throughout the near-infrared. As observed by Cassini/VIMS, these clouds are similar to 20% less reflective than typical neighboring Clouds throughout the spectral range from 0.8 mu m to at least 4.1 mu m. We propose that active thunderstorms originating in the 10-20 bar water-condensation region vertically transport dark materials at depth to the similar to 1 bar level where they can be observed. These materials in part may be produced by chemical processes associated with lightning, likely within the water clouds near the similar to 10 bar freezing level of water, as detected by the electrostatic discharge of lightning flashes observed by Cassini/RPWS (e.g., Fischer et al. 2008, Space Sci. Rev., 137, 271-285). We review lightning-induced pyrolytic chemistry involving a variety of Saturnian constituents, including hydrogen, methane, ammonia, hydrogen sulfide, phosphine, and water. We find that the lack of absorption in the 1-2 mu m spectral region by lightning-generated sulfuric and phosphorous condensates renders these constituents as minor players in determining the color of the dark storm clouds. Relatively small particulates of elemental carbon, formed by lightning-induced dissociation of methane and subsequently upwelled from depth - perhaps embedded within and on the surface of spectrally bright condensates such as ammonium hydrosulfide or ammonia - may be a dominant optical material within the dark thunderstorm-related clouds of Saturn. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Baines, Kevin H.; Momary, Thomas W.; Buratti, Bonnie J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Delitsky, Mona L.] Calif Specialty Engn, Flintridge, CA 91012 USA. [Brown, Robert H.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Clark, Roger N.] US Geol Survey, Denver, CO 80225 USA. [Nicholson, Philip D.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. RP Baines, KH (reprint author), CALTECH, Jet Prop Lab, M-S 183-601,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM kevin.baines@jpl.nasa.gov; cal_specialty@yahoo.com; thomas.w.momary@jpl.nasa.gov; rhb@lpl.arizona.edu; bonnie.buratti@jpl.nasa.gov; rclark@usgs.gov; nicholso@astro.cornell.edu NR 68 TC 17 Z9 17 U1 0 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD DEC PY 2009 VL 57 IS 14-15 BP 1650 EP 1658 DI 10.1016/j.pss.2009.06.025 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 537FR UT WOS:000273099100002 ER PT J AU Baines, KH Momary, TW Fletcher, LN Showman, AP Roos-Serote, M Brown, RH Buratti, BJ Clark, RN Nicholson, PD AF Baines, Kevin H. Momary, Thomas W. Fletcher, Leigh N. Showman, Adam P. Roos-Serote, Maarten Brown, Robert H. Buratti, Bonnie J. Clark, Roger N. Nicholson, Philip D. TI Saturn's north polar cyclone and hexagon at depth revealed by Cassini/VIMS SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Saturn; Cassini-Huygens; Visual-infrared mapping spectrometer (VIMS); Atmospheric dynamics; Polar cyclone; Saturn clouds ID DYNAMICS; ATMOSPHERE; CONVECTION; JUPITER; PLANETS; VORTEX; JETS; SPOT AB A high-speed cyclonic vortex centered on the north pole of Saturn has been revealed by the visual-infrared mapping spectrometer (VIMS) onboard the Cassini-Huygens Orbiter, thus showing that the tropospheres of both poles of Saturn are occupied by cyclonic vortices with winds exceeding 135 m/s. High-spatial-resolution (similar to 200 km per pixel) images acquired predominantly under night-time conditions during Saturn's polar winter-using a thermal wavelength of 5.1 mu m to obtain time-lapsed imagery of discrete, deep-seated (>2.1-bar) Cloud features viewed in silhouette against Saturn's internally generated thermal glow-show a classic cyclonic structure, with prograde winds exceeding 135 m/s at its maximum near 88.3 degrees (planetocentric) latitude, and decreasing to <30 m/s at 89.7 degrees near the vortex center and <20 m/s at 80.5 degrees. High-speed winds, exceeding 125 m/s, were also measured for cloud features at depth near 76 degrees (planetocentric) latitude within the polar hexagon consistent with the idea that the hexagon itself, which remains nearly stationary, is a westward (retrograde) propagating Rossby wave - as proposed by Allison (1990, Science 247,1061-1063) - with a Maximum wave speed near 2-bars pressure of similar to 125 m/s. Winds are similar to 25 m/s stronger than observed by Voyager, suggesting temporal variability. Images acquired of one side of the hexagon in dawn conditions as the polar winter wanes shows the hexagon is still visible in reflected sunlight nearly 28 years since its discovery, that a similar 3-lane structure is observed in reflected and thermal light, and that the cloudtops may be typically lower in the hexagon than in nearby discrete cloud features outside of it. Clouds are well-correlated in visible and 5.1 mu m images, indicating little windshear above the similar to 2-bar level. The polar cyclone is similar in size and shape to its counterpart at the south pole; a primary difference is the presence of a small (<600 km in diameter) nearly pole-centered cloud, perhaps indicative of localized upwelling. Many dozens of discrete, circular cloud features dot the polar region, with typical diameters of 300-700 km. Equatorward of 87.8 degrees N, their compact nature in the high-wind polar environment suggests that vertical shear in horizontal winds may be modest on 1000 km scales. These circular Clouds may be anticyclonic vortices produced by baroclinic instabilities, barotropic instabilities, moist convection or other processes. The existence of cyclones at both poles of Saturn indicates that cyclonic circulation may be an important dynamical style in planets with significant atmospheres. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Baines, Kevin H.; Momary, Thomas W.; Fletcher, Leigh N.; Buratti, Bonnie J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Showman, Adam P.; Brown, Robert H.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Roos-Serote, Maarten] Observ Astron Lisboa, P-1349018 Lisbon, Portugal. [Clark, Roger N.] US Geol Survey, Lakewood, CO 80225 USA. [Nicholson, Philip D.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. RP Baines, KH (reprint author), CALTECH, Jet Prop Lab, MS 183-601,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM kevin.baines@jpl.nasa.gov; thomas.w.momary@jpl.nasa.gov; Leigh.N.Fletcher@jpl.nasa.gov; showman@lpl.arizona.edu; planet.mrs@gmail.com; rhb@lpl.arizona.edu; bonnie.buratti@jpl.nasa.gov; rclark@usgs.gov; nicholso@astro.cornell.edu RI Fletcher, Leigh/D-6093-2011 OI Fletcher, Leigh/0000-0001-5834-9588 FU National Aeronautics and Space Administration FX We thank Cassini/VIMS team members John lvens, Frank Leader, Dyer Lytle, Dan Moynihan, Virginia Pasek, Alan Stevenson, and Bob Watson for much help in the sequence generation, instrument calibration, and data reduction of the maps and spectra used in this paper. We would like to thank Anthony Del Genio and an anonymous referee for their valuable comments. Much of the work described in this paper was carried out in part at the jet Propulsion Laboratory, Pasadena, California, under contract with the National Aeronautics and Space Administration. LNF was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA. We thank Patrick Irwin and colleagues for the use of the Oxford-based radiative transfer and retrieval code. NR 30 TC 25 Z9 25 U1 0 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD DEC PY 2009 VL 57 IS 14-15 BP 1671 EP 1681 DI 10.1016/j.pss.2009.06.026 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 537FR UT WOS:000273099100004 ER PT J AU Read, PL Conrath, BJ Fletcher, LN Gierasch, PJ Simon-Miller, AA Zuchowski, LC AF Read, P. L. Conrath, B. J. Fletcher, L. N. Gierasch, P. J. Simon-Miller, A. A. Zuchowski, L. C. TI Mapping potential vorticity dynamics on Saturn: Zonal mean circulation from Cassini and Voyager data SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Potential vorticity; Instability; Saturn ID GREAT-RED-SPOT; NONLINEAR STABILITY; JUPITERS ATMOSPHERE; THERMAL STRUCTURE; GIANT PLANETS; JETS; MODEL; STRATOSPHERE; OSCILLATION; WIND AB Maps of Ertel potential vorticity on isentropic surfaces (IPV) and quasi-geostrophic potential vorticity (QGPV) are well established in dynamical meteorology as powerful sources of insight into dynamical processes involving 'balanced' flow (i.e. geostrophic or similar). Here we derive maps of zonal mean IPV and QGPV in Saturn's upper troposphere and lower stratosphere by making use of a combination of velocity measurements, derived from the combined tracking of cloud features in images from the Voyager and Cassini missions, and thermal measurements from the Cassini Composite Infrared Spectrometer (CIRS) instrument. IPV and QGPV are mapped and compared for the entire globe between latitudes 89 degrees S-82 degrees N. As on Jupiter, profiles of zonally averaged PV show evidence for a step-like "stair-case" pattern suggestive of local PV homogenisation, separated by strong PV gradients in association with eastward jets. The northward gradient of PV (IPV or QGPV) is found to change sign in several places in each hemisphere, however, even when baroclinic contributions are taken into account. The stability criterion with respect to Arnol'd's second stability theorem may be violated near the peaks of westward jets. Visible, near-IR and thermal-IR Cassini observations have shown that these regions exhibit many prominent, large-scale eddies and waves, e.g. including 'storm alley'. This suggests the possibility that at least some of these features originate from instabilities of the background zonal flow. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Read, P. L.; Fletcher, L. N.; Zuchowski, L. C.] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. [Conrath, B. J.; Gierasch, P. J.] Cornell Univ, Ithaca, NY 14853 USA. [Fletcher, L. N.] Jet Prop Lab, Pasadena, CA USA. [Simon-Miller, A. A.] NASA, Goddard Spaceflight Ctr, Pasadena, CA USA. RP Read, PL (reprint author), Univ Oxford, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. EM p.read1@physics.ox.ac.uk RI Fletcher, Leigh/D-6093-2011; Simon, Amy/C-8020-2012 OI Fletcher, Leigh/0000-0001-5834-9588; Simon, Amy/0000-0003-4641-6186 FU UK Science and Technology Facilities Council FX We are grateful to the rest of the Cassini CIRS team for their contributions to the acquisition and analysis of the Saturn data. PLR acknowledges support from the UK Science and Technology Facilities Council. We are also grateful to two anonymous referees for their comments that helped to improve the clarity of the paper. NR 59 TC 33 Z9 33 U1 0 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD DEC PY 2009 VL 57 IS 14-15 BP 1682 EP 1698 DI 10.1016/j.pss.2009.03.004 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 537FR UT WOS:000273099100005 ER PT J AU Burton, ME Dougherty, MK Russell, CT AF Burton, M. E. Dougherty, M. K. Russell, C. T. TI Model of Saturn's internal planetary magnetic field based on Cassini observations SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Saturn magnetic field; Magnetosphere; Planetary magnetic fields ID ZONAL HARMONIC MODEL; ROTATION PERIOD; RING CURRENT; MAGNETOSPHERE; VOYAGER-1 AB We have derived a model of Saturn's internal planetary magnetic field from data obtained during the first three years of the Cassini Mission. This model is based on the most complete set of observations yet obtained in Saturn's magnetosphere and includes data from forty-five periapsis passes at a wide variety of geometries. Due to uncertainties in the rotation rate of the planet the model is constrained to be axisymmetric. To derive the model, the external currents are modeled explicitly as an equatorial ring current centered on Saturn's equator and the internal planetary magnetic field is derived using standard inversion techniques. The held is adequately described by a model of degree 3 and the spherical harmonic coefficients are g(10) = 21,162, g(20) = 1514, g(30) = 2283. Units are nanoTeslas (nT) and are based on a planetary radius of 60,268 km. The model is consistent with a northward offset of the magnetic equator from the rotational equator of 0.036 Saturn radii. Reanalysis and comparison with data obtained by Pioneer-11 and Voyager-1 and -2 shows little evidence for secular variation in the field in the almost thirty years since those data were obtained. (C) 2009 Elsevier Ltd. All rights reserved, C1 [Burton, M. E.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Dougherty, M. K.] Imperial Coll Sci & Technol, London, England. [Russell, C. T.] Univ Calif Los Angeles, Los Angeles, CA USA. RP Burton, ME (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM marcia.burton@jpl.nasa.gov NR 30 TC 26 Z9 26 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD DEC PY 2009 VL 57 IS 14-15 BP 1706 EP 1713 DI 10.1016/j.pss.2009.04.008 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 537FR UT WOS:000273099100007 ER PT J AU McAndrews, HJ Thomsen, MF Arridge, CS Jackman, CM Wilson, RJ Henderson, MG Tokar, RL Khurana, KK Sittler, EC Coates, AJ Dougherty, MK AF McAndrews, H. J. Thomsen, M. F. Arridge, C. S. Jackman, C. M. Wilson, R. J. Henderson, M. G. Tokar, R. L. Khurana, K. K. Sittler, E. C. Coates, A. J. Dougherty, M. K. TI Plasma in Saturn's nightside magnetosphere and the implications for global circulation SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Saturn; Magnetospheric; Ions; Planetary wind; Magnetotail ID JOVIAN MAGNETOSPHERE; SPECTROMETER; ATMOSPHERE; COROTATION; ENCELADUS AB We present a bulk ion flow map from the nightside, equatorial region of Saturn's magnetosphere derived from the Cassini CAPS ion mass spectrometer data. The map clearly demonstrates the dominance of corotation flow over radial flow and suggests that the flux tubes sampled are still closed and attached to the planet up to distances of 50R(S). The plasma characteristics in the near-midnight region are described and indicate a transition between the region of the magnetosphere containing plasma on closed drift paths and that containing flux tubes which may not complete a full rotation around the planet. Data from the electron spectrometer reveal two plasma states of high and low density. These are attributed either to the sampling of mass-loaded and depleted flux tubes, respectively, or to the latitudinal structure of the plasma sheet. Depleted, returning flux tubes are not, in general, directly observed in the ions, although the electron observations suggest that such a process must take place in order to produce the low-density population. Flux-tube content is conserved below a limit defined by the mass-loading and magnetic field strength and indicates that the flux tubes sampled may survive their passage through the tail. The conditions for mass-release are evaluated using measured densities, angular velocities and magnetic held strength. The results suggest that for the relatively dense ion populations detectable by the ion mass spectrometer (IMS), the condition for flux-tube breakage has not yet been exceeded. However, the low-density regimes observed in the electron data suggest that loaded flux tubes at greater distances do exceed the threshold for mass-loss and subsequently return to the inner magnetosphere significantly depleted of plasma. (C) 2009 Published by Elsevier Ltd. C1 [McAndrews, H. J.; Thomsen, M. F.; Wilson, R. J.; Henderson, M. G.; Tokar, R. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Arridge, C. S.; Coates, A. J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Arridge, C. S.; Coates, A. J.] UCL, Ctr Planetary Sci, UCL Birkbeck, London WC1E 6BT, England. [Jackman, C. M.; Dougherty, M. K.] Imperial Coll London, Space & Atmospher Phys Grp, London SW7 2BW, England. [Khurana, K. K.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Sittler, E. C.] NASA, Goddard Space Flight Ctr, Heliosphys Sci Div, Geospace Phys Lab Code 673, Greenbelt, MD 20771 USA. RP McAndrews, HJ (reprint author), Los Alamos Natl Lab, POB 1663,D466, Los Alamos, NM 87545 USA. EM hazelm@lanl.gov; mthomsen@lanl.gov; csa@mssl.ucl.ac.uk; c.jackman@imperial.ac.uk; rjw@lanl.gov; mghenderson@lanl.gov; rlt@lanl.gov; kkhurana@igpp.ucla.edu; Edward.C.Sittler@nasa.gov; ajc@mssl.ucl.ac.uk; m.dougherty@imperial.ac.uk RI Arridge, Christopher/A-2894-2009; Coates, Andrew/C-2396-2008; Wilson, Rob/C-2689-2009; Henderson, Michael/A-3948-2011; OI Arridge, Christopher/0000-0002-0431-6526; Coates, Andrew/0000-0002-6185-3125; Wilson, Rob/0000-0001-9276-2368; Henderson, Michael/0000-0003-4975-9029; Jackman, Caitriona/0000-0003-0635-7361 FU US DOE; NASA Cassini program; JPL [1243218]; STFC; ISSI FX The work at Los Alamos was performed under the auspices of the US DOE and was supported by the NASA Cassini program. Work at Southwest Research Institute was supported by the JPL Contract 1243218. Cassini is managed by the jet Propulsion Laboratory for NASA. Work at Imperial was supported by the STFC C.S.A. and A.J.C. were supported in this work by the STFC rolling grant to MSSL/UCL. Part of this work was discussed during a tearn meeting at the International Space Science Institute in Bern, Switzerland. HJM, MFT, CSA and ECS acknowledge funding from ISSI to attend this meeting. NR 39 TC 61 Z9 61 U1 0 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD DEC PY 2009 VL 57 IS 14-15 BP 1714 EP 1722 DI 10.1016/j.pss.2009.03.003 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 537FR UT WOS:000273099100008 ER PT J AU Wahlund, JE Andre, M Eriksson, AIE Lundberg, M Morooka, MW Shafiq, M Averkarnp, TF Gurnett, DA Hospodarsk, GB Kurth, WS Jacobsen, KS Pedersen, A Farrell, W Ratynskaia, S Piskunov, N AF Wahlund, J. -E. Andre, M. Eriksson, A. I. E. Lundberg, M. Morooka, M. W. Shafiq, M. Averkarnp, T. F. Gurnett, D. A. Hospodarsk, G. B. Kurth, W. S. Jacobsen, K. S. Pedersen, A. Farrell, W. Ratynskaia, S. Piskunov, N. TI Detection of dusty plasma near the E-ring of Saturn SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Saturn Magnetosphere; E-ring; Cassini; Dust-plasma interaction; Electrodynamic coupling; Plasma physics ID LANGMUIR PROBE; SPACE PLASMAS; MAGNETOSPHERE; WAVE; PARTICLES; SATELLITE; EMISSION; DYNAMICS; VELOCITY; SYSTEM AB We present several independent in-situ measurements, which provide evidence that charged dust in the E-ring interacts collectively with the dense surrounding plasma disk of Saturn, i.e., form a system of dust-plasma interaction. The results are based on data sampled by the Radio and Plasma Wave Science (RPWS) investigation onboard Cassini, which allows for interferometry of plasma density inhomogeneities (delta n/n) with two antenna elements and a Langmuir probe sensor. The interferometer experiment detects two ion populations: one co-rotating with the planetary magnetic field and another moving with near Keplerian speed around Saturn. The full range of RPWS measurements indicates that the Keplerian population consists of colder ions (T(i) 3000 km s(-1)), it is better to use the approximation V (rad)a parts per thousand V (LE). This implies that such CMEs expand spherically above the solar surface. C1 [Michalek, G.] Jagiellonian Univ, Astron Observ, Krakow, Poland. [Gopalswamy, N.] NASA GSFC, Solar Phys Lab, Greenbelt, MD USA. [Yashiro, S.] Catholic Univ Amer, Ctr Solar & Space Weather, Washington, DC 20064 USA. RP Michalek, G (reprint author), Jagiellonian Univ, Astron Observ, Krakow, Poland. EM michalek@oa.uj.edu.pl RI Gopalswamy, Nat/D-3659-2012 FU MNiSW [N N307012337(0123/B/P01/2009/37)]; NASA [NNX08AD60A] FX Work done by Grzegorz Michalek was supported by MNiSW through the grant N N307012337(0123/B/P01/2009/37) and NASA (NNX08AD60A). NR 10 TC 11 Z9 11 U1 0 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 J9 SOL PHYS JI Sol. Phys. PD DEC PY 2009 VL 260 IS 2 BP 401 EP 406 DI 10.1007/s11207-009-9464-0 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 524CW UT WOS:000272122400012 ER PT J AU Ofman, L AF Ofman, Leon TI Progress, Challenges, and Perspectives of the 3D MHD Numerical Modeling of Oscillations in the Solar Corona SO SPACE SCIENCE REVIEWS LA English DT Review DE Sun: corona; Magnetic fields; MHD waves; Three-dimensional MHD models; Coronal loops; Coronal active regions; Coronal seismology ID SLOW MAGNETOACOUSTIC WAVES; LOOP OSCILLATIONS; ALFVEN WAVES; TRANSVERSE OSCILLATIONS; RESONANT ABSORPTION; VERTICAL OSCILLATIONS; KINK OSCILLATIONS; ACTIVE-REGION; EIT WAVES; MAGNETOSONIC WAVES AB Recent high temporal and spatial resolution satellite observations of the solar corona provide ample evidence of oscillations in coronal structures. The observed waves and oscillations can be used as a diagnostic tool of the poorly known coronal parameters, such as magnetic field, density, and temperature. The emerging field of coronal seismology relies on the interpretation of the various coronal oscillations in terms of theoretically known wave modes, and the comparison of observed and theoretical wave mode properties for the determination of the coronal parameters. However, due to complexity of coronal structures the various modes are coupled, and the application of linear theory of idealized structures to coronal loops and active regions limits the usefulness of such methods. Improved coronal seismology can be achieved by the development of full 3D MHD dynamical model of relevant coronal structures and the oscillation phenomena. In addition to improved accuracy compared to linear analysis, 3D MHD models allow the diagnostic method to include nonlinearity, compressibility, and dissipation. The current progress made with 3D MHD models of waves in the corona is reviewed, and the challenges facing further development of this method are discussed in the perspective of future improvement that will be driven by new high resolution and high cadence satellite data, such as received from Hinode and STEREO, and expected from SDO. C1 [Ofman, Leon] Catholic Univ Amer, Greenbelt, MD 20771 USA. [Ofman, Leon] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ofman, Leon] Tel Aviv Univ, Dept Geophys & Planetary Sci, IL-69978 Tel Aviv, Israel. RP Ofman, L (reprint author), Catholic Univ Amer, Greenbelt, MD 20771 USA. EM Leon.Ofman@nasa.gov FU NASA [NNG06GI55G, NNX08AV88G, NNX08AP88G]; NRL [N00173-06-1-G033] FX The author thanks the organizers and the members of the workshop on "Coronal Waves and Oscillations" that was held in International Space Science Institute (ISSI), Bern, Switzerland, in March 2007, and August 2008 for fruitful discussions that lead to this review, and Drs. Spiros Patsourakos, Tongjiang Wang, Malgorzata Selwa for their input. The author also thanks ISSI for their support and hospitality. This work was supported by NASA grants NNG06GI55G, NNX08AV88G, NNX08AP88G, and by NRL grant N00173-06-1-G033. NR 95 TC 31 Z9 31 U1 1 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD DEC PY 2009 VL 149 IS 1-4 BP 153 EP 174 DI 10.1007/s11214-009-9501-1 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 555XJ UT WOS:000274549800007 ER PT J AU Everitt, CWF Adams, M Bencze, W Buchman, S Clarke, B Conklin, JW DeBra, DB Dolphin, M Heifetz, M Hipkins, D Holmes, T Keiser, GM Kolodziejczak, J Li, J Lipa, J Lockhart, JM Mester, JC Muhlfelder, B Ohshima, Y Parkinson, BW Salomon, M Silbergleit, A Solomonik, V Stahl, K Taber, M Turneaure, JP Wang, S Worden, PW AF Everitt, C. W. F. Adams, M. Bencze, W. Buchman, S. Clarke, B. Conklin, J. W. DeBra, D. B. Dolphin, M. Heifetz, M. Hipkins, D. Holmes, T. Keiser, G. M. Kolodziejczak, J. Li, J. Lipa, J. Lockhart, J. M. Mester, J. C. Muhlfelder, B. Ohshima, Y. Parkinson, B. W. Salomon, M. Silbergleit, A. Solomonik, V. Stahl, K. Taber, M. Turneaure, J. P. Wang, S. Worden, P. W., Jr. TI Gravity Probe B Data Analysis SO SPACE SCIENCE REVIEWS LA English DT Review DE General Relativity; Frame-dragging; Lense-Thirring ID GYROSCOPE; FIELDS AB This is the first of five connected papers detailing progress on the Gravity Probe B (GP-B) Relativity Mission. GP-B, launched 20 April 2004, is a landmark physics experiment in space to test two fundamental predictions of Einstein's general relativity theory, the geodetic and frame-dragging effects, by means of cryogenic gyroscopes in Earth orbit. Data collection began 28 August 2004 and science operations were completed 29 September 2005. The data analysis has proven deeper than expected as a result of two mutually reinforcing complications in gyroscope performance: (1) a changing polhode path affecting the calibration of the gyroscope scale factor C (g) against the aberration of starlight and (2) two larger than expected manifestations of a Newtonian gyro torque due to patch potentials on the rotor and housing. In earlier papers, we reported two methods, 'geometric' and 'algebraic', for identifying and removing the first Newtonian effect ('misalignment torque'), and also a preliminary method of treating the second ('roll-polhode resonance torque'). Central to the progress in both torque modeling and C (g) determination has been an extended effort on "Trapped Flux Mapping" commenced in November 2006. A turning point came in August 2008 when it became possible to include a detailed history of the resonance torques into the computation. The East-West (frame-dragging) effect is now plainly visible in the processed data. The current statistical uncertainty from an analysis of 155 days of data is 5.4 marc-s/yr (similar to 14% of the predicted effect), though it must be emphasized that this is a preliminary result requiring rigorous investigation of systematics by methods discussed in the accompanying paper by Muhlfelder et al. A covariance analysis incorporating models of the patch effect torques indicates that a 3-5% determination of frame-dragging is possible with more complete, computationally intensive data analysis. C1 [Everitt, C. W. F.; Adams, M.; Bencze, W.; Buchman, S.; Clarke, B.; Conklin, J. W.; DeBra, D. B.; Dolphin, M.; Heifetz, M.; Hipkins, D.; Holmes, T.; Keiser, G. M.; Kolodziejczak, J.; Li, J.; Lipa, J.; Lockhart, J. M.; Mester, J. C.; Muhlfelder, B.; Ohshima, Y.; Parkinson, B. W.; Salomon, M.; Silbergleit, A.; Solomonik, V.; Stahl, K.; Taber, M.; Turneaure, J. P.; Wang, S.; Worden, P. W., Jr.] Stanford Univ, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Kolodziejczak, J.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Everitt, CWF (reprint author), Stanford Univ, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. EM francis@relgyro.stanford.edu NR 22 TC 26 Z9 27 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD DEC PY 2009 VL 148 IS 1-4 BP 53 EP 69 DI 10.1007/s11214-009-9524-7 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 546LR UT WOS:000273812800006 ER PT J AU Turyshev, SG Toth, VT AF Turyshev, Slava G. Toth, Viktor T. TI The Pioneer Anomaly in the Light of New Data SO SPACE SCIENCE REVIEWS LA English DT Review DE Pioneer anomaly; Gravitational experiments; Deep-space navigation; Thermal modeling ID LONG-RANGE ACCELERATION; NEWLY RECOVERED DATA; ULYSSES DATA; EXPLANATION; GALILEO; WEAK AB The radio-metric tracking data received from the Pioneer 10 and 11 spacecraft from the distances between 20-70 astronomical units from the Sun has consistently indicated the presence of a small, anomalous, blue-shifted Doppler frequency drift that limited the accuracy of the orbit reconstruction for these vehicles. This drift was interpreted as a sunward acceleration of a (P) =(8.74 +/- 1.33)x10(-10) m/s(2) for each particular spacecraft. This signal has become known as the Pioneer anomaly; the nature of this anomaly is still being investigated. Recently new Pioneer 10 and 11 radio-metric Doppler and flight telemetry data became available. The newly available Doppler data set is much larger when compared to the data used in previous investigations and is the primary source for new investigation of the anomaly. In addition, the flight telemetry files, original project documentation, and newly developed software tools are now used to reconstruct the engineering history of spacecraft. With the help of this information, a thermal model of the Pioneers was developed to study possible contribution of thermal recoil force acting on the spacecraft. The goal of the ongoing efforts is to evaluate the effect of on-board systems on the spacecrafts' trajectories and possibly identify the nature of this anomaly. Techniques developed for the investigation of the Pioneer anomaly are applicable to the New Horizons mission. Analysis shows that anisotropic thermal radiation from on-board sources will accelerate this spacecraft by similar to 41x10(-10) m/s(2). We discuss the lessons learned from the study of the Pioneer anomaly for the New Horizons spacecraft. C1 [Turyshev, Slava G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Turyshev, SG (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM turyshev@jpl.nasa.gov; vttoth@vttoth.com RI Toth, Viktor/D-3502-2009 OI Toth, Viktor/0000-0003-3651-9843 NR 20 TC 16 Z9 16 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD DEC PY 2009 VL 148 IS 1-4 BP 149 EP 167 DI 10.1007/s11214-009-9543-4 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 546LR UT WOS:000273812800010 ER PT J AU Turyshev, SG Toth, VT AF Turyshev, Slava G. Toth, Viktor T. TI The Puzzle of the Flyby Anomaly SO SPACE SCIENCE REVIEWS LA English DT Review DE Flyby anomaly; Gravitational experiments; Spacecraft navigation ID CELESTIAL MECHANICS AB Close planetary flybys are frequently employed as a technique to place spacecraft on extreme solar system trajectories that would otherwise require much larger booster vehicles or may not even be feasible when relying solely on chemical propulsion. The theoretical description of the flybys, referred to as gravity assists, is well established. However, there seems to be a lack of understanding of the physical processes occurring during these dynamical events. Radio-metric tracking data received from a number of spacecraft that experienced an Earth gravity assist indicate the presence of an unexpected energy change that happened during the flyby and cannot be explained by the standard methods of modern astrodynamics. This puzzling behavior of several spacecraft has become known as the flyby anomaly. We present the summary of the recent anomalous observations and discuss possible ways to resolve this puzzle. C1 [Turyshev, Slava G.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Turyshev, SG (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM turyshev@jpl.nasa.gov; vttoth@vttoth.com RI Toth, Viktor/D-3502-2009 OI Toth, Viktor/0000-0003-3651-9843 NR 22 TC 18 Z9 18 U1 2 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD DEC PY 2009 VL 148 IS 1-4 BP 169 EP 174 DI 10.1007/s11214-009-9571-0 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 546LR UT WOS:000273812800011 ER PT J AU Keiser, GM Kolodziejczak, J Silbergleit, AS AF Keiser, G. M. Kolodziejczak, J. Silbergleit, A. S. TI Misalignment and Resonance Torques and Their Treatment in the GP-B Data Analysis SO SPACE SCIENCE REVIEWS LA English DT Review DE Gravity probe B; Experimental tests of gravitational theories; Patch effect; Gyroscope torques AB Classical torques acting on the GP-B gyroscopes decrease the accuracy in the measurement of the relativistic drift rate. Based on measurements made during the year-long science data collection, tests done following the science data collection, and a theoretical analysis of potential torques, there are two dominant classical torques acting on the gyroscopes. The first torque, known as the misalignment torque, has a magnitude proportional to the misalignment between the gyroscope spin axis and the satellite roll axis and is aligned perpendicular to the plane containing these two vectors. The second torque, known as the resonance torque, mainly produces a permanent offset in the orientation of the gyroscope spin axis when a harmonic of the gyroscope polhode frequency is in the vicinity of the satellite roll frequency. These two torques have the same physical origin: an electrostatic interaction between the patch effect fields on the surfaces of the rotor and the housing. In the post-mission data analysis, the change in the gyroscope orientation due to both of these torques can be clearly separated from the relativistic drift rate. C1 [Keiser, G. M.; Silbergleit, A. S.] Stanford Univ, HEPL, Stanford, CA 94305 USA. [Kolodziejczak, J.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Keiser, GM (reprint author), Stanford Univ, HEPL, Stanford, CA 94305 USA. EM mac@relgyro.stanford.edu NR 10 TC 12 Z9 12 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD DEC PY 2009 VL 148 IS 1-4 BP 383 EP 395 DI 10.1007/s11214-009-9516-7 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 546LR UT WOS:000273812800026 ER PT J AU Muhlfelder, B Adams, M Clarke, B Keiser, GM Kolodziejczak, J Li, J Lockhart, JM Worden, P AF Muhlfelder, B. Adams, M. Clarke, B. Keiser, G. M. Kolodziejczak, J. Li, J. Lockhart, J. M. Worden, P. TI GP-B Systematic Error Determination SO SPACE SCIENCE REVIEWS LA English DT Review DE Gravity probe B; General relativity; Systematic error AB We have evaluated the systematic error in the GP-B experiment using five different approaches and estimated the individual contributions of many error sources. The systematic effects we consider include those due to gyroscope torques, gyroscope readout, telescope readout, and guide star proper motion. Effects with an estimated impact on the experiment error larger than 1 mas/yr are discussed in detail. Examples of analyses that bound other sources to less than 1 mas/yr are included to show the range of techniques employed to perform this work. We describe the remaining tasks to complete the systematic error analysis and estimate the total experiment uncertainty. C1 [Muhlfelder, B.; Adams, M.; Clarke, B.; Keiser, G. M.] Stanford Univ, HEPL, Stanford, CA 94305 USA. [Kolodziejczak, J.; Li, J.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Lockhart, J. M.; Worden, P.] San Francisco State Univ, Dept Phys & Astron, San Francisco, CA 94132 USA. RP Muhlfelder, B (reprint author), Stanford Univ, HEPL, Stanford, CA 94305 USA. EM barry@relgyro.stanford.edu NR 4 TC 5 Z9 6 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD DEC PY 2009 VL 148 IS 1-4 BP 429 EP 439 DI 10.1007/s11214-009-9523-8 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 546LR UT WOS:000273812800029 ER PT J AU Hu, JC Chen, WJ Chiu, JC Wang, JL Liu, GR AF Hu, Jen-Chi Chen, Wann-Jin Chiu, J. Christine Wang, Jiang-Liang Liu, Gin-Rong TI Quantitative Precipitation Estimation over Ocean Using Bayesian Approach from Microwave Observations during the Typhoon Season SO TERRESTRIAL ATMOSPHERIC AND OCEANIC SCIENCES LA English DT Article DE Bayesian; Rain rate; Typhoon; TRMM; GPROF ID RESOLVING MODEL SIMULATIONS; RAINFALL MEASURING MISSION; SOUTH CHINA SEA; PART I; SATELLITE-OBSERVATIONS; PROFILING ALGORITHM; GAUGE DATA; TRMM; RETRIEVALS; CLOUD AB We have developed a new Bayesian approach to retrieve oceanic rain rate front the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), with an emphasis on typhoon cases in the West Pacific. Retrieved rain rates are validated with measurements of rain gauges located on Japanese islands. To demonstrate improvement, retrievals are also compared with those from the TRMM/Precipitation Radar (PR), the Goddard Profiling Algorithm (GPROF), and a multi-channel linear regression statistical method (MLRS). We have found that qualitatively, all methods retrieved similar horizontal distributions in terms of locations of eyes and rain bands of typhoons. Quantitatively, our new Bayesian retrievals have the best linearity and the smallest root mean square (RMS) error against rain gauge data for 16 typhoon overpasses in 2004. The correlation coefficient and RMS of our retrievals are 0.95 and similar to 2 mm hr(-1), respectively. In particular, at heavy rain rates, Our Bayesian retrievals outperform those retrieved from GPROF and MLRS. Overall, the new Bayesian approach accurately retrieves surface rain rate for typhoon cases. Accurate rain rate estimates from this method can be assimilated in models to improve forecast and prevent potential damages in Taiwan during typhoon seasons. C1 [Hu, Jen-Chi] Natl Def Univ, Sch Def Sci, Chung Cheng Inst Technol, Tao Yuan, Taiwan. [Chen, Wann-Jin; Wang, Jiang-Liang] Natl Def Univ, Dept Environm Informat & Engn, Chung Cheng Inst Technol, Tao Yuan, Taiwan. [Chiu, J. Christine] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. [Chiu, J. Christine] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Liu, Gin-Rong] Natl Cent Univ, Ctr Space & Remote Sensing Res, Jhongli, Taiwan. RP Hu, JC (reprint author), Natl Def Univ, Sch Def Sci, Chung Cheng Inst Technol, Tao Yuan, Taiwan. EM g970101@gmail.com RI Chiu, Christine/E-5649-2013 OI Chiu, Christine/0000-0002-8951-6913 FU NSC [95-2625-Z-014-002] FX This research was supported by NSC 95-2625-Z-014-002. We would like to thank Prof. Guosheng Liu for his 3D forward radiative transfer model and helpful discussions. We would also like to thank Drs. Chung-Lin Shie and Wei-Kuo Tao for their GCE model simulations and valuable comments. Special thanks to the US Tropical Rainfall Measuring Mission office for TMI, 2A12-GPROF, and 2A25-PR data. NR 50 TC 3 Z9 3 U1 0 U2 0 PU CHINESE GEOSCIENCE UNION PI TAIPEI PA PO BOX 23-59, TAIPEI 10764, TAIWAN SN 1017-0839 J9 TERR ATMOS OCEAN SCI JI Terr. Atmos. Ocean. Sci. PD DEC PY 2009 VL 20 IS 6 BP 817 EP 832 DI 10.3319/TAO.2008.12.17.01(A) PG 16 WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences; Oceanography SC Geology; Meteorology & Atmospheric Sciences; Oceanography GA 542NY UT WOS:000273502600006 ER PT J AU Schmidt, GA AF Schmidt, Gavin A. TI Spurious correlations between recent warming and indices of local economic activity SO INTERNATIONAL JOURNAL OF CLIMATOLOGY LA English DT Article DE global warming; economic activity; spurious regression ID TEMPERATURE TRENDS; GISS MODELE; SCALE; SIMULATIONS; SATELLITE; FIELD AB A series of climate model simulations of the 20th Century are analysed to investigate a number of published correlations between indices of local economic activity and recent global warming. These correlations have been used to support a hypothesis that the observed surface warming record has been contaminated in some way and thus overestimates true global warming. However, the basis of the results are correlations over a very restricted set of locations (predominantly western Europe, Japan and the USA) which project strongly onto naturally occurring patterns of climate variability, or are with fields with significant amounts of spatial auto-correlation. Across model simulations, the correlations vary widely due to the chaotic weather component in any short-term record. The reported correlations do not fall outside the simulated distribution, and are probably spurious (i.e. are likely to have arisen from chance alone). Thus, though this study cannot prove that the global temperature record is unbiased, there is no compelling evidence from these correlations of any large-scale contamination. Published in 2009 by John Wiley & Sons, Ltd. C1 [Schmidt, Gavin A.] Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY 10027 USA. [Schmidt, Gavin A.] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. RP Schmidt, GA (reprint author), Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY 10027 USA. EM gschmidt@giss.nasa.gov RI Schmidt, Gavin/D-4427-2012 OI Schmidt, Gavin/0000-0002-2258-0486 FU NOAA Climate and Global Change Program FX Thanks to Rasmus Benestad, Mike Mann and two reviewers for their comments, and to Jos de Laat for clearing up some ambiguities. Climate modelling at GISS is funded by NASA MAP and output is available at data.giss.nasa.gov/modelE. Remote Sensing Systems MSU data are sponsored by the NOAA Climate and Global Change Program and are available at www.remss.com. Data associated with MM07 was downloaded from www.uoguelph.ca/similar to rmckitri/research/jgr07/jgr07.archive.zip. Temperature data were downloaded from www.cru.uea.ac.uk/cru/data/temperature. NR 24 TC 5 Z9 5 U1 1 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0899-8418 EI 1097-0088 J9 INT J CLIMATOL JI Int. J. Climatol. PD NOV 30 PY 2009 VL 29 IS 14 BP 2041 EP 2048 DI 10.1002/joc.1831 PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 519QK UT WOS:000271782000001 ER PT J AU Ruzmaikin, A AF Ruzmaikin, Alexander TI Residence time distributions of the Northern Annular Mode SO INTERNATIONAL JOURNAL OF CLIMATOLOGY LA English DT Article DE climate dynamics; Northern Annular Mode; residence time distribution; solar variability ID ARCTIC OSCILLATION; CLIMATE-CHANGE; CIRCULATION; VARIABILITY; SIGNATURE AB The Northern Annular Mode (NAM) is a large-scale climatic anomaly pattern characterizing the atmospheric circulation in the polar and the mid-latitude regions. To help in understanding the basic physics underlying the NAM we determine and examine the probability distributions of residence times in the positive and negative phases of the NAM. These distributions are found to have only slightly different mean residence times but differ strongly in their tails. The difference in the tails of the distributions expresses a dominance of one phase of the NAM over the other during rarely occurring events such as the dominant positive NAM in the mid 1960s to the late 1990s. We investigate a possible influence of solar variability on the residence time distributions and find that at high solar activity the NAM spends slightly more time in its negative phase in the stratosphere and slightly less time (compared to the positive phase) in the troposphere. Much stronger influence on the NAM may occur during rare but prolonged changes in solar activity. This extends the conjecture that external forcing only affects the mean residence times ('occupation frequencies') of the dynamical states. An example is the dominance of the negative NAM during the 70-year long Maunder Minimum. The distributions are consistent with generation by a non-linear process of random transitions between two equilibrium states of a system with the addition of a small forced component. A simple two-well potential model provides an approximate description of this process elucidating its dynamics as well as the effect of external influences on the annular modes. Published in 2009 by John Wiley & Sons, Ltd. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Ruzmaikin, A (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Alexander.Ruzmaikin@jpi.nasa.gov FU California Institute of Technology; National Aeronautics and Space Administration FX I thank the reviewers for helpful cornments. This work was supported in part by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 25 TC 1 Z9 1 U1 0 U2 6 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0899-8418 J9 INT J CLIMATOL JI Int. J. Climatol. PD NOV 30 PY 2009 VL 29 IS 14 BP 2072 EP 2078 DI 10.1002/joc.1788 PG 7 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 519QK UT WOS:000271782000004 ER PT J AU Malone, CP Johnson, PV Young, JA Liu, X Ajdari, B Khakoo, MA Kanik, I AF Malone, C. P. Johnson, P. V. Young, J. A. Liu, X. Ajdari, B. Khakoo, M. A. Kanik, I. TI Integral cross sections for electron-impact excitation of the C-3 Pi(u), E-3 Sigma(+)(g) and a '' (1)Sigma(+)(g) states of N-2 SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID NEAR-THRESHOLD REGION; 2ND POSITIVE BAND; NITROGEN MOLECULE; INCIDENT ENERGIES; N2; SCATTERING; APPROXIMATION; E3-SIGMA-G+; C3-PI-U; SYSTEM AB Absolute integral cross sections (ICSs) for electron-impact excitation of the C-3 Pi(u), E-3 Sigma(+)(g) and a '' (1)Sigma(+)(g) states of N-2 from the X-1 Sigma(+)(g) (upsilon '' = 0) ground-state level are presented for electron-impact energies of 13, 15, 17.5, 20, 25, 30, 50 and 100 eV. ICSs are also presented for the individual vibrational levels of the C-3 Pi(u) state (upsilon ' = 0, 1, 2, 3 and 4). The ICSs were derived from recent differential cross sections determined via energy-loss spectroscopy (Malone et al 2009 Phys. Rev. A 79 032704; Malone et al 2009 Phys. Rev. A 79 032705). The results are compared with existing measurements in the literature. C1 [Malone, C. P.; Johnson, P. V.; Young, J. A.; Liu, X.; Kanik, I.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Malone, C. P.; Ajdari, B.; Khakoo, M. A.] Calif State Univ Fullerton, Dept Phys, Fullerton, CA 92834 USA. RP Malone, CP (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Charles.Malone@jpl.nasa.gov; Paul.V.Johnson@jpl.nasa.gov; Isik.Kanik@jpl.nasa.gov RI Malone, Charles/A-6294-2010; Johnson, Paul/D-4001-2009 OI Malone, Charles/0000-0001-8418-1539; Johnson, Paul/0000-0002-0186-8456 FU National Aeronautics and Space Administration (NASA); National Science Foundation [NSF-PHY-RUI-0653452] FX The work was performed at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA) and at the California State University, Fullerton (CSUF). Financial support through NASA's Planetary Atmospheres and Outer Planets Research programs, and the National Science Foundation (grant no NSF-PHY-RUI-0653452) is gratefully acknowledged. NR 40 TC 5 Z9 5 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD NOV 28 PY 2009 VL 42 IS 22 AR 225202 DI 10.1088/0953-4075/42/22/225202 PG 8 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 531BM UT WOS:000272637700010 ER PT J AU Mann, ME Zhang, ZH Rutherford, S Bradley, RS Hughes, MK Shindell, D Ammann, C Faluvegi, G Ni, FB AF Mann, Michael E. Zhang, Zhihua Rutherford, Scott Bradley, Raymond S. Hughes, Malcolm K. Shindell, Drew Ammann, Caspar Faluvegi, Greg Ni, Fenbiao TI Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly SO SCIENCE LA English DT Article ID NORTHERN-HEMISPHERE; TROPICAL PACIFIC; PAST MILLENNIUM; TEMPERATURE-VARIATIONS; OSCILLATION; RECONSTRUCTIONS; SIMULATIONS; CENTURIES; NETWORK; MODEL AB Global temperatures are known to have varied over the past 1500 years, but the spatial patterns have remained poorly defined. We used a global climate proxy network to reconstruct surface temperature patterns over this interval. The Medieval period is found to display warmth that matches or exceeds that of the past decade in some regions, but which falls well below recent levels globally. This period is marked by a tendency for La Nina-like conditions in the tropical Pacific. The coldest temperatures of the Little Ice Age are observed over the interval 1400 to 1700 C. E., with greatest cooling over the extratropical Northern Hemisphere continents. The patterns of temperature change imply dynamical responses of climate to natural radiative forcing changes involving El Nino and the North Atlantic Oscillation-Arctic Oscillation. C1 [Mann, Michael E.; Zhang, Zhihua] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Mann, Michael E.; Zhang, Zhihua] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA. [Rutherford, Scott] Roger Williams Univ, Dept Environm Sci, Bristol, RI 02809 USA. [Bradley, Raymond S.] Univ Massachusetts, Dept Geosci, Amherst, MA 01003 USA. [Hughes, Malcolm K.; Ni, Fenbiao] Univ Arizona, Tree Ring Res Lab, Tucson, AZ 85721 USA. [Shindell, Drew; Faluvegi, Greg] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Ammann, Caspar] Natl Ctr Atmospher Res, Climate Global Dynam Div, Boulder, CO 80305 USA. RP Mann, ME (reprint author), Penn State Univ, Dept Meteorol, 503 Walker Bldg, University Pk, PA 16802 USA. EM mann@meteo.psu.edu RI Mann, Michael/B-8472-2017; Shindell, Drew/D-4636-2012; Hughes, Malcolm/F-3350-2014 OI Mann, Michael/0000-0003-3067-296X; Hughes, Malcolm/0000-0003-1062-3167 FU National Science Foundation [ATM-0542356]; Office of Science (BER), U.S. Department of Energy [DE-FG02-98ER62604]; National Oceanic and Atmospheric Administration [NA16GP2914]; NASA's Atmospheric Chemistry, Modeling, and Analysis Program FX M.E.M. and Z.Z. gratefully acknowledge support from the ATM program of the National Science Foundation (grant ATM-0542356). R. S. B. acknowledges support from the Office of Science (BER), U.S. Department of Energy (grant DE-FG02-98ER62604). M. K. H. and F.B.N. were supported by the National Oceanic and Atmospheric Administration (grant NA16GP2914 from CCDD). D. T. S. and G. F. acknowledge support from NASA's Atmospheric Chemistry, Modeling, and Analysis Program. NR 29 TC 661 Z9 710 U1 32 U2 303 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 27 PY 2009 VL 326 IS 5957 BP 1256 EP 1260 DI 10.1126/science.1177303 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 524BD UT WOS:000272117900046 PM 19965474 ER PT J AU Schmid, B Flynn, CJ Newsom, RK Turner, DD Ferrare, RA Clayton, MF Andrews, E Ogren, JA Johnson, RR Russell, PB Gore, WJ Dominguez, R AF Schmid, Beat Flynn, Connor J. Newsom, Rob K. Turner, David D. Ferrare, Richard A. Clayton, Marian F. Andrews, Elisabeth Ogren, John A. Johnson, Roy R. Russell, Philip B. Gore, Warren J. Dominguez, Roseanne TI Validation of aerosol extinction and water vapor profiles from routine Atmospheric Radiation Measurement Program Climate Research Facility measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID INTENSIVE OBSERVATION PERIODS; SOUTHERN GREAT-PLAINS; RAMAN LIDAR; SUN PHOTOMETER; COLUMN CLOSURE; OPTICAL DEPTH; ACE-ASIA; RADIOMETERS; AIRBORNE; CALIBRATION AB The accuracy with which vertical profiles of aerosol extinction sigma(ep)(lambda) can be measured using routine Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) measurements and was assessed using data from two airborne field campaigns, the ARM Aerosol Intensive Operation Period (AIOP, May 2003), and the Aerosol Lidar Validation Experiment (ALIVE, September 2005). This assessment pertains to the aerosol at its ambient concentration and thermodynamic state (i.e., sigma(ep)(lambda) either free of or corrected for sampling artifacts) and includes the following ACRF routine methods: Raman lidar, micropulse lidar (MPL), and in situ aerosol profiles (IAP) with a small aircraft. Profiles of aerosol optical depth tau(p)(lambda), from which the profiles of sigma(ep)(lambda) are derived through vertical differentiation, were measured by the NASA Ames Airborne Tracking 14-channel Sun photometer (AATS-14); these data were used as benchmark in this evaluation. The ACRF IAP sigma(ep)(550 nm) were lower by 11% (during AIOP) and higher by 1% (during ALIVE) when compared to AATS-14. The ACRF MPL sigma(ep)(523 nm) measurements were higher by 24% (AIOP) and 19-21% (ALIVE) compared to AATS-14, but the correlation improved significantly during ALIVE. In the AIOP, a second MPL operated by NASA showed a smaller positive bias (13%) with respect to AATS-14. The ACRF Raman lidar sigma(ep)(355 nm) measurements were larger by 54% (AIOP) and by 6% (ALIVE) compared to AATS-14. The large bias in the Raman lidar measurements during AIOP stemmed from a gradual loss of Raman lidar sensitivity starting about the end of 2001 going unnoticed until after AIOP. A major refurbishment and upgrade of the instrument and improvements to a data processing algorithm led to the significant improvement and very small bias in ALIVE. Finally, we find that during ALIVE the Raman lidar water vapor densities rho(w) are 8% larger when compared to AATS-14, whereas in situ measured rho(w) aboard two different aircraft are smaller than the AATS-14 values by 0.3-3%. C1 [Schmid, Beat; Flynn, Connor J.; Newsom, Rob K.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Turner, David D.] Univ Wisconsin, Atmospher & Ocean Sci Dept, Madison, WI 53706 USA. [Clayton, Marian F.] NASA, Langley Res Ctr, SSAI, Hampton, VA 23681 USA. [Andrews, Elisabeth] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Ogren, John A.] NOAA, ESRL, Boulder, CO 80305 USA. [Dominguez, Roseanne] Univ Calif Santa Cruz, Univ Affiliated Res Ctr, NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Schmid, B (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM beat.schmid@pnl.gov; connor.flynn@pnl.gov; rob.newsom@pnl.gov; dturner@ssec.wisc.edu; richard.a.ferrare@nasa.gov; marian.b.clayton@nasa.gov; betsy.andrews@noaa.gov; john.a.ogren@noaa.gov; roy.r.johnson@nasa.gov; philip.b.russell@nasa.gov; warren.j.gore@nasa.gov; roseanne.dominguez@nasa.gov RI Ogren, John/M-8255-2015 OI Ogren, John/0000-0002-7895-9583 FU DOE ARM [DE-FG02-08ER64538] FX The Atmospheric Radiation Measurement Program (ARM) is sponsored by the U. S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research. The success of ALIVE and AIOP was due to the hard work and dedicated efforts from a large team of scientists and engineers; CIRPAS Twin Otter, Sky Research Jetstream 31, and Cessna pilots, crew, and support personnel; SGP site personnel; ARM infrastructure support; weather forecasters; and support from Greenwood Aviation at Ponca City airport. We thank ARM for the support of these campaigns. Support from NASA's Radiation Science and Airborne Science Programs is also greatly acknowledged. Work at the University of Wisconsin-Madison was supported by the DOE ARM grant DE-FG02-08ER64538. NR 38 TC 12 Z9 12 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 26 PY 2009 VL 114 AR D22207 DI 10.1029/2009JD012682 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 524MI UT WOS:000272147000005 ER PT J AU McKeown, NK Bishop, JL Dobrea, EZN Ehlmann, BL Parente, M Mustard, JF Murchie, SL Swayze, GA Bibring, JP Silver, EA AF McKeown, Nancy K. Bishop, Janice L. Dobrea, Eldar Z. Noe Ehlmann, Bethany L. Parente, Mario Mustard, John F. Murchie, Scott L. Swayze, Gregg A. Bibring, Jean-Pierre Silver, Eli A. TI Characterization of phyllosilicates observed in the central Mawrth Vallis region, Mars, their potential formational processes, and implications for past climate SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID CLAY-MINERALS; REFLECTANCE SPECTROSCOPY; ORIGIN; IDENTIFICATION; SMECTITES; WATER; WARM; WET; NONTRONITE; RESOLUTION AB Mawrth Vallis contains one of the largest exposures of phyllosilicates on Mars. Nontronite, montmorillonite, kaolinite, and hydrated silica have been identified throughout the region using data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). In addition, saponite has been identified in one observation within a crater. These individual minerals are identified and distinguished by features at 1.38-1.42, similar to 1.91, and 2.17-2.41 mu m. There are two main phyllosilicate units in the Mawrth Vallis region. The lowermost unit is nontronite bearing, unconformably overlain by an Al-phyllosilicate unit containing montmorillonite plus hydrated silica, with a thin layer of kaolinite plus hydrated silica at the top of the unit. These two units are draped by a spectrally unremarkable capping unit. Smectites generally form in neutral to alkaline environments, while kaolinite and hydrated silica typically form in slightly acidic conditions; thus, the observed phyllosilicates may reflect a change in aqueous chemistry. Spectra retrieved near the boundary between the nontronite and Al-phyllosilicate units exhibit a strong positive slope from 1 to 2 mu m, likely from a ferrous component within the rock. This ferrous component indicates either rapid deposition in an oxidizing environment or reducing conditions. Formation of each of the phyllosilicate minerals identified requires liquid water, thus indicating a regional wet period in the Noachian when these units formed. The two main phyllosilicate units may be extensive layers of altered volcanic ash. Other potential formational processes include sediment deposition into a marine or lacustrine basin or pedogenesis. C1 [McKeown, Nancy K.; Silver, Eli A.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Bishop, Janice L.] SETI Inst Mt View, Mountain View, CA USA. [Bishop, Janice L.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Dobrea, Eldar Z. Noe] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ehlmann, Bethany L.; Mustard, John F.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Parente, Mario] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Murchie, Scott L.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Swayze, Gregg A.] US Geol Survey, Denver, CO 80225 USA. [Bibring, Jean-Pierre] Univ Paris 11, CNRS, Inst Astrophys Spatiale, F-91405 Orsay, France. RP McKeown, NK (reprint author), Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. RI Murchie, Scott/E-8030-2015 OI Murchie, Scott/0000-0002-1616-8751 FU Naval Post-graduate School Center for Remote Sensing; University Affiliated Research Center; NASA's Mars Fundamental Research program; NASA's Mars Data Analysis program; MRO/CRISM mission FX Partial support to N.K.M. was provided by the Naval Post-graduate School Center for Remote Sensing, by the University Affiliated Research Center at UCSC, and by NASA's Mars Fundamental Research program. Additional support was provided by NASA's Mars Data Analysis program and the MRO/CRISM mission. Formal reviews by David Bish and Damien Loizeau greatly improved this paper. We would like to thank the MRO/CRISM Team for the collection and initial processing of the images and Frank Seelos, Olivier Barnouin-Jha, and team for creating the browse products available online at http://crism-map.jhuapl.edu/. NR 74 TC 62 Z9 62 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD NOV 26 PY 2009 VL 114 AR E00D10 DI 10.1029/2008JE003301 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 524MS UT WOS:000272148000001 ER PT J AU Robichaud, DJ Yeung, LY Long, DA Okumura, M Havey, DK Hodges, JT Miller, CE Brown, LR AF Robichaud, David J. Yeung, Laurence Y. Long, David A. Okumura, Mitchio Havey, Daniel K. Hodges, Joseph T. Miller, Charles E. Brown, Linda R. TI Experimental Line Parameters of the b(1)Sigma(+)(g) <- X-3 Sigma(-)(g) Band of Oxygen Isotopologues at 760 nm Using Frequency-Stabilized Cavity Ring-Down Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID O-2 A-BAND; HIGH-PRECISION; ABSORPTION; TRANSITIONS; DATABASE; (OO)-O-16-O-18; SENSITIVITY; ISOTOPOMERS; RETRIEVAL AB Positions, intensities, self-broadened widths, and collisional narrowing coefficients of the oxygen isotopologues (OO)-O-16-O-18, (OO)-O-16-O-17, (OO)-O-17-O-18, and (OO)-O-18-O-18 have been measured for the b(1)Sigma(g) + <-- X-3 Sigma g - (0,0) band using frequency-stabilized cavity ring-down spectroscopy. Line positions of 156 P-branch transitions were referenced against the hyperfine components of the K-39 D-1 (4s 2S(1/2) --> 4p P-2(1/2)) and D-2 (4s S-2(1/2) --> 4P P-2(3/2)) transitions, yielding precisions of similar to 0.00005 cm(-1) and absolute accuracies of 0.00030 cm(-1) or better. New excited b(1)Sigma g + state molecular constants are reported for all four isotopologues. The measured line intensities of the (OO)-O-16-O-18 isotopologue are within 2% of the values currently assumed in molecular databases. However, the line intensities of the (OO)-O-16-O-17 isotopologue show a systematic, J-dependent offset between our results and the databases. Self-broadening half-widths for the various isotopologues are internally consistent to within 2%. This is the first comprehensive Study of the line intensities and shapes for the (OO)-O-17-O-18 or O-18(2) isotopologues of the b(1)Sigma g + <-- X-3 Sigma g - (0,0) band of O-2. The O-16(2), (OO)-O-16-O-18, and (OO)-O-16-O-17 line parameters for the oxygen A-band have been extensively revised in the HITRAN 2008 database using results from the present study. C1 [Robichaud, David J.; Yeung, Laurence Y.; Long, David A.; Okumura, Mitchio] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Havey, Daniel K.; Hodges, Joseph T.] Natl Inst Stand & Technol, Proc Measurements Div, Gaithersburg, MD 20899 USA. [Miller, Charles E.; Brown, Linda R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Okumura, M (reprint author), CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. RI Havey, Daniel/C-1997-2009; Yeung, Laurence/D-4574-2009; Hodges, Joseph/B-4578-2009; Okumura, Mitchio/I-3326-2013 OI Yeung, Laurence/0000-0001-9901-2607; Okumura, Mitchio/0000-0001-6874-1137 FU National Aeronautics and Space Administration (NASA) [NNG06GD88G]; Orbiting Carbon Observatory (OCO) project; NIST Office of Microelectronics Programs; Davidow Graduate Fellowship in Environmental Science; National Defense Science and Engineering Graduate Fellowship; National Research Council FX Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with The National Aeronautics and Space Administration (NASA). Additional Support was provided by the Orbiting Carbon Observatory (OCO) project, a NASA Earth System Science Pathfinder (ESSP) mission; the NASA Upper Atmospheric Research Program grant NNG06GD88G; and the NIST Office of Microelectronics Programs. Laurence Y. Yeung would like to acknowledge the support of the Davidow Graduate Fellowship in Environmental Science. David A. Long acknowledges the support of the National Defense Science and Engineering Graduate Fellowship. Daniel K. Havey received support from the National Research Council as a postdoctoral fellow at NIST. Finally, we Would like to acknowledge the assistance of Dr. Mona Shahgholi in performing the mass spectral analyses of our enriched gas sample. NR 31 TC 20 Z9 20 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 26 PY 2009 VL 113 IS 47 BP 13089 EP 13099 DI 10.1021/jp901127h PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 520FL UT WOS:000271825800005 PM 19585967 ER PT J AU Tao, WK Moncrieff, MW AF Tao, Wei-Kuo Moncrieff, Mitchell W. TI MULTISCALE CLOUD SYSTEM MODELING SO REVIEWS OF GEOPHYSICS LA English DT Review ID TROPICAL SQUALL-LINE; MESOSCALE CONVECTIVE SYSTEM; TRMM PRECIPITATION RADAR; LARGE-SCALE ORGANIZATION; LATENT-HEAT RELEASE; 10-11 JUNE 1985; 3-DIMENSIONAL NUMERICAL EXPERIMENTS; ATMOSPHERE RESPONSE EXPERIMENT; VERTICAL HYDROMETEOR PROFILES; PASSIVE MICROWAVE RADIOMETRY AB The central theme of this paper is to describe how cloud system resolving models (CRMs) of grid spacing similar to 1 km have been applied to various important problems in atmospheric science across a wide range of spatial and temporal scales and how these applications relate to other modeling approaches. A long-standing problem concerns the representation of organized precipitating convective cloud systems in weather and climate models. Since CRMs resolve the mesoscale to large scales of motion (i.e., 10 km to global) they explicitly address the cloud system problem. By explicitly representing organized convection, CRMs bypass restrictive assumptions associated with convective parameterization such as the scale gap between cumulus and large-scale motion. Dynamical models provide insight into the physical mechanisms involved with scale interaction and convective organization. Multiscale CRMs simulate convective cloud systems in computational domains up to global and have been applied in place of contemporary convective parameterizations in global models. Multiscale CRMs pose a new challenge for model validation, which is met in an integrated approach involving CRMs, operational prediction systems, observational measurements, and dynamical models in a new international project: the Year of Tropical Convection, which has an emphasis on organized tropical convection and its global effects. C1 [Tao, Wei-Kuo] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Mesoscale Atmospher Proc Branch, Greenbelt, MD 20771 USA. [Moncrieff, Mitchell W.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. RP Tao, WK (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, Mesoscale Atmospher Proc Branch, Code 613-1, Greenbelt, MD 20771 USA. EM wei-kuo.tao-1@nasa.gov FU NASA; National Science Foundation FX W.-K. Tao appreciates the inspiring and enthusiastic support by his mentor, Joanne Simpson, over the past 25 years and is grateful to R. Kakar at NASA headquarters for his continuous support of Goddard Cumulus Ensemble model development and applications. This work is mainly supported by the NASA Headquarters Physical Climate Program and the NASA TRMM. He also thanks D. Anderson for support under the NASA Cloud Modeling and Analysis Initiative program and S. Lang for reading and editing the manuscript. The National Center for Atmospheric Research is sponsored by the National Science Foundation. We also thank W. Cotton and two anonymous reviewers for their constructive comments that improved this paper significantly. We also acknowledge Center for Multiscale Modeling of Atmospheric Processes scientists for discussions on future applications of CRMs. NR 329 TC 27 Z9 27 U1 1 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 8755-1209 EI 1944-9208 J9 REV GEOPHYS JI Rev. Geophys. PD NOV 26 PY 2009 VL 47 AR RG4002 DI 10.1029/2008RG000276 PG 41 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 524NC UT WOS:000272149000001 ER PT J AU Burr, DM Jacobsen, RE Roth, DL Phillips, CB Mitchell, KL Viola, D AF Burr, Devon M. Jacobsen, Robert E. Roth, Danica L. Phillips, Cynthia B. Mitchell, Karl L. Viola, Donna TI Fluvial network analysis on Titan: Evidence for subsurface structures and west-to-east wind flow, southwestern Xanadu SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID HUYGENS PROBE; SURFACE; RADAR; TOPOGRAPHY AB Data of Titan's surface from the Cassini-Huygens mission show inferred fluvial networks interpreted as products of liquid alkane flow. Using synthetic aperture radar (SAR) data, we delineated drainage networks, measured network parameters, and used these measurements in a simplified algorithm for classifying terrestrial drainage patterns. The results show a variety of patterns, indicating that a variety of factors control fluvial drainage on Titan. Drainage network patterns in southwestern Xanadu are classified as rectangular, suggesting control by a subsurface tectonic structural fabric. Link orientations also suggest that this subsurface tectonic fabric is oriented predominantly east-west. Spatial variations in drainage networks are consistent with a west-to-east precipitation pattern, supporting inferences from aeolian dune morphology. These results illustrate how fluvial landform analysis can yield new information on both atmospheric and subsurface processes. Citation: Burr, D. M., R. E. Jacobsen, D. L. Roth, C. B. Phillips, K. L. Mitchell, and D. Viola (2009), Fluvial network analysis on Titan: Evidence for subsurface structures and west-to-east wind flow, southwestern Xanadu, Geophys. Res. Lett., 36, L22203, doi: 10.1029/2009GL040909. C1 [Burr, Devon M.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Jacobsen, Robert E.] Colorado Coll, Dept Geol, Colorado Springs, CO 80903 USA. [Mitchell, Karl L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Burr, Devon M.; Phillips, Cynthia B.] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Roth, Danica L.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Viola, Donna] Univ Maryland Baltimore Cty, Interdisciplinary Studies Dept, Baltimore, MD 21250 USA. RP Burr, DM (reprint author), Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. EM dburr1@utk.edu FU National Science Foundation; Patricia Buster Research Scholarship Fund FX This research was made possible by the Cassini Data Analysis Program, an REU grant from the National Science Foundation to the SETI Institute, and the Patricia Buster Research Scholarship Fund at Colorado College. K. L. M. acknowledges support of the Cassini RADAR Science Team. We thank the Cassini RADAR Team for assistance with SAR image processing and 2 anonymous reviewers for constructive comments. NR 28 TC 26 Z9 26 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 25 PY 2009 VL 36 AR L22203 DI 10.1029/2009GL040909 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 524MC UT WOS:000272146400006 ER PT J AU Schneider, P Hook, SJ Radocinski, RG Corlett, GK Hulley, GC Schladow, SG Steissberg, TE AF Schneider, P. Hook, S. J. Radocinski, R. G. Corlett, G. K. Hulley, G. C. Schladow, S. G. Steissberg, T. E. TI Satellite observations indicate rapid warming trend for lakes in California and Nevada SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SEA-SURFACE TEMPERATURE; TRACK SCANNING RADIOMETER; CLIMATE-CHANGE; RETRIEVALS; TAHOE; MODIS; ELIMINATION; VALIDATION; ACCURACY; AATSR AB Large lake temperatures are excellent indicators of climate change; however, their usefulness is limited by the paucity of in situ measurements and lack of long-term data records. Thermal infrared satellite imagery has the potential to provide frequent and accurate retrievals of lake surface temperatures spanning several decades on a global scale. Analysis of seventeen years of data from the Along-Track Scanning Radiometer series of sensors and data from the Moderate Resolution Imaging Spectroradiometer shows that six lakes situated in California and Nevada have exhibited average summer nighttime warming trends of 0.11 +/- 0.02 degrees C yr(-1) (p < 0.002) since 1992. A comparison with air temperature observations suggests that the lake surface temperature is warming approximately twice as fast as the average minimum surface air temperature. Citation: Schneider, P., S. J. Hook, R. G. Radocinski, G. K. Corlett, G. C. Hulley, S. G. Schladow, and T. E. Steissberg (2009), Satellite observations indicate rapid warming trend for lakes in California and Nevada, Geophys. Res. Lett., 36, L22402, doi: 10.1029/2009GL040846. C1 [Schneider, P.; Hook, S. J.; Radocinski, R. G.; Hulley, G. C.] CALTECH, Jet Prop Lab, NASA, Pasadena, CA 91109 USA. [Corlett, G. K.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Schladow, S. G.; Steissberg, T. E.] Univ Calif Davis, Tahoe Environm Res Ctr, Davis, CA 95616 USA. RP Schneider, P (reprint author), CALTECH, Jet Prop Lab, NASA, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM philipp.schneider@jpl.nasa.gov NR 22 TC 41 Z9 41 U1 1 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 25 PY 2009 VL 36 AR L22402 DI 10.1029/2009GL040846 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 524MC UT WOS:000272146400005 ER PT J AU Hayward, RK Titus, TN Michaels, TI Fenton, LK Colaprete, A Christensen, PR AF Hayward, Rosalyn K. Titus, Timothy N. Michaels, Timothy I. Fenton, Lori K. Colaprete, Anthony Christensen, Philip R. TI Aeolian dunes as ground truth for atmospheric modeling on Mars SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID GENERAL-CIRCULATION MODEL; MARTIAN SURFACE; DEPOSITS; SYSTEM; SIMULATIONS; FEATURES; CAMERA AB Martian aeolian dunes preserve a record of atmosphere/surface interaction on a variety of scales, serving as ground truth for both Global Climate Models (GCMs) and mesoscale climate models, such as the Mars Regional Atmospheric Modeling System (MRAMS). We hypothesize that the location of dune fields, expressed globally by geographic distribution and locally by dune centroid azimuth (DCA), may record the long-term integration of atmospheric activity across a broad area, preserving GCM-scale atmospheric trends. In contrast, individual dune morphology, as expressed in slipface orientation (SF), may be more sensitive to localized variations in circulation, preserving topographically controlled mesoscale trends. We test this hypothesis by comparing the geographic distribution, DCA, and SF of dunes with output from the Ames Mars GCM and, at a local study site, with output from MRAMS. When compared to the GCM: 1) dunes generally lie adjacent to areas with strongest winds, 2) DCA agrees fairly well with GCM modeled wind directions in smooth-floored craters, and 3) SF does not agree well with GCM modeled wind directions. When compared to MRAMS modeled winds at our study site: 1) DCA generally coincides with the part of the crater where modeled mean winds are weak, and 2) SFs are consistent with some weak, topographically influenced modeled winds. We conclude that: 1) geographic distribution may be valuable as ground truth for GCMs, 2) DCA may be useful as ground truth for both GCM and mesoscale models, and 3) SF may be useful as ground truth for mesoscale models. C1 [Hayward, Rosalyn K.; Titus, Timothy N.] US Geol Survey, Flagstaff, AZ 86001 USA. [Michaels, Timothy I.] SW Res Inst, Boulder, CO 80302 USA. [Fenton, Lori K.] Carl Sagan Ctr, Mountain View, CA 94043 USA. [Colaprete, Anthony] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Christensen, Philip R.] Arizona State Univ, Dept Geol Sci, Tempe, AZ 85287 USA. RP Hayward, RK (reprint author), US Geol Survey, 2255 N Gemini Dr, Flagstaff, AZ 86001 USA. FU Mars Odyssey Thermal Emission Imaging Spectrometer Project (Arizona State University) FX We appreciate the thoughtful reviews by Ken Herkenhoff and Paul Geissler and Circe Verba's assistance with HiRISE images. We would also like to thank an anonymous reviewer for suggestions that assisted in improving the manuscript. This project was partially supported as part of the Mars Odyssey Thermal Emission Imaging Spectrometer Project (Arizona State University). Any use of trade or product names in this publication is for descriptive purposes only and does not imply endorsement by the U. S. government. NR 36 TC 18 Z9 18 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD NOV 25 PY 2009 VL 114 AR E11012 DI 10.1029/2009JE003428 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 524MR UT WOS:000272147900002 ER PT J AU Buchoux, J Aime, JP Boisgard, R Nguyen, CV Buchaillot, L Marsaudon, S AF Buchoux, Julien Aime, Jean-Pierre Boisgard, Rodolphe Nguyen, Cattien V. Buchaillot, Lionel Marsaudon, Sophie TI Investigation of the carbon nanotube AFM tip contacts: free sliding versus pinned contact SO NANOTECHNOLOGY LA English DT Article ID FORCE MICROSCOPE CANTILEVERS; MECHANICAL-PROPERTIES; LATERAL RESOLUTION; YOUNGS MODULUS; SCANNING PROBE; NANOMECHANICS; COMPRESSION AB Mechanical response of carbon nanotube atomic force microscope probes are investigated using a thermal noise forcing. Thermal noise spectra are able to investigate mechanical behaviors that cannot be studied using classical atomic force microscope modes. Experimental results show that the carbon nanotube contacts can be classified in two categories: the free sliding and pinned cases. The pinned contact case requires the description of the cantilever flexural vibrations with support spring-coupled cantilever boundary conditions. Our experimental results show that carbon nanotubes exhibit different contact behaviors with a surface, and in turn different mechanical responses. C1 [Buchoux, Julien; Aime, Jean-Pierre; Boisgard, Rodolphe; Marsaudon, Sophie] Univ Bordeaux 1, CPMOH 351, Cours Liberat, F-33405 Talence, France. [Nguyen, Cattien V.] NASA, Ames Res Ctr, ELORET Corp, Moffett Field, CA 94035 USA. [Buchaillot, Lionel] IEMN, ISEN Dept, F-59652 Villeneuve Dascq, France. RP Buchoux, J (reprint author), Univ Bordeaux 1, CPMOH 351, Cours Liberat, F-33405 Talence, France. EM jp.aime@cpmoh.u-bordeaux1.fr RI Buchaillot, Lionel/R-2582-2016 OI Buchaillot, Lionel/0000-0002-9844-0498 FU ANR Improve LM; Aquitaine Region FX ANR Improve LM and the Aquitaine Region are gratefully acknowledged for providing financial supports. NR 31 TC 10 Z9 10 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD NOV 25 PY 2009 VL 20 IS 47 AR 475701 DI 10.1088/0957-4484/20/47/475701 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 512RS UT WOS:000271268600020 PM 19858552 ER PT J AU Havey, DK Long, DA Okumura, M Miller, CE Hodges, JT AF Havey, D. K. Long, D. A. Okumura, M. Miller, C. E. Hodges, J. T. TI Ultra-sensitive optical measurements of high-J transitions in the O-2 A-band SO CHEMICAL PHYSICS LETTERS LA English DT Article ID FOURIER-TRANSFORM SPECTROSCOPY; RING-DOWN SPECTROSCOPY; ENERGY-TRANSFER; ABSORPTION-SPECTROSCOPY; MOLECULAR-OXYGEN; PRESSURE-SHIFT; HIGH-PRECISION; COLLISIONS; PARAMETERS; B(1)SIGMA(+)(G)-X(3)SIGMA(-)(G) AB We report frequency-stabilized cavity ring-down spectroscopy (FS-CRDS) measurements of high-J O-2 A-band magnetic dipole line parameters. Our goals were to measure intensities and line shape parameters for the primary isotopologue of O-2 in the A-band region and to understand how these quantities compare to, and build on those contained in the HITRAN database. These experiments quantify line parameters of some of the weakest transitions ever observed in the laboratory. We have measured line intensities as low as 1 x 10(-30) cm molecule(-1). Our data extend available data in the P-branch up to J' = 50. Additionally, we have characterized the self-broadened and air-broadened line widths and provide new J-dependent correlation functions. (C) 2009 Published by Elsevier B.V. C1 [Havey, D. K.; Hodges, J. T.] Natl Inst Stand & Technol, Proc Measurements Div, Gaithersburg, MD 20899 USA. [Long, D. A.; Okumura, M.] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Miller, C. E.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Havey, DK (reprint author), Natl Inst Stand & Technol, Proc Measurements Div, 100 Bur Dr, Gaithersburg, MD 20899 USA. EM dhavey@nist.gov RI Havey, Daniel/C-1997-2009; Hodges, Joseph/B-4578-2009; Okumura, Mitchio/I-3326-2013 OI Okumura, Mitchio/0000-0001-6874-1137 FU National Research Council; National Defense Science and Engineering Graduate Fellowship; NASA; Orbiting Carbon Observatory (OCO); NASA Earth System Science Pathfinder (ESSP); NASA Upper Atmospheric Research Program [NNG06GD88G, NNX09AE21G] FX Daniel K. Havey received support from the National Research Council as a postdoctoral fellow at NIST. David A. Long was supported by the National Defense Science and Engineering Graduate Fellowship. Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Additional support was provided by the Orbiting Carbon Observatory (OCO) project, a NASA Earth System Science Pathfinder (ESSP) mission; and the NASA Upper Atmospheric Research Program grants NNG06GD88G and NNX09AE21G. NR 46 TC 20 Z9 20 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD NOV 24 PY 2009 VL 483 IS 1-3 BP 49 EP 54 DI 10.1016/j.cplett.2009.10.067 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 519IA UT WOS:000271758000009 ER PT J AU Bi, L Yang, P Kattawar, GW Baum, BA Hu, YX Winker, DM Brock, RS Lu, JQ AF Bi, Lei Yang, Ping Kattawar, George W. Baum, Bryan A. Hu, Yong X. Winker, David M. Brock, R. Scott Lu, Jun Q. TI Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and 1.064 mu m SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID BULK SCATTERING PROPERTIES; TIME-DOMAIN METHOD; LIGHT-SCATTERING; OPTICAL-PROPERTIES; SINGLE-SCATTERING; SPACEBORNE LIDAR; SPECTRAL REGION; NATURAL CLOUDS; CIRRUS CLOUDS; CRYSTALS AB This study explores a simulation of ice cloud optical properties similar to those observed using the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a dual-wavelength (0.532 and 1.064 mu m) lidar. The goal is to better understand the sensitivity of the color ratio (the ratio of the backscatter coefficients at the wavelengths of 1.064 and 0.532 mu m) to ice particle habit. The single-scattering properties of randomly oriented hexagonal ice particles are simulated from the finite difference time domain (FDTD) method for particles with size parameters less than 50, and from an improved geometric optics method (IGOM) for particles with larger size parameters (a quantity proportional to the ratio of the particle characteristic dimension to the incident wavelength). Based on the assumption that ice particles are hexagonal particles, the color ratio values are found to be less than unity with a peak value near 0.7 for columns and 0.8 for plates. If spherical ice particles are assumed, the color ratio values can be larger than unity and may even approach 2 for many size distributions. The deviation in the value of the color ratio from unity is due to different distributions of size parameters for the two wavelengths, and to smaller single-scattering albedo values for large particles at 1.064 mu m than at 0.532 mu m. The present simulations of the color ratio for hexagonal columns are qualitatively consistent with measurements from a ground-based lidar, located at Hampton University in Hampton, Virginia, which peak near 0.88, but the two results differ quantitatively by 10-20 percent. C1 [Bi, Lei; Kattawar, George W.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Bi, Lei; Kattawar, George W.] Texas A&M Univ, Inst Quantum Studies, College Stn, TX 77843 USA. [Yang, Ping] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Baum, Bryan A.] Univ Wisconsin, Ctr Space Sci & Engn, Madison, WI 53706 USA. [Hu, Yong X.; Winker, David M.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Brock, R. Scott; Lu, Jun Q.] E Carolina Univ, Dept Phys, Greenville, NC 27858 USA. RP Bi, L (reprint author), Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. EM pyang@ariel.met.tamu.edu RI Yang, Ping/B-4590-2011; Bi, Lei/B-9242-2011; Baum, Bryan/B-7670-2011; Hu, Yongxiang/K-4426-2012 OI Baum, Bryan/0000-0002-7193-2767; FU NASA [NNL06AA01A, NNX08AF81G]; University of Wisconsin [G074605]; National Science Foundation (NSF) [ATM-0239605]; Office of Naval Research [N00014-06-1-0069]; National Institutes of Health (NIH) [1R15GM70798-01, 2R15GM70798-02] FX This research is supported by a NASA grant (NNL06AA01A) and a subcontract from the University of Wisconsin (G074605). The effort on the single-scattering computation involved in this project is partly supported by a grant (ATM-0239605) from the National Science Foundation (NSF) Physical and Dynamic Meteorology Program managed by Bradley Smull. George W. Kattawar's research is also supported by the Office of Naval Research under contract N00014-06-1-0069. Support for Bryan Baum is provided through NASA grant NNX08AF81G. Jun Lu's research is supported by National Institutes of Health (NIH) grants (1R15GM70798-01 and 2R15GM70798-02). A portion of the numerical simulations involved in this study was carried out using NASA's supercomputing facility. NR 35 TC 26 Z9 26 U1 2 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 24 PY 2009 VL 114 AR D00H08 DI 10.1029/2009JD011759 PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 524MG UT WOS:000272146800002 ER PT J AU Fan, JW Yuan, TL Comstock, JM Ghan, S Khain, A Leung, LR Li, ZQ Martins, VJ Ovchinnikov, M AF Fan, Jiwen Yuan, Tianle Comstock, Jennifer M. Ghan, Steven Khain, Alexander Leung, L. Ruby Li, Zhanqing Martins, Vanderlei J. Ovchinnikov, Mikhail TI Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID PART I; ATMOSPHERIC AEROSOLS; PRECIPITATION; MICROPHYSICS; CLIMATE; MODEL; SENSITIVITY; SIMULATION; POLLUTION; IMPACT AB Aerosol-cloud interaction is recognized as one of the key factors influencing cloud properties and precipitation regimes across local, regional, and global scales and remains one of the largest uncertainties in understanding and projecting future climate changes. Deep convective clouds (DCCs) play a crucial role in the general circulation, energy balance, and hydrological cycle of our climate system. The complex aerosol-DCC interactions continue to be puzzling as more "aerosol effects'' unfold, and systematic assessment of such effects is lacking. Here we systematically assess the aerosol effects on isolated DCCs based on cloud-resolving model simulations with spectral bin cloud microphysics. We find a dominant role of vertical wind shear in regulating aerosol effects on isolated DCCs, i.e., vertical wind shear qualitatively determines whether aerosols suppress or enhance convective strength. Increasing aerosols always suppresses convection under strong wind shear and invigorates convection under weak wind shear until this effect saturates at an optimal aerosol loading. We also found that the decreasing rate of convective strength is greater in the humid air than that in the dry air when wind shear is strong. Our findings may resolve some of the seemingly contradictory results among past studies by considering the dominant effect of wind shear. Our results can provide the insights to better parameterize aerosol effects on convection by adding the factor of wind shear to the entrainment term, which could reduce uncertainties associated with aerosol effects on climate forcing. C1 [Fan, Jiwen; Comstock, Jennifer M.; Ghan, Steven; Leung, L. Ruby; Ovchinnikov, Mikhail] Pacific NW Natl Lab, Climate Phys Grp, Richland, WA 99352 USA. [Yuan, Tianle; Martins, Vanderlei J.] NASA, Goddard Space Flight Ctr, Climate Branch, Greenbelt, MD 20771 USA. [Yuan, Tianle; Martins, Vanderlei J.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Khain, Alexander] Hebrew Univ Jerusalem, Inst Earth Sci, IL-91904 Jerusalem, Israel. [Li, Zhanqing] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20740 USA. [Li, Zhanqing] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. RP Fan, JW (reprint author), Pacific NW Natl Lab, Climate Phys Grp, POB 999,MSIN K9-24, Richland, WA 99352 USA. EM jiwen.fan@pnl.gov RI Li, Zhanqing/F-4424-2010; Yuan, Tianle/D-3323-2011; Fan, Jiwen/E-9138-2011; Ghan, Steven/H-4301-2011 OI Li, Zhanqing/0000-0001-6737-382X; Ghan, Steven/0000-0001-8355-8699 FU PNNL Aerosol Climate Initiative (ACI); NASA [NNX08AH71G]; DOE [527055]; Binational U.S.-Israel Science Foundation (BSF) [2006437] FX This work was supported by PNNL Aerosol Climate Initiative (ACI) and grants from NASA (NNX08AH71G) and DOE (527055). A. Khain was supported by the Binational U.S.-Israel Science Foundation (BSF), grant 2006437. We thank the reviewers of the paper for their helpful comments. NR 49 TC 96 Z9 99 U1 3 U2 28 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 24 PY 2009 VL 114 AR D22206 DI 10.1029/2009JD012352 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 524MG UT WOS:000272146800004 ER PT J AU Kim, SY Chun, HY Wu, DL AF Kim, So-Young Chun, Hye-Yeong Wu, Dong L. TI A study on stratospheric gravity waves generated by Typhoon Ewiniar: Numerical simulations and satellite observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID DEEP TROPICAL CONVECTION; MIDDLE ATMOSPHERE; MU RADAR; MODEL; PASSAGE; SCALE; PARAMETERIZATION; DISTURBANCES; PROPAGATION; DYNAMICS AB Characteristics of stratospheric gravity waves generated by Typhoon Ewiniar (2006) are investigated using the Weather Research and Forecasting (WRF) model, high-resolution European Center for Medium-Range Weather Forecasts (ECMWF) analysis data, and the Atmospheric Infrared Sounder (AIRS) observations. In the numerical simulations, convective forcing in the troposphere shows nearly isotropic features, which propagate in various directions with a maximum in the typhoon-moving direction. However, stratospheric gravity waves are anisotropic since only the wave components that satisfy the vertical propagation condition of gravity waves can reach the upper stratosphere. The lower stratospheric background winds play the key role in filtering the wave spectrum generated by the typhoon. During the mature stage of the typhoon, stratospheric waves propagate mainly eastward with significant power in the northeastward and southeastward directions. During the decaying stage of the typhoon, northeastward propagating waves are dominant due to fast movement of the typhoon in the same direction after landfall. The modeled wave patterns are also found in the AIRS and ECMWF data sets at similar locations, directions, wavelengths, and timing, although the wave amplitude differs among the three data sets. This is likely due to different typhoon intensities and the distributions of convective forcing in each data set, owing to different spatial resolution as well as limitations in the model physics. C1 [Kim, So-Young; Chun, Hye-Yeong] Yonsei Univ, Dept Atmospher Sci, Seoul 120749, South Korea. [Wu, Dong L.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Kim, SY (reprint author), Yonsei Univ, Dept Atmospher Sci, 262 Seongsanno, Seoul 120749, South Korea. EM chunhy@yonsei.ac.kr RI Wu, Dong/D-5375-2012 FU Korea Science and Engineering Foundation (KOSEF) through the National Research Laboratory Program [M10500000114-06J0000-11410] FX This study was supported by the Korea Science and Engineering Foundation (KOSEF) through the National Research Laboratory Program (M10500000114-06J0000-11410). The work by DLW was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). We thank AIRS team for making their data available in this investigation. NR 43 TC 30 Z9 30 U1 1 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 24 PY 2009 VL 114 AR D22104 DI 10.1029/2009JD011971 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 524MG UT WOS:000272146800003 ER PT J AU Johnson, SS Pavlov, AA Mischna, MA AF Johnson, Sarah Stewart Pavlov, Alexander A. Mischna, Michael A. TI Fate of SO2 in the ancient Martian atmosphere: Implications for transient greenhouse warming SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Review ID EARTHS EARLY ATMOSPHERE; TEMPERATURE RATE COEFFICIENTS; ABSOLUTE RATE CONSTANTS; EVALUATED KINETIC DATA; FLASH-PHOTOLYSIS; CARBON-MONOXIDE; PRESSURE-DEPENDENCE; ARCHEAN ATMOSPHERE; ACETYL RADICALS; SULFUR-DIOXIDE AB There is increasing evidence that sulfur played an important role on early Mars. Sulfur is distributed ubiquitously on the Martian surface, and sulfur in Martian meteorites carries the signature of atmospheric interactions. Recent work suggests that the radiative properties of sulfur volatiles that were degassed into the Martian atmosphere may have caused a greenhouse effect early in the planet's history. It remains unclear, however, over what timescales warming from sulfur volatiles would have persisted, and consequently how significant this warming may have been. While most photochemistry research to date has concentrated on current Martian conditions, the ancient Martian atmosphere was thicker, warmer, and more reducing than the current regime. Here we investigate sulfur photochemistry in a 500 mb ancient Martian atmosphere. After adapting a model used to study sulfur photochemistry on Earth during the Archean, we find a short lifetime for SO2 in the current Martian atmosphere, similar to results of other photochemical studies. However, our simulations suggest that moderate mixing ratios of SO2 (10(-8) <= f(SO2) <= 10(-6)) could have persisted in the ancient Martian atmosphere for hundreds of years, generating short but potent warming events following episodes of volcanic activity. C1 [Johnson, Sarah Stewart] Harvard Univ, Cambridge, MA 02138 USA. [Pavlov, Alexander A.] NASA, Goddard Space Flight Ctr, Atmospher Expt Lab, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Mischna, Michael A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Johnson, SS (reprint author), Harvard Univ, 78 Mt Auburn St, Cambridge, MA 02138 USA. FU National Science Foundation; NASA Headquarters Planetary Geology and Geophysics Program; National Aeronautics and Space Administration FX Support for S. Johnson was provided by a National Science Foundation Graduate Fellowship and a NASA Headquarters Planetary Geology and Geophysics Program to M. Zuber. A portion of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 133 TC 17 Z9 17 U1 0 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD NOV 24 PY 2009 VL 114 AR E11011 DI 10.1029/2008JE003313 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 524MQ UT WOS:000272147800001 ER PT J AU Arola, A Kazadzis, S Lindfors, A Krotkov, N Kujanpaa, J Tamminen, J Bais, A di Sarra, A Villaplana, JM Brogniez, C Siani, AM Janouch, M Weihs, P Webb, A Koskela, T Kouremeti, N Meloni, D Buchard, V Auriol, F Ialongo, I Staneck, M Simic, S Smedley, A Kinne, S AF Arola, A. Kazadzis, S. Lindfors, A. Krotkov, N. Kujanpaa, J. Tamminen, J. Bais, A. di Sarra, A. Villaplana, J. M. Brogniez, C. Siani, A. M. Janouch, M. Weihs, P. Webb, A. Koskela, T. Kouremeti, N. Meloni, D. Buchard, V. Auriol, F. Ialongo, I. Staneck, M. Simic, S. Smedley, A. Kinne, S. TI A new approach to correct for absorbing aerosols in OMI UV SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID GROUND-BASED MEASUREMENTS; OZONE MONITORING INSTRUMENT; SATELLITE ESTIMATION; QUALITY-ASSURANCE; IRRADIANCE; SITES AB Several validation studies of surface UV irradiance based on the Ozone Monitoring Instrument (OMI) satellite data have shown a high correlation with ground-based measurements but a positive bias in many locations. The main part of the bias can be attributed to the boundary layer aerosol absorption that is not accounted for in the current satellite UV algorithms. To correct for this shortfall, a post-correction procedure was applied, based on global climatological fields of aerosol absorption optical depth. These fields were obtained by using global aerosol optical depth and aerosol single scattering albedo data assembled by combining global aerosol model data and ground-based aerosol measurements from AERONET. The resulting improvements in the satellite-based surface UV irradiance were evaluated by comparing satellite and ground-based spectral irradiances at various European UV monitoring sites. The results generally showed a significantly reduced bias by 5-20%, a lower variability, and an unchanged, high correlation coefficient. Citation: Arola, A., et al. (2009), A new approach to correct for absorbing aerosols in OMI UV, Geophys. Res. Lett., 36, L22805, doi:10.1029/2009GL041137. C1 [Arola, A.] Finnish Meteorol Inst, Kuopio Unit, FIN-70211 Kuopio, Finland. [Brogniez, C.; Buchard, V.; Auriol, F.] Univ Sci & Technol Lille Villeneuve Ascq, Opt Atmospher Lab, F-59655 Villeneuve Dascq, France. [Bais, A.; Kouremeti, N.] Aristotle Univ Thessaloniki, Atmospher Sci Lab, GR-54006 Thessaloniki, Greece. [di Sarra, A.; Meloni, D.] Climate Lab, ENEA, I-00123 Rome, Italy. [Siani, A. M.; Ialongo, I.] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. [Janouch, M.; Staneck, M.] Czech Hydrometeorol Inst, Solar & Ozone Observ, CZ-50008 Hradec Kralove, Czech Republic. [Kinne, S.] MPI Meteorol, D-20146 Hamburg, Germany. [Kazadzis, S.; Lindfors, A.; Koskela, T.] Finnish Meteorol Inst, Climate Change Res Unit, FIN-00101 Helsinki, Finland. [Krotkov, N.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 20771 USA. [Kujanpaa, J.; Tamminen, J.] Finnish Meteorol Inst, Earth Observat Unit, FIN-00101 Helsinki, Finland. [Weihs, P.; Simic, S.] Univ Bodenkultur Wien, Inst Meteorol, A-1190 Vienna, Austria. [Webb, A.; Smedley, A.] Univ Manchester, Ctr Atmospher Sci, Manchester M13 9PL, Lancs, England. [Villaplana, J. M.] Inst Nacl Tecn Aeroespacial, Earth Observat Remote Sensing & Atmosphere Dept, E-21130 Mazagon, Spain. RP Arola, A (reprint author), Finnish Meteorol Inst, Kuopio Unit, POB 1627, FIN-70211 Kuopio, Finland. EM antti.arola@fmi.fi RI Kazadzis, Stelios/A-5628-2011; Kazadzis, Stelios/F-8667-2011; Lindfors, Anders/C-6727-2012; Bais, Alkiviadis/D-2230-2009; Tamminen, Johanna/D-7959-2014; Ialongo, Iolanda/E-1638-2014; Krotkov, Nickolay/E-1541-2012; Smedley, Andrew/N-9865-2014; di Sarra, Alcide/J-1491-2016; OI Bais, Alkiviadis/0000-0003-3899-2001; Tamminen, Johanna/0000-0003-3095-0069; Krotkov, Nickolay/0000-0001-6170-6750; Smedley, Andrew/0000-0001-7137-6628; di Sarra, Alcide/0000-0002-2405-2898; Siani, Anna Maria/0000-0001-7435-1426; Kazadzis, Stelios/0000-0002-8624-8247; Arola, Antti/0000-0002-9220-0194 FU Marie Curie Intra European fellowship [AOR A/119693 - PIEF-GA-2008-219908] FX We wish to acknowledge efforts of the AeroCom modelers and AERONET site personnel that has enabled formation of the climatology used in this study. S. Kazadzis would like to acknowledge the Marie Curie Intra European fellowship 'Validation of Aerosol optical Properties and surface Irradiance measured from Ozone Monitoring Instrument on board of AURA satellite' VAP-OMI, AOR A/119693 - PIEF-GA-2008-219908. NR 22 TC 27 Z9 27 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 21 PY 2009 VL 36 AR L22805 DI 10.1029/2009GL041137 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 522KA UT WOS:000271995300005 ER PT J AU Page, KL Willingale, R Bissaldi, E Postigo, AD Holland, ST McBreen, S O'Brien, PT Osborne, JP Prochaska, JX Rol, E Rykoff, ES Starling, RLC Tanvir, NR van der Horst, AJ Wiersema, K Zhang, B Aceituno, FJ Akerlof, C Beardmore, AP Briggs, MS Burrows, DN Castro-Tirado, AJ Connaughton, V Evans, PA Fynbo, JPU Gehrels, N Guidorzi, C Howard, AW Kennea, JA Kouveliotou, C Pagani, C Preece, R Perley, D Steele, IA Yuan, F AF Page, K. L. Willingale, R. Bissaldi, E. de Ugarte Postigo, A. Holland, S. T. McBreen, S. O'Brien, P. T. Osborne, J. P. Prochaska, J. X. Rol, E. Rykoff, E. S. Starling, R. L. C. Tanvir, N. R. van der Horst, A. J. Wiersema, K. Zhang, B. Aceituno, F. J. Akerlof, C. Beardmore, A. P. Briggs, M. S. Burrows, D. N. Castro-Tirado, A. J. Connaughton, V. Evans, P. A. Fynbo, J. P. U. Gehrels, N. Guidorzi, C. Howard, A. W. Kennea, J. A. Kouveliotou, C. Pagani, C. Preece, R. Perley, D. Steele, I. A. Yuan, F. TI Multiwavelength observations of the energetic GRB 080810: detailed mapping of the broad-band spectral evolution star SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gamma-rays: bursts; X-rays: individual: GRB 080810 ID GAMMA-RAY BURST; EARLY X-RAY; PROMPT EMISSION; LORENTZ FACTOR; LIGHT CURVES; ROTSE-III; AFTERGLOW EMISSION; BATSE OBSERVATIONS; ALERT TELESCOPE; SWIFT AB GRB 080810 was one of the first bursts to trigger both Swift and the Fermi Gamma-ray Space Telescope. It was subsequently monitored over the X-ray and UV/optical bands by Swift, in the optical by Robotic Optical Transient Search Experiment (ROTSE) and a host of other telescopes, and was detected in the radio by the Very Large Array. The redshift of z = 3.355 +/- 0.005 was determined by Keck/High Resolution Echelle Spectrometer (HIRES) and confirmed by RTT150 and NOT. The prompt gamma/X-ray emission, detected over 0.3-103 keV, systematically softens over time, with E(peak) moving from similar to 600 keV at the start to similar to 40 keV around 100 s after the trigger; alternatively, this spectral evolution could be identified with the blackbody temperature of a quasi-thermal model shifting from similar to 60 to similar to 3 keV over the same time interval. The first optical detection was made at 38 s, but the smooth, featureless profile of the full optical coverage implies that this is originated from the afterglow component, not from the pulsed/flaring prompt emission. Broad-band optical and X-ray coverage of the afterglow at the start of the final X-ray decay (similar to 8 ks) reveals a spectral break between the optical and X-ray bands in the range of 1015-2 x 1016 Hz. The decay profiles of the X-ray and optical bands show that this break initially migrates blueward to this frequency and then subsequently drifts redward to below the optical band by similar to 3 x 105 s. GRB 080810 was very energetic, with an isotropic energy output for the prompt component of 3 x 1053 and 1.6 x 1052 erg for the afterglow; there is no evidence for a jet break in the afterglow up to 6 d following the burst. C1 [Page, K. L.; Willingale, R.; O'Brien, P. T.; Osborne, J. P.; Rol, E.; Starling, R. L. C.; Tanvir, N. R.; Wiersema, K.; Beardmore, A. P.; Evans, P. A.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Bissaldi, E.; McBreen, S.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [de Ugarte Postigo, A.] European So Observ, Santiago 19, Chile. [Holland, S. T.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Holland, S. T.] Univ Space Res Assoc, Columbia, MD 21044 USA. [McBreen, S.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Prochaska, J. X.] Univ Calif Santa Cruz, Lick Observ, UCO, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Rol, E.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1090 GE Amsterdam, Netherlands. [Rykoff, E. S.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [van der Horst, A. J.; Kouveliotou, C.] NASA, George C Marshall Space Flight Ctr, NSSTC, Huntsville, AL 35805 USA. [Zhang, B.] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. [Aceituno, F. J.; Castro-Tirado, A. J.] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Akerlof, C.; Yuan, F.] Univ Michigan, Randall Lab Phys, Ann Arbor, MI 48109 USA. [Briggs, M. S.; Connaughton, V.; Preece, R.] Univ Alabama, NSSTC, Huntsville, AL 35805 USA. [Burrows, D. N.; Kennea, J. A.; Pagani, C.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Fynbo, J. P. U.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen O, Denmark. [Guidorzi, C.] Univ Ferrara, Dept Phys, I-44100 Ferrara, Italy. [Guidorzi, C.; Steele, I. A.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Howard, A. W.; Perley, D.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. RP Page, KL (reprint author), Univ Leicester, Dept Phys & Astron, Univ Rd, Leicester LE1 7RH, Leics, England. EM kpa@star.le.ac.uk RI Gehrels, Neil/D-2971-2012; Fynbo, Johan/L-8496-2014; Howard, Andrew/D-4148-2015; Bissaldi, Elisabetta/K-7911-2016 OI Castro-Tirado, A. J./0000-0003-2999-3563; Preece, Robert/0000-0003-1626-7335; de Ugarte Postigo, Antonio/0000-0001-7717-5085; Fynbo, Johan/0000-0002-8149-8298; Howard, Andrew/0000-0001-8638-0320; Bissaldi, Elisabetta/0000-0001-9935-8106 FU ASI; NASA [NAS5-00136, NNX07AE94G, NNG-04WC41G, NNG-06GI90G, NNX-07AF02G]; Australian Research Council FX The authors gratefully acknowledge support for this work at the University of Leicester by STFC, in Italy by funding from ASI and at PSU by NASA contract NAS5-00136. ER thanks the NOVA-3 network for support. JXP is partially supported by NASA/Swift grant NNX07AE94G. ROTSE-III has been supported by NASA grant NNG-04WC41G and the Australian Research Council and ESR would like to thank the TABASGO Foundation. AJvdH was supported by an appointment to the NASA Postdoctoral Program at the MSFC, administered by Oak Ridge Associated Universities through a contract with NASA. FY was supported by NASA Swift Guest Investigator grants NNG-06GI90G and NNX-07AF02G. The DARK cosmology centre is funded by the DNRF. This paper is partly based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. This work is partly based on observations with the INT, operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. We also thank P. Chandra and D. Frail for help with the radio data, G. Marcey and D. Fischer for scheduling the ToO during their Keck observing time, Peter Jonker for performing the INT/WFC observations and C. Thone for working on the data from the NOT and Danish telescope. We extend our thanks to the whole of the Fermi-GBM team for their work on this new mission. Finally, we thank the anonymous referee for their detailed comments, which improved the paper. NR 99 TC 30 Z9 30 U1 0 U2 2 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 21 PY 2009 VL 400 IS 1 BP 134 EP 146 DI 10.1111/j.1365-2966.2009.15462.x PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 518QT UT WOS:000271708900033 ER PT J AU Sidoli, L Romano, P Esposito, P La Parola, V Kennea, JA Krimm, HA Chester, MM Bazzano, A Burrows, DN Gehrels, N AF Sidoli, L. Romano, P. Esposito, P. La Parola, V. Kennea, J. A. Krimm, H. A. Chester, M. M. Bazzano, A. Burrows, D. N. Gehrels, N. TI The first broad-band X-ray study of the Supergiant Fast X-ray Transient SAX J1818.6-1703 in outburst SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE X-rays: binaries; X-rays: individual: SAX J1818; 6-1703 ID XTE J1739-302; SWIFT OBSERVATIONS; IGR J17544-2619; DISCOVERY; PERIOD; J16479-4514; J08408-4503; J11215-5952; EMISSION; BINARIES AB The Supergiant Fast X-ray Transient (SFXT) SAX J1818.6-1703 underwent an outburst on 2009 May 6 and was observed with Swift. We report on these observations which, for the first time, allow us to study the broad-band spectrum from soft to hard X-rays of this source. No X-ray spectral information was available on this source before the Swift monitoring. The spectrum can be deconvolved well with models usually adopted to describe the emission from HMXB X-ray pulsars, and is characterized by a very high absorption, a flat power law (photon index similar to 0.1-0.5) and a cut-off at about 7-12 keV. Alternatively, the SAX J1818.6-1703 emission can be described with a Comptonized emission from a cold and optically thick corona, with an electron temperature kT(e) = 5-7 keV, a hot seed photon temperature, kT(0), of 1.3-1.4 keV and an optical depth for the Comptonizing plasma, tau, of about 10. The 1-100 keV luminosity at the peak of the flare is 3 x 1036 erg s-1 (assuming the optical counterpart distance of 2.5 kpc). These properties of SAX J1818.6-1703 resemble those of the prototype of the SFXT class, XTE J1739-302. The monitoring with Swift/XRT reveals an outburst duration of about 5 d, similar to other members of the class of SFXTs, confirming SAX J1818.6-1703 as a member of this class. C1 [Sidoli, L.; Esposito, P.] INAF, Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Romano, P.; La Parola, V.] INAF, Ist Astrofis Spaziale & Fis Cosm, I-90146 Palermo, Italy. [Esposito, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Kennea, J. A.; Chester, M. M.; Burrows, D. N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Krimm, H. A.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Krimm, H. A.] Univ Space Res Assoc, Columbia, MD USA. [Bazzano, A.] INAF, Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy. RP Sidoli, L (reprint author), INAF, Ist Astrofis Spaziale & Fis Cosm, Via E Bassini 15, I-20133 Milan, Italy. EM sidoli@lambrate.inaf.it RI Gehrels, Neil/D-2971-2012; OI Esposito, Paolo/0000-0003-4849-5092; Sidoli, Lara/0000-0001-9705-2883 FU NASA [NAS5-00136]; Swift project; [ASI I/088/06/0]; [I/023/05/0] FX We thank the Swift team duty scientists and science planners. We also thank the remainder of the Swift XRT and BAT teams, S. Barthelmy in particular, for their invaluable help and support. This work was supported in Italy by contracts ASI I/088/06/0 and I/023/05/0, at PSU by NASA contract NAS5-00136. HAK was supported by the Swift project. NR 34 TC 16 Z9 16 U1 0 U2 2 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 21 PY 2009 VL 400 IS 1 BP 258 EP 262 DI 10.1111/j.1365-2966.2009.15445.x PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 518QT UT WOS:000271708900045 ER PT J AU Margutti, R Sakamoto, T Chincarini, G Guidorzi, C Mao, J Pasotti, F Burrows, D D'Avanzo, P Campana, S Barthelmy, SD Gehrels, N AF Margutti, R. Sakamoto, T. Chincarini, G. Guidorzi, C. Mao, J. Pasotti, F. Burrows, D. D'Avanzo, P. Campana, S. Barthelmy, S. D. Gehrels, N. TI GRB090111: extra soft steep-decay emission and peculiar rebrightening SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE radiation mechanisms: non-thermal; gamma-rays: bursts; X-rays: individual: GRB090111 ID GAMMA-RAY BURSTS; SWIFT-XRT OBSERVATIONS; SPECTRAL EVOLUTION; AFTERGLOW EMISSION; ALERT TELESCOPE; 1ST SURVEY; DENSITY; DIVERSITY; FLASHES; MISSION AB We present a detailed study of GRB090111, focusing on its extra soft power-law photon index Gamma > 5 at the very steep-decay phase emission (power-law index alpha = 5.1, steeper than 96 per cent of gamma-ray bursts detected by Swift) and the following peculiar X-ray rebrightening. Our spectral analysis supports the hypothesis of a comoving band spectrum with the peak of the nu F-nu spectrum evolving with time to lower values: a period of higher temporal variability in the 1-2 keV light curve ends when the E-peak evolves outside the energy band. The X-ray rebrightening shows extreme temporal properties when compared to a homogeneous sample of 82 early flares detected by Swift. While an internal origin cannot be excluded, we show these properties to be consistent with the energy injection in refreshed shocks produced by slow shells colliding with the fastest ones from behind, well after the internal shocks that are believed to give rise to the prompt emission have ceased. C1 [Margutti, R.; Chincarini, G.; D'Avanzo, P.] Univ Milano Bicocca, I-20126 Milan, Italy. [Margutti, R.; Chincarini, G.; Guidorzi, C.; Mao, J.; Pasotti, F.; Campana, S.] INAF Osservatorio Astron Brera, I-23807 Merate, Italy. [Sakamoto, T.; Barthelmy, S. D.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Guidorzi, C.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Mao, J.] Chinese Acad Sci, Yunnan Observ, Kunming, Yunnan Province, Peoples R China. [Burrows, D.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. RP Margutti, R (reprint author), Univ Milano Bicocca, Pza Sci 3, I-20126 Milan, Italy. EM raffaella.margutti@brera.inaf.it RI Barthelmy, Scott/D-2943-2012; Gehrels, Neil/D-2971-2012; OI Campana, Sergio/0000-0001-6278-1576 FU ASI [SWIFT I/011/07/0]; Ministry of University and Research of Italy [PRIN MIUR 2007TNYZXL]; MAE; University of Milano Bicocca (Italy) FX This work is supported by ASI grant SWIFT I/011/07/0, the Ministry of University and Research of Italy (PRIN MIUR 2007TNYZXL), MAE and the University of Milano Bicocca (Italy). NR 40 TC 1 Z9 1 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 21 PY 2009 VL 400 IS 1 BP L1 EP L5 DI 10.1111/j.1745-3933.2009.00747.x PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 518QT UT WOS:000271708900001 ER PT J AU Mouschovias, TC Tassis, K AF Mouschovias, Telemachos Ch. Tassis, Konstantinos TI Testing molecular-cloud fragmentation theories: self-consistent analysis of OH Zeeman observations SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE diffusion; MHD; turbulence; stars: formation; ISM: clouds; ISM: magnetic fields ID STAR-FORMATION; AMBIPOLAR DIFFUSION; MAGNETIC-FIELDS; CORES; CONTRACTION AB The ambipolar-diffusion theory of star formation predicts the formation of fragments in molecular clouds with mass-to-flux ratios greater than that of the parent-cloud envelope. By contrast, scenarios of turbulence-induced fragmentation do not yield such a robust prediction. Based on this property, Crutcher et al. recently proposed an observational test that could potentially discriminate between fragmentation theories. However, the analysis applied to the data severely restricts the discriminative power of the test: the authors conclude that they can only constrain what they refer to as the 'idealized' ambipolar-diffusion theory that assumes initially straight-parallel magnetic field lines in the parent cloud. We present an original, self-consistent analysis of the same data taking into account the non-uniformity of the magnetic field in the cloud envelopes, which is suggested by the data themselves, and we discuss important geometrical effects that must be accounted for in using this test. We show quantitatively that the quality of current data does not allow for a strong conclusion about any fragmentation theory. Given the discriminative potential of the test, we urge for more and better-quality data. C1 [Mouschovias, Telemachos Ch.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Mouschovias, Telemachos Ch.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Tassis, Konstantinos] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Mouschovias, TC (reprint author), Univ Illinois, Dept Phys, 1002 W Green St, Urbana, IL 61801 USA. EM tchm@astro.uiuc.edu RI Tassis, Konstantinos/C-3155-2011 FU NSF [AST-07-09206] FX We thank Robert Dickman, Paul Goldsmith, Mark Heyer, Dan Marrone and Vasiliki Pavlidou for valuable discussions. TChM acknowledges partial support by NSF under grant AST-07-09206, and KT by JPL/Caltech under a contract with the National Aeronautics and Space Administration. NR 17 TC 20 Z9 20 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 21 PY 2009 VL 400 IS 1 BP L15 EP L19 DI 10.1111/j.1745-3933.2009.00752.x PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 518QT UT WOS:000271708900004 ER PT J AU Coe, D Moustakas, LA AF Coe, Dan Moustakas, Leonidas A. TI COSMOLOGICAL CONSTRAINTS FROM GRAVITATIONAL LENS TIME DELAYS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmological parameters; dark matter; distance scale; galaxies: halos; gravitational lensing; quasars: general ID EARLY-TYPE GALAXIES; 3RD DATA RELEASE; DARK ENERGY; HUBBLE CONSTANT; SKY SURVEY; PHOTOMETRIC REDSHIFTS; LEGACY SURVEY; ACS SURVEY; ENVIRONMENTS; SAMPLE AB Future large ensembles of time delay (TD) lenses have the potential to provide interesting cosmological constraints complementary to those of other methods. In a flat universe with constant w including a Planck prior, The Large Synoptic Survey Telescope TD measurements for similar to 4000 lenses should constrain the local Hubble constant h to similar to 0.007 (similar to 1%), Omega(de) to similar to 0.005, and w to similar to 0.026 (all 1 sigma precisions). Similar constraints could be obtained by a dedicated gravitational lens observatory (OMEGA) which would obtain precise TD and mass model measurements for similar to 100 well-studied lenses. We compare these constraints (as well as those for a more general cosmology) to the "optimistic Stage IV" constraints expected from weak lensing, supernovae, baryon acoustic oscillations, and cluster counts, as calculated by the Dark Energy Task Force. TDs yield a modest constraint on a time-varying w(z), with the best constraint on w(z) at the "pivot redshift" of z approximate to 0.31. Our Fisher matrix calculation is provided to allow TD constraints to be easily compared to and combined with constraints from other experiments. We also show how cosmological constraining power varies as a function of numbers of lenses, lens model uncertainty, TD precision, redshift precision, and the ratio of four-image to two-image lenses. C1 [Coe, Dan; Moustakas, Leonidas A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Coe, D (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 169-327, Pasadena, CA 91109 USA. OI Moustakas, Leonidas/0000-0003-3030-2360 FU NASA FX We acknowledge useful conversations with Phil Marshall, Matt Auger, Chuck Keeton, Chris Kochanek, Ben Dobke, Chris Fassnacht, Lloyd Knox, Jason Dick, Andreas Albrecht, Tony Tyson, and Jason Rhodes. We are grateful to DETF for releasing Fisher matrices detailing their estimates of cosmological constraints from various experiments. We thank the referee for useful comments which led us to significantly improve the manuscript. This work was carried out at Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. NR 70 TC 35 Z9 35 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2009 VL 706 IS 1 BP 45 EP 59 DI 10.1088/0004-637X/706/1/45 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 516JS UT WOS:000271538900004 ER PT J AU Overzier, RA Heckman, TM Tremonti, C Armus, L Basu-Zych, A Goncalves, T Rich, RM Martin, DC Ptak, A Schiminovich, D Ford, HC Madore, B Seibert, M AF Overzier, Roderik A. Heckman, Timothy M. Tremonti, Christy Armus, Lee Basu-Zych, Antara Goncalves, Thiago Rich, R. Michael Martin, D. Christopher Ptak, Andy Schiminovich, David Ford, Holland C. Madore, Barry Seibert, Mark TI LOCAL LYMAN BREAK GALAXY ANALOGS: THE IMPACT OF MASSIVE STAR-FORMING CLUMPS ON THE INTERSTELLAR MEDIUM AND THE GLOBAL STRUCTURE OF YOUNG, FORMING GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Review DE galaxies: active; galaxies: bulges; galaxies: high-redshift; galaxies: peculiar; galaxies: starburst ID ACTIVE GALACTIC NUCLEI; ULTRALUMINOUS INFRARED GALAXIES; HUBBLE-SPACE-TELESCOPE; ULTRAVIOLET-LUMINOUS GALAXIES; SUPERMASSIVE BLACK-HOLES; DIGITAL SKY SURVEY; ULTRA DEEP FIELD; SURFACE BRIGHTNESS PROFILES; HIGH-REDSHIFT GALAXIES; STARBURST GALAXIES AB We report on the results of Hubble Space Telescope optical and UV imaging, Spitzer mid-IR photometry, and optical spectroscopy of a sample of 30 low-redshift (z similar to 0.1 to 0.3) galaxies chosen from the Sloan Digital Sky Survey and Galaxy Evolution Explorer surveys to be accurate local analogs of the high-redshift Lyman break galaxies. The Lyman break analogs (LBAs) are similar in stellar mass, metallicity, dust extinction, star formation rate (SFR), physical size, and gas velocity dispersion, thus enabling a detailed investigation of many processes that are important in star-forming galaxies at high redshift. The main optical emission-line properties of LBAs, including evidence for outflows, are also similar to those typically found at high redshift. This indicates that the conditions in their interstellar medium are comparable. In the UV, LBAs are characterized by complexes of massive clumps of star formation, while in the optical they most often show evidence for (post-)mergers and interactions. In six cases, we find a single extremely massive (up to several x 10(9) M(circle dot)) compact (radius similar to 10(2) pc) dominant central object (DCO). The DCOs are preferentially found in LBAs with the highest mid-IR luminosities (L(24 mu m) = 10(10.3)-10(11.2) L(circle dot)) and correspondingly high SFRs (15-100 M(circle dot) yr(-1)). We show that the massive star-forming clumps (including the DCOs) have masses much larger than the nuclear super star clusters seen in normal late-type galaxies. However, the DCOs do have masses, sizes, and densities similar to the excess light/central cusps seen in typical elliptical galaxies with masses similar to the LBA galaxies. We suggest that the DCOs form in the present-day examples of the dissipative mergers at high redshift that are believed to have produced the central cusps in local ellipticals (consistent with the disturbed optical morphologies of the LBAs). More generally, the properties of the LBAs are consistent with the idea that instabilities in a gas-rich disk lead to very massive star-forming clumps that eventually coalesce to form a spheroid. Finally, we comment on the apparent lack of energetically significant active galactic nuclei in the DCOs. We speculate that the DCOs are too young at present to grow a supermassive black hole because they are still in a supernova-dominated outflow phase (age less than 50 Myr). C1 [Overzier, Roderik A.] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Heckman, Timothy M.; Ptak, Andy; Ford, Holland C.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Tremonti, Christy] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Armus, Lee] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Basu-Zych, Antara] NASA, Goddard Space Flight Ctr, Lab Xray Astrophys, Greenbelt, MD 20771 USA. [Rich, R. Michael] Univ Calif Los Angeles, Div Astron & Astrophys, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Schiminovich, David] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Madore, Barry; Seibert, Mark] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. RP Overzier, RA (reprint author), Max Planck Inst Astrophys, D-85748 Garching, Germany. EM overzier@mpa-garching.mpg.de RI Ptak, Andrew/D-3574-2012 NR 145 TC 63 Z9 63 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2009 VL 706 IS 1 BP 203 EP 222 DI 10.1088/0004-637X/706/1/203 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 516JS UT WOS:000271538900018 ER PT J AU Khan, SA Chanial, PF Willner, SP Pearson, CP Ashby, MLN Benford, DJ Clements, DL Dye, S Farrah, D Fazio, GG Huang, JS Lebouteiller, V Le Floc'h, E Mainetti, G Moseley, SH Negrello, M Serjeant, S Shafer, RA Staguhn, J Sumner, TJ Vaccari, M AF Khan, Sophia A. Chanial, Pierre F. Willner, S. P. Pearson, Chris P. Ashby, M. L. N. Benford, Dominic J. Clements, David L. Dye, Simon Farrah, Duncan Fazio, G. G. Huang, J. -S. Lebouteiller, V. Le Floc'h, Emeric Mainetti, Gabriele Moseley, S. Harvey Negrello, Mattia Serjeant, Stephen Shafer, Richard A. Staguhn, Johannes Sumner, Timothy J. Vaccari, Mattia TI ON THE NATURE OF THE FIRST GALAXIES SELECTED AT 350 mu m SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: high-redshift; galaxies: starburst; infrared: galaxies; submillimeter ID SPITZER-SPACE-TELESCOPE; DEGREE EXTRAGALACTIC SURVEY; STAR-FORMING GALAXIES; SPECTRAL ENERGY-DISTRIBUTIONS; MULTIBAND IMAGING PHOTOMETER; DEEP SUBMILLIMETER SURVEY; ARRAY CAMERA IRAC; 24 MICRON SOURCES; HIGH-REDSHIFT; SHARC-II AB We present constraints on the nature of the first galaxies selected at 350 mu m. The sample includes galaxies discovered in the deepest blank-field survey at 350 mu m (in the Bootes Deep Field) and also later serendipitous detections in the Lockman Hole. In determining multiwavelength identifications, the 350 mu m position and map resolution of the second generation Submillimeter High Angular Resolution Camera are critical, especially in the cases where multiple radio sources exist and the 24 mu m counterparts are unresolved. Spectral energy distribution templates are fitted to identified counterparts, and the sample is found to comprise IR-luminous galaxies at 1 < z < 3 predominantly powered by star formation. The first spectrum of a 350 mu m selected galaxy provides an additional confirmation, showing prominent dust grain features typically associated with star-forming galaxies. Compared to submillimeter galaxies selected at 850 and 1100 mu m, galaxies selected at 350 mu m have a similar range of far-infrared color temperatures. However, no 350 mu m selected sources are reliably detected at 850 or 1100 mu m. Galaxies in our sample with redshifts 1 < z < 2 show a tight correlation between the far-and mid-infrared flux densities, but galaxies at higher redshifts show a large dispersion in their mid-to far-infrared colors. This implies a limit to which the mid-IR emission traces the far-IR emission in star-forming galaxies. The 350 mu m flux densities (15 < S(350) < 40 mJy) place these objects near the Herschel/SPIRE 350 mu m confusion threshold, with the lower limit on the star formation rate density suggesting the bulk of the 350 mu m contribution will come from less luminous infrared sources and normal galaxies. Therefore, the nature of the dominant source of the 350 mu m background-star-forming galaxies in the epoch of peak star formation in the universe-could be more effectively probed using ground-based instruments with their angular resolution and sensitivity offering significant advantages over space-based imaging. C1 [Khan, Sophia A.] Pontificia Univ Catolica Chile, Dept Astron & Astrophys, Santiago 22, Chile. [Khan, Sophia A.; Chanial, Pierre F.; Clements, David L.; Sumner, Timothy J.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Khan, Sophia A.; Benford, Dominic J.; Moseley, S. Harvey; Shafer, Richard A.; Staguhn, Johannes] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab Code 665, Greenbelt, MD 20771 USA. [Khan, Sophia A.; Willner, S. P.; Ashby, M. L. N.; Fazio, G. G.; Huang, J. -S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Khan, Sophia A.; Huang, J. -S.] Shanghai Normal Univ, Shanghai Key Lab Astrophys, Shanghai 200234, Peoples R China. [Pearson, Chris P.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Pearson, Chris P.] Univ Lethbridge, Dept Phys, Lethbridge, AB T1J 1B1, Canada. [Dye, Simon] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Farrah, Duncan] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Farrah, Duncan; Lebouteiller, V.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Le Floc'h, Emeric] Univ Hawaii, Inst Astron, Honolulu, HI 96815 USA. [Mainetti, Gabriele; Vaccari, Mattia] Univ Padua, Dept Astron, I-35122 Padua, Italy. [Negrello, Mattia; Serjeant, Stephen] Open Univ, Dept Phys & Astron, Milton Keynes MK7 6AA, Bucks, England. [Staguhn, Johannes] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Khan, SA (reprint author), Pontificia Univ Catolica Chile, Dept Astron & Astrophys, 4860 Vicuna Mackenna,Casilla 306, Santiago 22, Chile. RI Benford, Dominic/D-4760-2012; Moseley, Harvey/D-5069-2012; Vaccari, Mattia/R-3431-2016 OI Benford, Dominic/0000-0002-9884-4206; Vaccari, Mattia/0000-0002-6748-0577 FU NSF [AST-0229008]; National Aeronautics and Space Administration; FONDECYT [Proyecto 1070992]; ALMA-Conicyt FX Facilities: CSO, Spitzer, UKIRT, Subaru, VLA, IRAM/MAMBO NR 71 TC 2 Z9 2 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2009 VL 706 IS 1 BP 319 EP 327 DI 10.1088/0004-637X/706/1/319 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 516JS UT WOS:000271538900024 ER PT J AU Yusef-Zadeh, F Bushouse, H Wardle, M Heinke, C Roberts, DA Dowell, CD Brunthaler, A Reid, MJ Martin, CL Marrone, DP Porquet, D Grosso, N Dodds-Eden, K Bower, GC Wiesemeyer, H Miyazaki, A Pal, S Gillessen, S Goldwurm, A Trap, G Maness, H AF Yusef-Zadeh, F. Bushouse, H. Wardle, M. Heinke, C. Roberts, D. A. Dowell, C. D. Brunthaler, A. Reid, M. J. Martin, C. L. Marrone, D. P. Porquet, D. Grosso, N. Dodds-Eden, K. Bower, G. C. Wiesemeyer, H. Miyazaki, A. Pal, S. Gillessen, S. Goldwurm, A. Trap, G. Maness, H. TI SIMULTANEOUS MULTI-WAVELENGTH OBSERVATIONS OF Sgr A* DURING 2007 APRIL 1-11 SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; black hole physics; Galaxy: center ID SUPERMASSIVE BLACK-HOLE; X-RAY FLARE; NEAR-INFRARED FLARES; SAGITTARIUS-A; GALACTIC-CENTER; XMM-NEWTON; MILKY-WAY; ELECTRON ACCELERATION; SPECTRAL INDEX; STELLAR ORBITS AB We report the detection of variable emission from Sgr A* in almost allwavelength bands (i.e., centimeter, millimeter, submillimeter, near-IR, and X-rays) during a multi-wavelength observing campaign. Three new moderate flares are detected simultaneously in both near-IR and X-ray bands. The ratio of X-ray to near-IR flux in the flares is consistent with inverse Compton scattering of near-IR photons by submillimeter emitting relativistic particles which follow scaling relations obtained from size measurements of Sgr A*. We also find that the flare statistics in near-IR wavelengths is consistent with the probability of flare emission being inversely proportional to the flux. At millimeter wavelengths, the presence of flare emission at 43 GHz (7 mm) using the Very Long Baseline Array with milliarcsecond spatial resolution indicates the first direct evidence that hourly timescale flares are localized within the inner 30x70 Schwarzschild radii of Sgr A*. We also show several cross-correlation plots between near-IR, millimeter, and submillimeter light curves that collectively demonstrate the presence of time delays between the peaks of emission up to 5 hr. The evidence for time delays at millimeter and submillimeter wavelengths are consistent with the source of emission initially being optically thick followed by a transition to an optically thin regime. In particular, there is an intriguing correlation between the optically thin near-IR and X-ray flare and optically thick radio flare at 43 GHz that occurred on 2007 April 4. This would be the first evidence of a radio flare emission at 43 GHz delayed with respect to the near-IR and X-ray flare emission. The time delay measurements support the expansion of hot self-absorbed synchrotron plasma blob and weaken the hot spot model of flare emission. In addition, a simultaneous fit to 43 and 84 GHz light curves, using an adiabatic expansion model of hot plasma, appears to support a power law rather than a relativistic Maxwellian distribution of particles. C1 [Yusef-Zadeh, F.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Bushouse, H.] STScI, Baltimore, MD 21218 USA. [Wardle, M.] Macquarie Univ, Dept Phys & Engn, Sydney, NSW 2109, Australia. [Heinke, C.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Roberts, D. A.] Adler Planetarium & Astron Museum, Chicago, IL 60605 USA. [Dowell, C. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Brunthaler, A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Reid, M. J.] Harvard Smithsonian CfA, Cambridge, MA 02138 USA. [Martin, C. L.] Oberlin Coll, Dept Phys & Astron, Oberlin, OH 44074 USA. [Marrone, D. P.] Univ Chicago, Natl Radio Astron Observ, Chicago, IL 60637 USA. [Porquet, D.; Grosso, N.] Univ Strasbourg, NRS, INSU, Observ Astron Strasbourg, F-67000 Strasbourg, France. [Dodds-Eden, K.; Gillessen, S.] Max Planck Inst Extraterr Phys 1312, D-85471 Garching, Germany. [Bower, G. C.; Maness, H.] Univ Calif Berkeley, Radio Astron Lab, Berkeley, CA 94720 USA. [Wiesemeyer, H.] Inst Radio Astron Millimetr, F-38406 St Martin Dheres, France. [Miyazaki, A.] Natl Inst Nat Sci, Natl Astron Observ Japan, Mizusawa VLBI Observ, Oshu, Iwate 0230861, Japan. [Pal, S.] Univ Western Australia, Sch Phys, Crawley, WA 6009, Australia. [Goldwurm, A.] CEA Saclay, DSM, IRFU, Serv Astrophys, F-91191 Gif Sur Yvette, France. [Trap, G.] Univ Paris 07, CNRS, CEA, Observ Paris, F-75205 Paris 13, France. RP Yusef-Zadeh, F (reprint author), Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. OI Marrone, Daniel/0000-0002-2367-1080; Porquet, Delphine/0000-0001-9731-0352; Wardle, Mark/0000-0002-1737-0871; Heinke, Craig/0000-0003-3944-6109 FU National Science Foundation [AST-0807400, AST-0540882]; Australian Research Council [DPO986386]; ESA Member States; USA (NASA) FX This work is partially supported by the grant AST-0807400 from the National Science Foundation. Some of the data presented here were obtained from Mauna Kea observatories. We are grateful to the Hawai'ian people for permitting us to study the universe from this sacred summit. Research at the Caltech Submillimeter Observatory is supported by grant AST-0540882 from the National Science Foundation. Research grants are also given by Australian Research Council (DPO986386) and Macquarie University. Part of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We thank the refree for useful comments. The SMTis operated by theArizona Radio Observatory (ARO), Steward Observatory, University of Arizona. The XMM-Newton project is an ESA Science Mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). NR 75 TC 61 Z9 61 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2009 VL 706 IS 1 BP 348 EP 375 DI 10.1088/0004-637X/706/1/348 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 516JS UT WOS:000271538900027 ER PT J AU Sturrock, PA Scargle, JD AF Sturrock, P. A. Scargle, J. D. TI A BAYESIAN ASSESSMENT OF P-VALUES FOR SIGNIFICANCE ESTIMATION OF POWER SPECTRA AND AN ALTERNATIVE PROCEDURE, WITH APPLICATION TO SOLAR NEUTRINO DATA SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: data analysis; methods: statistical ID SUPER-KAMIOKANDE; FLUX; HYPOTHESIS; DETECTOR; IV AB The usual procedure for estimating the significance of a peak in a power spectrum is to calculate the probability of obtaining that value or a larger value by chance (known as the "p-value"), on the assumption that the time series contains only noise-typically that the measurements are derived from random samplings of a Gaussian distribution. However, since the use of p-values in other contexts is known to be misleading, it seems prudent to examine the implications of using p-values for significance estimation of power spectra. We really need to know the probability that the time series is-or is not-compatible with the "null hypothesis" that the measurements are derived from noise. This probability can be calculated by Bayesian analysis, but this requires one to specify and evaluate a second hypothesis that the time series does contain a contribution other than noise. We show that the requirement that the p-value should be identical to the probability that the null hypothesis is true leads to an unacceptable form for the likelihood function associated with this hypothesis. We claim that, for this reason, the p-value is not an acceptable method for significance estimation of a power spectrum. In order to obtain an acceptable significance estimate, it is necessary to explicitly consider a second hypothesis, and the key challenge is to identify an appropriate likelihood function for this hypothesis. We first propose four simple conditions that it seems reasonable to impose on this function. We then examine a general functional form for the function, and find the simplest form (which has one free parameter) that meets these conditions. We then define two different ways of combining information derived from two independent power estimates. One procedure is to calculate the post-probabilities of the null hypothesis, convert these to odds-values, and sum the log-odds. The second procedure is to combine the p-values using a procedure due to R. A. Fisher, and to calculate the corresponding post-probability and hence the corresponding log-odds. It seems sensible-even if not logically essential-to seek a likelihood function for which the two procedures lead to the same answer. We find that this consistency condition may be satisfied, to good approximation, by a special case of the previously proposed likelihood function. We find that the resulting significance estimates are considerably more conservative than those usually associated with the p-values. As two examples, we apply the new procedure to two recent analyses of solar neutrino data: (1) power spectrum analysis of Super-Kamiokande data and (2) the combined analysis of radiochemical neutrino data and irradiance data. C1 [Sturrock, P. A.] Stanford Univ, Ctr Space Sci & Astrophys, Stanford, CA 94305 USA. [Scargle, J. D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Sturrock, PA (reprint author), Stanford Univ, Ctr Space Sci & Astrophys, Stanford, CA 94305 USA. NR 31 TC 10 Z9 10 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2009 VL 706 IS 1 BP 393 EP 398 DI 10.1088/0004-637X/706/1/393 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 516JS UT WOS:000271538900029 ER PT J AU Way, MJ Foster, LV Gazis, PR Srivastava, AN AF Way, M. J. Foster, L. V. Gazis, P. R. Srivastava, A. N. TI NEW APPROACHES TO PHOTOMETRIC REDSHIFT PREDICTION VIA GAUSSIAN PROCESS REGRESSION IN THE SLOAN DIGITAL SKY SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: distances and redshifts; methods: statistical ID SPECTROSCOPIC TARGET SELECTION; EARLY DATA RELEASE; SURFACE BRIGHTNESS; GALAXY SAMPLE; SDSS; 2MASS; EVOLUTION; NETWORKS; QUASARS; CATALOG AB Expanding upon the work of Way & Srivastava we demonstrate how the use of training sets of comparable size continue to make Gaussian process regression (GPR) a competitive approach to that of neural networks and other least-squares fitting methods. This is possible via new large-size matrix inversion techniques developed for Gaussian processes (GPs) that do not require that the kernel matrix be sparse. This development, combined with a neural-network kernel function appears to give superior results for this problem. Our best-fit results for the Sloan Digital Sky Survey (SDSS) Main Galaxy Sample using u, g, r, i, z filters gives an rms error of 0.0201 while our results for the same filters in the luminous red galaxy sample yield 0.0220. We also demonstrate that there appears to be a minimum number of training-set galaxies needed to obtain the optimal fit when using our GPR rank-reduction methods. We find that morphological information included with many photometric surveys appears, for the most part, to make the photometric redshift evaluation slightly worse rather than better. This would indicate that most morphological information simply adds noise from the GP point of view in the data used herein. In addition, we show that cross-match catalog results involving combinations of the Two Micron All Sky Survey, SDSS, and Galaxy Evolution Explorer have to be evaluated in the context of the resulting cross-match magnitude and redshift distribution. Otherwise one may be misled into overly optimistic conclusions. C1 [Way, M. J.] NASA, Goddard Inst Space Studies, New York, NY 10029 USA. [Foster, L. V.] San Jose State Univ, Dept Math, San Jose, CA 95192 USA. [Way, M. J.; Gazis, P. R.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Srivastava, A. N.] NASA, Ames Res Ctr, Intelligent Syst Div, Moffett Field, CA 94035 USA. [Way, M. J.] Dept Phys & Astron, Uppsala, Sweden. RP Way, MJ (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10029 USA. RI Way, Michael/D-5254-2012; OI Way, Michael/0000-0003-3728-0475 FU NASA; Woodward Fund, Department of Mathematics, San Jose State University; Alfred P. Sloan Foundation; National Science Foundation; U. S. Department of Energy; Japanese Monbukagakusho; Max Planck Society; National Aeronautics and Space Administration and the National Science Foundation FX The papers associated with this project and the code used to generate the results from this paper are available on the NASA Ames Dashlink Web site https://dashlink.arc.nasa.gov/algorithm/stablegp. M. J. W thanks Jim Gray, Ani Thakar, Maria SanSebastien, and Alex Szalay for their help in cross-matching the catalogs used herein. Thanks goes to the Astronomy Department at Uppsala University in Sweden for their generous hospitality while part of this work was completed. M. J. W. acknowledges funding received from the NASA Applied Information Systems Research Program. A. N. S. thanks the NASA Aviation Safety Integrated Vehicle Health Management project for support in developing the GP-V method. The authors would like to acknowledge support for this project from the Woodward Fund, Department of Mathematics, San Jose State University. The authors acknowledge support from the NASA Ames Research Center Director's Discretionary Fund. Funding for the SDSS has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Aeronautics and Space Administration, the National Science Foundation, the U. S. Department of Energy, the Japanese Monbukagakusho, and the Max Planck Society. The SDSSWeb site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the University of Chicago, Fermilab, the Institute for Advanced Study, the Japan ParticipationGroup, The Johns Hopkins University, Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy, the Max-Planck-Institute for Astrophysics, New Mexico State University, University of Pittsburgh, Princeton University, the United States Naval Observatory, and the University of Washington. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. The Galaxy Evolution Explorer (GALEX) is a NASA Small Explorer. The mission was developed in cooperation with the Centre National d'Etudes Spatiales of France and the Korean Ministry of Science and Technology. This research has made use of NASA's Astrophysics Data System Bibliographic Services. NR 42 TC 19 Z9 19 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2009 VL 706 IS 1 BP 623 EP 636 DI 10.1088/0004-637X/706/1/623 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 516JS UT WOS:000271538900049 ER PT J AU Mookerjea, B Sandell, G AF Mookerjea, Bhaswati Sandell, Goeran TI STAR FORMATION IN THE COMETARY GLOBULE ORI I-2 SO ASTROPHYSICAL JOURNAL LA English DT Article DE dust, extinction; H II regions; ISM: clouds; stars: formation; stars: pre-main sequence ID YOUNG STELLAR OBJECTS; SPECTRAL ENERGY-DISTRIBUTIONS; LOW-MASS CLOUDS; BOK GLOBULES; NEBULA; PROTOSTARS; TELESCOPE; EVOLUTION; REGIONS; CLUSTER AB We investigate the young stellar population in and near the cometary globule Ori I-2. The analysis is based on deep Nordic Optical Telescope R-band and H alpha images, JCMT SCUBA 450 and 850 mu m images combined with near-infrared Two Micron All Sky Survey (2MASS) photometry and mid-infrared archival Spitzer images obtained with the Infrared Array Camera (IRAC; 3.6, 4.5, 5.8, and 8 mu m), and MIPS (24 and 70 mu m) instruments. We identify a total of 125 sources within the 5' x 5' region imaged by the IRAC. Of these sources, 87 are detected in the R-band image and 51 are detected in the 2MASS. The detailed physical properties of the sources are explored using a combination of near/mid-infrared color-color diagrams, graybody fitting of spectral energy distributions (SEDs) and an online SED fitting tool that uses a library of two-dimensional radiation transfer based accretion models of young stellar objects with disks. Ori I-2 shows clear evidence of triggered star formation with four young low-luminosity pre-main-sequence (PMS) stars embedded in the globule. At least two, possibly as many as four, additional low-mass PMS objects were discovered in the field which are probably part of the young sigma Orionis cluster. Among the PMS stars which have formed in the globule, MIR-54 is a young, deeply embedded Class 0/I object; MIR-51 and 52 are young Class II sources, while MIR-89 is a more evolved, heavily extincted Class II object with its apparent colors mimicking a Class 0/I object. The Class 0/I object MIR-54 coincides with a previously known IRAS source and is a strong submillimeter source. It is most likely the source for the molecular outflow and the large parsec-scale Herbig-Haro (HH) flow. However, the nearby Class II source, MIR-52, which is strong a H alpha emission line star, also appears to drive an outflow approximately aligned with the outflow from MIR-54, and because of the proximity of the two outflows, either star could contribute. MIR-89 appears to excite a low-excitation HH object, HH 992, discovered for the first time in this study. C1 [Mookerjea, Bhaswati] Tata Inst Fundamental Res, Dept Astron & Astrophys, Bombay 400005, Maharashtra, India. [Sandell, Goeran] NASA, Ames Res Ctr, SOFIA USRA, Moffett Field, CA 94035 USA. RP Mookerjea, B (reprint author), Tata Inst Fundamental Res, Dept Astron & Astrophys, Homi Bhabha Rd, Bombay 400005, Maharashtra, India. EM bhaswati@tifr.res.in; Goran.H.Sandell@nasa.gov NR 39 TC 3 Z9 3 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2009 VL 706 IS 1 BP 896 EP 908 DI 10.1088/0004-637X/706/1/896 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 516JS UT WOS:000271538900073 ER PT J AU Cushing, MC Roellig, TL Marley, MS Saumon, D Leggett, SK Kirkpatrick, JD Wilson, JC Sloan, GC Mainzer, AK Van Cleve, JE Houck, JR AF Cushing, Michael C. Roellig, Thomas L. Marley, Mark S. Saumon, D. Leggett, S. K. Kirkpatrick, J. Davy Wilson, John C. Sloan, G. C. Mainzer, Amy K. Van Cleve, Jeff E. Houck, James R. TI A SPITZER INFRARED SPECTROGRAPH SPECTRAL SEQUENCE OF M, L, AND T DWARFS (vol 648, pg 614, 2006) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [Roellig, Thomas L.; Marley, Mark S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Saumon, D.] Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87544 USA. [Leggett, S. K.] Joint Astron Ctr, Hilo, HI 96720 USA. [Kirkpatrick, J. Davy] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Wilson, John C.] Univ Virginia, Charlottesville, VA 22903 USA. [Sloan, G. C.; Houck, James R.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Mainzer, Amy K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Van Cleve, Jeff E.] Ball Aerosp & Technol Corp, Boulder, CO 80301 USA. [Cushing, Michael C.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. RP Cushing, MC (reprint author), Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. EM michael.cushing@gmail.com; thomas.l.roellig@nasa.gov; mmarley@mail.arc.nasa.gov; dsaumon@lanl.gov; s.leggett@jach.hawaii.edu; davy@ipac.caltech.edu; jcw6z@virginia.edu; sloan@isc.astro.cornell.edu; amainzer@jpl.nasa.gov; jvanclev@ball.com; jrh13@cornell.edu RI Marley, Mark/I-4704-2013 NR 1 TC 0 Z9 0 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2009 VL 706 IS 1 BP 923 EP 923 DI 10.1088/0004-637X/706/1/923 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 516JS UT WOS:000271538900076 ER PT J AU Abbott, B Abbott, R Adhikari, R Ajith, P Allen, B Allen, G Amin, R Anderson, SB Anderson, WG Arain, MA Araya, M Armandula, H Armor, P Aso, Y Aston, S Aufmuth, P Aulbert, C Babak, S Ballmer, S Bantilan, H Barish, BC Barker, C Barker, D Barr, B Barriga, P Barton, MA Bastarrika, M Bayer, K Betzwieser, J Beyersdorf, PT Bilenko, IA Billingsley, G Biswas, R Black, E Blackburn, K Blackburn, L Blair, D Bland, B Bodiya, TP Bogue, L Bork, R Boschi, V Bose, S Brady, PR Braginsky, VB Brau, JE Brinkmann, M Brooks, A Brown, DA Brunet, G Bullington, A Buonanno, A Burmeister, O Byer, RL Cadonati, L Cagnoli, G Camp, JB Cannizzo, J Cannon, K Cao, J Cardenas, L Casebolt, T Castaldi, G Cepeda, C Chalkley, E Charlton, P Chatterji, S Chelkowski, S Chen, Y Christensen, N Clark, D Clark, J Cokelaer, T Conte, R Cook, D Corbitt, T Coyne, D Creighton, JDE Cumming, A Cunningham, L Cutler, RM Dalrymple, J Danzmann, K Davies, G DeBra, D Degallaix, J Degree, M Dergachev, V Desai, S DeSalvo, R Dhurandhar, S Diaz, M Dickson, J Dietz, A Donovan, F Dooley, KL Doomes, EE Drever, RWP Duke, I Dumas, JC Dupuis, RJ Dwyer, JG Echols, C Effler, A Ehrens, P Espinoza, E Etzel, T Evans, T Fairhurst, S Fan, Y Fazi, D Fehrmann, H Fejer, MM Finn, LS Flasch, K Fotopoulos, N Freise, A Frey, R Fricke, T Fritschel, P Frolov, VV Fyffe, M Garofoli, J Gholami, I Giaime, JA Giampanis, S Giardina, KD Goda, K Goetz, E Goggin, L Gonzalez, G Gossler, S Gouaty, R Grant, A Gras, S Gray, C Gray, M Greenhalgh, RJS Gretarsson, AM Grimaldi, F Grosso, R Grote, H Grunewald, S Guenther, M Gustafson, EK Gustafson, R Hage, B Hallam, JM Hammer, D Hanna, C Hanson, J Harms, J Harry, G Harstad, E Hayama, K Hayler, T Heefner, J Heng, IS Hennessy, M Heptonstall, A Hewitson, M Hild, S Hirose, E Hoak, D Hosken, D Hough, J Huttner, SH Ingram, D Ito, M Ivanov, A Johnson, B Johnson, WW Jones, DI Jones, G Jones, R Ju, L Kalmus, P Kalogera, V Kamat, S Kanner, J Kasprzyk, D Katsavounidis, E Kawabe, K Kawamura, S Kawazoe, F Kells, W Keppel, DG Khalili, FY Khan, R Khazanov, E Kim, C King, P Kissel, JS Klimenko, S Kokeyama, K Kondrashov, V Kopparapu, RK Kozak, D Kozhevatov, I Krishnan, B Kwee, P Lam, PK Landry, M Lang, MM Lantz, B Lazzarini, A Lei, M Leindecker, N Leonhardt, V Leonor, I Libbrecht, K Lin, H Lindquist, P Lockerbie, NA Lodhia, D Lormand, M Lu, P Lubinski, M Lucianetti, A Luck, H Machenschalk, B MacInnis, M Mageswaran, M Mailand, K Mandic, V Marka, S Marka, Z Markosyan, A Markowitz, J Maros, E Martin, I Martin, RM Marx, JN Mason, K Matichard, F Matone, L Matzner, R Mavalvala, N McCarthy, R McClelland, DE McGuire, SC McHugh, M McIntyre, G McIvor, G McKechan, D McKenzie, K Meier, T Melissinos, A Mendell, G Mercer, RA Meshkov, S Messenger, CJ Meyers, D Miller, J Minelli, J Mitra, S Mitrofanov, VP Mitselmakher, G Mittleman, R Miyakawa, O Moe, B Mohanty, S Moreno, G Mossavi, K MowLowry, C Mueller, G Mukherjee, S Mukhopadhyay, H Muller-Ebhardt, H Munch, J Murray, P Myers, E Myers, J Nash, T Nelson, J Newton, G Nishizawa, A Numata, K O'Dell, J Ogin, G O'Reilly, B O'Shaughnessy, R Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Pan, Y Pankow, C Papa, MA Parameshwaraiah, V Patel, P Pedraza, M Penn, S Perreca, A Petrie, T Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Postiglione, F Principe, M Prix, R Quetschke, V Raab, F Rabeling, DS Radkins, H Rainer, N Rakhmanov, M Ramsunder, M Rehbein, H Reid, S Reitze, DH Riesen, R Riles, K Rivera, B Robertson, NA Robinson, C Robinson, EL Roddy, S Rodriguez, A Rogan, AM Rollins, J Romano, JD Romie, J Route, R Rowan, S Rudiger, A Ruet, L Russell, P Ryan, K Sakata, S Samidi, M de la Jordana, LS Sandberg, V Sannibale, V Saraf, S Sarin, P Sathyaprakash, BS Sato, S Saulson, PR Savage, R Savov, P Schediwy, SW Schilling, R Schnabel, R Schofield, R Schutz, BF Schwinberg, P Scott, SM Searle, AC Sears, B Seifert, F Sellers, D Sengupta, AS Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Sinha, S Sintes, AM Slagmolen, BJJ Slutsky, J Smith, JR Smith, MR Smith, ND Somiya, K Sorazu, B Stein, LC Stochino, A Stone, R Strain, KA Strom, DM Stuver, A Summerscales, TZ Sun, KX Sung, M Sutton, PJ Takahashi, H Tanner, DB Taylor, R Taylor, R Thacker, J Thorne, KA Thorne, KS Thuring, A Tokmakov, KV Torres, C Torrie, C Traylor, G Trias, M Tyler, W Ugolini, D Ulmen, J Urbanek, K Vahlbruch, H Van Den Broeck, C van der Sluys, M Vass, S Vaulin, R Vecchio, A Veitch, J Veitch, P Villar, A Vorvick, C Vyachanin, SP Waldman, SJ Wallace, L Ward, H Ward, R Weinert, M Weinstein, A Weiss, R Wen, S Wette, K Whelan, JT Whitcomb, SE Whiting, BF Wilkinson, C Willems, PA Williams, HR Williams, L Willke, B Wilmut, I Winkler, W Wipf, CC Wiseman, AG Woan, G Wooley, R Worden, J Wu, W Yakushin, I Yamamoto, H Yan, Z Yoshida, S Zanolin, M Zhang, J Zhang, L Zhao, C Zotov, N Zucker, M Zweizig, J Santostasi, G AF Abbott, B. Abbott, R. Adhikari, R. Ajith, P. Allen, B. Allen, G. Amin, R. Anderson, S. B. Anderson, W. G. Arain, M. A. Araya, M. Armandula, H. Armor, P. Aso, Y. Aston, S. Aufmuth, P. Aulbert, C. Babak, S. Ballmer, S. Bantilan, H. Barish, B. C. Barker, C. Barker, D. Barr, B. Barriga, P. Barton, M. A. Bastarrika, M. Bayer, K. Betzwieser, J. Beyersdorf, P. T. Bilenko, I. A. Billingsley, G. Biswas, R. Black, E. Blackburn, K. Blackburn, L. Blair, D. Bland, B. Bodiya, T. P. Bogue, L. Bork, R. Boschi, V. Bose, S. Brady, P. R. Braginsky, V. B. Brau, J. E. Brinkmann, M. Brooks, A. Brown, D. A. Brunet, G. Bullington, A. Buonanno, A. Burmeister, O. Byer, R. L. Cadonati, L. Cagnoli, G. Camp, J. B. Cannizzo, J. Cannon, K. Cao, J. Cardenas, L. Casebolt, T. Castaldi, G. Cepeda, C. Chalkley, E. Charlton, P. Chatterji, S. Chelkowski, S. Chen, Y. Christensen, N. Clark, D. Clark, J. Cokelaer, T. Conte, R. Cook, D. Corbitt, T. Coyne, D. Creighton, J. D. E. Cumming, A. Cunningham, L. Cutler, R. M. Dalrymple, J. Danzmann, K. Davies, G. DeBra, D. Degallaix, J. Degree, M. Dergachev, V. Desai, S. DeSalvo, R. Dhurandhar, S. Diaz, M. Dickson, J. Dietz, A. Donovan, F. Dooley, K. L. Doomes, E. E. Drever, R. W. P. Duke, I. Dumas, J. -C. Dupuis, R. J. Dwyer, J. G. Echols, C. Effler, A. Ehrens, P. Espinoza, E. Etzel, T. Evans, T. Fairhurst, S. Fan, Y. Fazi, D. Fehrmann, H. Fejer, M. M. Finn, L. S. Flasch, K. Fotopoulos, N. Freise, A. Frey, R. Fricke, T. Fritschel, P. Frolov, V. V. Fyffe, M. Garofoli, J. Gholami, I. Giaime, J. A. Giampanis, S. Giardina, K. D. Goda, K. Goetz, E. Goggin, L. Gonzalez, G. Gossler, S. Gouaty, R. Grant, A. Gras, S. Gray, C. Gray, M. Greenhalgh, R. J. S. Gretarsson, A. M. Grimaldi, F. Grosso, R. Grote, H. Grunewald, S. Guenther, M. Gustafson, E. K. Gustafson, R. Hage, B. Hallam, J. M. Hammer, D. Hanna, C. Hanson, J. Harms, J. Harry, G. Harstad, E. Hayama, K. Hayler, T. Heefner, J. Heng, I. S. Hennessy, M. Heptonstall, A. Hewitson, M. Hild, S. Hirose, E. Hoak, D. Hosken, D. Hough, J. Huttner, S. H. Ingram, D. Ito, M. Ivanov, A. Johnson, B. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. Ju, L. Kalmus, P. Kalogera, V. Kamat, S. Kanner, J. Kasprzyk, D. Katsavounidis, E. Kawabe, K. Kawamura, S. Kawazoe, F. Kells, W. Keppel, D. G. Khalili, F. Ya. Khan, R. Khazanov, E. Kim, C. King, P. Kissel, J. S. Klimenko, S. Kokeyama, K. Kondrashov, V. Kopparapu, R. K. Kozak, D. Kozhevatov, I. Krishnan, B. Kwee, P. Lam, P. K. Landry, M. Lang, M. M. Lantz, B. Lazzarini, A. Lei, M. Leindecker, N. Leonhardt, V. Leonor, I. Libbrecht, K. Lin, H. Lindquist, P. Lockerbie, N. A. Lodhia, D. Lormand, M. Lu, P. Lubinski, M. Lucianetti, A. Lueck, H. Machenschalk, B. MacInnis, M. Mageswaran, M. Mailand, K. Mandic, V. Marka, S. Marka, Z. Markosyan, A. Markowitz, J. Maros, E. Martin, I. Martin, R. M. Marx, J. N. Mason, K. Matichard, F. Matone, L. Matzner, R. Mavalvala, N. McCarthy, R. McClelland, D. E. McGuire, S. C. McHugh, M. McIntyre, G. McIvor, G. McKechan, D. McKenzie, K. Meier, T. Melissinos, A. Mendell, G. Mercer, R. A. Meshkov, S. Messenger, C. J. Meyers, D. Miller, J. Minelli, J. Mitra, S. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Miyakawa, O. Moe, B. Mohanty, S. Moreno, G. Mossavi, K. MowLowry, C. Mueller, G. Mukherjee, S. Mukhopadhyay, H. Mueller-Ebhardt, H. Munch, J. Murray, P. Myers, E. Myers, J. Nash, T. Nelson, J. Newton, G. Nishizawa, A. Numata, K. O'Dell, J. Ogin, G. O'Reilly, B. O'Shaughnessy, R. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Pan, Y. Pankow, C. Papa, M. A. Parameshwaraiah, V. Patel, P. Pedraza, M. Penn, S. Perreca, A. Petrie, T. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Postiglione, F. Principe, M. Prix, R. Quetschke, V. Raab, F. Rabeling, D. S. Radkins, H. Rainer, N. Rakhmanov, M. Ramsunder, M. Rehbein, H. Reid, S. Reitze, D. H. Riesen, R. Riles, K. Rivera, B. Robertson, N. A. Robinson, C. Robinson, E. L. Roddy, S. Rodriguez, A. Rogan, A. M. Rollins, J. Romano, J. D. Romie, J. Route, R. Rowan, S. Ruediger, A. Ruet, L. Russell, P. Ryan, K. Sakata, S. Samidi, M. de la Jordana, L. Sancho Sandberg, V. Sannibale, V. Saraf, S. Sarin, P. Sathyaprakash, B. S. Sato, S. Saulson, P. R. Savage, R. Savov, P. Schediwy, S. W. Schilling, R. Schnabel, R. Schofield, R. Schutz, B. F. Schwinberg, P. Scott, S. M. Searle, A. C. Sears, B. Seifert, F. Sellers, D. Sengupta, A. S. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Sinha, S. Sintes, A. M. Slagmolen, B. J. J. Slutsky, J. Smith, J. R. Smith, M. R. Smith, N. D. Somiya, K. Sorazu, B. Stein, L. C. Stochino, A. Stone, R. Strain, K. A. Strom, D. M. Stuver, A. Summerscales, T. Z. Sun, K. -X. Sung, M. Sutton, P. J. Takahashi, H. Tanner, D. B. Taylor, R. Taylor, R. Thacker, J. Thorne, K. A. Thorne, K. S. Thuering, A. Tokmakov, K. V. Torres, C. Torrie, C. Traylor, G. Trias, M. Tyler, W. Ugolini, D. Ulmen, J. Urbanek, K. Vahlbruch, H. Van Den Broeck, C. van der Sluys, M. Vass, S. Vaulin, R. Vecchio, A. Veitch, J. Veitch, P. Villar, A. Vorvick, C. Vyachanin, S. P. Waldman, S. J. Wallace, L. Ward, H. Ward, R. Weinert, M. Weinstein, A. Weiss, R. Wen, S. Wette, K. Whelan, J. T. Whitcomb, S. E. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, H. R. Williams, L. Willke, B. Wilmut, I. Winkler, W. Wipf, C. C. Wiseman, A. G. Woan, G. Wooley, R. Worden, J. Wu, W. Yakushin, I. Yamamoto, H. Yan, Z. Yoshida, S. Zanolin, M. Zhang, J. Zhang, L. Zhao, C. Zotov, N. Zucker, M. Zweizig, J. Santostasi, G. CA LIGO Sci Collaboration TI BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE CRAB PULSAR (vol 683, pg L45, 2008) SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Correction AB A processing error in the signal template used in this search led to upper limits about 30% lower than we now know is warranted by the early S5 data. We have re-analyzed that data and find new upper limits on the strain parameter h(0) of 4.9 x 10(-25)/3.9 x 10(-25) for uniform/restricted prior assumptions concerning the Crab inclination and polarization angles. These results have now been superseded by upper limits of 2.6 x 10(-25)/2.0 x 10(-25) based on the full S5 data and presented in Abbott et al. (2009). The multitemplate search was not affected by the error. C1 [Abbott, B.; Abbott, R.; Adhikari, R.; Anderson, S. B.; Araya, M.; Armandula, H.; Ballmer, S.; Barish, B. C.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, K.; Bork, R.; Boschi, V.; Brooks, A.; Cannon, K.; Cardenas, L.; Cepeda, C.; Chatterji, S.; Coyne, D.; Davies, G.; DeSalvo, R.; Dupuis, R. J.; Echols, C.; Ehrens, P.; Espinoza, E.; Etzel, T.; Fazi, D.; Fricke, T.; Goggin, L.; Gustafson, E. K.; Heefner, J.; Ivanov, A.; Kells, W.; Keppel, D. G.; King, P.; Kondrashov, V.; Kozak, D.; Lazzarini, A.; Lei, M.; Libbrecht, K.; Lindquist, P.; Mageswaran, M.; Mailand, K.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Meyers, D.; Miller, J.; Miyakawa, O.; Nash, T.; Ogin, G.; Patel, P.; Pedraza, M.; Robertson, N. A.; Russell, P.; Samidi, M.; Sannibale, V.; Sears, B.; Sengupta, A. S.; Smith, M. R.; Stochino, A.; Taylor, R.; Tyler, W.; Vass, S.; Villar, A.; Waldman, S. J.; Wallace, L.; Ward, R.; Weinstein, A.; Whitcomb, S. E.; Willems, P. A.; Yamamoto, H.; Zhang, L.; Zweizig, J.] LIGO Calif Inst Technol, Pasadena, CA 91125 USA. [Ajith, P.; Allen, B.; Aulbert, C.; Brinkmann, M.; Burmeister, O.; Danzmann, K.; Fehrmann, H.; Gossler, S.; Grote, H.; Harms, J.; Hewitson, M.; Lueck, H.; Machenschalk, B.; Messenger, C. J.; Mossavi, K.; Mueller-Ebhardt, H.; Prix, R.; Rainer, N.; Rehbein, H.; Ruediger, A.; Schnabel, R.; Seifert, F.; Somiya, K.; Weinert, M.; Willke, B.; Winkler, W.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Allen, B.; Anderson, W. G.; Armor, P.; Biswas, R.; Brady, P. R.; Creighton, J. D. E.; Flasch, K.; Fotopoulos, N.; Hammer, D.; Moe, B.; Papa, M. A.; Siemens, X.; Vaulin, R.; Wiseman, A. G.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, G.; Bullington, A.; Byer, R. L.; Casebolt, T.; Clark, D.; DeBra, D.; Degree, M.; Fejer, M. M.; Hennessy, M.; Lantz, B.; Leindecker, N.; Lu, P.; Markosyan, A.; Route, R.; Schilling, R.; Sinha, S.; Sun, K. -X.; Ulmen, J.; Urbanek, K.] Stanford Univ, Stanford, CA 94305 USA. [Amin, R.; Giaime, J. A.; Gonzalez, G.; Gouaty, R.; Hanna, C.; Johnson, W. W.; Kissel, J. S.; Matichard, F.; Rodriguez, A.; Slutsky, J.; Sung, M.; Wen, S.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Arain, M. A.; Dooley, K. L.; Klimenko, S.; Lin, H.; Lucianetti, A.; Martin, R. M.; Mercer, R. A.; Mitselmakher, G.; Mueller, G.; Ottens, R. S.; Pankow, C.; Quetschke, V.; Reitze, D. H.; Tanner, D. B.; Whiting, B. F.; Williams, L.; Wu, W.] Univ Florida, Gainesville, FL 32611 USA. [Aso, Y.; Dwyer, J. G.; Kalmus, P.; Kamat, S.; Khan, R.; Marka, S.; Marka, Z.; Matone, L.; Rollins, J.] Columbia Univ, New York, NY 10027 USA. [Aston, S.; Chelkowski, S.; Cutler, R. M.; Freise, A.; Hallam, J. M.; Hild, S.; Kasprzyk, D.; Lodhia, D.; Perreca, A.; Petrie, T.; Robinson, E. L.; Vecchio, A.; Veitch, J.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Aufmuth, P.; Danzmann, K.; Hage, B.; Kwee, P.; Lueck, H.; Meier, T.; Thuering, A.; Vahlbruch, H.; Willke, B.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Babak, S.; Chen, Y.; Degallaix, J.; Gholami, I.; Grunewald, S.; Krishnan, B.; Papa, M. A.; Schutz, B. F.; Sintes, A. M.; Somiya, K.; Takahashi, H.; Whelan, J. T.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Bantilan, H.; Christensen, N.] Carleton Coll, Northfield, MN 55057 USA. [Barker, C.; Barker, D.; Bland, B.; Cook, D.; Effler, A.; Garofoli, J.; Gray, C.; Guenther, M.; Ingram, D.; Johnson, B.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moreno, G.; Myers, E.; Myers, J.; Parameshwaraiah, V.; Raab, F.; Radkins, H.; Rivera, B.; Ryan, K.; Sandberg, V.; Savage, R.; Schwinberg, P.; Sigg, D.; Vorvick, C.; Wilkinson, C.; Worden, J.] LIGO Hanford Observ, Richland, WA 99352 USA. [Barr, B.; Barton, M. A.; Bastarrika, M.; Cagnoli, G.; Chalkley, E.; Clark, J.; Cumming, A.; Cunningham, L.; Grant, A.; Heng, I. S.; Heptonstall, A.; Hough, J.; Huttner, S. H.; Jones, R.; Martin, I.; Miller, J.; Murray, P.; Nelson, J.; Newton, G.; Pletsch, H. J.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Sorazu, B.; Strain, K. A.; Taylor, R.; Tokmakov, K. V.; Torrie, C.; Ward, H.; Woan, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Barriga, P.; Blair, D.; Dumas, J. -C.; Fan, Y.; Gras, S.; Ju, L.; Schediwy, S. W.; Yan, Z.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Bayer, K.; Blackburn, L.; Bodiya, T. P.; Brunet, G.; Cao, J.; Corbitt, T.; Donovan, F.; Duke, I.; Fritschel, P.; Goda, K.; Grimaldi, F.; Harry, G.; Katsavounidis, E.; MacInnis, M.; Markowitz, J.; Mason, K.; Mavalvala, N.; Mittleman, R.; Ottaway, D. J.; Ruet, L.; Sarin, P.; Shoemaker, D. H.; Smith, N. D.; Stein, L. C.; Weiss, R.; Wipf, C. C.; Zucker, M.] LIGO Massachusetts Inst Technol, Cambridge, MA 02139 USA. [Beyersdorf, P. T.] San Jose State Univ, San Jose, CA 95192 USA. [Bilenko, I. A.; Braginsky, V. B.; Khalili, F. Ya.; Mitrofanov, V. P.; Vyachanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Bogue, L.; Evans, T.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Hanson, J.; Hoak, D.; Lormand, M.; O'Reilly, B.; Overmier, H.; Riesen, R.; Roddy, S.; Romie, J.; Sellers, D.; Sibley, A.; Stuver, A.; Thacker, J.; Torres, C.; Traylor, G.; Wooley, R.; Yakushin, I.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Bose, S.; Rogan, A. M.] Washington State Univ, Pullman, WA 99164 USA. [Brau, J. E.; Frey, R.; Harstad, E.; Ito, M.; Leonor, I.; Schofield, R.; Strom, D. M.] Univ Oregon, Eugene, OR 97403 USA. [Brown, D. A.; Dalrymple, J.; Hirose, E.; Saulson, P. R.; Smith, J. R.] Syracuse Univ, Syracuse, NY 13244 USA. [Buonanno, A.; Kanner, J.; Pan, Y.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Cadonati, L.] Univ Massachusetts, Amherst, MA 01003 USA. [Camp, J. B.; Cannizzo, J.; Numata, K.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Castaldi, G.; Pitkin, M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Cokelaer, T.; Dietz, A.; Fairhurst, S.; Jones, G.; McKechan, D.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.; Van Den Broeck, C.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Conte, R.; Postiglione, F.] Univ Salerno, I-84084 Salerno, Italy. [Dergachev, V.; Goetz, E.; Gustafson, R.; Riles, K.; Zhang, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Desai, S.; Finn, L. S.; Kopparapu, R. K.; Lang, M. M.; Minelli, J.; O'Shaughnessy, R.; Owen, B. J.; Pinto, I. M.; Ramsunder, M.; Thorne, K. A.; Williams, H. R.] Penn State Univ, University Pk, PA 16802 USA. [Chen, Y.; Savov, P.; Thorne, K. S.] Caltech CaRT, Pasadena, CA 91125 USA. [Dhurandhar, S.; Mitra, S.; Mukhopadhyay, H.] Inter Univ Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Diaz, M.; Grosso, R.; Hayama, K.; Mohanty, S.; Mukherjee, S.; Romano, J. D.; Stone, R.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Dickson, J.; Gray, M.; Lam, P. K.; McClelland, D. E.; McKenzie, K.; MowLowry, C.; Rabeling, D. S.; Scott, S. M.; Searle, A. C.; Slagmolen, B. J. J.; Wette, K.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Doomes, E. E.; McGuire, S. C.] Southern Univ, Baton Rouge, LA 70813 USA. [Doomes, E. E.; McGuire, S. C.] A&M Coll, Baton Rouge, LA 70813 USA. [Fricke, T.; Giampanis, S.; Melissinos, A.] Univ Rochester, Rochester, NY 14627 USA. [Greenhalgh, R. J. S.; Hayler, T.; O'Dell, J.; Wilmut, I.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Gretarsson, A. M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Hosken, D.; Munch, J.; Veitch, P.] Univ Adelaide, Adelaide, SA 5005, Australia. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Kalogera, V.; Kim, C.; van der Sluys, M.] Northwestern Univ, Evanston, IL 60208 USA. [Kawamura, S.; Kawazoe, F.; Kokeyama, K.; Leonhardt, V.; Nishizawa, A.; Sakata, S.; Sato, S.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Khazanov, E.; Kozhevatov, I.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Lockerbie, N. A.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [Mandic, V.] Univ Minnesota, Minneapolis, MN 55455 USA. [Matzner, R.; McIvor, G.] Univ Texas Austin, Austin, TX 78712 USA. [McHugh, M.] Loyola Univ, New Orleans, LA 70118 USA. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Rakhmanov, M.; Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. [de la Jordana, L. Sancho; Sintes, A. M.; Trias, M.] Univ Illes Balears, E-07122 Palma de Mallorca, Spain. [Saraf, S.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Santostasi, G.] McNeese State Univ, Lake Charles, LA 70609 USA. RP Abbott, B (reprint author), LIGO Calif Inst Technol, Pasadena, CA 91125 USA. RI McClelland, David/E-6765-2010; Martin, Iain/A-2445-2010; Hild, Stefan/A-3864-2010; Rowan, Sheila/E-3032-2010; Strain, Kenneth/D-5236-2011; Raab, Frederick/E-2222-2011; Lueck, Harald/F-7100-2011; Kawazoe, Fumiko/F-7700-2011; Freise, Andreas/F-8892-2011; Kawabe, Keita/G-9840-2011; Finn, Lee Samuel/A-3452-2009; Mitrofanov, Valery/D-8501-2012; Bilenko, Igor/D-5172-2012; Khan, Rubab/F-9455-2015; Ottaway, David/J-5908-2015; Postiglione, Fabio/O-4744-2015; Sigg, Daniel/I-4308-2015; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Frey, Raymond/E-2830-2016; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Barker, David/A-5671-2013; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Pitkin, Matthew/I-3802-2013; Vyatchanin, Sergey/J-2238-2012; Khazanov, Efim/B-6643-2014; Lucianetti, Antonio/G-7383-2014; Lam, Ping Koy/A-5276-2008; Khalili, Farit/D-8113-2012; Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015 OI McClelland, David/0000-0001-6210-5842; Strain, Kenneth/0000-0002-2066-5355; Lueck, Harald/0000-0001-9350-4846; Finn, Lee Samuel/0000-0002-3937-0688; Khan, Rubab/0000-0001-5100-5168; Postiglione, Fabio/0000-0003-0628-3796; Sigg, Daniel/0000-0003-4606-6526; Frey, Raymond/0000-0003-0341-2636; Sorazu, Borja/0000-0002-6178-3198; Allen, Bruce/0000-0003-4285-6256; Zhao, Chunnong/0000-0001-5825-2401; Pitkin, Matthew/0000-0003-4548-526X; Lam, Ping Koy/0000-0002-4421-601X; Vecchio, Alberto/0000-0002-6254-1617; NR 2 TC 11 Z9 11 U1 3 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 20 PY 2009 VL 706 IS 1 BP L203 EP L204 DI 10.1088/0004-637X/706/1/L203 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 516HP UT WOS:000271533200042 ER PT J AU Abdo, AA Ackermann, M Ajello, M Asano, K Atwood, WB Axelsson, M Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Bechtol, K Bellazzini, R Berenji, B Bhat, PN Bissaldi, E Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Briggs, MS Brigida, M Bruel, P Burgess, JM Burrows, DN Buson, S Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cecchi, C Celik, O Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Cominsky, LR Connaughton, V Conrad, J Cutini, S d'Elia, V Dermer, CD de Angelis, A de Palma, F Digel, SW Dingus, BL Silva, EDE Drell, PS Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Finke, J Fishman, G Focke, WB Fortin, P Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Gehrels, N Germani, S Giavitto, G Giebels, B Giglietto, N Giordano, F Glanzman, T Godfrey, G Goldstein, A Granot, J Greiner, J Grenier, IA Grove, JE Guillemot, L Guiriec, S Hanabata, Y Harding, AK Hayashida, M Hays, E Horan, D Hughes, RE Jackson, MS Johannesson, G Johnson, AS Johnson, RP Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Kippen, RM Knodlseder, J Kocevski, D Komin, N Kouveliotou, C Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Mazziotta, MN McBreen, S McEnery, JE McGlynn, S Meegan, C Meszaros, P Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Nakamori, T Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Omodei, N Orlando, E Ormes, JF Paciesas, WS Paneque, D Panetta, JH Pelassa, V Pepe, M Pesce-Rollins, M Petrosian, V Piron, F Porter, TA Preece, R Raino, S Rando, R Rau, A Razzano, M Razzaque, S Reimer, A Reimer, O Reposeur, T Ritz, S Rochester, LS Rodriguez, AY Roming, PWA Roth, M Ryde, F Sadrozinski, HFW Sanchez, D Sander, A Parkinson, PMS Scargle, JD Schalk, TL Sgro, C Siskind, EJ Smith, PD Spinelli, P Stamatikos, M Stecker, FW Stratta, G Strickman, MS Suson, DJ Swenson, CA Tajima, H Takahashi, H Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Uehara, T Usher, TL van der Horst, AJ Vasileiou, V Vilchez, N Vitale, V von Kienlin, A Waite, AP Wang, P Wilson-Hodge, C Winer, BL Wood, KS Yamazaki, R Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Asano, K. Atwood, W. B. Axelsson, M. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Bhat, P. N. Bissaldi, E. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Briggs, M. S. Brigida, M. Bruel, P. Burgess, J. M. Burrows, D. N. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Celik, Oe. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cominsky, L. R. Connaughton, V. Conrad, J. Cutini, S. d'Elia, V. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. Dingus, B. L. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Finke, J. Fishman, G. Focke, W. B. Fortin, P. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gehrels, N. Germani, S. Giavitto, G. Giebels, B. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Goldstein, A. Granot, J. Greiner, J. Grenier, I. A. Grove, J. E. Guillemot, L. Guiriec, S. Hanabata, Y. Harding, A. K. Hayashida, M. Hays, E. Horan, D. Hughes, R. E. Jackson, M. S. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Kippen, R. M. Knoedlseder, J. Kocevski, D. Komin, N. Kouveliotou, C. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Mazziotta, M. N. McBreen, S. McEnery, J. E. McGlynn, S. Meegan, C. Meszaros, P. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Paciesas, W. S. Paneque, D. Panetta, J. H. Pelassa, V. Pepe, M. Pesce-Rollins, M. Petrosian, V. Piron, F. Porter, T. A. Preece, R. Raino, S. Rando, R. Rau, A. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Reposeur, T. Ritz, S. Rochester, L. S. Rodriguez, A. Y. Roming, P. W. A. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Schalk, T. L. Sgro, C. Siskind, E. J. Smith, P. D. Spinelli, P. Stamatikos, M. Stecker, F. W. Stratta, G. Strickman, M. S. Suson, D. J. Swenson, C. A. Tajima, H. Takahashi, H. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Uehara, T. Usher, T. L. van der Horst, A. J. Vasileiou, V. Vilchez, N. Vitale, V. von Kienlin, A. Waite, A. P. Wang, P. Wilson-Hodge, C. Winer, B. L. Wood, K. S. Yamazaki, R. Ylinen, T. Ziegler, M. TI FERMI OBSERVATIONS OF GRB 090902B: A DISTINCT SPECTRAL COMPONENT IN THE PROMPT AND DELAYED EMISSION SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma rays: bursts ID GAMMA-RAY BURST; HIGH-ENERGY; BATSE OBSERVATIONS; REDSHIFT; BEHAVIOR; PHOTONS; 080514B; MISSION; 080916C; ESCAPE AB We report on the observation of the bright, long gamma-ray burst (GRB), GRB 090902B, by the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) instruments on-board the Fermi observatory. This was one of the brightest GRBs to have been observed by the LAT, which detected several hundred photons during the prompt phase. With a redshift of z = 1.822, this burst is among the most luminous detected by Fermi. Time-resolved spectral analysis reveals a significant power-law component in the LAT data that is distinct from the usual Band model emission that is seen in the sub-MeV energy range. This power-law component appears to extrapolate from the GeV range to the lowest energies and is more intense than the Band component, both below similar to 50 keV and above 100 MeV. The Band component undergoes substantial spectral evolution over the entire course of the burst, while the photon index of the power-law component remains constant for most of the prompt phase, then hardens significantly toward the end. After the prompt phase, power-law emission persists in the LAT data as late as 1 ks post-trigger, with its flux declining as t(-1.5). The LAT detected a photon with the highest energy so far measured from a GRB, 33.4(-3.5)(+ 2.7) GeV. This event arrived 82 s after the GBM trigger and similar to 50 s after the prompt phase emission had ended in the GBM band. We discuss the implications of these results for models of GRB emission and for constraints on models of the extragalactic background light. C1 [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Finke, J.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Razzaque, S.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.; Finke, J.; Razzaque, S.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Petrosian, V.; Reimer, A.; Reimer, O.; Rochester, L. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Petrosian, V.; Reimer, A.; Reimer, O.; Rochester, L. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Asano, K.; Kataoka, J.; Kawai, N.; Nakamori, T.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Asano, K.] Tokyo Inst Technol, Interact Res Ctr Sci, Tokyo 1528551, Japan. [Atwood, W. B.; Johnson, R. P.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Johnson, R. P.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Axelsson, M.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Axelsson, M.; Conrad, J.; Jackson, M. S.; McGlynn, S.; Meurer, C.; Ryde, F.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Komin, N.; Tibaldo, L.] Univ Paris Diderot, CNRS, CEA IRFU, Lab AIM,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Giavitto, G.; Longo, F.; Moretti, E.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.; Moretti, E.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bhat, P. N.; Briggs, M. S.; Burgess, J. M.; Connaughton, V.; Goldstein, A.; Guiriec, S.; Paciesas, W. S.; Preece, R.] Univ Alabama, Huntsville, AL 35899 USA. [Bissaldi, E.; Greiner, J.; McBreen, S.; Orlando, E.; Rau, A.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Horan, D.; Sanchez, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burrows, D. N.; Gehrels, N.; Meszaros, P.; Roming, P. W. A.; Swenson, C. A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Celik, Oe.; Cheung, C. C.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Stamatikos, M.; Stecker, F. W.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe.; Moiseev, A. A.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Komin, N.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Conrad, J.; Jackson, M. S.; Meurer, C.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Cutini, S.; d'Elia, V.; Stratta, G.] ASI Sci Data Ctr, I-00044 Rome, Italy. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Grp Coll Udine, Sez Trieste, Ist Nazl Fis Nucl, I-33100 Udine, Italy. [Dingus, B. L.; Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Dumora, D.; Lemoine-Goumard, M.; Lott, B.; Reposeur, T.] Univ Bordeaux, CEN Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Lemoine-Goumard, M.; Lott, B.; Reposeur, T.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Fishman, G.; Kouveliotou, C.; van der Horst, A. J.; Wilson-Hodge, C.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.; Uehara, T.; Yamazaki, R.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, College Pk, MD 20742 USA. [Granot, J.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Guillemot, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Hughes, R. E.; Sander, A.; Smith, P. D.; Stamatikos, M.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Jackson, M. S.; McGlynn, S.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan. [Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [McBreen, S.] Univ Coll Dublin, Dublin 4, Ireland. [Meegan, C.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.; Uchiyama, Y.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Rodriguez, A. Y.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.] ICREA, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. RI Komin, Nukri/J-6781-2015; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Bissaldi, Elisabetta/K-7911-2016; Stratta, Maria Giuliana/L-3045-2016; Torres, Diego/O-9422-2016; Thompson, David/D-2939-2012; Stecker, Floyd/D-3169-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Tosti, Gino/E-9976-2013; Saz Parkinson, Pablo Miguel/I-7980-2013; Rando, Riccardo/M-7179-2013; OI Rando, Riccardo/0000-0001-6992-818X; Sgro', Carmelo/0000-0001-5676-6214; Giordano, Francesco/0000-0002-8651-2394; Dingus, Brenda/0000-0001-8451-7450; D'Elia, Valerio/0000-0002-7320-5862; SPINELLI, Paolo/0000-0001-6688-8864; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Komin, Nukri/0000-0003-3280-0582; Preece, Robert/0000-0003-1626-7335; Burgess, James/0000-0003-3345-9515; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Bissaldi, Elisabetta/0000-0001-9935-8106; Stratta, Maria Giuliana/0000-0003-1055-7980; Torres, Diego/0000-0002-1522-9065; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Axelsson, Magnus/0000-0003-4378-8785; Moretti, Elena/0000-0001-5477-9097; Cutini, Sara/0000-0002-1271-2924; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726 FU NASA and DOE in the United States; CEA/Irfu and IN2P3/CNRS in France; ASI and INFN in Italy; MEXT, KEK, and JAXA in Japan; K. A. Wallenberg Foundation; Swedish Research Council and the National Space Board in Sweden; INAF in Italy; CNES in France FX The Fermi LAT Collaboration acknowledges support from a number of agencies and institutes for both development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is also gratefully acknowledged. NR 49 TC 249 Z9 252 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 20 PY 2009 VL 706 IS 1 BP L138 EP L144 DI 10.1088/0004-637X/706/1/L138 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 516HP UT WOS:000271533200029 ER PT J AU Abdo, AA Ackermann, M Ajello, M Atwood, WB Axelsson, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Baughman, BM Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bregeon, J Brez, A Brigida, M Bruel, P Burnett, TH Buson, S Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cavazzuti, E Cecchi, C Celik, O Chaty, S Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Cominsky, LR Conrad, J Corbel, S Corbet, R Cutini, S Dermer, CD de Angelis, A de Palma, F Digel, SW Silva, EDE Drell, PS Dubois, R Dubus, G Dumora, D Farnier, C Favuzzi, C Fegan, SJ Focke, WB Fortin, P Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giebels, B Giglietto, N Giordano, F Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Hanabata, Y Harding, AK Hayashida, M Hays, E Hill, AB Horan, D Hughes, RE Jackson, MS Johannesson, G Johnson, AS Johnson, TJ Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Knodlseder, J Kocian, ML Kuehn, F Kuss, M Lande, J Larsson, S Latronico, L Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Marelli, M Mazziotta, MN McEnery, JE Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nolan, PL Norris, JP Nuss, E Ohsugi, T Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Ray, PS Razzano, M Rea, N Reimer, A Reimer, O Reposeur, T Ritz, S Rochester, LS Rodriguez, AY Romani, RW Roth, M Ryde, F Sadrozinski, HFW Sanchez, D Sander, A Parkinson, PMS Scargle, JD Sgro, C Sierpowska-Bartosik, A Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Strickman, MS Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Tanaka, Y Thayer, JB Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vasileiou, V Venter, C Vilchez, N Vitale, V Waite, AP Wallace, E Wang, P Winer, BL Wood, KS Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Atwood, W. B. Axelsson, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Baughman, B. M. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Celik, Oe Chaty, S. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cominsky, L. R. Conrad, J. Corbel, S. Corbet, R. Cutini, S. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. do Couto E Silva, E. Drell, P. S. Dubois, R. Dubus, G. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Focke, W. B. Fortin, P. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giebels, B. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Hanabata, Y. Harding, A. K. Hayashida, M. Hays, E. Hill, A. B. Horan, D. Hughes, R. E. Jackson, M. S. Johannesson, G. Johnson, A. S. Johnson, T. J. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Knoedlseder, J. Kocian, M. L. Kuehn, F. Kuss, M. Lande, J. Larsson, S. Latronico, L. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Marelli, M. Mazziotta, M. N. McEnery, J. E. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Ray, P. S. Razzano, M. Rea, N. Reimer, A. Reimer, O. Reposeur, T. Ritz, S. Rochester, L. S. Rodriguez, A. Y. Romani, R. W. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Sgro, C. Sierpowska-Bartosik, A. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Tanaka, Y. Thayer, J. B. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vasileiou, V. Venter, C. Vilchez, N. Vitale, V. Waite, A. P. Wallace, E. Wang, P. Winer, B. L. Wood, K. S. Ylinen, T. Ziegler, M. TI FERMI/LAT OBSERVATIONS OF LS 5039 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE binaries: close; gamma rays: observations; stars: variables: other; X-rays: binaries; X-rays: individual (LS 5039) ID GAMMA-RAY BINARIES; X-RAY; ORBITAL MODULATION; PULSAR WIND; LS-5039; EMISSION; VARIABILITY; ABSORPTION; LAT; J1826.2-1450 AB The first results from observations of the high-mass X-ray binary LS 5039 using the Fermi Gamma-ray Space Telescope data between 2008 August and 2009 June are presented. Our results indicate variability that is consistent with the binary period, with the emission being modulated with a period of 3.903 +/- 0.005 days; the first detection of this modulation at GeV energies. The light curve is characterized by a broad peak around superior conjunction in agreement with inverse Compton scattering models. The spectrum is represented by a power law with an exponential cutoff, yielding an overall flux ( 100 MeV-300 GeV) of 4.9 +/- 0.5(stat) +/- 1.8(syst) x 10(-7) photon cm(-2) s(-1), with a cutoff at 2.1 +/- 0.3(stat) +/- 1.1(syst) GeV and photon index G = 1.9 +/- 0.1(stat) +/- 0.3(syst). The spectrum is observed to vary with orbital phase, specifically between inferior and superior conjunction. We suggest that the presence of a cutoff in the spectrum may be indicative of magnetospheric emission similar to the emission seen in many pulsars by Fermi. C1 [Abdo, A. A.; Chekhtman, A.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Ray, P. S.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto E Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto E Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Atwood, W. B.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Axelsson, M.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Axelsson, M.; Conrad, J.; Larsson, S.; Meurer, C.; Ryde, F.; Ylinen, T.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Chaty, S.; Corbel, S.; Grenier, I. A.; Tibaldo, L.] Univ Paris Diderot, Lab AIM, CEA IRFU, CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Hughes, R. E.; Kuehn, F.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astro Particle Phys, Columbus, OH 43210 USA. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ & Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Horan, D.; Sanchez, D.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.; Wallace, E.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caraveo, P. A.; Marelli, M.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Cutini, S.; Gasparrini, D.] ASI Sci Data Ctr, I-00044 Frascati, Roma, Italy. [Celik, Oe; Moiseev, A. A.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Corbet, R.; Vasileiou, V.] Univ Maryland, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Conrad, J.; Jackson, M. S.; Larsson, S.; Meurer, C.] Stockholm Univ, AlbaNova, Dept Phys, SE-10691 Stockholm, Sweden. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Dubus, G.; Hill, A. B.] Univ Grenoble 1, CNRS, Lab Astrophys Grenoble LAOG, UMR 5571, F-38041 Grenoble 09, France. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.; Johnson, T. J.; Moiseev, A. A.] Univ Maryland, College Pk, MD 20742 USA. [Guiriec, S.] Univ Alabama, Huntsville, AL 35899 USA. [Kataoka, J.; Kawai, N.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan. [Kawai, N.] RIKEN, Cosm Radiat Lab, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Ozaki, M.; Takahashi, T.; Tanaka, Y.; Uchiyama, Y.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Rea, N.; Rodriguez, A. Y.; Sierpowska-Bartosik, A.; Torres, D. F.] CSIC, Inst Ciencies Espai, IEEC, Barcelona 08193, Spain. [Rea, N.] Sterrenkundig Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Ryde, F.; Ylinen, T.] AlbaNova, Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Venter, C.] North West Univ, ZA-2520 Potchefstroom, South Africa. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM Robin.Corbet@nasa.gov; adam.hill@obs.ujf-grenoble.fr; richard@slac.stanford.edu; ttanaka@slac.stanford.edu RI Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Rea, Nanda/I-2853-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Rando, Riccardo/M-7179-2013; Venter, Christo/E-6884-2011; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; OI Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Rea, Nanda/0000-0003-2177-6388; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Rando, Riccardo/0000-0001-6992-818X; Venter, Christo/0000-0002-2666-4812; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Cutini, Sara/0000-0002-1271-2924; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Ray, Paul/0000-0002-5297-5278; Marelli, Martino/0000-0002-8017-0338; Sgro', Carmelo/0000-0001-5676-6214; Chaty, Sylvain/0000-0002-5769-8601; SPINELLI, Paolo/0000-0001-6688-8864; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Hill, Adam/0000-0003-3470-4834; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Axelsson, Magnus/0000-0003-4378-8785 FU National Aeronautics and Space Administration and the Department of Energy in the United States; Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK), and Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation, the Swedish Research Council, and the Swedish National Space Board in Sweden; Spanish CSIC and MICINN; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX The Fermi/LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States; the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy; the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK), and Japan Aerospace Exploration Agency (JAXA) in Japan; and the K. A. Wallenberg Foundation, the Swedish Research Council, and the Swedish National Space Board in Sweden.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Spanish CSIC and MICINN, the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 35 TC 76 Z9 77 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 20 PY 2009 VL 706 IS 1 BP L56 EP L61 DI 10.1088/0004-637X/706/1/L56 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 516HP UT WOS:000271533200012 ER PT J AU Abdo, AA Ackermann, M Ajello, M Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Baughman, BM Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Brigida, M Bruel, P Burnett, TH Buson, S Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cecchi, C Celik, O Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Cominsky, LR Conrad, J Cutini, S Dermer, CD de Angelis, A de Palma, F Digel, SW Dormody, M Silva, EDE Drell, PS Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Focke, WB Fortin, P Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giavitto, G Giebels, B Giglietto, N Giordano, F Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Hanabata, Y Harding, AK Hayashida, M Hays, E Hughes, RE Jackson, MS Johannesson, G Johnson, AS Johnson, TJ Johnson, WN Kamae, T Katagiri, H Kataoka, J Katsuta, J Kawai, N Kerr, M Knodlseder, J Kocian, ML Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Makeev, A Mazziotta, MN McEnery, JE Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nakamori, T Nolan, PL Norris, JP Nuss, E Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Paneque, D Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Reposeur, T Ritz, S Rodriguez, AY Romani, RW Roth, M Ryde, F Sadrozinski, HFW Sanchez, D Sander, A Parkinson, PMS Scargle, JD Schalk, TL Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Strickman, MS Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Tibolla, O Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vasileiou, V Venter, C Vilchez, N Vitale, V Waite, AP Wang, P Winer, BL Wood, KS Yamazaki, R Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Baughman, B. M. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Celik, Oe Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cominsky, L. R. Conrad, J. Cutini, S. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. Dormody, M. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Focke, W. B. Fortin, P. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giavitto, G. Giebels, B. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Hanabata, Y. Harding, A. K. Hayashida, M. Hays, E. Hughes, R. E. Jackson, M. S. Johannesson, G. Johnson, A. S. Johnson, T. J. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Katsuta, J. Kawai, N. Kerr, M. Knoedlseder, J. Kocian, M. L. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Makeev, A. Mazziotta, M. N. McEnery, J. E. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Nolan, P. L. Norris, J. P. Nuss, E. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Paneque, D. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Ritz, S. Rodriguez, A. Y. Romani, R. W. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Schalk, T. L. Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Tibolla, O. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vasileiou, V. Venter, C. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Winer, B. L. Wood, K. S. Yamazaki, R. Ylinen, T. Ziegler, M. TI FERMI LAT DISCOVERY OF EXTENDED GAMMA-RAY EMISSION IN THE DIRECTION OF SUPERNOVA REMNANT W51C SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE acceleration of particles; ISM: individual (W51C); radiation mechanisms: non-thermal ID MOLECULAR CLOUD; SHOCK ACCELERATION; AREA TELESCOPE; COSMIC-RAYS; HIGH-ENERGY; SOURCE LIST; EGRET DATA; ORIGIN; RADIO; COMPLEX AB The discovery of bright gamma-ray emission coincident with supernova remnant (SNR) W51C is reported using the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. W51C is a middle-aged remnant (similar to 10(4) yr) with intense radio synchrotron emission in its shell and known to be interacting with a molecular cloud. The gamma-ray emission is spatially extended, broadly consistent with the radio and X-ray extent of SNR W51C. The energy spectrum in the 0.2-50 GeV band exhibits steepening toward high energies. The luminosity is greater than 1 x 10(36) erg s(-1) given the distance constraint of D > 5.5 kpc, which makes this object one of the most luminous gamma-ray sources in our Galaxy. The observed gamma-rays can be explained reasonably by a combination of efficient acceleration of nuclear cosmic rays at supernova shocks and shock-cloud interactions. The decay of neutral pi mesons produced in hadronic collisions provides a plausible explanation for the gamma-ray emission. The product of the average gas density and the total energy content of the accelerated protons amounts to (n) over bar W-H(p) similar or equal to 5 x 10(51) (D/6 kpc)(2) erg cm(-3). Electron density constraints from the radio and X-ray bands render it difficult to explain the LAT signal as due to inverse Compton scattering. The Fermi LAT source coincident with SNR W51C sheds new light on the origin of Galactic cosmic rays. C1 [Abdo, A. A.; Chekhtman, A.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Reimer, A.; Reimer, O.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocian, M. L.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Reimer, A.; Reimer, O.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Tibaldo, L.] Univ Paris Diderot, Lab AIM, CEA IRFU, CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Giavitto, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ & Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Sanchez, D.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caraveo, P. A.] INAF, Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Celik, Oe; Moiseev, A. A.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Gehrels, N.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, Lab Phys Theor & Astroparticules, CNRS, IN2P3, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Conrad, J.; Jackson, M. S.; Meurer, C.] Stockholm Univ, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Conrad, J.; Jackson, M. S.; Meurer, C.; Ryde, F.; Ylinen, T.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Cutini, S.; Gasparrini, D.] ASI Sci Data Ctr, I-00014 Rome, Italy. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, I-33100 Udine, Italy. [Dormody, M.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Dormody, M.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.; Yamazaki, R.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Johnson, T. J.; Moiseev, A. A.] Univ Maryland, College Pk, MD 20742 USA. [Guiriec, S.] Univ Alabama, Huntsville, AL 35899 USA. [Jackson, M. S.; Ryde, F.; Ylinen, T.] AlbaNova, Dept Phys, Royal Inst Technol KTH, SE-10691 Stockholm, Sweden. [Kataoka, J.; Kawai, N.; Nakamori, T.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan. [Katsuta, J.; Takahashi, T.; Uchiyama, Y.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Katsuta, J.; Okumura, A.] Univ Tokyo, Dept Phys, Grad Sch Sci, Bunkyo Ku, Tokyo 1130033, Japan. [Kawai, N.] RIKEN, Cosm Radiat Lab, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Rodriguez, A. Y.; Torres, D. F.] CSIC, Inst Ciencies Espai, IEEC, Barcelona 08193, Spain. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tibolla, O.] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany. [Torres, D. F.] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Venter, C.] North West Univ, ZA-2520 Potchefstroom, South Africa. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM funk@slac.stanford.edu; htajima@slac.stanford.edu; ttanaka@slac.stanford.edu; uchiyama@slac.stanford.edu RI Venter, Christo/E-6884-2011; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; OI Venter, Christo/0000-0002-2666-4812; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Rando, Riccardo/0000-0001-6992-818X; Sgro', Carmelo/0000-0001-5676-6214; Giordano, Francesco/0000-0002-8651-2394; SPINELLI, Paolo/0000-0001-6688-8864; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Cutini, Sara/0000-0002-1271-2924; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726 FU INAF in Italy; CNES in France; K. A. Wallenberg Foundation FX The Fermi LAT Collaboration acknowledges support from a number of agencies and institutes for both development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council, and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is also gratefully acknowledged. NR 31 TC 150 Z9 150 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 20 PY 2009 VL 706 IS 1 BP L1 EP L6 DI 10.1088/0004-637X/706/1/L1 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 516HP UT WOS:000271533200001 ER PT J AU Anderhub, H Antonelli, LA Antoranz, P Backes, M Baixeras, C Balestra, S Barrio, JA Bastieri, D Gonzalez, JB Becker, JK Bednarek, W Berger, K Bernardini, E Biland, A Bigas, OB Bock, RK Bonnoli, G Bordas, P Tridon, DB Bosch-Ramon, V Bose, D Braun, I Bretz, T Britzger, D Camara, M Carmona, E Carosi, A Colin, P Commichau, S Contreras, JL Cortina, J Costado, MT Covino, S Dazzi, F De Angelis, A del Pozo, EDC De los Reyes, R De Lotto, B De Maria, M De Sabata, F Mendez, CD Dominguez, A Prester, DD Dorner, D Doro, M Elsaesser, D Errando, M Ferenc, D Fernandez, E Firpo, R Fonseca, MV Font, L Galante, N Lopez, RJG Garczarczyk, M Gaug, M Godinovic, N Goebel, F Hadasch, D Herrero, A Hildebrand, D Hohne-Monch, D Hose, J Hrupec, D Hsu, CC Jogler, T Klepser, S Kranich, D La Barbera, A Laille, A Leonardo, E Lindfors, E Lombardi, S Longo, F Lopez, M Lorenz, E Majumdar, P Maneva, G Mankuzhiyil, N Mannheim, K Maraschi, L Mariotti, M Martinez, M Mazin, D Meucci, M Miranda, JM Mirzoyan, R Miyamoto, H Moldon, J Moles, M Moralejo, A Nieto, D Nilsson, K Ninkovic, J Orito, R Oya, I Paoletti, R Paredes, JM Pasanen, M Pascoli, D Pauss, F Pegna, RG Perez-Torres, MA Persic, M Peruzzo, L Prada, F Prandini, E Puchades, N Puljak, I Reichardt, I Rhode, W Ribo, M Rico, J Rissi, M Robert, A Rugamer, S Saggion, A Saito, TY Salvati, M Sanchez-Conde, M Satalecka, K Scalzotto, V Scapin, V Schweizer, T Shayduk, M Shore, SN Sidro, N Sierpowska-Bartosik, A Sillanpaa, A Sitarek, J Sobczynska, D Spanier, F Spiro, S Stamerra, A Stark, LS Suric, T Takalo, L Tavecchio, F Temnikov, P Tescaro, D Teshima, M Torres, DF Turini, N Vankov, H Wagner, RM Zabalza, V Zandanel, F Zanin, R Zapatero, J Falcone, A Vetere, L Gehrels, N Trushkin, S Dhawan, V Reig, P AF Anderhub, H. Antonelli, L. A. Antoranz, P. Backes, M. Baixeras, C. Balestra, S. Barrio, J. A. Bastieri, D. Becerra Gonzalez, J. Becker, J. K. Bednarek, W. Berger, K. Bernardini, E. Biland, A. Blanch Bigas, O. Bock, R. K. Bonnoli, G. Bordas, P. Tridon, D. Borla Bosch-Ramon, V. Bose, D. Braun, I. Bretz, T. Britzger, D. Camara, M. Carmona, E. Carosi, A. Colin, P. Commichau, S. Contreras, J. L. Cortina, J. Costado, M. T. Covino, S. Dazzi, F. De Angelis, A. de Cea del Pozo, E. De los Reyes, R. De Lotto, B. De Maria, M. De Sabata, F. Mendez, C. Delgado Dominguez, A. Prester, D. Dominis Dorner, D. Doro, M. Elsaesser, D. Errando, M. Ferenc, D. Fernandez, E. Firpo, R. Fonseca, M. V. Font, L. Galante, N. Garcia Lopez, R. J. Garczarczyk, M. Gaug, M. Godinovic, N. Goebel, F. Hadasch, D. Herrero, A. Hildebrand, D. Hoehne-Moench, D. Hose, J. Hrupec, D. Hsu, C. C. Jogler, T. Klepser, S. Kranich, D. La Barbera, A. Laille, A. Leonardo, E. Lindfors, E. Lombardi, S. Longo, F. Lopez, M. Lorenz, E. Majumdar, P. Maneva, G. Mankuzhiyil, N. Mannheim, K. Maraschi, L. Mariotti, M. Martinez, M. Mazin, D. Meucci, M. Miranda, J. M. Mirzoyan, R. Miyamoto, H. Moldon, J. Moles, M. Moralejo, A. Nieto, D. Nilsson, K. Ninkovic, J. Orito, R. Oya, I. Paoletti, R. Paredes, J. M. Pasanen, M. Pascoli, D. Pauss, F. Pegna, R. G. Perez-Torres, M. A. Persic, M. Peruzzo, L. Prada, F. Prandini, E. Puchades, N. Puljak, I. Reichardt, I. Rhode, W. Ribo, M. Rico, J. Rissi, M. Robert, A. Ruegamer, S. Saggion, A. Saito, T. Y. Salvati, M. Sanchez-Conde, M. Satalecka, K. Scalzotto, V. Scapin, V. Schweizer, T. Shayduk, M. Shore, S. N. Sidro, N. Sierpowska-Bartosik, A. Sillanpaa, A. Sitarek, J. Sobczynska, D. Spanier, F. Spiro, S. Stamerra, A. Stark, L. S. Suric, T. Takalo, L. Tavecchio, F. Temnikov, P. Tescaro, D. Teshima, M. Torres, D. F. Turini, N. Vankov, H. Wagner, R. M. Zabalza, V. Zandanel, F. Zanin, R. Zapatero, J. Falcone, A. Vetere, L. Gehrels, N. Trushkin, S. Dhawan, V. Reig, P. CA Magic Collaboration TI CORRELATED X-RAY AND VERY HIGH ENERGY EMISSION IN THE GAMMA-RAY BINARY LS I+61 303 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE binaries: general; gamma rays: observations; stars: emission-line, Be; stars: individual (LS I+61 303); X-rays: binaries; X-rays: individual (LS I+61 303) ID MICROQUASAR LS-I+61-303; STAR LSI+61-DEGREES-303; MAGIC TELESCOPE; H-ALPHA; RADIO; I+61-DEGREES-303; LS-I-+61-303; PECULIAR; SPECTRUM; VERITAS AB The discovery of very high energy (VHE) gamma-ray emitting X-ray binaries has triggered an intense effort to better understand the particle acceleration, absorption, and emission mechanisms in compact binary systems, which provide variable conditions along eccentric orbits. Despite this, the nature of some of these systems, and of the accelerated particles producing the VHE emission, is unclear. To answer some of these open questions, we conducted a multiwavelength campaign of the VHE gamma-ray emitting X-ray binary LS I +61 303 including the MAGIC telescope, XMM-Newton, and Swift during 60% of an orbit in 2007 September. We detect a simultaneous outburst at X-ray and VHE bands, with the peak at phase 0.62 and a similar shape at both wavelengths. A linear fit to the simultaneous X-ray/VHE pairs obtained during the outburst yields a correlation coefficient of r = 0.97, while a linear fit to all simultaneous pairs provides r = 0.81. Since a variable absorption of the VHE emission towards the observer is not expected for the data reported here, the correlation found indicates a simultaneity in the emission processes. Assuming that they are dominated by a single particle population, either hadronic or leptonic, the X-ray/VHE flux ratio favors leptonic models. This fact, together with the detected photon indices, suggests that in LS I +61 303 the X-rays are the result of synchrotron radiation of the same electrons that produce VHE emission as a result of inverse Compton scattering of stellar photons. C1 [Anderhub, H.; Biland, A.; Braun, I.; Commichau, S.; Dorner, D.; Hildebrand, D.; Kranich, D.; Lorenz, E.; Pauss, F.; Rissi, M.; Stark, L. S.] ETH, CH-8093 Zurich, Switzerland. [Antonelli, L. A.; Carosi, A.; Covino, S.; La Barbera, A.; Maraschi, L.; Salvati, M.; Spiro, S.; Tavecchio, F.] INAF Natl Inst Astrophys, I-00136 Rome, Italy. [Antoranz, P.; Balestra, S.; Barrio, J. A.; Bose, D.; Camara, M.; Contreras, J. L.; De los Reyes, R.; Fonseca, M. V.; Miranda, J. M.; Nieto, D.; Oya, I.] Univ Complutense, E-28040 Madrid, Spain. [Backes, M.; Becker, J. K.; Rhode, W.] Tech Univ Dortmund, D-44221 Dortmund, Germany. [Baixeras, C.; Font, L.; Hadasch, D.; Robert, A.; Zapatero, J.] Univ Autonoma Barcelona, E-08193 Barcelona, Spain. [Bastieri, D.; Bock, R. K.; Doro, M.; Lombardi, S.; Lopez, M.; Mariotti, M.; Pascoli, D.; Peruzzo, L.; Prandini, E.; Saggion, A.; Scalzotto, V.] Univ Padua, I-35131 Padua, Italy. [Bastieri, D.; Bock, R. K.; Doro, M.; Lombardi, S.; Lopez, M.; Mariotti, M.; Pascoli, D.; Peruzzo, L.; Prandini, E.; Saggion, A.; Scalzotto, V.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Becerra Gonzalez, J.; Costado, M. T.; Mendez, C. Delgado; Garcia Lopez, R. J.; Gaug, M.; Herrero, A.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Bednarek, W.; Berger, K.; Sierpowska-Bartosik, A.; Sitarek, J.; Sobczynska, D.] Univ Lodz, PL-90236 Lodz, Poland. [Bernardini, E.; Majumdar, P.; Satalecka, K.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Blanch Bigas, O.; Cortina, J.; Errando, M.; Fernandez, E.; Firpo, R.; Garczarczyk, M.; Klepser, S.; Martinez, M.; Mazin, D.; Moralejo, A.; Puchades, N.; Reichardt, I.; Rico, J.; Sidro, N.; Tescaro, D.; Zanin, R.] IFAE, E-08193 Barcelona, Spain. [Bock, R. K.; Tridon, D. Borla; Britzger, D.; Carmona, E.; Colin, P.; Galante, N.; Goebel, F.; Hose, J.; Hsu, C. C.; Jogler, T.; Lorenz, E.; Mirzoyan, R.; Miyamoto, H.; Ninkovic, J.; Orito, R.; Saito, T. Y.; Schweizer, T.; Shayduk, M.; Sitarek, J.; Teshima, M.; Wagner, R. M.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Bonnoli, G.; Leonardo, E.; Meucci, M.; Paoletti, R.; Pegna, R. G.; Stamerra, A.; Turini, N.] Univ Siena, I-53000 Siena, Italy. [Bonnoli, G.; Leonardo, E.; Meucci, M.; Paoletti, R.; Pegna, R. G.; Stamerra, A.; Turini, N.] INFN Pisa, I-53000 Siena, Italy. [Bordas, P.; Bosch-Ramon, V.; Moldon, J.; Paredes, J. M.; Ribo, M.; Zabalza, V.] Univ Barcelona, ICC IEEC, E-08028 Barcelona, Spain. [Bretz, T.; Costado, M. T.; Elsaesser, D.; Hoehne-Moench, D.; Mannheim, K.; Ruegamer, S.; Spanier, F.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Costado, M. T.; Garcia Lopez, R. J.; Herrero, A.] Univ La Laguna, Depto Astrofis, E-38206 Tenerife, Spain. [Dazzi, F.; De Angelis, A.; De Lotto, B.; De Maria, M.; De Sabata, F.; Longo, F.; Mankuzhiyil, N.; Persic, M.; Scapin, V.] Univ Udine, I-33100 Udine, Italy. [Dazzi, F.; De Angelis, A.; De Lotto, B.; De Maria, M.; De Sabata, F.; Longo, F.; Mankuzhiyil, N.; Persic, M.; Scapin, V.] INFN Trieste, I-33100 Udine, Italy. [de Cea del Pozo, E.; Torres, D. F.] CSIC, Inst Ciencies Espai, IEEC, E-08193 Barcelona, Spain. [Dominguez, A.; Moles, M.; Perez-Torres, M. A.; Prada, F.; Sanchez-Conde, M.; Zandanel, F.] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Prester, D. Dominis; Godinovic, N.; Hrupec, D.; Puljak, I.; Suric, T.] Rudjer Boskovic Inst, HR-10000 Zagreb, Croatia. [Ferenc, D.; Laille, A.] Univ Calif Davis, Davis, CA 95616 USA. [Lindfors, E.; Nilsson, K.; Pasanen, M.; Sillanpaa, A.; Takalo, L.] Univ Turku, Tuorla Observ, FI-21500 Piikkio, Finland. [Maneva, G.; Temnikov, P.; Vankov, H.] Inst Nucl Energy Res, BG-1784 Sofia, Bulgaria. [Mendez, C. Delgado; Persic, M.] INAF Osservatorio Astron, I-34143 Trieste, Italy. [Mendez, C. Delgado; Persic, M.] Ist Nazl Fis Nucl, I-34143 Trieste, Italy. [Rico, J.; Torres, D. F.] ICREA, E-08010 Barcelona, Spain. [Shore, S. N.] Univ Pisa, I-56126 Pisa, Italy. [Shore, S. N.] INFN Pisa, I-56126 Pisa, Italy. [Falcone, A.; Vetere, L.] Penn State Univ, University Pk, PA 16802 USA. [Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Trushkin, S.] RAS, Special Astrophys Observ, Moscow 369167, Russia. [Dhawan, V.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Reig, P.] Univ Crete, G-71110 Iraklion, Greece. RP Anderhub, H (reprint author), ETH, CH-8093 Zurich, Switzerland. EM neus@ifae.es; jogler@mppmu.mpg.de; mribo@am.ub.es RI Ribo, Marc/B-3579-2015; Antoranz, Pedro/H-5095-2015; Delgado, Carlos/K-7587-2014; Nieto, Daniel/J-7250-2015; Miranda, Jose Miguel/F-2913-2013; Contreras Gonzalez, Jose Luis/K-7255-2014; Maneva, Galina/L-7120-2016; Backes, Michael/N-5126-2016; Torres, Diego/O-9422-2016; Reichardt, Ignasi/P-7478-2016; Temnikov, Petar/L-6999-2016; Barrio, Juan/L-3227-2014; Braun, Isabel/C-9373-2012; Fernandez, Ester/K-9734-2014; Gehrels, Neil/D-2971-2012; GAug, Markus/L-2340-2014; Lopez Moya, Marcos/L-2304-2014; Font, Lluis/L-4197-2014; Fernandez, Enrique/L-5387-2014; Moralejo Olaizola, Abelardo/M-2916-2014; Mannheim, Karl/F-6705-2012; Doro, Michele/F-9458-2012; Tjus, Julia/G-8145-2012; Reig, Pablo/A-1198-2014; Rico, Javier/K-8004-2014; Cortina, Juan/C-2783-2017; Fonseca Gonzalez, Maria Victoria/I-2004-2015; OI Antoranz, Pedro/0000-0002-3015-3601; Delgado, Carlos/0000-0002-7014-4101; Nieto, Daniel/0000-0003-3343-0755; Miranda, Jose Miguel/0000-0002-1472-9690; Contreras Gonzalez, Jose Luis/0000-0001-7282-2394; Backes, Michael/0000-0002-9326-6400; Torres, Diego/0000-0002-1522-9065; Reichardt, Ignasi/0000-0003-3694-3820; Temnikov, Petar/0000-0002-9559-3384; Barrio, Juan/0000-0002-0965-0259; Braun, Isabel/0000-0002-9389-0502; GAug, Markus/0000-0001-8442-7877; Lopez Moya, Marcos/0000-0002-8791-7908; Font, Lluis/0000-0003-2109-5961; Fernandez, Enrique/0000-0002-6405-9488; Moralejo Olaizola, Abelardo/0000-0002-1344-9080; Doro, Michele/0000-0001-9104-3214; Reig, Pablo/0000-0002-6446-3050; Rico, Javier/0000-0003-4137-1134; Cortina, Juan/0000-0003-4576-0452; Hsu, Ching-Cheng/0000-0001-9406-2023; Costado, M. Teresa/0000-0002-2672-4061; LA BARBERA, ANTONINO/0000-0002-5880-8913; leonardo, elvira/0000-0003-0271-7673; de los Reyes Lopez, Raquel/0000-0003-0485-9552; Fonseca Gonzalez, Maria Victoria/0000-0003-2235-0725; De Lotto, Barbara/0000-0003-3624-4480; De Angelis, Alessandro/0000-0002-3288-2517; Persic, Massimo/0000-0003-1853-4900; Spanier, Felix/0000-0001-6802-4744; Dominguez, Alberto/0000-0002-3433-4610; Bastieri, Denis/0000-0002-6954-8862; Ribo, Marc/0000-0002-9931-4557; Covino, Stefano/0000-0001-9078-5507; Bordas, Pol/0000-0002-0266-8536; Paredes, Josep M./0000-0002-1566-9044; Oya, Igor/0000-0002-3881-9324; Turini, Nicola/0000-0002-9395-5230; Bonnoli, Giacomo/0000-0003-2464-9077; Stamerra, Antonio/0000-0002-9430-5264; Prandini, Elisa/0000-0003-4502-9053; Becerra Gonzalez, Josefa/0000-0002-6729-9022 FU German BMBF and MPG; Italian INFN and Spanish MICINN; ETH Research [TH 34/043]; Polish MNiSzW [NN203 390834]; YIP of the Helmholtz Gemeinschaft FX We thank the Instituto de Astrofisica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The support of the German BMBF and MPG, the Italian INFN and Spanish MICINN is gratefully acknowledged. This work was also supported by ETH Research Grant TH 34/043, by the Polish MNiSzW Grant NN203 390834, and by the YIP of the Helmholtz Gemeinschaft. NR 39 TC 34 Z9 34 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 20 PY 2009 VL 706 IS 1 BP L27 EP L32 DI 10.1088/0004-637X/706/1/L27 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 516HP UT WOS:000271533200006 ER PT J AU Urata, Y Huang, KY Im, M Lee, I Deng, JS Ip, W Krimm, H Liping, X Ohno, M Qiu, YL Sugita, S Tashiro, M Wei, JY Yamaoka, K Zheng, WK AF Urata, Yuji Huang, Kuiyun Im, Myungshin Lee, Induk Deng, Jinsong Ip, WingHuen Krimm, Hans Liping, Xin Ohno, Masanori Qiu, Yulei Sugita, Satoshi Tashiro, Makoto Wei, Jianyan Yamaoka, Kazutaka Zheng, Weikang TI SWIFT GRB GRB071010B: OUTLIER OF THE E-peak(src)-E-gamma AND E-iso-E-peak(src)-t(jet)(src) CORRELATIONS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma rays: bursts; gamma rays: observations ID GAMMA-RAY BURSTS; FOLLOW-UP OBSERVATIONS; PROMPT EMISSION; SHALLOW DECAY; SUZAKU-WAM; KONUS-WIND; AFTERGLOWS; LUMINOSITY; SPECTRA; SYSTEM AB We present multi-band results for GRB071010B based on Swift, Suzaku, and ground-based optical observations. This burst is an ideal target to evaluate the robustness of the E-peak(src) - E-iso and E-peak(src) - E-gamma relations, whose studies have been in stagnation due to the lack of the combined estimation of E-peak(src) and long-term optical monitoring. The joint prompt spectral fitting using Swift/Burst Alert Telescope and Suzaku/Wide-band All-sky Monitor data yielded the spectral peak energy as E-peak(src) of 86.5(-6.3)(+6.4) keV and E-iso of 2.25(-0.16)(+0.19) x 10(52) erg with z = 0.947. The optical afterglow light curve is well fitted by a simple power law with temporal index alpha = -0.60 +/- 0.02. The lower limit of temporal break in the optical light curve is 9.8 days. Our multi-wavelength analysis reveals that GRB071010B follows E-peak(src) - E-iso but violates the E-peak(src) - E-gamma and E-iso - E-peak(src) - t(jet)(src) at more than the 3 sigma level. C1 [Urata, Yuji; Lee, Induk; Ip, WingHuen] Natl Cent Univ, Inst Astron, Chungli 32054, Taiwan. [Urata, Yuji; Tashiro, Makoto] Saitama Univ, Dept Phys, Saitama 3388570, Japan. [Urata, Yuji; Huang, Kuiyun] Acad Sinica, Inst Astron & Astrophys, Taipei 106, Taiwan. [Im, Myungshin; Lee, Induk] Seoul Natl Univ, Ctr Explorat Origin Univ, Dept Phys & Astron, FPRD, Seoul, South Korea. [Deng, Jinsong; Liping, Xin; Qiu, Yulei; Wei, Jianyan; Zheng, Weikang] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Krimm, Hans] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Krimm, Hans] Univ Space Res Assoc, Columbia, MD 21044 USA. [Ohno, Masanori] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Sugita, Satoshi] RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Sugita, Satoshi; Yamaoka, Kazutaka] Aoyama Gakuin Univ, Dept Math & Phys, Sayamihara 2298558, Japan. RP Urata, Y (reprint author), Natl Cent Univ, Inst Astron, Chungli 32054, Taiwan. EM urata@astro.ncu.edu.tw RI Tashiro, Makoto/J-4562-2012; Im, Myungshin/B-3436-2013; XRAY, SUZAKU/A-1808-2009 OI Im, Myungshin/0000-0002-8537-6714; FU MOST/KOSEF [R16-2008-015-01000-0]; NSC [98-2112-M-008003-MY3, 96WFA0700264]; Ministry of Education under the Aim for Top University Program NCU; National Natural Science Foundation of China [10673014]; National Basic Research Program of China [2009CB824800] FX We thank Bing Zhang for useful comments and discussions. M.I. and I.L. acknowledge the support by the Creative Research Initiatives grant R16-2008-015-01000-0 of MOST/KOSEF. This work is partly supported by grants NSC 98-2112-M-008003-MY3 (Y.U.), NSC 96WFA0700264 (W.H.I.), the Ministry of Education under the Aim for Top University Program NCU (W.H.I.), the National Natural Science Foundation of China (No. 10673014), and the National Basic Research Program of China (No. 2009CB824800). Access to the CFHT was made possible by the Ministry of Education and the National Science Council of Taiwan as part of the Cosmology and Particle Astrophysics (CosPA) initiative. NR 44 TC 8 Z9 8 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 20 PY 2009 VL 706 IS 1 BP L183 EP L187 DI 10.1088/0004-637X/706/1/L183 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 516HP UT WOS:000271533200038 ER PT J AU Singh, KH Okuma, S AF Singh, Kumar H. Okuma, Shigeo TI Special issue - Magnetic anomalies (Tectonophysics) Preface SO TECTONOPHYSICS LA English DT Editorial Material C1 [Singh, Kumar H.] NASA, Goddard Space Flight Ctr, GEST UMBC Planetary Geodynam Lab, Greenbelt, MD 20771 USA. [Okuma, Shigeo] AIST, Geol Survey Japan, Tsukuba, Ibaraki 3058567, Japan. RP Singh, KH (reprint author), NASA, Goddard Space Flight Ctr, GEST UMBC Planetary Geodynam Lab, Greenbelt, MD 20771 USA. EM fnu.kumarhemant-1@nasa.gov; s.okuma@aist.go.jp NR 0 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0040-1951 J9 TECTONOPHYSICS JI Tectonophysics PD NOV 20 PY 2009 VL 478 IS 1-2 BP 1 EP 2 DI 10.1016/j.tecto.2009.10.019 PG 2 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 530CO UT WOS:000272566700001 ER PT J AU Hemant, K Mitchell, A AF Hemant, Kumar Mitchell, Alice TI Magnetic field modelling and interpretation of the Himalayan-Tibetan Plateau and adjoining north Indian Plains SO TECTONOPHYSICS LA English DT Article; Proceedings Paper CT General Assembly of the International-Association-of-Geodesy/24th General Assembly of the International-Union-of-Geodesy-and-Geophysics CY JUL 02-13, 2007 CL Perugia, ITALY SP Int Assoc Geodesy, Int Union Geodesy & Geophys DE Satellite magnetism; Himalaya-Tibet; Heat flow; GIS ID SOUTHERN TIBET; GEOLOGIC EVOLUTION; CRUSTAL STRUCTURE; STRUCTURE BENEATH; GANGETIC PLAINS; COLLISION ZONE; CONTINENT; ANOMALIES; ASIA AB A prominent magnetic low is seen over the Himalayan-Tibetan plateau and the northern Indian shield region in satellite anomaly data. Here we model the sources for the observed magnetic low in the region. The induced magnetic field is modelled based oil a crustal magnetisation model computed in a Geographical Information System, with horizontal layers containing Susceptibility derived from the geology and a tectonic map of the region and global seismic crustal thickness model. The modelling results indicate that the upper crust of the Himalayan-Tibetan plateau is magnetised while much of the middle Crust and the lower Crust appears non-magnetic. Thermal modelling corroborates the predictions, placing the Curie isotherm in the Southern Tibetan Plateau no deeper than 10 kill. The results suggest that the Sources of the magnetic low observed in the region are likely to be a thin magnetised crust, because of the elevated Curie isotherm in this region. The Indian shield region is believed to extend Lip to the foothills of the Himalayas in the north, but most of the shield is obscured by a thick sediment cover of the Gangetic Plains to the north. The magnetic held modelling Suggests a Weakly Magnetic crust in the region indicating either the Indian shield may not extend up to the base of the Himalayas or the lower Crust ill the region has been modified. (C) 2009 Elsevier B.V. All rights reserved. C1 [Hemant, Kumar] NASA, Goddard Space Flight Ctr, ORAU Planetary Geodynam Branch, Greenbelt, MD 20771 USA. [Mitchell, Alice] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. RP Hemant, K (reprint author), NASA, Goddard Space Flight Ctr, ORAU Planetary Geodynam Branch, Greenbelt, MD 20771 USA. EM fnu.kumarhemant-1@nasa.gov NR 46 TC 5 Z9 5 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0040-1951 J9 TECTONOPHYSICS JI Tectonophysics PD NOV 20 PY 2009 VL 478 IS 1-2 BP 87 EP 99 DI 10.1016/j.tecto.2009.06.009 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 530CO UT WOS:000272566700008 ER PT J AU Quesnel, Y Weckmann, U Ritter, O Stankiewicz, J Lesur, V Mandea, M Langlais, B Sotin, C Galdeano, A AF Quesnel, Yoann Weckmann, Ute Ritter, Oliver Stankiewicz, Jacek Lesur, Vincent Mandea, Mioara Langlais, Benoit Sotin, Christophe Galdeano, Armand TI Simple models for the Beattie Magnetic Anomaly in South Africa SO TECTONOPHYSICS LA English DT Article; Proceedings Paper CT General Assembly of the International-Association-of-Geodesy/24th General Assembly of the International-Union-of-Geodesy-and-Geophysics CY JUL 02-13, 2007 CL Perugia, ITALY SP Int Assoc Geodesy, Int Union Geodesy & Geophys DE Beattie Magnetic Anomaly; Crust; Magnetization; Forward modeling; Inversion; Magnetotelluric and seismic experiments ID REMANENT MAGNETIZATION; LAMELLAR MAGNETISM; EAST ANTARCTICA; DAMARA BELT; ROCKS; FIELD; CAPE; CALIFORNIA; INVERSION; SATELLITE AB The origin of the approximately 1000 km-long Beattie Magnetic Anomaly (BMA) in South Africa remains unclear and contentious. Key issues include the width, depth and magnetization of its source. In this study, we use uniformly magnetized spheres, prisms and cylinders to provide the simplest possible models which predict the 1 km-altitude aeromagnetic measurements along a profile across the BMA. The source parameters are adjusted by forward modeling. In case of a sphere, an inversion technique is applied to refine the parameters. Our results Suggest that two similarly magnetized and adjacent sources. With a vertical offset, can explain the observed magnetic anomaly. The best fitting model corresponds to two highly-magnetized (>5 A m(-1)) sheet-like prisms, extending from 9 to 12 kill depth, and from 13 to 18 kill depth, respectively, and with a total width reaching 80 km. Other less-preferred models show thicker and deeper magnetized volumes. Associated magnetizations seem to be mostly induced, although a weak remanent component is required to improve the fit. We also compare our results With the interpretation of independent magnetotelluric and seismic experiments along the same profile. It suggests that the geological sources for the BMA are mostly located in the middle crust and may be displaced by a shear zone or a fault. Contrary to previous models suggesting a serpentinized sliver of paleo-oceanic crust within the Natal-Namaqua Mobile Belt, we propose that granulite-facies mid-crustal rocks within this belt may cause the BMA. (C) 2008 Elsevier B.V. All rights reserved. C1 [Quesnel, Yoann; Weckmann, Ute; Ritter, Oliver; Stankiewicz, Jacek; Lesur, Vincent; Mandea, Mioara] GFZ German Res Ctr Geosci, Helmholtz Ctr Potsdam, D-14473 Potsdam, Germany. [Weckmann, Ute] Univ Potsdam, Inst Geosci, D-14476 Potsdam, Germany. [Langlais, Benoit] Univ Nantes, Lab Planetol & Geodynam Nantes, F-44322 Nantes, France. [Langlais, Benoit] CNRS, UMR 6112, F-44322 Nantes, France. [Sotin, Christophe] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Galdeano, Armand] Inst Phys Globe, CNRS, UMR 7154, F-75252 Paris 05, France. RP Quesnel, Y (reprint author), CEREGE, BP 80, F-13545 Aix En Provence 04, France. EM quesnel@cerege.fr; uweck@gfz-potsdam.de; oritter@gfz-potsdam.de; jacek@gfz-potsdam.de; lesur@gfz-potsdam.de; mioara@gfz-potsdam.de; benoit.langlais@univ-nantes.fr; christophe.sotin@jpl.nasa.gov; galdeano@ipgp.jussieu.fr RI MANDEA, Mioara/E-4892-2012; Langlais, Benoit/K-5366-2012; Lesur, Vincent/H-1031-2012 OI Langlais, Benoit/0000-0001-5207-304X; Lesur, Vincent/0000-0003-2568-320X NR 52 TC 5 Z9 6 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0040-1951 EI 1879-3266 J9 TECTONOPHYSICS JI Tectonophysics PD NOV 20 PY 2009 VL 478 IS 1-2 SI SI BP 111 EP 118 DI 10.1016/j.tecto.2008.11.027 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 530CO UT WOS:000272566700010 ER PT J AU Bishop, JL Parente, M Weitz, CM Dobrea, EZN Roach, LH Murchie, SL McGuire, PC McKeown, NK Rossi, CM Brown, AJ Calvin, WM Milliken, R Mustard, JF AF Bishop, Janice L. Parente, Mario Weitz, Catherine M. Dobrea, Eldar Z. Noe Roach, Leah H. Murchie, Scott L. McGuire, Patrick C. McKeown, Nancy K. Rossi, Christopher M. Brown, Adrian J. Calvin, Wendy M. Milliken, Ralph Mustard, John F. TI Mineralogy of Juventae Chasma: Sulfates in the light-toned mounds, mafic minerals in the bedrock, and hydrated silica and hydroxylated ferric sulfate on the plateau SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID VALLES-MARINERIS; LAYERED DEPOSITS; REFLECTANCE SPECTROSCOPY; INTERPLANETARY CRUISE; EARLY MARS; ROCKS; GEOCHEMISTRY; TOPOGRAPHY; VOLCANISM; CHEMISTRY AB Juventae Chasma contains four light-toned sulfate-bearing mounds (denoted here as A-D from west to east) inside the trough, mafic outcrops at the base of the mounds and in the wall rock, and light-toned layered deposits of opal and ferric sulfates on the plateau. Hyperspectral visible/near-infrared Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectra were used to identify monohydrated and polyhydrated sulfate (PHS) outcrops of layered material on the bright mounds. Most of the monohydrated sulfate signatures closely resemble those of szomolnokite (FeSO4 center dot H2O), characterized by a water band near 2.08 mu m, while some areas exhibit spectral features more similar to those of kieserite (MgSO4 center dot H2O), with a band centered closer to 2.13 mu m. The largest PHS outcrops occur on the top of mound B, and their spectral features are most consistent with ferricopiapite, melanterite, and starkeyite, but a specific mineral cannot be uniquely identified at this time. Coordinated analyses of CRISM maps, Mars Orbiter Laser Altimeter elevations, and High Resolution Imaging Science Experiment images suggest that mounds A and B may have formed together and then eroded into separate mounds, while mounds C and D likely formed separately. Mafic minerals (low-Ca pyroxene, high-Ca pyroxene, and olivine) are observed in large similar to 2-10 km wide outcrops in the wall rock and in smaller outcrops similar to 50-500 m across at the floor of the canyon. Most of the wall rock is covered by at least a thin layer of dust and does not exhibit strong features characteristic of these minerals. The plateau region northwest of Juventae Chasma is characterized by an abundance of light-toned layered deposits. One region contains two spectrally unique phases exhibiting a highly stratified, terraced pattern. CRISM spectra of one unit eroded into swirling patterns with arc-like ridges exhibit a narrow 2.23-mu m band assigned to hydroxylated ferric sulfate. A thin layer of a fractured material bearing an opaline silica phase is observed at the contact between the older plateau unit and the younger hydroxylated ferric sulfate-bearing light-toned layered deposits. Hydrothermal processes may have produced an acidic environment that fostered formation of the hydrated silica and hydroxylated ferric sulfate units. C1 [Bishop, Janice L.; Brown, Adrian J.] SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. [Calvin, Wendy M.] Univ Nevada, Dept Geol Sci & Engn, Reno, NV 89557 USA. [McGuire, Patrick C.] Free Univ Berlin, Dept Planetary Sci & Remote Sensing, D-12249 Berlin, Germany. [McKeown, Nancy K.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Dobrea, Eldar Z. Noe; Milliken, Ralph] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Murchie, Scott L.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Roach, Leah H.; Mustard, John F.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Parente, Mario] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Rossi, Christopher M.] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA. [Weitz, Catherine M.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Bishop, Janice L.; Brown, Adrian J.] NASA, Ames Res Ctr, Mountain View, CA USA. [McGuire, Patrick C.] German Aerosp Ctr, Inst Planetary Res, Berlin, Germany. [McGuire, Patrick C.] Washington Univ, McDonnell Ctr Space Sci, St Louis, MO USA. RP Bishop, JL (reprint author), SETI Inst, Carl Sagan Ctr, Mountain View, CA 94043 USA. EM jbishop@seti.org RI McGuire, Patrick/D-2962-2013; Murchie, Scott/E-8030-2015 OI McGuire, Patrick/0000-0001-6592-4966; Murchie, Scott/0000-0002-1616-8751 FU MRO; MDAP [NNX06AD88] FX The authors thank the MRO CRISM and HiRISE teams and the Mars Express HRSC Team for acquisition of the images used in this study, T. Hiroi for spectral measurements at RELAB at Brown University, L. Wendt for helpful discussions of the data, and M. Chapman and L. Le Deit for editorial suggestions that greatly improved the paper. Funding from MRO and MDAP (NNX06AD88) supported this work. NR 94 TC 93 Z9 93 U1 1 U2 19 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD NOV 19 PY 2009 VL 114 AR E00D09 DI 10.1029/2009JE003352 PG 23 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 522LO UT WOS:000271999600001 ER PT J AU Deming, D Seager, S AF Deming, Drake Seager, Sara TI Light and shadow from distant worlds SO NATURE LA English DT Review ID EXTRASOLAR GIANT PLANETS; INFRARED-EMISSION SPECTRUM; EXOPLANET HD 189733B; HOT JUPITERS; THERMAL EMISSION; TEMPERATURE INVERSION; SUPER-EARTHS; ATMOSPHERIC CIRCULATION; THEORETICAL SPECTRA; TRANSITS AB Exoplanets are distant worlds that orbit stars other than our Sun. More than 370 such planets are known, and a growing fraction of them are discovered because they transit their star as seen from Earth. The special transit geometry enables us to measure masses and radii for dozens of planets, and we have identified gases in the atmospheres of several giant ones. Within the next decade, we expect to find and study a 'habitable' rocky planet transiting a cool red dwarf star close to our Sun. Eventually, we will be able to image the light from an Earth-like world orbiting a nearby solar-type star. C1 [Deming, Drake] NASA, Goddard Space Flight Ctr, Planetary Syst Lab, Greenbelt, MD 20771 USA. [Seager, Sara] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02138 USA. [Seager, Sara] MIT, Dept Phys, Cambridge, MA 02138 USA. RP Deming, D (reprint author), NASA, Goddard Space Flight Ctr, Planetary Syst Lab, Code 693, Greenbelt, MD 20771 USA. EM Leo.D.Deming@nasa.gov FU NASA FX This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for this work was provided directly by NASA, and by NASA through an award issued by JPL/Caltech. NR 75 TC 14 Z9 15 U1 3 U2 7 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD NOV 19 PY 2009 VL 462 IS 7271 BP 301 EP 306 DI 10.1038/nature08556 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 521DF UT WOS:000271899300035 PM 19924208 ER PT J AU Abdo, AA Ackermann, M Ajello, M Asano, K Atwood, WB Axelsson, M Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Bechtol, K Bellazzini, R Berenji, B Bhat, PN Bissaldi, E Bloom, ED Bonamente, E Bonnell, J Borgland, AW Bouvier, A Bregeon, J Brez, A Briggs, MS Brigida, M Bruel, P Burgess, JM Burnett, TH Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cecchi, C Celik, O Chaplin, V Charles, E Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Cominsky, LR Connaughton, V Conrad, J Cutini, S Dermer, CD de Angelis, A de Palma, F Digel, SW Dingus, BL Silva, EDE Drell, PS Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Finke, J Fishman, G Focke, WB Foschini, L Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Gibby, L Giebels, B Giglietto, N Giordano, F Glanzman, T Godfrey, G Granot, J Greiner, J Grenier, IA Grondin, MH Grove, JE Grupe, D Guillemot, L Guiriec, S Hanabata, Y Harding, AK Hayashida, M Hays, E Hoversten, EA Hughes, RE Johannesson, G Johnson, AS Johnson, RP Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Kippen, RM Knodlseder, J Kocevski, D Kouveliotou, C Kuehn, F Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Mazziotta, MN McBreen, S McEnery, JE McGlynn, S Meszaros, P Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Nakamori, T Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Omodei, N Orlando, E Ormes, JF Ozaki, M Paciesas, WS Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Petrosian, V Piron, F Porter, TA Preece, R Raino, S Ramirez-Ruiz, E Rando, R Razzano, M Razzaque, S Reimer, A Reimer, O Reposeur, T Ritz, S Rochester, LS Rodriguez, AY Roth, M Ryde, F Sadrozinski, HFW Sanchez, D Sander, A Parkinson, PMS Scargle, JD Schalk, TL Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Stamatikos, M Stecker, FW Strickman, MS Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Toma, K Torres, DF Tosti, G Troja, E Uchiyama, Y Uehara, T Usher, TL van der Horst, AJ Vasileiou, V Vilchez, N Vitale, V von Kienlin, A Waite, AP Wang, P Wilson-Hodge, C Winer, BL Wood, KS Wu, XF Yamazaki, R Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Asano, K. Atwood, W. B. Axelsson, M. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Bhat, P. N. Bissaldi, E. Bloom, E. D. Bonamente, E. Bonnell, J. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Briggs, M. S. Brigida, M. Bruel, P. Burgess, J. M. Burnett, T. H. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Celik, Oe Chaplin, V. Charles, E. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cominsky, L. R. Connaughton, V. Conrad, J. Cutini, S. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. Dingus, B. L. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Finke, J. Fishman, G. Focke, W. B. Foschini, L. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Gibby, L. Giebels, B. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Granot, J. Greiner, J. Grenier, I. A. Grondin, M. -H. Grove, J. E. Grupe, D. Guillemot, L. Guiriec, S. Hanabata, Y. Harding, A. K. Hayashida, M. Hays, E. Hoversten, E. A. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Kippen, R. M. Knoedlseder, J. Kocevski, D. Kouveliotou, C. Kuehn, F. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Mazziotta, M. N. McBreen, S. McEnery, J. E. McGlynn, S. Meszaros, P. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paciesas, W. S. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Petrosian, V. Piron, F. Porter, T. A. Preece, R. Raino, S. Ramirez-Ruiz, E. Rando, R. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Reposeur, T. Ritz, S. Rochester, L. S. Rodriguez, A. Y. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Schalk, T. L. Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Stamatikos, M. Stecker, F. W. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Toma, K. Torres, D. F. Tosti, G. Troja, E. Uchiyama, Y. Uehara, T. Usher, T. L. van der Horst, A. J. Vasileiou, V. Vilchez, N. Vitale, V. von Kienlin, A. Waite, A. P. Wang, P. Wilson-Hodge, C. Winer, B. L. Wood, K. S. Wu, X. F. Yamazaki, R. Ylinen, T. Ziegler, M. TI A limit on the variation of the speed of light arising from quantum gravity effects SO NATURE LA English DT Article ID GAMMA-RAY BURSTS; HIGH-ENERGY; VIOLATION; EMISSION; PHOTONS; LORENTZ; TESTS; FOAM AB A cornerstone of Einstein's special relativity is Lorentz invariance-the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, l(Planck) approximate to 1.62 x 10(-33) cm or E-Planck = M(Planck)c(2) approximate to 1.22 x 10(19) GeV), at which quantum effects are expected to strongly affect the nature of space-time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale. A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy(1-7). Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in gamma-ray burst (GRB) light-curves(2). Here we report the detection of emission up to similar to 31GeV from the distant and short GRB090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2E(Planck) on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of l(Planck)/1.2 on the length scale of the effect). Our results disfavour quantum-gravity theories(3,6,7) in which the quantum nature of space-time on a very small scale linearly alters the speed of light. C1 [Granot, J.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Abdo, A. A.; Cheung, C. C.; Dermer, C. D.; Finke, J.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Razzaque, S.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.; Finke, J.; Razzaque, S.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Petrosian, V.; Reimer, A.; Reimer, O.; Rochester, L. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Petrosian, V.; Reimer, A.; Reimer, O.; Rochester, L. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Asano, K.; Kataoka, J.; Kawai, N.; Nakamori, T.; Troja, E.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Asano, K.] Tokyo Inst Technol, Interact Res Ctr Sci, Meguro, Tokyo 1528551, Japan. [Atwood, W. B.; Johnson, R. P.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Johnson, R. P.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Ramirez-Ruiz, E.] Univ Calif Santa Cruz, Univ Calif Observ, Lick Observ, Santa Cruz, CA 95064 USA. [Axelsson, M.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Axelsson, M.; Conrad, J.; McGlynn, S.; Meurer, C.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; McGlynn, S.; Meurer, C.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Tibaldo, L.] Univ Paris Diderot, CEA Saclay, Lab AIM,CEA IRFU,CNRS, Serv Astrophys, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.; Moretti, E.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.; Moretti, E.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bhat, P. N.; Briggs, M. S.; Burgess, J. M.; Chaplin, V.; Connaughton, V.; Guiriec, S.; Paciesas, W. S.; Preece, R.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Bissaldi, E.; Greiner, J.; McBreen, S.; Orlando, E.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Bonnell, J.; Celik, Oe; Cheung, C. C.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Stamatikos, M.; Stecker, F. W.; Thompson, D. J.; Troja, E.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bonnell, J.; Gehrels, N.; Moiseev, A. A.; Spinelli, P.] Univ Maryland, College Pk, MD 20742 USA. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.] Univ & Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Giebels, B.; Sanchez, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Celik, Oe; Vasileiou, V.] Univ Maryland, Baltimore, MD 21250 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, F-34095 Montpellier 5, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Cutini, S.; Gasparrini, D.] ASI, Sci Data Ctr, I-00044 Frascati, Roma, Italy. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Dingus, B. L.; Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Dumora, D.; Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, CNRS, UMR 5797, IN2P3, F-33175 Gradignan, France. [Fishman, G.; Kouveliotou, C.; van der Horst, A. J.; Wilson-Hodge, C.] NASA, George C Marshall Space Flight Ctr, Space Sci Off, VP62, Huntsville, AL 35812 USA. [Foschini, L.] INAF Osservatorio Astron Brera, I-23807 Merate, Italy. [Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.; Uehara, T.; Yamazaki, R.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gibby, L.] Jacobs Technol, Huntsville, AL 35806 USA. [Grupe, D.; Hoversten, E. A.; Meszaros, P.; Toma, K.; Wu, X. F.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Guillemot, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Hughes, R. E.; Kuehn, F.; Sander, A.; Smith, P. D.; Stamatikos, M.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan. [Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [McBreen, S.] Natl Univ Ireland Univ Coll Dublin, Dublin 4, Ireland. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.; Ozaki, M.; Takahashi, T.; Uchiyama, Y.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Rodriguez, A. Y.; Torres, D. F.] CSIC, IEEC, Inst Ciencies Espai, Barcelona 08193, Spain. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.] ICREA, Barcelona 08193, Spain. [Wu, X. F.] Chinese Acad Sci, Joint Ctr Particle Nucl Phys & Cosmol, Nanjing 210008, Peoples R China. [Wu, X. F.] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Granot, J (reprint author), Univ Hertfordshire, Ctr Astrophys Res, Coll Lane, Hatfield AL10 9AB, Herts, England. EM j.granot@herts.ac.uk; sylvain.guiriec@nasa.gov; ohno@astro.isas.jaxa.jp; pelassa@lpta.in2p3.fr RI Torres, Diego/O-9422-2016; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Bissaldi, Elisabetta/K-7911-2016; Wu, Xuefeng/G-5316-2015; Thompson, David/D-2939-2012; Stecker, Floyd/D-3169-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Foschini, Luigi/H-3833-2012; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013 OI Moretti, Elena/0000-0001-5477-9097; Cutini, Sara/0000-0002-1271-2924; Gasparrini, Dario/0000-0002-5064-9495; Baldini, Luca/0000-0002-9785-7726; Torres, Diego/0000-0002-1522-9065; Sgro', Carmelo/0000-0001-5676-6214; Giordano, Francesco/0000-0002-8651-2394; Dingus, Brenda/0000-0001-8451-7450; SPINELLI, Paolo/0000-0001-6688-8864; De Angelis, Alessandro/0000-0002-3288-2517; Caraveo, Patrizia/0000-0003-2478-8018; Preece, Robert/0000-0003-1626-7335; Burgess, James/0000-0003-3345-9515; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Bissaldi, Elisabetta/0000-0001-9935-8106; Wu, Xuefeng/0000-0002-6299-1263; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; Foschini, Luigi/0000-0001-8678-0324; giglietto, nicola/0000-0002-9021-2888; FU Royal Society Wolfson Research Merit Award; NASA United States; DRL Germany; Royal Swedish Academy of Sciences; K. A. Wallenberg Foundation; Canon Foundation in Europe FX The Fermi LAT Collaboration acknowledges support from a number of agencies and institutes for both the development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the National Space Board in Sweden. Additional support from INAF in Italy for science analysis during the operations phase is also acknowledged. J. Granot gratefully acknowledges a Royal Society Wolfson Research Merit Award. The Fermi GBM Collaboration acknowledges the support of NASA in the United States and DRL in Germany. J. Conrad is a Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K. A. Wallenberg Foundation. E. T. is a NASA Postdoctoral Program Fellow and a Canon Foundation in Europe Fellow. A. J. v. d. H. is a NASA Postdoctoral Program Fellow. We thank J. Ellis for comments. NR 25 TC 267 Z9 272 U1 5 U2 41 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD NOV 19 PY 2009 VL 462 IS 7271 BP 331 EP 334 DI 10.1038/nature08574 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 521DF UT WOS:000271899300039 PM 19865083 ER PT J AU Khatiwala, S Primeau, F Hall, T AF Khatiwala, S. Primeau, F. Hall, T. TI Reconstruction of the history of anthropogenic CO2 concentrations in the ocean SO NATURE LA English DT Article ID DEEP-WATER; CARBON; SINKS; TRANSPORT; RATES AB The release of fossil fuel CO2 to the atmosphere by human activity has been implicated as the predominant cause of recent global climate change(1). The ocean plays a crucial role in mitigating the effects of this perturbation to the climate system, sequestering 20 to 35 per cent of anthropogenic CO2 emissions(2-4). Although much progress has been made in recent years in understanding and quantifying this sink, considerable uncertainties remain as to the distribution of anthropogenic CO2 in the ocean, its rate of uptake over the industrial era, and the relative roles of the ocean and terrestrial biosphere in anthropogenic CO2 sequestration. Here we address these questions by presenting an observationally based reconstruction of the spatially resolved, time-dependent history of anthropogenic carbon in the ocean over the industrial era. Our approach is based on the recognition that the transport of tracers in the ocean can be described by a Green's function, which we estimate from tracer data using a maximum entropy deconvolution technique. Our results indicate that ocean uptake of anthropogenic CO2 has increased sharply since the 1950s, with a small decline in the rate of increase in the last few decades. We estimate the inventory and uptake rate of anthropogenic CO2 in 2008 at 140 +/- 25 Pg C and 2.3 +/- 0.6 Pg C yr(-1), respectively. We find that the Southern Ocean is the primary conduit by which this CO2 enters the ocean (contributing over 40 per cent of the anthropogenic CO2 inventory in the ocean in 2008). Our results also suggest that the terrestrial biosphere was a source of CO2 until the 1940s, subsequently turning into a sink. Taken over the entire industrial period, and accounting for uncertainties, we estimate that the terrestrial biosphere has been anywhere from neutral to a net source of CO2, contributing up to half as muchCO(2) as has been taken up by the ocean over the same period. C1 [Khatiwala, S.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Primeau, F.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Hall, T.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. RP Khatiwala, S (reprint author), Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. EM spk@ldeo.columbia.edu RI Primeau, Francois /A-7310-2011 OI Primeau, Francois /0000-0001-7452-9415 FU US NSF [OCE 06-23366, OCE 07-26871] FX This work was supported by US NSF grants OCE 06-23366 (to S. K. and T. H.) and OCE 07-26871 (to F. P.). NR 41 TC 190 Z9 199 U1 5 U2 95 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD NOV 19 PY 2009 VL 462 IS 7271 BP 346 EP U110 DI 10.1038/nature08526 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 521DF UT WOS:000271899300043 PM 19924213 ER PT J AU Lee, C Martin, RV van Donkelaar, A O'Byrne, G Krotkov, N Richter, A Huey, LG Holloway, JS AF Lee, Chulkyu Martin, Randall V. van Donkelaar, Aaron O'Byrne, Gray Krotkov, Nickolay Richter, Andreas Huey, L. Gregory Holloway, John S. TI Retrieval of vertical columns of sulfur dioxide from SCIAMACHY and OMI: Air mass factor algorithm development, validation, and error analysis SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID OZONE MAPPING SPECTROMETER; ROTATIONAL RAMAN-SCATTERING; ABSORPTION CROSS-SECTION; LONG-RANGE TRANSPORT; RADIATIVE-TRANSFER; UNITED-STATES; TROPOSPHERIC OZONE; VOLCANIC-ERUPTIONS; EARTHS ATMOSPHERE; SAHARAN DUST AB We develop an improved retrieval of sulfur dioxide (SO2) vertical columns from two satellite instruments (SCIAMACHY and OMI) that measure ultraviolet solar backscatter. For each SCIAMACHY and OMI observation, a local air mass factor (AMF) algorithm converts line-of-sight "slant'' columns to vertical columns using altitude-dependent scattering weights computed with a radiative transfer model (LIDORT), weighted by relative vertical SO2 profile (shape factor) determined locally with a global atmospheric chemistry model (GEOS-Chem). The scattering weights account for viewing geometry, surface albedo, cloud scattering, absorption by ozone, and scattering and absorption by aerosols. Absorption of radiation by mineral dust can reduce seasonal mean instrument sensitivity by 50%. Mean SO2 shape factors simulated with GEOS-Chem and used in the AMF calculation are highly consistent with airborne in situ measurements (INTEX-A and INTEX-B); differences would affect the retrieved SO2 columns by 10%. The retrieved vertical columns are validated with coincident airborne in situ measurements (INTEX-A, INTEX-B, and a campaign over east China). The annual mean AMF errors are estimated to be 35-70% in polluted regions (e. g., East Asia and the eastern United States) and less than 10% over clear ocean regions. The overall SO2 error assessment is 45-80% for yearly averages over polluted regions. Seasonal mean SO2 columns retrieved from SCIAMACHY and OMI for 2006 are significantly spatially correlated with those from GEOS-Chem, in particular over the United States (r = 0.85 for SCIAMACHY and 0.82 for OMI). A sensitivity study confirms the sensitivity of SCIAMACHY and OMI to anthropogenic SO2 emissions. C1 [Lee, Chulkyu; Martin, Randall V.; van Donkelaar, Aaron; O'Byrne, Gray] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada. [Martin, Randall V.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Krotkov, Nickolay] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Richter, Andreas] Univ Bremen, Inst Environm Phys & Remote Sensing, D-28359 Bremen, Germany. [Huey, L. Gregory] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Holloway, John S.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Holloway, John S.] NOAA, Earth Syst Res Lab, Div Chem Sci, Boulder, CO USA. RP Lee, C (reprint author), Dalhousie Univ, Dept Phys & Atmospher Sci, 6310 Coburg Rd, Halifax, NS B3H 3J5, Canada. EM chulkyu.lee@dal.ca RI Richter, Andreas/C-4971-2008; Holloway, John/F-9911-2012; Manager, CSD Publications/B-2789-2015; Martin, Randall/C-1205-2014; Krotkov, Nickolay/E-1541-2012; Chem, GEOS/C-5595-2014 OI Richter, Andreas/0000-0003-3339-212X; Holloway, John/0000-0002-4585-9594; Martin, Randall/0000-0003-2632-8402; Krotkov, Nickolay/0000-0001-6170-6750; FU Natural Science and Engineering Research Council of Canada (NSERC); National Aeronautics and Space Administration (NASA) [ROSES05, NNG06GI00G] FX We thank Mian Chin for helpful comments on SO2 emissions. The publicly released planetary boundary layer (PBL) OMI SO2 Level 2 VC products and OMCLDRR cloud products from OMI were obtained from GES Data and Information Service Center (http://disc.sci.gsfc.nasa.gov/). SO2 slant columns and WFDOAS total O3 columns from SCIAMACHY were obtained from the Institute of Environmental Physics and Remote Sensing, University of Bremen, Germany (http://www.iup.uni-bremen.de/). FRESCO+ cloud products from SCIAMACHY were obtained from Tropospheric Emission Monitoring Internet Service (TEMIS) (http://www.temis.nl/). This work was supported by the Natural Science and Engineering Research Council of Canada (NSERC) and by the National Aeronautics and Space Administration (NASA). N. Krotkov acknowledges NASA support through ROSES05 grant NNG06GI00G. NR 80 TC 57 Z9 58 U1 1 U2 28 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 18 PY 2009 VL 114 AR D22303 DI 10.1029/2009JD012123 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 522KF UT WOS:000271995900003 ER PT J AU Peltier, WR Luthcke, SB AF Peltier, W. R. Luthcke, Scott B. TI On the origins of Earth rotation anomalies: New insights on the basis of both "paleogeodetic'' data and Gravity Recovery and Climate Experiment (GRACE) data SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID GLACIAL-ISOSTATIC-ADJUSTMENT; RELATIVE SEA-LEVEL; ICE-4G VM2 MODEL; MANTLE VISCOSITY; AGE EARTH; DEGLACIATION; SYSTEM; VARIABILITY; STABILITY; HOLOCENE AB The theory previously developed to predict the impact on Earth's rotational state of the late Pleistocene glaciation cycle is extended. In particular, we examine the extent to which a departure of the infinite time asymptote of the viscoelastic tidal Love number of degree 2, "k(2)(T),'' from the observed "fluid'' Love number, "k(f),'' impacts the theory. A number of tests of the influence of the difference in these Love numbers on theoretical predictions of the model of the glacial isostatic adjustment (GIA) process are explored. Relative sea level history predictions are shown not to be sensitive to the difference even though they are highly sensitive to the influence of the changing rotational state itself. We also explore in detail the accuracy with which the Gravity Recovery and Climate Experiment (GRACE) satellite system is able to observe the global GIA process including the time-dependent amplitude of the degree 2 and order 1 spherical harmonic components of the gravitational field, the only components that are significantly influenced by rotational effects. It is explicitly shown that the GRACE observation of these properties of the time-varying gravitational field is sufficiently accurate to rule out the values predicted by the ICE-5G (VM2) model of Peltier (2004). However, we also note that this model is constrained only by data from an epoch during which modern greenhouse gas induced melting of both the great polar ice-sheets and small ice sheets and glaciers was not occurring. Such modern loss of grounded continental ice strongly influences the evolving rotational state of the planet and thus the values of the degree 2 and order 1 Stokes coefficients as they are currently being measured by the GRACE satellite system. A series of sensitivity tests are employed to demonstrate this fact. We suggest that the accuracy of scenarios for modern land ice melting may be tested by ensuring that such scenarios conform to the GRACE observations of these crucial time-dependent Stokes coefficients. C1 [Peltier, W. R.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Luthcke, Scott B.] NASA, Goddard Space Flight Ctr, Planetary Geophys Lab, Greenbelt, MD 20771 USA. RP Peltier, WR (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. EM peltier@atmosp.physics.utoronto.ca RI Luthcke, Scott/D-6283-2012; Peltier, William/A-1102-2008 FU Canadian Foundation for Climate and Atmospheric Science; NSERC [9627]; NASA FX The work reported in this paper is a contribution to the Polar Climate Stability Network which is supported by the Canadian Foundation for Climate and Atmospheric Science. Further support has been provided by NSERC Discovery grant 9627. Support for the GRACE analysis was provided by NASA under the GRACE Science Team program. NR 65 TC 27 Z9 27 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD NOV 18 PY 2009 VL 114 AR B11405 DI 10.1029/2009JB006352 PG 25 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 522LR UT WOS:000271999900004 ER PT J AU Webb, PA Kuznetsova, MM Hesse, M Rastaetter, L Chulaki, A AF Webb, Phillip A. Kuznetsova, Masha M. Hesse, Michael Rastaetter, Lutz Chulaki, Anna TI Ionosphere-thermosphere models at the Community Coordinated Modeling Center SO RADIO SCIENCE LA English DT Article AB One of the ways to address the science needs of the research community and to enable science progress is to provide community access to modern space science models. The Community Coordinated Modeling Center (CCMC) is a multiagency partnership based at the Goddard Space Flight Center that hosts a set of state-of-the-art space science models ranging from the solar atmosphere to the Earth's upper atmosphere. The CCMC provides a Web-based, no-cost, Runs on Request system, by which the interested scientist can readily request simulations for time intervals of interest. CCMC also provides a tailored Web-based visualization interface for the model output, including near-real-time results from select models. Model outputs have been specifically tailored for easy comparison with observational data to facilitate data analysis and model validation. This paper provides an overview of CCMC activities, with an emphasis on the ionosphere-thermosphere models residing there. C1 [Webb, Phillip A.] Goddard Space Flight Ctr, UMBC, Greenbelt, MD 20771 USA. [Kuznetsova, Masha M.; Hesse, Michael] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Rastaetter, Lutz] Goddard Space Flight Ctr, CUA, Greenbelt, MD 20771 USA. [Chulaki, Anna] Goddard Space Flight Ctr, SP Syst, Greenbelt, MD 20771 USA. RP Webb, PA (reprint author), Goddard Space Flight Ctr, UMBC, Greenbelt, MD 20771 USA. RI Hesse, Michael/D-2031-2012; Rastaetter, Lutz/D-4715-2012; Kuznetsova, Maria/F-6840-2012 OI Rastaetter, Lutz/0000-0002-7343-4147; FU NASA; NSF FX CCMC is an interagency activity. We gratefully acknowledge interagency support and, specifically, support from our main sponsors: NASA and NSF. NR 6 TC 8 Z9 8 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0048-6604 J9 RADIO SCI JI Radio Sci. PD NOV 18 PY 2009 VL 44 AR RS0A34 DI 10.1029/2008RS004108 PG 6 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Remote Sensing; Telecommunications GA 522ML UT WOS:000272002000001 ER PT J AU Sabol, DE Gillespie, AR Abbott, E Yamada, G AF Sabol, Donald E., Jr. Gillespie, Alan R. Abbott, Elsa Yamada, Gail TI Field validation of the ASTER Temperature-Emissivity Separation algorithm SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE ASTER; Temperature-emissivity separation; Validation ID THERMAL-INFRARED DATA; IN-FLIGHT VALIDATION; LAKE TAHOE; USA; SURFACES; IMAGES; HAWAII; CA/NV; BANDS; MODIS AB The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has operated since 19 December 1999 from NASA's Terra Earth-orbiting, sun-synchronous satellite. The Temperature-Emissivity Separation (TES) algorithm is used to calculate surface temperature and emissivity standard products, predicted to be within +1.5 K and +0.015 of correct values, respectively. Analyses of time sequences of ASTER images showing validation sites at Lake Tahoe, California, the Salton Sea, California, Railroad Valley Nevada, and the island of Hawai i demonstrate that TES generally performs within these limits. The validation experiments also demonstrate that, under unusual atmospheric conditions of anomalously high humidity or spatial variability, atmospheric compensation can be incomplete and errors in temperature and emissivity images can be larger than anticipated. (C) 2009 Elsevier Inc. All rights reserved. C1 [Sabol, Donald E., Jr.; Gillespie, Alan R.; Yamada, Gail] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Abbott, Elsa] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Sabol, DE (reprint author), Desert Res Inst, 2215 Raggio Pkwy, Reno, NV 89512 USA. EM Don.Sabol@dri.edu NR 41 TC 35 Z9 35 U1 1 U2 11 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV 16 PY 2009 VL 113 IS 11 BP 2328 EP 2344 DI 10.1016/j.rse.2009.06.008 PG 17 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 506DW UT WOS:000270754800005 ER PT J AU Cook, BD Bolstad, PV Naesset, E Anderson, RS Garrigues, S Morisette, JT Nickeson, J Davis, KJ AF Cook, Bruce D. Bolstad, Paul V. Naesset, Erik Anderson, Ryan S. Garrigues, Sebastian Morisette, Jeffrey T. Nickeson, Jaime Davis, Kenneth J. TI Using LiDAR and quickbird data to model plant production and quantify uncertainties associated with wetland detection and land cover generalizations SO REMOTE SENSING OF ENVIRONMENT LA English DT Review DE Primary production; Leaf area index (LAI); Light-use efficiency; Carbon-use efficiency; Moderate Resolution Imaging; Spectroradiometer (MODIS); Digital hemispheric photography; Eddy covariance ID LEAF-AREA INDEX; NET PRIMARY PRODUCTION; GROSS PRIMARY PRODUCTION; DISCONTINUOUS VEGETATION CANOPIES; DIGITAL HEMISPHERICAL PHOTOGRAPHY; CARBON-DIOXIDE FLUXES; LIGHT USE EFFICIENCY; AIRBORNE LASER; NORTHERN WISCONSIN; BROADLEAF FORESTS AB Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30 m to 1 km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600 ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400 m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine-resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire landscape. Failure to account for wetlands had little impact on landscape-scale estimates, because vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important. Published by Elsevier Inc. C1 [Cook, Bruce D.; Nickeson, Jaime] NASA, Goddard Space Flight Ctr, Terr Informat Syst Branch, Greenbelt, MD 20771 USA. [Cook, Bruce D.; Bolstad, Paul V.] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [Naesset, Erik] Norwegian Univ Life Sci UMB, Dept Ecol & Nat Resource Management INA, NO-1432 As, Norway. [Anderson, Ryan S.] Univ Montana, Coll Forestry & Conservat, Missoula, MT 59812 USA. [Garrigues, Sebastian] CNES DCT SI AP, Serv Anal & Prod Image, Toulouse 4, France. [Morisette, Jeffrey T.] US Geol Survey, Ft Collins Sci Ctr, Ft Collins, CO 80526 USA. [Davis, Kenneth J.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. RP Cook, BD (reprint author), NASA, Goddard Space Flight Ctr, Terr Informat Syst Branch, Code 6145, Greenbelt, MD 20771 USA. EM brucecook@umn.edu RI Cook, Bruce/M-4828-2013 OI Cook, Bruce/0000-0002-8528-000X FU National Institute for Climatic Change Research (NICCR); Terrestrial Carbon Processes (TCP) programs of the US Department of Energy (DOE); US National Aeronautics and Space Administration (NASA); Mid-Continent Intensive (MCI); US National Science Foundation (NSF); University of Minnesota Initiative for Renewable Energy and the Environment (IREE) FX This research was funded in part by the National Institute for Climatic Change Research (NICCR) and Terrestrial Carbon Processes (TCP) programs of the US Department of Energy (DOE); US National Aeronautics and Space Administration (NASA) in support of the North American Carbon Program (NACP) and Mid-Continent Intensive (MCI) campaign; US National Science Foundation (NSF); and University of Minnesota Initiative for Renewable Energy and the Environment (IREE). Any opinions, findings, and conclusions or recommendations herein are those of the authors and do not necessarily reflect the view of DOE, NASA, NSF, or IREE. The authors wish to thank Tom Steele, Gary Kellner, and Karla Ortman at the Kemp Natural Resources Station, University of Wisconsin, who provided technical support and accommodations throughout this project; and to Tim Brass, Steve Burns, and Andy Rasmussen, who demonstrated tremendous attention to detail while collecting large quantities of field data. From Bruce, a special thanks and appreciation goes to Wu Yang for her constant support and encouragement while writing this manuscript. NR 108 TC 25 Z9 29 U1 7 U2 78 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV 16 PY 2009 VL 113 IS 11 BP 2366 EP 2379 DI 10.1016/j.rse.2009.06.017 PG 14 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 506DW UT WOS:000270754800008 ER PT J AU Hilker, T Lyapustin, A Hall, FG Wang, YJ Coops, NC Drolet, G Black, TA AF Hilker, Thomas Lyapustin, Alexei Hall, Forrest G. Wang, Yujie Coops, Nicholas C. Drolet, Guillaume Black, T. Andrew TI An assessment of photosynthetic light use efficiency from space: Modeling the atmospheric and directional impacts on PRI reflectance SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Photosynthesis; Carbon cycling; PRI; Remote sensing; MAIAC; 6S; Atmospheric correction; Multi-angular; BRDF; Eddy covariance; MODIS; Upscaling; Photochemical reflectance index; AMSPEC; LiDAR; Hyperspectral; Spectroradiometer; Flux tower; Global carbon cycle; Douglas fir ID RADIATION-USE-EFFICIENCY; LEAF-AREA INDEX; DOUGLAS-FIR FOREST; SPECTRAL REFLECTANCE; BIDIRECTIONAL REFLECTANCE; DECIDUOUS FOREST; SOLAR-RADIATION; REMOTE; CANOPY; VEGETATION AB Estimation of photosynthetic light use efficiency (s) from satellite observations is an important component of climate change research. The photochemical reflectance index, a narrow waveband index based on the reflectance at 531 and 570 nm, allows sampling of the photosynthetic activity of leaves; upscaling of these measurements to landscape and global scales, however, remains challenging. Only a few studies have used spaceborne observations of PRI so far, and research has largely focused on the MODIS sensor. Its daily global coverage and the capacity to detect a narrow reflectance band at 531 nm make it the best available choice for sensing E from space. Previous results however, have identified a number of key issues with MODIS-based observations of PRI. First, the differences between the footprint of eddy covariance (EC) measurements and the MODIS footprint, which is determined by the sensor's observation geometry make a direct comparison between both data sources challenging and second, the PRI reflectance bands are affected by atmospheric scattering effects confounding the existing physiological signal. In this study we introduce a new approach for upscaling EC based E measurements to MODIS. First, EC-measured S values were "translated" into a tower-level optical PRI signal using AMSPEC, an automated multi-angular, tower-based spectroradiometer instrument. AMSPEC enabled us to adjust tower-measured PRI values to the individual viewing geometry of each MODIS overpass. Second, MODIS data were atmospherically corrected using a Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, which uses a time series approach and an image-based rather than pixel-based processing for simultaneous retrievals of atmospheric aerosol and surface bidirectional reflectance (BRDF). Using this approach, we found a strong relationship between tower-based and spaceborne reflectance measurements (r(2)=0.74, p<0.01) throughout the vegetation period of 2006. Swath (non-gridded) observations yielded stronger correlations than gridded data (r(2)=0.58, p<0.01) both of which included forward and backscatter observations. Spaceborne PRI values were strongly related to canopy shadow fractions and varied with different levels of c. We conclude that MAIAC-corrected MODIS observations were able to track the site-level physiological changes from space throughout the observation period. (C) 2009 Elsevier Inc. All rights reserved. C1 [Hilker, Thomas; Wang, Yujie; Coops, Nicholas C.] Univ British Columbia, Fac Forest Resources Management, Vancouver, BC V6T 1Z4, Canada. [Lyapustin, Alexei; Wang, Yujie] Univ Maryland, Baltimore, MD 21250 USA. [Lyapustin, Alexei; Hall, Forrest G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hall, Forrest G.] Univ Maryland, Joint Ctr Earth Syst Technol, Baltimore, MD USA. [Drolet, Guillaume] Univ Laval, Fac Foresterie & Geomat, Quebec City, PQ G1V 0A6, Canada. [Black, T. Andrew] Univ British Columbia, Fac Land & Food Syst, Vancouver, BC V6T 1Z4, Canada. RP Hilker, T (reprint author), Univ British Columbia, Fac Forest Resources Management, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada. EM thomas.hilker@ubc.ca RI Coops, Nicholas/J-1543-2012; Lyapustin, Alexei/H-9924-2014 OI Coops, Nicholas/0000-0002-0151-9037; Lyapustin, Alexei/0000-0003-1105-5739 NR 72 TC 51 Z9 51 U1 5 U2 30 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV 16 PY 2009 VL 113 IS 11 BP 2463 EP 2475 DI 10.1016/j.rse.2009.07.012 PG 13 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 506DW UT WOS:000270754800018 ER PT J AU Roman, MO Schaaf, CB Woodcock, CE Strahler, AH Yang, XY Braswell, RH Curtis, PS Davis, KJ Dragoni, D Goulden, ML Gu, LH Hollinger, DY Kolb, TE Meyers, TP Munger, JW Privette, JL Richardson, AD Wilson, TB Wofsy, SC AF Roman, Miguel O. Schaaf, Crystal B. Woodcock, Curtis E. Strahler, Alan H. Yang, Xiaoyuan Braswell, Rob H. Curtis, Peter S. Davis, Kenneth J. Dragoni, Danilo Goulden, Michael L. Gu, Lianhong Hollinger, David Y. Kolb, Thomas E. Meyers, Tilden P. Munger, J. William Privette, Jeffrey L. Richardson, Andrew D. Wilson, Tim B. Wofsy, Steven C. TI The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE MODIS; BRDF; Surface albedo; Validation; Spatial analysis; Remote sensing; AmeriFlux; FLUXNET; EOS Land Validation Core Sites; ETM; 6S; Geostatistics ID LAND-SURFACE ALBEDO; BROAD-BAND CONVERSIONS; BIDIRECTIONAL REFLECTANCE; NADIR REFLECTANCE; NORTHERN ARIZONA; CARBON STORAGE; NARROW-BAND; BRDF MODELS; VALIDATION; VEGETATION AB A new methodology for establishing the spatial representativeness of tower albedo measurements that are routinely used in validation of satellite retrievals from global land surface albedo and reflectance anisotropy products is presented. This method brings together knowledge of the intrinsic biophysical properties of a measurement site, and the surrounding landscape to produce a number of geostatistical attributes that describe the overall variability, spatial extent, strength of the spatial correlation, and spatial structure of surface albedo patterns at separate seasonal periods throughout the year. Variogram functions extracted from Enhanced Thematic Mapper Plus (ETM+) retrievals of surface albedo using multiple spatial and temporal thresholds were used to assess the degree to which a given point (tower) measurement is able to capture the intrinsic variability of the immediate landscape extending to a satellite pixel. A validation scheme was implemented over a wide range of forested landscapes, looking at both deciduous and coniferous sites, from tropical to boreal ecosystems. The experiment focused on comparisons between tower measurements of surface albedo acquired at local solar noon and matching retrievals from the MODerate Resolution Imaging Spectroradiometer (MODIS) (Collection V005) Bidirectional Reflectance Distribution Function (BRDF)/albedo algorithm. Assessments over a select group of field stations with comparable landscape features and daily retrieval scenarios further demonstrate the ability of this technique to identify measurement sites that contain the intrinsic spatial and seasonal features of surface albedo over sufficiently large enough footprints for use in modeling and remote sensing studies. This approach, therefore, improves our understanding of product uncertainty both in terms of the representativeness of the field data and its relationship to the larger satellite pixel. (C) 2009 Elsevier Inc. All rights reserved. C1 [Roman, Miguel O.] NASA, Goddard Space Flight Ctr, Terr Informat Syst Branch, Greenbelt, MD USA. [Roman, Miguel O.; Schaaf, Crystal B.; Woodcock, Curtis E.; Strahler, Alan H.; Yang, Xiaoyuan] Boston Univ, Dept Geog & Environm, Boston, MA 02215 USA. [Braswell, Rob H.] Complex Syst Res Ctr, Inst Study Earth Oceans & Space, Durham, NH USA. [Curtis, Peter S.] Ohio State Univ, Dept Evolut Ecol & Organism Biol, Columbus, OH 43210 USA. [Davis, Kenneth J.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Dragoni, Danilo] Indiana Univ, Dept Geog, Bloomington, IN 47405 USA. [Goulden, Michael L.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. [Gu, Lianhong] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Hollinger, David Y.] USDA Forest Serv, No Res Stn, Durham, NH USA. [Kolb, Thomas E.] No Arizona Univ, Sch Forestry, Flagstaff, AZ 86011 USA. [Meyers, Tilden P.; Wilson, Tim B.] NOAA, Atmospher Turbulence & Diffus Div, Oak Ridge, IN USA. [Munger, J. William; Wofsy, Steven C.] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA. [Privette, Jeffrey L.] NOAA, Natl Climat Data Ctr, Asheville, NC USA. [Richardson, Andrew D.] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. RP Roman, MO (reprint author), NASA, Goddard Space Flight Ctr, Terr Informat Syst Branch, Greenbelt, MD USA. EM romanm@ieee.org RI Goulden, Michael/B-9934-2008; Privette, Jeffrey/G-7807-2011; Richardson, Andrew/F-5691-2011; Hollinger, David/G-7185-2012; Roman, Miguel/D-4764-2012; Meyers, Tilden/C-6633-2016; Braswell, Bobby/D-6411-2016; Munger, J/H-4502-2013; Gu, Lianhong/H-8241-2014 OI Privette, Jeffrey/0000-0001-8267-9894; Richardson, Andrew/0000-0002-0148-6714; Roman, Miguel/0000-0003-3953-319X; Braswell, Bobby/0000-0002-4061-9516; Munger, J/0000-0002-1042-8452; Gu, Lianhong/0000-0001-5756-8738 FU National Aeronautics and Space Administration [NASA-NNX07AT35H, NASA-NNX08AE94A]; U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program [DOE-DEFG02-06ER64178]; Office of Science (BER); U.S. Department of Energy [DE-FG0207ER64371] FX The authors would like to thank the anonymous reviewers whose close reading and suggestions led to a better organized and stronger paper. Support for this research was provided by the National Aeronautics and Space Administration under grants NASA-NNX07AT35H and NASA-NNX08AE94A; and the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program under grant DOE-DEFG02-06ER64178. Research at the MMSF site was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG0207ER64371. NR 71 TC 91 Z9 105 U1 7 U2 50 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV 16 PY 2009 VL 113 IS 11 BP 2476 EP 2498 DI 10.1016/j.rse.2009.07.009 PG 23 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 506DW UT WOS:000270754800019 ER PT J AU Moss, JH Beauchamp, DA Cross, AD Farley, EV Murphy, JM Helle, JH Walker, RV Myers, KW AF Moss, Jamal H. Beauchamp, David A. Cross, Alison D. Farley, Edward V. Murphy, James M. Helle, John H. Walker, Robert V. Myers, Katherine W. TI Bioenergetic model estimates of interannual and spatial patterns in consumption demand and growth potential of juvenile pink salmon (Oncorhynchus gorbuscha) in the Gulf of Alaska SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY LA English DT Article DE Consumption demand; Growth potential; Bioenergetic model; Pink salmon; Intraspecific competition; Marine survival ID PRINCE-WILLIAM-SOUND; NORTHEAST PACIFIC SALMON; SOCKEYE-SALMON; BRITISH-COLUMBIA; MARINE MORTALITY; SURVIVAL RATES; PUGET-SOUND; HATCHERY PROGRAMS; KODIAK ISLAND; OCEAN GROWTH AB A bioenergetic model of juvenile pink salmon (Oncorhynchus gorbuscha) was used to estimate daily prey consumption and growth potential of four ocean habitats in the Gulf of Alaska during 2001 and 2002. Growth potential was not significantly higher in 2002 than in 2001 at an alpha level of 0.05 (P = 0.073). Average differences in growth potential across habitats were minimal (slope habitat = 0.844 g d(-1), shelf habitat = 0.806 g d(-1), offshore habitat = 0.820 g d(-1), and nearshore habitat = 0.703 g d(-1)) and not significantly different (P = 0.630). Consumption demand differed significantly between hatchery and wild stocks (P = 0.035) when examined within year due to the interaction between hatchery verses wild origin and year. However, the overall effect of origin across years was not significant (P = 0.705) due to similar total amounts of prey consumed by all juvenile pink salmon in both study years. We anticipated that years in which ocean survival was high would have had high growth potential, but this relationship did not prove to be true. Therefore, modeled growth potential may not be useful as a tool for forecasting survival of Prince William Sound hatchery pink salmon stocks. Significant differences in consumption demand and a two-fold difference in nearshore abundance during 2001 of hatchery and wild pink salmon confirmed the existence of strong and variable interannual competition and the importance of the nearshore region as being a potential competitive bottleneck. Published by Elsevier Ltd. C1 [Moss, Jamal H.; Farley, Edward V.; Murphy, James M.; Helle, John H.] NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Auke Bay Lab, Juneau, AK 99801 USA. [Beauchamp, David A.; Cross, Alison D.] Univ Washington, US Geol Survey, Washington Cooperat Fish & Wildlife Res Unit, Seattle, WA 98195 USA. [Walker, Robert V.; Myers, Katherine W.] Univ Washington, High Seas Salmon Res Program, Sch Aquat & Fisheries Sci, Seattle, WA 98195 USA. RP Moss, JH (reprint author), NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Auke Bay Lab, 11305 Glacier Hwy, Juneau, AK 99801 USA. EM Jamal.Moss@noaa.gov FU Bill and Melinda Gates Foundation FX We thank E. Martinson and J. Orsi for thoughtful reviews of this manuscript, and Captain Jack Bronson and the crew of the FV Great Pacific for assistance with sample collection. Our manuscript was significantly improved by incorporating comments provided by H. Batchelder and two anonymous reviewers. The Bill and Melinda Gates Foundation provided a fellowship to the senior author. This study is contribution 637 of the GLOBEC Project. NR 53 TC 5 Z9 7 U1 3 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0645 EI 1879-0100 J9 DEEP-SEA RES PT II JI Deep-Sea Res. Part II-Top. Stud. Oceanogr. PD NOV 15 PY 2009 VL 56 IS 24 BP 2553 EP 2559 DI 10.1016/j.dsr2.2009.03.005 PG 7 WC Oceanography SC Oceanography GA 526FQ UT WOS:000272273500011 ER PT J AU LaCroix, JJ Wertheimer, AC Orsi, JA Sturdevant, MV Fergusson, EA Bond, NA AF LaCroix, Jacob J. Wertheimer, Alex C. Orsi, Joseph A. Sturdevant, Molly V. Fergusson, Emily A. Bond, Nicholas A. TI A top-down survival mechanism during early marine residency explains coho salmon year-class strength in southeast Alaska SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY LA English DT Article DE Pink salmon; Juvenile coho salmon; Harvest; Growth rate; Size; Body condition ID JUVENILE PACIFIC SALMON; PRINCE-WILLIAM-SOUND; NORTHERN CALIFORNIA CURRENT; SEA-SURFACE TEMPERATURE; OREGON PRODUCTION AREA; MIXED-LAYER DEPTH; ONCORHYNCHUS-KISUTCH; PINK SALMON; BRITISH-COLUMBIA; CHUM SALMON AB Coho salmon (Oncorhynchus kisutch) are a vital component in the southeast Alaska marine ecosystem and are an important regional fishery resource; consequently, understanding mechanisms affecting their year-class strength is necessary from both scientific and management perspectives. We examined correlations among juvenile coho salmon indices, associated biophysical variables, and adult coho salmon harvest data from southeast Alaska over the years 1997-2006. We found no relationship between summer indices of juvenile coho salmon growth, condition, or abundance with subsequent harvest of adult coho salmon in the region. However, using stepwise regression, we found that variation in adult coho salmon harvest was largely explained by indices of juvenile pink salmon (Oncorhynchus gorbuscha) abundance (67%) and zooplankton abundance (24%). To determine if high juvenile pink salmon abundance indicates favorable "bottom-up" lower trophic level environmental conditions for juvenile coho salmon, we plotted abundance of juvenile pink salmon against growth and condition of juvenile coho salmon. No change in growth or condition of juvenile coho salmon was observed in relation to the abundance index for juvenile pink salmon. Therefore, we hypothesize that coho salmon year-class strength in southeast Alaska is influenced by a "top-down" predator control mechanism that results from more abundant juvenile pink salmon, which serve as a predator buffer during early marine residency. Published by Elsevier Ltd. C1 [LaCroix, Jacob J.; Wertheimer, Alex C.; Orsi, Joseph A.; Sturdevant, Molly V.; Fergusson, Emily A.] NOAA, Alaska Fisheries Sci Ctr, Auke Bay Labs, Natl Marine Fisheries Serv,Ted Stevens Marine Res, Juneau, AK 99801 USA. [Bond, Nicholas A.] NOAA, Alaska Fisheries Sci Ctr, Pacific Marine Environm Lab, Natl Marine Fisheries Serv, Seattle, WA 98115 USA. RP LaCroix, JJ (reprint author), NOAA, Alaska Fisheries Sci Ctr, Auke Bay Labs, Natl Marine Fisheries Serv,Ted Stevens Marine Res, 17109 Point Lena Loop Rd, Juneau, AK 99801 USA. EM Jacob.LaCroix@noaa.gov FU NOAA; US GLOBEC Northeast Pacific program FX This project was funded by NOAA and the US GLOBEC Northeast Pacific program. We thank the command and crew of the NOAA ship John N. Cobb and the participating biologists for faithfully collecting data for the past 10 years, especially Bruce L. Wing, and Wongyu Park. This is contribution number XXX to the US GLOBEC Program. NR 94 TC 9 Z9 9 U1 4 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0645 EI 1879-0100 J9 DEEP-SEA RES PT II JI Deep-Sea Res. Part II-Top. Stud. Oceanogr. PD NOV 15 PY 2009 VL 56 IS 24 BP 2560 EP 2569 DI 10.1016/j.dsr2.2009.03.006 PG 10 WC Oceanography SC Oceanography GA 526FQ UT WOS:000272273500012 ER PT J AU Dickhut, RM Deshpande, AD Cincinelli, A Cochran, MA Corsolini, S Brill, RW Secor, DH Graves, JE AF Dickhut, Rebecca M. Deshpande, Ashok D. Cincinelli, Alessandra Cochran, Michele A. Corsolini, Simonetta Brill, Richard W. Secor, David H. Graves, John E. TI Atlantic Bluefin Tuna (Thunnus thynnus) Population Dynamics Delineated by Organochlorine Tracers SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID RIVER STRIPED BASS; MEDITERRANEAN SEA; FISH; PATTERNS; ACCUMULATION; CHLORDANE; CONTAMINANTS; WATERS; POLLUTANTS; MIGRATION AB Atlantic bluefin tuna (ABFT) are highly valued and heavily exploited, and critical uncertainties regarding their population structure hinder effective management Evidence supports the existence of two breeding populations of ABFT; a western population in the Gulf of Mexico and an eastern population in the Mediterranean Sea; both of which migrate and mix in the North Atlantic. Conventional tagging studies suggest low rates of trans-Atlantic migrations; however, electronic tagging and stable isotopes in otoliths indicate stock mixing up to 57% between management zones delineated by 45 degrees W longitude. Here we show that organochlorine pesticides and polychlorinated biphenyls (PCBs) can be used as tracers of bluefin tuna foraging grounds in the North Atlantic and confirm that stock mixing of juvenile tuna within the U.S. Mid Atlantic Bight is indeed high (33-83% eastern origin), and is likely spatially and temporally variable. We further demonstrate that >10% of the Mediterranean population is migratory, that young bluefin tuna migrate from the Mediterranean to western Atlantic foraging grounds as early as age 1, and then return to the Mediterranean Sea as young as age 5, presumably to breed. The tracer method described here provides a novel means for distinguishing bluefin tuna populations and ontogenetic shifts in migration in the North Atlantic. C1 [Dickhut, Rebecca M.; Cochran, Michele A.; Brill, Richard W.; Graves, John E.] Virginia Inst Marine Sci, Gloucester Point, VA 23062 USA. [Deshpande, Ashok D.] Natl Marine Fisheries Serv, Highlands, NJ 07732 USA. [Cincinelli, Alessandra] Univ Florence, Dept Chem, I-50019 Florence, Italy. [Corsolini, Simonetta] Univ Siena, Dept Environm Sci, I-53100 Siena, Italy. [Secor, David H.] Univ Maryland, Chesapeake Biol Lab, Ctr Environm Sci, Solomons, MD 20688 USA. RP Dickhut, RM (reprint author), Virginia Inst Marine Sci, Gloucester Point, VA 23062 USA. EM rdickhut@vims.edu RI Cincinelli, Alessandra/A-8468-2011; Secor, D/D-4367-2012; Corsolini, Simonetta/B-9460-2012; OI Secor, D/0000-0001-6007-4827; Corsolini, Simonetta/0000-0002-9772-2362; Cincinelli, Alessandra/0000-0002-6977-4595 FU Large Pelagics Research Center at the University of New Hampshire FX We thank Dr Gianluca Sara, University of Palermo, Palermo, Italy for collecting samples from the Mediterranean Sea. This work was supported by the Large Pelagics Research Center at the University of New Hampshire. The views expressed herein are those of the authors and do not necessarily reflect the views of NOAA or any of its subagencies. VIMS contribution number 3039. NR 37 TC 33 Z9 33 U1 2 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 15 PY 2009 VL 43 IS 22 BP 8522 EP 8527 DI 10.1021/es901810e PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 516ZV UT WOS:000271583400012 PM 20028046 ER PT J AU Bogard, DD Garrison, DH AF Bogard, Donald D. Garrison, Daniel H. TI Ar-Ar and I-Xe ages and thermal histories of three unusual metal-rich meteorites SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID PORTALES VALLEY METEORITE; EARLY SOLAR-SYSTEM; ACAPULCO METEORITE; PARENT BODY; IRON METEORITE; SILICATE INCLUSIONS; ORDINARY CHONDRITE; BJURBOLE STANDARD; AR-39-AR-40 AGES; AR-40/AR-39 AGE AB Portales Valley, Sombrerete, and Northwest Africa (NWA) 176 are three unrelated meteorites, which consist of silicate mixed with substantial amounts of metal and which likely formed at elevated temperatures as a consequence of early impacts on their parent bodies. Measured (39)Ar-(40)Ar ages of these meteorites are 4477 +/- 11 Ma and 4458 +/- 16 Ma (two samples of Portales Valley), 4541 +/- 12 Ma, and 4524 +/- 13 Ma, respectively (Ma = million years; all one-sigma errors). The Ar-Ar data for Portales Valley show no evidence of later open system behavior suggested by some other chronometers. Measured (129)I-(129)Xe ages of these three meteorites are 4559.9 +/- 0.5 Ma, 4561.9 +/- 1.0 Ma, and similar to 4544 Ma, respectively (relative to Shallowater = 4562.3 +/- 0.4 Ma). From stepwise temperature release data, we determined the diffusion characteristics for Ar and Xe in our samples and calculated approximate closure temperatures for the K-Ar and I-Xe chronometers. Adopting results and interpretations about these meteorites from some previous workers, we evaluated all these data against various thermal cooling models. We conclude that Portales Valley formed 4560 Ma ago, cooled quickly to below the I-Xe closure temperature, then cooled deep within the parent body at a rate of similar to 4 degrees C/Ma through K-Ar closure. We conclude that Sombrerete formed 4562 Ma ago and cooled relatively quickly. NWA 176 likely formed and cooled quickly similar to 4544 Ma ago, or later than formation times of most meteorite parent bodies. For all three meteorites, the Ar-Ar ages are in better agreement with I-Xe ages and preferred thermal models if we increase these Ar-Ar ages by similar to 20 Ma. Such age corrections would be consistent with probable errors in (40)K decay parameters in current use, as suggested by others. The role of impact heating and possible disruption and partial reassembly of meteorite parent bodies to form some meteorites likely was an important process in the early solar system. Published by Elsevier Ltd. C1 [Bogard, Donald D.] NASA, Lyndon B Johnson Space Ctr, ARES, Code KR, Houston, TX 77058 USA. [Garrison, Daniel H.] Barrios Technol, Houston, TX 77058 USA. RP Bogard, DD (reprint author), NASA, Lyndon B Johnson Space Ctr, ARES, Code KR, Houston, TX 77058 USA. EM donald.d.bogard@nasa.gov FU NASA's Cosmochemistry Program FX This research was supported by NASA's Cosmochemistry Program. We thank those individuals identified in Section 2 for furnishing samples. We appreciate helpful reviews that improved the paper by C. Hohenberg, T. Swindle, J. Gilmour, and T. Ireland. NR 72 TC 7 Z9 8 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD NOV 15 PY 2009 VL 73 IS 22 BP 6965 EP 6983 DI 10.1016/j.gca.2009.08.009 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 541LH UT WOS:000273416700018 ER PT J AU Lee, JN Shindell, DT Hameed, S AF Lee, Jae N. Shindell, Drew T. Hameed, Sultan TI The Influence of Solar Forcing on Tropical Circulation SO JOURNAL OF CLIMATE LA English DT Article ID SEA-SURFACE TEMPERATURE; CLIMATE MODEL; HOLOCENE CLIMATE; MAUNDER MINIMUM; GISS MODELE; SIMULATIONS; VARIABILITY; IRRADIANCE; SATELLITE; ANOMALIES AB The response of the seasonal tropical circulation to an 11-yr solar cycle forcing is studied with the Goddard Institute for Space Studies (GISS) ModelE, which includes fully interactive atmospheric chemistry. To identify characteristic solar signals in the tropical circulation, the model experiments are carried out with certain imposed conditions: a doubly amplified solar forcing and the present-day and preindustrial greenhouse gases and aerosol conditions, with the mixed layer or fully coupled dynamic ocean model. In both the model and the NCEP reanalysis, tropical humidity increases in response to enhanced solar irradiance are found to be statistically significant in both solstice seasons. Changes are also found in the vertical velocities for both the Hadley and Walker circulations in some areas of the Pacific region. With present-day greenhouse gas and aerosol conditions, the ascending branch of the Hadley cell is enhanced near the equator, and the intertropical convergence zone (ITCZ) is shifted northward in response to solar forcing during the boreal winter. Enhancement of the meridionally averaged vertical velocity over the western Pacific indicates strengthening of the Walker circulation in response to solar forcing in both solstice seasons. In present-day conditions, the tropical circulation response to an 11-yr solar forcing is generally consistent with that derived from previous observational works. C1 [Lee, Jae N.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Lee, Jae N.; Hameed, Sultan] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA. [Shindell, Drew T.] Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY USA. [Shindell, Drew T.] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. RP Lee, JN (reprint author), CALTECH, Jet Prop Lab, M-S 169-237,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM jae.nyung.lee@jpl.nasa.gov RI Shindell, Drew/D-4636-2012 FU NASA FX This work was supported by the NASA Living with a Star Program and Atmospheric Chemistry Modeling and Analysis Program. We thank Greg Faluvegi for running the GISS GCM and organizing the model outputs, and we thank Christy Field for performing the doubled forcing simulation. We also thank Minghua Zhang for providing the NCAR Community Climate Model (CCM2) radiation parameterization code and Hua Song, David Black, Dong L. Wu, and Marat Khairoutdinov for useful discussions. Wealso thank two anonymous reviewers for suggestions and comments that have led to significant improvements of the paper. NR 56 TC 11 Z9 13 U1 1 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD NOV 15 PY 2009 VL 22 IS 22 BP 5870 EP 5885 DI 10.1175/2009JCLI2670.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 521PM UT WOS:000271934200006 ER PT J AU Eitzen, ZA Xu, KM Wong, T AF Eitzen, Zachary A. Xu, Kuan-Man Wong, Takmeng TI Cloud and Radiative Characteristics of Tropical Deep Convective Systems in Extended Cloud Objects from CERES Observations SO JOURNAL OF CLIMATE LA English DT Article ID 1998 EL-NINO; STATISTICAL-ANALYSES; PART I; ENVIRONMENTAL-CONDITIONS; WESTERN PACIFIC; LIFE-CYCLE; SATELLITE; REGIMES; METHODOLOGY; SENSITIVITY AB The physical and radiative properties of tropical deep convective systems for the period from January to August 1998 are examined with the use of Clouds and the Earth's Radiant Energy System Single-Scanner Footprint (SSF) data from the Tropical Rainfall Measuring Mission satellite. Deep convective (DC) cloud objects are contiguous regions of satellite footprints that fulfill the DC criteria (i.e., overcast footprints with cloud optical depths > 10 and cloud-top heights > 10 km). Extended cloud objects (ECOs) start with the original cloud object but include all other cloudy footprints within a rectangular box that completely covers the original cloud object. Most of the non-DC footprints are overcast but have optical depths and/or cloud-top heights that are too low to fit the DC criteria. The histograms of cloud physical and radiative properties are analyzed according to the size of the ECO and the SST of the underlying ocean. Larger ECOs are associated with greater magnitudes of large-scale upward motion, which supports stronger convection for larger sizes of ECOs. This leads to shifts toward higher values in the DC distributions of cloud-top height, albedo, condensate water path, and cloud optical depth. However, non-DC footprints become less reflective with increasing ECO size, as the longer-lived large convective systems have more time to develop thin cirrus anvils. The proportion of DC footprints remains fairly constant with size. The proportion of DC footprints also remains nearly constant with SST within a given size class, although the number of footprints per object increases with SST for large objects. As SSTs increase, there is a decrease in the proportion of updraft water that goes into detrainment, causing the non-DC distributions of albedo, condensate water path, and cloud optical depth to shift toward lower values. The all-cloud distributions of cloud-top temperature and outgoing longwave radiation (OLR) shift toward lower values as SST increases owing to the increase in convective instability with SST. Both the DC and non-DC distributions of cloud-top temperature do not change much with satellite precession cycle, supporting the fixed anvil temperature hypothesis of Hartmann and Larson. When a joint histogram is formed from the cloud-top pressures and cloud optical depths of the ECOs, it is very similar to the corresponding histogram of the deep convective weather state obtained by cluster analysis of International Satellite Cloud Climatology Project data. C1 [Eitzen, Zachary A.; Xu, Kuan-Man; Wong, Takmeng] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Eitzen, Zachary A.] Sci Syst & Applicat Inc, Hampton, VA USA. RP Eitzen, ZA (reprint author), NASA, Langley Res Ctr, Mail Stop 420, Hampton, VA 23681 USA. EM zachary.a.eitzen@nasa.gov RI Xu, Kuan-Man/B-7557-2013 OI Xu, Kuan-Man/0000-0001-7851-2629 NR 38 TC 7 Z9 7 U1 0 U2 2 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD NOV 15 PY 2009 VL 22 IS 22 BP 5983 EP 6000 DI 10.1175/2009JCLI3038.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 521PM UT WOS:000271934200012 ER PT J AU Jiang, XA Waliser, DE Olson, WS Tao, WK L'Ecuyer, TS Li, JL Tian, BJ Yung, YL Tompkins, AM Lang, SE Grecu, M AF Jiang, Xianan Waliser, Duane E. Olson, William S. Tao, Wei-Kuo L'Ecuyer, Tristan S. Li, Jui-Lin Tian, Baijun Yung, Yuk L. Tompkins, Adrian M. Lang, Stephen E. Grecu, Mircea TI Vertical Heating Structures Associated with the MJO as Characterized by TRMM Estimates, ECMWF Reanalyses, and Forecasts: A Case Study during 1998/99 Winter SO JOURNAL OF CLIMATE LA English DT Article ID MADDEN-JULIAN OSCILLATION; FREQUENCY INTRASEASONAL OSCILLATIONS; OUTGOING LONGWAVE RADIATION; ATMOSPHERIC ENERGY BUDGET; PACIFIC WARM POOL; WAVE-CISK; TROPICAL ATMOSPHERE; TOGA COARE; PART I; STRATIFORM INSTABILITY AB The Madden-Julian oscillation (MJO) is a fundamental mode of the tropical atmosphere variability that exerts significant influence on global climate and weather systems. Current global circulation models, unfortunately, are incapable of robustly representing this form of variability. Meanwhile, a well-accepted and comprehensive theory for the MJO is still elusive. To help address this challenge, recent emphasis has been placed on characterizing the vertical structures of the MJO. In this study, the authors analyze vertical heating structures by utilizing recently updated heating estimates based on the Tropical Rainfall Measuring Mission (TRMM) from two different latent heating estimates and one radiative heating estimate. Heating structures from two different versions of the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalyses/forecasts are also examined. Because of the limited period of available datasets at the time of this study, the authors focus on the winter season from October 1998 to March 1999. The results suggest that diabatic heating associated with the MJO convection in the ECMWF outputs exhibits much stronger amplitude and deeper structures than that in the TRMM estimates over the equatorial eastern Indian Ocean and western Pacific. Further analysis illustrates that this difference might be due to stronger convective and weaker stratiform components in the ECMWF estimates relative to the TRMM estimates, with the latter suggesting a comparable contribution by the stratiform and convective counterparts in contributing to the total rain rate. Based on the TRMM estimates, it is also illustrated that the stratiform fraction of total rain rate varies with the evolution of the MJO. Stratiform rain ratio over the Indian Ocean is found to be 5% above (below) average for the disturbed (suppressed) phase of the MJO. The results are discussed with respect to whether these heating estimates provide enough convergent information to have implications on theories of the MJO and whether they can help validate global weather and climate models. C1 [Jiang, Xianan; Waliser, Duane E.; Li, Jui-Lin; Tian, Baijun] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Jiang, Xianan; Waliser, Duane E.; Tian, Baijun] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA. [Olson, William S.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Tao, Wei-Kuo] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [L'Ecuyer, Tristan S.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Yung, Yuk L.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Tompkins, Adrian M.] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England. [Lang, Stephen E.] Sci Syst & Applicat Inc, Lanham, MD USA. [Grecu, Mircea] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. RP Jiang, XA (reprint author), CALTECH, Jet Prop Lab, MS 183-501,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM xianan@jifresse.ucla.edu RI Jiang, Xianan/A-2283-2012; Tian, Baijun/A-1141-2007; L'Ecuyer, Tristan/C-7040-2013; L'Ecuyer, Tristan/E-5607-2012; Tompkins, Adrian/N-6472-2013 OI Tian, Baijun/0000-0001-9369-2373; L'Ecuyer, Tristan/0000-0002-7584-4836; Tompkins, Adrian/0000-0003-0975-6691 FU NASA [NNG06GC99G, NNG06GC46G] FX We thank Drs. A. Del Genio and X. Fu and anonymous reviewers for their constructive comments on an earlier version of this manuscript. We also thank W. K.- M. Lau and J. Wu for processing the TRMM/ CSH Q1 datasets. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. The TRMM/ TRAIN Q1 2 QR and QR datasets were generated with the support of NASA NEWS research Grants NNG06GC99G and NNG06GC46G, respectively. NR 83 TC 23 Z9 23 U1 0 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD NOV 15 PY 2009 VL 22 IS 22 BP 6001 EP 6020 DI 10.1175/2009JCLI3048.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 521PM UT WOS:000271934200013 ER PT J AU Geng, JH Wang, Q Luo, T Jiang, SB Amzajerdian, F AF Geng, Jihong Wang, Qing Luo, Tao Jiang, Shibin Amzajerdian, Farzin TI Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber SO OPTICS LETTERS LA English DT Article ID NOISE; NM AB Single-frequency laser operation near 2 mu m has been demonstrated in an all-fiber short-cavity (2-6 cm) distributed feedback laser cavity using both cladding- and core-pump configurations in a newly developed heavily Tm-doped multicomponent silicate glass fiber. Using a single-mode Er-doped fiber laser at 1575 nm as a core-pump source, a 2-cm-long distributed Bragg reflector fiber laser delivers single-frequency output at 1950 nm with laser linewidth less than 3 kHz, which is, to the best of our knowledge, the narrowest linewidth demonstrated to date from any 2 mu m single-frequency laser. (C) 2009 Optical Society of America C1 [Geng, Jihong; Wang, Qing; Luo, Tao; Jiang, Shibin] AdValue Photon, Tucson, AZ 85714 USA. [Amzajerdian, Farzin] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Geng, JH (reprint author), AdValue Photon, 4585 S Palo Verde Rd,Suite 405, Tucson, AZ 85714 USA. EM jgeng@advaluephotonics.com RI wang, qing/A-1693-2012 FU NASA SBIR [NNX09CF21P]; NIST [SB1341-09-SE-0621]; Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB [FA8650-08-C-5401] FX This work was supported mainly by NASA SBIR project NNX09CF21P. The authors acknowledge the technical support of Dr. Pamela Chu from NIST under contract SB1341-09-SE-0621. This work was also supported by the Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, under contract FA8650-08-C-5401. The authors also acknowledge Dr. Jonathan Goldstein from the Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, for his technical support. NR 8 TC 74 Z9 82 U1 3 U2 32 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD NOV 15 PY 2009 VL 34 IS 22 BP 3493 EP 3495 PG 3 WC Optics SC Optics GA 521XC UT WOS:000271958700012 PM 19927188 ER PT J AU Fu, LL AF Fu, Lee-Lueng TI Pattern and velocity of propagation of the global ocean eddy variability SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID TROPICAL INSTABILITY WAVES; SEA-SURFACE HEIGHT; TOPEX/POSEIDON; WIND; CIRCULATION; MODEL AB Satellite altimeter data are used to study the characteristics of the horizontal propagation of eddy variability of the global oceans. Decade-long time series of sea surface height is analyzed for finding the maximum cross correlation with neighboring time series within a window of space and time lags. The space and time lags corresponding to the maximum correlation allow an estimate of the propagation velocity of the eddy variability that dominates the variance of sea surface height anomalies. The method cannot distinguish the various forms of eddy variability: isolated eddies and fronts, the meandering of ocean currents, or planetary waves. However, the results provide, at a given location of the global oceans, a uniquely determined propagation velocity that represents a time-averaged description of the tendency of the movement of the local eddy variability. The propagation velocity is highly inhomogeneous in space. Outside the equatorial zone, the zonal propagation is intrinsically westward, modified by ocean currents, which could reverse the zonal propagation to eastward in regions like the Gulf Stream and the Antarctic Circumpolar Current. At midlatitudes and high latitudes, the propagation pattern is highly affected by the path of ocean currents and the shape of bottom topography. At tropical latitudes, the meridional propagation is convergent toward the equator in the western basins and divergent away from the equator in the eastern basins. Comparison with the simulations of an eddy-permitting ocean general circulation model shows overall agreement, especially in the latitudinal variation of the zonal propagation velocity. The result suggests that the model has captured the essence of the dynamics governing the propagation of ocean eddy variability. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Fu, LL (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM llf@jpl.nasa.gov FU National Aeronautic and Space Administration; Jason-1 and OSTM/Jason-2 FX I would like to thank Dimitris Menemenlis for making the ECCO-2 products available and Akiko Hayashi for programming support. Nikolai Maximenko of the University of Hawaii and Dudley Chelton of Oregon State University provided valuable comments that had greatly improved the paper. The research presented in the paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautic and Space Administration. Support from the Jason-1 and OSTM/Jason-2 Projects is acknowledged. NR 33 TC 46 Z9 46 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD NOV 14 PY 2009 VL 114 AR C11017 DI 10.1029/2009JC005349 PG 14 WC Oceanography SC Oceanography GA 520QU UT WOS:000271862100002 ER PT J AU McComas, DJ Allegrini, F Bochsler, P Bzowski, M Christian, ER Crew, GB DeMajistre, R Fahr, H Fichtner, H Frisch, PC Funsten, HO Fuselier, SA Gloeckler, G Gruntman, M Heerikhuisen, J Izmodenov, V Janzen, P Knappenberger, P Krimigis, S Kucharek, H Lee, M Livadiotis, G Livi, S MacDowall, RJ Mitchell, D Mobius, E Moore, T Pogorelov, NV Reisenfeld, D Roelof, E Saul, L Schwadron, NA Valek, PW Vanderspek, R Wurz, P Zank, GP AF McComas, D. J. Allegrini, F. Bochsler, P. Bzowski, M. Christian, E. R. Crew, G. B. DeMajistre, R. Fahr, H. Fichtner, H. Frisch, P. C. Funsten, H. O. Fuselier, S. A. Gloeckler, G. Gruntman, M. Heerikhuisen, J. Izmodenov, V. Janzen, P. Knappenberger, P. Krimigis, S. Kucharek, H. Lee, M. Livadiotis, G. Livi, S. MacDowall, R. J. Mitchell, D. Moebius, E. Moore, T. Pogorelov, N. V. Reisenfeld, D. Roelof, E. Saul, L. Schwadron, N. A. Valek, P. W. Vanderspek, R. Wurz, P. Zank, G. P. TI Global Observations of the Interstellar Interaction from the Interstellar Boundary Explorer (IBEX) SO SCIENCE LA English DT Article ID WIND TERMINATION SHOCK; SOLAR-WIND; MAGNETIC-FIELD; HELIOSHEATH; VOYAGER-1 AB The Sun moves through the local interstellar medium, continuously emitting ionized, supersonic solar wind plasma and carving out a cavity in interstellar space called the heliosphere. The recently launched Interstellar Boundary Explorer (IBEX) spacecraft has completed its first all-sky maps of the interstellar interaction at the edge of the heliosphere by imaging energetic neutral atoms (ENAs) emanating from this region. We found a bright ribbon of ENA emission, unpredicted by prior models or theories, that may be ordered by the local interstellar magnetic field interacting with the heliosphere. This ribbon is superposed on globally distributed flux variations ordered by both the solar wind structure and the direction of motion through the interstellar medium. Our results indicate that the external galactic environment strongly imprints the heliosphere. C1 [McComas, D. J.; Allegrini, F.; Livadiotis, G.; Livi, S.; Valek, P. W.] SW Res Inst, San Antonio, TX 78228 USA. [McComas, D. J.; Allegrini, F.; Livi, S.; Valek, P. W.] Univ Texas San Antonio, San Antonio, TX 78249 USA. [Bochsler, P.; Saul, L.; Wurz, P.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Bzowski, M.] Polish Acad Sci, Space Res Ctr, PL-00716 Warsaw, Poland. [Christian, E. R.; MacDowall, R. J.; Moore, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Crew, G. B.; Vanderspek, R.] MIT, Cambridge, MA 02139 USA. [DeMajistre, R.; Krimigis, S.; Mitchell, D.; Roelof, E.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Fahr, H.] Univ Bonn, D-53115 Bonn, Germany. [Fichtner, H.] Ruhr Univ Bochum, D-44780 Bochum, Germany. [Frisch, P. C.] Univ Chicago, Chicago, IL 60637 USA. [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fuselier, S. A.] Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. [Gloeckler, G.] Univ Michigan, Ann Arbor, MI 48109 USA. [Gruntman, M.] Univ Calif Los Angeles, Los Angeles, CA 90089 USA. [Heerikhuisen, J.; Pogorelov, N. V.; Zank, G. P.] Univ Alabama, Huntsville, AL 35805 USA. [Izmodenov, V.] Moscow MV Lomonosov State Univ, Moscow 119899, Russia. [Izmodenov, V.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Izmodenov, V.] Russian Acad Sci, Inst Problems Mech, Moscow 117526, Russia. [Janzen, P.; Reisenfeld, D.] Univ Montana, Missoula, MT 59812 USA. [Knappenberger, P.] Adler Planetarium, Chicago, IL 60605 USA. [Krimigis, S.] Acad Athens, Off Space Res & Technol, Athens 10679, Greece. [Kucharek, H.; Lee, M.; Moebius, E.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Schwadron, N. A.] Boston Univ, Boston, MA 02215 USA. RP McComas, DJ (reprint author), SW Res Inst, 6220 Culebra Rd, San Antonio, TX 78228 USA. EM dmccomas@swri.org RI MacDowall, Robert/D-2773-2012; Moore, Thomas/D-4675-2012; Christian, Eric/D-4974-2012; Izmodenov, Vladislav/K-6073-2012; Funsten, Herbert/A-5702-2015; Gruntman, Mike/A-5426-2008; OI Moore, Thomas/0000-0002-3150-1137; Christian, Eric/0000-0003-2134-3937; Izmodenov, Vladislav/0000-0002-1748-0982; Funsten, Herbert/0000-0002-6817-1039; Gruntman, Mike/0000-0002-0830-010X; Valek, Philip/0000-0002-2318-8750; Moebius, Eberhard/0000-0002-2745-6978; Heerikhuisen, Jacob/0000-0001-7867-3633 FU NASA [NNG05EC85C] FX We thank all the men and women who made the IBEX mission possible. IBEX was primarily funded by NASA as a part of the Explorers Program ( contract NNG05EC85C); foreign investigators were supported by their respective national agencies and institutions. NR 28 TC 277 Z9 278 U1 0 U2 30 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD NOV 13 PY 2009 VL 326 IS 5955 BP 959 EP 962 DI 10.1126/science.1180906 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 518SB UT WOS:000271712300028 PM 19833923 ER PT J AU Fuselier, SA Allegrini, F Funsten, HO Ghielmetti, AG Heirtzler, D Kucharek, H Lennartsson, OW McComas, DJ Mobius, E Moore, TE Petrinec, SM Saul, LA Scheer, JA Schwadron, N Wurz, P AF Fuselier, S. A. Allegrini, F. Funsten, H. O. Ghielmetti, A. G. Heirtzler, D. Kucharek, H. Lennartsson, O. W. McComas, D. J. Moebius, E. Moore, T. E. Petrinec, S. M. Saul, L. A. Scheer, J. A. Schwadron, N. Wurz, P. TI Width and Variation of the ENA Flux Ribbon Observed by the Interstellar Boundary Explorer SO SCIENCE LA English DT Article AB The dominant feature in Interstellar Boundary Explorer ( IBEX) sky maps of heliospheric energetic neutral atom (ENA) flux is a ribbon of enhanced flux that extends over a broad range of ecliptic latitudes and longitudes. It is narrow (similar to 20 degrees average width) but long ( extending over 300 in the sky) and is observed at energies from 0.2 to 6 kilo-electron volts. We demonstrate that the flux in the ribbon is a factor of 2 to 3 times higher than that of the more diffuse, globally distributed heliospheric ENA flux. The ribbon is most pronounced at similar to 1 kilo-electron volt. The average width of the ribbon is nearly constant, independent of energy. The ribbon is likely the result of an enhancement in the combined solar wind and pickup ion populations in the heliosheath. C1 [Fuselier, S. A.; Ghielmetti, A. G.; Lennartsson, O. W.; Petrinec, S. M.] Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. [Allegrini, F.; McComas, D. J.] Univ Texas San Antonio, San Antonio, TX 78249 USA. [Allegrini, F.; McComas, D. J.] SW Res Inst, San Antonio, TX 78228 USA. [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Heirtzler, D.; Kucharek, H.; Moebius, E.] Univ New Hampshire, Durham, NH 03824 USA. [Moore, T. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Saul, L. A.; Scheer, J. A.; Wurz, P.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Schwadron, N.] Boston Univ, Boston, MA 02215 USA. RP Fuselier, SA (reprint author), Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. EM stephen.a.fuselier@lmco.com RI Moore, Thomas/D-4675-2012; Funsten, Herbert/A-5702-2015; OI Moore, Thomas/0000-0002-3150-1137; Funsten, Herbert/0000-0002-6817-1039; Moebius, Eberhard/0000-0002-2745-6978 FU NASA through sub-contract from Southwest Research Institute FX These results from the IBEX mission are a tribute to the hard work of many scientists and engineers. Work at Lockheed Martin was funded by NASA through sub-contract from Southwest Research Institute. NR 6 TC 110 Z9 112 U1 0 U2 9 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 13 PY 2009 VL 326 IS 5955 BP 962 EP 964 DI 10.1126/science.1180981 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 518SB UT WOS:000271712300029 PM 19833916 ER PT J AU Schwadron, NA Bzowski, M Crew, GB Gruntman, M Fahr, H Fichtner, H Frisch, PC Funsten, HO Fuselier, S Heerikhuisen, J Izmodenov, V Kucharek, H Lee, M Livadiotis, G McComas, DJ Moebius, E Moore, T Mukherjee, J Pogorelov, NV Prested, C Reisenfeld, D Roelof, E Zank, GP AF Schwadron, N. A. Bzowski, M. Crew, G. B. Gruntman, M. Fahr, H. Fichtner, H. Frisch, P. C. Funsten, H. O. Fuselier, S. Heerikhuisen, J. Izmodenov, V. Kucharek, H. Lee, M. Livadiotis, G. McComas, D. J. Moebius, E. Moore, T. Mukherjee, J. Pogorelov, N. V. Prested, C. Reisenfeld, D. Roelof, E. Zank, G. P. TI Comparison of Interstellar Boundary Explorer Observations with 3D Global Heliospheric Models SO SCIENCE LA English DT Article ID TERMINATION SHOCK; MAGNETIC-FIELD; HELIOSHEATH; VOYAGER-1; REGION; WIND AB Simulations of energetic neutral atom (ENA) maps predict flux magnitudes that are, in some cases, similar to those observed by the Interstellar Boundary Explorer ( IBEX) spacecraft, but they miss the ribbon. Our model of the heliosphere indicates that the local interstellar medium (LISM) magnetic field (B-LISM) is transverse to the line of sight (LOS) along the ribbon, suggesting that the ribbon may carry its imprint. The force-per-unit area on the heliopause from field line draping and the LISM ram pressure is comparable with the ribbon pressure if the LOS similar to 30 to 60 astronomical units and B-LISM similar to 2.5 microgauss. Although various models have advantages in accounting for some of the observations, no model can explain all the dominant features, which probably requires a substantial change in our understanding of the processes that shape our heliosphere. C1 [Schwadron, N. A.; Prested, C.] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Bzowski, M.] Polish Acad Sci, Space Res Ctr, PL-00716 Warsaw, Poland. [Crew, G. B.] MIT, Kavli Inst, Cambridge, MA 02139 USA. [Gruntman, M.] Univ So Calif, Astron Engn Div, Los Angeles, CA 90089 USA. [Fahr, H.] Univ Bonn, Inst Astrophys & Extraterr Forsch, D-53115 Bonn, Germany. [Fichtner, H.] Ruhr Univ Bochum, Inst Theoret Phys 4, D-44780 Bochum, Germany. [Frisch, P. C.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fuselier, S.] Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. [Heerikhuisen, J.; Pogorelov, N. V.; Zank, G. P.] Univ Alabama, Dept Phys, Huntsville, AL 35805 USA. [Izmodenov, V.] Moscow MV Lomonosov State Univ, Dept Aeromech & Gas Dynam, Moscow 117997, Russia. [Izmodenov, V.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Izmodenov, V.] Russian Acad Sci, Inst Problems Mech, Moscow 117997, Russia. [Kucharek, H.; Lee, M.; Moebius, E.] Univ New Hampshire, Dept Phys, Ctr Space Sci, Durham, NH 03824 USA. [Livadiotis, G.; McComas, D. J.; Mukherjee, J.] SW Res Inst, Dept Space Sci & Engn, San Antonio, TX 78228 USA. [McComas, D. J.] Univ Texas San Antonio, Dept Phys, San Antonio, TX 78249 USA. [Moore, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Reisenfeld, D.] Univ Montana, Dept Phys, Missoula, MT 59812 USA. [Roelof, E.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP Schwadron, NA (reprint author), Boston Univ, Dept Astron, 725 Commonwealth Ave, Boston, MA 02215 USA. EM nathanas@bu.edu RI Moore, Thomas/D-4675-2012; Izmodenov, Vladislav/K-6073-2012; Funsten, Herbert/A-5702-2015; Reisenfeld, Daniel/F-7614-2015; Gruntman, Mike/A-5426-2008; OI Moore, Thomas/0000-0002-3150-1137; Izmodenov, Vladislav/0000-0002-1748-0982; Funsten, Herbert/0000-0002-6817-1039; Gruntman, Mike/0000-0002-0830-010X; Moebius, Eberhard/0000-0002-2745-6978; Heerikhuisen, Jacob/0000-0001-7867-3633 FU IBEX program FX We thank the many dedicated people who have made IBEX a success. Special thanks to K. Goodrich, J. Siegel, K. Maynard, and M. Schwadron for their help. This work was primarily supported by the IBEX program. NR 18 TC 147 Z9 149 U1 0 U2 9 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 13 PY 2009 VL 326 IS 5955 BP 966 EP 968 DI 10.1126/science.1180986 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 518SB UT WOS:000271712300031 PM 19833915 ER PT J AU van den Broeke, M Bamber, J Ettema, J Rignot, E Schrama, E van de Berg, WJ van Meijgaard, E Velicogna, I Wouters, B AF van den Broeke, Michiel Bamber, Jonathan Ettema, Janneke Rignot, Eric Schrama, Ernst van de Berg, Willem Jan van Meijgaard, Erik Velicogna, Isabella Wouters, Bert TI Partitioning Recent Greenland Mass Loss SO SCIENCE LA English DT Article ID ICE-SHEET; MELT; ACCELERATION AB Mass budget calculations, validated with satellite gravity observations [from the Gravity Recovery and Climate Experiment (GRACE) satellites], enable us to quantify the individual components of recent Greenland mass loss. The total 2000-2008 mass loss of similar to 1500 gigatons, equivalent to 0.46 millimeters per year of global sea level rise, is equally split between surface processes (runoff and precipitation) and ice dynamics. Without the moderating effects of increased snowfall and refreezing, post-1996 Greenland ice sheet mass losses would have been 100% higher. Since 2006, high summer melt rates have increased Greenland ice sheet mass loss to 273 gigatons per year (0.75 millimeters per year of equivalent sea level rise). The seasonal cycle in surface mass balance fully accounts for detrended GRACE mass variations, confirming insignificant subannual variation in ice sheet discharge. C1 [van den Broeke, Michiel; Ettema, Janneke; van de Berg, Willem Jan] Univ Utrecht, Inst Marine & Atmospher Res, NL-3508 TC Utrecht, Netherlands. [Bamber, Jonathan] Univ Bristol, Sch Geog Sci, Bristol Glaciol Ctr, Bristol, Avon, England. [Rignot, Eric; Velicogna, Isabella] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. [Rignot, Eric; Velicogna, Isabella] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Schrama, Ernst; Wouters, Bert] Delft Univ Technol, Delft Inst Earth Observat & Space Syst, Delft, Netherlands. [van Meijgaard, Erik; Wouters, Bert] Royal Netherlands Meteorol Inst, NL-3730 AE De Bilt, Netherlands. RP van den Broeke, M (reprint author), Univ Utrecht, Inst Marine & Atmospher Res, NL-3508 TC Utrecht, Netherlands. EM m.r.vandenbroeke@uu.nl RI Ettema, Janneke/F-7950-2010; Van den Broeke, Michiel/F-7867-2011; van de Berg, Willem Jan/H-4385-2011; Bamber, Jonathan/C-7608-2011; Rignot, Eric/A-4560-2014; OI Van den Broeke, Michiel/0000-0003-4662-7565; Bamber, Jonathan/0000-0002-2280-2819; Rignot, Eric/0000-0002-3366-0481; Wouters, Bert/0000-0002-1086-2435 FU Utrecht University; Netherlands Polar Program of the Netherlands Organization of Scientific Research (NWO/ALW) through the international RAPID project; UK Natural Environment Research Council [NE/C509474/1]; Royal Netherlands Meteorological Institute; Netherlands Institute for Space Research [SRON/EO-076]; NASA's Cryosphere Science Program FX This work is funded by Utrecht University (M.v.d.B. and W.J.v.d.B.) and the Netherlands Polar Program of the Netherlands Organization of Scientific Research (NWO/ALW) through the international RAPID project (J.E.), UK Natural Environment Research Council grant NE/C509474/1 (J.L.B.), the Royal Netherlands Meteorological Institute ( E. v. M.), and Netherlands Institute for Space Research grant SRON/EO-076 ( B. W.). E. R. and I. V. performed their work at the University of California, Irvine, and Caltech's Jet Propulsion Laboratory under a contract with NASA's Cryosphere Science Program. Climate data are available from the RAPID data repository at the British Atmospheric Data Centre (badc.nerc.ac.uk). NR 27 TC 386 Z9 386 U1 16 U2 107 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 13 PY 2009 VL 326 IS 5955 BP 984 EP 986 DI 10.1126/science.1178176 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 518SB UT WOS:000271712300037 PM 19965509 ER PT J AU Bera, PP Francisco, JS Lee, TJ AF Bera, Partha P. Francisco, Joseph S. Lee, Timothy J. TI Identifying the Molecular Origin of Global Warming SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID GAUSSIAN BASIS FUNCTIONS; FIRST-ROW ATOMS; GAS; CO2; OH AB We have investigated the physical characteristics of greenhouse gases (GHGs) to assess which properties are most important in determining the efficiency of a GHG. Chlorofluorocarbons (CFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), nitrogen fluorides, and various other known atmospheric trace molecules have been included in this study. Compounds containing the halogens F or Cl have in common very polar X-F or X-Cl bonds, particularly the X-F bonds. It is shown that as more F atoms bond to the same central atom the bond dipoles become larger as a result of the central atom becoming more positive. This leads to a linear increase in the total or integrated X-F bond dipole derivatives for the molecule, which leads to a nonlinear (quadratic) increase in infrared (IR) intensity. Moreover, virtually all of the X-F bond stretches occur in the atmospheric IR window as opposed to X-H stretches, which do not occur in the atmospheric window. It is concluded that molecules possessing several F atoms will always have a large radiative forcing parameter in the calculation of their global warming potential. Some of the implications for global warming and climate change are discussed. C1 [Bera, Partha P.; Lee, Timothy J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. [Francisco, Joseph S.] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. [Francisco, Joseph S.] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA. RP Lee, TJ (reprint author), NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. EM timothy.j.lee@nasa.gov RI Lee, Timothy/K-2838-2012; Bera, Partha /K-8677-2012 FU NASA FX P.P.B. gratefully acknowledges support from an appointment to the NASA postdoctoral program at the Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. T.J.L. would like to thank Professor Russell Pitzer for his considerable and thoughtful help during the early stages of his career. NR 26 TC 21 Z9 21 U1 1 U2 896 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 12 PY 2009 VL 113 IS 45 BP 12694 EP 12699 DI 10.1021/jp905097g PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 514WX UT WOS:000271428100045 PM 19694447 ER PT J AU Iniguez, E Navarro-Gonzalez, R de la Rosa, J Urena-Nunez, F Coll, P Raulin, F McKay, CP AF Iniguez, Enrique Navarro-Gonzalez, Rafael de la Rosa, Jose Urena-Nunez, Fernando Coll, Patrice Raulin, Francois McKay, Christopher P. TI On the oxidation ability of the NASA Mars-1 soil simulant during the thermal volatilization step: Implications for the search of organics on Mars SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID CARBON-MONOXIDE OXIDATION; EVOLVED GAS ANALYZER; PHOENIX LANDER; MARTIAN SOIL; PALAGONITE; LIFE; SITE AB The search for organic molecules on Mars has been a major goal in planetary science. Viking performed the first analyses of the Martian soil in 1976, but was unable to detect organics at the ppb level using the thermal volatilization (TV) method. Three decades later, the Phoenix lander conducted analyses of Martian soil samples by TV, and found the release of CO(2) from 400 to 680 degrees C that was attributed to Mg or Fe carbonate, adsorbed CO(2), or organic molecules. We have previously reported that high levels of iron species present in the soil efficiently oxidize the organics to CO and CO(2) by TV. Here we explore in detail the oxidation ability of the organic-free NASA Mars-1 soil simulant during TV in molecular hydrogen or in the presence of stearic and mellitic acids. Our results imply that there are two sources of strong oxidizers in palagonite soils: (1) hydroxyl radicals originating from the dehydroxylation of the silica layer matrix at 320 degrees C to 600 degrees C and (2) oxygen atoms released by the reduction of iron(III) to iron(II) species at 320 degrees C to 600 degrees C and of iron(II) to metallic iron at 850-1150 degrees C. These strong oxidizers completely decompose stearic or mellitic acids to carbon dioxide when they are present at low levels (< 0.05% wt) in the NASA Mars-1 soil simulant. Since organics are expected to be present at very low levels on Mars, future space missions utilizing TV will face the challenge of determining if any CO(2) released is of inorganic or organic origin. Citation: Iniguez, E., R. Navarro-Gonzalez, J. de la Rosa, F. Urena-Nunez, P. Coll, F. Raulin, and C. P. McKay (2009), On the oxidation ability of the NASA Mars-1 soil simulant during the thermal volatilization step: Implications for the search of organics on Mars, Geophys. Res. Lett., 36, L21205, doi: 10.1029/2009GL040454. C1 [Iniguez, Enrique; Navarro-Gonzalez, Rafael; de la Rosa, Jose] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Lab Quim Plasmas & Estudios Planetarios, Mexico City 04510, DF, Mexico. [Coll, Patrice; Raulin, Francois] Univ Paris 07, UMR 7583, Lab Interuniv Syst Atmospher, F-94010 Creteil, France. [Coll, Patrice; Raulin, Francois] Univ Paris 12, CNRS, F-94010 Creteil, France. [McKay, Christopher P.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Urena-Nunez, Fernando] Inst Nacl Invest Nucl, Dept Fis, Ocoyoacac 52750, Mexico. RP Iniguez, E (reprint author), Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Lab Quim Plasmas & Estudios Planetarios, Ciudad Univ,Apartado Postal 70-543, Mexico City 04510, DF, Mexico. EM iniguez@nucleares.unam.mx; navarro@nucleares.unam.mx RI Iniguez, Enrique/D-5208-2009; Gonzalez, Rafael/D-1748-2009; De la Rosa, Jose/A-3573-2010 OI Iniguez, Enrique/0000-0001-8062-8225; FU National Autonomous University of Mexico [IN 107107]; National Council of Science and Technology of Mexico (CONACyT) [45810-F]; University Isotopic Geochemistry Laboratory of the Geophysics Institute; CONACyT [190221] FX This research was supported by grants from the National Autonomous University of Mexico (IN 107107) and the National Council of Science and Technology of Mexico (CONACyT 45810-F). We acknowledge the support from the University Isotopic Geochemistry Laboratory of the Geophysics Institute from the National Autonomous University of Mexico for the assistance during the purification of the iron minerals. E. I acknowledges CONACyT for a graduate fellowship (190221) and UAEMex for a Talentos Universitarios fellowship. NR 26 TC 5 Z9 5 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 11 PY 2009 VL 36 AR L21205 DI 10.1029/2009GL040454 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 520MG UT WOS:000271848100005 ER PT J AU Nguyen, AT Menemenlis, D Kwok, R AF Nguyen, A. T. Menemenlis, D. Kwok, R. TI Improved modeling of the Arctic halocline with a subgrid-scale brine rejection parameterization SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID SEA-ICE; MIXED-LAYER; OCEAN; CONVECTION; LEADS; CIRCULATION; GENERATION; SALINITY; THERMALS; PLUMES AB The halocline in the Arctic Ocean plays an important role in regulating heat exchange at the bottom of the mixed layer and it has a direct effect on the ocean sea ice energy balance and sea ice mass balance. Modeling the halocline, however, remains a challenge in current state-of-the-art coupled ocean sea ice models including those that participated in the Arctic Ocean Model Intercomparison Project. In this study, we successfully reproduce a cold halocline in the Canada Basin by implementing a subgrid-scale brine rejection parameterization in an ocean general circulation model. The brine rejection scheme improves the solution by redistributing surface salts rejected during sea ice formation to their neutral buoyancy depths. The depths are based on salt plume physics and published laboratory and numerical experiments. Compared with hydrographic data from 1993 to 2004, distribution of most of the rejected salt to the bottom of the mixed layer seems to yield the lowest model-data misfits. We also show that the model's mixed layer depth is sensitive to the background diffusivity nu used in the k-profile parameterization vertical mixing scheme. A background diffusivity of 10(-6) m(2)/s in combination with brine rejection scheme described herein yield the best simulation of the Arctic halocline. C1 [Nguyen, A. T.; Menemenlis, D.; Kwok, R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Nguyen, AT (reprint author), CALTECH, Jet Prop Lab, MS 300-235,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM an.t.nguyen@jpl.nasa.gov; dimitris.menemenlis@jpl.nasa.gov; ronald.kwok@jpl.nasa.gov RI Kwok, Ron/A-9762-2008 OI Kwok, Ron/0000-0003-4051-5896 FU Estimating the Circulation and Climate of the Ocean, Phase 2 (ECCO2); NASA Advanced Supercomputing (NAS); JPL Supercomputing and Visualization Facility (SVF). FX This work is funded by the Estimating the Circulation and Climate of the Ocean, Phase 2 (ECCO2) project, a contribution to the NASA Modeling Analysis and Prediction (MAP) program. We gratefully acknowledge computational resources and support from the NASA Advanced Supercomputing (NAS) Division and from the JPL Supercomputing and Visualization Facility (SVF). We would like to thank two anonymous reviewers for helpful comments and discussions. NR 38 TC 31 Z9 32 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD NOV 11 PY 2009 VL 114 AR C11014 DI 10.1029/2008JC005121 PG 12 WC Oceanography SC Oceanography GA 520QT UT WOS:000271862000001 ER PT J AU Tassis, K Dowell, CD Hildebrand, RH Kirby, L Vaillancourt, JE AF Tassis, K. Dowell, C. D. Hildebrand, R. H. Kirby, L. Vaillancourt, J. E. TI Statistical assessment of shapes and magnetic field orientations in molecular clouds through polarization observations SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE magnetic fields; methods: statistical; techniques: polarimetric; ISM: clouds ID FAR-INFRARED POLARIMETRY; STAR-FORMING REGIONS; INTRINSIC SHAPES; CORES; ALIGNMENT; TRIAXIALITY; EMISSION; HERTZ; ORION AB We present a novel statistical analysis aimed at deriving the intrinsic shapes and magnetic field orientations of molecular clouds using dust emission and polarization observations by the Hertz polarimeter. Our observables are the aspect ratio of the projected plane-of-the-sky cloud image and the angle between the mean direction of the plane-of-the-sky component of the magnetic field and the short axis of the cloud image. To overcome projection effects due to the unknown orientation of the line-of-sight, we combine observations from 24 clouds, assuming that line-of-sight orientations are random and all are equally probable. Through a weighted least-squares analysis, we find that the best-fitting intrinsic cloud shape describing our sample is an oblate disc with only small degrees of triaxiality. The best-fitting intrinsic magnetic field orientation is close to the direction of the shortest cloud axis, with small (similar to 24 degrees) deviations towards the long/middle cloud axes. However, due to the small number of observed clouds, the power of our analysis to reject alternative configurations is limited. C1 [Tassis, K.; Dowell, C. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Hildebrand, R. H.; Kirby, L.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Hildebrand, R. H.; Kirby, L.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Hildebrand, R. H.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Vaillancourt, J. E.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. RP Tassis, K (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM ktassis@jpl.nasa.gov RI Tassis, Konstantinos/C-3155-2011; OI Tassis, Konstantinos/0000-0002-8831-2038 FU NSF [AST 02-06216, AST02-39759, PHY-0114422, PHY-0551142, AST 05-40882, AST 0505124]; NASA [NNG04G178G]; Kavli Foundation FX KT thanks Shantanu Basu and Vasiliki Pavlidou for useful discussions, and Nick Scoville, Paul Goldsmith and Telemachos Mouschovias for feedback on the manuscript. We thank the referee, Carl Heiles, for insightful comments which helped us improve the manuscript. KT acknowledges support by NSF grants AST 02-06216 and AST02-39759, by the NASA Theoretical Astrophysics Program grant NNG04G178G and by the Kavli Institute for Cosmological Physics at the University of Chicago through grants NSF PHY-0114422 and NSF PHY-0551142 and an endowment from the Kavli Foundation and its founder Fred Kavli. JEV acknowledges support from NSF AST 05-40882 through the Caltech Submillimeter Observatory. RH and LK acknowledge support from NSF grant AST 0505124. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. C (C) 2008. All rights reserved. NR 34 TC 30 Z9 30 U1 0 U2 0 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 11 PY 2009 VL 399 IS 4 BP 1681 EP 1693 DI 10.1111/j.1365-2966.2009.15420.x PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 515KP UT WOS:000271469000001 ER PT J AU Romano, P Sidoli, L Cusumano, G La Parola, V Vercellone, S Pagani, C Ducci, L Mangano, V Cummings, J Krimm, HA Guidorzi, C Kennea, JA Hoversten, EA Burrows, DN Gehrels, N AF Romano, P. Sidoli, L. Cusumano, G. La Parola, V. Vercellone, S. Pagani, C. Ducci, L. Mangano, V. Cummings, J. Krimm, H. A. Guidorzi, C. Kennea, J. A. Hoversten, E. A. Burrows, D. N. Gehrels, N. TI Monitoring supergiant fast X-ray transients with Swift: results from the first year SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE X-rays: binaries; X-rays: individual: IGR J16479-4514; X-rays: individual: XTE J1739-302; X-rays: individual: IGR J17544-2619; X-rays: individual: AX J1841.0-0536 ID CLUMPY STELLAR WINDS; XTE J1739-302; IGR J17544-2619; NEUTRON-STAR; TELESCOPE; OUTBURST; REGION; J16479-4514; J08408-4503; DISCOVERY AB The advent of Swift has allowed, for the first time, the possibility to give supergiant fast X-ray transients (SFXTs), the new class of high-mass X-ray binaries discovered by the International Gamma-Ray Astrophysics Laboratory, non-serendipitous attention throughout most phases of their life. In this paper, we present our results based on the first year of intense Swift monitoring of four SFXTs, IGR J16479-4514, XTE J1739-302, IGR J17544-2619 and AX J1841.0-0536. We obtain the first assessment of how long each source spends in each state using a systematic monitoring with a sensitive instrument. The duty-cycle of inactivity is similar to 17, 28, 39 and 55 per cent (similar to 5 per cent uncertainty), for IGR J16479-4514, AX J1841.0-0536, XTE J1739-302 and IGR J17544-2619, respectively, so that true quiescence, which is below our detection ability even with the exposures we collected in 1 yr, is a rare state, when compared with estimates from less sensitive instruments. This demonstrates that these transients accrete matter throughout their lifetime at different rates. AX J1841.0-0536 is the only source which has not undergone a bright outburst during our monitoring campaign. Although individual sources behave somewhat differently, common X-ray characteristics of this class are emerging, such as outburst lengths well in excess of hours, with a multiple peaked structure. A high dynamic range (including bright outbursts) of similar to 4 orders of magnitude has been observed in IGR J17544-2619 and XTE J1739-302, of similar to 3 in IGR J16479-4514 and of about 2 in AX J1841.0-0536 (this lowest range is due to the lack of bright flares). We also present a complete list of Burst Alert Telescope (BAT) on-board detections, which complements our previous work, and further confirms the continuous activity of these sources. We performed out-of-outburst intensity-based spectroscopy. In particular, spectral fits with an absorbed blackbody always result in blackbody radii of a few hundred metres, consistent with being emitted from a small portion of the neutron star surface, very likely the neutron star polar caps. We used the whole BAT data set, since the beginning of the mission, to search for periodicities due to orbital motion and found P(orb) = 3.32 d for IGR J16479-4514, confirming previous findings. We also present the Ultraviolet/Optical Telescope (UVOT) data of these sources; we show the UVOT light curves of AX J1841.0-0536 and the ones of XTE J1739-302 before, during and after the outbursts. C1 [Romano, P.; Cusumano, G.; La Parola, V.; Vercellone, S.; Mangano, V.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-90146 Palermo, Italy. [Sidoli, L.; Ducci, L.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy. [Pagani, C.; Kennea, J. A.; Hoversten, E. A.; Burrows, D. N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Ducci, L.] Univ Insubria, Dipartimento Matemat & Fis, I-22100 Como, Italy. [Cummings, J.; Krimm, H. A.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Krimm, H. A.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Guidorzi, C.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. RP Romano, P (reprint author), Ist Astrofis Spaziale & Fis Cosm, INAF, Via U La Malfa 153, I-90146 Palermo, Italy. EM romano@ifc.inaf.it RI Gehrels, Neil/D-2971-2012; OI Cusumano, Giancarlo/0000-0002-8151-1990; Vercellone, Stefano/0000-0003-1163-1396; Sidoli, Lara/0000-0001-9705-2883; La Parola, Valentina/0000-0002-8087-6488 FU ASI [I/088/06/0, I/023/05/0]; NASA [NAS5-00136]; Swift project FX We would like to thank our many collaborators, who helped along the way during this large project, and M. Colpi, who organized a 'Neutron Star Day' in Milano in 2006, during which so many new ideas came forth and unexpected collaborations were created... and who basically got this all started. Then, we would like to thank A. Bazzano, A. Cucchiara, S. Mereghetti, T. Mineo and P. Ubertini for helpful discussions. We thank the Swift team duty scientists and science planners P.J. Brown, M. Chester, S. Hunsberger, J. Racusin and M. C. Stroh for their dedication and willingness to accommodate our sudden requests in response to outbursts during this monitoring effort. We also thank the remainder of the Swift XRT and BAT teams, J. A. Nousek and S. Barthelmy in particular, for their invaluable help and support with the planning and execution of the observing strategy. This work was supported in Italy by contracts ASI I/088/06/0 and I/023/05/0, at PSU by NASA contract NAS5-00136. HAK was supported by the Swift project. DNB and JAK acknowledge support from NASA contract NAS5-00136. PR thanks INAF-IASF Milano and LS INAF-IASF Palermo, where some of the work was carried out, for their kind hospitality. We also thank the anonymous referee for comments that helped improve the paper. NR 46 TC 33 Z9 33 U1 0 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 11 PY 2009 VL 399 IS 4 BP 2021 EP 2032 DI 10.1111/j.1365-2966.2009.15356.x PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 515KP UT WOS:000271469000024 ER PT J AU Pueyo, L Kay, J Kasdin, NJ Groff, T McElwain, M Give'on, A Belikov, R AF Pueyo, Laurent Kay, Jason Kasdin, N. Jeremy Groff, Tyler McElwain, Michael Give'on, Amir Belikov, Ruslan TI Optimal dark hole generation via two deformable mirrors with stroke minimization SO APPLIED OPTICS LA English DT Article ID SPACE AB The past decade has seen a significant growth in research targeted at space-based observatories for imaging exosolar planets. The challenge is in designing an imaging system for high contrast. Even with a perfect coronagraph that modifies the point spread function to achieve high contrast, wavefront sensing and control is needed to correct the errors in the optics and generate a "dark hole." The high-contrast imaging laboratory at Princeton University is equipped with two Boston Micromachines Kilo-DMs. We review here an algorithm designed to achieve high contrast on both sides of the image plane while minimizing the stroke necessary from each deformable mirror (DM). This algorithm uses the first DM to correct for amplitude aberrations and uses the second DM to create a flat wavefront in the pupil plane. We then show the first results obtained at Princeton with this correction algorithm, and we demonstrate a symmetric dark hole in monochromatic light. (C) 2009 Optical Society of America C1 [Pueyo, Laurent; Give'on, Amir] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kay, Jason; Kasdin, N. Jeremy; Groff, Tyler; McElwain, Michael] Princeton Univ, Princeton, NJ 08544 USA. [Belikov, Ruslan] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Pueyo, L (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM lpueyo@jpl.nasa.gov RI McElwain, Michael/D-3607-2012 OI McElwain, Michael/0000-0003-0241-8956 FU NASA Postdoctoral Program at the JPL; Oak Ridge Associated Universities through a contract with NASA FX The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology (Caltech), under a contract with the National Aeronautics and Space Administration (NASA). The first author was supported by an appointment to the NASA Postdoctoral Program at the JPL, Caltech, administered by Oak Ridge Associated Universities through a contract with NASA. NR 10 TC 58 Z9 58 U1 1 U2 7 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD NOV 10 PY 2009 VL 48 IS 32 BP 6296 EP 6312 DI 10.1364/AO.48.006296 PG 17 WC Optics SC Optics GA 517WM UT WOS:000271649700029 PM 19904331 ER PT J AU Auger, MW Treu, T Bolton, AS Gavazzi, R Koopmans, LVE Marshall, PJ Bundy, K Moustakas, LA AF Auger, M. W. Treu, T. Bolton, A. S. Gavazzi, R. Koopmans, L. V. E. Marshall, P. J. Bundy, K. Moustakas, L. A. TI THE SLOAN LENS ACS SURVEY. IX. COLORS, LENSING, AND STELLAR MASSES OF EARLY-TYPE GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: elliptical and lenticular, cD; gravitational lensing; surveys ID TO-LIGHT RATIOS; POPULATION SYNTHESIS; GRAVITATIONAL LENSES; INTERNAL STRUCTURE; ELLIPTIC GALAXIES; DENSITY PROFILES; MODELS; EVOLUTION; I.; METALLICITIES AB We present the current photometric data set for the Sloan Lens ACS (SLACS) Survey, including Hubble Space Telescope (HST) photometry from Advanced Camera for Surveys, WFPC2, and NICMOS. These data have enabled the confirmation of an additional 15 grade "A" (certain) lens systems, bringing the number of SLACS grade "A" lenses to 85; including 13 grade "B" (likely) systems, SLACS has identified nearly 100 lenses and lens candidates. Approximately 80% of the grade "A" systems have elliptical morphologies while similar to 10% show spiral structure; the remaining lenses have lenticular morphologies. Spectroscopic redshifts for the lens and source are available for every system, making SLACS the largest homogeneous data set of galaxy-scale lenses to date. We have created lens models using singular isothermal ellipsoid mass distributions for the 11 new systems that are dominated by a single mass component and where the multiple images are detected with sufficient signal to noise; these models give a high precision measurement of the mass within the Einstein radius of each lens. We have developed a novel Bayesian stellar population analysis code to determine robust stellar masses with accurate error estimates. We apply this code to deep, high-resolution HST imaging and determine stellar masses with typical statistical errors of 0.1 dex; we find that these stellar masses are unbiased compared to estimates obtained using SDSS photometry, provided that informative priors are used. The stellar masses range from 10(10.5) to 10(11.8)M(circle dot) and the typical stellar mass fraction within the Einstein radius is 0.4, assuming a Chabrier initial mass function. The ensemble properties of the SLACS lens galaxies, e. g., stellar masses and projected ellipticities, appear to be indistinguishable from other SDSS galaxies with similar stellar velocity dispersions. This further supports that SLACS lenses are representative of the overall population of massive early-type galaxies with M* greater than or similar to 10(11) M(circle dot) , and are therefore an ideal data set to investigate the kpc-scale distribution of luminous and dark matter in galaxies out to z similar to 0.5. C1 [Auger, M. W.; Treu, T.; Marshall, P. J.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Gavazzi, R.] Univ Paris 06, F-75014 Paris, France. [Gavazzi, R.] CNRS, Inst Astrophys Paris, UMR7095, F-75014 Paris, France. [Koopmans, L. V. E.] Univ Groningen, Kapteyn Astron Inst, NL-9700 AV Groningen, Netherlands. [Bundy, K.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Moustakas, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Auger, MW (reprint author), Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. EM mauger@physics.ucsb.edu OI Moustakas, Leonidas/0000-0003-3030-2360 NR 38 TC 113 Z9 113 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2009 VL 705 IS 2 BP 1099 EP 1115 DI 10.1088/0004-637X/705/2/1099 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 511FQ UT WOS:000271149700001 ER PT J AU Uchida, H Tsunemi, H Katsuda, S Kimura, M Kosugi, H Takahashi, H AF Uchida, Hiroyuki Tsunemi, Hiroshi Katsuda, Satoru Kimura, Masashi Kosugi, Hiroko Takahashi, Hiroaki TI LINE-OF-SIGHT SHELL STRUCTURE OF THE CYGNUS LOOP SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: abundances; ISM: individual (Cygnus Loop); supernova remnants; X-rays: ISM ID X-RAY-EMISSION; ABUNDANCE INHOMOGENEITY; SUPERNOVA-REMNANTS; SOUTHWESTERN RIM; PLASMA STRUCTURE; SUZAKU; NORTHEASTERN; ELEMENTS; SOLAR; LIMB AB We conducted a comprehensive study on the shell structure of the Cygnus Loop using 41 observation data obtained by the Suzaku and the XMM-Newton satellites. To investigate the detailed plasma structure of the Cygnus Loop, we divided our fields of view into 1042 box regions. From the spectral analysis, the spectra obtained from the limb of the Loop are well fitted by the single-component non-equilibrium ionization plasma model. On the other hand, the spectra obtained from the inner regions are well fitted by the two-component model. As a result, we confirmed that the low-temperature and high-temperature components originated from the surrounding interstellar matter (ISM) and the ejecta of the Loop, respectively. From the best-fit results, we showed a flux distribution of the ISM component. The distribution clearly shows the limb-brightening structure, and we found out some low-flux regions. Among them, the south blowout region has the lowest flux. We also found other large low-flux regions at slightly west and northeast from the center. We estimated the former thin shell region to be similar to 1 degrees.3 in diameter and concluded that there exists a blowout along the line of sight in addition to the south blowout. We also calculated the emission measure distribution of the ISM component and showed that the Cygnus Loop is far from the result obtained by a simple Sedov evolutionmodel. From the results, we support that the Cygnus Loop originated from a cavity explosion. The emission measure distribution also suggests that the cavity-wall density is higher in the northeast than that in the southwest. These results suggest that the thickness of the cavity wall surrounding the Cygnus Loop is not uniform. C1 [Uchida, Hiroyuki; Tsunemi, Hiroshi; Katsuda, Satoru; Kimura, Masashi; Kosugi, Hiroko; Takahashi, Hiroaki] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Osaka 5600043, Japan. [Katsuda, Satoru] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Uchida, H (reprint author), Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Osaka 5600043, Japan. EM uchida@ess.sci.osaka-u.ac.jp RI XRAY, SUZAKU/A-1808-2009 FU Ministry of Education, Culture, Sports, Science and Technology [16002004]; JSPS Research Fellowship FX H. U. thanks Professor Jacco Vink and his students for many useful discussions and their hospitality at Utrecht University. This work is partly supported by a grant-in-aid for Scientific Research by the Ministry of Education, Culture, Sports, Science and Technology (16002004). H. U. and S. K. are supported by JSPS Research Fellowship for Young Scientists. NR 28 TC 9 Z9 9 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2009 VL 705 IS 2 BP 1152 EP 1159 DI 10.1088/0004-637X/705/2/1152 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 511FQ UT WOS:000271149700006 ER PT J AU Bryden, G Beichman, CA Carpenter, JM Rieke, GH Stapelfeldt, KR Werner, MW Tanner, AM Lawler, SM Wyatt, MC Trilling, DE Su, KYL Blaylock, M Stansberry, JA AF Bryden, G. Beichman, C. A. Carpenter, J. M. Rieke, G. H. Stapelfeldt, K. R. Werner, M. W. Tanner, A. M. Lawler, S. M. Wyatt, M. C. Trilling, D. E. Su, K. Y. L. Blaylock, M. Stansberry, J. A. TI PLANETS AND DEBRIS DISKS: RESULTS FROM A SPITZER/MIPS SEARCH FOR INFRARED EXCESS SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; infrared: stars; Kuiper Belt; planetary systems ID SOLAR-TYPE STARS; EXOPLANET HOST STARS; SUN-LIKE STARS; MULTIBAND IMAGING PHOTOMETER; CA-II H; SPACE-TELESCOPE; CHROMOSPHERIC EMISSION; ABSOLUTE CALIBRATION; EXTRASOLAR PLANETS; RADIAL-VELOCITIES AB Using the MIPS camera on the Spitzer Space Telescope, we have searched for debris disks around 104 stars known from radial velocity studies to have one or more planets. Combining this new data with 42 already published observations of planet-bearing stars, we find that 14 of the 146 systems have IR excess at 24 and/or 70 mu m. Only one star, HD 69830, has IR excess exclusively at 24 mu m, indicative of warm dust in the inner system analogous to that produced by collisions in the solar system's asteroid belt. For the other 13 stars with IR excess the emission is stronger at 70 mu m, consistent with cool dust (< 100 K) located beyond 10 AU, well outside of the orbital location of the known planets. Selection effects inhibit detection of faint disks around the planet-bearing stars (e. g., the stars tend to be more distant), resulting in a lower detection rate for IR excess than in a corresponding control sample of nearby stars not known to have planets (9% +/- 3% versus 14% +/- 3%). Even taking into account the selection bias, we find that the difference between the dust emission around stars with planets and stars without known planets is not statistically significant. C1 [Bryden, G.; Stapelfeldt, K. R.; Werner, M. W.; Tanner, A. M.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Beichman, C. A.; Lawler, S. M.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Carpenter, J. M.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Rieke, G. H.; Su, K. Y. L.; Blaylock, M.; Stansberry, J. A.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Tanner, A. M.] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30302 USA. [Lawler, S. M.] Wesleyan Univ, Dept Astron, Middletown, CT 06459 USA. [Wyatt, M. C.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Trilling, D. E.] No Arizona Univ, Dept Phys & Astron, Flagstaff, AZ 86011 USA. RP Bryden, G (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RI Stapelfeldt, Karl/D-2721-2012; OI Su, Kate/0000-0002-3532-5580 FU Jet Propulsion Laboratory; California Institute of Technology; NASA [1407]; JPL/CalTech to the University of Arizona [1255094] FX This paper makes use of data products from the NASA/IPAC/NExScI Star & Exoplanet Database (NStED), the Two-Micron All Sky Survey (2MASS), the NASA/IPAC Infrared Science Archive (IRSA), the SIMBAD and VIZIER databases operated at CDS Strasbourg, the Extrasolar Planets Encyclopaedia, and the California & Carnegie Planet Search website. The Spitzer Space Telescope is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. This work was partially supported by contract 1255094 from JPL/CalTech to the University of Arizona. Some of the research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 78 TC 79 Z9 79 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2009 VL 705 IS 2 BP 1226 EP 1236 DI 10.1088/0004-637X/705/2/1226 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 511FQ UT WOS:000271149700015 ER PT J AU Gorti, U Dullemond, CP Hollenbach, D AF Gorti, U. Dullemond, C. P. Hollenbach, D. TI TIME EVOLUTION OF VISCOUS CIRCUMSTELLAR DISKS DUE TO PHOTOEVAPORATION BY FAR-ULTRAVIOLET, EXTREME-ULTRAVIOLET, AND X-RAY RADIATION FROM THE CENTRAL STAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; planetary systems: protoplanetary disks; stars: formation; stars: pre-main-sequence; ultraviolet: stars; X-rays: stars ID T-TAURI STARS; MAIN-SEQUENCE STARS; LOW-MASS STARS; ORION ULTRADEEP PROJECT; YOUNG STARS; PROTOPLANETARY DISKS; PROTOSTELLAR DISKS; DUST DISKS; INTERSTELLAR-MEDIUM; ILLUMINATED DISKS AB We present the time evolution of viscously accreting circumstellar disks as they are irradiated by ultraviolet and X-ray photons from a low-mass central star. Our model is a hybrid of a one-dimensional (1D) time-dependent viscous disk model coupled to a 1+1D disk vertical structure model used for calculating the disk structure and photoevaporation rates. We find that disks of initial mass 0.1 M-circle dot around similar to 1M(circle dot) stars survive for similar to 4 x 10(6) yr, assuming a viscosity parameter alpha = 0.01, a time-dependent FUV luminosity L-FUV similar to 10(-2)-10(-3) L-circle dot and with X-ray and EUV luminosities L-X similar to L-EUV similar to 10(-3) L-circle dot. We find that FUV/X-ray-induced photoevaporation and viscous accretion are both important in depleting disk mass. Photoevaporation rates are most significant at similar to 1-10 AU and at greater than or similar to 30 AU. Viscosity spreads the disk which causes mass loss by accretion onto the central star and feeds mass loss by photoevaporation in the outer disk. We find that FUV photons can create gaps in the inner, planet-forming regions of the disk (similar to 1-10 AU) at relatively early epochs in disk evolution while disk masses are still substantial. EUV and X-ray photons are also capable of driving gaps, but EUV can only do so at late, low accretion-rate epochs after the disk mass has already declined substantially. Disks around stars with predominantly soft X-ray fields experience enhanced photoevaporative mass loss. We follow disk evolution around stars of different masses, and find that disk survival time is relatively independent of mass for stars with M-* less than or similar to 3 M-circle dot; for M-* greater than or similar to 3 M-circle dot the disks are short-lived (similar to 10(5) yr). C1 [Gorti, U.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Gorti, U.; Hollenbach, D.] SETI Inst, Mountain View, CA USA. [Dullemond, C. P.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. RP Gorti, U (reprint author), NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. OI Dullemond, Cornelis/0000-0002-7078-5910 FU NASA Astrophysics Theory Program [ATP04-0054-0083]; NASA Astrobiology Institute; NSF [AST0606831] FX We thank Barbara Ercolano and Richard Alexander for helpful discussion during the course of this work and for generously providing data for comparisons. We thank the referee for a very careful and thorough reading of the manuscript and many useful comments that improved this paper. Gorti and Hollenbach acknowledge financial support by research grants from the NASA Astrophysics Theory Program (ATP04-0054-0083), the NASA Astrobiology Institute, and NSF (AST0606831). NR 96 TC 129 Z9 129 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2009 VL 705 IS 2 BP 1237 EP 1251 DI 10.1088/0004-637X/705/2/1237 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 511FQ UT WOS:000271149700016 ER PT J AU Hoversten, EA Gronwall, C Vanden Berk, DE Koch, TS Breeveld, AA Curran, PA Hinshaw, DA Marshall, FE Roming, PWA Siegel, MH Still, M AF Hoversten, E. A. Gronwall, C. Vanden Berk, D. E. Koch, T. S. Breeveld, A. A. Curran, P. A. Hinshaw, D. A. Marshall, F. E. Roming, P. W. A. Siegel, M. H. Still, M. TI ULTRAVIOLET NUMBER COUNTS OF GALAXIES FROM SWIFT ULTRAVIOLET/OPTICAL TELESCOPE DEEP IMAGING OF THE CHANDRA DEEP FIELD SOUTH SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: luminosity function, mass function; ultraviolet: galaxies ID LUMINOSITY FUNCTION; STAR-FORMATION; PHOTOMETRIC REDSHIFTS; DUST EXTINCTION; LOCAL UNIVERSE; EVOLUTION; CATALOG; CALIBRATION; COLORS; NORTH AB Deep Swift UV/Optical Telescope (UVOT) imaging of the Chandra Deep Field South is used to measure galaxy number counts in three near-ultraviolet (NUV) filters (uvw2: 1928 angstrom, uvm2: 2246 angstrom, and uvw1: 2600 angstrom) and the u band (3645 angstrom). UVOT observations cover the break in the slope of the NUV number counts with greater precision than the number counts by the Hubble Space Telescope Space Telescope Imaging Spectrograph and the Galaxy Evolution Explorer, spanning a range 21 less than or similar to mAB less than or similar to 25. Model number counts confirm earlier investigations in favoring models with an evolving galaxy luminosity function. C1 [Hoversten, E. A.; Gronwall, C.; Koch, T. S.; Roming, P. W. A.; Siegel, M. H.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16801 USA. [Vanden Berk, D. E.] St Vincent Coll, Dept Phys, Latrobe, PA 15650 USA. [Breeveld, A. A.; Curran, P. A.; Still, M.] UCL, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Hinshaw, D. A.; Marshall, F. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Hoversten, EA (reprint author), Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16801 USA. RI Curran, Peter/B-5293-2013 OI Curran, Peter/0000-0003-3003-4626 FU NASA Astrophysics Data Analysis [NNX09AC87G]; NASA [NAS5-00136]; Science and Technology Facilities Council (STFC) FX We acknowledge support from NASA Astrophysics Data Analysis grantno. NNX09AC87G. This work is sponsored at PSU by NASA contract NAS5-00136 and at MSSL by funding from the Science and Technology Facilities Council (STFC). NR 36 TC 11 Z9 11 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2009 VL 705 IS 2 BP 1462 EP 1468 DI 10.1088/0004-637X/705/2/1462 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 511FQ UT WOS:000271149700032 ER PT J AU Su, Y Holman, GD Dennis, BR Tolbert, AK Schwartz, RA AF Su, Yang Holman, Gordon D. Dennis, Brian R. Tolbert, Anne K. Schwartz, Richard A. TI A TEST OF THICK-TARGET NONUNIFORM IONIZATION AS AN EXPLANATION FOR BREAKS IN SOLAR FLARE HARD X-RAY SPECTRA SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: chromosphere; Sun: flares; Sun: X-rays, gamma rays ID ELECTRON-SPECTRA; ENERGY CUTOFF; BREMSSTRAHLUNG; RHESSI; MICROWAVE; EMISSION; BURSTS; BEAMS AB Solar nonthermal hard X-ray (HXR) flare spectra often cannot be fitted by a single power law, but rather require a downward break in the photon spectrum. A possible explanation for this spectral break is nonuniform ionization in the emission region. We have developed a computer code to calculate the photon spectrum from electrons with a power-law distribution injected into a thick target in which the ionization decreases linearly from 100% to zero. We use the bremsstrahlung cross section from Haug, which closely approximates the full relativistic Bethe-Heitler cross section, and compare photon spectra computed from this model with those obtained by Kontar et al., who used a step-function ionization model and the Kramers approximation to the cross section. We find that for HXR spectra from a target with nonuniform ionization, the difference (Delta gamma) between the power-law indexes above and below the break has an upper limit between similar to 0.2 and 0.7 that depends on the power-law index d of the injected electron distribution. A broken power-law spectrum with a higher value of Delta gamma cannot result from nonuniform ionization alone. The model is applied to spectra obtained around the peak times of 20 flares observed by the Ramaty High-Energy Solar Spectroscopic Imager from 2002 to 2004 to determine whether thick-target nonuniform ionization can explain the measured spectral breaks. A Monte Carlo method is used to determine the uncertainties of the best-fit parameters, especially on Delta gamma. We find that 15 of the 20 flare spectra require a downward spectral break and that at least six of these could not be explained by nonuniform ionization alone because they had values of Delta gamma with less than a 2.5% probability of being consistent with the computed upper limits from the model. The remaining nine flare spectra, based on this criterion, are consistent with the nonuniform ionization model. C1 [Su, Yang; Holman, Gordon D.; Dennis, Brian R.; Tolbert, Anne K.; Schwartz, Richard A.] NASA, Goddard Space Flight Ctr, Solar Phys Lab, Greenbelt, MD 20771 USA. [Su, Yang; Schwartz, Richard A.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [Su, Yang] Purple Mt Observ, Nanjing 210008, Peoples R China. [Tolbert, Anne K.] Wyle IS, Mclean, VA 22102 USA. RP Su, Y (reprint author), NASA, Goddard Space Flight Ctr, Solar Phys Lab, Code 671, Greenbelt, MD 20771 USA. EM yangsu@helio.gsfc.nasa.gov RI Dennis, Brian/C-9511-2012; Holman, Gordon/C-9548-2012; Su, Yang/J-5381-2014 FU NSF [ATM-0725135]; RHESSI Project; NASA HGI FX We thank the RHESSI PI team for the excellence and easy availability of the data and the analysis software. Y.S. acknowledges NSF support through ATM-0725135. This work was supported in part by the RHESSI Project and a NASA HGI (Heliophysics Guest Investigator) grant. NR 27 TC 13 Z9 13 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2009 VL 705 IS 2 BP 1584 EP 1593 DI 10.1088/0004-637X/705/2/1584 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 511FQ UT WOS:000271149700045 ER PT J AU Dickinson, C Eriksen, HK Banday, AJ Jewell, JB Gorski, KM Huey, G Lawrence, CR O'Dwyer, IJ Wandelt, BD AF Dickinson, C. Eriksen, H. K. Banday, A. J. Jewell, J. B. Gorski, K. M. Huey, G. Lawrence, C. R. O'Dwyer, I. J. Wandelt, B. D. TI BAYESIAN COMPONENT SEPARATION AND COSMIC MICROWAVE BACKGROUND ESTIMATION FOR THE FIVE-YEAR WMAP TEMPERATURE DATA SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic microwave background; cosmology: observations; radio continuum: ISM ID DIFFUSE GALACTIC EMISSION; SPINNING DUST GRAINS; CMB POWER SPECTRUM; ANISOTROPY-PROBE; FULL-SKY; FOREGROUND EMISSION; 31 GHZ; RADIATION; MODEL; POLARIZATION AB A well-tested and validated Gibbs sampling code, that performs component separation and cosmic microwave background (CMB) power spectrum estimation, was applied to the WMAP five-year data. Using a simple model consisting of CMB, noise, monopoles, and dipoles, a "per pixel" low-frequency power-law (fitting for both amplitude and spectral index), and a thermal dust template with a fixed spectral index, we found that the low-l (l < 50) CMB power spectrum is in good agreement with the published WMAP5 results. Residual monopoles and dipoles were found to be small (less than or similar to 3 mu K) or negligible in the five-year data. We comprehensively tested the assumptions that were made about the foregrounds (e.g., dust spectral index, power-law spectral index prior, templates), and found that the CMB power spectrum was insensitive to these choices. We confirm the asymmetry of power between the north and south ecliptic hemispheres, which appears to be robust against foreground modeling. The map of low-frequency spectral indices indicates a steeper spectrum on average (beta = -2.97 +/- 0.21) relative to those found at low (similar to GHz) frequencies. C1 [Dickinson, C.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Eriksen, H. K.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. [Eriksen, H. K.] Univ Oslo, Ctr Math Applicat, N-0316 Oslo, Norway. [Banday, A. J.] Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Banday, A. J.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Jewell, J. B.; Gorski, K. M.; Huey, G.; Lawrence, C. R.; O'Dwyer, I. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Wandelt, B. D.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. RP Dickinson, C (reprint author), Univ Manchester, Jodrell Bank, Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. EM Clive.Dickinson@manchester.ac.uk OI WANDELT, Benjamin/0000-0002-5854-8269 FU Jet Propulsion Laboratory; California Institute of Technology; U.S. Planck project; NASA Science Mission; Research Council of Norway; NSF FX We acknowledge the use of the HEALPix software (Gorski et al. 2005) and analysis package for deriving the results in this paper. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). This work was partially performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We acknowledge the use of the NOTURsuper-computing facilities, the IPAC Planck cluster, and the Titan cluster owned and maintained by the University of Oslo. C.D. acknowledges support from the U.S. Planck project, which is funded by the NASA Science Mission Directorate. The work of C.D. was also supported in part by a STFC Advanced Fellowship. H.K.E. acknowledges financial support from the Research Council of Norway. B.D.W. was partially supported by NSF-AST 0507676 and NASA JPL 1236748. NR 53 TC 22 Z9 22 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2009 VL 705 IS 2 BP 1607 EP 1623 DI 10.1088/0004-637X/705/2/1607 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 511FQ UT WOS:000271149700047 ER PT J AU Godet, O Barret, D Webb, NA Farrell, SA Gehrels, N AF Godet, O. Barret, D. Webb, N. A. Farrell, S. A. Gehrels, N. TI FIRST EVIDENCE FOR SPECTRAL STATE TRANSITIONS IN THE ESO 243-49 HYPERLUMINOUS X-RAY SOURCE HLX-1 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE accretion, accretion disks; X-rays: binaries; X-rays: individual (HLX-1) ID BLACK-HOLE; NGC 4485/4490; GALAXY; VARIABILITY; POPULATION; MASSES AB The brightest ultra-luminous X-ray source, ESO 243-49 HLX-1, with a 0.2-10 keV X-ray luminosity of up to 10(42) erg s(-1), provides the strongest evidence to date for the existence of intermediate mass black holes (BHs). Although small-scale X-ray spectral variability has already been demonstrated, we have initiated a monitoring campaign with the X-ray Telescope (XRT) onboard the Swift satellite to search for luminosity-related spectral changes and to compare its behavior with the better-studied stellar mass BHs. In this Letter, we report a drop in the XRT count rate by a factor of similar to 8 which occurred simultaneously with a hardening of the X-ray spectrum. A second observation found that the source had re-brightened by a factor of similar to 21 which occurred simultaneously with a softening of the X-ray spectrum. This may be the first evidence for a transition between the low/hard and high/soft states. C1 [Godet, O.; Barret, D.; Webb, N. A.] Univ Toulouse, UPS, CESR, F-31028 Toulouse 9, France. [Farrell, S. A.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Godet, O (reprint author), Univ Toulouse, UPS, CESR, 9 Ave Colonel Roche, F-31028 Toulouse 9, France. RI Gehrels, Neil/D-2971-2012 FU CNRS; CNES; STFC FX O. G. acknowledges funding from the CNRS and the CNES. S. A. F. acknowledges STFC funding. We also thank Cole Miller for useful discussions. NR 23 TC 48 Z9 48 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 10 PY 2009 VL 705 IS 2 BP L109 EP L112 DI 10.1088/0004-637X/705/2/L109 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 511FV UT WOS:000271150200003 ER PT J AU Mishchenko, MI Dlugach, JM Liu, L Rosenbush, VK Kiselev, NN Shkuratov, YG AF Mishchenko, Michael I. Dlugach, Janna M. Liu, Li Rosenbush, Vera K. Kiselev, Nikolai N. Shkuratov, Yuri G. TI DIRECT SOLUTIONS OF THE MAXWELL EQUATIONS EXPLAIN OPPOSITION PHENOMENA OBSERVED FOR HIGH-ALBEDO SOLAR SYSTEM OBJECTS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE minor planets, asteroids; planets and satellites: individual (Europa); polarization; radiative transfer; scattering ID WEAK-LOCALIZATION; COHERENT BACKSCATTERING; SPHERICAL-PARTICLES; POLARIZATION; SCATTERING; LIGHT; SATELLITES; MEDIA; PHOTOMETRY; ENSEMBLES AB Several spectacular backscattering effects observed for particulate planetary surfaces have been interpreted in terms of the effect of weak localization (WL) of electromagnetic waves. However, the interference concept of WL explicitly relies on the notion of phase of an electromagnetic wave and is strictly applicable only when particles forming the surface are widely separated. Therefore, one needs a definitive quantitative proof of the WL nature of specific optical effects observed for densely packed particulate media. We use numerically exact computer solutions of the Maxwell equations to simulate electromagnetic scattering by realistic models consisting of large numbers of randomly positioned, densely packed particles. By increasing the particle packing density from zero to similar to 40%, we track the onset and evolution of the full suite of backscattering optical effects predicted by the low-density theory of WL, including the brightness and polarization opposition effects (BOE and POE). We find that all manifestations of WL, except the circular polarization ratio and POE, are remarkably immune to packing-density effects. Even POE can survive packing densities typical of planetary regolith surfaces. Our numerical data coupled with the results of unique observations at near-backscattering geometries demonstrate that the BOE and POE detected simultaneously for high-albedo solar system objects are caused by the effect of WL. C1 [Mishchenko, Michael I.; Liu, Li] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Dlugach, Janna M.; Rosenbush, Vera K.; Kiselev, Nikolai N.] Natl Acad Sci Ukraine, Main Astron Observ, UA-03680 Kiev, Ukraine. [Shkuratov, Yuri G.] Kharkov Natl Univ, Astron Inst, UA-61022 Kharkov, Ukraine. RP Mishchenko, MI (reprint author), NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM mmishchenko@giss.nasa.gov RI Mishchenko, Michael/D-4426-2012 FU NASA FX This research was funded by the NASA Radiation Sciences Program managed by Hal Maring. NR 35 TC 41 Z9 42 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 10 PY 2009 VL 705 IS 2 BP L118 EP L122 DI 10.1088/0004-637X/705/2/L118 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 511FV UT WOS:000271150200005 ER PT J AU Baek, B Stern, JA Nam, SW AF Baek, Burm Stern, Jeffrey A. Nam, Sae Woo TI Superconducting nanowire single-photon detector in an optical cavity for front-side illumination SO APPLIED PHYSICS LETTERS LA English DT Article ID EFFICIENCY AB We have integrated superconducting nanowire single-photon detectors (SNSPDs) with an optical cavity design for front-side illumination. Our optical cavity design increases the coupling efficiency of light to the nanowire detector and enables straightforward proximity fiber-coupling for a multichannel detector system. Using a confocal optical scanning technique, we measured a significantly enhanced optical absorptance of 73% in comparison with 20% in a typical bare nanowire device at 1550 nm and 3 K. Our method of fabrication of these devices on a silicon wafer and the local optical absorptance measurement are important steps toward developing next-generation SNSPD technology. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3263715] C1 [Baek, Burm; Nam, Sae Woo] Natl Inst Stand & Technol, Boulder, CO 80305 USA. [Stern, Jeffrey A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Baek, B (reprint author), Natl Inst Stand & Technol, 325 Broadway, Boulder, CO 80305 USA. NR 13 TC 23 Z9 25 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 9 PY 2009 VL 95 IS 19 AR 191110 DI 10.1063/1.3263715 PG 3 WC Physics, Applied SC Physics GA 532NR UT WOS:000272756600006 ER PT J AU Yu, ZB Yuan, W Brochu, P Chen, B Liu, ZT Pei, QB AF Yu, Zhibin Yuan, Wei Brochu, Paul Chen, Bin Liu, Zhitian Pei, Qibing TI Large-strain, rigid-to-rigid deformation of bistable electroactive polymers SO APPLIED PHYSICS LETTERS LA English DT Article ID DIELECTRIC ELASTOMER ACTUATORS; ARTIFICIAL MUSCLES; ELECTROSTRICTION; NANOCOMPOSITES AB Thermoplastic poly(tert-butyl acrylate) (PTBA) is reported as an electroactive polymer that is rigid at ambient conditions and turns into it dielectric elastomer above a transition temperature. In the rubbery state, a PTBA thin film can be electrically actuated to strains Lip to 335% in area expansion. The calculated actuation pressure is 3.2 MPa. The actuation is made bistable by cooling to below glass transition temperature. The PTBA represents the bistable electroactive polymer (BSEP) that can be actuated to various largely strained, rigid shapes. The application of the BSEP for refreshable Braille display, in active tactile display. is also demonstrated (C) 2009 American Institute of Physics [doi: 10.1063/1.3263729] C1 [Yu, Zhibin; Yuan, Wei; Brochu, Paul; Liu, Zhitian; Pei, Qibing] Univ Calif Los Angeles, Dept Mat Sci & Engn, Henry Samueli Sch Engn & Appl Sci, Los Angeles, CA 90095 USA. [Yu, Zhibin; Yuan, Wei; Brochu, Paul; Liu, Zhitian; Pei, Qibing] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA. [Chen, Bin] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Yu, ZB (reprint author), Univ Calif Los Angeles, Dept Mat Sci & Engn, Henry Samueli Sch Engn & Appl Sci, Los Angeles, CA 90095 USA. RI Yu, Zhibin/F-6650-2011; Pei, Qibing/N-7497-2015 NR 18 TC 61 Z9 61 U1 7 U2 40 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 9 PY 2009 VL 95 IS 19 AR 192904 DI 10.1063/1.3263729 PG 3 WC Physics, Applied SC Physics GA 532NR UT WOS:000272756600059 ER PT J AU Hwang, KJ Ergun, RE Newman, DL Tao, JB Andersson, L AF Hwang, K. -J. Ergun, R. E. Newman, D. L. Tao, J. -B. Andersson, L. TI Self-consistent evolution of auroral downward-current region ion outflow and moving double layer SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID PARALLEL ELECTRIC-FIELDS; PHASE-SPACE HOLES; BEAMS; ZONE AB Vlasov simulations have been performed to investigate the development and evolution of the parallel potential drop, often structured as a localized double layer (DL), electron phase-space holes, and ion perpendicular heating, resulting in ion outflow in the auroral downward-current region. We focus on the feedback between a moving DL and heated ions, suggesting a self-consistent model: the heated ions regulate the evolution of the DL which controls the level of ion heating and, consequently, the outflow rate. Strongly heated ions forming conics are found in agreement with in-situ observations. The intensification and widening of the DL develops with time, and the DL eventually weakens due to a reduction in the background population resulting from excessive ion heating. Citation: Hwang, K.-J., R. E. Ergun, D. L. Newman, J.-B. Tao, and L. Andersson (2009), Self-consistent evolution of auroral downward-current region ion outflow and moving double layer, Geophys. Res. Lett., 36, L21104, doi: 10.1029/2009GL040585. C1 [Ergun, R. E.; Andersson, L.] Univ Colorado, Lab Atmospher & Space Plasmas, Boulder, CO 80303 USA. [Newman, D. L.] Univ Colorado, Ctr Integrated Plasma Studies, Boulder, CO 80309 USA. [Ergun, R. E.; Tao, J. -B.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Hwang, K. -J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hwang, K. -J.] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. RP Hwang, KJ (reprint author), NASA, Goddard Lab Space Flight Ctr, Code 673, Greenbelt, MD 20771 USA. EM jhwang@helio.gsfc.nasa.gov; ree@lasp.colorado.edu; david.newman@colorado.edu; jianbao.tao@colorado.edu; laila.andersson@lasp.colorado.edu FU NSF [ATM0503314] FX Authors appreciate valuable comments from Martin V. Goldman. This study was supported by NSF grant ATM0503314, and NCAR computing resources. NR 21 TC 8 Z9 8 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 7 PY 2009 VL 36 AR L21104 DI 10.1029/2009GL040585 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 516YN UT WOS:000271579600006 ER PT J AU Meyyappan, M AF Meyyappan, M. TI A review of plasma enhanced chemical vapour deposition of carbon nanotubes SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Review ID LOW-TEMPERATURE GROWTH; MOLECULAR-DYNAMICS SIMULATION; LARGE-SCALE SYNTHESIS; LARGE-AREA SYNTHESIS; DC PLASMA; NANOELECTRODE ARRAYS; NANOFIBER GROWTH; GLASS SUBSTRATE; FIELD-EMISSION; CATALYZED DECOMPOSITION AB Plasma enhanced chemical vapour deposition (PECVD) has been widely discussed in the literature for the growth of carbon nanotubes (CNTs) and carbon nanofibres (CNFs) in recent years. Advantages claimed include lower growth temperatures relative to thermal CVD and the ability to grow individual, free-standing, vertical CNFs instead of tower-like structures or ensembles. This paper reviews the current status of the technology including equipment, plasma chemistry, diagnostics and modelling, and mechanisms. Recent accomplishments include PECVD of single-walled CNTs and growth at low temperatures for handling delicate substrates such as glass. C1 NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Meyyappan, M (reprint author), NASA, Ames Res Ctr, MS 229-3, Moffett Field, CA 94035 USA. EM m.meyyappan@nasa.gov FU NASA Ames Center for Nanotechnology FX The author acknowledges colleagues from the NASA Ames Center for Nanotechnology for their contributions to CNT growth and application development. He is grateful to Prabhu Arumugam and Xuhui Sun for providing many of the figures used in this work and Ken Teo for his critical reading of this paper and helpful comments. Finally, the author thanks Professor Annemie Bogaerts for the invitation to write this review article, arranging the review and her valuable comments. NR 169 TC 106 Z9 107 U1 14 U2 106 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD NOV 7 PY 2009 VL 42 IS 21 AR 213001 DI 10.1088/0022-3727/42/21/213001 PG 15 WC Physics, Applied SC Physics GA 513LJ UT WOS:000271323500004 ER PT J AU Waliser, DE Tian, BJ Xie, XS Liu, WT Schwartz, MJ Fetzer, EJ AF Waliser, Duane E. Tian, Baijun Xie, Xiaosu Liu, W. Timothy Schwartz, Michael J. Fetzer, Eric J. TI How well can satellite data characterize the water cycle of the Madden-Julian Oscillation? SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID GAUGE OBSERVATIONS; OCEAN ALGORITHM; TOGA COARE; PRECIPITATION; PACIFIC; MODEL AB Most characterizations of the Madden-Julian Oscillation (MJO) have focused on its convection and circulation features, ocean interactions, and weather and climate impacts. The water cycle of the MJO has yet to be examined or quantified despite it offering an additional constraint on model representations of the MJO, which are still woefully poor. Recent satellite products now make it possible to characterize the MJO water cycle from observations. These include water vapor profiles, column water vapor, cloud ice profiles, total cloud liquid, rainfall, surface evaporation and column moisture convergence. From these, we quantify the water budget for disturbed and suppressed phases of the MJO. The column-integrated results indicate that precipitation is nearly balanced with moisture convergence, with variations in surface evaporation being an order of magnitude smaller. However, residuals in the column-integrated budget are relatively large, indicating the need for improved satellite retrievals and/or the necessity of using model-based assimilation products. Citation: Waliser, D. E., B. Tian, X. Xie, W. T. Liu, M. J. Schwartz, and E. J. Fetzer (2009), How well can satellite data characterize the water cycle of the Madden-Julian Oscillation?, Geophys. Res. Lett., 36, L21803, doi: 10.1029/2009GL040005. C1 [Waliser, Duane E.; Tian, Baijun; Xie, Xiaosu; Liu, W. Timothy; Schwartz, Michael J.; Fetzer, Eric J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Tian, Baijun] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA USA. RP Waliser, DE (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,MS 183-501,4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM waliser@caltech.edu RI Tian, Baijun/A-1141-2007 OI Tian, Baijun/0000-0001-9369-2373 FU NASA FX The research described in this paper was carried out at the Jet Propulsion Laboratory, Caltech, under a contract with NASA. NR 31 TC 6 Z9 6 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 6 PY 2009 VL 36 AR L21803 DI 10.1029/2009GL040005 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 516YM UT WOS:000271579500002 ER PT J AU Ho, SP Edwards, DP Gille, JC Luo, M Osterman, GB Kulawik, SS Worden, H AF Ho, Shu-Peng Edwards, David P. Gille, John C. Luo, Ming Osterman, Gregory B. Kulawik, Susan S. Worden, Helen TI A global comparison of carbon monoxide profiles and column amounts from Tropospheric Emission Spectrometer (TES) and Measurements of Pollution in the Troposphere (MOPITT) SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID NADIR RETRIEVALS AB In this study, we compare carbon monoxide (CO) products from the Measurements of Pollution in the Troposphere (MOPITT) and Tropospheric Emission Spectrometer (TES) and investigate the possible causes of the differences between retrievals for these two data sets. Direct comparisons of CO retrievals for July 2006 show that TES CO concentrations are consistently biased lower than those of MOPITT by 25 ppbv near the surface and by 20 ppbv at 150 hPa, primarily due to different a priori profiles and covariance matrices used in the TES and MOPITT CO retrievals. To reduce the effects of different a priori constraints, we apply TES a priori profiles and covariance matrices to a modified MOPITT retrieval algorithm. The mean TES-MOPITT CO difference decreases from -25 to -10 ppbv near the surface. To further account for retrieval smoothing errors due to different TES and MOPITT averaging kernels, TES averaging kernels are used to smooth MOPITT CO profiles to derive TES-equivalent CO profiles. Compared to these, TES CO profiles are biased 1 ppbv lower near the surface and 4-9 ppbv lower in the troposphere, and the mean absolute TES and TES-equivalent CO column difference is less than 6.5%. The mean TES and MOPITT CO differences due to smoothing errors are close to zero, and the remaining bias is primarily due to the combined effects of radiance biases, forward model errors, and the spatial and temporal mismatches of TES and MOPITT pixels. C1 [Ho, Shu-Peng] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80807 USA. [Ho, Shu-Peng] Univ Corp Atmospher Res, COSMIC Project Off, Boulder, CO USA. [Luo, Ming; Osterman, Gregory B.; Kulawik, Susan S.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Ho, SP (reprint author), Natl Ctr Atmospher Res, Div Atmospher Chem, POB 3000, Boulder, CO 80807 USA. EM spho@ucar.edu FU NASA [NNX07AB52G, NNX07AL57G]; National Science Foundation FX This research was primarily sponsored by the NASA grant of the Aura Validation Project NNX07AB52G. D. P. E. acknowledges NASA support under grant NNX07AL57G. We would like to acknowledge the contributions to this work from other members of the MOPITT algorithm team at NCAR. Comments from Merritt Deeter and Rashid Khosravi from the Atmospheric Chemistry Division of the National Center for Atmospheric Research are also appreciated. The National Center for Atmospheric Research is sponsored by the National Science Foundation. NR 28 TC 22 Z9 22 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 6 PY 2009 VL 114 AR D21307 DI 10.1029/2009JD012242 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 516YV UT WOS:000271580400005 ER PT J AU Serrador, JM Lipsitz, LA Gopalakrishnan, GS Black, FO Wood, SJ AF Serrador, Jorge M. Lipsitz, Lewis A. Gopalakrishnan, Gosala S. Black, F. Owen Wood, Scott J. TI Loss of otolith function with age is associated with increased postural sway measures SO NEUROSCIENCE LETTERS LA English DT Article DE Vestibular; Aging; Sex differences; Falls; Balance; Otolith ID EVOKED MYOGENIC POTENTIALS; OCULAR REFLEX; OLDER-PEOPLE; TRANSLATION; BALANCE; ROTATION; HUMANS; FALLS; TILT; POPULATION AB Loss of balance and increased fall risk is a common problem associated with aging. Changes in vestibular function occur with aging but the contribution of reduced vestibular otolith function to fall risk remains unknown. We examined a population of 151 healthy individuals (aged 21-93) for both balance (sway measures) and ocular counter-rolling (OCR) function. We assessed balance function with eyes open and closed on a firm surface, eyes open and closed on a foam surface and OCR during +/- 20 degree roll tilt at 0.005 Hz. Subjects demonstrated a significant age-related reduction in OCR and increase in postural sway. The effect of age on OCR was greater in females than males. The reduction in OCR was strongly correlated with the mediolateral measures of sway with eyes closed. This correlation was also present in the elderly group alone, suggesting that aging alone does not account for this effect. OCR decreased linearly with age and at a greater rate in females than males. This loss of vestibular otolith-ocular function is associated with increased mediolateral measures of sway which have been shown to be related to increased risk of falls. These data suggest a role for loss of otolith function in contributing to fall risk in the elderly. Further prospective, longitudinal studies are necessary to confirm these findings. (C) 2009 Elsevier Ireland Ltd. All rights reserved. C1 [Serrador, Jorge M.; Lipsitz, Lewis A.] Harvard Univ, Sch Med, Boston, MA 02215 USA. [Serrador, Jorge M.; Lipsitz, Lewis A.; Gopalakrishnan, Gosala S.] Beth Israel Deaconess Med Ctr, Boston, MA 02215 USA. [Serrador, Jorge M.] Natl Univ Ireland Galway, Galway, Ireland. [Lipsitz, Lewis A.] Hebrew Senior Life, Boston, MA USA. [Black, F. Owen] Neurotol Res Legacy Clin Res & Technol Ctr, Portland, OR USA. [Wood, Scott J.] NASA, Lyndon B Johnson Space Ctr, Univ Space Res Assoc, Houston, TX 77058 USA. RP Serrador, JM (reprint author), Harvard Univ, Sch Med, 330 Brookline Ave,Dana 779, Boston, MA 02215 USA. EM serrador@hms.harvard.edu FU NIH [R03DC005545, R01DC00205]; NASA [NNJ04HI13G]; National University of Ireland, Galway FX The authors would like to thank Elizabeth Devine, Eliot Baker, Gill Bayley, Julie Leduc, Ryan Hodgeman, Maria Geraghty, Brian Deegan and Adam Reisner for their assistance in data collection and analysis. Shawn Jiang from NeuroCom International provided the low-pass filter used for center-of-mass estimates. This work was supported by grants NIH R03DC005545 (Serrador), RO1DC00205 (Black) and NASA NNJ04HI13G (Serrador). Dr. Lipsitz holds the Irving and Edyth S. Usen Chair in Geriatric Medicine at Hebrew Life, Boston, MA. Dr. Serrador is recipient of the SFI Walton Fellow Award at the National University of Ireland, Galway. NR 36 TC 15 Z9 16 U1 1 U2 3 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0304-3940 J9 NEUROSCI LETT JI Neurosci. Lett. PD NOV 6 PY 2009 VL 465 IS 1 BP 10 EP 15 DI 10.1016/j.neulet.2009.08.057 PG 6 WC Neurosciences SC Neurosciences & Neurology GA 510DA UT WOS:000271067000003 PM 19716400 ER PT J AU Robertson, IP Sembay, S Stubbs, TJ Kuntz, KD Collier, MR Cravens, TE Snowden, SL Hills, HK Porter, FS Travnicek, P Carter, JA Read, AM AF Robertson, I. P. Sembay, S. Stubbs, T. J. Kuntz, K. D. Collier, M. R. Cravens, T. E. Snowden, S. L. Hills, H. K. Porter, F. S. Travnicek, P. Carter, J. A. Read, A. M. TI Solar wind charge exchange observed through the lunar exosphere SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID X-RAY-EMISSION; CHANDRA OBSERVATIONS; TEMPORAL VARIATIONS; COMET HYAKUTAKE; SYSTEM; ATMOSPHERE; OBJECTS; MOON; GAS AB X-rays can be generated by charge exchange between highly-charged heavy solar wind ions and neutrals. Previously, simulations have only been performed for X-ray emission due to solar wind charge exchange (SWCX) with geocoronal and interstellar neutrals. However, X-rays can also be generated by SWCX with the Moon's tenuous exosphere, which should be detectable by an imaging X-ray instrument located on the Moon. In addition, lunar-based observations of X-ray emission originating from Earth's magnetosheath will be able to provide information on the dynamic response of the bow shock and magnetopause to solar wind variations. Furthermore, X-ray emissions from SWCX within the heliosphere constitute part of the soft X-ray background (SXRB) emission, competing with emissions originating from outside the solar system. Lunar observations of soft X-rays will give additional information about these charge exchange processes and be critical in removing the heliospheric component of the SXRB. Citation: Robertson, I. P., et al. (2009), Solar wind charge exchange observed through the lunar exosphere, Geophys. Res. Lett., 36, L21102, doi: 10.1029/2009GL040834. C1 [Robertson, I. P.; Cravens, T. E.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Stubbs, T. J.; Kuntz, K. D.; Collier, M. R.; Snowden, S. L.; Porter, F. S.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sembay, S.; Carter, J. A.; Read, A. M.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Stubbs, T. J.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Travnicek, P.] Acad Sci Czech Republic, Inst Atmospher Phys, Prague 14131, Czech Republic. [Hills, H. K.] QSS Grp Inc, Merrifield, VA 22116 USA. [Kuntz, K. D.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Stubbs, T. J.; Collier, M. R.] NASA, Ames Res Ctr, Lunar Sci Inst, DREAM, Moffett Field, CA 94035 USA. RP Robertson, IP (reprint author), Univ Kansas, Dept Phys & Astron, 1251 Wescoe Hall Dr, Lawrence, KS 66045 USA. EM robertin@ku.edu RI Porter, Frederick/D-3501-2012; Collier, Michael/I-4864-2013; Stubbs, Timothy/I-5139-2013; Travnicek, Pavel/G-8608-2014 OI Porter, Frederick/0000-0002-6374-1119; Collier, Michael/0000-0001-9658-6605; Stubbs, Timothy/0000-0002-5524-645X; FU National Aeronautics and Space Administration, Science Mission Directorate's Planetary Science Division [LSSO06-0032] FX This material is based upon work supported by the National Aeronautics and Space Administration under Grant LSSO06-0032 issued through the Science Mission Directorate's Planetary Science Division. NR 29 TC 3 Z9 3 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 5 PY 2009 VL 36 AR L21102 DI 10.1029/2009GL040834 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 516YL UT WOS:000271579400008 ER PT J AU Kenny, S Crespo, L Giesy, D AF Kenny, Sean Crespo, Luis Giesy, Dan TI Dimensionality reduction for uncertain dynamic systems SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE model-order reduction, parametric uncertainty; uncertainty-order reduction ID MODEL-REDUCTION; LINEAR-SYSTEMS AB Dimensionality reduction is a beneficial step to alleviate some of the computation burder as well as to improve the accuracy associated with complex system analyses. This paper investigates dimensionality reduction techniques of linear, time-invariant systems subject to general non-linear parameter dependencies. In the context of this paper, dimensionality reduction refers to simultaneous reduction in both model state order and parameter order. i.e. number of uncertain parameters. Two complementary approaches will be presented, one based on the worst-case H-infinity norm error associated with both model state and parameter-order reductions, and another, which is essentially the inverse problem, that considers the largest allowable parameter bounds for a given total H-infinity norm error for the dimensionally reduced problem. Although applicable to larger-order systems, a simple low-order spring-mass example is used to demonstrate the usefulness of the techniques developed herein. Published in 2009 by John Wiley & Sons. Ltd. C1 [Kenny, Sean; Giesy, Dan] NASA, LaRC, Hampton, VA 23681 USA. [Crespo, Luis] Natl Inst Aerosp, Hampton, VA 23666 USA. RP Kenny, S (reprint author), NASA, LaRC, Mail Stop 308, Hampton, VA 23681 USA. EM Sean.PKenny@nasa.gov NR 15 TC 0 Z9 0 U1 1 U2 2 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0029-5981 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD NOV 5 PY 2009 VL 80 IS 6-7 BP 767 EP 788 DI 10.1002/nme.2591 PG 22 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 516RF UT WOS:000271559400006 ER PT J AU Cabrol, NA Grin, EA Chong, G Minkley, E Hock, AN Yu, Y Bebout, L Fleming, E Hader, DP Demergasso, C Gibson, J Escudero, L Dorador, C Lim, D Woosley, C Morris, RL Tambley, C Gaete, V Galvez, ME Smith, E Peate, IU Salazar, C Dawidowicz, G Majerowicz, J AF Cabrol, Nathalie A. Grin, Edmond A. Chong, Guillermo Minkley, Edwin Hock, Andrew N. Yu, Youngseob Bebout, Leslie Fleming, Erich Haeder, Donat P. Demergasso, Cecilia Gibson, John Escudero, Lorena Dorador, Cristina Lim, Darlene Woosley, Clayton Morris, Robert L. Tambley, Cristian Gaete, Victor Galvez, Matthieu E. Smith, Eric Peate, Ingrid Ukstins Salazar, Carlos Dawidowicz, G. Majerowicz, J. TI The High-Lakes Project SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID LIGHT DOSIMETER NETWORK; ULTRAVIOLET-RADIATION; MERIDIANI-PLANUM; UV-RADIATION; VERTICAL-DISTRIBUTION; SOUTHERN-HEMISPHERE; MICROBIAL DIVERSITY; MARS; ZOOPLANKTON; ALTIPLANO AB The High Lakes Project is a multidisciplinary astrobiological investigation studying high-altitude lakes between 4200 m and 6000 m elevation in the Central Andes of Bolivia and Chile. Its primary objective is to understand the impact of increased environmental stress on the modification of lake habitability potential during rapid climate change as an analogy to early Mars. Their unique geophysical environment and mostly uncharted ecosystems have added new objectives to the project, including the assessment of the impact of low-ozone/high solar irradiance in nonpolar aquatic environments, the documentation of poorly known ecosystems, and the quantification of the impact of climate change on lake environment and ecosystem. Data from 2003 to 2007 show that UV flux is 165% that of sea level with maximum averaged UVB reaching 4 W/m(2). Short UV wavelengths (260-270 nm) were recorded and peaked at 14.6 mW/m(2). High solar irradiance occurs in an atmosphere permanently depleted in ozone falling below ozone hole definition for 33-36 days and between 30 and 35% depletion the rest of the year. The impact of strong UVB and UV erythemally weighted daily dose on life is compounded by broad daily temperature variations with sudden and sharp fluctuations. Lake habitat chemistry is highly dynamical with notable changes in yearly ion concentrations and pH resulting from low and variable yearly precipitation. The year-round combination of environmental variables define these lakes as end-members. In such an environment, they host ecosystems that include a significant fraction of previously undescribed species of zooplankton, cyanobacterial, and bacterial populations. C1 [Cabrol, Nathalie A.; Grin, Edmond A.; Bebout, Leslie; Fleming, Erich; Lim, Darlene; Woosley, Clayton] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA. [Cabrol, Nathalie A.; Grin, Edmond A.; Lim, Darlene; Woosley, Clayton; Morris, Robert L.] SETI Carl Sagan Ctr, Mountain View, CA 94043 USA. [Chong, Guillermo; Escudero, Lorena] Ctr Invest Cient & Tecnol Mineria, Santiago, Chile. [Minkley, Edwin] Carnegie Mellon Univ, Dept Biol Sci, Pittsburgh, PA 15213 USA. [Hock, Andrew N.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. [Yu, Youngseob] Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA. [Haeder, Donat P.] Univ Erlangen Nurnberg, Dept Bot, D-91058 Erlangen, Germany. [Demergasso, Cecilia; Dorador, Cristina] Univ Catolica Norte, Ctr Biotecnol, Antofagasta, Chile. [Gibson, John] Univ Tasmania, Tasmanian Aquaculture & Fisheries Inst, Marine Res Labs, Hobart, Tas 7001, Australia. [Tambley, Cristian] CHEP, Santiago, Chile. [Gaete, Victor] Univ Catolica Norte, Dept Quim, Antofagasta, Chile. [Galvez, Matthieu E.] Ecole Normale Super, F-75005 Paris, France. [Smith, Eric] Discoverer Ketty Lund Explorat Vessel, Key West, FL 33040 USA. [Peate, Ingrid Ukstins] Univ Iowa, Dept Geosci, Iowa City, IA 52242 USA. [Salazar, Carlos] Clin Mutual Seguridad, Punta Arenas, Chile. [Dawidowicz, G.; Majerowicz, J.] ESRI, F-92190 Meudon, France. RP Cabrol, NA (reprint author), NASA, Ames Res Ctr, Space Sci & Astrobiol Div, MS 245-3, Moffett Field, CA 94035 USA. EM nathalie.a.cabrol@nasa.gov RI Dorador, Cristina/C-3914-2009; OI Demergasso, Cecilia/0000-0003-4563-3066 FU SERNAP; Direction of Park Rangers of the Reserva Eduardo Avaroa in Bolivia; CONAF; Universidad Catolica del Norte in Antofagasta in Chile; NASA Ames Extreme Environment Research Review Board; NASA Astrobiology Institute (NAI)/SETI team [NNA04CC05A]; NASA Ames Directorate Discretionary Funds (DDF); Graduate Student Researchers Program (GSRP); Planetary Biology Program (PBP); Lewis and Clark Foundation; National Geographic Research Grant; Wings WorldQuest; AquaLung; Specialized; Eventscope; ARISE FX The authors thank SERNAP and the Direction of Park Rangers of the Reserva Eduardo Avaroa in Bolivia, CONAF and the Universidad Catolica del Norte in Antofagasta in Chile, and NASA Ames Extreme Environment Research Review Board for their support to this project. The High-Lakes Project is funded through the NASA Astrobiology Institute (NAI)/SETI team grant NNA04CC05A. Other financial support to the High Lakes Project has been provided over the years by the NASA Ames Directorate Discretionary Funds (DDF), Graduate Student Researchers Program (GSRP), Planetary Biology Program (PBP), the Lewis and Clark Foundation, the National Geographic Research Grant, Wings WorldQuest, AquaLung, Specialized, Eventscope (Carnegie Mellon University), and ARISE. Some of the data were collected using the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) as part of the NASA's Goddard Earth Sciences (GES) Data and Information Services Center (DISC). The High Lakes Project is also particularly grateful to the Biological Sciences Division, British Antarctic Survey, Cambridge (UK) for allowing the use of their UV database for the Rother Research Station, Antarctica. Last but not least, the High Lakes Project team expresses its deepest gratitude to all those who made each of the high-altitude expeditions possible, including our guides, porters, the Laguna Blanca refuge personnel, and the logistical team in San Pedro de Atacama, Chile, and La Paz, Bolivia. NR 81 TC 8 Z9 8 U1 2 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD NOV 5 PY 2009 VL 114 AR G00D06 DI 10.1029/2008JG000818 PG 20 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 516ZA UT WOS:000271580900001 ER PT J AU Chambers, DP Willis, JK AF Chambers, Don P. Willis, Josh K. TI Low-frequency exchange of mass between ocean basins SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID STERIC SEA-LEVEL; GRACE; MODEL; TRENDS AB We examine the Gravity Recovery and Climate Experiment ( GRACE) data and output from an ocean model to quantify mass fluctuations for the Pacific, Atlantic, and Indian Ocean basins from August 2002 until December 2008. The monthly spatial mean is removed to study interbasin mass exchange. We find a seasonal exchange of mass between the Atlantic and Pacific that is similar to one documented previously, although the amplitude observed by GRACE is about 20% lower than that simulated by an ocean model. There are also significant fluctuations with periods longer than 1 year. We find large interannual exchanges in 2005 and 2007, with GRACE observing yearly averaged mass anomalies in the Pacific that are about 30-40% larger than simulated by a model. This is shown to be from significant interannual mass losses from the Indian Ocean that are observed by GRACE but not simulated by the model. A longer run of the model, from 1976 to 2008, suggests that such interbasin mass exchanges are a regular occurrence and can last for as long as a couple of decades. C1 [Chambers, Don P.] Univ Texas Austin, Ctr Space Res, Austin, TX 78712 USA. [Willis, Josh K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Chambers, DP (reprint author), Univ S Florida, Coll Marine Sci, St Petersburg, FL 33701 USA. EM chambers@csr.utexas.edu OI Chambers, Don/0000-0002-5439-0257 FU NASA GRACE Science Team FX We would like to thank four anonymous reviewers for their comments on two earlier drafts of this paper, which led to significant changes in the structure. We would also like to thank C. Hughes for pointing us to his paper after seeing a presentation of these results. We would also like to thank F. Flechtner and M. Thomas for providing the very long run of the OMCT OBP output; they are available from the Information System and Data Center (ISDC) at GeoForschungsZentrum (GFZ) Potsdam. The GRACE data and OMCT output are furnished by the GRACE Science Data System and are available at the NASA Physical Oceanography Distributed Active Archive Center ( PO. DAAC) at Jet Propulsion Laboratory, Pasadena, California. This research was carried out under a grant from the NASA GRACE Science Team. NR 22 TC 11 Z9 11 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD NOV 5 PY 2009 VL 114 AR C11008 DI 10.1029/2009JC005518 PG 10 WC Oceanography SC Oceanography GA 516ZI UT WOS:000271581700004 ER PT J AU Nelli, SM Murphy, JR Feldman, WC Schaeffer, JR AF Nelli, Steven M. Murphy, James R. Feldman, William C. Schaeffer, James R. TI Characterization of the nighttime low-latitude water ice deposits in the NASA Ames Mars General Circulation Model 2.1 under present-day atmospheric conditions SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID THERMAL EMISSION SPECTROMETER; ORBITER LASER ALTIMETER; CLOUD MICROPHYSICS; NEAR-SURFACE; POLAR; ODYSSEY; VAPOR; HYDROGEN; AEROSOL; REGION AB This effort advances the exploration of the current Martian water cycle by analyzing the nighttime equatorial water ice deposits in the NASA Ames Mars General Circulation Model (version 2.1). The possibility that the current Martian water cycle plays a role in the generation or maintenance of the longitudinally confined tropical maxima of water-equivalent hydrogen (WEH) in the near-surface regolith is also investigated. Mars Odyssey Orbiter Gamma Ray suite observations indicate that tropical latitudes exhibit longitudinally distinct maxima of the presence of near-surface hydrogen, likely in the form of hydrated minerals, in the Arabia and Tharsis regions. Atmospheric numerical simulations with the NASA Ames Mars General Circulation Model produce an annual water cycle that faithfully reproduces the cycle derived from Mars Global Surveyor Thermal Emission Spectrometer measurements. This simulated water cycle produces maxima of near-surface tropical water condensation at longitudes consistent with the WEH maxima regions, though these maxima are shifted north of the Odyssey Gamma Ray suite WEH regions. While the simulated pattern of near-surface tropical water condensation does exhibit a longitudinal structure consistent with the observed WEH maxima, it is concluded that the current water cycle is not playing a dominant role in the formation or retention of those maxima. Thus, atmospheric involvement in the formation of the WEH-rich regions must occur during past climatic conditions, if at all. C1 [Nelli, Steven M.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Murphy, James R.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Feldman, William C.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Schaeffer, James R.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Nelli, SM (reprint author), Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. EM snelli@umich.edu; murphy@nmsu.edu; Feldman@psi.edu; James.R.Schaeffer@nasa.gov FU NASA Planetary Atmospheres Programs [NAG5-12123] FX Special thanks to Melinda Kahre and Jeff Hollingsworth for their valuable insight concerning the GCM tracer physics. We would also like to thank Ruslan Kuzmin, whose helpful discussions benefited this paper greatly. Support for this work was provided by NASA Planetary Atmospheres Programs (NAG5-12123), LANL IGPP/ Space Phy-1611-06, New Mexico Space grant, and MDAP-NNG04GJ94G. NR 56 TC 7 Z9 7 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD NOV 5 PY 2009 VL 114 AR E11003 DI 10.1029/2008JE003289 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 517AC UT WOS:000271584100001 ER PT J AU Wray, JJ Dobrea, EZN Arvidson, RE Wiseman, SM Squyres, SW McEwen, AS Mustard, JF Murchie, SL AF Wray, J. J. Dobrea, E. Z. Noe Arvidson, R. E. Wiseman, S. M. Squyres, S. W. McEwen, A. S. Mustard, J. F. Murchie, S. L. TI Phyllosilicates and sulfates at Endeavour Crater, Meridiani Planum, Mars SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID REFLECTANCE SPECTROSCOPY; TERRA MERIDIANI; MINERALS; EXPLORATION; ENVIRONMENT; CRISM; WATER AB Phyllosilicates have been identified on the Martian surface from orbit, and are hypothesized to have formed under wet, non-acidic conditions early in the planet's history. Exposures of these minerals have not yet been examined by a landed mission. Using Mars Reconnaissance Orbiter data, we report the detection of phyllosilicate-bearing outcrops that may be accessible by the Mars Exploration Rover Opportunity currently exploring Meridiani Planum. The phyllosilicates are associated with layered, polygonally fractured rocks exposed in the rim of the 20 km diameter crater Endeavour. These rocks may have formed via regional or global-scale processes of aqueous alteration that predated the period of acid sulfate formation recorded in the rocks that Opportunity has studied to date. Detailed characterization by Opportunity could better constrain the conditions under which these phyllosilicates formed. Hydrated sulfates are also detected from orbit in the plains adjacent to Endeavour's rim, providing the first opportunity for ground truth of these detections. Citation: Wray, J. J., E. Z. Noe Dobrea, R. E. Arvidson, S. M. Wiseman, S. W. Squyres, A. S. McEwen, J. F. Mustard, and S. L. Murchie (2009), Phyllosilicates and sulfates at Endeavour Crater, Meridiani Planum, Mars, Geophys. Res. Lett., 36, L21201, doi: 10.1029/2009GL040734. C1 [Wray, J. J.; Squyres, S. W.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Dobrea, E. Z. Noe] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Arvidson, R. E.; Wiseman, S. M.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [McEwen, A. S.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Mustard, J. F.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Murchie, S. L.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP Wray, JJ (reprint author), Cornell Univ, Dept Astron, 425 Space Sci, Ithaca, NY 14853 USA. EM jwray@astro.cornell.edu RI Wray, James/B-8457-2008; Murchie, Scott/E-8030-2015 OI Wray, James/0000-0001-5559-2179; Murchie, Scott/0000-0002-1616-8751 FU Fannie & John Hertz Foundation; NSF Graduate Research Fellowship FX We thank S. W. Ruff and G. A. Swayze for helpful discussions. Comments from J. L. Bishop, R. E. Milliken, B. L. Ehlmann, L. L. Tornabene, and our two anonymous reviewers improved the manuscript. JJW thanks the Fannie & John Hertz Foundation and NSF Graduate Research Fellowship for support. We are indebted to the CRISM, HiRISE, and MER science and engineering teams for their dedication to a synergistic program of Mars exploration that has made our work possible. NR 39 TC 46 Z9 46 U1 1 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 4 PY 2009 VL 36 AR L21201 DI 10.1029/2009GL040734 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 516YK UT WOS:000271579300003 ER PT J AU Houborg, R Anderson, MC Norman, JM Wilson, T Meyers, T AF Houborg, Rasmus Anderson, Martha C. Norman, John M. Wilson, Tim Meyers, Tilden TI Intercomparison of a 'bottom-up' and 'top-down' modeling paradigm for estimating carbon and energy fluxes over a variety of vegetative regimes across the US SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE CO2 fluxes; Evapotranspiration; Light-use-efficiency; Leaf photosynthesis; Bottom-up model; Top-down model; Stomatal conductance ID WATER-VAPOR EXCHANGE; LIGHT-USE EFFICIENCY; NET PRIMARY PRODUCTION; REMOTELY-SENSED DATA; STOMATAL CONDUCTANCE; PHOTOSYNTHETIC CAPACITY; EDDY-COVARIANCE; TEMPERATURE RESPONSE; DIOXIDE EXCHANGE; LEAF NITROGEN AB Biophysical models intended for routine applications at a range of scales should attempt to balance the competing demands of generality and simplicity and be capable of realistically simulating the response of CO2 and energy fluxes to environmental and physiological forcings. At the same time they must remain computationally inexpensive and sufficiently simple to be effectively parameterized at the scale of application. This study investigates the utility of two modeling strategies for quantifying coupled land surface fluxes of carbon and water, which differ distinctly in their description Of CO2 assimilation processes. 'Bottom-up' models of land-atmosphere carbon exchange are based on detailed mechanistic descriptions of leaf-level photosynthetic processes scaled to the canopy whereas 'top-down' scaling approaches neglect the behavior of individual leaves and consider the canopy response to its environment in bulk. Effective intercomparisons of a light-use-efficiency (LUE)-based model of canopy conductance and a mechanistic model of leaf photosynthesis-stomatal response that employs a 'two-leaf' scaling strategy are facilitated by embedding both canopy sub-models in the Atmosphere-Land Exchange (ALEX) surface energy balance model. Water and carbon flux simulations are evaluated across time scales of hours, days, seasons and years for a variety of natural and agricultural ecosystems, using micrometeorological data from several AmeriFlux sites across the U.S. While both modeling paradigms reproduced observed magnitudes and variances of carbon and water vapor exchange on hourly and daily timescales with acceptable accuracy, the simpler LUE-based model often performed better than the more detailed scaled-leaf model, which has many adjustable species-specific model parameters. Actual light-use efficiencies vary significantly in response to changing environmental conditions and the success of LUE-based modeling frameworks rely on their ability to realistically respond to changes in light environment, atmospheric humidity, CO2 concentration and a desiccating environment. (C) 2009 Elsevier B.V. All rights reserved. C1 [Houborg, Rasmus] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, Coll Pk & Hydrol Sci Branch, NASA Goddard Space Flight Ctr, Greenbelt, MD USA. [Anderson, Martha C.] ARS, USDA, Hydrol & Remote Sensing Lab, Beltsville, MD USA. [Norman, John M.] Univ Wisconsin, Dept Soil Sci, Madison, WI 53706 USA. [Wilson, Tim; Meyers, Tilden] NOAA, Atmospher Turbulence & Diffus Div, Oak Ridge, TN 37831 USA. RP Houborg, R (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, Coll Pk & Hydrol Sci Branch, NASA Goddard Space Flight Ctr, Greenbelt, MD USA. EM rasmus.houborg@nasa.gov RI Anderson, Martha/C-1720-2015 OI Anderson, Martha/0000-0003-0748-5525 FU USDA FX Funding for this research was provided by the USDA Agricultural Research Service Research Associate Program. The authors are indebted to the researchers responsible for the micrometeorological and surface flux measurements used in this analysis. NR 83 TC 23 Z9 23 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD NOV 3 PY 2009 VL 149 IS 11 BP 1875 EP 1895 DI 10.1016/j.agrformet.2009.06.014 PG 21 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA 504TJ UT WOS:000270640300010 ER PT J AU Ichii, K Wang, WL Hashimoto, H Yang, FH Votava, P Michaelis, AR Nemani, RR AF Ichii, Kazuhito Wang, Weile Hashimoto, Hirofumi Yang, Feihua Votava, Petr Michaelis, Andrew R. Nemani, Ramakrishna R. TI Refinement of rooting depths using satellite-based evapotranspiration seasonality for ecosystem modeling in California SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE Terrestrial ecosystem modeling; Water cycle; Carbon cycle; Remote sensing; Regional modeling; Rooting depth ID GROSS PRIMARY PRODUCTION; ENERGY-BALANCE CLOSURE; SUPPORT VECTOR MACHINE; VEGETATION LEAF-AREA; SOIL-MOISTURE; UNITED-STATES; SURFACE TEMPERATURE; CHAPARRAL ECOSYSTEM; COMBINING MODIS; AMERIFLUX DATA AB Accurate determination of rooting depths in terrestrial biosphere models is important for simulating terrestrial water and carbon cycles. In this study, we developed a method for optimizing rooting depth using satellite-based evapotranspiration (ET) seasonality and an ecosystem model by minimizing the differences between satellite-based and simulated ET. We then analyzed the impacts of rooting depth optimization on the simulated ET and gross primary production (GPP) seasonality in California, USA. First, we conducted a point-based evaluation of the methods against flux observations in California and tested the sensitivities of the simulated ET seasonality to the rooting depth settings. We then extended it spatially by estimating spatial patterns of rooting depth and analyzing the sensitivities of the simulated ET and GPP seasonalities to the rooting depth settings. We found large differences in the optimized and soil survey (STATSGO)-based rooting depths over the northern forest regions. In these regions, the deep rooting depths (>3 m) estimated in the study successfully reproduced the satellite-based ET seasonality, which peaks in summer, whereas the STATSGO-based rooting depth (<1.5 m) failed to sustain a high ET in summer. The rooting depth refinement also has large effects on simulated GPP; the annual GPP in these regions is increased by 50-100% due to sufficient soil water during the summer. In the grassy and shrubby regions of central and southern California, the estimated rooting depths are similar to those of STATSGO, probably due to the shallow rooting depth in these ecosystems. Our analysis suggests that setting a rooting depth is important for terrestrial ecosystem modeling and that satellite-based data could help both to estimate the spatial variability of rooting depths and to improve water and carbon cycle modeling. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ichii, Kazuhito] Fukushima Univ, Fac Symbiot Syst Sci, Fukushima 9601296, Japan. [Ichii, Kazuhito; Wang, Weile; Hashimoto, Hirofumi; Votava, Petr; Michaelis, Andrew R.; Nemani, Ramakrishna R.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Wang, Weile; Hashimoto, Hirofumi; Votava, Petr; Michaelis, Andrew R.] Univ Corp Monterey Bay, Seaside, CA USA. [Yang, Feihua] Univ Wisconsin, Dept Geog, Madison, WI 53706 USA. RP Ichii, K (reprint author), Fukushima Univ, Fac Symbiot Syst Sci, 1 Kanayagawa, Fukushima 9601296, Japan. EM kazuhito.ichii@gmail.com RI Ichii, Kazuhito/D-2392-2010; OI Ichii, Kazuhito/0000-0002-8696-8084; White, Michael/0000-0002-0238-8913 FU NASA; Japan Society for the Promotion of Science [50345865]; Department of Energy; National Oceanic and Atmospheric Administration; National Science Foundation FX This research was supported by funding from NASA's Science Mission Directorate through EOS (K. Ichii, W. Wang, H. Hashimoto. R.R. Nemani) and Grand-in-Aid for Scientific Research (C) (ID: 50345865) by Japan Society for the Promotion of Science (K. Ichii). Flux tower measurements were funded by the Department of Energy, the National Oceanic and Atmospheric Administration, the National Aeronautics and Space Administration (NASA), and the National Science Foundation. Special thanks to all the scientists and support teams at the flux towers. NR 61 TC 27 Z9 28 U1 2 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD NOV 3 PY 2009 VL 149 IS 11 BP 1907 EP 1918 DI 10.1016/j.agrformet.2009.06.019 PG 12 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA 504TJ UT WOS:000270640300012 ER PT J AU Makeev, MA Srivastava, D AF Makeev, Maxim A. Srivastava, Deepak TI Thermal properties of char obtained by pyrolysis: A molecular dynamics simulation study SO APPLIED PHYSICS LETTERS LA English DT Article DE carbon; charcoal; crystal microstructure; high-temperature effects; molecular dynamics method; polymers; pyrolysis; thermal conductivity; Young's modulus ID AMORPHOUS-CARBON FILMS; CONDUCTIVITY; FLAMMABILITY; NANOWIRES; SILICON AB The thermal conductivity of pyrolytic char obtained by ultrahigh temperature decomposition of polyethylene specimen via molecular dynamics simulations is investigated as a function of temperature and microstructural characteristics. We find that the simulated thermal conductivity dependence on the average coordination number is modified by formation of graphene-like microtopological features in carbonaceous char. The dependence of thermal conductivity on temperature and average coordination number is explained in terms of an analytical model, based on the Einstein's theory of heat transport. The deviations due to the formation of graphene sheet-like units are taken into consideration by introducing corresponding corrections in the elastic properties of char. C1 [Makeev, Maxim A.; Srivastava, Deepak] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Makeev, MA (reprint author), NASA, Ames Res Ctr, Mail Stop 229-1, Moffett Field, CA 94035 USA. EM maxim.a.makeev@nasa.gov FU NASA [NNX07AC41A] FX M. A. M. and D. S. gratefully acknowledge support from NASA through the Hypersonics project of the Fundamental Aeronautics program (Grant No. NNX07AC41A). NR 25 TC 5 Z9 5 U1 2 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 2 PY 2009 VL 95 IS 18 AR 181908 DI 10.1063/1.3249632 PG 3 WC Physics, Applied SC Physics GA 518CD UT WOS:000271666800027 ER PT J AU Li, LC Yalcin, B Nguyen, BN Meador, MAB Cakmak, M AF Li, Lichun Yalcin, Baris Nguyen, Baochau N. Meador, Mary Ann B. Cakmak, Miko TI Flexible Nanofiber-Reinforced Aerogel (Xerogel) Synthesis, Manufacture, and Characterization SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE hybrid film; silica aerogel; electrospinning; nanofiber embedding; polyurethane; flexible superinsulator ID AMINE-MODIFIED SILICA; PHYSICAL-PROPERTIES; POLYMER NANOFIBERS; POROUS MATERIALS; FIBERS; POLYURETHANE; POLYSTYRENE; CHEMISTRY AB Silica aerogels are sol-gel-derived materials consisting of interconnected nanoparticle building blocks that form an open and highly porous three-dimensional silica network. Flexible aerogel films could have wide applications in various thermal insulation systems. However, aerogel thin films produced with a pure sol-gel process have inherent disadvantages, such as high fragility and moisture sensitivity, that hinder wider applications of these materials. We have developed synthesis and manufacturing methods to incorporate electrospun polyurethane nanofibers into the cast sol film prior to gelation of the silica-based gel in order to reinforce the structure and overcome disadvantages such as high fragility and poor mechanical strength. In this method, a two-stage sol-gel process was employed: (1) acid-catalyzed tetraethyl orthosilicate hydrolysis and (2) base-catalyzed gelation. By precisely controlling the so! gelation kinetics with the amount of base present in the formulation, nanofibers were electrospun into the sol before the onset of the gelation process and uniformly embedded in the silica network. Nanofiber reinforcement did not alter the thermal conductivity and rendered the final composite film bendable and flexible. C1 [Li, Lichun; Yalcin, Baris; Cakmak, Miko] Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA. [Nguyen, Baochau N.] Ohio Aerosp Inst, Cleveland, OH 44111 USA. [Meador, Mary Ann B.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Cakmak, M (reprint author), Univ Akron, Dept Polymer Engn, 250 S Forge St, Akron, OH 44325 USA. EM cakmak1@uakron.edu OI Meador, Mary Ann/0000-0003-2513-7372 NR 32 TC 51 Z9 51 U1 26 U2 196 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV PY 2009 VL 1 IS 11 BP 2491 EP 2501 DI 10.1021/am900451x PG 11 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 522ZR UT WOS:000272039700012 PM 20356119 ER PT J AU Seal, D AF Seal, David TI Cassini's Scientist for a Day program SO ACTA ASTRONAUTICA LA English DT Article DE Cassini; Education; Outreach; Scientist for a day AB NASA's Cassini project has conducted a series of innovative "Scientist for a Day" outreach sessions with great success. Individual students and classrooms are presented, via the Cassini web site, with a selection of images that could be taken by the Cassini spacecraft in orbit around Saturn. Student essays are submitted indicating their preferred image, along with a detailed description of why that image was selected, often drawing heavily from material found elsewhere in the Cassini web resources. Winners from different age categories are chosen, and the selected images are sequenced. Very soon after the images reach the ground, winning classrooms are invited to participate via tele- and video-con with key Cassini scientists and engineers, where interactive discussions take place. This program has been very successful and is considered a key Outreach highlight of Cassini and JPL in general. It reaches a significant number Of Students, involves them directly in image planning, and engages them in a highly interactive and inspirational environment requiring detailed study and creative thought. (C) 2009 Elsevier Ltd. All rights reserved. C1 CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Seal, D (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM seal@jpl.nasa.gov NR 1 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD NOV-DEC PY 2009 VL 65 IS 9-10 BP 1397 EP 1401 DI 10.1016/j.actaastro.2009.03.070 PG 5 WC Engineering, Aerospace SC Engineering GA 504UC UT WOS:000270642200023 ER PT J AU Taminger, K AF Taminger, Karen TI ELECTRON BEAM FREEFORM FABRICATION SO ADVANCED MATERIALS & PROCESSES LA English DT Article C1 NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Taminger, K (reprint author), NASA, Langley Res Ctr, Hampton, VA 23681 USA. NR 0 TC 3 Z9 3 U1 1 U2 10 PU ASM INT PI MATERIALS PARK PA SUBSCRIPTIONS SPECIALIST CUSTOMER SERVICE, MATERIALS PARK, OH 44073-0002 USA SN 0882-7958 J9 ADV MATER PROCESS JI Adv. Mater. Process. PD NOV-DEC PY 2009 VL 167 IS 11-12 BP 45 EP 45 PG 1 WC Materials Science, Multidisciplinary SC Materials Science GA 532WX UT WOS:000272782200003 ER PT J AU Shie, CL Chiu, LS Adler, R Nelkin, E Lin, II Xie, PP Wang, FC Chokngamwong, R Olson, W Chu, DA AF Shie, Chung-Lin Chiu, Long S. Adler, Robert Nelkin, Eric Lin, I-I Xie, Pingping Wang, Feng-Chin Chokngamwong, R. Olson, William Chu, D. Allen TI A Note on Reviving the Goddard Satellite-Based Surface Turbulent Fluxes (GSSTF) Dataset SO ADVANCES IN ATMOSPHERIC SCIENCES LA English DT Article DE surface turbulent fluxes; global; oceanic; satellite-based ID LATENT-HEAT FLUXES; AIR-SEA FLUXES; BULK AERODYNAMIC ALGORITHMS; NEURAL-NETWORK; GLOBAL OCEANS; TOGA COARE; PARAMETERIZATION; TEMPERATURE; HUMIDITY; MOMENTUM AB Accurate sea surface flux measurements are crucial for understanding the global water and energy cycles. The oceanic evaporation, which is a major component of the global oceanic fresh water flux, is useful for predicting oceanic circulation and transport. The global Goddard Satellite-based Surface Turbulent Fluxes Version-2 (CSSTF2; July 1987-December 2000) dateset that was officially released in 2001 has been widely used by scientific community for global energy and water cycle research, and regional and short period data analyses. We have recently been funded by NASA to resume processing the GSSTF dataset with an objective of continually producing a uniform dataset of sea surface turbulent fluxes, derived from remote sensing data. The dataset is to be reprocessed and brought up-to-date (GSSTF2b) using improved input datasets such as a recently upgraded NCEP/DOE sea surface temperature reanalysis, and an upgraded surface wind and microwave brightness temperature V6 dataset (Version 6) from the Special Sensor Microwave Imager (SSM/I) produced by Remote Sensing Systems (RSS). A second new product (GSSTF3) is further proposed with a finer temporal (12-h) and spatial (0.25 degrees x 0.25 degrees) resolution. CSSTF2b (July 1987-December 2008) and GSSTF3 (July 1999-December 2009) will be released for the research community to use by late 2009 and early 2011, respectively. C1 [Shie, Chung-Lin; Chu, D. Allen] UMBC GEST, Baltimore, MD USA. [Shie, Chung-Lin; Adler, Robert; Nelkin, Eric; Olson, William; Chu, D. Allen] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Chiu, Long S.; Chokngamwong, R.] GMU CEOSR, Fairfax, VA USA. [Chiu, Long S.] CUHK ISEIS, Shatin, Hong Kong, Peoples R China. [Adler, Robert] UMCP ESSIC, College Pk, MD USA. [Nelkin, Eric] SSAI, Lanham, MD USA. [Lin, I-I] NTU, Taipei, Taiwan. [Xie, Pingping] NOAA, CPC, Camp Springs, MD USA. [Wang, Feng-Chin] CWB, Taipei, Taiwan. [Olson, William] UMBC JCET, Baltimore, MD USA. RP Shie, CL (reprint author), UMBC GEST, Baltimore, MD USA. EM Chung-Lin.Shie-1@nisa.gov RI Lin, I-I/J-4695-2013; AAS, AAS/C-2949-2014 OI Lin, I-I/0000-0002-8364-8106; FU NASA Science Mission Directorate-Earth Science Division FX The first author would like to particularly dedicate this note, which introduces reviving the production of the GSSTF datasets, to his mentor: the late research scientist Dr. S.-H. Chou (aka Sue). Without her genuine intelligence, intuition, great vision, and perseverance, the productions of GSSTF1 and CSSTF2 would have not been possible. This study is supported by the Making Earth System data records for Use in Research Environments (MEaSUREs) Program of NASA Science Mission Directorate-Earth Science Division. The first author is especially grateful to M. Maiden, the MEaSUREs Program Manager, for her support of this research. NR 44 TC 11 Z9 11 U1 0 U2 1 PU SCIENCE PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 0256-1530 J9 ADV ATMOS SCI JI Adv. Atmos. Sci. PD NOV PY 2009 VL 26 IS 6 BP 1071 EP 1080 DI 10.1007/s00376-009-8138-z PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 515XW UT WOS:000271507200002 ER PT J AU Brenner, M Jiang, Y Xu, YS AF Brenner, Marty Jiang, Ying Xu, Yuesheng TI Multiparameter regularization for Volterra kernel identification via multiscale collocation methods SO ADVANCES IN COMPUTATIONAL MATHEMATICS LA English DT Article DE Multiparameter regularization; Volterra kernel identification; Multiscale collocation method ID FREDHOLM INTEGRAL-EQUATIONS; 2ND KIND; SYSTEM-IDENTIFICATION; SINGULAR-INTEGRALS; LINEAR-SYSTEMS; MECHANORECEPTOR; RECONSTRUCTION; ALGORITHMS; QUADRATURE; FRAMEWORK AB Identification of the Volterra system is an ill-posed problem. We propose a regularization method for solving this ill-posed problem via a multiscale collocation method with multiple regularization parameters corresponding to the multiple scales. Many highly nonlinear problems such as flight data analysis demand identifying the system of a high order. This task requires huge computational costs due to processing a dense matrix of a large order. To overcome this difficulty a compression strategy is introduced to approximate the full matrix resulted in collocation of the Volterra kernel by an appropriate sparse matrix. A numerical quadrature strategy is designed to efficiently compute the entries of the compressed matrix. Finally, numerical results of three simulation experiments are presented to demonstrate the accuracy and efficiency of the proposed method. C1 [Jiang, Ying; Xu, Yuesheng] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA. [Brenner, Marty] NASA Dryden Flight Res Ctr, Edwards AFB, CA 93523 USA. RP Xu, YS (reprint author), Syracuse Univ, Dept Math, Syracuse, NY 13244 USA. EM martin.brenner@dfrc.nasa.gov; yjiang02@syr.edu; yxu06@syr.edu NR 48 TC 2 Z9 2 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1019-7168 J9 ADV COMPUT MATH JI Adv. Comput. Math. PD NOV PY 2009 VL 31 IS 4 BP 421 EP 455 DI 10.1007/s10444-008-9077-4 PG 35 WC Mathematics, Applied SC Mathematics GA 514KZ UT WOS:000271394800004 ER PT J AU Clancey, WJ Sierhuis, M Seah, C AF Clancey, William J. Sierhuis, Maarten Seah, Chin TI Workflow agents versus expert systems: Problem solving methods in work systems design SO AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING LA English DT Article DE Model-Based Automation; Problem Solving Agent; Situated Cognition; Work Practice Simulation; Work Systems Design AB During the 1980s, a community of artificial intelligence researchers became interested in formalizing problem solving methods (PSMs) as part of an effort called "second-generation expert systems" We provide an example of how we are applying second-generation expert systems concepts in an agent-based system for space flight operations, the oribital communications adapter mirroring system (OCAMS), which was developed in the Brahms multiagent framework Brahms modeling language provides an ontology for simulating work practices, including groups, agents, activities, communications, movements, and geographic areas Activities are a behavioral unit of analysis to be contrasted with tasks, a functional unit of analysis Problem solving occurs in the context of activities in the service of tasks, appropriate PSMs depend on the context which people/roles are participating. what tools are available. how the results will be evaluated. and so forth. A work practice simulation facilitates designing workflow tools that appropriately interact with the physical and organizational context in which work occurs. OCAMS was developed using a simulation-to-implementation methodology, in which a prototype workflow tool was embedded in a Brahms simulation of how people would use the tool The reusable components in a workflow system like OCAMS include entire and agents that inspect and change the world. Thus, a tool kit for building workflow tools requires more than a library of PSMs, which play a relatively small role in the overall multiagent, systems-integration architecture. Our research concern has shifted to situations that may arise that are outside the OCAMS' capability In practical decision making, people must reflect on the validity of their models As programs becoming actors in the workplace, we need to develop systems that help people to understand the limitations of the models that drive the automated operations, which means in part detecting when the formalizations in the system are inadequate C1 [Clancey, William J.] NASA, Ames Res Ctr, Intelligent Syst Div, Moffett Field, CA 94035 USA. [Clancey, William J.] Florida Inst Human & Machine Cognit, Pensacola, FL USA. [Sierhuis, Maarten] Carnegie Mellon Univ Silicon Valley, NASA, Ames Res Ctr, Moffett Field, CA USA. RP Clancey, WJ (reprint author), NASA, Ames Res Ctr, Intelligent Syst Div, M-S 269-3, Moffett Field, CA 94035 USA. NR 19 TC 2 Z9 2 U1 3 U2 8 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0890-0604 J9 AI EDAM JI AI EDAM-Artif. Intell. Eng. Des. Anal. Manuf. PD NOV PY 2009 VL 23 IS 4 BP 357 EP 371 DI 10.1017/S0890060409990059 PG 15 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications; Engineering, Multidisciplinary; Engineering, Manufacturing SC Computer Science; Engineering GA 510YY UT WOS:000271131600004 ER PT J AU Kiang, R Safi, N Adimi, F Soebiyanto, R AF Kiang, Richard Safi, Najibullah Adimi, Farida Soebiyanto, Radina TI TOWARD MALARIA EARLY WARNING IN AFGHANISTAN USING REMOTE SENSING SO AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE LA English DT Meeting Abstract CT 58th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene CY NOV 18-22, 2009 CL Washington, DC SP Amer Soc Trop Med & Hyg C1 [Kiang, Richard; Adimi, Farida; Soebiyanto, Radina] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Safi, Najibullah] Minist Publ Hlth, Natl Malaria & Leishmaniasis Control Program, Kabul, Afghanistan. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC TROP MED & HYGIENE PI MCLEAN PA 8000 WESTPARK DR, STE 130, MCLEAN, VA 22101 USA SN 0002-9637 J9 AM J TROP MED HYG JI Am. J. Trop. Med. Hyg. PD NOV PY 2009 VL 81 IS 5 SU S MA 195 BP 55 EP 55 PG 1 WC Public, Environmental & Occupational Health; Tropical Medicine SC Public, Environmental & Occupational Health; Tropical Medicine GA 521WK UT WOS:000271956700195 ER PT J AU Soebiyanto, RP Adimi, F Kiang, R AF Soebiyanto, Radina P. Adimi, Farida Kiang, Richard TI EXAMINING THE ENVIRONMENTAL EFFECTS ON INFLUENZA TRANSMISSION IN WARM CLIMATE USING NEURAL NETWORK SO AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE LA English DT Meeting Abstract CT 58th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene CY NOV 18-22, 2009 CL Washington, DC SP Amer Soc Trop Med & Hyg C1 [Soebiyanto, Radina P.; Adimi, Farida; Kiang, Richard] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC TROP MED & HYGIENE PI MCLEAN PA 8000 WESTPARK DR, STE 130, MCLEAN, VA 22101 USA SN 0002-9637 J9 AM J TROP MED HYG JI Am. J. Trop. Med. Hyg. PD NOV PY 2009 VL 81 IS 5 SU S MA 265 BP 75 EP 75 PG 1 WC Public, Environmental & Occupational Health; Tropical Medicine SC Public, Environmental & Occupational Health; Tropical Medicine GA 521WK UT WOS:000271956700265 ER PT J AU Linthicum, KJ Britch, SC Wynn, WW Clark, JW Ng'nonga, D Ngere, F Kibet, C Walker, TW Farooq, M Robinson, CA Smith, VL Dunford, JC Anyamba, A AF Linthicum, Kenneth J. Britch, Seth C. Wynn, Willard W. Clark, Jeffrey W. Ng'nonga, Daniel Ngere, Francis Kibet, Clifford Walker, Todd W. Farooq, Muhammad Robinson, Cathy A. Smith, Vincent L. Dunford, James C. Anyamba, Assaf TI INSECTICIDE TREATED CAMOUFLAGE SCREENING REDUCES SAND FLY NUMBERS IN LEISHMANIA-ENDEMIC REGIONS IN KENYA SO AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE LA English DT Meeting Abstract CT 58th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene CY NOV 18-22, 2009 CL Washington, DC SP Amer Soc Trop Med & Hyg C1 [Linthicum, Kenneth J.; Britch, Seth C.; Wynn, Willard W.] ARS, USDA, Ctr Med Agr & Vet Entomol, Gainesville, FL USA. [Clark, Jeffrey W.; Ng'nonga, Daniel; Ngere, Francis; Kibet, Clifford] US Army Med Res Unit Kenya, Kisumu, Kenya. [Walker, Todd W.; Farooq, Muhammad; Robinson, Cathy A.; Smith, Vincent L.; Dunford, James C.] USN, Entomol Ctr Excellence, Jacksonville, FL USA. [Anyamba, Assaf] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC TROP MED & HYGIENE PI MCLEAN PA 8000 WESTPARK DR, STE 130, MCLEAN, VA 22101 USA SN 0002-9637 J9 AM J TROP MED HYG JI Am. J. Trop. Med. Hyg. PD NOV PY 2009 VL 81 IS 5 SU S MA 578 BP 165 EP 165 PG 1 WC Public, Environmental & Occupational Health; Tropical Medicine SC Public, Environmental & Occupational Health; Tropical Medicine GA 521WK UT WOS:000271956700576 ER PT J AU Anyamba, A Linthicum, KJ Small, J Pak, E Tucker, CJ Chretien, JP Britch, SC Breiman, R Hightower, A de La Rocque, S Formenty, P Haagsma, K Latham, M Lewandowski, HB Sang, R Schnabel, D Richardson, J AF Anyamba, Assaf Linthicum, Kenneth J. Small, Jennifer Pak, Edwin Tucker, Compton J. Chretien, Jean P. Britch, Seth C. Breiman, Robert Hightower, Allan de La Rocque, Stephan Formenty, Pierre Haagsma, Karl Latham, Mark Lewandowski, Henry B. Sang, Rosemary Schnabel, David Richardson, Jason TI PREDICTION, ASSESSMENT OF THE RIFT VALLEY FEVER ACTIVITY IN EAST AND SOUTHERN AFRICA 2006-2008 AND POSSIBLE VECTOR CONTROL STRATEGIES SO AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE LA English DT Meeting Abstract CT 58th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene CY NOV 18-22, 2009 CL Washington, DC SP Amer Soc Trop Med & Hyg C1 [Anyamba, Assaf; Small, Jennifer; Pak, Edwin; Tucker, Compton J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Linthicum, Kenneth J.; Britch, Seth C.] USDA ARS, Ctr Med Agr & Vet Entomol, Gainesville, FL USA. [Chretien, Jean P.] Dept Def Global Emerging Infect Surveillance & Re, Silver Spring, MD USA. [Breiman, Robert] CDC Kenya, Nairobi, Kenya. [Hightower, Allan; de La Rocque, Stephan] Food & Agr Org United Nations, Rome, Italy. [Formenty, Pierre] WHO, CH-1211 Geneva, Switzerland. [Haagsma, Karl] Youngstown Air Reserve Stn, Vienna, OH USA. [Latham, Mark] Manatee Cty Mosquito Control, W Palmento, FL USA. [Lewandowski, Henry B.] Chatharn Cty Mosquito Control, Savannah, GA USA. [Sang, Rosemary] Kenya Govt Med Res Ctr, Nairobi, Kenya. [Schnabel, David] USAMRU K GEIS, Nairobi, Kenya. [Richardson, Jason] US Army Med Component, Armed Forces Res Inst Med Sci, Bangkok, Thailand. RI Richardson, Jason/A-9441-2011 NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC TROP MED & HYGIENE PI MCLEAN PA 8000 WESTPARK DR, STE 130, MCLEAN, VA 22101 USA SN 0002-9637 J9 AM J TROP MED HYG JI Am. J. Trop. Med. Hyg. PD NOV PY 2009 VL 81 IS 5 SU S MA 652 BP 186 EP 186 PG 1 WC Public, Environmental & Occupational Health; Tropical Medicine SC Public, Environmental & Occupational Health; Tropical Medicine GA 521WK UT WOS:000271956701068 ER PT J AU Chretien, JP Buczak, AL Anyamba, A Small, J Philip, TL Jessup, C Nuckols, J Leyk, S Miller, M Lewis, SH AF Chretien, Jean-Paul Buczak, Anna L. Anyamba, Assaf Small, Jennifer Philip, Trudy L. Jessup, Christine Nuckols, John Leyk, Stefan Miller, Mark Lewis, Sheri H. TI FORECASTING CHOLERA EPIDEMICS IN AFRICA SO AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE LA English DT Meeting Abstract CT 58th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene CY NOV 18-22, 2009 CL Washington, DC SP Amer Soc Trop Med & Hyg C1 [Chretien, Jean-Paul] Walter Reed Army Inst Res, Silver Spring, MD 20771 USA. [Buczak, Anna L.; Philip, Trudy L.; Lewis, Sheri H.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20892 USA. [Anyamba, Assaf; Small, Jennifer] NASA, Goddard Space Flight Ctr, Greenbelt, MD 80309 USA. [Jessup, Christine; Nuckols, John; Leyk, Stefan; Miller, Mark] NIH, Fogarty Int Ctr, Bethesda, MD USA. [Leyk, Stefan] Univ Colorado, Dept Geography, Boulder, CO 80309 USA. NR 0 TC 0 Z9 0 U1 1 U2 6 PU AMER SOC TROP MED & HYGIENE PI MCLEAN PA 8000 WESTPARK DR, STE 130, MCLEAN, VA 22101 USA SN 0002-9637 J9 AM J TROP MED HYG JI Am. J. Trop. Med. Hyg. PD NOV PY 2009 VL 81 IS 5 SU S MA 717 BP 206 EP 206 PG 1 WC Public, Environmental & Occupational Health; Tropical Medicine SC Public, Environmental & Occupational Health; Tropical Medicine GA 521WK UT WOS:000271956701133 ER PT J AU Werner, M AF Werner, Michael TI Spitzer's Cold Look at Space SO AMERICAN SCIENTIST LA English DT Article C1 [Werner, Michael] CALTECH, Jet Prop Lab, Astron & Phys Directorate, Pasadena, CA 91109 USA. RP Werner, M (reprint author), CALTECH, Jet Prop Lab, Astron & Phys Directorate, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM michael.w.werner@jpl.nasa.gov NR 5 TC 0 Z9 0 U1 0 U2 1 PU SIGMA XI-SCI RES SOC PI RES TRIANGLE PK PA PO BOX 13975, RES TRIANGLE PK, NC 27709 USA SN 0003-0996 J9 AM SCI JI Am. Scientist PD NOV-DEC PY 2009 VL 97 IS 6 BP 458 EP 467 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 505ZG UT WOS:000270740600012 ER PT J AU Nelson, ES Lewandowski, B Licata, A Myers, JG AF Nelson, Emily S. Lewandowski, Beth Licata, Angelo Myers, Jerry G. TI Development and Validation of a Predictive Bone Fracture Risk Model for Astronauts SO ANNALS OF BIOMEDICAL ENGINEERING LA English DT Review DE Monte Carlo method; Probabilistic modeling; Biomechanical model; Risk assessment; Fracture risk index; Lumbar spine; Femoral neck; Wrist; Gravitational physiology; Bone loss ID QUANTITATIVE COMPUTED-TOMOGRAPHY; LUMBAR VERTEBRAL BODY; LONG-DURATION SPACEFLIGHT; EXTREMITY IMPACT FORCES; ELEMENT STRESS-ANALYSIS; FEMORAL-NECK STRENGTH; X-RAY ABSORPTIOMETRY; LEG STIFFNESS; MINERAL DENSITY; COMPRESSIVE STRENGTH AB There are still many unknowns in the physiological response of human beings to space, but compelling evidence indicates that accelerated bone loss will be a consequence of long-duration spaceflight. Lacking phenomenological data on fracture risk in space, we have developed a predictive tool based on biomechanical and bone loading models at any gravitational level of interest. The tool is a statistical model that forecasts fracture risk, bounds the associated uncertainties, and performs sensitivity analysis. In this paper, we focused on events that represent severe consequences for an exploration mission, specifically that of spinal fracture resulting from a routine task (lifting a heavy object up to 60 kg), or a spinal, femoral or wrist fracture due to an accidental fall or an intentional jump from 1 to 2 m. We validated the biomechanical and bone fracture models against terrestrial studies of ground reaction forces, skeletal loading, fracture risk, and fracture incidence. Finally, we predicted fracture risk associated with reference missions to the moon and Mars that represented crew activities on the surface. Fracture was much more likely on Mars due to compromised bone integrity. No statistically significant gender-dependent differences emerged. Wrist fracture was the most likely type of fracture, followed by spinal and hip fracture. C1 [Nelson, Emily S.; Lewandowski, Beth] NASA, Biosci & Technol Branch, Glenn Res Ctr, Cleveland, OH 44135 USA. [Licata, Angelo] Cleveland Clin, Cleveland, OH 44106 USA. [Myers, Jerry G.] NASA, Human Res Program, Glenn Res Ctr, Cleveland, OH 44135 USA. RP Nelson, ES (reprint author), NASA, Biosci & Technol Branch, Glenn Res Ctr, M-S 110-3, Cleveland, OH 44135 USA. EM Emily.S.Nelson@grc.nasa.gov NR 136 TC 14 Z9 15 U1 2 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0090-6964 EI 1573-9686 J9 ANN BIOMED ENG JI Ann. Biomed. Eng. PD NOV PY 2009 VL 37 IS 11 BP 2337 EP 2359 DI 10.1007/s10439-009-9779-x PG 23 WC Engineering, Biomedical SC Engineering GA 502HL UT WOS:000270448300015 PM 19707874 ER PT J AU Lewandowski, BE Kilgore, KL Gustafson, KJ AF Lewandowski, B. E. Kilgore, K. L. Gustafson, K. J. TI In Vivo Demonstration of a Self-Sustaining, Implantable, Stimulated-Muscle-Powered Piezoelectric Generator Prototype SO ANNALS OF BIOMEDICAL ENGINEERING LA English DT Article DE Piezoelectric energy conversion; Mechanical muscle power; Electrical stimulation; Rabbit ID CARTILAGE COLLAGEN STRUCTURE; CONDITIONED SKELETAL-MUSCLE; SPINAL-CORD INJURIES; MATHEMATICAL-MODEL; NERVE STIMULATION; ENERGY; PREDICTS; FATIGUE; SYSTEM; FORCE AB An implantable, stimulated-muscle-powered piezoelectric active energy harvesting generator was previously designed to exploit the fact that the mechanical output power of muscle is substantially greater than the electrical power necessary to stimulate the muscle's motor nerve. We reduced to practice the concept by building a prototype generator and stimulator. We demonstrated its feasibility in vivo, using rabbit quadriceps to drive the generator. The generated power was sufficient for self-sustaining operation of the stimulator and additional harnessed power was dissipated through a load resistor. The prototype generator was developed and the power generating capabilities were tested with a mechanical muscle analog. In vivo generated power matched the mechanical muscle analog, verifying its usefulness as a test-bed for generator development. Generator output power was dependent on the muscle stimulation parameters. Simulations and in vivo testing demonstrated that for a fixed number of stimuli/minute, two stimuli applied at a high frequency generated greater power than single stimuli or tetanic contractions. Larger muscles and circuitry improvements are expected to increase available power. An implanted, self-replenishing power source has the potential to augment implanted battery or transcutaneously powered electronic medical devices. C1 [Lewandowski, B. E.] NASA, Biosci & Technol Branch, Glenn Res Ctr, Cleveland, OH 44135 USA. [Lewandowski, B. E.; Kilgore, K. L.; Gustafson, K. J.] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA. [Kilgore, K. L.] Metro Hlth Med Ctr, Cleveland, OH 44109 USA. [Kilgore, K. L.; Gustafson, K. J.] Louis Stokes Cleveland Dept Vet Affairs Med Ctr, Cleveland, OH 44106 USA. RP Lewandowski, BE (reprint author), NASA, Biosci & Technol Branch, Glenn Res Ctr, 21000 Brookpk Rd,MS 110-3, Cleveland, OH 44135 USA. EM Beth.E.Lewandowski@nasa.gov OI Kilgore, Kevin/0000-0002-2642-9855 FU NASA Glenn Research Center's Human Health and Performance Project; State of Ohio [BRTT 03-10]; Department of Veterans Affairs [RRD B367]; NIH [DK077089]; Cleveland Functional Electrical Stimulation Center FX This project was funded by NASA Glenn Research Center's Human Health and Performance Project, The State of Ohio BRTT 03-10, the Department of Veterans Affairs RR&D B367R, the NIH DK077089 and supported by the Cleveland Functional Electrical Stimulation Center. We would like to acknowledge the contribution of Narendra Bhadra, CWRU, who designed the nerve cuff electrodes used in the animal experiments. We would like to acknowledge the contributions of Fred Montague, CWRU, who designed the low power stimulator and Steve Garverick, CWRU, who provided design advice on the load circuitry used in our system. NR 55 TC 9 Z9 9 U1 0 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0090-6964 J9 ANN BIOMED ENG JI Ann. Biomed. Eng. PD NOV PY 2009 VL 37 IS 11 BP 2390 EP 2401 DI 10.1007/s10439-009-9770-6 PG 12 WC Engineering, Biomedical SC Engineering GA 502HL UT WOS:000270448300019 PM 19657742 ER PT J AU Seo, BJ Nissly, C Angeli, G Ellerbroek, B Nelson, J Sigrist, N Troy, M AF Seo, Byoung-Joon Nissly, Carl Angeli, George Ellerbroek, Brent Nelson, Jerry Sigrist, Norbert Troy, Mitchell TI Analysis of normalized point source sensitivity as a performance metric for large telescopes SO APPLIED OPTICS LA English DT Article ID IMAGES AB We investigate a new metric, the normalized point source sensitivity (PSSN), for characterizing the seeing-limited performance of large telescopes. As the PSSN metric is directly related to the photometric error of background limited observations, it represents the efficiency loss in telescope observing time. The PSSN metric properly accounts for the optical consequences of wave front spatial frequency distributions due to different error sources, which differentiates from traditional metrics such as the 80% encircled energy diameter and the central intensity ratio. We analytically show that multiplication of individual PSSN values due to individual errors is a good approximation for the total PSSN when various errors are considered simultaneously. We also numerically confirm this feature for Zernike aberrations as well as for the numerous error sources considered in the error budget of the Thirty Meter Telescope (TMT) using a ray optics simulator. Additionally, we discuss other pertinent features of the PSSN, including its relations to Zernike aberration, RMS wave front error, and central intensity ratio. (C) 2009 Optical Society of America C1 [Seo, Byoung-Joon; Nissly, Carl; Sigrist, Norbert; Troy, Mitchell] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Seo, Byoung-Joon; Nissly, Carl; Sigrist, Norbert; Troy, Mitchell] CALTECH, Pasadena, CA 91125 USA. [Angeli, George; Ellerbroek, Brent; Nelson, Jerry] Thirty Meter Telescope Observ, Pasadena, CA 91107 USA. RP Seo, BJ (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Byoung-Joon.Seo@jpl.nasa.gov FU California Institute of Technology; National Aeronautics and Space Administration (NASA); TMT partner institutions; Gordon and Betty Moore Foundation; Canada Foundation for Innovation; Ontario Ministry of Research and Innovation; National Research Council of Canada; Natural Sciences and Engineering Research Council of Canada (NSERC); British Columbia Knowledge Development Fund; Association of Universities for Research in Astronomy (AURA); U. S. National Science Foundation (NSF) FX This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by the California Institute of Technology and the National Aeronautics and Space Administration (NASA). The authors gratefully acknowledge the support of the TMT partner institutions. They are the Association of Canadian Universities for Research in Astronomy (ACURA), the California Institute of Technology, and the University of California. This work was supported as well by the Gordon and Betty Moore Foundation, the Canada Foundation for Innovation, the Ontario Ministry of Research and Innovation, the National Research Council of Canada, the Natural Sciences and Engineering Research Council of Canada (NSERC), the British Columbia Knowledge Development Fund, the Association of Universities for Research in Astronomy (AURA), and the U. S. National Science Foundation (NSF). NR 9 TC 21 Z9 23 U1 1 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD NOV 1 PY 2009 VL 48 IS 31 BP 5997 EP 6007 DI 10.1364/AO.48.005997 PG 11 WC Optics SC Optics GA 514DH UT WOS:000271374000041 PM 19881667 ER PT J AU Stockton, AM Chiesl, TN Lowenstein, TK Amashukeli, X Grunthaner, F Mathies, RA AF Stockton, Amanda M. Chiesl, Thomas N. Lowenstein, Tim K. Amashukeli, Xenia Grunthaner, Frank Mathies, Richard A. TI Capillary Electrophoresis Analysis of Organic Amines and Amino Acids in Saline and Acidic Samples Using the Mars Organic Analyzer SO ASTROBIOLOGY LA English DT Article DE Amino acid analysis; Astrobiology; Planetary exploration; Lab-on-a-chip; Micro total analysis systems ID MERIDIANI-PLANUM; BIOMARKER DETECTION; MARTIAN SOIL; SPECTROMETER; FLUORESCAMINE; EXPLORATION; SYSTEM; ROCKS AB The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pK(a) values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the Rio Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions. Key Words: Amino acid analysis-Astrobiology-Planetary exploration-Lab-on-a-chip-Micro total analysis systems. Astrobiology 9, 823-831. C1 [Stockton, Amanda M.; Chiesl, Thomas N.; Mathies, Richard A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Lowenstein, Tim K.] SUNY Binghamton, Dept Geol Sci & Environm Studies, Binghamton, NY USA. [Amashukeli, Xenia; Grunthaner, Frank] CALTECH, Jet Prop Labs, Pasadena, CA 91125 USA. RP Mathies, RA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM ramathies@berkeley.edu RI Stockton, Amanda/C-1173-2012 FU NASA [NNG04GB75G, NNX08AR09G]; NSF [EAR 0433802]; Jet Propulsion Laboratory; California Institute of Technology [1297596] FX We thank Daniel Glavin (NASA Goddard Space Flight Center) and Mary Sue Bell (NASA Johnson Space Center) for providing ASAP sample KF03-A from the Rio Tinto. Microdevices were fabricated in the UC Berkeley Microfabrication Laboratory by Wai K. Chu. This research was supported by NASA grants NNG04GB75G and NNX08AR09G, NSF grant EAR 0433802 (T.K.L.), and by the Jet Propulsion Laboratory and the California Institute of Technology under contract 1297596. NR 34 TC 16 Z9 16 U1 1 U2 12 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD NOV PY 2009 VL 9 IS 9 BP 823 EP 831 DI 10.1089/ast.2009.0357 PG 9 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 528QS UT WOS:000272462200002 PM 19968460 ER PT J AU Vogel, MB Des Marais, DJ Turk, KA Parenteau, MN Jahnke, LL Kubo, MDY AF Vogel, Marilyn B. Des Marais, David J. Turk, Kendra A. Parenteau, Mary N. Jahnke, Linda L. Kubo, Michael D. Y. TI The Role of Biofilms in the Sedimentology of Actively Forming Gypsum Deposits at Guerrero Negro, Mexico SO ASTROBIOLOGY LA English DT Article DE Analogue; Astrobiology; Biosignatures; Endoliths; Sedimentary environments ID 16S RIBOSOMAL-RNA; ENDOEVAPORITIC MICROBIAL COMMUNITIES; MERIDIANI-PLANUM; OMEGA/MARS EXPRESS; EVAPORITE DEPOSITS; BURNS FORMATION; WATER ACTIVITY; DEATH-VALLEY; MARS; CYANOBACTERIA AB Actively forming gypsum deposits at the Guerrero Negro sabkha and saltern system provided habitats for stratified, pigmented microbial communities that exhibited significant morphological and phylogenetic diversity. These deposits ranged from meter-thick gypsum crusts forming in saltern seawater concentration ponds to columnar microbial mats with internally crystallized gypsum granules developing in natural anchialine pools. Gypsum-depositing environments were categorized as forming precipitation surfaces, biofilm-supported surfaces, and clastic surfaces. Each surface type was described in terms of depositional environment, microbial diversity, mineralogy, and sedimentary fabrics. Precipitation surfaces developed in high-salinity subaqueous environments where rates of precipitation outpaced the accumulation of clastic, organic, and/or biofilm layers. These surfaces hosted endolithic biofilms comprised predominantly of oxygenic and anoxygenic phototrophs, sulfate-reducing bacteria, and bacteria from the phylum Bacteroidetes. Biofilm-supported deposits developed in lower-salinity subaqueous environments where light and low water-column turbulence supported dense benthic microbial communities comprised mainly of oxygenic phototrophs. In these settings, gypsum granules precipitated in the extracellular polymeric substance (EPS) matrix as individual granules exhibiting distinctive morphologies. Clastic surfaces developed in sabkhamudflats that included gypsum, carbonate, and siliclastic particles with thin gypsum/biofilm components. Clastic surfaces were influenced by subsurface brine sheets and capillary evaporation and precipitated subsedimentary gypsum discs in deeper regions. Biofilms appeared to influence both chemical and physical sedimentary processes in the various subaqueous and subaerially exposed environments studied. Biofilm interaction with chemical sedimentary processes included dissolution and granularization of precipitation surfaces, formation of gypsum crystals with equant and distorted habits, and precipitation of trace carbonate and oxide phases. Fine-scale wrinkle structures visible in clastic surfaces of sabkha environments offered evidence of the biofilm's role in physical sedimentary processes. These findings are highly relevant to astrobiology because they expand and refine the known characteristics of gypsum deposits, including their biological components. C1 [Vogel, Marilyn B.; Turk, Kendra A.; Kubo, Michael D. Y.] SETI Inst, Mountain View, CA 94043 USA. [Des Marais, David J.; Jahnke, Linda L.] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA. [Parenteau, Mary N.] Oak Ridge Associated Univ, NASA, NPP, ARC,Astrobiol Branch, Moffett Field, CA USA. RP Vogel, MB (reprint author), SETI Inst, 415 N Whisman Rd, Mountain View, CA 94043 USA. EM marilyn.b.vogel@nasa.gov FU NASA; NASA Astrobiology Institute; Ames NAI team; Oak Associate Universities FX This work was funded by grants from the NASA Exobiology and Evolutionary Biology program and the NASA Astrobiology Institute to D.J.D. and the Ames NAI team. The authors thank N. Noffke and D. Bottjer for organizing this special volume. Two anonymous reviewers provided insightful feedback that enhanced the manuscript. M. B. V. acknowledges support from Oak Associate Universities NASA Postdoctoral Program. We also thank the staff of the Stanford/USGS SUMAC facility for microscopy support. S. Sabet of La Sierra University and N. Finke, Biologisk Institut, University of Southern Denmark, are both thanked for assistance in the field and images from the field site. NR 74 TC 8 Z9 8 U1 2 U2 12 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD NOV PY 2009 VL 9 IS 9 BP 875 EP 893 DI 10.1089/ast.2008.0325 PG 19 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 528QS UT WOS:000272462200006 PM 19968464 ER PT J AU Connelley, MS Reipurth, B Tokunaga, AT AF Connelley, Michael S. Reipurth, Bo Tokunaga, Alan T. TI AN ADAPTIVE OPTICS SURVEY FOR CLOSE PROTOSTELLAR BINARIES SO ASTRONOMICAL JOURNAL LA English DT Article DE binaries: visual; instrumentation: adaptive optics; stars: formation ID HUBBLE-SPACE-TELESCOPE; MAIN-SEQUENCE BINARIES; INFRARED FILTER SET; EMBEDDED PROTOSTARS; MULTIPLE SYSTEMS; IRAS SOURCES; YOUNG STARS; TAURUS; EVOLUTION; CLUSTER AB In order to test the hypothesis that Class I protostellar binary stars are a product of ejections during the dynamical decay of nonhierarchical multiple systems, we combined the results of new adaptive optics (AO) observations of Class I protostars with our previously published AO data to investigate whether Class I protostars with a widely separated companion (r > 200 AU) are more likely to also have a close companion (r < 200 AU). In total, we observed 47 embedded young stellar objects (YSOs) with either the Subaru natural guide star AO system or the Keck laser guide star AO system. We found that targets with a widely separated companion within 5000 AU are not more likely to have a close companion. However, targets with another YSO within a projected separation of 25,000 AU are much more likely to have a close companion. Most importantly, every target with a close companion has another YSO within a projected separation of 25,000 AU. We came to the same conclusions after considering a restricted sample of targets within 500 pc and close companions wider than 50 AU to minimize incompleteness effects. The Orion star-forming region was found to have an excess of both close binaries and YSOs within 25,000 AU compared to other star-forming regions. We interpret these observations as strong evidence that many close Class I binary stars form via ejections and that many of the ejected stars become unbound during the Class I phase. C1 [Connelley, Michael S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Reipurth, Bo] Univ Hawaii, Inst Astron, Hilo, HI 96720 USA. [Tokunaga, Alan T.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. RP Connelley, MS (reprint author), NASA, Ames Res Ctr, MS 245-6, Moffett Field, CA 94035 USA. FU W. M. Keck Foundation FX The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. NR 39 TC 11 Z9 11 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD NOV PY 2009 VL 138 IS 5 BP 1193 EP 1202 DI 10.1088/0004-6256/138/5/1193 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 507KM UT WOS:000270852100001 ER PT J AU Dawson, KS Aldering, G Amanullah, R Barbary, K Barrientos, LF Brodwin, M Connolly, N Dey, A Doi, M Donahue, M Eisenhardt, P Ellingson, E Faccioli, L Fadeyev, V Fakhouri, HK Fruchter, AS Gilbank, DG Gladders, MD Goldhaber, G Gonzalez, AH Goobar, A Gude, A Hattori, T Hoekstra, H Huang, X Ihara, Y Jannuzi, BT Johnston, D Kashikawa, K Koester, B Konishi, K Kowalski, M Lidman, C Linder, EV Lubin, L Meyers, J Morokuma, T Munshi, F Mullis, C Oda, T Panagia, N Perlmutter, S Postman, M Pritchard, T Rhodes, J Rosati, P Rubin, D Schlegel, DJ Spadafora, A Stanford, SA Stanishev, V Stern, D Strovink, M Suzuki, N Takanashi, N Tokita, K Wagner, M Wang, L Yasuda, N Yee, HKC AF Dawson, K. S. Aldering, G. Amanullah, R. Barbary, K. Barrientos, L. F. Brodwin, M. Connolly, N. Dey, A. Doi, M. Donahue, M. Eisenhardt, P. Ellingson, E. Faccioli, L. Fadeyev, V. Fakhouri, H. K. Fruchter, A. S. Gilbank, D. G. Gladders, M. D. Goldhaber, G. Gonzalez, A. H. Goobar, A. Gude, A. Hattori, T. Hoekstra, H. Huang, X. Ihara, Y. Jannuzi, B. T. Johnston, D. Kashikawa, K. Koester, B. Konishi, K. Kowalski, M. Lidman, C. Linder, E. V. Lubin, L. Meyers, J. Morokuma, T. Munshi, F. Mullis, C. Oda, T. Panagia, N. Perlmutter, S. Postman, M. Pritchard, T. Rhodes, J. Rosati, P. Rubin, D. Schlegel, D. J. Spadafora, A. Stanford, S. A. Stanishev, V. Stern, D. Strovink, M. Suzuki, N. Takanashi, N. Tokita, K. Wagner, M. Wang, L. Yasuda, N. Yee, H. K. C. CA Supernova Cosmology Project TI AN INTENSIVE HUBBLE SPACE TELESCOPE* SURVEY FOR z > 1 TYPE Ia SUPERNOVAE BY TARGETING GALAXY CLUSTERS SO ASTRONOMICAL JOURNAL LA English DT Review DE cosmology: observations; supernovae: general ID COLOR-MAGNITUDE RELATION; HIGH-REDSHIFT CLUSTERS; LIGHT-CURVE SHAPES; IRAC SHALLOW SURVEY; SIMILAR-TO 1; X-RAY; RED-SEQUENCE; SPECTROSCOPIC CONFIRMATION; LEGACY SURVEY; DARK ENERGY AB We present a new survey strategy to discover and study high-redshift Type Ia supernovae (SNe Ia) using the Hubble Space Telescope (HST). By targeting massive galaxy clusters at 0.9 < z < 1.5, we obtain a twofold improvement in the efficiency of finding SNe compared to an HST field survey and a factor of 3 improvement in the total yield of SN detections in relatively dust-free red-sequence galaxies. In total, sixteen SNe were discovered at z > 0.95, nine of which were in galaxy clusters. This strategy provides an SN sample that can be used to decouple the effects of host-galaxy extinction and intrinsic color in high-redshift SNe, thereby reducing one of the largest systematic uncertainties in SN cosmology. C1 [Dawson, K. S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Dawson, K. S.; Aldering, G.; Barbary, K.; Faccioli, L.; Fakhouri, H. K.; Goldhaber, G.; Linder, E. V.; Meyers, J.; Perlmutter, S.; Pritchard, T.; Rubin, D.; Schlegel, D. J.; Spadafora, A.; Strovink, M.; Suzuki, N.; Wagner, M.] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Amanullah, R.; Barbary, K.; Fakhouri, H. K.; Goldhaber, G.; Gude, A.; Huang, X.; Meyers, J.; Munshi, F.; Perlmutter, S.; Pritchard, T.; Rubin, D.; Strovink, M.; Wagner, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Barrientos, L. F.] Pontificia Univ Catolica Chile, Dept Astron, Santiago, Chile. [Brodwin, M.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Connolly, N.] Hamilton Coll, Dept Phys, Clinton, NY 13323 USA. [Dey, A.; Jannuzi, B. T.] Natl Opt Astron Observ, Tucson, AZ 85726 USA. [Doi, M.; Ihara, Y.; Tokita, K.] Univ Tokyo, Grad Sch Sci, Inst Astron, Tokyo 1810015, Japan. [Donahue, M.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Eisenhardt, P.; Johnston, D.; Rhodes, J.; Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ellingson, E.] Univ Colorado, Ctr Astrophys & Space Astron, UCB 389, Boulder, CO 80309 USA. [Fadeyev, V.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 94064 USA. [Fruchter, A. S.; Panagia, N.; Postman, M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Gilbank, D. G.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Gladders, M. D.; Koester, B.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Gonzalez, A. H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Goobar, A.; Stanishev, V.] Stockholm Univ, Albanova Univ Ctr, Dept Phys, SE-10691 Stockholm, Sweden. [Goobar, A.] Oskar Klein Ctr Cosmo Particle Phys, SE-10691 Stockholm, Sweden. [Hattori, T.] Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Hoekstra, H.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 2Y2, Canada. [Hoekstra, H.] Leiden Univ, Leiden Observ, Leiden, Netherlands. [Johnston, D.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Kashikawa, K.; Morokuma, T.; Takanashi, N.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Koester, B.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Konishi, K.; Yasuda, N.] Univ Tokyo, Inst Cosm Ray Res, Chiba 2778582, Japan. [Kowalski, M.] Humboldt Univ, Inst Phys, Berlin, Germany. [Lidman, C.] European So Observ, Santiago 19, Chile. [Lubin, L.; Stanford, S. A.] Univ Calif Davis, Davis, CA 95618 USA. [Mullis, C.] Wachovia Corp, Winston Salem, NC 27101 USA. [Oda, T.] Kyoto Univ, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Rhodes, J.] CALTECH, Pasadena, CA 91125 USA. [Rosati, P.] ESO, D-85748 Garching, Germany. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Stanishev, V.] Inst Super Tecn, CENTRA Ctr Multidisciplinar Astrofis, P-1049001 Lisbon, Portugal. [Wang, L.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Yee, H. K. C.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. RP Dawson, KS (reprint author), Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. EM kdawson@physics.utah.edu RI Donahue, Megan/B-5361-2012; Yasuda, Naoki/A-4355-2011; Kowalski, Marek/G-5546-2012; Stanishev, Vallery/M-8930-2013; Perlmutter, Saul/I-3505-2015; OI Stanishev, Vallery/0000-0002-7626-1181; Perlmutter, Saul/0000-0002-4436-4661; Meyers, Joshua/0000-0002-2308-4230; Hoekstra, Henk/0000-0002-0641-3231 NR 105 TC 45 Z9 46 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD NOV PY 2009 VL 138 IS 5 BP 1271 EP 1283 DI 10.1088/0004-6256/138/5/1271 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 507KM UT WOS:000270852100007 ER PT J AU Galametz, A De Breuck, C Vernet, J Stern, D Rettura, A Marmo, C Omont, A Allen, M Seymour, N AF Galametz, A. De Breuck, C. Vernet, J. Stern, D. Rettura, A. Marmo, C. Omont, A. Allen, M. Seymour, N. TI Large scale structures around radio galaxies at z similar to 1.5 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE large scale structure of Universe; galaxies: clusters: general; Galaxy: evolution; galaxies: individual: 7C 1756+6520; galaxies: individual: 7C 1751+6809 ID COLOR-MAGNITUDE RELATION; SPITZER-SPACE-TELESCOPE; GOODS-MUSIC SAMPLE; NEAR-INFRARED OBSERVATIONS; ACTIVE GALACTIC NUCLEI; HIGH-REDSHIFT CLUSTERS; LYMAN-BREAK GALAXIES; NORTH ECLIPTIC CAP; DIGITAL SKY SURVEY; ARRAY CAMERA IRAC AB We explore the environments of two radio galaxies at z similar to 1.5, 7C 1751+6809 and 7C 1756+6520, using deep optical and near-infrared imaging. Our data cover 15 x 15 arcmin(2) fields around the radio galaxies. We develop and apply BzK color criteria to select cluster member candidates around the radio galaxies and find no evidence of an overdensity of red galaxies within 2Mpc of 7C 1751+6809. In contrast, 7C 1756+6520 shows a significant overdensity of red galaxies within 2Mpc of the radio galaxy, by a factor of 3.1 +/- 0.8 relative to the four MUSYC fields. At small separation (r < 6 ''), this radio galaxy also has one z > 1.4 evolved galaxy candidate, one z > 1.4 star-forming galaxy candidate, and an AGN candidate (at indeterminate redshift). This is suggestive of several close-by companions. Several concentrations of red galaxies are also noticed in the full 7C 1756+6520 field, forming a possible large-scale structure of evolved galaxies with a NW-SE orientation. We construct the color-magnitude diagram of red galaxies found near 7C 1756+6520 (r < 2 Mpc), and find a clear red sequence that is truncated at K-s similar to 21.5 (AB). We also find an overdensity of mid-infrared selected AGN in the surroundings of 7C 1756+6520. These results are suggestive of a proto-cluster at high redshift. C1 [Galametz, A.; De Breuck, C.; Vernet, J.] European So Observ, D-85748 Garching, Germany. [Galametz, A.; Stern, D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Galametz, A.; Allen, M.] Observ Astron, F-67000 Strasbourg, France. [Rettura, A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Marmo, C.; Omont, A.] Univ Paris 06, CNRS, Inst Astrophys Paris, Paris, France. [Seymour, N.] UCL, Mullard Space Sci Lab, Surrey RH5 6NT, England. [Seymour, N.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. RP Galametz, A (reprint author), European So Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. EM agalamet@eso.org OI Allen, Mark/0000-0003-2168-0087; Vernet, Joel/0000-0002-8639-8560; Seymour, Nicholas/0000-0003-3506-5536; De Breuck, Carlos/0000-0002-6637-3315 NR 82 TC 11 Z9 11 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2009 VL 507 IS 1 BP 131 EP U221 DI 10.1051/0004-6361/200912177 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 519QS UT WOS:000271782900016 ER PT J AU De Marco, B Iwasawa, K Cappi, M Dadina, M Tombesi, F Ponti, G Celotti, A Miniutti, G AF De Marco, B. Iwasawa, K. Cappi, M. Dadina, M. Tombesi, F. Ponti, G. Celotti, A. Miniutti, G. TI Probing variability patterns of the Fe K line complex in bright nearby AGNs SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE line: profiles; relativity; galaxies: active; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; XMM-NEWTON OBSERVATIONS; ROTATING BLACK-HOLES; X-RAY VARIABILITY; BROAD IRON LINES; SEYFERT-1 GALAXIES; ABSORPTION-LINES; ACCRETION DISK; NARROW-LINE; ALPHA LINE AB Context. The unprecedented sensitivity of current X-ray telescopes allows the issue of the Fe K line complex variability patterns in bright, nearby AGNs to be addressed for the first time. These kinds of studies have the potential to map the accretion flow in the strong gravity regime of supermassive black holes. Aims. We examine XMM-Newton observations of the brightest sources of the FERO sample of radio-quiet type 1 AGNs (for a total of 72 observations) with the aim of characterizing the temporal behaviour of Fe K complex features. Methods. A systematic mapping of residual flux above and below the continuum in the 4-9 keV range was performed in the time vs. energy domain, with the purpose of identifying interesting spectral features in the three energy bands: 5.4-6.1 keV, 6.1-6.8 keV, and 6.8-7.2 keV, respectively corresponding to the redshifted, rest-frame, and either blueshifted or highly ionized Fe K alpha line bands. The variability significance of rest frame and energy-shifted Fe K lines was assessed by extracting light curves and comparing them with Monte Carlo simulations. Results. The time-averaged profile of the Fe K complex revealed spectral complexity in several observations. Red- and blue- shifted components (either in emission or absorption) were observed in 30 out of 72 observations, with an average < EW > similar to 90 eV for emission and < EW > similar to -30 eV for absorption features. We detected significant line variability (with confidence levels ranging between 90% and 99.7%) within at least one of the above energy bands in 26 out of 72 observations on time scales Delta t similar to 6-30 ks. The reliability of these features has been carefully calculated using this sample and assessed at similar to 3 sigma confidence level. Conclusions. This work increases the currently scanty number of detections of variable, energy-shifted Fe lines and confirms the reliability of the claimed detections. We found that the distribution of detected features is peaked at high variability significances in the red- and blue- shifted energy bands rather than at rest-frame energies, suggesting an origin in a relativistically modified accretion flow. C1 [De Marco, B.; Celotti, A.] SISSA Int Sch Adv Studies, I-34151 Trieste, Italy. [Iwasawa, K.] INAF Osservatorio Astron Bologna, I-40127 Bologna, Italy. [Cappi, M.; Dadina, M.; Tombesi, F.] INAF IASF Bologna, I-40129 Bologna, Italy. [Ponti, G.] APC Univ Paris 7 Denis Diderot, F-75205 Paris, France. [Miniutti, G.] LAEFF, Ctr Astrobiol CSIC INTA, LAEX, Madrid 28691, Spain. [Tombesi, F.] NASA, Goddard Space Flight Ctr, High Energy Astrophys Lab, Greenbelt, MD 20771 USA. [Tombesi, F.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Tombesi, F.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. RP De Marco, B (reprint author), SISSA Int Sch Adv Studies, Via Beirut 2-4, I-34151 Trieste, Italy. EM demarco@sissa.it RI Miniutti, Giovanni/L-2721-2014; Cappi, Massimo/F-4813-2015; OI Miniutti, Giovanni/0000-0003-0707-4531; Cappi, Massimo/0000-0001-6966-8920; Dadina, Mauro/0000-0002-7858-7564 FU ASI [ASI/INAFI/023/05/0, I/088/06/0]; MIUR; ANR [ANR-06-JCJC-0047]; Ministerio de Ciencia e Innovacion; CSIC FX This paper is based on observations obtained with the XMM-Newton satellite, an ESA funded mission with contributions by ESA Member States and the USA. B. D. M., M. C., M. D., G. P., and F. T. acknowledge financial support from ASI under contracts ASI/INAFI/023/05/0 and I/088/06/0. B. D. M. and A. C. acknowledge MIUR for financial support. G. P. aknowledges ANR for support under grant number ANR-06-JCJC-0047. G. M. acknowledges the Ministerio de Ciencia e Innovacion and CSIC for support through a Ramon y Cajal contract. BDM aknowledges C. Evoli for helpful discussions. The authors thank the anonymous referee for suggestions that led to significant improvements in the paper. NR 77 TC 15 Z9 15 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2009 VL 507 IS 1 BP 159 EP U256 DI 10.1051/0004-6361/200912188 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 519QS UT WOS:000271782900018 ER EF